WorldWideScience

Sample records for echo point resolved

  1. Time-resolved Femtosecond Photon Echo Probes Bimodal Solvent Dynamics

    NARCIS (Netherlands)

    Pshenichnikov, M.S; Duppen, K.; Wiersma, D. A.

    1995-01-01

    We report on time-resolved femtosecond photon echo experiments of a dye molecule in a polar solution. The photon echo is time resolved by mixing the echo with a femtosecond gate pulse in a nonlinear crystal. It is shown that the temporal profile of the photon echo allows separation of the

  2. Time-resolved echo-shared parallel MRA of the lung: observer preference study of image quality in comparison with non-echo-shared sequences

    International Nuclear Information System (INIS)

    Fink, C.; Puderbach, M.; Zaporozhan, J.; Plathow, C.; Kauczor, H.-U.; Ley, S.

    2005-01-01

    The aim of this study was to evaluate the image quality of time-resolved echo-shared parallel MRA of the lung. The pulmonary vasculature of nine patients (seven females, two males; median age: 44 years) with pulmonary disease was examined using a time-resolved MRA sequence combining echo sharing with parallel imaging (time-resolved echo-shared angiography technique, or TREAT). The sharpness of the vessel borders, conspicuousness of peripheral lung vessels, artifact level, and overall image quality of TREAT was assessed independently by four readers in a side-by-side comparison with non-echo-shared time-resolved parallel MRA data (pMRA) previously acquired in the same patients. Furthermore, the SNR of pulmonary arteries (PA) and veins (PV) achieved with both pulse sequences was compared. The mean voxel size of TREAT MRA was decreased by 24% compared with the non-echo-shared MRA. Regarding the sharpness of the vessel borders, conspicuousness of peripheral lung vessels, and overall image quality the TREAT sequence was rated superior in 75-76% of all cases. If the TREAT images were preferred over the pMRA images, the advantage was rated as major in 61-71% of all cases. The level of artifacts was not increased with the TREAT sequence. The mean interobserver agreement for all categories ranged between fair (artifact level) and good (overall image quality). The maximum SNR of TREAT did not differ from non-echo-shared parallel MRA (PA: TREAT: 273±45; pMRA: 280±71; PV: TREAT: 273±33; pMRA: 258±62). TREAT achieves a higher spatial resolution than non-echo-shared parallel MRA which is also perceived as an improved image quality. (orig.)

  3. Nanosecond time-resolved EPR in pulse radiolysis via the spin echo method

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Norris, J.R.; Lawler, R.G.

    1979-01-01

    The design and operation of a time-resolved electron spin echo spectrometer suitable for detecting transient radicals produced by 3 MeV electron radiolysis is described. Two modes of operation are available: Field swept mode which generates a normal EPR spectrum and kinetic mode in which the time dependence of a single EPR line is monitored. Techniques which may be used to minimize the effects of nonideal microwave pulses and overlapping sample tube signals are described. The principal advantages of the spin echo method over other time-resolved EPR methods are: (1) Improved time resolution (presently approx.30--50 nsec) allows monitoring of fast changes in EPR signals of transient radicals, (2) Lower susceptibility to interference between the EPR signal and the electron beam pulse at short times, and (3) Lack of dependence of transient signals on microwave field amplitude or static field inhomogeneity at short times. The performance of the instrument is illustrated using CIDEP from acetate radical formed in pulsed radiolysis of aqueous solutions of potassium acetate. The relaxation time and CIDEP enhancement factor obtained for this radical using the spin echo method compare favorably with previous determinations using direct detection EPR. Radical decay rates yield estimates of initial radical concentrations of 10 -4 10 -3 M per electron pulse. The Bloch equations are solved to give an expression for the echo signal for samples exhibiting CIDEP using arbitrary microwave pulse widths and distributions of Larmor frequencies. Conditions are discussed under which the time-dependent signal would be distorted by deviations from an ideal nonselective 90 0 --tau--180 0 pulse sequence

  4. The Usefulness of Readout-Segmented Echo-Planar Imaging (RESOLVE) for Bio-phantom Imaging Using 3-Tesla Clinical MRI.

    Science.gov (United States)

    Yoshimura, Yuuki; Kuroda, Masahiro; Sugiantoc, Irfan; Bamgbosec, Babatunde O; Miyahara, Kanae; Ohmura, Yuichi; Kurozumi, Akira; Matsushita, Toshi; Ohno, Seiichiro; Kanazawa, Susumu; Asaumi, Junichi

    2018-02-01

    Readout-segmented echo-planar imaging (RESOLVE) is a multi-shot echo-planar imaging (EPI) modality with k-space segmented in the readout direction. We investigated whether RESOLVE decreases the distortion and artifact in the phase direction and increases the signal-to-noise ratio (SNR) in phantoms image taken with 3-tesla (3T) MRI versus conventional EPI. We used a physiological saline phantom and subtraction mapping and observed that RESOLVE's SNR was higher than EPI's. Using RESOLVE, the combination of a special-purpose coil and a large-loop coil had a higher SNR compared to using only a head/neck coil. RESOLVE's image distortioas less than EPI's. We used a 120 mM polyethylene glycol phantom to examine the phase direction artifact.vThe range where the artifact appeared in the apparent diffusion coefficient (ADC) image was shorter with RESOLVE compared to EPI. We used RESOLVE to take images of a Jurkat cell bio-phantom: the cell-region ADC was 856×10-6mm2/sec and the surrounding physiological saline-region ADC was 2,951×10-6mm2/sec. The combination of RESOLVE and the 3T clinical MRI device reduced image distortion and improved SNR and the identification of accurate ADC values due to the phase direction artifact reduction. This combination is useful for obtaining accurate ADC values of bio-phantoms.

  5. Evaluation of 2-point, 3-point, and 6-point Dixon magnetic resonance imaging with flexible echo timing for muscle fat quantification.

    Science.gov (United States)

    Grimm, Alexandra; Meyer, Heiko; Nickel, Marcel D; Nittka, Mathias; Raithel, Esther; Chaudry, Oliver; Friedberger, Andreas; Uder, Michael; Kemmler, Wolfgang; Quick, Harald H; Engelke, Klaus

    2018-06-01

    The purpose of this study is to evaluate and compare 2-point (2pt), 3-point (3pt), and 6-point (6pt) Dixon magnetic resonance imaging (MRI) sequences with flexible echo times (TE) to measure proton density fat fraction (PDFF) within muscles. Two subject groups were recruited (G1: 23 young and healthy men, 31 ± 6 years; G2: 50 elderly men, sarcopenic, 77 ± 5 years). A 3-T MRI system was used to perform Dixon imaging on the left thigh. PDFF was measured with six Dixon prototype sequences: 2pt, 3pt, and 6pt sequences once with optimal TEs (in- and opposed-phase echo times), lower resolution, and higher bandwidth (optTE sequences) and once with higher image resolution (highRes sequences) and shortest possible TE, respectively. Intra-fascia PDFF content was determined. To evaluate the comparability among the sequences, Bland-Altman analysis was performed. The highRes 6pt Dixon sequences served as reference as a high correlation of this sequence to magnetic resonance spectroscopy has been shown before. The PDFF difference between the highRes 6pt Dixon sequence and the optTE 6pt, both 3pt, and the optTE 2pt was low (between 2.2% and 4.4%), however, not to the highRes 2pt Dixon sequence (33%). For the optTE sequences, difference decreased with the number of echoes used. In conclusion, for Dixon sequences with more than two echoes, the fat fraction measurement was reliable with arbitrary echo times, while for 2pt Dixon sequences, it was reliable with dedicated in- and opposed-phase echo timing. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Accelerated echo-planar J-resolved spectroscopic imaging in the human brain using compressed sensing: a pilot validation in obstructive sleep apnea.

    Science.gov (United States)

    Sarma, M K; Nagarajan, R; Macey, P M; Kumar, R; Villablanca, J P; Furuyama, J; Thomas, M A

    2014-06-01

    Echo-planar J-resolved spectroscopic imaging is a fast spectroscopic technique to record the biochemical information in multiple regions of the brain, but for clinical applications, time is still a constraint. Investigations of neural injury in obstructive sleep apnea have revealed structural changes in the brain, but determining the neurochemical changes requires more detailed measurements across multiple brain regions, demonstrating a need for faster echo-planar J-resolved spectroscopic imaging. Hence, we have extended the compressed sensing reconstruction of prospectively undersampled 4D echo-planar J-resolved spectroscopic imaging to investigate metabolic changes in multiple brain locations of patients with obstructive sleep apnea and healthy controls. Nonuniform undersampling was imposed along 1 spatial and 1 spectral dimension of 4D echo-planar J-resolved spectroscopic imaging, and test-retest reliability of the compressed sensing reconstruction of the nonuniform undersampling data was tested by using a brain phantom. In addition, 9 patients with obstructive sleep apnea and 11 healthy controls were investigated by using a 3T MR imaging/MR spectroscopy scanner. Significantly reduced metabolite differences were observed between patients with obstructive sleep apnea and healthy controls in multiple brain regions: NAA/Cr in the left hippocampus; total Cho/Cr and Glx/Cr in the right hippocampus; total NAA/Cr, taurine/Cr, scyllo-Inositol/Cr, phosphocholine/Cr, and total Cho/Cr in the occipital gray matter; total NAA/Cr and NAA/Cr in the medial frontal white matter; and taurine/Cr and total Cho/Cr in the left frontal white matter regions. The 4D echo-planar J-resolved spectroscopic imaging technique using the nonuniform undersampling-based acquisition and compressed sensing reconstruction in patients with obstructive sleep apnea and healthy brain is feasible in a clinically suitable time. In addition to brain metabolite changes previously reported by 1D MR

  7. Experimental investigation of the accuracy for absolute quantification of brain creatine concentration using long time echo point resolved spectroscopy sequence with an external standard and linear combination of model spectra

    International Nuclear Information System (INIS)

    Lin Yan; Shen Zhiwei; Xiao Yeyu; Zheng Wenbin; Wu Renhua; Li Hui; Xiao Zhuanwei

    2008-01-01

    Objective: To investigate the accuracy for absolute quantification of brain creatine (Cr) concentration using long time echo (TE) point resolved spectroscopy (PRESS) sequence performed with an extemal standard and postprocessed with the linear combination of model spectra ( LCModel). Methods: Ten swine (3.1 ± 0.6 kg) and an external standard phantom containing detectable compounds of known concentration were investigated in this study by using 1.5 T GE Signa scanner and a standard head coil. The single-voxel proton magnetic resonance spectroscopy ( 1 H-MRS) data were acquired from the two ROIs (2 cm x 2 cm x 2 cm) placed in swine brain and external standard solution using PRESS sequence with TE 135 ms, TR 1500 ms, and 128 scan averages. The in vivo quantification of Cr was accomplished by LCModel. After 1 H-MRS examination, each animal was sacrificed immediately. In vitro Cr concentration was analyzed by high performance liquid chromatography (HPLC). Results: In the 1 H-MRS group, the Cr concentration was (9.37±0.14)mmol/kg. In the HPLC group, the Cr concentration was (8.91± 0.13)mmol/kg. Good agreement was obtained between these two methods (t=9.038, P=0.491). Conclusion: The long echo time PRESS sequence performed with an external standard and processed with LCModel is proven to be an accurate technique to detect the in vivo brain Cr concentration. (authors)

  8. Spin echo SPI methods for quantitative analysis of fluids in porous media.

    Science.gov (United States)

    Li, Linqing; Han, Hui; Balcom, Bruce J

    2009-06-01

    Fluid density imaging is highly desirable in a wide variety of porous media measurements. The SPRITE class of MRI methods has proven to be robust and general in their ability to generate density images in porous media, however the short encoding times required, with correspondingly high magnetic field gradient strengths and filter widths, and low flip angle RF pulses, yield sub-optimal S/N images, especially at low static field strength. This paper explores two implementations of pure phase encode spin echo 1D imaging, with application to a proposed new petroleum reservoir core analysis measurement. In the first implementation of the pulse sequence, we modify the spin echo single point imaging (SE-SPI) technique to acquire the k-space origin data point, with a near zero evolution time, from the free induction decay (FID) following a 90 degrees excitation pulse. Subsequent k-space data points are acquired by separately phase encoding individual echoes in a multi-echo acquisition. T(2) attenuation of the echo train yields an image convolution which causes blurring. The T(2) blur effect is moderate for porous media with T(2) lifetime distributions longer than 5 ms. As a robust, high S/N, and fast 1D imaging method, this method will be highly complementary to SPRITE techniques for the quantitative analysis of fluid content in porous media. In the second implementation of the SE-SPI pulse sequence, modification of the basic measurement permits fast determination of spatially resolved T(2) distributions in porous media through separately phase encoding each echo in a multi-echo CPMG pulse train. An individual T(2) weighted image may be acquired from each echo. The echo time (TE) of each T(2) weighted image may be reduced to 500 micros or less. These profiles can be fit to extract a T(2) distribution from each pixel employing a variety of standard inverse Laplace transform methods. Fluid content 1D images are produced as an essential by product of determining the

  9. Comparison of multi-echo and single-echo gradient-recalled echo sequences for SPIO-enhanced Liver MRI at 3 T

    International Nuclear Information System (INIS)

    Choi, J.S.; Kim, M.-J.; Kim, J.H.; Choi, J.-Y.; Chung, Y.E.; Park, M.-S.; Kim, K.W.

    2010-01-01

    Aim: To assess the utility of a T2*-weighted, multi-echo data imaging combination sequenced on superparamagnetic iron oxide (SPIO)-enhanced liver magnetic resonance imaging (MRI) using a 3 T system. Materials and methods: Fifty patients underwent SPIO-enhanced MRI at 3 T using T2*-weighted, single-echo, gradient-recalled echo (GRE) sequences [fast imaging with steady precession; repetition time (TR)/echo time (TE), 126 ms/9 ms; flip angle, 30 o ] and multi-echo GRE (multi-echo data image combination) sequences (TR/TE, 186 ms/9 ms; flip angle, 30 o ). Three radiologists independently reviewed the images in a random order. The sensitivity and accuracy for the detection of focal hepatic lesions (a total of 76 lesions in 33 patients; 48 solid lesions, 28 non-solid lesions) were compared by analysing the area under the receiver operating characteristic curves. Image artefacts (flow artefacts, susceptibility artefacts, dielectric artefacts, and motion artefacts), lesion conspicuity, and overall image quality were evaluated according to a four-point scale: 1, poor; 2, fair; 3, good; 4, excellent. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the lesions were compared. Results: Image artefacts were more frequent with single-echo GRE (p < 0.05). The mean scale of image quality assessment for flow, susceptibility, dielectric, and motion artefacts were 2.76, 3.13, 3.42, and 2.89 with singe-echo, respectively, compared with 3.47, 3.43, 3.47, and 3.39, respectively, with multi-echo GRE. There was no significant difference in lesion conspicuity between single-echo (3.15) and multi-echo (3.30) GRE sequences. The overall image quality was significantly (p < 0.05) better with multi-echo (3.37) than with single-echo GRE (2.89). The mean SNR and CNR of the lesions were significantly (p < 0.05) higher on multi-echo (79 ± 23 and 128 ± 59, respectively) images than on single-echo (38 ± 11 and 102 ± 44, respectively) images. Lesion detection accuracy and

  10. Echo questions as a means of building coherence in conversational discourse

    Directory of Open Access Journals (Sweden)

    Strelchenko Natalia

    2017-06-01

    Full Text Available The study focuses on the cognitive-communicative characteristics of echo questions in English conversational discourse. Drawing on van Dijk's sociocognitive (mental model theory and cognitive discourse analysis, the paper suggests viewing echo questions as a means of building/updating a mental context model of a communicative situation. As discourse comprehension presupposes building its coherent mental model, echo questions resolving misunderstanding are regarded as an instrument for increasing coherence in conversational discourse. Based on the mental model theory, the study offers a typology of misunderstandings corrected by echo questions.

  11. Electric Dipole Echoes and Noise-Induced Coherence

    International Nuclear Information System (INIS)

    Mestayer, J.J.; Zhao, W.; Lancaster, J.C.; Dunning, F.B.; Yoshida, S.; Reinhold, Carlos O.; Burgdorfer, J.

    2007-01-01

    The generation of echoes in the electric dipole moment of a Rydberg wavepacket precessing in an external electric field by reversal of the field is described. When the wavepacket experiences reversible dephasing, large echoes are observed pointing to strong refocusing of the wavepacket. The presence of irreversible dephasing leads to a reduction in the size of the echoes. The effect of irreversible dynamics on echoes is investigated using artificially synthesized noise. Methods to determine the decoherence rate are discussed

  12. J-NSE: Neutron spin echo spectrometer

    Directory of Open Access Journals (Sweden)

    Olaf Holderer

    2015-08-01

    Full Text Available Neutron Spin-Echo (NSE spectroscopy is well known as the only neutron scattering technique that achieves energy resolution of several neV. By using the spin precession of polarized neutrons in magnetic field one can measure tiny velocity changes of the individual neutron during the scattering process. Contrary to other inelastic neutron scattering techniques, NSE measures the intermediate scattering function S(Q,t in reciprocal space and time directly. The Neutron Spin-Echo spectrometer J-NSE, operated by JCNS, Forschungszentrum Jülich at the Heinz Maier-Leibnitz Zentrum (MLZ in Garching, covers a time range (2 ps to 200 ns on length scales accessible by small angle scattering technique. Along with conventional NSE spectroscopy that allows bulk measurements in transmission mode, J-NSE offers a new possibility - gracing incidence spin echo spectroscopy (GINSENS, developed to be used as "push-button" option in order to resolve the depth dependent near surface dynamics.

  13. Gravitational wave sources: reflections and echoes

    Science.gov (United States)

    Price, Richard H.; Khanna, Gaurav

    2017-11-01

    The recent detection of gravitational waves has generated interest in alternatives to the black hole interpretation of sources. A subset of such alternatives involves a prediction of gravitational wave ‘echoes’. We consider two aspects of possible echoes: first, general features of echoes coming from spacetime reflecting conditions. We find that the detailed nature of such echoes does not bear any clear relationship to quasi-normal frequencies. Second, we point out the pitfalls in the analysis of local reflecting ‘walls’ near the horizon of rapidly rotating black holes.

  14. Gravitational wave sources: reflections and echoes

    International Nuclear Information System (INIS)

    Price, Richard H; Khanna, Gaurav

    2017-01-01

    The recent detection of gravitational waves has generated interest in alternatives to the black hole interpretation of sources. A subset of such alternatives involves a prediction of gravitational wave ‘echoes’. We consider two aspects of possible echoes: first, general features of echoes coming from spacetime reflecting conditions. We find that the detailed nature of such echoes does not bear any clear relationship to quasi-normal frequencies. Second, we point out the pitfalls in the analysis of local reflecting ‘walls’ near the horizon of rapidly rotating black holes. (paper)

  15. Pilot Assessment of Brain Metabolism in Perinatally HIV-Infected Youths Using Accelerated 5D Echo Planar J-Resolved Spectroscopic Imaging.

    Science.gov (United States)

    Iqbal, Zohaib; Wilson, Neil E; Keller, Margaret A; Michalik, David E; Church, Joseph A; Nielsen-Saines, Karin; Deville, Jaime; Souza, Raissa; Brecht, Mary-Lynn; Thomas, M Albert

    2016-01-01

    To measure cerebral metabolite levels in perinatally HIV-infected youths and healthy controls using the accelerated five dimensional (5D) echo planar J-resolved spectroscopic imaging (EP-JRESI) sequence, which is capable of obtaining two dimensional (2D) J-resolved spectra from three spatial dimensions (3D). After acquisition and reconstruction of the 5D EP-JRESI data, T1-weighted MRIs were used to classify brain regions of interest for HIV patients and healthy controls: right frontal white (FW), medial frontal gray (FG), right basal ganglia (BG), right occipital white (OW), and medial occipital gray (OG). From these locations, respective J-resolved and TE-averaged spectra were extracted and fit using two different quantitation methods. The J-resolved spectra were fit using prior knowledge fitting (ProFit) while the TE-averaged spectra were fit using the advanced method for accurate robust and efficient spectral fitting (AMARES). Quantitation of the 5D EP-JRESI data using the ProFit algorithm yielded significant metabolic differences in two spatial locations of the perinatally HIV-infected youths compared to controls: elevated NAA/(Cr+Ch) in the FW and elevated Asp/(Cr+Ch) in the BG. Using the TE-averaged data quantified by AMARES, an increase of Glu/(Cr+Ch) was shown in the FW region. A strong negative correlation (r 0.6) were shown between Asp/(Cr+Ch) and CD4 counts in the FG and BG. The complimentary results using ProFit fitting of J-resolved spectra and AMARES fitting of TE-averaged spectra, which are a subset of the 5D EP-JRESI acquisition, demonstrate an abnormal energy metabolism in the brains of perinatally HIV-infected youths. This may be a result of the HIV pathology and long-term combinational anti-retroviral therapy (cART). Further studies of larger perinatally HIV-infected cohorts are necessary to confirm these findings.

  16. Analytical three-point Dixon method: With applications for spiral water-fat imaging.

    Science.gov (United States)

    Wang, Dinghui; Zwart, Nicholas R; Li, Zhiqiang; Schär, Michael; Pipe, James G

    2016-02-01

    The goal of this work is to present a new three-point analytical approach with flexible even or uneven echo increments for water-fat separation and to evaluate its feasibility with spiral imaging. Two sets of possible solutions of water and fat are first found analytically. Then, two field maps of the B0 inhomogeneity are obtained by linear regression. The initial identification of the true solution is facilitated by the root-mean-square error of the linear regression and the incorporation of a fat spectrum model. The resolved field map after a region-growing algorithm is refined iteratively for spiral imaging. The final water and fat images are recalculated using a joint water-fat separation and deblurring algorithm. Successful implementations were demonstrated with three-dimensional gradient-echo head imaging and single breathhold abdominal imaging. Spiral, high-resolution T1 -weighted brain images were shown with comparable sharpness to the reference Cartesian images. With appropriate choices of uneven echo increments, it is feasible to resolve the aliasing of the field map voxel-wise. High-quality water-fat spiral imaging can be achieved with the proposed approach. © 2015 Wiley Periodicals, Inc.

  17. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    Science.gov (United States)

    Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus; Strobl, Markus

    2017-06-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering.

  18. Echo 7: Magnetospheric properties determined by artificial electron beams

    International Nuclear Information System (INIS)

    Nemzek, R.J.

    1990-01-01

    The sounding rocket Echo 7 was launched from the Poker Flat Research Range. An on-board accelerator injected high-power electron beams into the magnetospheric tail near L = 6.5. After mirroring at the southern conjugate point, about 20 percent of the initial beam electrons returned to the North as Conjugate Echoes, where detectors (scintillators and spectrometers) on four subpayloads measured their energy and bounce time. The other 80 percent of the beam was pitch angle diffused by wave near the equatorial plane either into the conjugate atmosphere or up to mirror points above the payload. Comparison of measured values to calculations showed that the actual magnetosphere during the flight was well-described by the Tsyganenko-Usmanov model magnetosphere with a Kp value of 2- or 2+. Analysis of echo energies yielded values for the highly variable magnetospheric convection electric field

  19. Independence of echo-threshold and echo-delay in the barn owl.

    Directory of Open Access Journals (Sweden)

    Brian S Nelson

    Full Text Available Despite their prevalence in nature, echoes are not perceived as events separate from the sounds arriving directly from an active source, until the echo's delay is long. We measured the head-saccades of barn owls and the responses of neurons in their auditory space-maps while presenting a long duration noise-burst and a simulated echo. Under this paradigm, there were two possible stimulus segments that could potentially signal the location of the echo. One was at the onset of the echo; the other, after the offset of the direct (leading sound, when only the echo was present. By lengthening the echo's duration, independently of its delay, spikes and saccades were evoked by the source of the echo even at delays that normally evoked saccades to only the direct source. An echo's location thus appears to be signaled by the neural response evoked after the offset of the direct sound.

  20. Rabi oscillation and electron-spin-echo envelope modulation of the photoexcited triplet spin system in silicon

    Science.gov (United States)

    Akhtar, Waseem; Sekiguchi, Takeharu; Itahashi, Tatsumasa; Filidou, Vasileia; Morton, John J. L.; Vlasenko, Leonid; Itoh, Kohei M.

    2012-09-01

    We report on a pulsed electron paramagnetic resonance (EPR) study of the photoexcited triplet state (S=1) of oxygen-vacancy centers in silicon. Rabi oscillations between the triplet sublevels are observed using coherent manipulation with a resonant microwave pulse. The Hahn echo and stimulated echo decay profiles are superimposed with strong modulations known as electron-spin-echo envelope modulation (ESEEM). The ESEEM spectra reveal a weak but anisotropic hyperfine coupling between the triplet electron spin and a 29Si nuclear spin (I=1/2) residing at a nearby lattice site, that cannot be resolved in conventional field-swept EPR spectra.

  1. Echo

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Dustin Yewell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-25

    This document is a white paper marketing proposal for Echo™ is a data analysis platform designed for efficient, robust, and scalable creation and execution of complex workflows. Echo’s analysis management system refers to the ability to track, understand, and reproduce workflows used for arriving at results and decisions. Echo improves on traditional scripted data analysis in MATLAB, Python, R, and other languages to allow analysts to make better use of their time. Additionally, the Echo platform provides a powerful data management and curation solution allowing analysts to quickly find, access, and consume datasets. After two years of development and a first release in early 2016, Echo is now available for use with many data types in a wide range of application domains. Echo provides tools that allow users to focus on data analysis and decisions with confidence that results are reported accurately.

  2. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    International Nuclear Information System (INIS)

    Sales, Morten; Strobl, Markus; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus

    2017-01-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering. (paper)

  3. Self-normalizing multiple-echo technique for measuring the in vivo apparent diffusion coefficient

    International Nuclear Information System (INIS)

    Perman, W.H.; Gado, M.; Sandstrom, J.C.

    1989-01-01

    This paper presents work to develop a new technique for quantitating the in vivo apparent diffusion/perfusion coefficient (ADC) by obtaining multiple data points from only two images with the capability to normalize the data from consecutive images, thus minimizing the effect of interimage variation. Two multiple-echo (six-to eight-echo) cardiac-gated images are obtained, one without and one with additional diffusion/perfusion encoding gradients placed about the 180 RF pulses of all but the first echo. Since the first echoes of both images have identical pulse sequence parameters, variations in signal intensity-between the first echoes represent image-to-image variation. The signal intensities of the subsequent echoes with additional diffusion/perfusion encoding gradients are then normalized by using the ratio of the first-echo signal intensities

  4. Optical decoherence times and spectral diffusion in an Er-doped optical fiber measured by two-pulse echoes, stimulated photon echoes, and spectral hole burning

    International Nuclear Information System (INIS)

    Macfarlane, R.M.; Sun, Y.; Sellin, P.B.; Cone, R.L.

    2007-01-01

    Two-pulse and stimulated photon echoes and spectral hole burning were measured on the transition from the lowest component of the 4 I 15/2 manifold to the lowest component of 4 I 13/2 of Er 3+ in a silicate optical fiber at 1.6 K. The two-pulse echo decays gave decoherence times as long as 230 ns for magnetic fields above 2 T. A large field dependent contribution to the homogeneous line width of >2 MHz was found and interpreted in terms of coupling to magnetic tunneling modes (TLS) in the glass. The stimulated echoes measured at 2 T showed spectral diffusion of 0.8 MHz/decade of time between 0.4 and 500 μs. Spectral diffusion in this high field region is attributed to coupling to elastic TLS modes which have a distribution of flip rates in glasses. Time-resolved spectral hole burning at very low field showed stronger spectral diffusion of 5.7 MHz/decade of time, attributed to coupling to magnetic spin-elastic TLS modes

  5. Prior-knowledge Fitting of Accelerated Five-dimensional Echo Planar J-resolved Spectroscopic Imaging: Effect of Nonlinear Reconstruction on Quantitation.

    Science.gov (United States)

    Iqbal, Zohaib; Wilson, Neil E; Thomas, M Albert

    2017-07-24

    1 H Magnetic Resonance Spectroscopic imaging (SI) is a powerful tool capable of investigating metabolism in vivo from mul- tiple regions. However, SI techniques are time consuming, and are therefore difficult to implement clinically. By applying non-uniform sampling (NUS) and compressed sensing (CS) reconstruction, it is possible to accelerate these scans while re- taining key spectral information. One recently developed method that utilizes this type of acceleration is the five-dimensional echo planar J-resolved spectroscopic imaging (5D EP-JRESI) sequence, which is capable of obtaining two-dimensional (2D) spectra from three spatial dimensions. The prior-knowledge fitting (ProFit) algorithm is typically used to quantify 2D spectra in vivo, however the effects of NUS and CS reconstruction on the quantitation results are unknown. This study utilized a simulated brain phantom to investigate the errors introduced through the acceleration methods. Errors (normalized root mean square error >15%) were found between metabolite concentrations after twelve-fold acceleration for several low concentra- tion (OGM) human brain matter were quantified in vivo using the 5D EP-JRESI sequence with eight-fold acceleration.

  6. ECHO Gov Login | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  7. Comparison of third-order plasma wave echoes with ballistic second-order plasma wave echoes

    International Nuclear Information System (INIS)

    Leppert, H.D.; Schuelter, H.; Wiesemann, K.

    1982-01-01

    The apparent dispersion of third-order plasma wave echoes observed in a high frequency plasma is compared with that of simultaneously observed ballistic second-order echoes. Amplitude and wavelength of third-order echoes are found to be always smaller than those of second-order echoes, however, the dispersion curves of both types of echoes are very similar. These observations are in qualitative agreement with calculations of special ballistic third-order echoes. The ballistic nature of the observed third-order echoes may, therefore, be concluded from these measurements. (author)

  8. ECHO virus

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that can lead ...

  9. Fast spin-echo imaging

    International Nuclear Information System (INIS)

    Mackey, K.; Zoarski, G.; Bentson, J.R.; Lufkin, R.B.; Melki, P.; Jolesz, F.

    1991-01-01

    This paper reports on a partial radio-frequency (RF) echo-planar pulse sequence called contiguous slice fast spin echo (CSFSE) which is undergoing clinical trials for spine MR imaging. In this variation of rapid acquisition relaxation enhanced (RARE) spin-echo imaging, rapid 180 degrees RF pulse generated refocused echoes, producing T2-weighted images in about one-third the time of conventional double-echo technique. Forty patients with suspected pathology of the spine were imaged with conventional double-echo and closely matched CSFSE techniques on a GE Signa 1.5-T Advantage system. Cases were reviewed by two board-certified neuroradiologists. In all cases the CSFSE images were of equal or superior quality compared with those obtained with the conventional double-echo technique. Pathologic processes that were imaged consisted of inflammatory, neoplastic, posttraumatic, and degenerative conditions

  10. Characterization of echoes: A Dyson-series representation of individual pulses

    Science.gov (United States)

    Correia, Miguel R.; Cardoso, Vitor

    2018-04-01

    The ability to detect and scrutinize gravitational waves from the merger and coalescence of compact binaries opens up the possibility to perform tests of fundamental physics. One such test concerns the dark nature of compact objects: are they really black holes? It was recently pointed out that the absence of horizons—while keeping the external geometry very close to that of General Relativity—would manifest itself in a series of echoes in gravitational wave signals. The observation of echoes by LIGO/Virgo or upcoming facilities would likely inform us on quantum gravity effects or unseen types of matter. Detection of such signals is in principle feasible with relatively simple tools but would benefit enormously from accurate templates. Here we analytically individualize each echo waveform and show that it can be written as a Dyson series, for arbitrary effective potential and boundary conditions. We further apply the formalism to explicitly determine the echoes of a simple toy model: the Dirac delta potential. Our results allow to read off a few known features of echoes and may find application in the modeling for data analysis.

  11. Grating stimulated echo

    International Nuclear Information System (INIS)

    Dubetsky, B.; Berman, P.R.; Sleator, T.

    1992-01-01

    A theory of a grating simulated echo (GTE) is developed. The GSE involves the sequential excitation of atoms by two counterpropagating traveling waves, a standing wave, and a third traveling wave. It is shown that the echo signal is very sensitive to small changes in atomic velocity, much more sensitive than the normal stimulated echo. Use of the GSE as a collisional probe or accelerometer is discussed

  12. Neutron spin echo scattering angle measurement (SESAME)

    International Nuclear Information System (INIS)

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-01-01

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-μm-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for

  13. Rapid Gradient-Echo Imaging

    Science.gov (United States)

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  14. ECHO-UseFY17.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  15. Help Content for ECHO Reports | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  16. Letter to the Editor: Complete maps of the aspect sensitivity of VHF atmospheric radar echoes

    Directory of Open Access Journals (Sweden)

    R. M. Worthington

    1999-08-01

    Full Text Available Using the MU radar at Shigaraki, Japan (34.85°N, 136.10°E, we measure the power distribution pattern of VHF radar echoes from the mid-troposphere. The large number of radar beam-pointing directions (320 allows the mapping of echo power from 0° to 40° from zenith, and also the dependence on azimuth, which has not been achieved before at VHF wavelengths. The results show how vertical shear of the horizontal wind is associated with a definite skewing of the VHF echo power distribution, for beam angles as far as 30° or more from zenith, so that aspect sensitivity cannot be assumed negligible at any beam-pointing angle that most existing VHF radars are able to use. Consequently, the use of VHF echo power to calculate intensity of atmospheric turbulence, which assumes only isotropic backscatter at large beam zenith angles, will sometimes not be valid.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; instruments and techniques

  17. Rotary spin echoes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, I. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Centre d' Etudes Nucleaires de Saclay, BP2, Gif-sur-Yvette (France)

    1959-07-01

    Torrey has observed the free precession of nuclear spins around an r-f field H{sub 1}, fixed in a frame rotating at the Larmor frequency ω{sub 0} = γH{sub 0} around a large d-c magnetic field H{sub 0}. He showed that for an H{sub 1}, much larger than inhomogeneity of H{sub 0}, the latter has a negligible effect on the decay of the spin magnetization which is mainly due to the inhomogeneity of H{sub 1}. We report here on a method of overcoming the inhomogeneity of H{sub 1}, by production of echoes in the rotating frame ('rotary echoes'). These echoes are obtained by a 180 deg. phase shift at t = τ on the r-f field so that H{sub 1}, is suddenly reversed, producing a re-focussing of the magnetization vectors at the time t = 2 τ. The rotary echoes so obtained are very similar to the usual spin-echoes with, however some specific features that make them particularly suitable for the measurement of long relaxation times. Reprint of a paper published in Physical Review Letters, vol. 2, no. 7, Apr 1959, p. 301-302.

  18. Rotary spin echoes

    International Nuclear Information System (INIS)

    Solomon, I.

    1959-01-01

    Torrey has observed the free precession of nuclear spins around an r-f field H 1 , fixed in a frame rotating at the Larmor frequency ω 0 = γH 0 around a large d-c magnetic field H 0 . He showed that for an H 1 , much larger than inhomogeneity of H 0 , the latter has a negligible effect on the decay of the spin magnetization which is mainly due to the inhomogeneity of H 1 . We report here on a method of overcoming the inhomogeneity of H 1 , by production of echoes in the rotating frame ('rotary echoes'). These echoes are obtained by a 180 deg. phase shift at t = τ on the r-f field so that H 1 , is suddenly reversed, producing a re-focussing of the magnetization vectors at the time t = 2 τ. The rotary echoes so obtained are very similar to the usual spin-echoes with, however some specific features that make them particularly suitable for the measurement of long relaxation times. Reprint of a paper published in Physical Review Letters, vol. 2, no. 7, Apr 1959, p. 301-302

  19. How can dolphins recognize fish according to their echoes? A statistical analysis of fish echoes.

    Directory of Open Access Journals (Sweden)

    Yossi Yovel

    Full Text Available Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders. In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification.

  20. Wind yield forecast with Echo State Networks; Windertragsprognose mit Echo State Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kobialka, Hans-Ulrich [Fraunhofer IAIS, Sankt Augustin (Germany)

    2012-07-01

    Statistical methods are able to create models of complex system dynamics which are difficult to capture analytically. This paper describes a wind energy prediction system based on a machine learning method, called Echo State Networks. Echo State Networks enable the training of large recurrent neural networks which are able to model and predict highly non-linear system dynamics. This paper gives a short description of Echo State Networks and the realization of the wind energy prediction system. (orig.)

  1. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy

    International Nuclear Information System (INIS)

    Monroe, C.; Meekhof, D.M.; King, B.E.; Jefferts, S.R.; Itano, W.M.; Wineland, D.J.; Gould, P.

    1995-01-01

    We report laser cooling of a single 9 Be + ion held in a rf (Paul) ion trap to where it occupies the quantum-mechanical ground state of motion. With the use of resolved-sideband stimulated Raman cooling, the zero point of motion is achieved 98% of the time in 1D and 92% of the time in 3D. Cooling to the zero-point energy appears to be a crucial prerequisite for future experiments such as the realization of simple quantum logic gates applicable to quantum computation. copyright 1995 The American Physical Society

  2. Happy birthday Echo!

    CERN Document Server

    Staff Association

    2010-01-01

    You are reading the number hundred and one (no. 101) edition of our bulletin Echo. Just over four years ago, on 27th March 2006, the first untitled edition was published (Fig. 1 on the left). The title Echo appeared on the second edition on 10th April 2006 (Fig. 1 in the centre). Today (see Fig. 1 on the right), the layout is slightly different, but the structure of each edition has remained more or less the same: an editorial informing you of the important issues, followed by articles on club life, cultural activities (exhibitions and conferences), information from GAC-EPA, and special offers for our members.     Fig. 1 : Nos. 1, 2 and 100 of our twice-monthly publication Echo Echo was created in March 2006 when, much to our regret, CERN official communication and that of your representatives were separated. November 2009 saw a return to normal practice, and since then the CERN st...

  3. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage

    International Nuclear Information System (INIS)

    Juras, Vladimir; Szomolanyi, Pavol; Bohndorf, Klaus; Kronnerwetter, Claudia; Hager, Benedikt; Zbyn, Stefan; Heule, Rahel; Bieri, Oliver; Trattnig, Siegfried

    2016-01-01

    To assess the clinical relevance of T 2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T 2 -mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T 2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T 2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T 2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B 1 and B 0 changes. (orig.)

  4. HST Archival Imaging of the Light Echoes of SN 1987A

    Science.gov (United States)

    Lawrence, S. S.; Hayon, M.; Sugerman, B. E. K.; Crotts, A. P. S.

    2002-12-01

    We have undertaken a search for light echo signals from Supernova 1987A that have been serendipitously recorded in images taken near the 30 Doradus region of the Large Magellanic Cloud by HST. We used the MAST interface to create a database of the 1282 WF/PC, WFPC2 and STIS images taken within 15 arcminutes of the supernova, between 1992 April and 2002 June. These 1282 images are grouped into 125 distinct epochs and pointings, with each epoch containing between 1 and 42 separate exposures. Sorting this database with various programs, aided by the STScI Visual Target Tuner, we have identified 63 pairs of WFPC2 imaging epochs that are not centered on the supernova but that have a significant amount of spatial overlap between their fields of view. These image data were downloaded from the public archive, cleaned of cosmic rays, and blinked to search for light echoes at radii larger than 2 arcminutes from the supernova. Our search to date has focused on those pairs of epochs with the largest degree of overlap. Of 16 pairs of epochs scanned to date, we have detected 3 strong light echoes and one faint, tentative echo signal. We will present direct and difference images of these and any further echoes, as well as the 3-D geometric, photometric and color properties of the echoing dust structures. In addition, a set of 20 epochs of WF/PC and WFPC2 imaging centered on SN 1987A remain to be searched for echoes within 2 arcminutes of the supernova. We will discuss our plans to integrate the high spatial-resolution HST snapshots of the echoes with our extensive, well-time-sampled, ground-based imaging data. We gratefully acknowledge the support of this undergraduate research project through an HST Archival Research Grant (HST-AR-09209.01-A).

  5. Object-Based Point Cloud Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation Classification

    Directory of Open Access Journals (Sweden)

    Norbert Pfeifer

    2008-08-01

    Full Text Available Airborne laser scanning (ALS is a remote sensing technique well-suited for 3D vegetation mapping and structure characterization because the emitted laser pulses are able to penetrate small gaps in the vegetation canopy. The backscattered echoes from the foliage, woody vegetation, the terrain, and other objects are detected, leading to a cloud of points. Higher echo densities (> 20 echoes/m2 and additional classification variables from full-waveform (FWF ALS data, namely echo amplitude, echo width and information on multiple echoes from one shot, offer new possibilities in classifying the ALS point cloud. Currently FWF sensor information is hardly used for classification purposes. This contribution presents an object-based point cloud analysis (OBPA approach, combining segmentation and classification of the 3D FWF ALS points designed to detect tall vegetation in urban environments. The definition tall vegetation includes trees and shrubs, but excludes grassland and herbage. In the applied procedure FWF ALS echoes are segmented by a seeded region growing procedure. All echoes sorted descending by their surface roughness are used as seed points. Segments are grown based on echo width homogeneity. Next, segment statistics (mean, standard deviation, and coefficient of variation are calculated by aggregating echo features such as amplitude and surface roughness. For classification a rule base is derived automatically from a training area using a statistical classification tree. To demonstrate our method we present data of three sites with around 500,000 echoes each. The accuracy of the classified vegetation segments is evaluated for two independent validation sites. In a point-wise error assessment, where the classification is compared with manually classified 3D points, completeness and correctness better than 90% are reached for the validation sites. In comparison to many other algorithms the proposed 3D point classification works on the original

  6. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Juras, Vladimir; Szomolanyi, Pavol [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Institute of Measurement Science, Department of Imaging Methods, Bratislava (Slovakia); Bohndorf, Klaus; Kronnerwetter, Claudia; Hager, Benedikt; Zbyn, Stefan [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Heule, Rahel; Bieri, Oliver [University of Basel Hospital, Division of Radiological Physics, Department of Radiology, Basel (Switzerland); Trattnig, Siegfried [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna (Austria); Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna (Austria)

    2016-06-15

    To assess the clinical relevance of T{sub 2} relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T{sub 2}-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T{sub 2} mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T{sub 2} values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T{sub 2} values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B{sub 1} and B{sub 0} changes. (orig.)

  7. Visual Perceptual Echo Reflects Learning of Regularities in Rapid Luminance Sequences.

    Science.gov (United States)

    Chang, Acer Y-C; Schwartzman, David J; VanRullen, Rufin; Kanai, Ryota; Seth, Anil K

    2017-08-30

    long-lasting reverberation between a rapidly changing visual input and evoked neural activity, apparent in cross-correlations between occipital EEG and stimulus sequences, peaking in the alpha (∼10 Hz) range. We indeed found that perceptual echo is enhanced by repeatedly presenting the same visual sequence, indicating that the human visual system can rapidly and automatically learn regularities embedded within fast-changing dynamic sequences. These results point to a previously undiscovered regularity learning mechanism, operating at a rate defined by the alpha frequency. Copyright © 2017 the authors 0270-6474/17/378486-12$15.00/0.

  8. Echo III: The study of electric and magnetic fields with conjugate echoes from artificial electron beams injected into the auroral zone ionosphere

    International Nuclear Information System (INIS)

    Hendrickson, R.A.; Winckler, J.R.; Arnoldy, R.L.

    1976-01-01

    The third in a series of rocket flights carrying large electron guns for electron beam-plasma analysis and magnetosphere probing has been carried out from the Poker Flat rocket range near Fairbanks, Alaska at L=6. Echoes from the injected electrons mirroring at the southern hemisphere conjugate point were observed on the rocket by particle detectors and in the nearby ionosphere by photometers on board the rocket. The bounce time and drift velocities of the echoes were measured using the known trajectory and aspect of the rocket. Ionospheric electric fields near the rocket were inferred from drift motion of the ambient ion population measured by two techniques, electrostatic analyzers on board the rocket and incoherent backscatter radar from the ground. Using model magnetic fields, gradient and curvature drift and bound times have been computed under the conditions appropriate for this experiment. Assuming that field lines are equipotentials, the addition of the observed ionospheric electric field drift to the model-independent gradient and curvature drifts predicts a net echo drift velocity that is in agreement with the observations, provided the Mead-Fairfield 1972--73 model is used. The observed bounce time constitutes an independent model check and is in better agreement with the Olson-Pfitzer model. Echo spatial and temporal fluctuations reflected the turbulence associated with the diffuse aurora into which the rocket was launched

  9. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    DEFF Research Database (Denmark)

    Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.

    2017-01-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large...... modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori...... decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first...

  10. Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy

    Science.gov (United States)

    Söngen, Hagen; Reischl, Bernhard; Miyata, Kazuki; Bechstein, Ralf; Raiteri, Paolo; Rohl, Andrew L.; Gale, Julian D.; Fukuma, Takeshi; Kühnle, Angelika

    2018-03-01

    It seems natural to assume that defects at mineral surfaces critically influence interfacial processes such as the dissolution and growth of minerals in water. The experimental verification of this claim, however, is challenging and requires real-space methods with utmost spatial resolution, such as atomic force microscopy (AFM). While defects at mineral-water interfaces have been resolved in 2D AFM images before, the perturbation of the surrounding hydration structure has not yet been analyzed experimentally. In this Letter, we demonstrate that point defects on the most stable and naturally abundant calcite (10.4) surface can be resolved using high-resolution 3D AFM—even within the fifth hydration layer. Our analysis of the hydration structure surrounding the point defect shows a perturbation of the hydration with a lateral extent of approximately one unit cell. These experimental results are corroborated by molecular dynamics simulations.

  11. Classification of radar echoes using fractal geometry

    International Nuclear Information System (INIS)

    Azzaz, Nafissa; Haddad, Boualem

    2017-01-01

    Highlights: • Implementation of two concepts of fractal geometry to classify two types of meteorological radar echoes. • A new approach, called a multi-scale fractal dimension is used for classification between fixed echoes and rain echoes. • An Automatic identification system of meteorological radar echoes was proposed using fractal geometry. - Abstract: This paper deals with the discrimination between the precipitation echoes and the ground echoes in meteorological radar images using fractal geometry. This study aims to improve the measurement of precipitations by weather radars. For this, we considered three radar sites: Bordeaux (France), Dakar (Senegal) and Me lbourne (USA). We showed that the fractal dimension based on contourlet and the fractal lacunarity are pertinent to discriminate between ground and precipitation echoes. We also demonstrated that the ground echoes have a multifractal structure but the precipitations are more homogeneous than ground echoes whatever the prevailing climate. Thereby, we developed an automatic classification system of radar using a graphic interface. This interface, based on the fractal geometry makes possible the identification of radar echoes type in real time. This system can be inserted in weather radar for the improvement of precipitation estimations.

  12. The EChO science case

    Science.gov (United States)

    Tinetti, Giovanna; Drossart, Pierre; Eccleston, Paul; Hartogh, Paul; Isaak, Kate; Linder, Martin; Lovis, Christophe; Micela, Giusi; Ollivier, Marc; Puig, Ludovic; Ribas, Ignasi; Snellen, Ignas; Swinyard, Bruce; Allard, France; Barstow, Joanna; Cho, James; Coustenis, Athena; Cockell, Charles; Correia, Alexandre; Decin, Leen; de Kok, Remco; Deroo, Pieter; Encrenaz, Therese; Forget, Francois; Glasse, Alistair; Griffith, Caitlin; Guillot, Tristan; Koskinen, Tommi; Lammer, Helmut; Leconte, Jeremy; Maxted, Pierre; Mueller-Wodarg, Ingo; Nelson, Richard; North, Chris; Pallé, Enric; Pagano, Isabella; Piccioni, Guseppe; Pinfield, David; Selsis, Franck; Sozzetti, Alessandro; Stixrude, Lars; Tennyson, Jonathan; Turrini, Diego; Zapatero-Osorio, Mariarosa; Beaulieu, Jean-Philippe; Grodent, Denis; Guedel, Manuel; Luz, David; Nørgaard-Nielsen, Hans Ulrik; Ray, Tom; Rickman, Hans; Selig, Avri; Swain, Mark; Banaszkiewicz, Marek; Barlow, Mike; Bowles, Neil; Branduardi-Raymont, Graziella; du Foresto, Vincent Coudé; Gerard, Jean-Claude; Gizon, Laurent; Hornstrup, Allan; Jarchow, Christopher; Kerschbaum, Franz; Kovacs, Géza; Lagage, Pierre-Olivier; Lim, Tanya; Lopez-Morales, Mercedes; Malaguti, Giuseppe; Pace, Emanuele; Pascale, Enzo; Vandenbussche, Bart; Wright, Gillian; Ramos Zapata, Gonzalo; Adriani, Alberto; Azzollini, Ruymán; Balado, Ana; Bryson, Ian; Burston, Raymond; Colomé, Josep; Crook, Martin; Di Giorgio, Anna; Griffin, Matt; Hoogeveen, Ruud; Ottensamer, Roland; Irshad, Ranah; Middleton, Kevin; Morgante, Gianluca; Pinsard, Frederic; Rataj, Mirek; Reess, Jean-Michel; Savini, Giorgio; Schrader, Jan-Rutger; Stamper, Richard; Winter, Berend; Abe, L.; Abreu, M.; Achilleos, N.; Ade, P.; Adybekian, V.; Affer, L.; Agnor, C.; Agundez, M.; Alard, C.; Alcala, J.; Allende Prieto, C.; Alonso Floriano, F. J.; Altieri, F.; Alvarez Iglesias, C. A.; Amado, P.; Andersen, A.; Aylward, A.; Baffa, C.; Bakos, G.; Ballerini, P.; Banaszkiewicz, M.; Barber, R. J.; Barrado, D.; Barton, E. J.; Batista, V.; Bellucci, G.; Belmonte Avilés, J. A.; Berry, D.; Bézard, B.; Biondi, D.; Błęcka, M.; Boisse, I.; Bonfond, B.; Bordé, P.; Börner, P.; Bouy, H.; Brown, L.; Buchhave, L.; Budaj, J.; Bulgarelli, A.; Burleigh, M.; Cabral, A.; Capria, M. T.; Cassan, A.; Cavarroc, C.; Cecchi-Pestellini, C.; Cerulli, R.; Chadney, J.; Chamberlain, S.; Charnoz, S.; Christian Jessen, N.; Ciaravella, A.; Claret, A.; Claudi, R.; Coates, A.; Cole, R.; Collura, A.; Cordier, D.; Covino, E.; Danielski, C.; Damasso, M.; Deeg, H. J.; Delgado-Mena, E.; Del Vecchio, C.; Demangeon, O.; De Sio, A.; De Wit, J.; Dobrijévic, M.; Doel, P.; Dominic, C.; Dorfi, E.; Eales, S.; Eiroa, C.; Espinoza Contreras, M.; Esposito, M.; Eymet, V.; Fabrizio, N.; Fernández, M.; Femenía Castella, B.; Figueira, P.; Filacchione, G.; Fletcher, L.; Focardi, M.; Fossey, S.; Fouqué, P.; Frith, J.; Galand, M.; Gambicorti, L.; Gaulme, P.; García López, R. J.; Garcia-Piquer, A.; Gear, W.; Gerard, J.-C.; Gesa, L.; Giani, E.; Gianotti, F.; Gillon, M.; Giro, E.; Giuranna, M.; Gomez, H.; Gomez-Leal, I.; Gonzalez Hernandez, J.; González Merino, B.; Graczyk, R.; Grassi, D.; Guardia, J.; Guio, P.; Gustin, J.; Hargrave, P.; Haigh, J.; Hébrard, E.; Heiter, U.; Heredero, R. L.; Herrero, E.; Hersant, F.; Heyrovsky, D.; Hollis, M.; Hubert, B.; Hueso, R.; Israelian, G.; Iro, N.; Irwin, P.; Jacquemoud, S.; Jones, G.; Jones, H.; Justtanont, K.; Kehoe, T.; Kerschbaum, F.; Kerins, E.; Kervella, P.; Kipping, D.; Koskinen, T.; Krupp, N.; Lahav, O.; Laken, B.; Lanza, N.; Lellouch, E.; Leto, G.; Licandro Goldaracena, J.; Lithgow-Bertelloni, C.; Liu, S. J.; Lo Cicero, U.; Lodieu, N.; Lognonné, P.; Lopez-Puertas, M.; Lopez-Valverde, M. A.; Lundgaard Rasmussen, I.; Luntzer, A.; Machado, P.; MacTavish, C.; Maggio, A.; Maillard, J.-P.; Magnes, W.; Maldonado, J.; Mall, U.; Marquette, J.-B.; Mauskopf, P.; Massi, F.; Maurin, A.-S.; Medvedev, A.; Michaut, C.; Miles-Paez, P.; Montalto, M.; Montañés Rodríguez, P.; Monteiro, M.; Montes, D.; Morais, H.; Morales, J. C.; Morales-Calderón, M.; Morello, G.; Moro Martín, A.; Moses, J.; Moya Bedon, A.; Murgas Alcaino, F.; Oliva, E.; Orton, G.; Palla, F.; Pancrazzi, M.; Pantin, E.; Parmentier, V.; Parviainen, H.; Peña Ramírez, K. Y.; Peralta, J.; Perez-Hoyos, S.; Petrov, R.; Pezzuto, S.; Pietrzak, R.; Pilat-Lohinger, E.; Piskunov, N.; Prinja, R.; Prisinzano, L.; Polichtchouk, I.; Poretti, E.; Radioti, A.; Ramos, A. A.; Rank-Lüftinger, T.; Read, P.; Readorn, K.; Rebolo López, R.; Rebordão, J.; Rengel, M.; Rezac, L.; Rocchetto, M.; Rodler, F.; Sánchez Béjar, V. J.; Sanchez Lavega, A.; Sanromá, E.; Santos, N.; Sanz Forcada, J.; Scandariato, G.; Schmider, F.-X.; Scholz, A.; Scuderi, S.; Sethenadh, J.; Shore, S.; Showman, A.; Sicardy, B.; Sitek, P.; Smith, A.; Soret, L.; Sousa, S.; Stiepen, A.; Stolarski, M.; Strazzulla, G.; Tabernero, H. M.; Tanga, P.; Tecsa, M.; Temple, J.; Terenzi, L.; Tessenyi, M.; Testi, L.; Thompson, S.; Thrastarson, H.; Tingley, B. W.; Trifoglio, M.; Martín Torres, J.; Tozzi, A.; Turrini, D.; Varley, R.; Vakili, F.; de Val-Borro, M.; Valdivieso, M. L.; Venot, O.; Villaver, E.; Vinatier, S.; Viti, S.; Waldmann, I.; Waltham, D.; Ward-Thompson, D.; Waters, R.; Watkins, C.; Watson, D.; Wawer, P.; Wawrzaszk, A.; White, G.; Widemann, T.; Winek, W.; Wiśniowski, T.; Yelle, R.; Yung, Y.; Yurchenko, S. N.

    2015-12-01

    coverage of at least 0.55 to 11 μm with a goal of covering from 0.4 to 16 μm. Only modest spectral resolving power is needed, with R ~ 300 for wavelengths less than 5 μm and R ~ 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m2 is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m2 telescope, diffraction limited at 3 μm has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which

  13. Preoperative evaluation of hepatic arterial and portal venous anatomy using the time resolved echo-shared MR angiographic technique in living liver donors

    International Nuclear Information System (INIS)

    Lee, Min Woo; Lee, Jeong Min; Lee, Jae Young; Kim, Se Hyung; Park, Eun-Ah; Han, Joon Koo; Choi, Jin-Young; Choi, Byung Ihn; Kim, Young Jun; Suh, Kyung-Suk

    2007-01-01

    The purpose of this study was to determine whether MR angiography utilizing the time resolved echo-shared angiographic technique (TREAT) can provide an effective assessment of the hepatic artery (HA) and portal vein (PV) in living donor candidates. MR angiography (MRA)was performed in 27 patients (23 men and 4 women; mean age, 31 years) by using TREAT. Two blinded radiologists evaluated HA anatomy, origin of segment IV feeding artery and PV anatomy in consensus. Qualitative evaluations of MRA images were performed using the following criteria: (a) overall image quality, (b) presence of artifacts, and (c) degree of venous contamination of the arterial phase. Using intraoperative findings as a standard of reference, the accuracy for the HA anatomy, origin of segment IV feeding artery and PV anatomy on TREAT-MRA were 93% (25/27), 85% (23/27), and 96% (26/27), respectively. Overall image qualities were as follows: excellent (n=22, 81%), good (n=4, 15%), and fair (n=1, 4%). Significant artifacts or venous contamination of the arterial phase images was not noted in any patient. TREAT-MRA can provide a complete evaluation of HA and PV anatomy during preoperative evaluation of living liver donors. Furthermore, it provides a more detailed anatomy of the HA without venous contamination. (orig.)

  14. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage.

    Science.gov (United States)

    Juras, Vladimir; Bohndorf, Klaus; Heule, Rahel; Kronnerwetter, Claudia; Szomolanyi, Pavol; Hager, Benedikt; Bieri, Oliver; Zbyn, Stefan; Trattnig, Siegfried

    2016-06-01

    To assess the clinical relevance of T2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T2-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B1 and B0 changes. • 3D-TESS T 2 mapping provides clinically comparable results to CPMG in shorter scan-time. • Clinical and investigational studies may benefit from high temporal resolution of 3D-TESS. • 3D-TESS T 2 values are able to differentiate between healthy and damaged cartilage.

  15. Short echo time, fast gradient-echo imaging

    International Nuclear Information System (INIS)

    Haacke, E.M.; Lenz, G.W.

    1987-01-01

    Present fast-gradient-echoes schemes can acquire volume data rapidly and are flexible in T1 or T1/T2 contrast behavior. However, sequences used to date employ echo time (TE) values of about 15 ms +- 5 and, because of in vivo field inhomogeneities (short T2), they suffer badly from signal loss near sinuses and tissue boundaries. The authors implemented sequences with TE = 4-6 ms and found significant improvement in image quality, especially at high fields. Examples with long TEs vs. short TEs are given in the knee, spine, head, and orbits. Further advantages include (1) faster repetition times (15 ms), (2) higher-quality spin-density or T1-weighted images, and (3) reduction of blood motion artifacts

  16. Longitudinal collective echoes in coasting particle beams

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Khateeb

    2003-01-01

    Full Text Available Longitudinal ballistic and collective beam echoes with diffusion effects are investigated theoretically. In the presence of the space-charge impedance, the collective echo amplitude is obtained as a closed form expression. In contrast to the ballistic case, the collective echo amplitude consists of one maximum at time t_{echo}. The echo amplitude grows up and damps down with a rate proportional to the Landau damping rate of space-charge waves. The effect of weak diffusion is found to modify the ballistic and the collective echo amplitudes in the same manner. This effect of diffusion was confirmed using a “noiseless,” grid-based simulation code. As a first application the amount of numerical diffusion in our simulation code was determined using the echo effect.

  17. Testing of wooden construction elements with ultrasonic echo technique and x-ray

    International Nuclear Information System (INIS)

    Hasenstab, A.; Krause, M.; Osterloh, K.

    2008-01-01

    Damages inside of wooden construction components (e.g. interior rot) or at inaccessible surfaces represent a special problem, since they are difficult to recognize from the outside, they can even cause a sudden failure of the component. As a result the research, it could be proved that ultrasonic echo technique can be used on wood both with longitudinal and transverse waves. Further more the different influences of the wood fibres on the sound velocity of the longitudinal and transverse waves is pointed out on the basis results of measurements. The efficiency of the ultrasonic echo technique is shown on wooden specimens. The combination of ultrasonic echo technique and radiography resulted in a very substantial reduction of possible misinterpretations of damage. There it is possible to detect the damage from the undamaged side of the specimen by ultrasound echo. The spread of the damage can be obtained with mobile x-ray measurements. Finally the results show, that ultrasonic methods are more sensitive starting decay and cracks parallel to the surface.

  18. Theory of single-photon echo (SP-echo) and the possibility of its experimental study in the gamma-region

    International Nuclear Information System (INIS)

    Moiseev, S.A.

    1997-01-01

    The single-photon echo (SP-echo) effect is predicted to appear in the case of three-level medium excitation by means of a single photon propagating to the medium along two optical paths with a mutual time delay surpassing the temporal duration of the photon wave packet. The quantum electrodynamical theory describing this interaction is presented and the S-matrix of the field is shown for infinite time (t=∞). Using the S-matrix approach, physical properties of the scattering field are studied. Hence, it is shown that the field has an echo signal at the ω 32 0 carrier frequency. It has been shown that the echo signal exists only in the field amplitude while being absent in its intensity behaviour. Thus, SP-echo is an interference effect and is not influenced by the energy irradiation. The problems of SP-echo detection in the gamma-region (where special generation difficulties appear) are discussed. The influence of the additional detection of theω 21 0 frequency field on the echo signal has been shown. A special case is the EPR-paradox which can appear within the echo phenomenon

  19. Theory of single-photon echo (SP-echo) and the possibility of its experimental study in the gamma-region

    Energy Technology Data Exchange (ETDEWEB)

    Moiseev, S.A

    1997-05-15

    The single-photon echo (SP-echo) effect is predicted to appear in the case of three-level medium excitation by means of a single photon propagating to the medium along two optical paths with a mutual time delay surpassing the temporal duration of the photon wave packet. The quantum electrodynamical theory describing this interaction is presented and the S-matrix of the field is shown for infinite time (t={infinity}). Using the S-matrix approach, physical properties of the scattering field are studied. Hence, it is shown that the field has an echo signal at the {omega}{sub 32}{sup 0} carrier frequency. It has been shown that the echo signal exists only in the field amplitude while being absent in its intensity behaviour. Thus, SP-echo is an interference effect and is not influenced by the energy irradiation. The problems of SP-echo detection in the gamma-region (where special generation difficulties appear) are discussed. The influence of the additional detection of the{omega}{sub 21}{sup 0} frequency field on the echo signal has been shown. A special case is the EPR-paradox which can appear within the echo phenomenon.

  20. A radar-echo model for Mars

    International Nuclear Information System (INIS)

    Thompson, T.W.; Moore, H.J.

    1990-01-01

    Researchers developed a radar-echo model for Mars based on 12.6 cm continuous wave radio transmissions backscattered from the planet. The model broadly matches the variations in depolarized and polarized total radar cross sections with longitude observed by Goldstone in 1986 along 7 degrees S. and yields echo spectra that are generally similiar to the observed spectra. Radar map units in the model include an extensive cratered uplands unit with weak depolarized echo cross sections, average thermal inertias, moderate normal refelectivities, and moderate rms slopes; the volcanic units of Tharsis, Elysium, and Amazonis regions with strong depolarized echo cross sections, low thermal inertia, low normal reflectivities, and large rms slopes; and the northern planes units with moderate to strong depolarized echo cross sections, moderate to very high thermal inertias, moderate to large normal reflectivities, and moderate rms slopes. The relevance of the model to the interpretation of radar echoes from Mars is discussed

  1. The acoustics of the echo cornet

    Science.gov (United States)

    Pyle, Robert W., Jr.; Klaus, Sabine K.

    2002-11-01

    The echo cornet was an instrument produced by a number of makers in several countries from about the middle of the nineteenth to the early twentieth centuries. It consists of an ordinary three-valve cornet to which a fourth valve has been added, downstream of the three normal valves. The extra valve diverts the airstream from the normal bell to an ''echo'' bell that gives a muted tone quality. Although the air column through the echo bell is typically 15 cm longer than the path through the normal bell, there is no appreciable change of playing pitch when the echo bell is in use. Acoustic input impedance and impulse response measurements and consideration of the standing-wave pattern within the echo bell show how this can be so. Acoustically, the echo bell is more closely related to hand-stopping on the French horn than to the mutes commonly used on the trumpet and cornet.

  2. Experimental separation of a frequency spin echo signal

    International Nuclear Information System (INIS)

    Bun'kov, Yu.M.; Dmitriev, V.V.

    1981-01-01

    To study systems with bound nuclear-electron precession CsMnF 2 antiferromagnetic light-plane monocrystal was investigated. Crystal orientation was carried out by roentgenoscopy. Measurements were performed at helium temperatures in the 500-700 MHz frequency range. A NMR pulsed spectrometer with generators of both resonance and doubled frequency was used to produce an echo signal (to study by the parametric echo method). It was shown that the theory of the formation of a frequency modulated echo (FM echo) did not fully describe the properties of the echo signals in systems with dynamic frequency shift (DFS). An intense spin echo signal, which formation was apparently connected with other nonlinear properties of the systems with nuclear-electron precession, was observed. The spin echo signal in magnetics with DFS, which properties correspond to notions of the frequency mechanism of echo formation, was experimentally separated. As a result of the investigations it had been possible to settle contradictions between the theory of FM echo formation and the experimental results for the last 9 years. It turned out that the mechanism of FM echo formation in the magnetics with bound nuclear-electron precession was effective only at large delay times between the pulses. In the range of small delays the FM echo is ''jammed'' by a gigantic echo signal of a nature different from that of the traditional FM signal. The constant of gigantic echo intensity drop at increasing delay between the pulses weakly depends on spin-spin relaxation time [ru

  3. Single-shot echo-planar imaging of multiple sclerosis: effects of varying echo time

    International Nuclear Information System (INIS)

    Wolansky, L.J.; Chong, S.; Liu, W.C.; Kang, E.; Simpson, S.W.; Karimi, S.; Akbari, H.

    1999-01-01

    Our aim was to determine the relative merits of short and long echo times (TE) with single-shot echo-planar imaging for imaging cerebral lesions such as multiple sclerosis. We examined seven patients with clinically definite multiple sclerosis were imaged at 1.5 T. Patients were scanned with spin-echo, single-shot echo-planar imaging, using TEs of 45, 75, 105, and 135 ms. Region of interest (ROI) measurements were performed on 36 lesions at or above the level of the corona radiata. The mean image contrast (IC) was highest (231.1) for a TE of 45 ms, followed by 75 ms (218.9), 105 ms (217.9), and 135 ms (191.6). When mean contrast-to-noise ratios (C/N) were compared, the value was again highest (29.7) for TE 45 ms, followed by 75 ms (28.9), 105 ms (28.5), and 135 ms (26.3). In a lesion-by-lesion comparison, TE 45 ms had the highest IC and C/N in the largest number of cases (50 % and 47.2 %, respectively). IC and C/N for TE 45 ms were superior to those of 75 ms in 64 % and 58 %, respectively. These results support the use of relatively short TEs for single-shot echo-planar imaging in the setting of cerebral lesions such as multiple sclerosis. (orig.) (orig.)

  4. Wavelet-LMS algorithm-based echo cancellers

    Science.gov (United States)

    Seetharaman, Lalith K.; Rao, Sathyanarayana S.

    2002-12-01

    This paper presents Echo Cancellers based on the Wavelet-LMS Algorithm. The performance of the Least Mean Square Algorithm in Wavelet transform domain is observed and its application in Echo cancellation is analyzed. The Widrow-Hoff Least Mean Square Algorithm is most widely used algorithm for Adaptive filters that function as Echo Cancellers. The present day communication signals are widely non-stationary in nature and some errors crop up when Least Mean Square Algorithm is used for the Echo Cancellers handling such signals. The analysis of non-stationary signals often involves a compromise between how well transitions or discontinuities can be located. The multi-scale or multi-resolution of signal analysis, which is the essence of wavelet transform, makes Wavelets popular in non-stationary signal analysis. In this paper, we present a Wavelet-LMS algorithm wherein the wavelet coefficients of a signal are modified adaptively using the Least Mean Square Algorithm and then reconstructed to give an Echo-free signal. The Echo Canceller based on this Algorithm is found to have a better convergence and a comparatively lesser MSE (Mean Square error).

  5. Assessment of diagnosing metastatic bone tumor on T2*-weighted images. Comparison between turbo spin echo (TSE) method and gradient echo (GE) method

    International Nuclear Information System (INIS)

    Hayashi, Takahiko; Sugiyama, Akira; Katayama, Motoyuki

    1996-01-01

    We examined the usefulness of T2 * weighted gradient field echo images for diagnosis for metastatic bone tumors in comparison with T2 weighted turbo spin echo (fast spin echo) images. In T2 * weighted gradient field echo sequence to obtain maximum contrast-to-noise ratio (CNR), we experimentally manipulated flip angle (FA) (5deg-90deg), repetition time (TR) (400, 700 msec), and echo time (TE) (10-50 msec). The best CNR was 16.4 in fast low angle shot (FLASH) (TE: 24 msec, TR: 700 msec, FA: 40deg). Magnetic resonance imaging was carried out in 28 patients with metastatic bone tumors. In addition to conventional T1 weighted spin echo images, T2 weighted turbo spin echo (fast spin echo images) and T2 * weighted gradient field echo images were obtained. T2 * weighted gradient field echo images were superior to T2 weighted turbo spin echo (fast spin echo) images in delineating the tumors, adjacent fat tissues, and bone marrow. (author)

  6. Time-resolved photon echoes from donor-bound excitons in ZnO epitaxial layers

    Science.gov (United States)

    Poltavtsev, S. V.; Kosarev, A. N.; Akimov, I. A.; Yakovlev, D. R.; Sadofev, S.; Puls, J.; Hoffmann, S. P.; Albert, M.; Meier, C.; Meier, T.; Bayer, M.

    2017-07-01

    The coherent optical response from 140 nm and 65 nm thick ZnO epitaxial layers is studied using four-wave-mixing spectroscopy with picosecond temporal resolution. Resonant excitation of neutral donor-bound excitons results in two-pulse and three-pulse photon echoes. For the donor-bound A exciton (D0XA ) at temperature of 1.8 K we evaluate optical coherence times T2=33 -50 ps corresponding to homogeneous line widths of 13 -19 μ eV , about two orders of magnitude smaller as compared with the inhomogeneous broadening of the optical transitions. The coherent dynamics is determined mainly by the population decay with time T1=30 -40 ps, while pure dephasing is negligible. Temperature increase leads to a significant shortening of T2 due to interaction with acoustic phonons. In contrast, the loss of coherence of the donor-bound B exciton (D0XB ) is significantly faster (T2=3.6 ps ) and governed by pure dephasing processes.

  7. Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain.

    Science.gov (United States)

    Lin, Fa-Hsuan; Tsai, Shang-Yueh; Otazo, Ricardo; Caprihan, Arvind; Wald, Lawrence L; Belliveau, John W; Posse, Stefan

    2007-02-01

    Magnetic resonance spectroscopic imaging (MRSI) provides spatially resolved metabolite information that is invaluable for both neuroscience studies and clinical applications. However, lengthy data acquisition times, which are a result of time-consuming phase encoding, represent a major challenge for MRSI. Fast MRSI pulse sequences that use echo-planar readout gradients, such as proton echo-planar spectroscopic imaging (PEPSI), are capable of fast spectral-spatial encoding and thus enable acceleration of image acquisition times. Combining PEPSI with recent advances in parallel MRI utilizing RF coil arrays can further accelerate MRSI data acquisition. Here we investigate the feasibility of ultrafast spectroscopic imaging at high field (3T and 4T) by combining PEPSI with sensitivity-encoded (SENSE) MRI using eight-channel head coil arrays. We show that the acquisition of single-average SENSE-PEPSI data at a short TE (15 ms) can be accelerated to 32 s or less, depending on the field strength, to obtain metabolic images of choline (Cho), creatine (Cre), N-acetyl-aspartate (NAA), and J-coupled metabolites (e.g., glutamate (Glu) and inositol (Ino)) with acceptable spectral quality and localization. The experimentally measured reductions in signal-to-noise ratio (SNR) and Cramer-Rao lower bounds (CRLBs) of metabolite resonances were well explained by both the g-factor and reduced measurement times. Thus, this technology is a promising means of reducing the scan times of 3D acquisitions and time-resolved 2D measurements. Copyright (c) 2007 Wiley-Liss, Inc.

  8. Beam echoes in the presence of coupling

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Axel [Case Western Reserve U.

    2017-10-03

    Transverse beam echoes could provide a new technique of measuring diusion characteristics orders of magnitude faster than the current methods; however, their interaction with many accelerator parameters is poorly understood. Using a program written in C, we explored the relationship between coupling and echo strength. We found that echoes could be generated in both dimensions, even with a dipole kick in only one dimension. We found that the echo eects are not destroyed even when there is strong coupling, falling o only at extremely high coupling values. We found that at intermediate values of skew quadrupole strength, the decoherence time of the beam is greatly increased, causing a destruction of the echo eects. We found that this is caused by a narrowing of the tune width of the particles. Results from this study will help to provide recommendations to IOTA (Integrable Optics Test Accelerator) for their upcoming echo experiment.

  9. Depth-resolved registration of transesophageal echo to x-ray fluoroscopy using an inverse geometry fluoroscopy system

    Energy Technology Data Exchange (ETDEWEB)

    Hatt, Charles R. [Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Tomkowiak, Michael T.; Dunkerley, David A. P.; Slagowski, Jordan M. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Funk, Tobias [Triple Ring Technologies, Inc., Newark, California 94560 (United States); Raval, Amish N. [Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Speidel, Michael A., E-mail: speidel@wisc.edu [Departments of Medical Physics and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2015-12-15

    Purpose: Image registration between standard x-ray fluoroscopy and transesophageal echocardiography (TEE) has recently been proposed. Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system designed for cardiac procedures. This study presents a method for 3D registration of SBDX and TEE images based on the tomosynthesis and 3D tracking capabilities of SBDX. Methods: The registration algorithm utilizes the stack of tomosynthetic planes produced by the SBDX system to estimate the physical 3D coordinates of salient key-points on the TEE probe. The key-points are used to arrive at an initial estimate of the probe pose, which is then refined using a 2D/3D registration method adapted for inverse geometry fluoroscopy. A phantom study was conducted to evaluate probe pose estimation accuracy relative to the ground truth, as defined by a set of coregistered fiducial markers. This experiment was conducted with varying probe poses and levels of signal difference-to-noise ratio (SDNR). Additional phantom and in vivo studies were performed to evaluate the correspondence of catheter tip positions in TEE and x-ray images following registration of the two modalities. Results: Target registration error (TRE) was used to characterize both pose estimation and registration accuracy. In the study of pose estimation accuracy, successful pose estimates (3D TRE < 5.0 mm) were obtained in 97% of cases when the SDNR was 5.9 or higher in seven out of eight poses. Under these conditions, 3D TRE was 2.32 ± 1.88 mm, and 2D (projection) TRE was 1.61 ± 1.36 mm. Probe localization error along the source-detector axis was 0.87 ± 1.31 mm. For the in vivo experiments, mean 3D TRE ranged from 2.6 to 4.6 mm and mean 2D TRE ranged from 1.1 to 1.6 mm. Anatomy extracted from the echo images appeared well aligned when projected onto the SBDX images. Conclusions: Full 6 DOF image registration between SBDX and TEE is feasible and accurate to within 5 mm. Future studies will focus on

  10. Depth-resolved registration of transesophageal echo to x-ray fluoroscopy using an inverse geometry fluoroscopy system

    International Nuclear Information System (INIS)

    Hatt, Charles R.; Tomkowiak, Michael T.; Dunkerley, David A. P.; Slagowski, Jordan M.; Funk, Tobias; Raval, Amish N.; Speidel, Michael A.

    2015-01-01

    Purpose: Image registration between standard x-ray fluoroscopy and transesophageal echocardiography (TEE) has recently been proposed. Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system designed for cardiac procedures. This study presents a method for 3D registration of SBDX and TEE images based on the tomosynthesis and 3D tracking capabilities of SBDX. Methods: The registration algorithm utilizes the stack of tomosynthetic planes produced by the SBDX system to estimate the physical 3D coordinates of salient key-points on the TEE probe. The key-points are used to arrive at an initial estimate of the probe pose, which is then refined using a 2D/3D registration method adapted for inverse geometry fluoroscopy. A phantom study was conducted to evaluate probe pose estimation accuracy relative to the ground truth, as defined by a set of coregistered fiducial markers. This experiment was conducted with varying probe poses and levels of signal difference-to-noise ratio (SDNR). Additional phantom and in vivo studies were performed to evaluate the correspondence of catheter tip positions in TEE and x-ray images following registration of the two modalities. Results: Target registration error (TRE) was used to characterize both pose estimation and registration accuracy. In the study of pose estimation accuracy, successful pose estimates (3D TRE < 5.0 mm) were obtained in 97% of cases when the SDNR was 5.9 or higher in seven out of eight poses. Under these conditions, 3D TRE was 2.32 ± 1.88 mm, and 2D (projection) TRE was 1.61 ± 1.36 mm. Probe localization error along the source-detector axis was 0.87 ± 1.31 mm. For the in vivo experiments, mean 3D TRE ranged from 2.6 to 4.6 mm and mean 2D TRE ranged from 1.1 to 1.6 mm. Anatomy extracted from the echo images appeared well aligned when projected onto the SBDX images. Conclusions: Full 6 DOF image registration between SBDX and TEE is feasible and accurate to within 5 mm. Future studies will focus on

  11. Neural field theory of perceptual echo and implications for estimating brain connectivity

    Science.gov (United States)

    Robinson, P. A.; Pagès, J. C.; Gabay, N. C.; Babaie, T.; Mukta, K. N.

    2018-04-01

    Neural field theory is used to predict and analyze the phenomenon of perceptual echo in which random input stimuli at one location are correlated with electroencephalographic responses at other locations. It is shown that this echo correlation (EC) yields an estimate of the transfer function from the stimulated point to other locations. Modal analysis then explains the observed spatiotemporal structure of visually driven EC and the dominance of the alpha frequency; two eigenmodes of similar amplitude dominate the response, leading to temporal beating and a line of low correlation that runs from the crown of the head toward the ears. These effects result from mode splitting and symmetry breaking caused by interhemispheric coupling and cortical folding. It is shown how eigenmodes obtained from functional magnetic resonance imaging experiments can be combined with temporal dynamics from EC or other evoked responses to estimate the spatiotemporal transfer function between any two points and hence their effective connectivity.

  12. X-ray echoes from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dermer, C.D.; Hurley, K.C.; Hartmann, D.H.

    1991-01-01

    The identification of an echo of reflected radiation in time histories of gamma-ray burst spectra can provide important information about the existence of binary companions or accretion disks in gamma-ray burst systems. Because of the nature of Compton scattering, the spectrum of the echo will be attenuated at gamma-ray energies compared with the spectrum of the primary burst emission. The expected temporal and spectral signatures of the echo and a search for such echoes are described, and implications for gamma-ray burst models are discussed. 35 refs

  13. A simultaneous multi-slice selective J-resolved experiment for fully resolved scalar coupling information

    Science.gov (United States)

    Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong

    2017-09-01

    Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.

  14. MEASUREMENT OF TRANSVERSE ECHOES IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; SATOGATA, T.; TOMAS, R.

    2005-01-01

    Beam echoes are a very sensitive method to measure diffusion, and longitudinal echo measurements were performed in a number of machines. In RHIC, for the first time, a transverse beam echo was observed after applying a dipole kick followed by a quadrupole .kick. After application of the dipole kick, the dipole moment decohered completely due to lattice nonlinearities. When a quadrupole kick is applied at time τ after the dipole kick, the beam re-cohered at time 2τ thus showing an echo response. We describe the experimental setup and measurement results. In the measurements the dipole and quadrupole kick amplitudes, amplitude dependent tune shift, and the time between dipole and quadrupole kick were varied. In addition, measurements were taken with gold bunches of different intensities. These should exhibit different transverse diffusion rates due to intra-beam scattering

  15. Sparse adaptive filters for echo cancellation

    CERN Document Server

    Paleologu, Constantin

    2011-01-01

    Adaptive filters with a large number of coefficients are usually involved in both network and acoustic echo cancellation. Consequently, it is important to improve the convergence rate and tracking of the conventional algorithms used for these applications. This can be achieved by exploiting the sparseness character of the echo paths. Identification of sparse impulse responses was addressed mainly in the last decade with the development of the so-called ``proportionate''-type algorithms. The goal of this book is to present the most important sparse adaptive filters developed for echo cancellati

  16. Radar Echo Scattering Modeling and Image Simulations of Full-scale Convex Rough Targets at Terahertz Frequencies

    Directory of Open Access Journals (Sweden)

    Gao Jingkun

    2018-02-01

    Full Text Available Echo simulation is a precondition for developing radar imaging systems, algorithms, and subsequent applications. Electromagnetic scattering modeling of the target is key to echo simulation. At terahertz (THz frequencies, targets are usually of ultra-large electrical size that makes applying classical electromagnetic calculation methods unpractical. In contrast, the short wavelength makes the surface roughness of targets a factor that cannot be ignored, and this makes the traditional echo simulation methods based on point scattering hypothesis in applicable. Modeling the scattering characteristics of targets and efficiently generating its radar echoes in THz bands has become a problem that must be solved. In this paper, a hierarchical semi-deterministic modeling method is proposed. A full-wave algorithm of rough surfaces is used to calculate the scattered field of facets. Then, the scattered fields of all facets are transformed into the target coordinate system and coherently summed. Finally, the radar echo containing phase information can be obtained. Using small-scale rough models, our method is compared with the standard high-frequency numerical method, which verifies the effectiveness of the proposed method. Imaging results of a full-scale cone-shape target is presented, and the scattering model and echo generation problem of the full-scale convex targets with rough surfaces in THz bands are preliminary solved; this lays the foundation for future research on imaging regimes and algorithms.

  17. Liver iron content determined by MRI. Spin-echo vs. gradient-echo

    Energy Technology Data Exchange (ETDEWEB)

    Juchems, M.S.; Wunderlich, A.P. [Universitaetskliniken Ulm (Germany). Klinik fuer Diagnostische und Interventionelle Radiologie; Cario, H. [Universitaetskliniken Ulm (Germany). Klinik fuer Kinder- und Jugendmedizin; Schmid, M. [Stadtspital Triemli, Zuerich (Switzerland). Medizinische Onkologie und Haematologie

    2012-05-15

    Purpose: Liver iron content (LIC) measurement plays a central role in the management of patients with transfusional iron overload. Calculating the LIC with data obtained from standardized MRI sequences represents an attractive alternative diagnostic possibility. The purpose of this study was to compare the LIC measurement obtained with gradient-echo (GRE) sequences to the mean liver proton transverse relaxation (R2) acquired with SE sequences. Materials and Methods: 68 patients with iron overload (median age: 24, range: 3 - 88) underwent 1.5 T MRI for liver iron content measurement. All patients received spin-echo (SE) and gradient-echo (GRE) sequences. Results: The two MRI methods revealed different liver iron content results although a significant correlation was found (r = 0.85, p < 0.001). Values evaluated using GRE sequences (median: 260 {mu}mol/g dry weight [d.w.], range: 6 - 732) were generally higher than those obtained by SE examinations (median: 161 {mu}mol /g d.w., range: 5 - 830). Conclusion: In conclusion, our study revealed different results for both MRI measurements, which could lead to different decisions concerning the management of chelation therapy in individual patients. (orig.)

  18. Evaluation of cardiac function using multi-shot echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tadashi; Tanitame, Nobuko; Hata, Ryoichiro; Hirai, Nobuhiko; Ikeda, Midori; Ono, Chiaki; Fukuoka, Haruhito; Ito, Katsuhide [Hiroshima Univ. (Japan). School of Medicine

    1998-01-01

    In this study, we performed multi-shot echo planar imaging (8 shot, TR/TE/FL=55 ms/18 ms/60 degrees) and k-space segmented fast gradient echo sequence (8 views per segment, TR/TE/FL=9.9 ms/1.8 ms/30 degrees) to assess cardiac function in healthy volunteers. Transaxial sections of the entire heart were obtained with both sequences in ECG triggered, breath hold, and with a 256 x 128 matrix. Resulting temporal resolution was 55 ms for echo planar imaging, and 71 ms for k-space segmented fast gradient echo sequence, respectively. Ventricular volume and ejection fraction of both ventricles and left ventricular mass obtained with multi-shot echo planar imaging were assessed in comparison with k-space segmented fast gradient echo sequence. Measurements of left ventricular volume, ejection fraction and mass obtained with multi-shot echo planar imaging demonstrated close correlation with those obtained with k-space segmented fast gradient echo sequence. Right ventricular volumes obtained with echo planar imaging were significantly higher than those obtained with k-space segmented fast gradient echo sequence. This tendency is considered to be due to differing contrast between right ventricular myocardium and fat tissue observed with echo planar imaging relative to that observed with fast gradient echo sequence, because fat suppression is always performed in echo planar images. Multi-shot echo planar imaging can be a reliable tool for measurement of cardiac functional parameters, although wall motion analysis of the left ventricle requires higher temporal resolution and a short axial section. (K.H.)

  19. Mock ECHO: A Simulation-Based Medical Education Method.

    Science.gov (United States)

    Fowler, Rebecca C; Katzman, Joanna G; Comerci, George D; Shelley, Brian M; Duhigg, Daniel; Olivas, Cynthia; Arnold, Thomas; Kalishman, Summers; Monnette, Rebecca; Arora, Sanjeev

    2018-04-16

    This study was designed to develop a deeper understanding of the learning and social processes that take place during the simulation-based medical education for practicing providers as part of the Project ECHO® model, known as Mock ECHO training. The ECHO model is utilized to expand access to care of common and complex diseases by supporting the education of primary care providers with an interprofessional team of specialists via videoconferencing networks. Mock ECHO trainings are conducted through a train the trainer model targeted at leaders replicating the ECHO model at their organizations. Trainers conduct simulated teleECHO clinics while participants gain skills to improve communication and self-efficacy. Three focus groups, conducted between May 2015 and January 2016 with a total of 26 participants, were deductively analyzed to identify common themes related to simulation-based medical education and interdisciplinary education. Principal themes generated from the analysis included (a) the role of empathy in community development, (b) the value of training tools as guides for learning, (c) Mock ECHO design components to optimize learning, (d) the role of interdisciplinary education to build community and improve care delivery, (e) improving care integration through collaboration, and (f) development of soft skills to facilitate learning. Mock ECHO trainings offer clinicians the freedom to learn in a noncritical environment while emphasizing real-time multidirectional feedback and encouraging knowledge and skill transfer. The success of the ECHO model depends on training interprofessional healthcare providers in behaviors needed to lead a teleECHO clinic and to collaborate in the educational process. While building a community of practice, Mock ECHO provides a safe opportunity for a diverse group of clinician experts to practice learned skills and receive feedback from coparticipants and facilitators.

  20. MR imaging of articular cartilage : comparison of magnetization transfer contrast and fat-suppression in multiplanar and 3D gradient-echo, spin-echo, turbo spin-echo techniques

    International Nuclear Information System (INIS)

    Lee, Young Joon; Joo, Eun Young; Eun, Choong Ki

    1999-01-01

    The purpose of this study was to evaluate the effects of magnetization transfer contrast(MTC) and fat-suppression(FS) in variable spin-echo and gradient-echo sequences for articular cartilage imaging and to determine the optimal pulse sequences. Using variable 7-pulse sequences, the knees of 15 pigs were imaged Axial images were obtained using proton density and T2-weighted spin-echo (PDWSE and T2WSE), turbo spin-echo (TSE), multiplanar gradient-echo (MPGR), and 3D steady-state gradient-echo (3DGRE) sequences, and the same pulse sequences were then repeated using MTC. Also T1-weighted spin-echo(T1WSE) and 3D spoiled gradient-echo(3DSPGR) images of knees were also acquired, and the procedure was repeated using FS. For each knee, a total of 14 axial images were acquired, and using a 6-band scoring system, the visibility of and the visibilities of the the articular cartilage was analyzed. The visual effect of MTC and FS was scored using a 4-band scale. For each image, the signal intensities of articular cartilage, subchondral bone, muscles, and saline were measured, and signal-to-noise ratios(SNR) and contrast-to-noise ratios(CNR) were also calculated. Visibility of the cartilage was best when 3DSPGR and T1WSE sequences were used. MTC imaging increased the negative contrast between cartilage and saline, but FS imaging provided more positive contrast. CNR between cartilage and saline was highest when using TSE with FS(-351.1±15.3), though CNR between cartilage and bone then fell to -14.7±10.8. In MTC imaging using MPGR showed the greatest increase of negative contrast between cartilage and saline(CNR change=-74.7); the next highest was when 3DGRE was used(CNR change=-34.3). CNR between cartilage and bone was highest with MPGR(161.9±17.7), but with MTC, the greatest CNR decrease(-81.8) was observed. The greatest CNR increase between cartilage and bone was noted in T1WSE with FS. In all scans, FS provided a cartilage-only positive contrast image, though the absolute

  1. The effect of strong pitch angle scattering on the use of artificial auroral streaks for echo detection - Echo 5

    International Nuclear Information System (INIS)

    Swanson, R.L.; Steffen, J.E.; Winckler, J.R.

    1986-01-01

    During the Echo 5 experiment launched 13 November 1979 from the Poker Flat Research Range (Fairbanks, Alaska), a 0.75 A, 37 keV electron beam was injected both up and down the field line to test the use of optical and X-ray methods to detect the beam as it interacted with the atmosphere below the rocket for both the downward injections (markers) and the upward injected electrons which mirrored at the Southern Hemisphere and returned echoes. The artificial auroral streaks created by the markers were easily visible on the ground TV system but the large intensity of photons produced around the rocket masked any response to the markers by the on-board photometers and X-ray detectors. No echoes were detected with any of the detection systems although the power in some of the upward injections was 7.6 times the power in a detected downward injection thus setting an upper limit on the loss-cone echo flux. The magnitude of the bounce averaged pitch angle diffusion coefficient necessary to explain the lack of observable echoes was found to be 4 x 10 -4 S -1 . It was found that an equatorial wave electric field of 11 mVm -1 would account for the lack of echoes. Such fields should cause strong pitch angle scattering of up to 10 keV natural electrons and thus be consistent with the presence of diffuse aurora on the Echo 5 trajectory. (author)

  2. Short-scan-time multi-slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging.

    Science.gov (United States)

    Callot, Virginie; Duhamel, Guillaume; Cozzone, Patrick J; Kober, Frank

    2008-10-01

    Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images

  3. Four-wave neutron-resonance spin echo

    International Nuclear Information System (INIS)

    Grigoriev, S.V.; Kraan, W.H.; Rekveldt, M.Th.

    2004-01-01

    We develop a technique of scattering from many-body systems. It is based on the principle of the neutron spin echo (SE), where a neutron wave in the magnetic field splits into two waves, which are separated in space or in time after propagation in this field. The neutron thus prepared as a probe passes through the sample to test its properties on a space R or time t scale. This separation in space or in time can be measured using coherence of these two waves as a phase shift φ between them. These two waves are collected or focused and compensated by the SE technique in order to compare their phases after interaction with the sample. In this way one studies interference between these waves and thus can directly measure the pair-correlation function in space or in time. Instead of two-wave SE we propose to realize the four-wave neutron-resonance spin-echo (NRSE). In our experiments, spin precession produced by a couple of the neutron-resonance coils in one arm is compensated by an identical couple of other NR coils in a second arm of a spin-echo machine. The neutron spin-flip probability ρ in the resonance coils is a key parameter of the NRSE arm. The limiting cases, ρ=0 and ρ=1, provide, in quantum terms, a two-level-two-wave k splitting of the neutron and result in the separation of the split waves into two different lengths in space (R 1 ,R 2 ) or in time (t 1 ,t 2 ). These two cases correspond to Larmor precession with phase φ 1 in the static magnetic fields of the NR flippers or to NRSE precession with φ 2 , respectively. The intermediate case, 0 1 ,R 2 ,R 3 ) or in time (t 1 ,t 2 ,t 3 ). The interference of each pair of waves after compensation results in three different echos with phases φ 1 , φ 2 , and φ 3 =(φ 1 +φ 2 )/2. Focusing or compensating all four waves into a single point of the phase-of-waves diagram produces quantum interference of all newly created waves. This task of focusing is experimentally performed. Different options for the

  4. Echo-Interleaved-Spiral MR Imaging

    International Nuclear Information System (INIS)

    Rosenthal, Shirrie; Azhari, Haim; Montag, Avram

    1998-01-01

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors)

  5. Time Delay Estimation Algoritms for Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Kirill Sakhnov

    2011-01-01

    Full Text Available The following case study describes how to eliminate echo in a VoIP network using delay estimation algorithms. It is known that echo with long transmission delays becomes more noticeable to users. Thus, time delay estimation, as a part of echo cancellation, is an important topic during transmission of voice signals over packetswitching telecommunication systems. An echo delay problem associated with IP-based transport networks is discussed in the following text. The paper introduces the comparative study of time delay estimation algorithm, used for estimation of the true time delay between two speech signals. Experimental results of MATLab simulations that describe the performance of several methods based on cross-correlation, normalized crosscorrelation and generalized cross-correlation are also presented in the paper.

  6. Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study.

    Science.gov (United States)

    Hussain, Shahid M; De Becker, Jan; Hop, Wim C J; Dwarkasing, Soendersing; Wielopolski, Piotr A

    2005-03-01

    To optimize and assess the feasibility of a single-shot black-blood T2-weighted spin-echo echo-planar imaging (SSBB-EPI) sequence for MRI of the liver using sensitivity encoding (SENSE), and compare the results with those obtained with a T2-weighted turbo spin-echo (TSE) sequence. Six volunteers and 16 patients were scanned at 1.5T (Philips Intera). In the volunteer study, we optimized the SSBB-EPI sequence by interactively changing the parameters (i.e., the resolution, echo time (TE), diffusion weighting with low b-values, and polarity of the phase-encoding gradient) with regard to distortion, suppression of the blood signal, and sensitivity to motion. The influence of each change was assessed. The optimized SSBB-EPI sequence was applied in patients (N = 16). A number of items, including the overall image quality (on a scale of 1-5), were used for graded evaluation. In addition, the signal-to-noise ratio (SNR) of the liver was calculated. Statistical analysis was carried out with the use of Wilcoxon's signed rank test for comparison of the SSBB-EPI and TSE sequences, with P = 0.05 considered the limit for significance. The SSBB-EPI sequence was improved by the following steps: 1) less frequency points than phase-encoding steps, 2) a b-factor of 20, and 3) a reversed polarity of the phase-encoding gradient. In patients, the mean overall image quality score for the optimized SSBB-EPI (3.5 (range: 1-4)) and TSE (3.6 (range: 3-4)), and the SNR of the liver on SSBB-EPI (mean +/- SD = 7.6 +/- 4.0) and TSE (8.9 +/- 4.6) were not significantly different (P > .05). Optimized SSBB-EPI with SENSE proved to be feasible in patients, and the overall image quality and SNR of the liver were comparable to those achieved with the standard respiratory-triggered T2-weighted TSE sequence. (c) 2005 Wiley-Liss, Inc.

  7. summarytable.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  8. Resources.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  9. Custom Search | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  10. Watershed Statistics | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  11. Clinical characteristics in normal healthy adults with microbleeds on echo-planar gradient-echo T2*-weighted MRI

    International Nuclear Information System (INIS)

    Takahashi, Wakoh; Ide, Michiru; Ohnuki, Tomohide; Takagi, Shigeharu; Shinohara, Yukito

    2004-01-01

    The gradient-echo T 2 * -weighted sequence in magnetic resonance imaging is known to be useful for detecting microbleeds (MBs) in patients with intracranial hemorrhage or lacunar stroke. We investigated the characteristics of apparently healthy adults with MBs but without stroke, employing echo-planar gradient-echo T 2 * -weighted MRI. The subjects were recruited from among 3,537 participants who underwent brain check-ups at the HIMEDIC Imaging Center. Of the 3,537 participants, 3,296 (mean age, 55±11 years) without any history of cerebrovascular disease or apparent focal neurological manifestations were selected for the present study. MBs on echo-planar gradient-echo T 2 * -weighted MRI were observed in 74 (2.2%) of the 3,296 subjects. Of a total of 133 lesions found in these 74 persons, 31 were located in the basal ganglia or cortico-subcortical regions. Thirty were in the deep white matter, 19 in the thalamus, 16 in the cerebellum, and 6 in the brain stem. The subjects with MBs were significantly older than the subjects without MBs, and the mean values for their systolic and diastolic blood pressures were higher than those in the subjects without MBs. Asymptomatic cerebral infarction, periventricular hyperintensity, and deep and subcortical white matter hyperintensity on T 1 - and T 2 -weighted MRI were more frequent in the subjects with MBs, as compared with those without MBs. Asymptomatic cerebral infarction, periventricular hyperintensity, and deep and subcortical white matter hyperintensity on T 1 - and T 2 -weighted MRI were more frequent in the subjects with MBs of the basal ganglia or thalamus than in those with MBs in other regions. MBs on echo-planar gradient-echo T 2 * -weighted MRI were thus relatively rare in apparently healthy adults. However, MBs in the basal ganglia or thalamus are suggested to be closely related to intracerebral microangiopathy. Persons with MBs in such regions should therefore be carefully checked for cerebrovascular risk

  12. CUTLASS HF radar observations of high-velocity E-region echoes

    Directory of Open Access Journals (Sweden)

    M. V. Uspensky

    Full Text Available A short event of high-velocity E-region echo observations by the Pykkvibaer HF radar is analysed to study echo parameters and the echo relation to the Farley-Buneman plasma instability. The echoes were detected in several beams aligned closely to the magnetic L-shell direction. Two echo groups were identified: one group corresponded to the classical type 1 echoes with velocities close to the nominal ion-acoustic speed of 400 ms1 , while the other group had significantly larger velocities, of the order of 700 ms1 . The mutual relationship between the echo power, Doppler velocity, spectral width and elevation angles for these two groups was studied. Plotting of echo parameters versus slant range showed that all ~700 ms1 echoes originated from larger heights and distances of 500–700 km, while all ~400 ms1 echoes came from lower heights and from farther distances; 700–1000 km. We argue that both observed groups of echoes occurred due to the Farley-Buneman plasma instability excited by strong ( ~70 mVm1 and uniformly distributed electric fields. We show that the echo velocities for the two groups were different because the echoes were received from different heights. Such a separation of echo heights occurred due to the differing amounts of ionospheric refraction at short and large ranges. Thus, the ionospheric refraction and related altitude modulation of ionospheric parameters are the most important factors to consider, when various characteristics of E-region decametre irregularities are derived from HF radar measurements.

    Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; polar ionosphere

  13. Theory and optical design of x-ray echo spectrometers

    Science.gov (United States)

    Shvyd'ko, Yuri

    2017-08-01

    X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016), 10.1103/PhysRevLett.116.080801] is developed here further with a focus on questions of practical importance, which could facilitate optical design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. Examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.

  14. Echo-Interleaved-Spiral MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Shirrie; Azhari, Haim [Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000 (Israel); Montag, Avram [Elscint Ltd., MRI division, Haifa (Israel)

    1999-12-31

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors) 4 refs., 3 figs.

  15. Echo phenomena in a plasma

    International Nuclear Information System (INIS)

    Pavlenko, V.N.

    1983-01-01

    The mechanism of echo phenomenon in different plasma media: laboratory and cosmic plasma, metals and semiconductors is analyzed to get a more comprehensive idea on collective processes in a plasma and for practical applications in radiophysics and plasma diagnostics. The echo phenomenon permitted to confirm a reversible nature of the Landau damping, to prove the fact that the information on perturbation is conserved in a plasma (as non-damping oscillations of the distribution function) even after disappearing of the macroscopic field. The dependence of the diffusion coefficient on the velocity is measured, microturbulences in a plasma are investigated. New ways of the plasma wave conversion are suggested, as well as ''lightning'' of super-critical plasma layers and regions of plasma non-transparency. Prospective advantages of using echo for studying the mechanisms of charged particle interaction with the surface bounding a plasma are revealed

  16. Meteor head echoes - observations and models

    Directory of Open Access Journals (Sweden)

    A. Pellinen-Wannberg

    2005-01-01

    Full Text Available Meteor head echoes - instantaneous echoes moving with the velocities of the meteors - have been recorded since 1947. Despite many attempts, this phenomenon did not receive a comprehensive theory for over 4 decades. The High Power and Large Aperture (HPLA features, combined with present signal processing and data storage capabilities of incoherent scatter radars, may give an explanation for the old riddle. The meteoroid passage through the radar beam can be followed with simultaneous spatial-time resolution of about 100m-ms class. The current views of the meteor head echo process will be presented and discussed. These will be related to various EISCAT observations, such as dual-frequency target sizes, altitude distributions and vector velocities.

  17. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    Science.gov (United States)

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  18. ECHO Data Partners Join Forces to Federate Access to Resources

    Science.gov (United States)

    Kendall, J.; Macie, M.

    2003-12-01

    During the past year the NASA's Earth Science Data and Information System (ESDIS) project has been collaborating with various Earth science data and client providers to design and implement the EOS Clearinghouse (ECHO). ECHO is an open, interoperable metadata clearinghouse and order broker system. ECHO functions as a repository of information intended to streamline access to digital data and services provided by NASA's Earth Science Enterprise and the extended Earth science community. In a unique partnership, ECHO data providers are working to extend their services in the digital era, to reflect current trends in scientific and educational communications. The multi-organization, inter-disciplinary content of ECHO provides a valuable new service to a growing number of Earth science applications and interdisciplinary research efforts. As such, ECHO is expected to attract a wide audience. In this poster, we highlight the contributions of current ECHO data partners and provide information for prospective data partners on how the project supports the incorporation of new collections and effective long-term asset management that is directly under the control of the organizations who contribute resources to ECHO.

  19. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging

    Directory of Open Access Journals (Sweden)

    Boujraf Said

    2009-01-01

    Full Text Available The choice of imaging parameters for functional MRI can have an impact on the accuracy of functional localization by affecting the image quality and the degree of blood oxygenation-dependent (BOLD contrast achieved. By improving sampling efficiency, parallel acquisition techniques such as sensitivity encoding (SENSE have been used to shorten readout trains in single-shot (SS echo planar imaging (EPI. This has been applied to susceptibility artifact reduction and improving spatial resolution. SENSE together with single-shot spin-echo (SS-SE imaging may also reduce off-resonance artifacts. The goal of this work was to investigate the BOLD response of a SENSE-adapted SE-EPI on a three Tesla scanner. Whole-brain fMRI studies of seven healthy right hand-dominant volunteers were carried out in a three Tesla scanner. fMRI was performed using an SS-SE EPI sequence with SENSE. The data was processed using statistical parametric mapping. Both, group and individual subject data analyses were performed. Individual average percentage and maximal percentage signal changes attributed to the BOLD effect in M1 were calculated for all the subjects as a function of echo time. Corresponding activation maps and the sizes of the activated clusters were also calculated. Our results show that susceptibility artifacts were reduced with the use of SENSE; and the acquired BOLD images were free of the typical quadrature artifacts of SS-EPI. Such measures are crucial at high field strengths. SS SE-EPI with SENSE offers further benefits in this regard and is more specific for oxygenation changes in the microvasculature bed. Functional brain activity can be investigated with the help of single-shot spin echo EPI using SENSE at high magnetic fields.

  20. VLF group delay of lightning-induced electron precipitation echoes from measurement of phase and amplitude perturbations at two frequencies

    International Nuclear Information System (INIS)

    Adams, C.D.D.; Dowden, R.L.

    1990-01-01

    Measurement of phase and amplitude perturbations (trimpis) of the NWC signal at Dunedin at both the NWC frequencies, 22,250 Hz and 22,350 Hz, enables measurement of the received phase of the echo signal (phasor difference of the perturbed and unperturbed signals) at each frequency and so the rate of decrease of phase with frequency. This, of course, is the group delay. The 100-Hz difference implies that measurement of echo group delays of up to 5 ms could be made without ambiguity, though other factors limit this to about 2.5 ms. Some 38 difference trimpis during May and June 1988 showed echo delays up to 2 ms corresponding to reflection from points displaced more than 1,000 km from the NWC-Dunedin great circle path. The echo amplitudes observed at such large displacements are much greater than expected from smooth circular depressions of the ionosphere modifying the waveguide phase velocity and so imply sharper discontinuities in the waveguide

  1. Comparison between two.magnetic resonance sequences (spin-echo and gradient-echo) in the analysis of lesions of the knee joint meniscus

    International Nuclear Information System (INIS)

    Marti-Bonati, L.; Casillas, C.

    1999-01-01

    To compare the diagnostic reliability, the proportion of common diagnoses and the degree of agreement between the results of two magnetic resonance (MR) sequences in the diagnosis of lesions of the meniscus of the knee. One hundred consecutive patients were studied prospectively by MR (1,5 Teslas). All of them underwent T1-weighted spin-echo and T1 and T2-weighted gradient-echo sequences. The final diagnosis was based on the combined results of four imaging sequences. The sensitivity, specificity, positive predictive value (PPV) and negative predictive (NPV) in terms of the final diagnosis were calculated for each meniscus and MR technique. The chi.squared test and kappa test were employed for the statistical analysis. There were discrepancies between the final diagnosis and the spin-echo sequence in 4 cases and between the final diagnosis and the gradient-echo sequences in 5 Both spin-echo and gradient-echo sequences showed the same diagnostic reliabilities: sensitivity of 0.98, specificity of 0.99, PPV of 0.98 and NPV of 0.99. The correlation between the two sequences was highly significant (chi-squared, p < 0.001) with a very high rate of agreement (kappa=0.84). The two sequences can be considered equally reliable in the study of meniscal lesions. (Author) 7 refs

  2. Diagnosis of partial and complete rotator cuff tears using combined gradient echo and spin echo imaging

    International Nuclear Information System (INIS)

    Tuite, M.J.; Yandow, D.R.; DeSmet, A.A.; Orwin, J.F.; Quintana, F.A.

    1994-01-01

    Most magnetic resonance (MR) studies evaluating the rotator cuff for tears have used T2-weighted imaging in the coronal oblique and sagittal oblique planes. T2 * -weighted gradient echo imaging, however, has advantages over spin echo imaging, including contiguous slices without cross-talk, high contrast around the cuff, and intrinsically shorter imaging times which can be used to increase the number of signals averaged and thus improve the signal-to-noise ratio. We reviewed the shoulder MR scans of 87 consecutive patients who underwent both a MR scan and a shoulder arthroscopy during which the size of tears, if present, was graded. The reviewers were blinded as to the history and arthroscopic results. The MR scans included oblique coronal T2 * -weighted gradient echo and oblique sagittal T2-weighted spin echo images. MR cuff grades were correlated with arthroscopic findings. For complete tears, the sensitivity of MR was 0.91 and the specificity 0.95. For partial tears, the sensitivity was 0.74 and the specificity 0.87. This accuracy is similar to two-plane T2-weighted imaging as previously reported in the literature. There was a statistically significant correlation (p < 0.0005) between the cuff grade as determined by MR and the arthroscopic findings. (orig.)

  3. Diagnosis of partial and complete rotator cuff tears using combined gradient echo and spin echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); Yandow, D R [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); DeSmet, A A [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); Orwin, J F [Div. of Orthopedic Surgery, Univ. of Wisconsin, Madison, WI (United States); Quintana, F A [Dept. of Biostatistics, Univ. of Wisconsin, Madison, WI (United States)

    1994-10-01

    Most magnetic resonance (MR) studies evaluating the rotator cuff for tears have used T2-weighted imaging in the coronal oblique and sagittal oblique planes. T2{sup *}-weighted gradient echo imaging, however, has advantages over spin echo imaging, including contiguous slices without cross-talk, high contrast around the cuff, and intrinsically shorter imaging times which can be used to increase the number of signals averaged and thus improve the signal-to-noise ratio. We reviewed the shoulder MR scans of 87 consecutive patients who underwent both a MR scan and a shoulder arthroscopy during which the size of tears, if present, was graded. The reviewers were blinded as to the history and arthroscopic results. The MR scans included oblique coronal T2{sup *}-weighted gradient echo and oblique sagittal T2-weighted spin echo images. MR cuff grades were correlated with arthroscopic findings. For complete tears, the sensitivity of MR was 0.91 and the specificity 0.95. For partial tears, the sensitivity was 0.74 and the specificity 0.87. This accuracy is similar to two-plane T2-weighted imaging as previously reported in the literature. There was a statistically significant correlation (p < 0.0005) between the cuff grade as determined by MR and the arthroscopic findings. (orig.)

  4. Utility of dual echo T2-weighted turbo spin echo MR imaging for differentiation of solid, malignant hepatic lesions from nonsolid, benign hepatic lesions

    International Nuclear Information System (INIS)

    Yang, Dal Mo; Yoon, Myung Hwan; Kim, Hak Soo; Lee, Eun Joo; Kim, Jong Ho; Kim, Hyung Sik; Chung, Jin Woo

    1999-01-01

    To evaluate the additive value of multiphasic contrast-enhanced dynamic MR imaging as a supplement to dual-echo T2-weighted TSE MR imaging for the differentiation of solid, malignant hepatic lesions from nonsolid, benign hepatic lesions. Two radiologists retrospectively reviewed dual-echo T2-weighted TSE MR images and gadolinium-enhanced MR images in 51 patients with hepatic lesions (28 malignant, 69 benign). For the differentiation of malignant from benign lesions, as seen on dual-echo T2-weighted TSE MR images, we evaluated sensitivity, specificity, and accuracy, and compared with the results with those for dual echo T2-weighted MR images plus multiphasic contrast-enhanced dynamic MR images. In addition, Az values for dual echo T2-weighted MR images were compared with those for dual echo T2-weighted MR images plus multiphasic contrast-enhanced dynamic MR images. For the differentiation of malignant from benign hepatic lesions, as seen on dual-echo T2-weighted TSE images, sensitivity, specificity, and accuracy were 80.0%, 97.5%, and 93.9%, respectively, for lesions less than 3cm in diameter, and 92.3%, 95.0%, and 93.5%, respectively, for those that were 3cm or larger. The results for dual-echo T2-weighted MR imaging plus multiphasic contrast-enhanced dynamic MR imaging were 86.7%, 100.0%, and 97.3%, respectively, for lesions less than 3cm, and 92.3%, 100.0%, and 95.7%, respectively for those that were 3cm or larger. There were no significant differences in sensitivity, specificity, or accuracy between the results obtained using dual-echo T2-weighted MR imaging and those obtained with dual-echo T2-weighted MR imaging plus multiphasic contrast-enhanced dynamic MR imaging. Nor were these statistically significant differences in Az values between the two groups. For the differentiation of solid, malignant hepatic lesions from nonsolid, benign hepatic lesions, there is no difference in accuracy between dual-echo T2-weighted TSE MR imaging and the additional use of

  5. Comparison of gradient-recalled echo and spin-echo echo-planar imaging MR elastography in staging liver fibrosis. A meta-analysis

    International Nuclear Information System (INIS)

    Kim, Yong Seek; Jang, Yu Na; Song, Ji Soo

    2018-01-01

    To compare the diagnostic performance of gradient-recalled echo-based magnetic resonance elastography (GRE-MRE) and spin-echo echo-planar imaging-based MRE (SE-EPI-MRE) in liver fibrosis staging. A systematic literature search was performed to identify studies involving the performance of MRE for the diagnosis of liver fibrosis. Pooled sensitivity, specificity, positive and negative likelihood ratios, the diagnostic odds ratio, and a summary receiver operating characteristic (ROC) curve were estimated by using a bivariate random effects model. Subgroup analyses were performed between different study characteristics. Twenty-six studies with a total of 3,200 patients were included in the meta-analysis. Pooled sensitivity and specificity of GRE-MRE and SE-EPI-MRE did not differ significantly. The area under the summary ROC curve for stage diagnosis of any (F ≥ 1), significant (F ≥ 2), advanced (F ≥ 3), and cirrhosis (F = 4) on GRE-MRE and SE-EPI-MRE were 0.93 versus 0.94, 0.95 versus 0.94, 0.94 versus 0.95, and 0.92 versus 0.93, respectively. Substantial heterogeneity was detected for both sequences. Both GRE and SE-EPI-MRE show high sensitivity and specificity for detection of each stage of liver fibrosis, without significant differences. Magnetic resonance elastography (MRE) may be useful for noninvasive evaluation of liver fibrosis in chronic liver disease. (orig.)

  6. Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography.

    Science.gov (United States)

    Zhang, Tao; Yousaf, Ufra; Hsiao, Albert; Cheng, Joseph Y; Alley, Marcus T; Lustig, Michael; Pauly, John M; Vasanawala, Shreyas S

    2015-10-01

    Pediatric contrast-enhanced MR angiography is often limited by respiration, other patient motion and compromised spatiotemporal resolution. To determine the reliability of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography method for depicting abdominal arterial anatomy in young children. With IRB approval and informed consent, we retrospectively identified 27 consecutive children (16 males and 11 females; mean age: 3.8 years, range: 14 days to 8.4 years) referred for contrast-enhanced MR angiography at our institution, who had undergone free-breathing spatiotemporally accelerated time-resolved contrast-enhanced MR angiography studies. A radio-frequency-spoiled gradient echo sequence with Cartesian variable density k-space sampling and radial view ordering, intrinsic motion navigation and intermittent fat suppression was developed. Images were reconstructed with soft-gated parallel imaging locally low-rank method to achieve both motion correction and high spatiotemporal resolution. Quality of delineation of 13 abdominal arteries in the reconstructed images was assessed independently by two radiologists on a five-point scale. Ninety-five percent confidence intervals of the proportion of diagnostically adequate cases were calculated. Interobserver agreements were also analyzed. Eleven out of 13 arteries achieved acceptable image quality (mean score range: 3.9-5.0) for both readers. Fair to substantial interobserver agreement was reached on nine arteries. Free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography frequently yields diagnostic image quality for most abdominal arteries in young children.

  7. Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tao; Cheng, Joseph Y. [Stanford University, Department of Radiology, Stanford, CA (United States); Stanford University, Department of Electrical Engineering, Stanford, CA (United States); Yousaf, Ufra; Alley, Marcus T.; Vasanawala, Shreyas S. [Stanford University, Department of Radiology, Stanford, CA (United States); Hsiao, Albert [University of California, San Diego, Department of Radiology, San Diego, CA (United States); Lustig, Michael [Stanford University, Department of Electrical Engineering, Stanford, CA (United States); University of California, Berkeley, Department of Electrical Engineering and Computer Sciences, Berkeley, CA (United States); Pauly, John M. [Stanford University, Department of Electrical Engineering, Stanford, CA (United States)

    2015-10-15

    Pediatric contrast-enhanced MR angiography is often limited by respiration, other patient motion and compromised spatiotemporal resolution. To determine the reliability of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography method for depicting abdominal arterial anatomy in young children. With IRB approval and informed consent, we retrospectively identified 27 consecutive children (16 males and 11 females; mean age: 3.8 years, range: 14 days to 8.4 years) referred for contrast-enhanced MR angiography at our institution, who had undergone free-breathing spatiotemporally accelerated time-resolved contrast-enhanced MR angiography studies. A radio-frequency-spoiled gradient echo sequence with Cartesian variable density k-space sampling and radial view ordering, intrinsic motion navigation and intermittent fat suppression was developed. Images were reconstructed with soft-gated parallel imaging locally low-rank method to achieve both motion correction and high spatiotemporal resolution. Quality of delineation of 13 abdominal arteries in the reconstructed images was assessed independently by two radiologists on a five-point scale. Ninety-five percent confidence intervals of the proportion of diagnostically adequate cases were calculated. Interobserver agreements were also analyzed. Eleven out of 13 arteries achieved acceptable image quality (mean score range: 3.9-5.0) for both readers. Fair to substantial interobserver agreement was reached on nine arteries. Free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography frequently yields diagnostic image quality for most abdominal arteries in young children. (orig.)

  8. Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography

    International Nuclear Information System (INIS)

    Zhang, Tao; Cheng, Joseph Y.; Yousaf, Ufra; Alley, Marcus T.; Vasanawala, Shreyas S.; Hsiao, Albert; Lustig, Michael; Pauly, John M.

    2015-01-01

    Pediatric contrast-enhanced MR angiography is often limited by respiration, other patient motion and compromised spatiotemporal resolution. To determine the reliability of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography method for depicting abdominal arterial anatomy in young children. With IRB approval and informed consent, we retrospectively identified 27 consecutive children (16 males and 11 females; mean age: 3.8 years, range: 14 days to 8.4 years) referred for contrast-enhanced MR angiography at our institution, who had undergone free-breathing spatiotemporally accelerated time-resolved contrast-enhanced MR angiography studies. A radio-frequency-spoiled gradient echo sequence with Cartesian variable density k-space sampling and radial view ordering, intrinsic motion navigation and intermittent fat suppression was developed. Images were reconstructed with soft-gated parallel imaging locally low-rank method to achieve both motion correction and high spatiotemporal resolution. Quality of delineation of 13 abdominal arteries in the reconstructed images was assessed independently by two radiologists on a five-point scale. Ninety-five percent confidence intervals of the proportion of diagnostically adequate cases were calculated. Interobserver agreements were also analyzed. Eleven out of 13 arteries achieved acceptable image quality (mean score range: 3.9-5.0) for both readers. Fair to substantial interobserver agreement was reached on nine arteries. Free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography frequently yields diagnostic image quality for most abdominal arteries in young children. (orig.)

  9. Consistency Analysis of Ultrasound Echoes within a Dual Symmetric Path Inspection Framework

    Directory of Open Access Journals (Sweden)

    VASILE, C.

    2015-05-01

    Full Text Available Non-destructive ultrasound inspection of metallic structures is a perpetual high-interest area of research because of its well-known benefits in industrial applications, especially from an economic point of view, where detection and localisation of defects in their most initial stages can help maintain high production capabilities for any enterprise. This paper is aimed at providing further validation regarding a new technique for detecting and localising defects in metals, the Matched Filter-based Dual Symmetric Path Inspection (MF-DSPI. This validation consists in demonstrating the consistency of the useful ultrasound echoes, within the framework of the MF-DSPI. A description of the MF-DSPI method and the related work of the authors with it are presented in this paper, along with an experimental setup used to obtain the data with which the useful echo consistency was studied. The four proposed methods are: signal envelope analysis, L2-norm criterion, correlation coefficient criterion and sliding bounding rectangle analysis. The aim of this paper is to verify the useful echo consistency (with the help of these four approaches, as the MF-DSPI method strongly relies on this feature. The results and their implications are discussed in the latter portion of this study.

  10. Revival of silenced echo and quantum memory for light

    Energy Technology Data Exchange (ETDEWEB)

    Damon, V; Bonarota, M; Louchet-Chauvet, A; Chaneliere, T; Le Gouet, J-L, E-mail: jean-louis.legouet@lac.u-psud.fr [Laboratoire Aime Cotton, CNRS-UPR 3321, Univ. Paris-Sud, Bat. 505, 91405 Orsay cedex (France)

    2011-09-15

    We propose an original quantum memory protocol. It belongs to the class of rephasing processes and is closely related to two-pulse photon echo. It is known that the strong population inversion produced by the rephasing pulse prevents the plain two-pulse photon echo from serving as a quantum memory scheme. Indeed, gain and spontaneous emission generate prohibitive noise. A second {pi}-pulse can be used to simultaneously reverse the atomic phase and bring the atoms back into the ground state. Then a secondary echo is radiated from a non-inverted medium, avoiding contamination by gain and spontaneous emission noise. However, one must kill the primary echo, in order to preserve all the information for the secondary signal. In the present work, spatial phase mismatching is used to silence the standard two-pulse echo. An experimental demonstration is presented.

  11. Spin echoes of nuclear magnetization diffusing in a constant magnetic field gradient and in a restricted geometry

    International Nuclear Information System (INIS)

    Sen, P.N.; Andre, A.; Axelrod, S.

    1999-01-01

    We study the influence of restriction on Carr - Purcell - Meiboom - Gill spin echoes response of magnetization of spins diffusing in a bounded region in the presence of a constant magnetic field gradient. Depending on three main length scales: L S pore size, L G dephasing length and L D diffusion length during half-echo time, three main regimes of decay have been identified: free, localization and motionally averaging regime. In localization regime, the decay exponent depends on a fractional power (2/3) of the gradient, denoting a strong breakdown of the second cumulant or the Gaussian phase approximation (GPA). In the other two regimes, the exponent depends on the gradient squared, and the GPA holds. We find that the transition from the localization to the motionally averaging regime happens when the magnetic field gradients approach special values, corresponding to branch points of the eigenvalues. Transition from one regime to another as a function of echo number for a certain range of parameters is discussed. In this transition region, the signal shows large oscillations with echo number. For large n, asymptotic behavior sets in as a function of n for the decay exponent per echo. This is true for all values of the parameters L S , L G , and L D . copyright 1999 American Institute of Physics

  12. Mobile Bay.pdf | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  13. Report Environmental Violations | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  14. DWDashboard_Year.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  15. dashboard_3.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  16. ExampleDFR.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  17. monperload_1.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  18. monperload_2.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  19. Dischargers_Example.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  20. dashboard_1.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  1. dashboard_2.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  2. monperload_3.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  3. Denuncie violaciones ambientales | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  4. Custom Search Help | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  5. Watershed Statistics Help | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  6. Water Pollution Search | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  7. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    International Nuclear Information System (INIS)

    Schirmer, M.; Diaz, R.; Levenson, N. A.; Winge, C.; Holhjem, K.

    2013-01-01

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc –3 at z ∼ 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240–0927 (z = 0.326). Its NLR extends over 26 × 44 kpc and is surrounded by an extended NLR. With a total [O III] λ5008 luminosity of (5.7 ± 0.9) × 10 43 erg s –1 , this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 μm luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.

  8. Duel frequency echo data acquisition system for sea-floor classification

    Digital Repository Service at National Institute of Oceanography (India)

    Navelkar, G.S.; Desai, R.G.P.; Chakraborty, B.

    An echo data acquisition system is designed to digitize echo signal from a single beam shipboard echo-sounder for use in sea-floor classification studies using a 12 bit analog to digital (A/D) card with a maximum sampling frequency of 1 MHz. Both 33...

  9. Variations in the occurrence of SuperDARN F region echoes

    Directory of Open Access Journals (Sweden)

    M. Ghezelbash

    2014-02-01

    Full Text Available The occurrence of F region ionospheric echoes observed by a number of SuperDARN HF radars is analyzed statistically in order to infer solar cycle, seasonal, and diurnal trends. The major focus is on Saskatoon radar data for 1994–2012. The distribution of the echo occurrence rate is presented in terms of month of observation and magnetic local time. Clear repetitive patterns are identified during periods of solar maximum and solar minimum. For years near solar maximum, echoes are most frequent near midnight during winter. For years near solar minimum, echoes occur more frequently near noon during winter, near dusk and dawn during equinoxes and near midnight during summer. Similar features are identified for the Hankasalmi and Prince George radars in the northern hemisphere and the Bruny Island TIGER radar in the southern hemisphere. Echo occurrence for the entire SuperDARN network demonstrates patterns similar to patterns in the echo occurrence for the Saskatoon radar and for other radars considered individually. In terms of the solar cycle, the occurrence rate of nightside echoes is shown to increase by a factor of at least 3 toward solar maximum while occurrence of the near-noon echoes does not significantly change with the exception of a clear depression during the declining phase of the solar cycle.

  10. Fast spin echo MRI techniques. Contrast characteristics and clinical potential. Techniques d'IRM en fast spin echo. Caracteristiques de contraste et potentiels cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N. (Harvard Medical School, Boston, MA (United States)); Oshio, K.; Jolesz, F. (Keio Univ., Tokyo (Japan)); Pourcelot, L. (Hopital Bretonneau, 37 - Tours (France)); Einstein, S. (General Electric Medical System, Milwaukee, WI (United States))

    1993-03-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode.

  11. Ultrasound pulse-echo measurements on rough surfaces with linear array transducers

    DEFF Research Database (Denmark)

    Sjøj, Sidsel M. N.; Blanco, Esther N.; Wilhjelm, Jens E.

    2012-01-01

    The echo from planar surfaces with rms roughness, Rq, in the range from 0-155 μm was measured with a clinical linear array transducer at different angles of incidence at 6 MHz and 12 MHz. The echo-pulse from the surfaces was isolated with an equal sized window and the power of the echo-pulse was ......The echo from planar surfaces with rms roughness, Rq, in the range from 0-155 μm was measured with a clinical linear array transducer at different angles of incidence at 6 MHz and 12 MHz. The echo-pulse from the surfaces was isolated with an equal sized window and the power of the echo......-pulse was calculated. The power of the echo from the smooth surface (Rq = 0) is highly angle-dependent due to a high degree of specular reflection. Within the angular range considered here, -10° to 10°, the variation spans a range of 18 dB at both 6 MHz and 12 MHz. When roughness increases, the angle......-dependence decreases, as the echo process gradually changes from pure reflection to being predominantly governed by backscattering. The power of the echoes from the two roughest surfaces (Rq = 115 μm and 155 μm) are largely independent of angle at both 6 MHz and 12 MHz with a variation of 2 dB in the angular range...

  12. The architecture of dynamic reservoir in the echo state network

    Science.gov (United States)

    Cui, Hongyan; Liu, Xiang; Li, Lixiang

    2012-09-01

    Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.

  13. Electric Dipole Echoes in Rydberg Atoms

    International Nuclear Information System (INIS)

    Yoshida, S.; Reinhold, C. O.; Burgdoerfer, J.; Zhao, W.; Mestayer, J. J.; Lancaster, J. C.; Dunning, F. B.

    2007-01-01

    We report the first observation of echoes in the electric dipole moment of an ensemble of Rydberg atoms precessing in an external electric field F. Rapid reversal of the field direction is shown to play a role similar to that of a π pulse in NMR in rephasing a dephased ensemble of electric dipoles resulting in the buildup of an echo. The mechanisms responsible for this are discussed with the aid of classical trajectory Monte Carlo simulations

  14. No counterpart of visual perceptual echoes in the auditory system.

    Directory of Open Access Journals (Sweden)

    Barkın İlhan

    Full Text Available It has been previously demonstrated by our group that a visual stimulus made of dynamically changing luminance evokes an echo or reverberation at ~10 Hz, lasting up to a second. In this study we aimed to reveal whether similar echoes also exist in the auditory modality. A dynamically changing auditory stimulus equivalent to the visual stimulus was designed and employed in two separate series of experiments, and the presence of reverberations was analyzed based on reverse correlations between stimulus sequences and EEG epochs. The first experiment directly compared visual and auditory stimuli: while previous findings of ~10 Hz visual echoes were verified, no similar echo was found in the auditory modality regardless of frequency. In the second experiment, we tested if auditory sequences would influence the visual echoes when they were congruent or incongruent with the visual sequences. However, the results in that case similarly did not reveal any auditory echoes, nor any change in the characteristics of visual echoes as a function of audio-visual congruence. The negative findings from these experiments suggest that brain oscillations do not equivalently affect early sensory processes in the visual and auditory modalities, and that alpha (8-13 Hz oscillations play a special role in vision.

  15. Fast spin echo MRI techniques. Contrast characteristics and clinical potential

    International Nuclear Information System (INIS)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N.; Oshio, K.; Jolesz, F.; Pourcelot, L.; Einstein, S.

    1993-01-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode

  16. Echo project

    DEFF Research Database (Denmark)

    Gfader, Verina; Carson, Rebecca; Kraus, Chris

    2016-01-01

    team to both present the printed matter in the format of running a book stall, and stage a discursive event at the Classroom. Echo reverberates some of the encounters and debates there, with new commissioned chapters propelling a ongoing correspondence across urban environs: An essay on the General...... mothers and demonology (Kathy Acker’s property deals in the UK), and more; and future materials formalized as poster texts . . ....

  17. Whole brain, high resolution multiband spin-echo EPI fMRI at 7 T: A comparison with gradient-echo EPI using a color-word Stroop task

    NARCIS (Netherlands)

    Boyacioglu, R.; Schulz, J.; Müller, N.C.J.; Koopmans, P.J.; Barth, M.; Norris, David Gordon

    2014-01-01

    A whole brain, multiband spin-echo (SE) echo planar imaging (EPI) sequence employing a high spatial (1.5 mm isotropic) and temporal (TR of 2 s) resolution was implemented at 7 T. Its overall performance (tSNR, sensitivity and CNR) was assessed and compared to a geometrically matched gradient-echo

  18. The EChO science case

    DEFF Research Database (Denmark)

    Tinetti, Giovanna; Drossart, Pierre; Eccleston, Paul

    2015-01-01

    in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary....... The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300–3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few...

  19. Echo Shaping Using Sums of Damped Complex Sinusoids

    DEFF Research Database (Denmark)

    Putnam, Lance Jonathan

    2015-01-01

    Feedback delay lines are the basis of myriad audio effects and reverberation schemes. The feedback delay line, by itself, is limited to producing an infinite sequence of exponentially decaying echoes. We introduce a new type of linear time-invariant echo effect whose impulse response is a general...

  20. Magnetic resonance, especially spin echo, in spinor Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Yasunaga, Masashi; Tsubota, Makoto

    2009-01-01

    Magnetic resonance, especially NMR and ESR, has been studied in magnetic materials for a long time, having been used in various fields. Spin echo is typical phenomenon in magnetic resonance. The magnetic resonance should be applied to spinor Bose-Einstein condensates (BECs). We numerically study spin echo of a spinor BEC in a gradient magnetic field by calculating the spin-1 two-dimensional Gross-Pitaevskii equations, obtaining the recovery of the signal of the spins, which is called spin echo. We will discuss the relation between the spin echo and the Stern-Gelrach separation in the system.

  1. The electron capture in 163Ho experiment - ECHo

    Science.gov (United States)

    Gastaldo, L.; Blaum, K.; Chrysalidis, K.; Day Goodacre, T.; Domula, A.; Door, M.; Dorrer, H.; Düllmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Faessler, A.; Filianin, P.; Fleischmann, A.; Fonnesu, D.; Gamer, L.; Haas, R.; Hassel, C.; Hengstler, D.; Jochum, J.; Johnston, K.; Kebschull, U.; Kempf, S.; Kieck, T.; Köster, U.; Lahiri, S.; Maiti, M.; Mantegazzini, F.; Marsh, B.; Neroutsos, P.; Novikov, Yu. N.; Ranitzsch, P. C. O.; Rothe, S.; Rischka, A.; Saenz, A.; Sander, O.; Schneider, F.; Scholl, S.; Schüssler, R. X.; Schweiger, Ch.; Simkovic, F.; Stora, T.; Szücs, Z.; Türler, A.; Veinhard, M.; Weber, M.; Wegner, M.; Wendt, K.; Zuber, K.

    2017-06-01

    Neutrinos, and in particular their tiny but non-vanishing masses, can be considered one of the doors towards physics beyond the Standard Model. Precision measurements of the kinematics of weak interactions, in particular of the 3H β-decay and the 163Ho electron capture (EC), represent the only model independent approach to determine the absolute scale of neutrino masses. The electron capture in 163Ho experiment, ECHo, is designed to reach sub-eV sensitivity on the electron neutrino mass by means of the analysis of the calorimetrically measured electron capture spectrum of the nuclide 163Ho. The maximum energy available for this decay, about 2.8 keV, constrains the type of detectors that can be used. Arrays of low temperature metallic magnetic calorimeters (MMCs) are being developed to measure the 163Ho EC spectrum with energy resolution below 3 eV FWHM and with a time resolution below 1 μs. To achieve the sub-eV sensitivity on the electron neutrino mass, together with the detector optimization, the availability of large ultra-pure 163Ho samples, the identification and suppression of background sources as well as the precise parametrization of the 163Ho EC spectrum are of utmost importance. The high-energy resolution 163Ho spectra measured with the first MMC prototypes with ion-implanted 163Ho set the basis for the ECHo experiment. We describe the conceptual design of ECHo and motivate the strategies we have adopted to carry on the present medium scale experiment, ECHo-1K. In this experiment, the use of 1 kBq 163Ho will allow to reach a neutrino mass sensitivity below 10 eV/ c 2. We then discuss how the results being achieved in ECHo-1k will guide the design of the next stage of the ECHo experiment, ECHo-1M, where a source of the order of 1 MBq 163Ho embedded in large MMCs arrays will allow to reach sub-eV sensitivity on the electron neutrino mass.

  2. Unusual Radar Echo from the Wake of Meteor Fireball in Nearly

    Directory of Open Access Journals (Sweden)

    Young-Sook Lee

    2018-06-01

    Full Text Available The summer polar lower thermosphere (90–100 km has an interesting connection to meteors, adjacent to the mesopause region attaining the lowest temperature in summer. Meteors supply condensation nuclei for charged ice particles causing polar mesospheric summer echoes (PMSE. We report the observation of meteor trail with nearly horizontal transit at high speed (20–50 km/s, and at last with re-enhanced echo power followed by diffusive echoes. Changes in phase difference between radar receivers aligned in meridional and zonal directions are used to determine variations in horizontal displacements and speeds with respect to time by taking advantage of radar interferometric analysis. The actual transit of echo target is observed along the straight pathway vertically and horizontally extended as much as a distance of at least 24 km and at most 29 km. The meteor trail initially has a signature similar to ‘head echoes’, with travel speeds from 20 – 50 km/s. It subsequently transforms into a different type of echo target including specular echo and then finally the power reenhanced. The reenhancement of echo power is followed by fume-like diffusive echoes, indicating sudden release of plasma as like explosive process probably involved. We discuss a possible role of meteor-triggered secondary plasma trail, such as fireball embedded with electrical discharge that continuously varies the power and transit speed.

  3. Puget Sound Watershed.pdf | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  4. Hierarchy of Loading Calculations | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  5. eff-date-range.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  6. PWS_Dashboard_2.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  7. eff-hover-chart.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  8. PWS_Dashboard_1.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  9. eff-toggle-chart.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  10. Analyze Trends: State Hazardous Waste Dashboard | ECHO ...

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  11. Custom Search Results Help | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  12. Technical Users Background Document | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  13. Black hole ringdown echoes and howls

    Science.gov (United States)

    Nakano, Hiroyuki; Sago, Norichika; Tagoshi, Hideyuki; Tanaka, Takahiro

    2017-07-01

    Recently the possibility of detecting echoes of ringdown gravitational waves from binary black hole mergers was shown. The presence of echoes is expected if the black hole is surrounded by a mirror that reflects gravitational waves near the horizon. Here, we present slightly more sophisticated templates motivated by a waveform which is obtained by solving the linear perturbation equation around a Kerr black hole with a complete reflecting boundary condition in the stationary traveling wave approximation. We estimate that the proposed template can bring about a 10% improvement in the signal-to-noise ratio.

  14. Evolution of entanglement under echo dynamics

    International Nuclear Information System (INIS)

    Prosen, Tomaz; Znidaric, Marko; Seligman, Thomas H.

    2003-01-01

    Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior between integrable and chaotic systems on one hand and between random and coherent initial states for integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale. Analytic results are illustrated numerically in a Jaynes-Cummings model

  15. The use of ZFP lossy floating point data compression in tornado-resolving thunderstorm simulations

    Science.gov (United States)

    Orf, L.

    2017-12-01

    In the field of atmospheric science, numerical models are used to produce forecasts of weather and climate and serve as virtual laboratories for scientists studying atmospheric phenomena. In both operational and research arenas, atmospheric simulations exploiting modern supercomputing hardware can produce a tremendous amount of data. During model execution, the transfer of floating point data from memory to the file system is often a significant bottleneck where I/O can dominate wallclock time. One way to reduce the I/O footprint is to compress the floating point data, which reduces amount of data saved to the file system. In this presentation we introduce LOFS, a file system developed specifically for use in three-dimensional numerical weather models that are run on massively parallel supercomputers. LOFS utilizes the core (in-memory buffered) HDF5 driver and includes compression options including ZFP, a lossy floating point data compression algorithm. ZFP offers several mechanisms for specifying the amount of lossy compression to be applied to floating point data, including the ability to specify the maximum absolute error allowed in each compressed 3D array. We explore different maximum error tolerances in a tornado-resolving supercell thunderstorm simulation for model variables including cloud and precipitation, temperature, wind velocity and vorticity magnitude. We find that average compression ratios exceeding 20:1 in scientifically interesting regions of the simulation domain produce visually identical results to uncompressed data in visualizations and plots. Since LOFS splits the model domain across many files, compression ratios for a given error tolerance can be compared across different locations within the model domain. We find that regions of high spatial variability (which tend to be where scientifically interesting things are occurring) show the lowest compression ratios, whereas regions of the domain with little spatial variability compress

  16. Correction of echo shift in reconstruction processing for ultra-short TE pulse sequence

    International Nuclear Information System (INIS)

    Takizawa, Masahiro; Ootsuka, Takehiro; Abe, Takayuki; Takahashi, Tetsuhiko

    2010-01-01

    An ultra-short echo time (TE) pulse sequence is composed of a radial sampling that acquires echo signals radially in the K-space and a half-echo acquisition that acquires only half of the echo signal. The shift in the position of the echo signal (echo shift) caused by the timing errors in the gradient magnetic field pulses affects the image quality in the radial sampling with the half-echo acquisition. To improve image quality, we have developed a signal correction algorithm that detects and eliminates this echo shift during reconstruction by performing a pre-scan within 10 seconds. The results showed that image quality is improved under oblique and/or off-centering conditions that frequently cause image distortion due to hardware error. In conclusion, we have developed a robust ultra-short TE pulse sequence that allows wide latitude in the scan parameters, including oblique and off-centering conditions. (author)

  17. Comparison of Echo 7 field line length measurements to magnetospheric model predictions

    International Nuclear Information System (INIS)

    Nemzek, R.J.; Winckler, J.R.; Malcolm, P.R.

    1992-01-01

    The Echo 7 sounding rocket experiment injected electron beams on central tail field lines near L = 6.5. Numerous injections returned to the payload as conjugate echoes after mirroring in the southern hemisphere. The authors compare field line lengths calculated from measured conjugate echo bounce times and energies to predictions made by integrating electron trajectories through various magnetospheric models: the Olson-Pfitzer Quiet and Dynamic models and the Tsyganenko-Usmanov model. Although Kp at launch was 3-, quiet time magnetic models est fit the echo measurements. Geosynchronous satellite magnetometer measurements near the Echo 7 field lies during the flight were best modeled by the Olson-Pfitzer Dynamic Model and the Tsyganenko-Usmanov model for Kp = 3. The discrepancy between the models that best fit the Echo 7 data and those that fit the satellite data was most likely due to uncertainties in the small-scale configuration of the magnetospheric models. The field line length measured by the conjugate echoes showed some temporal variation in the magnetic field, also indicated by the satellite magnetometers. This demonstrates the utility an Echo-style experiment could have in substorm studies

  18. E-region echo characteristics governed by auroral arc electrodynamics

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2003-07-01

    Full Text Available Observations of a pair of auroral arc features by two imagers, one ground- and one space-based, allows the associated field-aligned current (FAC and electric field structure to be inferred. Simultaneous observations of HF radar echoes provide an insight into the irregularity-generating mechanisms. This is especially interesting for the E-region echoes observed, which form the focus of our analysis, and from which several conclusions can be drawn, summarized as follows. Latitudinal variations in echo characteristics are governed by the FAC and electric field background. Particularly sharp boundaries are found at the edges of auroral arcs. Within regions of auroral luminosity, echoes have Doppler shifts below the ion-acoustic speed and are proportional to the electric field, suggesting scatter from gradient drift waves. Regions of downward FAC are associated with mixed high and low Doppler shift echoes. The high Doppler shift component is greatly in excess of the ion-acoustic speed, but seems to be commensurate with the driving electric field. The low Doppler shift component appears to be much depressed below expectations.Key words. Ionosphere (ionospheric irregularities; electric fields and currents

  19. E-region echo characteristics governed by auroral arc electrodynamics

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Observations of a pair of auroral arc features by two imagers, one ground- and one space-based, allows the associated field-aligned current (FAC and electric field structure to be inferred. Simultaneous observations of HF radar echoes provide an insight into the irregularity-generating mechanisms. This is especially interesting for the E-region echoes observed, which form the focus of our analysis, and from which several conclusions can be drawn, summarized as follows. Latitudinal variations in echo characteristics are governed by the FAC and electric field background. Particularly sharp boundaries are found at the edges of auroral arcs. Within regions of auroral luminosity, echoes have Doppler shifts below the ion-acoustic speed and are proportional to the electric field, suggesting scatter from gradient drift waves. Regions of downward FAC are associated with mixed high and low Doppler shift echoes. The high Doppler shift component is greatly in excess of the ion-acoustic speed, but seems to be commensurate with the driving electric field. The low Doppler shift component appears to be much depressed below expectations.

    Key words. Ionosphere (ionospheric irregularities; electric fields and currents

  20. Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations

    Directory of Open Access Journals (Sweden)

    Adam Kettinger

    2016-12-01

    Full Text Available Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate how these advance echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1 simple arithmetic averaging, (2 BOLD sensitivity weighting, (3 temporal-signal-to-noise ratio weighting and (4 temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e. group-level t-values compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned.

  1. Identification of pulse echo impulse responses for multi source transmission

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2004-01-01

    is a mixture of the information corresponding to several transmitters. There is, thus, no direct way of determining which information corresponds to which transmitter, preventing proper focusing. In this paper we decode the received signal by estimating the pulse echo impulse responses between every....... The method is evaluated using the simulation tool Field II. Three point spread functions are simulated where axial movement of 1 m/s is present. The axial resolution for the moving scatterer is 0.249 mm (-3dB) and 0.291 mm (-6dB), which is compared to a standard STA transmission scheme with sequential...

  2. A computational model for biosonar echoes from foliage.

    Directory of Open Access Journals (Sweden)

    Chen Ming

    Full Text Available Since many bat species thrive in densely vegetated habitats, echoes from foliage are likely to be of prime importance to the animals' sensory ecology, be it as clutter that masks prey echoes or as sources of information about the environment. To better understand the characteristics of foliage echoes, a new model for the process that generates these signals has been developed. This model takes leaf size and orientation into account by representing the leaves as circular disks of varying diameter. The two added leaf parameters are of potential importance to the sensory ecology of bats, e.g., with respect to landmark recognition and flight guidance along vegetation contours. The full model is specified by a total of three parameters: leaf density, average leaf size, and average leaf orientation. It assumes that all leaf parameters are independently and identically distributed. Leaf positions were drawn from a uniform probability density function, sizes and orientations each from a Gaussian probability function. The model was found to reproduce the first-order amplitude statistics of measured example echoes and showed time-variant echo properties that depended on foliage parameters. Parameter estimation experiments using lasso regression have demonstrated that a single foliage parameter can be estimated with high accuracy if the other two parameters are known a priori. If only one parameter is known a priori, the other two can still be estimated, but with a reduced accuracy. Lasso regression did not support simultaneous estimation of all three parameters. Nevertheless, these results demonstrate that foliage echoes contain accessible information on foliage type and orientation that could play a role in supporting sensory tasks such as landmark identification and contour following in echolocating bats.

  3. Branch Point Withdrawal in Elongational Startup Flow by Time-Resolved Small Angle Neutron Scattering

    KAUST Repository

    Ruocco, N.

    2016-05-27

    We present a small angle neutron scattering (SANS) investigation of a blend composed of a dendritic polymer and a linear matrix with comparable viscosity in start-up of an elongational flow at Tg + 50. The two-generation dendritic polymer is diluted to 10% by weight in a matrix of a long well-entangled linear chains. Both components consist of mainly 1,4-cis-polyisoprene but differ in isotopic composition. The resulting scattering contrast is sufficiently high to permit time-resolved measurements of the system structure factor during the start-up phase and to follow the retraction processes involving the inner sections of the branched polymer in the nonlinear deformation response. The outer branches and the linear matrix, on the contrary, are in the linear deformation regime. The linear matrix dominates the rheological signature of the blend and the influence of the branched component can barely be detected. However, the neutron scattering intensity is predominantly that of the (branched) minority component so that its dynamics is clearly evident. In the present paper, we use the neutron scattering data to validate the branch point withdrawal process, which could not be unambiguously discerned from rheological measurements in this blend. The maximal tube stretch that the inner branches experience, before the relaxed outer arm material is incorporated into the tube is determined. The in situ scattering experiments demonstrate for the first time the leveling-off of the strain as the result of branch point withdrawal and chain retraction directly on the molecular level. We conclude that branch point motion in the mixture of architecturally complex polymers occurs earlier than would be expected in a purely branched system, presumably due to the different topological environment that the linear matrix presents to the hierarchically deep-buried tube sections. © 2016 American Chemical Society.

  4. Branch Point Withdrawal in Elongational Startup Flow by Time-Resolved Small Angle Neutron Scattering

    KAUST Repository

    Ruocco, N.; Auhl, D.; Bailly, C.; Lindner, P.; Pyckhout-Hintzen, W.; Wischnewski, A.; Leal, L. G.; Hadjichristidis, Nikolaos; Richter, D.

    2016-01-01

    We present a small angle neutron scattering (SANS) investigation of a blend composed of a dendritic polymer and a linear matrix with comparable viscosity in start-up of an elongational flow at Tg + 50. The two-generation dendritic polymer is diluted to 10% by weight in a matrix of a long well-entangled linear chains. Both components consist of mainly 1,4-cis-polyisoprene but differ in isotopic composition. The resulting scattering contrast is sufficiently high to permit time-resolved measurements of the system structure factor during the start-up phase and to follow the retraction processes involving the inner sections of the branched polymer in the nonlinear deformation response. The outer branches and the linear matrix, on the contrary, are in the linear deformation regime. The linear matrix dominates the rheological signature of the blend and the influence of the branched component can barely be detected. However, the neutron scattering intensity is predominantly that of the (branched) minority component so that its dynamics is clearly evident. In the present paper, we use the neutron scattering data to validate the branch point withdrawal process, which could not be unambiguously discerned from rheological measurements in this blend. The maximal tube stretch that the inner branches experience, before the relaxed outer arm material is incorporated into the tube is determined. The in situ scattering experiments demonstrate for the first time the leveling-off of the strain as the result of branch point withdrawal and chain retraction directly on the molecular level. We conclude that branch point motion in the mixture of architecturally complex polymers occurs earlier than would be expected in a purely branched system, presumably due to the different topological environment that the linear matrix presents to the hierarchically deep-buried tube sections. © 2016 American Chemical Society.

  5. Diagnostic accuracy of dual-echo (in- and opposed-phase) T1-weighted gradient recalled echo for detection and grading of hepatic iron using quantitative and visual assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schieda, Nicola; Ramanathan, Subramaniyan; Ryan, John; Khanna, Maneesh; Virmani, Vivek; Avruch, Leonard [The University of Ottawa, The Ottawa Hospital, Ottawa, Ontario (Canada)

    2014-07-15

    Detection and quantification of hepatic iron with dual-echo gradient recalled echo (GRE) has been proposed as a rapid alternative to other magnetic resonance imaging (MRI) techniques. Co-existing steatosis and T1 weighting are limitations. This study assesses the accuracy of routine dual-echo GRE. Between 2010 and 2013, 109 consecutive patients underwent multi-echo (ME) MRI and dual-echo GRE for quantification of hepatic iron. Liver iron concentration (LIC) was calculated from ME-MRI. Relative signal intensity (RSI) and fat signal fraction (FSF) were calculated from dual-echo GRE. Four radiologists subjectively evaluated dual-echo GRE (±subtraction). Diagnostic accuracy was compared between techniques and correlated with biopsy using Fisher's exact test, Spearman correlation and regression. The sensitivity of visual detection of iron ranged from 48 to 55 %. Subtraction did not increase sensitivity (p < 0.001). Inter-observer variability was substantial (κ = 0.72). The specificity of visual detection of iron approached 100 % with false-positive diagnoses observed using subtraction. LIC showed a higher correlation with histopathological iron grade (r = 0.94, p < 0.001) compared with RSI (r = 0.65, p = 0.02). Univariate regression showed an association between RSI and LIC (B = 0.98, p < 0.001, CI 0.73-1.23); however, the association was not significant with multi-variate regression including FSF (p = 0.28). Dual-echo GRE has low sensitivity for hepatic iron. Subtraction imaging can result in false-positive diagnoses. (orig.)

  6. Variable-flip-angle spin-echo imaging (VFSE)

    International Nuclear Information System (INIS)

    Kasai, Toshifumi; Sugimura, Kazuro; Kawamitsu, Hideaki; Yasui, Kiyoshi; Ishida, Tetsuya; Tsukamoto, Tetsuji.

    1990-01-01

    T 2 weighted imaging provides images with high object contrast for pathologic conditions in which the water content of tissues is increased. The authors predicted theoretical analysis of the effects of changing flip angle, and analyzed the effects in MR imaging of both phantoms and humans. Variable flip angle spin echo MR imaging (VFSE) with a 1,000/80 (repetition time msec/echo time msec) can obtain T 2 weighted image when flip angle is smaller than 80 degrees. VFSE with 40 to 60 degrees flip angle have higher contrast than other flip angle images. Signal to noise ratio (S/N) of VFSE are 55% at a 30 degree, 76% at a 45 degree, 92% at a 60 degree respectively as compared with conventional spin echo image (2000/80, flip angle 90 degree). VFSE is applicable to obtain T 2 weighted image reduced imaging time. (author)

  7. New spoiled spin-echo technique for three-dimensional MR imaging

    International Nuclear Information System (INIS)

    Darrasse, L.; Mao, L.; Saint-Jalmes, H.

    1989-01-01

    For 3D MR imaging within a convenient scanning time, the authors propose an improved spin-echo technique that permits the use of TRs shorter than 100 msec. They use a two-pulse RF sequence (α-π echo). The echo is read with conventional 3DFT encoding. To avoid steady-state signal refocusing before either α or (imperfect) π pulses, we apply randomized gradient spoilers both before each α pulse and on each side of the π pulse. So the sequence works like standard spin- echo sequences, with the z-magnetization recovery being adjusted by means of α rather than TR. The authors have investigated the method on a new 0.1-T Magnetom system dedicated for 3D MR imaging

  8. Classification of underwater target echoes based on auditory perception characteristics

    Science.gov (United States)

    Li, Xiukun; Meng, Xiangxia; Liu, Hang; Liu, Mingye

    2014-06-01

    In underwater target detection, the bottom reverberation has some of the same properties as the target echo, which has a great impact on the performance. It is essential to study the difference between target echo and reverberation. In this paper, based on the unique advantage of human listening ability on objects distinction, the Gammatone filter is taken as the auditory model. In addition, time-frequency perception features and auditory spectral features are extracted for active sonar target echo and bottom reverberation separation. The features of the experimental data have good concentration characteristics in the same class and have a large amount of differences between different classes, which shows that this method can effectively distinguish between the target echo and reverberation.

  9. Dynamic rayed aurora and enhanced ion-acoustic radar echoes

    Directory of Open Access Journals (Sweden)

    E. M. Blixt

    2005-01-01

    Full Text Available The generation mechanism for naturally enhanced ion-acoustic echoes is still debated. One important issue is how these enhancements are related to auroral activity. All events of enhanced ion-acoustic echoes observed simultaneously with the EISCAT Svalbard Radar (ESR and with high-resolution narrow field-of-view auroral imagers have been collected and studied. Characteristic of all the events is the appearance of very dynamic rayed aurora, and some of the intrinsic features of these auroral displays are identified. Several of these identified features are directly related to the presence of low energy (10-100eV precipitating electrons in addition to the higher energy population producing most of the associated light. The low energy contribution is vital for the formation of the enhanced ion-acoustic echoes. We argue that this type of aurora is sufficient for the generation of naturally enhanced ion-acoustic echoes. In one event two imagers were used to observe the auroral rays simultaneously, one from the radar site and one 7km away. The data from these imagers shows that the auroral rays and the strong backscattering filaments (where the enhanced echoes are produced are located on the same field line, which is in contrast to earlier statements in the litterature that they should be separated.

  10. Faraday rotation echo spectroscopy and detection of quantum fluctuations.

    Science.gov (United States)

    Chen, Shao-Wen; Liu, Ren-Bao

    2014-04-15

    Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials.

  11. MR contrast of ferritin and hemosiderin in the brain: comparison among gradient-echo, conventional spin-echo and fast spin-echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Tabassum Laz; Miki, Yukio; Kanagaki, Mitsunori; Takahashi, Takahiro; Yamamoto, Akira; Konishi, Junya; Nozaki, Kazuhiko; Hashimoto, Nobuo; Konishi, Junji

    2003-12-01

    Objective: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. Materials and methods: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. Results: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). Conclusion: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation.

  12. MR contrast of ferritin and hemosiderin in the brain: comparison among gradient-echo, conventional spin-echo and fast spin-echo sequences

    International Nuclear Information System (INIS)

    Haque, Tabassum Laz; Miki, Yukio; Kanagaki, Mitsunori; Takahashi, Takahiro; Yamamoto, Akira; Konishi, Junya; Nozaki, Kazuhiko; Hashimoto, Nobuo; Konishi, Junji

    2003-01-01

    Objective: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. Materials and methods: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. Results: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). Conclusion: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation

  13. A Pilot Study Assessing ECG versus ECHO Ventriculoventricular Optimization in Pediatric Resynchronization Patients.

    Science.gov (United States)

    Punn, Rajesh; Hanisch, Debra; Motonaga, Kara S; Rosenthal, David N; Ceresnak, Scott R; Dubin, Anne M

    2016-02-01

    Cardiac resynchronization therapy indications and management are well described in adults. Echocardiography (ECHO) has been used to optimize mechanical synchrony in these patients; however, there are issues with reproducibility and time intensity. Pediatric patients add challenges, with diverse substrates and limited capacity for cooperation. Electrocardiographic (ECG) methods to assess electrical synchrony are expeditious but have not been extensively studied in children. We sought to compare ECHO and ECG CRT optimization in children. Prospective, pediatric, single-center cross-over trial comparing ECHO and ECG optimization with CRT. Patients were assigned to undergo either ECHO or ECG optimization, followed for 6 months, and crossed-over to the other assignment for another 6 months. ECHO pulsed-wave tissue Doppler and 12-lead ECG were obtained for 5 VV delays. ECG optimization was defined as the shortest QRSD and ECHO optimization as the lowest dyssynchrony index. ECHOs/ECGs were interpreted by readers blinded to optimization technique. After each 6 month period, these data were collected: ejection fraction, velocimetry-derived cardiac index, quality of life, ECHO-derived stroke distance, M-mode dyssynchrony, study cost, and time. Outcomes for each optimization method were compared. From June 2012 to December 2013, 19 patients enrolled. Mean age was 9.1 ± 4.3 years; 14 (74%) had structural heart disease. The mean time for optimization was shorter using ECG than ECHO (9 ± 1 min vs. 68 ± 13 min, P cost for charges was $4,400 ± 700 less for ECG. No other outcome differed between groups. ECHO optimization of synchrony was not superior to ECG optimization in this pilot study. ECG optimization required less time and cost than ECHO optimization. © 2015 Wiley Periodicals, Inc.

  14. Velocities of Auroral Coherent Echoes At 12 and 144 Mhz

    Science.gov (United States)

    Koustov, A. V.; Danskin, D. W.; Makarevitch, R. A.; Uspensky, M. V.; Janhunen, P.; Nishitani, N.; Nozawa, N.; Lester, M.; Milan, S.

    Two Doppler coherent radar systems are currently working at Hankasalmi, Finland, the STARE and CUTLASS radars operating at 144 MHz and 12 MHz, respectively. The STARE beam 3 is nearly co-located with the CUTLASS beam 5 providing an opportunity for echo velocity comparison along the same direction but at significantly different radar frequencies. In this study we consider one event when STARE radar echoes are detected t the same ranges as CUTLASS radar echoes. The observations are complemented by EISCAT measurements of the ionospheric electric field and elec- tron density behavior at one range of 900 km. Two separate situations are studied; for the first one, CUTLASS observed F-region echoes (including the range of the EIS- CAT measurements) while for the second one CUTLASS observed E-region echoes. In both cases STARE E-region measurements were available. We show that F-region CUTLASS velocities agree well with the convection component along the CUTLASS radar beam while STARE velocities are sometimes smaller by a factor of 2-3. For the second case, STARE velocities are found to be either smaller or larger than CUTLASS velocities, depending on range. Plasma physics of E- and F-region irregularities is dis- cussed in attempt to explain inferred relationship between various velocities. Special attention is paid to ionospheric refraction that is important for the detection of 12-MHz echoes.

  15. Short term memory in echo state networks

    OpenAIRE

    Jaeger, H.

    2001-01-01

    The report investigates the short-term memory capacity of echo state recurrent neural networks. A quantitative measure MC of short-term memory capacity is introduced. The main result is that MC 5 N for networks with linear Output units and i.i.d. input, where N is network size. Conditions under which these maximal memory capacities are realized are described. Several theoretical and practical examples demonstrate how the short-term memory capacities of echo state networks can be exploited for...

  16. Relativistic electron dropout echoes induced by interplanetary shocks

    Science.gov (United States)

    Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.

    2017-12-01

    Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.

  17. Polar mesosphere winter echoes during MaCWAVE

    Directory of Open Access Journals (Sweden)

    S. Kirkwood

    2006-07-01

    Full Text Available During the MaCWAVE winter campaign in January 2003, layers of enhanced echo power known as PMWE (Polar Mesosphere Winter Echoes were detected by the ESRAD 52 MHz radar on several occasions. The cause of these echoes is unclear and here we use observations by meteorological and sounding rockets and by lidar to test whether neutral turbulence or aerosol layers might be responsible. PMWE were detected within 30 min of meteorological rocket soundings (falling spheres on 5 separate days. The observations from the meteorological rockets show that, in most cases, conditions likely to be associated with neutral atmospheric turbulence are not observed at the heights of the PMWE. Observations by instrumented sounding rockets confirm low levels of turbulence and indicate considerable small-scale structure in charge density profiles. Comparison of falling sphere and lidar data, on the other hand, show that any contribution of aerosol scatter to the lidar signal at PMWE heights is less than the detection threshold of about 10%.

  18. Echo in a semibounded plasma confined by an inhomogeneous electrostatic potential

    International Nuclear Information System (INIS)

    Revenchuk, S.M.

    1997-01-01

    The effect of the shape of a confining potential (potential barrier) on linear and nonlinear echoes arising due to the reflection of charged particles by this potential is studied. The model of a plasma confined by a potential that is a monotonous power-law function of the space coordinate is used to study the problem. It is shown that a linear echo (the effect of a nonlocal reflection of waves) arises only for a square-law confining potential. The second-order nonlinear echo caused by two external perturbations with different frequencies can occur for potentials with both square-law and inverse power-law coordinate dependences: the frequency of this echo equals the difference of the frequencies of the externally applied perturbations. In the model considered, an echo at the frequency that is the sum of the frequencies of the external perturbations, which was predicted in the previous papers, does not occur

  19. Numerical modelling of so-called secondary ultrasonic echoes

    International Nuclear Information System (INIS)

    Langenberg, K.J.; Fellinger, P.; Hofmann, C.

    1994-01-01

    The formation of secondary ultrasonic echoes is discussed for a particularly simple testing situation. This discussion is based upon the intuitive visualization of elastic wave propagation as obtained with the numerical EFIT-Code (Elastodynamic Finite Integration Technique). The resulting travel times for the econdary echoes contain well-defined limits as they originate from the simple model of grazing incidence plane longitudinal wave mode conversion. (orig.) [de

  20. Cardiac T2-mapping using a fast gradient echo spin echo sequence - first in vitro and in vivo experience

    OpenAIRE

    Baessler, Bettina; Schaarschmidt, Frank; Stehning, Christian; Schnackenburg, Bernhard; Maintz, David; Bunck, Alexander C.

    2015-01-01

    Background: The aim of this study was the evaluation of a fast Gradient Spin Echo Technique (GraSE) for cardiac T2-mapping, combining a robust estimation of T2 relaxation times with short acquisition times. The sequence was compared against two previously introduced T2-mapping techniques in a phantom and in vivo. Methods: Phantom experiments were performed at 1.5 T using a commercially available cylindrical gel phantom. Three different T2-mapping techniques were compared: a Multi Echo Spin Ec...

  1. Detection of generalized synchronization using echo state networks

    Science.gov (United States)

    Ibáñez-Soria, D.; Garcia-Ojalvo, J.; Soria-Frisch, A.; Ruffini, G.

    2018-03-01

    Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences interleaved with unsynchronized ones. Correctly tuned, echo state networks are able to efficiently discriminate between unsynchronized and synchronized sequences even in the presence of relatively high levels of noise. Compared to other state-of-the-art techniques of synchronization detection, the online capabilities of the proposed Echo State Network based methodology make it a promising choice for real-time applications aiming to monitor dynamical synchronization changes in continuous signals.

  2. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... receiver. This generic type of device may include signal analysis and display equipment, patient and...

  3. Diuretic-enhanced gadolinium excretory MR urography: comparison of conventional gradient-echo sequences and echo-planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nolte-Ernsting, C.C.A.; Tacke, J.; Adam, G.B.; Haage, P.; Guenther, R.W. [Univ. of Technology, Aachen (Germany). Dept. of Diagnostic Radiology; Jung, P.; Jakse, G. [Univ. of Technology, Aachen (Germany). Dept. of Urology

    2001-01-01

    The aim of this study was to investigate the utility of different gadolinium-enhanced T1-weighted gradient-echo techniques in excretory MR urography. In 74 urologic patients, excretory MR urography was performed using various T1-weighted gradient-echo (GRE) sequences after injection of gadolinium-DTPA and low-dose furosemide. The examinations included conventional GRE sequences and echo-planar imaging (GRE EPI), both obtained with 3D data sets and 2D projection images. Breath-hold acquisition was used primarily. In 20 of 74 examinations, we compared breath-hold imaging with respiratory gating. Breath-hold imaging was significantly superior to respiratory gating for the visualization of pelvicaliceal systems, but not for the ureters. Complete MR urograms were obtained within 14-20 s using 3D GRE EPI sequences and in 20-30 s with conventional 3D GRE sequences. Ghost artefacts caused by ureteral peristalsis often occurred with conventional 3D GRE imaging and were almost completely suppressed in EPI sequences (p < 0.0001). Susceptibility effects were more pronounced on GRE EPI MR urograms and calculi measured 0.8-21.7% greater in diameter compared with conventional GRE sequences. Increased spatial resolution degraded the image quality only in GRE-EPI urograms. (orig.)

  4. A new technique for MR elastography of the supraspinatus muscle: A gradient-echo type multi-echo sequence.

    Science.gov (United States)

    Ito, Daiki; Numano, Tomokazu; Mizuhara, Kazuyuki; Takamoto, Koichi; Onishi, Takaaki; Nishijo, Hisao

    2016-10-01

    Magnetic resonance elastography (MRE) can measure tissue stiffness quantitatively and noninvasively. Supraspinatus muscle injury is a significant problem among throwing athletes. The purpose of this study was to develop an MRE technique for application to the supraspinatus muscle by using a conventional magnetic resonance imaging (MRI). MRE acquisitions were performed with a gradient-echo type multi-echo MR sequence at 100Hz pneumatic vibration. A custom-designed vibration pad was used as a pneumatic transducer in order to adapt to individual shoulder shapes. In a gradient-echo type multi-echo MR sequence, without motion encoding gradient (MEG) that synchronizes with vibrations, bipolar readout gradient lobes achieved a similar function to MEG (MEG-like effect). In other words, a dedicated MRE sequence (built-in MEG) is not always necessary for MRE. In this study, 7 healthy volunteers underwent MRE. We investigated the effects of direction of the MEG-like effect and selected imaging planes on the patterns of wave propagation (wave image). The results indicated that wave images showed clear wave propagation on a condition that the direction of the MEG-like effect was nearly perpendicular to the long axis of the supraspinatus muscle, and that the imaging plane was superior to the proximal supraspinatus muscle. This limited condition might be ascribed to specific features of fibers in the supraspinatus muscle and wave reflection from the boundaries of the supraspinous fossa. The mean stiffness of the supraspinatus muscle was 10.6±3.17kPa. Our results demonstrated that using MRE, our method can be applied to the supraspinatus muscle by using conventional MRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Time-resolved MR angiography of the renal artery: morphology and perfusion

    International Nuclear Information System (INIS)

    Krause, U.J.; Pabst, T.; Koestler, H.; Helbig, C.; Kenn, W.; Hahn, D.

    2002-01-01

    Purpose: To prove the hypothesis that renal artery stenosis and changes in renal perfusion can be detected with contrast-enhanced time-resolved MR angiography in a single examination. Material and Methods: In 71 patients, 137 renal arteries and 14 accessory renal arteries were studied. The examinations were performed on a 1.5 T system. A T 1 -weighted gradient echo sequence with a temporal resolution of 7 s was used. Single dose of contrast material (0.1 mmol/kg Gd-DTPA) was injected with a power injector with a flow rate of 2 ml/s. Criterion for the assessment of renal perfusion was the slope ratio of the signal intensity time curve in both kidneys. Results: Forty renal artery stenoses and one occlusion of a renal artery were detected. In 48 kidneys (35%) segmental arteries were evaluated. The accuracy of the slope ratio (limit value 0.75) concerning the detection of unilateral renal artery stenosis was 92.6% (sensitivity 75%, specificity 95.7%). Conclusion: Time-resolved MR angiography can detect changes in renal perfusion in patients with unilateral renal artery stenosis. (orig.) [de

  6. Spontaneous cerebral microbleeds on gradient echo MR imaging in the stroke patients

    International Nuclear Information System (INIS)

    Kwak, Seong Ho; Song, Chang June; Kim, Dae Bong; Jeong, Geum Chae

    2003-01-01

    To investigate the spontaneous cerebral microbleeding occurring at gradient-echo MRI, and its relationship with associated stroke lesions and risk factors. Between September 2001 and December, 2002, 32 patients (21 men and 11 women; mean age 63 years) in whom cerebral microbleeding occurred at gradient-echo MRI were retrospectively investigated. Using a 1.5T MR imager, spin-echo T1-weighted, fast spin-echo T2-weighted, diffusion-weighted, and gradient-echo images were obtained. The number and location of microbleeds seen on gradient echo images, patients data, and associated stroke lesions such as intracerebral hemorrhage and lacunar and territorial infarction were assessed. Among the 32 patients, 563 microbleeds and between 1 and 66 (mean, 17.6) were noted at gradient-echo imaging. Microbleeding occurred in the cortical/subcortical area (n=216), the basal ganglia (n=173), thalamus (n=92), cerebellum (n=41), brainstem (n=36) and corpus callosum (n=1), and in 20 patients was bilateral. Patients had a history of hypertension (n=26), hypertriglycemia (n=12), heart disease (n=4), and diabetes mellitus (n=3). Stroke lesions were seen in 27 patients, intracerebral hemorrhage in ten, lacunar infarction in 24, and territorial infarction in four. The incidence and number of microbleeds was greater in older patients and in those with hypertension, hypertriglycemia, and stroke lesions such as intracerebral hemorrhage or lacunar infarction. The detection of microbleeding at gradient-echo imaging is helpful, since it predicts the possibility of cerebral hemorrhage in these patients

  7. Proton T2 Relaxation effect of superparamagnetic iron oxide on fast spin echo sequence. Influence of echo number (even or odd) of effective TE

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Fujita, Isao

    1999-01-01

    The T 2 relaxation effect of the fast spin echo sequence (FSE) was investigated using superparamagnetic iron oxide (SPIO) particles. When even echoes were used as the effective TE of FSE, the signal intensity ratio [signal intensity of FSE/signal intensity of conventional spin echo sequence (CSE)] of FSE and CSE increased, whereas the T 2 relaxation effect of SPIO with FSE was reduced. However, when odd echoes were used, neither signal intensity changed, and weakening of the T 2 relaxation effect, considered a problem with FSE, was reduced. This phenomenon was not observed when the refocusing flip angle was changed to 30 and 60 degrees. However, it was observed when the refocusing flip angle was 120 and 150 degrees. Thus, this phenomenon can be considered to be related to oscillation in longitudinal magnetization when using the Carr-Purcell-Meiboom-Gill (CPMG) technique. (author)

  8. Parallel electric fields detected via conjugate electron echoes during the Echo 7 sounding rocket flight

    Science.gov (United States)

    Nemzek, R. J.; Winckler, J. R.

    1991-01-01

    Electron detectors on the Echo 7 active sounding rocket experiment measured 'conjugate echoes' resulting from artificial electron beam injections. Analysis of the drift motion of the electrons after a complete bounce leads to measurements of the magnetospheric convection electric field mapped to ionospheric altitudes. The magnetospheric field was highly variable, changing by tens of mV/m on time scales of as little as hundreds of millisec. While the smallest-scale magnetospheric field irregularities were mapped out by ionospheric conductivity, larger-scale features were enhanced by up to 50 mV/m in the ionosphere. The mismatch between magnetospheric and ionspheric convection fields indicates a violation of the equipotential field line condition. The parallel fields occurred in regions roughly 10 km across and probably supported a total potential drop of 10-100 V.

  9. Layer disturbances and the radio-echo free zone in ice sheets

    Directory of Open Access Journals (Sweden)

    R. Drews

    2009-08-01

    Full Text Available Radio-echo sounding of the Antarctic and Greenlandic ice sheets often reveals a layer in the lowest hundreds of meters above bedrock more or less free of radio echoes, known as the echo-free zone (EFZ. The cause of this feature is unclear, so far lacking direct evidence for its origin. We compare echoes around the EPICA drill site in Dronning Maud Land, Antarctica, with the dielectric properties, crystal orientation fabrics and optical stratigraphy of the EPICA-DML ice core. We find that echoes disappear in the depth range where the dielectric contrast is blurred, and where the coherency of the layers in the ice core is lost due to disturbances caused by the ice flow. At the drill site, the EFZ onset at ~2100 m marks a boundary, below which the ice core may have experienced flow induced disturbances on various scales. The onset may indicate changing rheology which needs to be accounted for in the modeling of ice sheet dynamics.

  10. Water Quality Indicators Data Review | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  11. Civil Enforcement Case Report Data Dictionary | ECHO | US ...

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  12. Water Pollution Search Criteria Help | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  13. DW_Dashboard_CalendarView.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  14. TRI DMR Dashboard Top Industries_Chemicals.png | ECHO ...

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  15. Hypoxia Task Force Scope and Methodology | ECHO | US ...

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  16. HF Radar Sea-echo from Shallow Water

    Directory of Open Access Journals (Sweden)

    Josh Kohut

    2008-08-01

    Full Text Available HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information far more than first-order (which gives information on current velocities, the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.

  17. Collision-induced stimulated photon echoes in ‘strong’ magnetic field

    Science.gov (United States)

    Reshetov, V. A.

    2018-05-01

    Collision-induced stimulated photon echoes formed in a gaseous medium on the transition with the angular momentum change Ja=0 → Jb=1 under the action of ‘strong’ longitudinal magnetic field, when the echo pulse becomes unpolarized, are considered with an account of elastic depolarizing collisions. In the case of narrow spectral line the explicit expressions for the echo polarization density matrix and the degree of polarization are obtained. In the case of broad spectral line the results of the numeric calculations reproduce qualitatively the curve obtained in the experiments with ytterbium vapor.

  18. MRI monitoring of lesions created at temperature below the boiling point and of lesions created above the boiling point using high intensity focused ultrasound

    OpenAIRE

    Damianou, C.; Ioannides, K.; Hadjisavvas, V.; Mylonas, N.; Couppis, A.; Iosif, D.; Kyriacou, P. A.

    2010-01-01

    Magnetic Resonance Imaging (MRI) was utilized to monitor lesions created at temperature below the boiling point and lesions created at temperature above the boiling point using High Intensity Focused Ultrasound (HIFU) in freshly excised kidney, liver and brain and in vivo rabbit kidney and brain. T2-weighted fast spin echo (FSE) was proven as an excellent MRI sequence that can detect lesions with temperature above the boiling point in kidney. This advantage is attributed to the significant di...

  19. Studying the potential of point detectors in time-resolved dose verification of dynamic radiotherapy

    International Nuclear Information System (INIS)

    Beierholm, A.R.; Behrens, C.F.; Andersen, C.E.

    2015-01-01

    Modern megavoltage x-ray radiotherapy with high spatial and temporal dose gradients puts high demands on the entire delivery system, including not just the linear accelerator and the multi-leaf collimator, but also algorithms used for optimization and dose calculations, and detectors used for quality assurance and dose verification. In this context, traceable in-phantom dosimetry using a well-characterized point detector is often an important supplement to 2D-based quality assurance methods based on radiochromic film or detector arrays. In this study, an in-house developed dosimetry system based on fiber-coupled plastic scintillator detectors was evaluated and compared with a Farmer-type ionization chamber and a small-volume ionization chamber. An important feature of scintillator detectors is that the sensitive volume of the detector can easily be scaled, and five scintillator detectors of different scintillator length were thus employed to quantify volume averaging effects by direct measurement. The dosimetric evaluation comprised several complex-shape static fields as well as simplified dynamic deliveries using RapidArc, a volumetric-modulated arc therapy modality often used at the participating clinic. The static field experiments showed that the smallest scintillator detectors were in the best agreement with dose calculations, while needing the smallest volume averaging corrections. Concerning total dose measured during RapidArc, all detectors agreed with dose calculations within 1.1 ± 0.7% when positioned in regions of high homogenous dose. Larger differences were observed for high dose gradient and organ at risk locations, were differences between measured and calculated dose were as large as 8.0 ± 5.5%. The smallest differences were generally seen for the small-volume ionization chamber and the smallest scintillators. The time-resolved RapidArc dose profiles revealed volume-dependent discrepancies between scintillator and ionization chamber response

  20. Improved sensitivity and specificity for resting state and task fMRI with multiband multi-echo EPI compared to multi-echo EPI at 7T.

    NARCIS (Netherlands)

    Boyacioglu, R.; Schulz, J.; Koopmans, P.J.; Barth, M.; Norris, David Gordon

    2015-01-01

    A multiband multi-echo (MBME) sequence is implemented and compared to a matched standard multi-echo (ME) protocol to investigate the potential improvement in sensitivity and spatial specificity at 7 T for resting state and task fMRI. ME acquisition is attractive because BOLD sensitivity is less

  1. ECHO Services: Foundational Middleware for a Science Cyberinfrastructure

    Science.gov (United States)

    Burnett, Michael

    2005-01-01

    This viewgraph presentation describes ECHO, an interoperability middleware solution. It uses open, XML-based APIs, and supports net-centric architectures and solutions. ECHO has a set of interoperable registries for both data (metadata) and services, and provides user accounts and a common infrastructure for the registries. It is built upon a layered architecture with extensible infrastructure for supporting community unique protocols. It has been operational since November, 2002 and it available as open source.

  2. Echoing Sentiments: Art and Melancholy in the Work of Pleshette DeArmitt

    Directory of Open Access Journals (Sweden)

    Michael Naas

    2015-12-01

    Full Text Available During those first few days, those first few weeks, truth be told, still today, something in me has wanted simply to echo the sentiments of others. That’s because I myself didn’t know exactly what to say and, truth be told, I still don’t know today. But it’s also because others, including and especially some of the people here today, beginning with my co-panelists and, perhaps especially, early on, Leigh Johnson, knew at the time just what had to be said and so expressed so well the sentiments that we all—that I at least—just wanted to echo. Just to echo, that’s what I wanted to do, because by echoing the sentiments of others I would be able to protect myself just a bit longer, I thought, though also, I self-justified, by echoing others I would be able to give back in some way to Pleshette herself, who showed us in her work that Echo does not simply repeat but initiates even when it looks or sounds as if she is not, Echo who gives back even when it sounds as if she has nothing to give, Echo who not only has her own Narcissus but her own narcissism—which Pleshette would have been the first to tell us is not only not a bad thing but a necessary one, and perhaps just what is needed for a new thinking of empathy, of mourning, and, perhaps, as I will try to say, of the ephemeral.

  3. Experimental observation of fluid echoes in a non-neutral plasma

    International Nuclear Information System (INIS)

    Yu, Jonathan H.; Driscoll, C. Fred

    2002-01-01

    Experimental observation of a nonlinear fluid echo is presented which demonstrates the reversible nature of spatial Landau damping, and that non-neutral plasmas behave as nearly ideal 2D fluids. These experiments are performed on UCSD's CamV Penning-Malmberg trap with magnetized electron plasmas. An initial m i =2 diocotron wave is excited, and the received wall signal damps away in about 5 wave periods. The density perturbation filaments are observed to wrap up as the wave is spatially Landau damped. An m t =4 'tickler' wave is then excited, and this wave also Landau damps. The echo consists of a spontaneous appearance of a third m e =2 wave after the responses to the first two waves have inviscidly damped away. The appearance time of the echo agrees with theory, and data suggests the echo is destroyed at least partly due to saturation

  4. Power MOSFET Linearizer of a High-Voltage Power Amplifier for High-Frequency Pulse-Echo Instrumentation.

    Science.gov (United States)

    Choi, Hojong; Woo, Park Chul; Yeom, Jung-Yeol; Yoon, Changhan

    2017-04-04

    A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (-1.8 and -0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (-2.95 and -3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dB m input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dB m at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dB m at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dB m input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (-48.34, -44.21, -48.34, and -46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (-45.61, -41.57, -45.01, and -45.51 dB, respectively). When five-cycle 20 dB m input

  5. Comparison of dynamic dual spin-echo and fast-gradient-echo techniques in the evaluation of cardiac diseases

    International Nuclear Information System (INIS)

    Pettigrew, R.I.; Eisner, R.L.; Groen, J.P.; Baron, M.G.

    1987-01-01

    To determine the relative roles of a dynamic spin-echo method and a fast acquisition with multiphase excitations (FAME) technique, ten patients with myocardial infarction (MI), five with myocardial masses, and five healthy patients were studied with both methods. The dynamic dual-spin-echo (DSE) technique allows acquisition of each of seven sections at 14 cardiac phases in 20 minutes. Wall motion abnormalities were seen equally well with both techniques, but FAME usually required a shorter study time (10 minutes). DSE, however, was superior for evaluating cardiac masses and provided superior wall blood contrast. Thus, these techniques are complementary, and both are now a routine part of the authors' study of cardiac patients

  6. Usefulness of dual echo volumetric isotropic turbo spin echo acquisition (VISTA) in MR imaging of the temporomandibular joint

    International Nuclear Information System (INIS)

    Sugimori, Yuko; Tanaka, Shigeko; Naito, Yukari; Nishimura, Tetsuya; Yamamoto, Akira; Miki, Yukio; Ohfuji, Satoko; Katsumata, Yasutomo

    2013-01-01

    We investigated the ability to detect the articular disk and joint effusion of the temporomandibular joint (TMJ) of a method of dual echo volumetric isotropic turbo spin echo acquisition (DE-VISTA) additional fusion images (AFI). DE-VISTA was performed in the 26 TMJ of 13 volunteers and 26 TMJ of 13 patients. Two-dimensional (2D) dual echo turbo spin echo was performed in the 26 TMJ of 13 volunteers. On a workstation, we added proton density-weighted images (PDWI) and T 2 weighted images (T 2 WI) of the DE-VISTA per voxel to reconstruct DE-VISTA-AFI. Two radiologists reviewed these images visually and quantitatively. Visual evaluation of the articular disk was equivalent between DE-VISTA-AFI and 2D-PDWI. The sliding thin-slab multiplanar reformation (MPR) method of DE-VISTA-AFI could detect all articular disks. The ratio of contrast (CR) of adipose tissue by the articular disk to that of the articular disk itself was significantly higher in DE-VISTA-AFI than DE-VISTA-PDWI (P 2 WI but in only 3 of those joints in 2D-T 2 WI. The CR of joint effusion to adipose tissue on DE-VISTA-AFI did not differ significantly from that on DE-VISTA-PDWI. However, using DE-VISTA-T 2 WI in addition to DE-VISTA-PDWI, we could visually identify joint effusion on DE-VISTA-AFI that could not be identified on DE-VISTA-PDWI alone. DE-VISTA-AFI can depict the articular disk and a small amount of joint effusion by the required plane of MPR using the sliding thin-slab MPR method. (author)

  7. Zonal asymmetry of daytime 150-km echoes observed by Equatorial Atmosphere Radar in Indonesia

    Directory of Open Access Journals (Sweden)

    T. Yokoyama

    2009-03-01

    Full Text Available Multi-beam observations of the daytime ionospheric E-region irregularities and the so-called 150-km echoes with the 47-MHz Equatorial Atmosphere Radar (EAR in West Sumatra, Indonesia (0.20° S, 100.32° E, 10.36° S dip latitude are presented. 150-km echoes have been frequently observed by the EAR, and their characteristics are basically the same as the equatorial ones, except for an intriguing zonal asymmetry; stronger echoes in lower altitudes in the east directions, and weaker echoes in higher altitudes in the west. The highest occurrence is seen at 5.7° east with respect to the magnetic meridian, and the altitude gradually increases as viewing from the east to west. Arc structures which return backscatter echoes are proposed to explain the asymmetry. While the strength of radar echoes below 105 km is uniform within the wide coverage of azimuthal directions, the upper E-region (105–120 km echoes also show a different type of zonal asymmetry, which should be generated by an essentially different mechanism from the lower E-region and 150-km echoes.

  8. Bias-Voltage Stabilizer for HVHF Amplifiers in VHF Pulse-Echo Measurement Systems.

    Science.gov (United States)

    Choi, Hojong; Park, Chulwoo; Kim, Jungsuk; Jung, Hayong

    2017-10-23

    The impact of high-voltage-high-frequency (HVHF) amplifiers on echo-signal quality is greater with very-high-frequency (VHF, ≥100 MHz) ultrasound transducers than with low-frequency (LF, ≤15 MHz) ultrasound transducers. Hence, the bias voltage of an HVHF amplifier must be stabilized to ensure stable echo-signal amplitudes. We propose a bias-voltage stabilizer circuit to maintain stable DC voltages over a wide input range, thus reducing the harmonic-distortion components of the echo signals in VHF pulse-echo measurement systems. To confirm the feasibility of the bias-voltage stabilizer, we measured and compared the deviations in the gain of the HVHF amplifier with and without a bias-voltage stabilizer. Between -13 and 26 dBm, the measured gain deviations of a HVHF amplifier with a bias-voltage stabilizer are less than that of an amplifier without a bias-voltage stabilizer. In order to confirm the feasibility of the bias-voltage stabilizer, we compared the pulse-echo responses of the amplifiers, which are typically used for the evaluation of transducers or electronic components used in pulse-echo measurement systems. From the responses, we observed that the amplitudes of the echo signals of a VHF transducer triggered by the HVHF amplifier with a bias-voltage stabilizer were higher than those of the transducer triggered by the HVHF amplifier alone. The second, third, and fourth harmonic-distortion components of the HVHF amplifier with the bias-voltage stabilizer were also lower than those of the HVHF amplifier alone. Hence, the proposed scheme is a promising method for stabilizing the bias voltage of an HVHF amplifier, and improving the echo-signal quality of VHF transducers.

  9. Workshop on neutron spin-echo

    Energy Technology Data Exchange (ETDEWEB)

    Aynajian, P.; Habicht, K.; Keller, Th.; Keimer, B.; Mezei, F.; Monkenbusch, M.; Allgaier, J.; Richter, D.; Fetters, L.J.; Muller, K.; Kreiling, S.; Dehnicke, K.; Greiner, A.; Ehlers, G.; Arbe, A.; Colmenero, J.; Richter, D.; Farago, B.; Monkenbusch, M.; Ohl, M.; Butzek, M.; Kozielewski, T.; Monkenbusch, M.; Richter, D.; Pappas, C.; Hillier, A.; Manuel, P.; Cywinski, R.; Bentley, P.; Alba, M.; Mezei, F.; Campbell, I.A.; Zimmermann, U.; Ellis, J.; Jobic, H.; Pickup, R.M.; Pappas, C.; Farago, B.; Cywinski, R.; Haussler, W.; Holderer, O.; Frielinghaus, H.; Byelov, D.; Monkenbusch, M.; Allgaier, J.; Richter, D.; Egger, H.; Hellweg, Th.; Malikova, N.; Cadene, A.; Marry, V.; Dubois, E.; Turq, P.; Gardner, J.S.; Ehlers, G.; Bramwell, St.S.; Grigoriev, S.; Kraan, W.; Rekveldt, T.; Bouwman, W.; Van Dijk, N.; Falus, P.; Vorobiev, A.; Major, J.; Felcher, G.P.; Te-velthuis, S.; Dosch, H.; Vorobiev, A.; Dridi, M.H.; Major, J.; Dosch, H.; Falus, P.; Felcher, G.P.; Te Velthuis, S.G.E.; Bleuel, M.; Broell, M.; Lang, E.; Littrell, K.; Gahler, R.; Lal, J.; Lauter, H.; Toperverg, B.; Lauter, V.; Jernenkov, M.; Stueber, S.; Enderle, M.; Janoschek, M.; Keller, Th.; Klimko, S.; Boeni, P.; Nagao, M.; Yamada, N.; Kawabata, Y.; Seto, H.; Takeda, T.; Yoshizawa, H.; Yoshida, K.; Yamaguchi, T.; Bellissent-Funel, M.C.; Longeville, St

    2005-07-01

    This document gathers the abstracts of most papers presented at the workshop. Neutron spin-echo (NSE) spectroscopy is a well established technique with a growing expert user community, the aim of the meeting was to discuss the latest achievements in neutron spin-echo science and instrumentation. One of the applications presented is the investigation on the microscopic scale of the dynamics of water in montmorillonite clays with Na{sup +} and Cs{sup +} ions in monolayer and bilayer states. The NSE technique has been used in the normal and resonance modes. NSE results show consistently slower dynamics (higher relaxation times) than both time-of-flight technique (TOF) and classical molecular dynamics simulations (MD). In the present TOF and NSE experiments, anisotropy of the water motion in the interlayer is almost impossible to detect, due to the use of powder samples and insufficient resolution. (A.C.)

  10. Study of turbulent flow using Half-Fourier Echo-Planar imaging

    International Nuclear Information System (INIS)

    Rodriguez, A.O.

    2006-01-01

    The Echo-Planar Imaging technique combined with a partial Fourier acquisition method was used to obtain velocity images for liquid flows in a circular cross-section pipe at Reynolds number of up to 8000. This partial-Fourier imaging scheme is able to generate shorter echo times than the full-Fourier Echo-Planar Imaging methods, reducing the signal attenuation due to T2 * and flow. Velocity images along the z axis were acquired with a time-scale of 80 ms thus obtaining a real-time description of flow in both the laminar and turbulent regimes. Velocity values and velocity fluctuations were computed with the flow image data. A comparison plot of NMR velocity and bulk velocity and a plot of velocity fluctuations were calculated to investigate the feasibility of this imaging technique. Flow encoded Echo-Planar Imaging together with a reduced data acquisition method can provide us with a real-time technique to capture instantaneous images of the flow field for both laminar and turbulent regimes. (author)

  11. Fast, free-breathing, in vivo fetal imaging using time-resolved 3D MRI technique: preliminary results.

    Science.gov (United States)

    Liu, Jing; Glenn, Orit A; Xu, Duan

    2014-04-01

    Fetal MR imaging is very challenging due to the movement of fetus and the breathing motion of the mother. Current clinical protocols involve quick 2D scouting scans to determine scan plane and often several attempts to reorient the scan plane when the fetus moves. This makes acquisition of fetal MR images clinically challenging and results in long scan times in order to obtain images that are of diagnostic quality. Compared to 2D imaging, 3D imaging of the fetus has many advantages such as higher SNR and ability to reformat images in multiple planes. However, it is more sensitive to motion and challenging for fetal imaging due to irregular fetal motion in addition to maternal breathing and cardiac motion. This aim of this study is to develop a fast 3D fetal imaging technique to resolve the challenge of imaging the moving fetus. This 3D imaging sequence has multi-echo radial sampling in-plane and conventional Cartesian encoding through plane, which provides motion robustness and high data acquisition efficiency. The utilization of a golden-ratio based projection profile allows flexible time-resolved image reconstruction with arbitrary temporal resolution at arbitrary time points as well as high signal-to-noise and contrast-to-noise ratio. The nice features of the developed image technique allow the 3D visualization of the movements occurring throughout the scan. In this study, we applied this technique to three human subjects for fetal MRI and achieved promising preliminary results of fetal brain, heart and lung imaging.

  12. Dynamic stability analysis of fractional order leaky integrator echo state neural networks

    Science.gov (United States)

    Pahnehkolaei, Seyed Mehdi Abedi; Alfi, Alireza; Tenreiro Machado, J. A.

    2017-06-01

    The Leaky integrator echo state neural network (Leaky-ESN) is an improved model of the recurrent neural network (RNN) and adopts an interconnected recurrent grid of processing neurons. This paper presents a new proof for the convergence of a Lyapunov candidate function to zero when time tends to infinity by means of the Caputo fractional derivative with order lying in the range (0, 1). The stability of Fractional-Order Leaky-ESN (FO Leaky-ESN) is then analyzed, and the existence, uniqueness and stability of the equilibrium point are provided. A numerical example demonstrates the feasibility of the proposed method.

  13. Water Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    The dashboards on the ECHO website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Clean Water Act (CWA).

  14. Climatology and variability in the ECHO coupled GCM

    International Nuclear Information System (INIS)

    Latif, M.; Stockdale, T.; Wolff, J.; Burgers, G.; Maier-Reimer, E.; Junge, M.M.; Arpe, K.; Bengtsson, L.

    1993-01-01

    ECHO is a new global coupled ocean-atmosphere general circulation model (GCM), consisting of the Hamburg version of the European Centre atmospheric GCM (ECHAM) and the Hamburg Primitive Equation ocean GCM (HOPE). We performed a twenty year integration with ECHO. Climate drift is significant, but typical in the open oceans. Near the boundaries, however, SST errors are considerably larger. The coupled model simulates an irregular ENSO cycle in the tropical Pacific, with spatial patterns similar to those observed. The mechanism behind the model ENSO is related to the subsurface memory of the system, but stochastic forcing by the atmosphere seems to be also important. The variability, however, is somewhat weaker relative to observations. ECHO also simulates significant interannual variability in midlatitudes. Consistent with observations, variability over the North Pacific can be partly attributed to remote forcing from the tropics. In contract, the interannual variability over the North Atlantic appears to be generated locally. Indications for decadal-scale variability are also found over the North Atlantic. (orig.)

  15. Two-pulse and stimulated nuclear-quadrupole-resonance echoes in YAlO3:Pr3+

    International Nuclear Information System (INIS)

    Erickson, L.E.

    1991-01-01

    The dephasing of trivalent praseodymium dilute in yttrium aluminum oxide (YAlO 3 ) in the ground electronic state 3 H 4 state is evaluated using an optically detected method, to measure two-rf-pulse- and three-rf-pulse-stimulated nuclear quadrupole echoes. The magnitude of the echo is obtained by detecting the weak Raman optical field generated by the interaction of the magnetic moment of the echo and a light beam resonant with the 3 H 4 (0 cm 1 ) to 1 D 2 (16 374 cm -1 ) optical transition. This same light beam is used as an optical pump (37-ms duration) prior the rf-pulse sequence to increase the population difference of the hyperfine energy levels, thereby improving the echo signal. The light is turned off 9 ms before the rf-pulse sequence and remains off until the echo to avoid optical-pumping effects on the measured nuclear-quadrupole-resonance (NQR) echo lifetime. The dephasing time T 2 from two-pulse nuclear-quadrupole-echo measurement is found to be 366±29 μs

  16. A spin echo study of A15 intermetallic compounds

    International Nuclear Information System (INIS)

    Schoep, G.K.

    1976-01-01

    This thesis mainly concerns the measurement of spin-lattice relaxation times in intermetallic compounds of the bcc lattice structure, having the formula V 3 X (C = Pt, Ir, Os, Pd, Rh, Ni, Co, Au). When, in a spin echo experiment, a two-pulse sequence was applied, several quadrupolar echoes were observed. Special attention is given to the 'forbidden' echoes (absol.(Δm')GT1) in V 3 Au and V 3 Co. In relation to the V 3 X compounds, several characteristics are discussed including temperature dependence and concentration dependence of spin relaxation times, superconductivity and the importance of d-state electrons in determination of the spin relaxation times. Finally, the above characteristics were determined for 6 different samples of the vanadium-gold alloy, V 3 Au, specifically

  17. On the factors controlling occurrence of F-region coherent echoes

    Directory of Open Access Journals (Sweden)

    D. W. Danskin

    2002-09-01

    Full Text Available Several factors are known to control the HF echo occurrence rate, including electron density distribution in the ionosphere (affecting the propagation path of the radar wave, D-region radio wave absorption, and ionospheric irregularity intensity. In this study, we consider 4 days of CUTLASS Finland radar observations over an area where the EISCAT incoherent scatter radar has continuously monitored ionospheric parameters. We illustrate that for the event under consideration, the D-region absorption was not the major factor affecting the echo appearance. We show that the electron density distribution and the radar frequency selection were much more significant factors. The electron density magnitude affects the echo occurrence in two different ways. For small F-region densities, a minimum value of 1 × 1011 m-3 is required to have sufficient radio wave refraction so that the orthogonality (with the magnetic field lines condition is met. For too large densities, radio wave strong "over-refraction" leads to the ionospheric echo disappearance. We estimate that the over-refraction is important for densities greater than 4 × 1011 m-3. We also investigated the backscatter power and the electric field magnitude relationship and found no obvious relationship contrary to the expectation that the gradient-drift plasma instability would lead to stronger irregularity intensity/echo power for larger electric fields.Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; auroral ionosphere

  18. Evaluation of six-point modified dixon and magnetic resonance spectroscopy for fat quantification: a fat-water-iron phantom study.

    Science.gov (United States)

    Fukuzawa, Kei; Hayashi, Tatsuya; Takahashi, Junji; Yoshihara, Chiharu; Tano, Masakatsu; Kotoku, Jun'ichi; Saitoh, Satoshi

    2017-09-01

    This study aimed to evaluate (1) the agreement between the true fat fraction (FF) and proton density FF (PDFF) measured using a six-echo modified Dixon (6mDixon) and magnetic resonance spectroscopy (MRS) and (2) the influence of fat on T2* values. The study was performed using phantoms of varying fat and iron content. Point-resolved spectroscopy (PRESS) and stimulated echo acquisition mode (STEAM) with single-echo (S) and multiecho (M) (PRESS-S, PRESS-M, STEAM-S, and STEAM-M) were used for MRS. In phantoms without iron, the agreement between the true FF and measured PDFF was tested using Bland-Altman analysis. The influence of iron on PDFF was evaluated in phantoms with iron. The relationship between the true FF and T2* value was assessed in phantoms without iron, wherein the mean differences (limits of agreement) for each method were as follows: 6mDixon 2.9% (-2.4 to 8.1%); STEAM-S 3.2% (-9.5 to 16.0%); STEAM-M -0.7% (-6.9 to 5.5%); PRESS-S 8.9% (-14.5 to 32.4%); and PRESS-M -5.8% (-18.3 to 6.7%). In the 20% fat phantoms with iron, as iron increased, PDFFs with STEAM-S, PRESS-S, and PRESS-M were considerably overestimated, while, PDFF with STEAM-M was stable at 0.04-0.2 mM iron concentrations (17.2 and 21.4%, respectively), and PDFF with 6mDixon was reliable at even 0.4 mM iron concentration (24.8%). The T2* value showed a negative correlation with the true FF (r = -0.942, P = 0.005). STEAM-M and 6mDixon were reliable methods of fat quantification in the absence of iron, and the T2* value was shortened by fat.

  19. Magnetic resonance imaging of lumbar spine. Comparison of multiple spin echo and low flip angle gradient echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Takamichi; Fujita, Norihiko; Harada, Koushi; Kozuka, Takahiro (Osaka Univ. (Japan). Faculty of Medicine)

    1989-07-01

    Sixteen patients including 13 cases with disk herniation and 3 cases with spondylosis of lumbar spine were examined on a resistive MRI system operating at 0.1 T. All lesions were studied with both multiple spin echo (MSE) and low flip angle gradient echo (LF) techniques to evaluate which technique is more effective in detecting the disk degeneration and the indentation on subarachnoid space. MSE images were obtained with repetition time (TR) of 1100-1500 ms or cardiac gating, an echo time (TE) of 30, 60, 90, 120, 150, and 180 ms symmetrical 6 echoes, and total acquisition time of more than 281 sec. LF images were obtained with TR of 500, 250, and 100 ms, TE of 18 ms, a flip angle of 30 degree, and total acquisition time of 128 sec. Eleven lesions of spinal disk degeneration and 12 of indentation on subarachnoid space were detected with LF. On the other hand, 26 lesions of spinal disk degeneration and 38 of indentation on subarachnoid space were detected with MSE. Although the parameters of LF employed in this study were relatively effective to emphasize T2{sup *}-based contrast, the ability of LF in detection of spinal disk degeneration and indentation on subarachnoid space is less than that of MSE. Signal contrast to noise ratios for normal disk and degenerative disk, epidural-fat and disk herniated material, CSF and disk herniated material, and epidural-fat and CSF were less than 4 with LF, but more than 4 with MSE. This difference of contrast to noise ratio between MSE and LF was one of the main causes of the difference of the detection rate of spinal disk degeneration and indentation on subarachnoid space. (author).

  20. Significance of spin-echo intracardiac signal during cine cardiac MR imaging

    International Nuclear Information System (INIS)

    Feiglin, D.H.I.; O'Donnell, J.K.

    1987-01-01

    Thirty patient studies were performed using several multisection spin multi-echo pulse sequences (SEPS) formattable into the cine mode, with repetition time (TR)≤RR interval and 18 msec ≤ echo time (TE) ≤ 64 msec. Thirteen studies were performed in patients with various cardiomyopathies, ten in patients with cardiac tumors, and seven in healthy volunteers. The SEPS in the multi-echo acquisition format differentiated between tumor and stasis in terms of signal behavior. Healthy subjects may exhibit stasis of flow adjacent to the endocardium during the cardiac cycle

  1. Echoes from a Dying Star

    Science.gov (United States)

    Kohler, Susanna

    2017-06-01

    significantly increased, and it continues to brighten steadily through the end of the data.Whats going on? The supermassive black hole in the nucleus of F010042237 is likely shrouded by dust! The optical and ultraviolet radiation from the disruption is absorbed by the dust surrounding the black hole. This light is then reemitted as infrared radiation which we see as a delayed echo of the flare, since the light had to travel out to the surrounding dust before being reemitted and traveling to us.Modeling EchoesA fit of the data (points) to light curves (dashed lines) generated by one of the authors dust ring models. [Adapted from Dou et al. 2017]Dou and collaborators show that the observations of F010042237 can be explained if the black hole is surrounded by a thick torus of at least 7 solar masses worth of dust, with a radius of at least 3 light-years. Such a large dust mass so close to the supermassive black hole implies that these dust grains cant have been newly formed so they must have already been there from the dusty torus of the galactic nucleus.The authors point out that this dusty ring solves one of the mysteries of this disruption candidate: because the dust also scatters some of the optical light, this explains why the optical light curve didnt decay as quickly as wed expect.Conveniently, the authors model of this event can be easily tested: it predicts a sharp decrease in the mid-infrared flux in the near future. Continued monitoring of F010042237 in mid-infrared channels should therefore soon be able to confirm our picture of this event. If were correct, these observations provide us with an excellent opportunity to learn about the environments around supermassive black holes.CitationLiming Dou et al 2017 ApJL 841 L8. doi:10.3847/2041-8213/aa7130

  2. Water Pollution Search Results Help - TRI | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  3. TRI DMR Dashboard Summary Table.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  4. TRI DMR Dashboard Top Industries Graph.png | ECHO | US ...

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  5. TRI DMR Dashboard Pie Chart.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  6. Alignment of time-resolved data from high throughput experiments.

    Science.gov (United States)

    Abidi, Nada; Franke, Raimo; Findeisen, Peter; Klawonn, Frank

    2016-12-01

    To better understand the dynamics of the underlying processes in cells, it is necessary to take measurements over a time course. Modern high-throughput technologies are often used for this purpose to measure the behavior of cell products like metabolites, peptides, proteins, [Formula: see text]RNA or mRNA at different points in time. Compared to classical time series, the number of time points is usually very limited and the measurements are taken at irregular time intervals. The main reasons for this are the costs of the experiments and the fact that the dynamic behavior usually shows a strong reaction and fast changes shortly after a stimulus and then slowly converges to a certain stable state. Another reason might simply be missing values. It is common to repeat the experiments and to have replicates in order to carry out a more reliable analysis. The ideal assumptions that the initial stimulus really started exactly at the same time for all replicates and that the replicates are perfectly synchronized are seldom satisfied. Therefore, there is a need to first adjust or align the time-resolved data before further analysis is carried out. Dynamic time warping (DTW) is considered as one of the common alignment techniques for time series data with equidistant time points. In this paper, we modified the DTW algorithm so that it can align sequences with measurements at different, non-equidistant time points with large gaps in between. This type of data is usually known as time-resolved data characterized by irregular time intervals between measurements as well as non-identical time points for different replicates. This new algorithm can be easily used to align time-resolved data from high-throughput experiments and to come across existing problems such as time scarcity and existing noise in the measurements. We propose a modified method of DTW to adapt requirements imposed by time-resolved data by use of monotone cubic interpolation splines. Our presented approach

  7. Stationary echo canceling in velocity estimation by time-domain cross-correlation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1993-01-01

    The application of stationary echo canceling to ultrasonic estimation of blood velocities using time-domain cross-correlation is investigated. Expressions are derived that show the influence from the echo canceler on the signals that enter the cross-correlation estimator. It is demonstrated...

  8. Myocardial viability: comparison of free-breathing navigator-echo-gated three-dimensional inversion-recovery gradient-echo MR and standard multiple breath-hold two-dimensional inversion-recovery gradient-echo MR

    International Nuclear Information System (INIS)

    Kim, Jin Hee; Seo, Joon Beom; Do, Kyung Hyun; Yang, Dong Hyun; Lee, Soo Hyun; Ko, Sung Min; Heo, Jeong Nam; Lim, Tae Hwan

    2004-01-01

    To compare a free-breathing, navigator-echo-gated, three-dimensional, inversion-recovery, gradient-echo, MR pulse sequence (3D-MRI) with standard, multiple breath-hold, two-dimensional, inversion-recovery, gradient-echo MR (2D-MRI) for the evaluation of delayed hyperenhancement of nonviable myocardium in patients with chronic ischemic heart disease. Ten patients with chronic ischemic heart disease were enrolled in this study. MRI was performed on a 1.5-T system. 3D-MRI was obtained in the short axis plane at 10 minutes after the administration of Gd-DTPA (0.2 mmol/kg, 4 cc/sec). Prospective gating of the acquisition based on the navigator echo was applied. 2D-MRI was performed immediately after finishing 3D-MRI. The area of total and hyperenhanced myocardium measured on both image sets was compared with paired Student t-test and Bland-Altman method. By using a 60-segment model, the transmural extent and segment width of the hyperenhanced area were recorded by 3-scale grading method. The agreement between the two sequences was evaluated with kappa statistics. We also evaluated the agreement of hyperenhancement among the three portions (apical, middle and basal portion) of the left ventricle with kappa statistics. The two sequences showed good agreement for the measured area of total and hyperenhanced myocardium on paired t-test (ρ = 0.11 and ρ = 0.34, respectively). No systematic bias was shown on Bland-Altman analysis. Good agreement was found for the segmental width (Κ = 0.674) and transmural extent (Κ = 0.615) of hyperenhancement on the segmented analysis. However, the agreement of the transmural extent of hyperenhancement in the apical segments was relatively poor compared with that in the middle or basal portions. This study showed good agreement between 3D-MRI and 2D-MRI in evaluation of non-viable myocardium. Therefore, 3D-MRI may be useful in the assessment of myocardial viability in patients with dyspnea and children because it allows free

  9. Observation of the geometric phase using photon echoes

    International Nuclear Information System (INIS)

    Tian, Mingzhen; Reibel, Randy R.; Barber, Zeb W.; Fischer, Joe A.; Babbitt, Wm. Randall

    2003-01-01

    The geometric phase of an atomic system has been observed in V-type three-level barium atoms using photon echoes. The geometric phase results from a cyclic evolution of a two-level subsystem driven by a laser pulse. The phase change is observed on the echo field produced on a different subsystem that is coupled via the ground state to the driven subsystem. The measured geometric phase was half of the solid angle subtended by the Bloch vector along the driven evolution circuit. This evolution has the potential to form universal operations of quantum bits

  10. Application of fast spin-echo T2-weighted imaging for examination of the neurocranium. Comparison with the conventional T2-weighted spin-echo sequence

    International Nuclear Information System (INIS)

    Siewert, C.; Hosten, N.; Felix, R.

    1994-01-01

    T 2 -weighted spin-echo imaging is the standard screening procedure in MR imaging of the neutrocranium. We evaluated fast spin-echo T 2 -weighted imaging (TT 2 ) of the neurocranium in comparison to conventional spin-echo T 2 -weighted imaging (T 2 ). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher than TT 2 than in T 2 (with the exception of grey-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT 2 , Parkinson patients have to be examined by conventional T 2 . If these limitations are taken into account, fast spin-echo T 2 -weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T 2 -weighting achieved in a short acquisition time. (orig.) [de

  11. Gaussian-approximation formalism for evaluating decay of NMR spin echoes

    International Nuclear Information System (INIS)

    Recchia, C.H.; Gorny, K.; Pennington, C.H.

    1996-01-01

    We present a formalism for evaluating the amplitude of the NMR spin echo and stimulated echo as a function of pulse spacings, for situations in which the nuclear spins experience an effective longitudinal magnetic field h z (t) resulting from an arbitrary number of independent sources, each characterized by its own arbitrary time correlation function. The distribution of accumulated phase angles for the ensemble of nuclear spins at the time of the echo is approximated as a Gaussian. The development of the formalism is motivated by the need to understand the transverse relaxation of 89 Y in YBa 2 Cu 3 O 7 , in which the 89 Y experiences 63,65 Cu dipolar fields which fluctuate due to 63,65 Cu T 1 processes. The formalism is applied successfully to this example, and to the case of nuclei diffusing in a spatially varying magnetic field. Then we examine a situation in which the approximation fails emdash the classic problem of chemical exchange in dimethylformamide, where the methyl protons experience a chemical shift which fluctuates between two discrete values. In this case the Gaussian approximation yields a monotonic decay of the echo amplitude with increasing pulse spacing, while the exact solution yields distinct open-quote open-quote beats close-quote close-quote in the echo height, which we confirm experimentally. In light of this final example the limits of validity of the approximation are discussed. copyright 1996 The American Physical Society

  12. NovoPen Echo® insulin delivery device

    Directory of Open Access Journals (Sweden)

    Hyllested-Winge J

    2016-01-01

    Full Text Available Jacob Hyllested-Winge,1 Thomas Sparre,2 Line Kynemund Pedersen2 1Novo Nordisk Pharma Ltd, Tokyo, Japan; 2Novo Nordisk A/S, Søborg, Denmark Abstract: The introduction of insulin pen devices has provided easier, well-tolerated, and more convenient treatment regimens for patients with diabetes mellitus. When compared with vial and syringe regimens, insulin pens offer a greater clinical efficacy, improved quality of life, and increased dosing accuracy, particularly at low doses. The portable and discreet nature of pen devices reduces the burden on the patient, facilitates adherence, and subsequently contributes to the improvement in glycemic control. NovoPen Echo® is one of the latest members of the NovoPen® family that has been specifically designed for the pediatric population and is the first to combine half-unit increment (=0.5 U of insulin dosing with a simple memory function. The half-unit increment dosing amendments and accurate injection of 0.5 U of insulin are particularly beneficial for children (and insulin-sensitive adults/elders, who often require small insulin doses. The memory function can be used to record the time and amount of the last dose, reducing the fear of double dosing or missing a dose. The memory function also provides parents with extra confidence and security that their child is taking insulin at the correct doses and times. NovoPen Echo is a lightweight, durable insulin delivery pen; it is available in two different colors, which may help to distinguish between different types of insulin, providing more confidence for both users and caregivers. Studies have demonstrated a high level of patient satisfaction, with 80% of users preferring NovoPen Echo to other pediatric insulin pens. Keywords: NovoPen Echo®, memory function, half-unit increment dosing, adherence, children, adolescents 

  13. Mono-Exponential Fitting in T2-Relaxometry: Relevance of Offset and First Echo.

    Directory of Open Access Journals (Sweden)

    David Milford

    Full Text Available T2 relaxometry has become an important tool in quantitative MRI. Little focus has been put on the effect of the refocusing flip angle upon the offset parameter, which was introduced to account for a signal floor due to noise or to long T2 components. The aim of this study was to show that B1 imperfections contribute significantly to the offset. We further introduce a simple method to reduce the systematic error in T2 by discarding the first echo and using the offset fitting approach.Signal curves of T2 relaxometry were simulated based on extended phase graph theory and evaluated for 4 different methods (inclusion and exclusion of the first echo, while fitting with and without the offset. We further performed T2 relaxometry in a phantom at 9.4T magnetic resonance imaging scanner and used the same methods for post-processing as in the extended phase graph simulated data. Single spin echo sequences were used to determine the correct T2 time.The simulation data showed that the systematic error in T2 and the offset depends on the refocusing pulse, the echo spacing and the echo train length. The systematic error could be reduced by discarding the first echo. Further reduction of the systematic T2 error was reached by using the offset as fitting parameter. The phantom experiments confirmed these findings.The fitted offset parameter in T2 relaxometry is influenced by imperfect refocusing pulses. Using the offset as a fitting parameter and discarding the first echo is a fast and easy method to minimize the error in T2, particularly for low to intermediate echo train length.

  14. Quantification of glutathione transverse relaxation time T2 using echo time extension with variable refocusing selectivity and symmetry in the human brain at 7 Tesla

    Science.gov (United States)

    Swanberg, Kelley M.; Prinsen, Hetty; Coman, Daniel; de Graaf, Robin A.; Juchem, Christoph

    2018-05-01

    Glutathione (GSH) is an endogenous antioxidant implicated in numerous biological processes, including those associated with multiple sclerosis, aging, and cancer. Spectral editing techniques have greatly facilitated the acquisition of glutathione signal in living humans via proton magnetic resonance spectroscopy, but signal quantification at 7 Tesla is still hampered by uncertainty about the glutathione transverse decay rate T2 relative to those of commonly employed quantitative references like N-acetyl aspartate (NAA), total creatine, or water. While the T2 of uncoupled singlets can be derived in a straightforward manner from exponential signal decay as a function of echo time, similar estimation of signal decay in GSH is complicated by a spin system that involves both weak and strong J-couplings as well as resonances that overlap those of several other metabolites and macromolecules. Here, we extend a previously published method for quantifying the T2 of GABA, a weakly coupled system, to quantify T2 of the strongly coupled spin system glutathione in the human brain at 7 Tesla. Using full density matrix simulation of glutathione signal behavior, we selected an array of eight optimized echo times between 72 and 322 ms for glutathione signal acquisition by J-difference editing (JDE). We varied the selectivity and symmetry parameters of the inversion pulses used for echo time extension to further optimize the intensity, simplicity, and distinctiveness of glutathione signals at chosen echo times. Pairs of selective adiabatic inversion pulses replaced nonselective pulses at three extended echo times, and symmetry of the time intervals between the two extension pulses was adjusted at one extended echo time to compensate for J-modulation, thereby resulting in appreciable signal-to-noise ratio and quantifiable signal shapes at all measured points. Glutathione signal across all echo times fit smooth monoexponential curves over ten scans of occipital cortex voxels in nine

  15. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity.

    Science.gov (United States)

    Cohen, Alexander D; Nencka, Andrew S; Lebel, R Marc; Wang, Yang

    2017-01-01

    A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI.

  16. Air Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Clean Air Act (CAA).

  17. Programming for time resolved spectrum in pulse radiolysis experiments

    International Nuclear Information System (INIS)

    Betty, C.A.; Panajkar, M.S.; Shirke, N.D.

    1993-01-01

    A user friendly program in Pascal has been developed for data acquisition and subsequent processing of time resolved spectra of transient species produced in pulse radiolysis experiments. The salient features of the program are (i) thiocyanate dosimetry and (ii) spectrum acquisition. The thiocyanate dosimetry is carried out to normalize experimental conditions to a standard value as determined by computing absorbance of the transient signal CNS -2 that is produced from thiocyanate solution by a 7 MeV electron pulse. Spectrum acquisition allows the acquisition of the time resolved data at 20 different times points and subsequent display of the plots of absorbance vs. wavelength for the desired time points during the experiment. It is also possible to plot single time point spectrum as well as superimposed spectra for different time points. Printing, editing and merging facilities are also provided. (author). 2 refs., 7 figs

  18. Evolution of Web Services in EOSDIS: Search and Order Metadata Registry (ECHO)

    Science.gov (United States)

    Mitchell, Andrew; Ramapriyan, Hampapuram; Lowe, Dawn

    2009-01-01

    During 2005 through 2008, NASA defined and implemented a major evolutionary change in it Earth Observing system Data and Information System (EOSDIS) to modernize its capabilities. This implementation was based on a vision for 2015 developed during 2005. The EOSDIS 2015 Vision emphasizes increased end-to-end data system efficiency and operability; increased data usability; improved support for end users; and decreased operations costs. One key feature of the Evolution plan was achieving higher operational maturity (ingest, reconciliation, search and order, performance, error handling) for the NASA s Earth Observing System Clearinghouse (ECHO). The ECHO system is an operational metadata registry through which the scientific community can easily discover and exchange NASA's Earth science data and services. ECHO contains metadata for 2,726 data collections comprising over 87 million individual data granules and 34 million browse images, consisting of NASA s EOSDIS Data Centers and the United States Geological Survey's Landsat Project holdings. ECHO is a middleware component based on a Service Oriented Architecture (SOA). The system is comprised of a set of infrastructure services that enable the fundamental SOA functions: publish, discover, and access Earth science resources. It also provides additional services such as user management, data access control, and order management. The ECHO system has a data registry and a services registry. The data registry enables organizations to publish EOS and other Earth-science related data holdings to a common metadata model. These holdings are described through metadata in terms of datasets (types of data) and granules (specific data items of those types). ECHO also supports browse images, which provide a visual representation of the data. The published metadata can be mapped to and from existing standards (e.g., FGDC, ISO 19115). With ECHO, users can find the metadata stored in the data registry and then access the data either

  19. Enforcement and Compliance History Online (ECHO) Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide. Its features range from simple to advanced,...

  20. Photon echo with a few photons in two-level atoms

    International Nuclear Information System (INIS)

    Bonarota, M; Dajczgewand, J; Louchet-Chauvet, A; Le Gouët, J-L; Chanelière, T

    2014-01-01

    To store and retrieve signals at the single photon level, various photon echo schemes have resorted to complex preparation steps involving ancillary shelving states in multi-level atoms. For the first time, we experimentally demonstrate photon echo operation at such a low signal intensity without any preparation step, which allows us to work with mere two-level atoms. This simplified approach relies on the so-coined ‘revival of silenced echo’ (ROSE) scheme. Low noise conditions are obtained by returning the atoms to the ground state before the echo emission. In the present paper we manage ROSE in photon counting conditions, showing that very strong control fields can be compatible with extremely weak signals, making ROSE consistent with quantum memory requirements. (paper)

  1. Quantitative analysis of pulmonary perfusion using time-resolved parallel 3D MRI - initial results

    International Nuclear Information System (INIS)

    Fink, C.; Buhmann, R.; Plathow, C.; Puderbach, M.; Kauczor, H.U.; Risse, F.; Ley, S.; Meyer, F.J.

    2004-01-01

    Purpose: to assess the use of time-resolved parallel 3D MRI for a quantitative analysis of pulmonary perfusion in patients with cardiopulmonary disease. Materials and methods: eight patients with pulmonary embolism or pulmonary hypertension were examined with a time-resolved 3D gradient echo pulse sequence with parallel imaging techniques (FLASH 3D, TE/TR: 0.8/1.9 ms; flip angle: 40 ; GRAPPA). A quantitative perfusion analysis based on indicator dilution theory was performed using a dedicated software. Results: patients with pulmonary embolism or chronic thromboembolic pulmonary hypertension revealed characteristic wedge-shaped perfusion defects at perfusion MRI. They were characterized by a decreased pulmonary blood flow (PBF) and pulmonary blood volume (PBV) and increased mean transit time (MTT). Patients with primary pulmonary hypertension or eisenmenger syndrome showed a more homogeneous perfusion pattern. The mean MTT of all patients was 3.3 - 4.7 s. The mean PBF and PBV showed a broader interindividual variation (PBF: 104-322 ml/100 ml/min; PBV: 8 - 21 ml/100 ml). Conclusion: time-resolved parallel 3D MRI allows at least a semi-quantitative assessment of lung perfusion. Future studies will have to assess the clinical value of this quantitative information for the diagnosis and management of cardiopulmonary disease. (orig.) [de

  2. Non-destructive testing of concrete structures with the impact-echo method; Zerstoerungsfreie Pruefung von Betonbauteilen mit dem Impact-Echo-Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Algernon, Daniel; Feistkorn, Sascha; Scherrer, Michael [SVTI Schweizerischer Verein fuer technische Inspektionen, Wallisellen (Switzerland). Nuklearinspektorat

    2016-05-01

    The impact-echo method is based on the use of elastic waves. It was developed in the 1980 for the testing of concrete structures and is currently widespread. Main application areas are the component and coating thickness measurement and detection of delaminations, voids and other defects. Specifically, the method is also used to check the injection faults of clamping channels. Another application is the determination of mechanical material parameters such as the modulus of elasticity. Since the original development of the method has undergone several enhancements. The conversion of a single-point measurement method towards a area component testing, the use by the optimized measurement data acquisition and evaluation enlarged and delivered an important prerequisite for increasing the efficiency. The use of air-coupled sensors not only increases the measurement speed but also provides advantages in rough component surfaces. The imaging analysis in conjunction with signal processing algorithms simplifies the interpretation and allows statistical evaluation. [German] Das Impact-Echo-Verfahren beruht auf der Nutzung elastischer Wellen. Es wurde in den 1980er Jahren fuer die Pruefung von Stahlbetonbauteilen entwickelt und ist derzeit weit verbreitet. Haupteinsatzgebiete sind die Bauteil- und Schichtdickenmessung sowie die Detektion von Delaminationen, Hohl- und anderen Fehlstellen. Insbesondere wird das Verfahren auch zur Pruefung des Verpresszustandes von Spannkanaelen herangezogen. Eine weitere Anwendung ist die Bestimmung mechanischer Materialparameter wie dem Elastizitaetsmodul. Seit der urspruenglichen Entwicklung hat das Verfahren verschiedene Weiterentwicklungen erfahren. Die Ueberfuehrung von einem Einzelpunktmessverfahren hin zu einer flaechigen Bauteilpruefung hat die Einsatzmoeglichkeiten durch die optimierte Messdatenaufnahme und -auswertung vergroessert und eine wichtige Voraussetzung zur Erhoehung der Leistungsfaehigkeit geliefert. Der Einsatz

  3. Equilibrium radionuclide ventriculography: Comparison with echo-ventriculography and digital subtraction angiocardiography, evaluation of multiparameters

    Energy Technology Data Exchange (ETDEWEB)

    Hoer, G; Standke, R; Klepzig, H Jr; Maul, F D; Tuengerthal, S; Tezak, S; Reifarth, N; Kanemoto, N; Happ, J; Baum, R P

    1986-09-01

    Subsequent to the discussion of technical prerequisites (fully-automated, reproducible multiparameter-analysis (MPA), rest, exercise) which is followed by remarks concerning the pathophysiology of ischemic left ventricular functional disorders in diastole and systole, the following points are considered: 1) comparative results of RNV, cineventriculoangiography, echo-ventriculography and intraveneous digital subtraction angiocardiography; 2) 'normal' values of RNV in MPA; 3) heart and pulmonary diseases (coronary artery disease with sensitivity and specificity of MPA), chronic obstructive pulmonary disease, chronic aortic insufficiency, hypertension; 4) summary of, and prospects for future potentialities (software, clinical indications).

  4. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  5. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    2001-08-01

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  6. Application of fast spin-echo T[sub 2]-weighted imaging for examination of the neurocranium. Comparison with the conventional T[sub 2]-weighted spin-echo sequence. Die Anwendung der T[sub 2]-gewichteten Turbo-Spin-Echo-Sequenz zur Untersuchung des Neurokraniums. Vergleich mit der konventionellen T[sub 2]-gewichteten Spin-Echo-Sequenz

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, C. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Hosten, N. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Felix, R. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany))

    1994-07-01

    T[sub 2]-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neutrocranium. We evaluated fast spin-echo T[sub 2]-weighted imaging (TT[sub 2]) of the neurocranium in comparison to conventional spin-echo T[sub 2]-weighted imaging (T[sub 2]). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher than TT[sub 2] than in T[sub 2] (with the exception of grey-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT[sub 2], Parkinson patients have to be examined by conventional T[sub 2]. If these limitations are taken into account, fast spin-echo T[sub 2]-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T[sub 2]-weighting achieved in a short acquisition time. (orig.)

  7. Pesticide Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA).

  8. HTTP-based Search and Ordering Using ECHO's REST-based and OpenSearch APIs

    Science.gov (United States)

    Baynes, K.; Newman, D. J.; Pilone, D.

    2012-12-01

    Metadata is an important entity in the process of cataloging, discovering, and describing Earth science data. NASA's Earth Observing System (EOS) ClearingHOuse (ECHO) acts as the core metadata repository for EOSDIS data centers, providing a centralized mechanism for metadata and data discovery and retrieval. By supporting both the ESIP's Federated Search API and its own search and ordering interfaces, ECHO provides multiple capabilities that facilitate ease of discovery and access to its ever-increasing holdings. Users are able to search and export metadata in a variety of formats including ISO 19115, json, and ECHO10. This presentation aims to inform technically savvy clients interested in automating search and ordering of ECHO's metadata catalog. The audience will be introduced to practical and applicable examples of end-to-end workflows that demonstrate finding, sub-setting and ordering data that is bound by keyword, temporal and spatial constraints. Interaction with the ESIP OpenSearch Interface will be highlighted, as will ECHO's own REST-based API.

  9. Evolution of Precipitation Structure During the November DYNAMO MJO Event: Cloud-Resolving Model Intercomparison and Cross Validation Using Radar Observations

    Science.gov (United States)

    Li, Xiaowen; Janiga, Matthew A.; Wang, Shuguang; Tao, Wei-Kuo; Rowe, Angela; Xu, Weixin; Liu, Chuntao; Matsui, Toshihisa; Zhang, Chidong

    2018-04-01

    Evolution of precipitation structures are simulated and compared with radar observations for the November Madden-Julian Oscillation (MJO) event during the DYNAmics of the MJO (DYNAMO) field campaign. Three ground-based, ship-borne, and spaceborne precipitation radars and three cloud-resolving models (CRMs) driven by observed large-scale forcing are used to study precipitation structures at different locations over the central equatorial Indian Ocean. Convective strength is represented by 0-dBZ echo-top heights, and convective organization by contiguous 17-dBZ areas. The multi-radar and multi-model framework allows for more stringent model validations. The emphasis is on testing models' ability to simulate subtle differences observed at different radar sites when the MJO event passed through. The results show that CRMs forced by site-specific large-scale forcing can reproduce not only common features in cloud populations but also subtle variations observed by different radars. The comparisons also revealed common deficiencies in CRM simulations where they underestimate radar echo-top heights for the strongest convection within large, organized precipitation features. Cross validations with multiple radars and models also enable quantitative comparisons in CRM sensitivity studies using different large-scale forcing, microphysical schemes and parameters, resolutions, and domain sizes. In terms of radar echo-top height temporal variations, many model sensitivity tests have better correlations than radar/model comparisons, indicating robustness in model performance on this aspect. It is further shown that well-validated model simulations could be used to constrain uncertainties in observed echo-top heights when the low-resolution surveillance scanning strategy is used.

  10. Light echoes - Type II supernovae

    International Nuclear Information System (INIS)

    Schaefer, B.E.

    1987-01-01

    Type II supernovae (SNs) light curves show a remarkable range of shapes. Data have been collected for the 12 Type II SNs that have light curve information for more than four months past maximum. Contrary to previous reports, it is found that (1) the decay rate after 100 days past maximum varies by almost an order of magnitude and (2) the light curve shapes are not bimodally distributed, but actually form a continuum. In addition, it is found that the extinctions to the SNs are related to the light curve shapes. This implies that the absorbing dust is local to the SNs. The dust is likely to be part of a circumstellar shell emitted by the SN progenitor that Dwek (1983) has used to explain infrared echoes. The optical depth of the shell can get quite large. In such cases, it is found that the photons scattered and delayed by reflection off dust grains will dominate the light curve several months after peak brightness. This light echo offers a straightforward explanation of the diversity of Type II SN light curves. 22 references

  11. How to misuse echo contrast

    Directory of Open Access Journals (Sweden)

    Missios Anna

    2009-01-01

    Full Text Available Abstract Background Primary intracardiac tumours are rare, there are however several entities that can mimic tumours. Contrast echocardiography has been suggested to aid the differentiation of various suspected masses. We present a case where transthoracic echocardiography completely misdiagnosed a left atrial mass, partly due to use of echo contrast. Case presentation An 80 year-old woman was referred for transthoracic echocardiography because of one-month duration of worsening of dyspnoea. Transthoracic echocardiography displayed a large echodense mass in the left atrium. Intravenous injection of contrast (SonoVue, Bracco Inc., It indicated contrast-enhancement of the structure, suggesting tumour. Transesophageal echocardiography revealed, however, a completely normal finding in the left atrium. Subsequent gastroscopy examination showed a hiatal hernia. Conclusion It is noteworthy that the transthoracic echocardiographic exam completely misdiagnosed what seemed like a left atrial mass, which in part was an effect of the use of echo contrast. This example highlights that liberal use of transoesophageal echocardiography is often warranted if optimal display of cardiac structures is desired.

  12. Ultrafast Dephasing and Incoherent Light Photon Echoes in Organic Amorphous Systems

    Science.gov (United States)

    Yano, Ryuzi; Matsumoto, Yoshinori; Tani, Toshiro; Nakatsuka, Hiroki

    1989-10-01

    Incoherent light photon echoes were observed in organic amorphous systems (cresyl violet in polyvinyl alcohol and 1,4-dihydroxyanthraquinone in polymethacrylic acid) by using temporally-incoherent nanosecond laser pulses. It was found that an echo decay curve of an organic amorphous system is composed of a sharp peak which decays very rapidly and a slowly decaying wing at the tail. We show that the persistent hole burning (PHB) spectra were reproduced by the Fourier-cosine transforms of the echo decay curves. We claim that in general, we must take into account the multi-level feature of the system in order to explain ultrafast dephasing at very low temperatures.

  13. Electric field and electron density thresholds for coherent auroral echo onset

    International Nuclear Information System (INIS)

    Kustov, A.V.; Uspensky, M.V.; Sofko, G.J.; Koehler, J.A.; Jones, G.O.L.; Williams, P.J.S.

    1993-01-01

    The authors study the threshold dependence of electron density and electric field for the observation of coherent auroral echo onset. They make use of Polar Geophysical Institute 83 MHz auroral radar and the EISCAT facility in Scandanavia, to simultaneously get plasma parameter information and coherent scatter observations. They observe an electron density threshold of roughly 2.5x10 11 m -3 for electric fields of 15 - 20 mV/m (near the Farley-Buneman instability threshold). For electric fields of 5 - 10 mV/m echos are not observed for even twice the previous electron density. Echo strength is observed to have other parametric dependences

  14. Stellar Echo Imaging of Exoplanets, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — All stars exhibit intensity fluctuations over several time scales, from nanoseconds to days; these intensity fluctuations echo off planetary bodies in the star...

  15. Stellar Echo Imaging of Exoplanets, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — All stars exhibit intensity fluctuations over several time scales, from nanoseconds to days; these intensity fluctuations echo off planetary bodies in the star...

  16. Improving Pain Care with Project ECHO in Community Health Centers.

    Science.gov (United States)

    Anderson, Daren; Zlateva, Ianita; Davis, Bennet; Bifulco, Lauren; Giannotti, Tierney; Coman, Emil; Spegman, Douglas

    2017-10-01

    Pain is an extremely common complaint in primary care, and patient outcomes are often suboptimal. This project evaluated the impact of Project ECHO Pain videoconference case-based learning sessions on knowledge and quality of pain care in two Federally Qualified Health Centers. Quasi-experimental, pre-post intervention, with comparison group. Two large, multisite federally qualified health centers in Connecticut and Arizona. Intervention (N = 10) and comparison (N = 10) primary care providers. Primary care providers attended 48 weekly Project ECHO Pain sessions between January and December 2013, led by a multidisciplinary pain specialty team. Surveys and focus groups assessed providers' pain-related knowledge and self-efficacy. Electronic health record data were analyzed to evaluate opioid prescribing and specialty referrals. Compared with control, primary care providers in the intervention had a significantly greater increase in pain-related knowledge and self-efficacy. Providers who attended ECHO were more likely to use formal assessment tools and opioid agreements and refer to behavioral health and physical therapy compared with control providers. Opioid prescribing decreased significantly more among providers in the intervention compared with those in the control group. Pain is an extremely common and challenging problem, particularly among vulnerable patients such as those cared for at the more than 1,200 Federally Qualified Health Centers in the United States. In this study, attendance at weekly Project ECHO Pain sessions not only improved knowledge and self-efficacy, but also altered prescribing and referral patterns, suggesting that knowledge acquired during ECHO sessions translated into practice changes. © 2017 American Academy of Pain Medicine.

  17. Accurate step-FMCW ultrasound ranging and comparison with pulse-echo signaling methods

    Science.gov (United States)

    Natarajan, Shyam; Singh, Rahul S.; Lee, Michael; Cox, Brian P.; Culjat, Martin O.; Grundfest, Warren S.; Lee, Hua

    2010-03-01

    This paper presents a method setup for high-frequency ultrasound ranging based on stepped frequency-modulated continuous waves (FMCW), potentially capable of producing a higher signal-to-noise ratio (SNR) compared to traditional pulse-echo signaling. In current ultrasound systems, the use of higher frequencies (10-20 MHz) to enhance resolution lowers signal quality due to frequency-dependent attenuation. The proposed ultrasound signaling format, step-FMCW, is well-known in the radar community, and features lower peak power, wider dynamic range, lower noise figure and simpler electronics in comparison to pulse-echo systems. In pulse-echo ultrasound ranging, distances are calculated using the transmit times between a pulse and its subsequent echoes. In step-FMCW ultrasonic ranging, the phase and magnitude differences at stepped frequencies are used to sample the frequency domain. Thus, by taking the inverse Fourier transform, a comprehensive range profile is recovered that has increased immunity to noise over conventional ranging methods. Step-FMCW and pulse-echo waveforms were created using custom-built hardware consisting of an arbitrary waveform generator and dual-channel super heterodyne receiver, providing high SNR and in turn, accuracy in detection.

  18. Calculating the azimuth of mountain waves, using the effect of tilted fine-scale stable layers on VHF radar echoes

    Directory of Open Access Journals (Sweden)

    R. M. Worthington

    1999-02-01

    Full Text Available A simple method is described, based on standard VHF wind-profiler data, where imbalances of echo power between four off-vertical radar beams, caused by mountain waves, can be used to calculate the orientation of the wave pattern. It is shown that the mountain wave azimuth (direction of the horizontal component of the wavevector, is given by the vector [ W (PE - P W ,W (PN - P S ]; PN, PS, PE, PW are radar echo powers, measured in dB, in beams pointed away from vertical by the same angle towards north, south, east and west respectively, and W is the vertical wind velocity. The method is applied to Aberystwyth MST radar data, and the calculated wave vector usually, but not always, points into the low-level wind direction. The mean vertical wind at Aberystwyth, which may also be affected by tilted aspect-sensitive layers, is investigated briefly using the entire radar output 1990-1997. The mean vertical-wind profile is inconsistent with existing theories, but a new mountain-wave interpretation is proposed.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides; instruments and techniques.

  19. Application of velocity imaging and gradient-recalled echo in neuroimaging

    International Nuclear Information System (INIS)

    Boyko, O.B.; Pelc, N.J.; Shimakawa, A.

    1990-01-01

    This paper describes the initial clinical experience with imaging blood flow at 1.5 T by means of a phase-sensitive gradient refocused pulse sequence. A spin-echo flow-encoding technique was modified to a gradient recalled acquisition in a steady state sequence, producing a velocity imaging and gradient recalled echo (VIGRE) sequence (TR = 24 msec, TE = 13 msec, flip angle = 45 degrees, 24-cm field of view, 7 mm contiguous sections). Two views per phase-encoding step are acquired; one using the first-moment flow-compensation gradient waveform and the second having a (selectable) nonzero first moment. A phase subtraction image is obtained where the signal is dependent on the direction and velocity of flow. The sequence was done following routine spin-echo imaging in 35 patients

  20. Imaging of the brain using the fast-spin-echo and gradient-spin-echo techniques

    International Nuclear Information System (INIS)

    Umek, W.; Ba-Ssalamah, A.; Prokesch, R.; Mallek, R.; Heimberger, K.; Hittmair, K.

    1998-01-01

    The aim of our study was to compare gradient-spin-echo (GRASE) to fast-spin-echo (FSE) sequences for fast T2-weighted MR imaging of the brain. Thirty-one patients with high-signal-intensity lesions on T2-weighted images were examined on a 1.5-T MR system. The FSE and GRASE sequences with identical sequence parameters were obtained and compared side by side. Image assessment criteria included lesion conspicuity, contrast between different types of normal tissue, and image artifacts. In addition, signal-to-noise, contrast-to-noise, and contrast ratios and were determined. The FSE technique demonstrated more lesions than GRASE and with generally better conspicuity. Smaller lesions in particular were better demonstrated on FSE because of lower image noise and slightly weaker image artifacts. Gray-white differentiation was better on FSE. Ferritin and hemosiderin depositions appeared darker on GRASE, which resulted in better contrast. Fatty tissue was less bright on GRASE. With current standard hardware equipment, the FSE technique seems preferable to GRASE for fast T2-weighted routine MR imaging of the brain. For the assessment of hemosiderin or ferritin depositions, GRASE might be considered. (orig.)

  1. NMR multiple-echo phase-contrast blood flow imaging

    International Nuclear Information System (INIS)

    O'Donnell, M.

    1986-01-01

    A method is described for magnetic resonance imaging of fluid flow in a sample, comprising the steps of: (a) immersing the sample in a static magnetic field disposed in a first direction; (b) applying a first sequence of magnetic field gradients and radio-frequency signals to the sample to both define a slab, of the sample to be imaged, in a plane substantially orthogonal to a selected direction for which flow velocity is to be measured, and to obtain a plurality N of spin-echo response signals form that slab; (c) processing the plurality of first sequence spin-echo signals to obtain a complex value A/sub 1/(X,Y,Z) relating both the spin density rho'(X,Y,Z),... and the phase rotation phi(X,Y,Z), induced by the first sequence, for each of a selected number of sequential locations (X,Y,Z) in the sample slab; (d) applying a second sequence of magnetic field gradient and radio-frequency signals to both define the same sample slab as in step (b) and to obtain another plurality N of spin-echo response signals from that slab; (e) including a waveform in at least one of the magnetic field gradient and radio-frequency signals applied in step (d) for imparting to each of the spin-echo signal components from each slab location having a flowing material therein a phase rotation dependent upon the magnitude of the flow velocity therein in the selected direction; (f) processing the plurality of second sequence spin-echo signals to obtain a complex value A/sub 2/(X,Y,Z) relating the spin density rho'(X,Y,Z) and the imparted phase rotation of the sample material along the selected flow measurement direction for each of the sequential locations (X,Y,Z) in the sample slab; and (g) processing the complex values A/sub 1/(X,Y,Z) and A/sub 2/(X,Y,Z) for each sample location to obtain a differential phase-contrast value related to the velocity of the flowing material therein in the selected measurement direction

  2. Numerical calculation of spin echo amplitude in pulsed NMR: effects of quadrupole interaction

    International Nuclear Information System (INIS)

    Sobral, R.R.

    1986-01-01

    The spin echo obtained by nuclear magnetic resonance, in systems which atomic nuclei interact with magnetic fields and electric field gradients, present oscillations in function of the time interval between two excitations pulses. Using the density matrix formalism, the amplitudes of these echo is calculated, analytically. In this work, echo amplitudes obtained under different excitation conditions for nuclei of different nuclear spin values are calculated. The numerical results are compared with disposable analytical solutions. Applications of this method to the case of electric field gradient without axial symmetry were studied. Within the used approximation limits, an expression for attnuation of oscillatory behaviour of echo amplitude in function of the time interval between experimentally observed pulses was obtained. (M.C.K.) [pt

  3. Gradient-echo imaging of intervertebral disk degeneration and facet joint disease

    International Nuclear Information System (INIS)

    Berns, D.H.; Kormos, D.; Modic, M.T.; Carter, J.; Masaryk, T.J.; Ross, J.S.

    1988-01-01

    The purpose of this study was to evaluate the accuracy of gradient-echo, partial-flip angle images in the evaluation of components of degenerative spine disease. First, cadaveric spines were studied with plain radiographs, high-resolution CT, T1-weighted spin-echo (SE) MR images (repetition time msec/echo time msec=500/17). T2-weighted SE images (2,000/30-90), and fast low-angle shot (FLASH) images (200/10.50 0 ) before and after intradiskal injection of air (0.1-1cc). Second, lumbar spine MR images were retrospectively evaluated to compare gradient-echo and SE sequences. Results indicate that the signal intensity changes of the intervertebral disk related to degeneration were best appreciated on T2-weighted SE studies in both groups. Vacuum phenomenon and calcification were most accurately assessed with FLASH imaging (based on susceptibility changes) and CT images. SE images appeared more sensitive to adjacent marrow change. In the facet joints, CT was more accurate for changes in the subarticular bone, but FLASH images were more sensitive to change in the articular cartilage

  4. Skew Projection of Echo-Detected EPR Spectra for Increased Sensitivity and Resolution

    Science.gov (United States)

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-01-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier Transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five. PMID:23644351

  5. Quantum-dot-based homogeneous time-resolved fluoroimmunoassay of alpha-fetoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Chen Meijun; Wu Yingsong; Lin Guanfeng; Hou Jingyuan; Li Ming [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China); Liu Tiancai, E-mail: liutc@smu.edu.cn [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China)

    2012-09-05

    Highlights: Black-Right-Pointing-Pointer QDs-based homogeneous time-resolved fluoroimmunoassay was developed to detect AFP. Black-Right-Pointing-Pointer The conjugates were prepared with QDs-doped microspheres and anti-AFP McAb. Black-Right-Pointing-Pointer The conjugates were prepared with LTCs and another anti-AFP McAb. Black-Right-Pointing-Pointer Excess amounts of conjugates were used for detecting AFP without rinsing. Black-Right-Pointing-Pointer The wedding of QPs and LTCs was suitable for HTRFIA to detect AFP. - Abstract: Quantum dots (QDs) with novel photoproperties are not widely used in clinic diagnosis, and homogeneous time-resolved fluorescence assays possess many advantages over current methods for alpha-fetoprotein (AFP) detection. A novel QD-based homogeneous time-resolved fluorescence assay was developed and used for detection of AFP, a primary marker for many cancers and diseases. QD-doped carboxyl-modified polystyrene microparticles (QPs) were prepared by doping oil-soluble QDs possessing a 605 nm emission peak. The antibody conjugates (QPs-E014) were prepared from QPs and an anti-AFP monoclonal antibody, and luminescent terbium chelates (LTCs) were prepared and conjugated to a second anti-AFP monoclonal antibody (LTCs-E010). In a double-antibodies sandwich structure, QPs-E014 and LTCs-E010 were used for detection of AFP, serving as energy acceptor and donor, respectively, with an AFP bridge. The results demonstrated that the luminescence lifetime of these QPs was sufficiently long for use in a time-resolved fluoroassay, with the efficiency of time-resolved Foerster resonance transfer (TR-FRET) at 67.3% and the spatial distance of the donor to acceptor calculated to be 66.1 Angstrom-Sign . Signals from TR-FRET were found to be proportional to AFP concentrations. The resulting standard curve was log Y = 3.65786 + 0.43863{center_dot}log X (R = 0.996) with Y the QPs fluorescence intensity and X the AFP concentration; the calculated sensitivity was 0

  6. Direct magnetic field estimation based on echo planar raw data.

    Science.gov (United States)

    Testud, Frederik; Splitthoff, Daniel Nicolas; Speck, Oliver; Hennig, Jürgen; Zaitsev, Maxim

    2010-07-01

    Gradient recalled echo echo planar imaging is widely used in functional magnetic resonance imaging. The fast data acquisition is, however, very sensitive to field inhomogeneities which manifest themselves as artifacts in the images. Typically used correction methods have the common deficit that the data for the correction are acquired only once at the beginning of the experiment, assuming the field inhomogeneity distribution B(0) does not change over the course of the experiment. In this paper, methods to extract the magnetic field distribution from the acquired k-space data or from the reconstructed phase image of a gradient echo planar sequence are compared and extended. A common derivation for the presented approaches provides a solid theoretical basis, enables a fair comparison and demonstrates the equivalence of the k-space and the image phase based approaches. The image phase analysis is extended here to calculate the local gradient in the readout direction and improvements are introduced to the echo shift analysis, referred to here as "k-space filtering analysis." The described methods are compared to experimentally acquired B(0) maps in phantoms and in vivo. The k-space filtering analysis presented in this work demonstrated to be the most sensitive method to detect field inhomogeneities.

  7. Observations of fast magnetospheric echoes of artificially injected electrons above an auroral arc

    International Nuclear Information System (INIS)

    Wilhelm, K.; Becker, C.; Schmidt, R.

    1984-04-01

    Electron beam experiments using rocket-borne instrumentation have confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. These experiments were jointly carried out by the University of Minnesota, the National Research Council of Canada and the Max-Planck-Institut fuer Aeronomie. A total of 234 echoes have been observed in a pitch angle range from 0 0 to 110 0 at energies of 1.87 and 3.90 keV. Out of this number, 95 echoes could unambiguously be identified with known accelerator operations at 2, 4 or 8 keV energy and highest current levels resulting in the determination of transit times of typically 400 ms. In most cases, when echoes were present in both energy channels, the higher energy electrons led the lower energy ones by approximately 50 ms. No echoes have been found in the 7.9 keV-detector channels. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. The injection process is briefly discussed as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection. Two consequences of this interaction, namely, strong energy and pitch angle diffusion and electron acceleration are illustrated with several examples. (orig.) [de

  8. Using the Echo Nest's automatically extracted music features for a musicological purpose

    DEFF Research Database (Denmark)

    Andersen, Jesper Steen

    2014-01-01

    This paper sums up the preliminary observations and challenges encountered during my first engaging with the music intelligence company Echo Nest's automatically derived data of more than 35 million songs. The overall purpose is to investigate whether musicologists can draw benefit from Echo Nest...

  9. EchoBASE: an integrated post-genomic database for Escherichia coli.

    Science.gov (United States)

    Misra, Raju V; Horler, Richard S P; Reindl, Wolfgang; Goryanin, Igor I; Thomas, Gavin H

    2005-01-01

    EchoBASE (http://www.ecoli-york.org) is a relational database designed to contain and manipulate information from post-genomic experiments using the model bacterium Escherichia coli K-12. Its aim is to collate information from a wide range of sources to provide clues to the functions of the approximately 1500 gene products that have no confirmed cellular function. The database is built on an enhanced annotation of the updated genome sequence of strain MG1655 and the association of experimental data with the E.coli genes and their products. Experiments that can be held within EchoBASE include proteomics studies, microarray data, protein-protein interaction data, structural data and bioinformatics studies. EchoBASE also contains annotated information on 'orphan' enzyme activities from this microbe to aid characterization of the proteins that catalyse these elusive biochemical reactions.

  10. [The use of the T2-weighted turbo-spin-echo sequence in studying the neurocranium. A comparison with the conventional T2-weighted spin-echo sequence].

    Science.gov (United States)

    Siewert, C; Hosten, N; Felix, R

    1994-07-01

    T2-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neurocranium. We evaluated fast spin-echo T2-weighted imaging (TT2) of the neurocranium in comparison to conventional spin-echo T2-weighted imaging (T2). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher in TT2 than in T2 (with the exception of gray-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT2, Parkinson patients have to be examined by conventional T2. If these limitations are taken into account, fast spin-echo T2-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T2-weighting achieved in a short acquisition time.

  11. Theoretical analysis of leaky surface acoustic waves of point-focused acoustic lens and some experiments

    International Nuclear Information System (INIS)

    Ishikawa, Isao; Suzuki, Yoshiaki; Ogura, Yukio; Katakura, Kageyoshi

    1997-01-01

    When a point-focused acoustic lens in the scanning acoustic microscope (SAM) is faced to test specimen and defocused to some extent, two effective echoes can be obtained. One is the echo of longitudinal wave, which is normally incident upon the specimen of an on-axis beam in the central region of the lens and is reflected normal to the lens surface, hence detected by the transducer. The other is of leaky surface acoustic waves(LSAW), which are mode converted front a narrow beam of off-axis longitudinal wave, then propagate across the surface of the specimen and reradiate at angles normal to the lens surface, thus detected by the transducer. These two echoes are either interfered or separated with each other depending ell the defocused distance. It turned out theoretically that the LSAW have a narrow focal spot in the central region of the point-focused acoustic lens, whose size is approximately 40% of the LSAW wavelength. On top of that, a wavelength of LSAW is about 50% short as that of longitudinal wave. So, It is expected that high resolution images can be obtained provided LSAW are used in the scanning acoustic microscope.

  12. A rapid and robust gradient measurement technique using dynamic single-point imaging.

    Science.gov (United States)

    Jang, Hyungseok; McMillan, Alan B

    2017-09-01

    We propose a new gradient measurement technique based on dynamic single-point imaging (SPI), which allows simple, rapid, and robust measurement of k-space trajectory. To enable gradient measurement, we utilize the variable field-of-view (FOV) property of dynamic SPI, which is dependent on gradient shape. First, one-dimensional (1D) dynamic SPI data are acquired from a targeted gradient axis, and then relative FOV scaling factors between 1D images or k-spaces at varying encoding times are found. These relative scaling factors are the relative k-space position that can be used for image reconstruction. The gradient measurement technique also can be used to estimate the gradient impulse response function for reproducible gradient estimation as a linear time invariant system. The proposed measurement technique was used to improve reconstructed image quality in 3D ultrashort echo, 2D spiral, and multi-echo bipolar gradient-echo imaging. In multi-echo bipolar gradient-echo imaging, measurement of the k-space trajectory allowed the use of a ramp-sampled trajectory for improved acquisition speed (approximately 30%) and more accurate quantitative fat and water separation in a phantom. The proposed dynamic SPI-based method allows fast k-space trajectory measurement with a simple implementation and no additional hardware for improved image quality. Magn Reson Med 78:950-962, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Dissecting a Light Echo

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for audio animation This animation illustrates how a light echo works, and how an optical illusion of material moving outward is created. A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The animation starts by showing the explosion of a star, which results in a flash of light that moves outward in all directions. The direction of our line of sight from Earth is indicated by the blue arrow. When the light flash reaches surrounding dust, shown here as three dark clouds, the dust is heated up, creating infrared light that begins to travel toward Earth (indicated by the red arrows). Dust closest to the explosion lights up first, while the explosion's shock wave takes longer to reach more distant material. This results in light from different parts of the cloud reaching Earth at different times, creating the illusion of motion over time. As the animation shows, the inclination of the cloud toward our line of sight can result in the material seeming to move both away from and toward the central star.

  14. Simultaneous pH-sensitive and oxygen-sensitive MRI of human gliomas at 3 T using multi-echo amine proton chemical exchange saturation transfer spin-and-gradient echo echo-planar imaging (CEST-SAGE-EPI).

    Science.gov (United States)

    Harris, Robert J; Yao, Jingwen; Chakhoyan, Ararat; Raymond, Catalina; Leu, Kevin; Liau, Linda M; Nghiemphu, Phioanh L; Lai, Albert; Salamon, Noriko; Pope, Whitney B; Cloughesy, Timothy F; Ellingson, Benjamin M

    2018-04-06

    To introduce a new pH-sensitive and oxygen-sensitive MRI technique using amine proton CEST echo spin-and-gradient echo (SAGE) EPI (CEST-SAGE-EPI). pH-weighting was obtained using CEST estimations of magnetization transfer ratio asymmetry (MTR asym ) at 3 ppm, and oxygen-weighting was obtained using R2' measurements. Glutamine concentration, pH, and relaxation rates were varied in phantoms to validate simulations and estimate relaxation rates. The values of MTR asym and R2' in normal-appearing white matter, T 2 hyperintensity, contrast enhancement, and macroscopic necrosis were measured in 47 gliomas. Simulation and phantom results confirmed an increase in MTR asym with decreasing pH. The CEST-SAGE-EPI estimates of R 2 , R2*, and R2' varied linearly with gadolinium diethylenetriamine penta-acetic acid concentration (R 2  = 6.2 mM -1 ·sec -1 and R2* = 6.9 mM -1 ·sec -1 ). The CEST-SAGE-EPI and Carr-Purcell-Meiboom-Gill estimates of R 2 (R 2  = 0.9943) and multi-echo gradient-echo estimates of R2* (R 2  = 0.9727) were highly correlated. T 2 lesions had lower R2' and higher MTR asym compared with normal-appearing white matter, suggesting lower hypoxia and high acidity, whereas contrast-enhancement tumor regions had elevated R2' and MTR asym , indicating high hypoxia and acidity. The CEST-SAGE-EPI technique provides simultaneous pH-sensitive and oxygen-sensitive image contrasts for evaluation of the brain tumor microenvironment. Advantages include fast whole-brain acquisition, in-line B 0 correction, and simultaneous estimation of CEST effects, R 2 , R2*, and R2' at 3 T. © 2018 International Society for Magnetic Resonance in Medicine.

  15. The novel echo-guided ProGlide technique during percutaneous transfemoral transcatheter aortic valve implantation.

    Science.gov (United States)

    Honda, Yohsuke; Araki, Motoharu; Yamawaki, Masahiro; Tokuda, Takahiro; Tsutumi, Masakazu; Mori, Shinsuke; Sakamoto, Yasunari; Kobayashi, Norihiro; Hirano, Keisuke; Ito, Yoshiaki

    2018-04-01

    The aim of this study was to assess clinical benefit of the Echo-guided ProGlide technique in patients undergoing percutaneous transfemoral transcatheter aortic valve implantation (TF-TAVI). The efficacy of the Echo-guided ProGlide technique during percutaneous TF-TAVI was not previously clarified. A total of 121 consecutive patients who underwent percutaneous TF-TAVI at our institution between February 2014 and July 2017 were enrolled in this study. According to the introduction of this novel technique in March 2016, patients were divided into two groups (echo-guided group who underwent TAVI from March 2016 to July 2017, n = 63; not echo-guided group who underwent TAVI from February 2014 to February 2016, n = 58). The incidence of major vascular complications, defined per the Valve Academic Research Consortium-2 criteria, and ProGlide complications including acute femoral artery stenosis or occlusion and bleeding requiring any intervention. The incidence of major vascular complication and ProGlide complication were significantly lower in the echo-guided group than in not echo-guided group (1.6% vs 17.2%, P guided ProGlide technique was independently associated with prevention of ProGlide complications (odds ratio, 0.11; 95% confidential interval, 0.01-0.76; P = 0.03). This novel Echo-guided ProGlide technique was associated with a lower rate of major vascular complications, particularly ProGlide complications during percutaneous TF-TAVI. © 2017, Wiley Periodicals, Inc.

  16. Investigations on resolution enhancement in EPR by means of electron spin echoes

    International Nuclear Information System (INIS)

    Merks, R.P.J.

    1979-01-01

    The electron spin echo technique has been applied in four types of experiments: the measurement of electric field induced shifts of the EPR line; the detection of electron spin echo ENDOR; a relaxation measurement and the measurement of hyperfine interactions via the nuclear modulation effect. (Auth.)

  17. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  18. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    International Nuclear Information System (INIS)

    Rest, A.; Welch, D.L.; Suntzeff, N.B.; Oaster, L.; Lanning, H.; Olsen, K.; Smith, R.C.; Becker, A.C.; Bergmann, M.; Challis, P.; Clocchiatti, A.; Cook, K.H.; Damke, G.; Garg, A.; Huber, M.E.; Matheson, T.; Minniti, D.; Prieto, J.L.; Wood-Vasey, W.M.

    2008-01-01

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane

  19. Fast-gradient-echo variable-flip-angle imaging of the cervical spine

    International Nuclear Information System (INIS)

    Van Dyke, C.W.; Ross, J.S.; Masaryk, T.J.; Tkach, J.; Beale, S.; Hueftle, M.G.; Kaufman, B.; Modic, M.T.

    1987-01-01

    Two hundred consecutive patients were studied with 4-mm sagittal and axial T1-weighted images and gradient echo sequences with 6-msec or 13-msec echo time (TE) and 10 0 or 60 0 flip angles to evaluate cervical extradural disease. Images were independently evaluated for contrast behavior and anatomy, then directly compared for conspicuity of lesions. FLASH sequences produced better conspicuity of disease in half the imaging time. T1-weighted spin-echo (SE) sequences were more sensitive to marrow changes and intradural disease. Shorter TEs produced overall image improvement and reduced susceptibility effects. A fast and sensitive cervical examination combines sagittal T1-weighted SE with sagittal and axial FLASH 10 0 sequences with 6-msec TE

  20. A comparison between fast and conventional spin-echo in the detection of multiple sclerosis lesions

    International Nuclear Information System (INIS)

    Thorpe, J.W.; Halpin, S.F.; MacManus, D.G.; Barker, G.J.; Kendall, B.E.; Miller, D.H.

    1994-01-01

    Long repetition time (TR) spin-echo (SE) with T 2 - or proton density weighting is the sequence of choice to detect the brain lesions of multiple sclerosis (MS). Fast spin-echo (FSE) permits the generation of T 2 -weighted images with similar contrast to SE but in a fraction of the time. We compared the sensitivity of FSE and SE in the detection of the brain lesions of MS. Six patients with clinically definite MS underwent brain imaging with both dual echo (long TR, long and short echo time (TE) SE and dual echo FSE. The SE and FSE images were first reviewed independently and then compared. A total of 404 lesions was detected on SE and 398 on FSE. Slightly more periventricular lesions were detected using SE than FSE (145 vs 127), whereas more posterior cranial fossa lesions were detected by FSE (77 vs 57). With both SE and FSE the short TE images revealed more lesions than the long echo. These results suggest that FSE could replace SE as the long TR sequence of choice in the investigation of MS. (orig.)

  1. Pre-ejection period by radial artery tonometry supplements echo doppler findings during biventricular pacemaker optimization

    Directory of Open Access Journals (Sweden)

    Qamruddin Salima

    2011-07-01

    Full Text Available Abstract Background Biventricular (Biv pacemaker echo optimization has been shown to improve cardiac output however is not routinely used due to its complexity. We investigated the role of a simple method involving computerized pre-ejection time (PEP assessment by radial artery tonometry in guiding Biv pacemaker optimization. Methods Blinded echo and radial artery tonometry were performed simultaneously in 37 patients, age 69.1 ± 12.8 years, left ventricular (LV ejection fraction (EF 33 ± 10%, during Biv pacemaker optimization. Effect of optimization on echo derived velocity time integral (VTI, ejection time (ET, myocardial performance index (MPI, radial artery tonometry derived PEP and echo-radial artery tonometry derived PEP/VTI and PEP/ET indices was evaluated. Results Significant improvement post optimization was achieved in LV ET (286.9 ± 37.3 to 299 ± 34.6 ms, p Conclusion An acute shortening of PEP by radial artery tonometry occurs post Biv pacemaker optimization and correlates with improvement in hemodynamics by echo Doppler and may provide a cost-efficient approach to assist with Biv pacemaker echo optimization.

  2. Contrast-enhanced MR imaging of metastatic brain tumor at 3 Tesla. Utility of T1-weighted SPACE compared with 2D spin echo and 3D gradient echo sequence

    International Nuclear Information System (INIS)

    Komada, Tomohiro; Naganawa, Shinji; Ogawa, Hiroshi

    2008-01-01

    We evaluated the newly developed whole-brain, isotropic, 3-dimensional turbo spin-echo imaging with variable flip angle echo train (SPACE) for contrast-enhanced T 1 -weighted imaging in detecting brain metastases at 3 tesla (T). Twenty-two patients with suspected brain metastases underwent postcontrast study with SPACE, magnetization-prepared rapid gradient-echo (MP-RAGE), and 2-dimensional T 1 -weighted spin echo (2D-SE) imaging at 3 T. We quantitatively compared SPACE, MP-RAGE, and 2D-SE images by using signal-to-noise ratios (SNRs) for gray matter (GM) and white matter (WM) and contrast-to-noise ratios (CNRs) for GM-to-WM, lesion-to-GM, and lesion-to-WM. Two blinded radiologists evaluated the detection of brain metastases by segment-by-segment analysis and continuously-distributed test. The CNR between GM and WM was significantly higher on MP-RAGE images than on SPACE images (P 1 -weighted imaging. (author)

  3. NMR polarization echoes in a nematic liquid crystal

    Science.gov (United States)

    Levstein, Patricia R.; Chattah, Ana K.; Pastawski, Horacio M.; Raya, Jésus; Hirschinger, Jérôme

    2004-10-01

    We have modified the polarization echo (PE) sequence through the incorporation of Lee-Goldburg cross polarization steps to quench the 1H-1H dipolar dynamics. In this way, the 13C becomes an ideal local probe to inject and detect polarization in the proton system. This improvement made possible the observation of the local polarization P00(t) and polarization echoes in the interphenyl proton of the liquid crystal N-(4-methoxybenzylidene)-4-butylaniline. The decay of P00(t) was well fitted to an exponential law with a characteristic time τC≈310 μs. The hierarchy of the intramolecular dipolar couplings determines a dynamical bottleneck that justifies the use of the Fermi Golden Rule to obtain a spectral density consistent with the structural parameters. The time evolution of P00(t) was reversed by the PE sequence generating echoes at the time expected by the scaling of the dipolar Hamiltonian. This indicates that the reversible 1H-1H dipolar interaction is the main contribution to the local polarization decrease and that the exponential decay for P00(t) does not imply irreversibility. The attenuation of the echoes follows a Gaussian law with a characteristic time τφ≈527 μs. The shape and magnitude of the characteristic time of the PE decay suggest that it is dominated by the unperturbed homonuclear dipolar Hamiltonian. This means that τφ is an intrinsic property of the dipolar coupled network and not of other degrees of freedom. In this case, one cannot unambiguously identify the mechanism that produces the decoherence of the dipolar order. This is because even weak interactions are able to break the fragile multiple coherences originated on the dipolar evolution, hindering its reversal. Other schemes to investigate these underlying mechanisms are proposed.

  4. Realtime identification of the propagation direction of received echoes in long range ultrasonic testing

    International Nuclear Information System (INIS)

    Choi, Myoung Seon; Heo, Won Nyoung

    2013-01-01

    In long range ultrasonic testing, a phased array probe composed of multiple identical transducers with an uniform interval of one quarter wavelength is usually used for the transmission or reception directivity control. This paper shows that the propagation directions of individual echoes can be identified in real time by displaying the inputs of a process for summing the constitution reception signals after compensating the phase difference due to the transducer interval, together with the output of the process. A constructive interference of the constitution echoes indicates a forward direction echo propagating along an intended direction while a destructive interference implies a reverse direction echo propagating along the direction opposite to the intended one

  5. Normal range of hepatic fat fraction on dual- and triple-echo fat quantification MR in children.

    Science.gov (United States)

    Shin, Hyun Joo; Kim, Hyun Gi; Kim, Myung-Joon; Koh, Hong; Kim, Ha Yan; Roh, Yun Ho; Lee, Mi-Jung

    2015-01-01

    To evaluate hepatic fat fraction on dual- and triple-echo gradient-recalled echo MRI sequences in healthy children. We retrospectively reviewed the records of children in a medical check-up clinic from May 2012 to November 2013. We excluded children with abnormal laboratory findings or those who were overweight. Hepatic fat fraction was measured on dual- and triple-echo sequences using 3T MRI. We compared fat fractions using the Wilcoxon signed rank test and the Bland-Altman 95% limits of agreement. The correlation between fat fractions and clinical and laboratory findings was evaluated using Spearman's correlation test, and the cut-off values of fat fractions for diagnosing fatty liver were obtained from reference intervals. In 54 children (M:F = 26:28; 5-15 years; mean 9 years), the dual fat fraction (0.1-8.0%; median 1.6%) was not different from the triple fat fraction (0.4-6.5%; median 2.7%) (p = 0.010). The dual- and triple-echo fat fractions showed good agreement using a Bland-Altman plot (-0.6 ± 2.8%). Eight children (14.8%) on dual-echo sequences and six (11.1%) on triple-echo sequences had greater than 5% fat fraction. From these children, six out of eight children on dual-echo sequences and four out of six children on triple-echo sequences had a 5-6% hepatic fat fraction. When using a cut-off value of a 6% fat fraction derived from a reference interval, only 3.7% of children were diagnosed with fatty liver. There was no significant correlation between clinical and laboratory findings with dual and triple-echo fat fractions. Dual fat fraction was not different from triple fat fraction. We suggest a cut-off value of a 6% fat fraction is more appropriate for diagnosing fatty liver on both dual- and triple-echo sequences in children.

  6. Robust water fat separated dual-echo MRI by phase-sensitive reconstruction.

    Science.gov (United States)

    Romu, Thobias; Dahlström, Nils; Leinhard, Olof Dahlqvist; Borga, Magnus

    2017-09-01

    The purpose of this work was to develop and evaluate a robust water-fat separation method for T1-weighted symmetric two-point Dixon data. A method for water-fat separation by phase unwrapping of the opposite-phase images by phase-sensitive reconstruction (PSR) is introduced. PSR consists of three steps; (1), identification of clusters of tissue voxels; (2), unwrapping of the phase in each cluster by solving Poisson's equation; and (3), finding the correct sign of each unwrapped opposite-phase cluster, so that the water-fat images are assigned the correct identities. Robustness was evaluated by counting the number of water-fat swap artifacts in a total of 733 image volumes. The method was also compared to commercial software. In the water-fat separated image volumes, the PSR method failed to unwrap the phase of one cluster and misclassified 10. One swap was observed in areas affected by motion and was constricted to the affected area. Twenty swaps were observed surrounding susceptibility artifacts, none of which spread outside the artifact affected regions. The PSR method had fewer swaps when compared to commercial software. The PSR method can robustly produce water-fat separated whole-body images based on symmetric two-echo spoiled gradient echo images, under both ideal conditions and in the presence of common artifacts. Magn Reson Med 78:1208-1216, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Simultaneous colour visualizations of multiple ALS point cloud attributes for land cover and vegetation analysis

    Science.gov (United States)

    Zlinszky, András; Schroiff, Anke; Otepka, Johannes; Mandlburger, Gottfried; Pfeifer, Norbert

    2014-05-01

    LIDAR point clouds hold valuable information for land cover and vegetation analysis, not only in the spatial distribution of the points but also in their various attributes. However, LIDAR point clouds are rarely used for visual interpretation, since for most users, the point cloud is difficult to interpret compared to passive optical imagery. Meanwhile, point cloud viewing software is available allowing interactive 3D interpretation, but typically only one attribute at a time. This results in a large number of points with the same colour, crowding the scene and often obscuring detail. We developed a scheme for mapping information from multiple LIDAR point attributes to the Red, Green, and Blue channels of a widely used LIDAR data format, which are otherwise mostly used to add information from imagery to create "photorealistic" point clouds. The possible combinations of parameters are therefore represented in a wide range of colours, but relative differences in individual parameter values of points can be well understood. The visualization was implemented in OPALS software, using a simple and robust batch script, and is viewer independent since the information is stored in the point cloud data file itself. In our case, the following colour channel assignment delivered best results: Echo amplitude in the Red, echo width in the Green and normalized height above a Digital Terrain Model in the Blue channel. With correct parameter scaling (but completely without point classification), points belonging to asphalt and bare soil are dark red, low grassland and crop vegetation are bright red to yellow, shrubs and low trees are green and high trees are blue. Depending on roof material and DTM quality, buildings are shown from red through purple to dark blue. Erroneously high or low points, or points with incorrect amplitude or echo width usually have colours contrasting from terrain or vegetation. This allows efficient visual interpretation of the point cloud in planar

  8. Long T2 suppression in native lung 3-D imaging using k-space reordered inversion recovery dual-echo ultrashort echo time MRI.

    Science.gov (United States)

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-08-01

    Long T2 species can interfere with visualization of short T2 tissue imaging. For example, visualization of lung parenchyma can be hindered by breathing artifacts primarily from fat in the chest wall. The purpose of this work was to design and evaluate a scheme for long T2 species suppression in lung parenchyma imaging using 3-D inversion recovery double-echo ultrashort echo time imaging with a k-space reordering scheme for artifact suppression. A hyperbolic secant (HS) pulse was evaluated for different tissues (T1/T2). Bloch simulations were performed with the inversion pulse followed by segmented UTE acquisition. Point spread function (PSF) was simulated for a standard interleaved acquisition order and a modulo 2 forward-reverse acquisition order. Phantom and in vivo images (eight volunteers) were acquired with both acquisition orders. Contrast to noise ratio (CNR) was evaluated in in vivo images prior to and after introduction of the long T2 suppression scheme. The PSF as well as phantom and in vivo images demonstrated reduction in artifacts arising from k-space modulation after using the reordering scheme. CNR measured between lung and fat and lung and muscle increased from -114 and -148.5 to +12.5 and 2.8 after use of the IR-DUTE sequence. Paired t test between the CNRs obtained from UTE and IR-DUTE showed significant positive change (p lung-fat CNR and p = 0.03 for lung-muscle CNR). Full 3-D lung parenchyma imaging with improved positive contrast between lung and other long T2 tissue types can be achieved robustly in a clinically feasible time using IR-DUTE with image subtraction when segmented radial acquisition with k-space reordering is employed.

  9. Meteor head echo polarization at 930 MHz studied with the EISCAT UHF HPLA radar

    Directory of Open Access Journals (Sweden)

    G. Wannberg

    2011-06-01

    Full Text Available The polarization characteristics of 930-MHz meteor head echoes have been studied for the first time, using data obtained in a series of radar measurements carried out with the tristatic EISCAT UHF high power, large aperture (HPLA radar system in October 2009. An analysis of 44 tri-static head echo events shows that the polarization of the echo signal recorded by the Kiruna receiver often fluctuates strongly on time scales of tens of microseconds, illustrating that the scattering process is essentially stochastic. On longer timescales (> milliseconds, more than 90 % of the recorded events show an average polarization signature that is independent of meteor direction of arrival and echo strength and equal to that of an incoherent-scatter return from underdense plasma filling the tristatic observation volume. This shows that the head echo plasma targets scatter isotropically, which in turn implies that they are much smaller than the 33-cm wavelength and close to spherically symmetric, in very good agreement with results from a previous EISCAT UHF study of the head echo RCS/meteor angle-of-incidence relationship. Significant polarization is present in only three events with unique target trajectories. These all show a larger effective target cross section transverse to the trajectory than parallel to it. We propose that the observed polarization may be a signature of a transverse charge separation plasma resonance in the region immediately behind the meteor head, similar to the resonance effects previously discussed in connection with meteor trail echoes by Herlofson, Billam and Browne, Jones and Jones and others.

  10. Electron Dropout Echoes Induced by Interplanetary Shock: A Statistical Study

    Science.gov (United States)

    Liu, Z.; Zong, Q.; Hao, Y.; Zhou, X.; Ma, X.; Liu, Y.

    2017-12-01

    "Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the out radiation belt region has been investigated systematically. The electron dropout and its echoes are usually found for higher energy (> 300 keV) channels fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on LANL satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the electric field impulse induced by the IP shock produces a more pronounced inward migration of electrons at the dusk side, resulting in the observed dusk-side moderate dropout of electron flux and its consequent echoes.

  11. Optimization image of magnetic resonance imaging (MRI) T2 fast spin echo (FSE) with variation echo train length (ETL) on the rupture tendon achilles case

    International Nuclear Information System (INIS)

    Muzamil, Akhmad; Firmansyah, Achmad Haries

    2017-01-01

    The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (p<0.05) of Tendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information. (paper)

  12. Spatially Resolved Analysis of Bragg Selectivity

    Directory of Open Access Journals (Sweden)

    Tina Sabel

    2015-11-01

    Full Text Available This paper targets an inherent control of optical shrinkage in photosensitive polymers, contributing by means of spatially resolved analysis of volume holographic phase gratings. Point by point scanning of the local material response to the Gaussian intensity distribution of the recording beams is accomplished. Derived information on the local grating period and grating slant is evaluated by mapping of optical shrinkage in the lateral plane as well as through the depth of the layer. The influence of recording intensity, exposure duration and the material viscosity on the Bragg selectivity is investigated.

  13. A short TE gradient-echo sequence using asymmetric sampling

    International Nuclear Information System (INIS)

    Fujita, Norihiko; Harada, Kohshi; Sakurai, Kosuke; Nakanishi, Katsuyuki; Kim, Shyogen; Kozuka, Takahiro

    1990-01-01

    We have developed a gradient-echo pulse sequence with a short TE less than 4 msec using a data set of asymmetric off-center sampling with a broad bandwidth. The use of such a short TE significantly reduces T 2 * dephasing effect even in a two-dimensional mode, and by collecting an off-center echo, motion-induced phase dispersion is also considerably decreased. High immunity of this sequence to these dephasing effects permits clear visualization of anatomical details near the skull base where large local field inhomogeneities and rapid blood flow such as in the internal carotid artery are present. (author)

  14. Spin-echo Echo-planar Imaging MR Elastography versus Gradient-echo MR Elastography for Assessment of Liver Stiffness in Children and Young Adults Suspected of Having Liver Disease.

    Science.gov (United States)

    Serai, Suraj D; Dillman, Jonathan R; Trout, Andrew T

    2017-03-01

    Purpose To compare two-dimensional (2D) gradient-recalled echo (GRE) and 2D spin-echo (SE) echo-planar imaging (EPI) magnetic resonance (MR) elastography for measurement of hepatic stiffness in pediatric and young adult patients suspected of having liver disease. Materials and Methods In this institutional review board-approved, HIPAA-compliant study, 58 patients underwent both 2D GRE and 2D SE-EPI MR elastography at 1.5 T during separate breath holds. Liver stiffness (mean of means; in kilopascals) was measured by five blinded reviewers. Pooled mean liver stiffness and region-of-interest (ROI) size were compared by using paired t tests. Intraclass correlation coefficients (ICCs) were used to assess agreement between techniques. Respiratory motion artifacts were compared across sequences by using the Fisher exact test. Results Mean patient age was 14.7 years ± 5.2 (standard deviation; age range, 0.7-20.5 years), and 55.2% (32 of 58) of patients were male. Mean liver stiffness was 2.92 kPa ± 1.29 measured at GRE MR elastography and 2.76 kPa ± 1.39 at SE-EPI MR elastography (n = 290; P = .15). Mean ROI sizes were 8495 mm 2 ± 4482 for 2D GRE MR elastography and 15 176 mm 2 ± 7609 for 2D SE-EPI MR elastography (n = 290; P range, 0.91-0.95). Moderate or severe breathing artifacts were observed on 27.5% (16 of 58) of 2D GRE images versus 0% 2D SE-EPI images (P < .001). Conclusion There is excellent agreement on measured hepatic stiffness between 2D GRE and 2D SE-EPI MR elastography across multiple reviewers. SE-EPI MR elastography allowed for stiffness measurement across larger areas of the liver and can be performed in a single breath hold. © RSNA, 2016.

  15. Study on sociological approach to resolve maintenance related social problems

    International Nuclear Information System (INIS)

    Aoki, Takayuki

    2007-01-01

    This study proposes a sociological approach to resolve maintenance related social problems. As a result of consideration, the followings were found. (1) In general, solutions to some kinds of questions can be deduced from basic laws using some theories or methodologies in the field of the natural science or engineering. The approach to resolve maintenance related social problems is similar to the approach in the natural science or engineering. (2) The points of view based on fundamental human rights, market principles and community principles, and so on, are very important in resolving maintenance related social problems and can be placed as theories or tools for resolution. (3) If such theories or tools for resolving maintenance related social problems as described above are systematically prepared, it is estimated that it becomes very much easier to resolve maintenance related social problems. (author)

  16. Hazardous Waste Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Resource Conservation and Recovery Act (RCRA).

  17. CISS MR imaging findings of epidermoid tumor : comparison with spin-echo images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Woo; Kim, Hak Jin; Choi, Sang Yoel; Heo, Jin Sam; Jung, Hoon Sik; Lee, Suck Hong; Kim, Byung Soo [Pusan National Univ. College of Medicine, Pusan (Korea, Republic of); Lee, Jong Wha [Ulsan Univ. Hospital, Ulsan (Korea, Republic of)

    1999-03-01

    To evaluate CISS MR imaging findings of epidermoid tumor in comparison with conventional spin-echo images. We studied 6 cases of epidermoid tumor in the subarachnoid space. We used a 1.5T MR unit to obtain CISS images(TR/TE/FA ; 12.3msec/5.9 msec/700) and T1- and T2- weighted spin-echo images. CISS MR imaging findings were evaluated with respect to tumor's signal intensity , contour, and relation with adjacent structures. Conspicuity of the tumor was compared between CISS and spin-echo images. A quantitative analysis was performed by measuring tumor to CSF contrast. In qualitative analysis, three radiologists independently compared CISS image and conventional spin-echo images for visibility of the tumor and graded them into three categories( poor, good, and excellent). Epidermoid tumors were located in the cerebellopontine angle in 4 cases, the prepontine cisstern in 1 case, and the cerebellopontine angle-prepontine cistern in 1 case. The tumors were hyperintense relative to brain parenchyma and hypointense relative to CSF on CISS images, were lobulated, encased adjacent cranial nerve and vessels, and invaginated into brain parenchyma. In qualitative analysis, CISS images showed clear demarcation between tumor and CSF, exact tumor extension, and tumor's relation with cranial nerves and vessels better than conventional spin-echo images. In quantitative analysis, the mean contrast values of tumor to CSF on T1-, T2-weighted images, and CISS images were 0.12, 0.06, and 0.52, respectively. The contrast value for CISS images was significantly higher than that for T1-and T2-weighted images(p<0.05). Epidermoid tumors in the subarachnoid space are better demonstrated on CISS images than on conventional spin-echo images. This special MR sequence can be added as a routine protocol in the diagnosis of subarachnoid epidermoid tumor.

  18. Effect of Antenna Pointing Errors on SAR Imaging Considering the Change of the Point Target Location

    Science.gov (United States)

    Zhang, Xin; Liu, Shijie; Yu, Haifeng; Tong, Xiaohua; Huang, Guoman

    2018-04-01

    Towards spaceborne spotlight SAR, the antenna is regulated by the SAR system with specific regularity, so the shaking of the internal mechanism is inevitable. Moreover, external environment also has an effect on the stability of SAR platform. Both of them will cause the jitter of the SAR platform attitude. The platform attitude instability will introduce antenna pointing error on both the azimuth and range directions, and influence the acquisition of SAR original data and ultimate imaging quality. In this paper, the relations between the antenna pointing errors and the three-axis attitude errors are deduced, then the relations between spaceborne spotlight SAR imaging of the point target and antenna pointing errors are analysed based on the paired echo theory, meanwhile, the change of the azimuth antenna gain is considered as the spotlight SAR platform moves ahead. The simulation experiments manifest the effects on spotlight SAR imaging caused by antenna pointing errors are related to the target location, that is, the pointing errors of the antenna beam will severely influence the area far away from the scene centre of azimuth direction in the illuminated scene.

  19. Wideband Radar Echo Frequency-domain Simulation and Analysis for High Speed Moving Targets

    Directory of Open Access Journals (Sweden)

    Ning Chao

    2014-04-01

    Full Text Available A frequency-domain method is proposed for wideband radar echo simulation of high-speed moving targets. Based on the physical process of electromagnetic waves observing a moving target, a frequency-domain echo model of wideband radar is constructed, and the block diagram of the radar echo simulation in frequency-domain is presented. Then, the impacts of radial velocity and slant range on the matching filtering of LFM radar are analyzed, and some quantitative conclusions on the shift and expansion of the radar profiles are obtained. Simulation results illustrate the correctness and efficiency of the proposed method.

  20. Hepatic fat quantification using automated six-point Dixon: Comparison with conventional chemical shift based sequences and computed tomography.

    Science.gov (United States)

    Shimizu, Kie; Namimoto, Tomohiro; Nakagawa, Masataka; Morita, Kosuke; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Yamashita, Yasuyuki

    To compare automated six-point Dixon (6-p-Dixon) MRI comparing with dual-echo chemical-shift-imaging (CSI) and CT for hepatic fat fraction in phantoms and clinical study. Phantoms and fifty-nine patients were examined both MRI and CT for quantitative fat measurements. In phantom study, linear regression between fat concentration and 6-p-Dixon showed good agreement. In clinical study, linear regression between 6-p-Dixon and dual-echo CSI showed good agreement. CT attenuation value was strongly correlated with 6-p-Dixon (R 2 =0.852; PDixon and dual-echo CSI were accurate correlation with CT attenuation value of liver parenchyma. 6-p-Dixon has the potential for automated hepatic fat quantification. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Diffusion-weighted single shot echo planar imaging of colorectal cancer using a sensitivity-encoding technique

    International Nuclear Information System (INIS)

    Nasu, Katsuhiro; Kuroki, Yoshihumi; Murakami, Koji; Nawano, Shigeru; Kuroki, Seiko; Moriyama, Noriyuki

    2004-01-01

    We wanted to determine the feasibility of diffusion-weighted single shot echo planar imaging using a sensitivity encoding diffusion weighted imaging (SENSE-DWI) technique in depicting colorectal cancer. Forty-two patients with sigmoid colon cancer and rectal cancer, all proven pathologically, were examined on T2-turbo spin echo (TSE) and SENSE-DWI. No bowel preparation was performed before examination. The b-factors used in SENSE-DWI were zero and 1000 s/mm 2 . In 10 randomly selected cases, the images whose b-factors were 250 and 500 s/mm 2 were also obtained. The reduction factor of SENSE was 2.0 in all sequences. Two radiologists evaluated the obtained images from the viewpoints of tumor detectability, image distortion and misregistration of the tumors. The apparent diffusion coefficients (ADCs) of the tumors and urine in the urinary bladders in each patient were measured to evaluate the correlation between ADC and pathological classification of each tumor. All tumors were depicted hyperintensely on SENSE-DWI. Even though single shot echo planar imaging (EPI) was used, the image distortion and misregistration was quite pronounced because of simultaneous use of SENSE. On SENSE-DWI whose b-factor was 1000 s/mm 2 , the normal colon wall and feces were always hypointense and easily differentiated from the tumors. The mean ADC value of each tumor was 1.02±0.1 (x 10 -3 ) mm 2 /s. No overt correlation can be pointed out between ADC and pathological classification of each tumor. SENSE-DWI is a feasible method for depicting colorectal cancer. SENSE-DWI provides strong contrast among colorectal cancers, normal rectal wall and feces. (authors)

  2. Modified echo peak correction for radial acquisition regime (RADAR).

    Science.gov (United States)

    Takizawa, Masahiro; Ito, Taeko; Itagaki, Hiroyuki; Takahashi, Tetsuhiko; Shimizu, Kanichirou; Harada, Junta

    2009-01-01

    Because radial sampling imposes many limitations on magnetic resonance (MR) imaging hardware, such as on the accuracy of the gradient magnetic field or the homogeneity of B(0), some correction of the echo signal is usually needed before image reconstruction. In our previous study, we developed an echo-peak-shift correction (EPSC) algorithm not easily affected by hardware performance. However, some artifacts remained in lung imaging, where tissue is almost absent, or in cardiac imaging, which is affected by blood flow. In this study, we modified the EPSC algorithm to improve the image quality of the radial aquisition regime (RADAR) and expand its application sequences. We assumed the artifacts were mainly caused by errors in the phase map for EPSC and used a phantom on a 1.5-tesla (T) MR scanner to investigate whether to modify the EPSC algorithm. To evaluate the effectiveness of EPSC, we compared results from T(1)- and T(2)-weighted images of a volunteer's lung region using the current and modified EPSC. We then applied the modified EPSC to RADAR spin echo (SE) and RADAR balanced steady-state acquisition with rewound gradient echo (BASG) sequence. The modified EPSC reduced phase discontinuity in the reference data used for EPSC and improved visualization of blood vessels in the lungs. Motion and blood flow caused no visible artifacts in the resulting images in either RADAR SE or RADAR BASG sequence. Use of the modified EPSC eliminated artifacts caused by signal loss in the reference data for EPSC. In addition, the modified EPSC was applied to RADAR SE and RADAR BASG sequences.

  3. Modified echo peak correction for radial acquisition regime (RADAR)

    International Nuclear Information System (INIS)

    Takizawa, Masahiro; Ito, Taeko; Itagaki, Hiroyuki; Takahashi, Tetsuhiko; Shimizu, Kanichirou; Harada, Junta

    2009-01-01

    Because radial sampling imposes many limitations on magnetic resonance (MR) imaging hardware, such as on the accuracy of the gradient magnetic field or the homogeneity of B 0 , some correction of the echo signal is usually needed before image reconstruction. In our previous study, we developed an echo-peak-shift correction (EPSC) algorithm not easily affected by hardware performance. However, some artifacts remained in lung imaging, where tissue is almost absent, or in cardiac imaging, which is affected by blood flow. In this study, we modified the EPSC algorithm to improve the image quality of the radial acquisition regime (RADAR) and expand its application sequences. We assumed the artifacts were mainly caused by errors in the phase map for EPSC and used a phantom on a 1.5-tesla (T) MR scanner to investigate whether to modify the EPSC algorithm. To evaluate the effectiveness of EPSC, we compared results from T 1 -and T 2 -weighted images of a volunteer's lung region using the current and modified EPSC. We then applied the modified EPSC to RADAR spin echo (SE) and RADAR balanced steady-state acquisition with rewound gradient echo (BASG) sequence. The modified EPSC reduced phase discontinuity in the reference data used for EPSC and improved visualization of blood vessels in the lungs. Motion and blood flow caused no visible artifacts in the resulting images in either RADAR SE or RADAR BASG sequence. Use of the modified EPSC eliminated artifacts caused by signal loss in the reference data for EPSC. In addition, the modified EPSC was applied to RADAR SE and RADAR BASG sequences. (author)

  4. Evaluation of the chondromalacia patella using a microscopy coil: comparison of the two-dimensional fast spin echo techniques and the three-dimensional fast field echo techniques.

    Science.gov (United States)

    Kim, Hyun-joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung-Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast field echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FS-PD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p chondromalacia patella.

  5. Human listeners provide insights into echo features used by dolphins (Tursiops truncatus) to discriminate among objects.

    Science.gov (United States)

    Delong, Caroline M; Au, Whitlow W L; Harley, Heidi E; Roitblat, Herbert L; Pytka, Lisa

    2007-08-01

    Echolocating bottlenose dolphins (Tursiops truncatus) discriminate between objects on the basis of the echoes reflected by the objects. However, it is not clear which echo features are important for object discrimination. To gain insight into the salient features, the authors had a dolphin perform a match-to-sample task and then presented human listeners with echoes from the same objects used in the dolphin's task. In 2 experiments, human listeners performed as well or better than the dolphin at discriminating objects, and they reported the salient acoustic cues. The error patterns of the humans and the dolphin were compared to determine which acoustic features were likely to have been used by the dolphin. The results indicate that the dolphin did not appear to use overall echo amplitude, but that it attended to the pattern of changes in the echoes across different object orientations. Human listeners can quickly identify salient combinations of echo features that permit object discrimination, which can be used to generate hypotheses that can be tested using dolphins as subjects.

  6. MPD model for radar echo signal of hypersonic targets

    Directory of Open Access Journals (Sweden)

    Xu Xuefei

    2014-08-01

    Full Text Available The stop-and-go (SAG model is typically used for echo signal received by the radar using linear frequency modulation pulse compression. In this study, the authors demonstrate that this model is not applicable to hypersonic targets. Instead of SAG model, they present a more realistic echo signal model (moving-in-pulse duration (MPD for hypersonic targets. Following that, they evaluate the performances of pulse compression under the SAG and MPD models by theoretical analysis and simulations. They found that the pulse compression gain has an increase of 3 dB by using the MPD model compared with the SAG model in typical cases.

  7. Gravitational wave echoes from macroscopic quantum gravity effects

    Energy Technology Data Exchange (ETDEWEB)

    Barceló, Carlos [Instituto de Astrofísica de Andalucía (IAA-CSIC),Glorieta de la Astronomía, 18008 Granada (Spain); Carballo-Rubio, Raúl [The Cosmology & Gravity Group and the Laboratory for Quantum Gravity & Strings,Department of Mathematics & Applied Mathematics, University of Cape Town,Private Bag, Rondebosch 7701 (South Africa); Garay, Luis J. [Departamento de Física Teórica II,Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia (IEM-CSIC),Serrano 121, 28006 Madrid (Spain)

    2017-05-10

    New theoretical approaches developed in the last years predict that macroscopic quantum gravity effects in black holes should lead to modifications of the gravitational wave signals expected in the framework of classical general relativity, with these modifications being characterized in certain scenarios by the existence of dampened repetitions of the primary signal. Here we use the fact that non-perturbative corrections to the near-horizon external geometry of black holes are necessary for these modifications to exist, in order to classify different proposals and paradigms with respect to this criterion and study in a neat and systematic way their phenomenology. Proposals that lead naturally to the existence of echoes in the late-time ringdown of gravitational wave signals from black hole mergers must share the replacement of black holes by horizonless configurations with a physical surface showing reflective properties in the relevant range of frequencies. On the other hand, proposals or paradigms that restrict quantum gravity effects on the external geometry to be perturbative, such as black hole complementarity or the closely related firewall proposal, do not display echoes. For the sake of completeness we exploit the interplay between the timescales associated with the formation of firewalls and the mechanism behind the existence of echoes in order to conclude that even unconventional distortions of the firewall concept (such as naked firewalls) do not lead to this phenomenon.

  8. Proton T2 relaxation effect of superparamagnetic iron oxide. Comparison between fast spin echo and conventional spin echo sequence

    International Nuclear Information System (INIS)

    Tanimoto, Akihiro; Satoh, Yoshinori; Higuchi, Nobuya; Izutsu, Mutsumu; Yuasa, Yuji; Hiramatsu, Kyoichi

    1995-01-01

    Superparamagnetic iron oxide (SPIO) particles have been known to show a great T 2 relaxation effect in the liver, which contributes to significant liver signal decrease and detection of hepatic neoplasms. Recently, fast spin echo (FSE) sequence with less scanning time than conventional spin echo (SE) sequence has been rapidly introduced in clinical MR imaging. To investigate whether SPIO would show decreased T 2 relaxation effect on FSE, we obtained T 2 relaxivity (R2) of SPIO in vitro and liver signal decrease caused by SPIO in vivo. SPIO showed 20% less R2 on Carr-Purcell-Meiboom-Gill (CPMG) sequence than on SE. Relative liver signal-to-noise ratio (SNR) decrease caused by SPIO was significantly smaller (p 2 relaxation effect on FSE than on SE. However, further studies will be required to assess the diagnostic capability of SPIO on FSE, in the detection of hepatic neoplasms. (author)

  9. Externally calibrated parallel imaging for 3D multispectral imaging near metallic implants using broadband ultrashort echo time imaging.

    Science.gov (United States)

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Reeder, Scott B

    2017-06-01

    To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. Magn Reson Med 77:2303-2309, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Slow flow and mural thrombus in aortic diseases: Spin-echo MR findings and their differentiation

    International Nuclear Information System (INIS)

    Chung, Jin Wook; Park, Jae Hyung; Han, Man Chung

    1993-01-01

    In order to evaluate the ability of spin-echo MR imaging to differentiate slow flow from mural thrombus in aortic diseases, we reviewed the spin-echo MR images of 13 patients with intraaortic thrombus documented by CT (N=11) or aortography (N=2). Six patients had aortic aneurysms and seven had aortic dissections. Intraaortic mural thrombi were accompanied by flow-related intraluminal signal of various pattern and extents in all 13 patients. On 10 gated MR studies, slow flow regions showed ever-echo rephasing phenomenon (N=8), interslice variation of signal intensities of the intraluminal signal (N=7) and flow-related ghost artifact (N=2). However, these MR flow phenomena were obscured on two of three non-gated studies. Seven of 13 intraaortic thrombi remained hyperintense on T2-weighted second-echo images. In these circumstance, a hypointense boundary layer between slow flow and mural thrombus, which was caused by either ' boundary layer dephasing phenomenon' of slow flow or 'paramagnetic T2 shortening' of fresh clot at the edge of mural thrombus, was very useful in discriminating the area of slow flow from that of mural thrombus. Proper interpretation of spin-echo MR images may obviate the need for phase display imaging or gradient-echo imaging in differentiating slow flow and mural thrombus

  11. Electron ECHO 6: a study by particle detectors of electrons artificially injected into the magnetosphere

    International Nuclear Information System (INIS)

    Malcolm, P.R.

    1986-01-01

    The ECHO-6 sounding rocket was launched from the Poke Flat Research Range, Alaska on 30 March 1983. A Terrier-Black Brant launch vehicle carried the payload on a northward trajectory over an auroral arc and to an apogee of 216 kilometers. The primary objective of the ECHO-6 experiment was to evaluate electric fields, magnetic fields, and plasma processes in the distant magnetosphere by injecting electron beams in the ionosphere and observing conjugate echoes. The experiment succeeded in injection 10-36 keV beams during the existence of a moderate growth-phase aurora, an easterly electrojet system, and a pre-midnight inflation condition of the magnetosphere. The ECHO-6 payload system consisted of an accelerator MAIN payload, a free-flying Plasma Diagnostics Package (PDP), and four rocket-propelled Throw Away Detectors (TADs). The PDP was ejected from the MAIN payload to analyze electric fields, plasma particles, energetic electrons, and photometric effects produced by beam injections. The TADs were ejected from the MAIN payload in a pattern to detect echoes in the conjugate echo region south of the beam-emitting MAIN payload. The TADs reached distances exceeding 3 kilometers from the MAIN payload and made measurements of the ambient electrons by means of solid-state detectors and electrostatic analyzers

  12. Supporting and improving community health services-a prospective evaluation of ECHO technology in community palliative care nursing teams.

    Science.gov (United States)

    White, Clare; McIlfatrick, Sonja; Dunwoody, Lynn; Watson, Max

    2015-12-01

    Project ECHO (Extension for Community Healthcare Outcomes) uses teleconferencing technology to support and train healthcare providers (HCPs) remotely, and has improved care across the USA. A 6-month pilot was trialled in a community palliative care nursing setting to determine if ECHO would be effective in the UK in providing education and support to community hospice nurses (CHN). The pilot involved weekly 2 hour sessions of teaching and case-based discussions facilitated by hospice staff linking with nine teams of CHN using video conferencing technology. A mixed-methods prospective longitudinal cohort study was used to evaluate the pilot. Each CHN provided demographic data, and completed a written knowledge assessment and a self-efficacy tool before and after the pilot. Two focus groups were also performed after the pilot. 28 CHNs completed the evaluation. Mean knowledge score improved significantly from 71.3% to 82.7% (p=0.0005) as did overall self-efficacy scores following the ECHO pilot. Pre-ECHO (p=0.036) and Retro-Pretest ECHO (p=0.0005) self-efficacy were significantly lower than post-ECHO. There was no significant difference between Pretest and Retro-Pretest ECHO self-efficacy (p=0.063). 96% recorded gains in learning, and 90% felt that ECHO had improved the care they provided for patients. 83% would recommend ECHO to other HCPs. 70% stated the technology used in ECHO had given them access to education that would have been hard to access due to geography. This study supports the use of Project ECHO for CHNs in the UK by demonstrating how a 6-month pilot improved knowledge and self-efficacy. As a low-cost high-impact model, ECHO provides an affordable solution to addressing growing need. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Rotation commensurate echo of asymmetric molecules—Molecular fingerprints in the time domain

    Energy Technology Data Exchange (ETDEWEB)

    Chesnokov, E. N., E-mail: chesnok@kinetics.nsc.ru [Institute of Chemical Kinetics and Combustion, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Kubarev, V. V. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Koshlyakov, P. V. [Institute of Chemical Kinetics and Combustion, Novosibirsk 630090 (Russian Federation)

    2014-12-29

    Using the pulses of terahertz free electron laser and ultra-fast Schottky diode detectors, we observed the coherent transients within a free induction decay of gaseous nitrogen dioxide NO{sub 2}. The laser excited different sub-bands of rotation spectra of NO{sub 2} containing about 50–70 lines. The free induction signal continued more than 30 ns and consisted of many echo-like bursts duration about 0.2 ns. Unlike the similar effect observed previously for linear and symmetric top molecules, the sequence of echo bursts is not periodic. The values for delay of individual echo are stable, and the set of these delays can be considered as a “molecular fingerprint” in the time domain.

  14. ASYMMETRY IN THE OUTBURST OF SN 1987A DETECTED USING LIGHT ECHO SPECTROSCOPY

    International Nuclear Information System (INIS)

    Sinnott, B.; Welch, D. L.; Sutherland, P. G.; Rest, A.; Bergmann, M.

    2013-01-01

    We report direct evidence for asymmetry in the early phases of SN 1987A via optical spectroscopy of five fields of its light echo system. The light echoes allow the first few hundred days of the explosion to be reobserved, with different position angles providing different viewing angles to the supernova. Light echo spectroscopy therefore allows a direct spectroscopic comparison of light originating from different regions of the photosphere during the early phases of SN 1987A. Gemini multi-object spectroscopy of the light echo fields shows fine structure in the Hα line as a smooth function of position angle on the near-circular light echo rings. Hα profiles originating from the northern hemisphere of SN 1987A show an excess in redshifted emission and a blue knee, while southern hemisphere profiles show an excess of blueshifted Hα emission and a red knee. This fine structure is reminiscent of the 'Bochum event' originally observed for SN 1987A, but in an exaggerated form. Maximum deviation from symmetry in the Hα line is observed at position angles 16° and 186°, consistent with the major axis of the expanding elongated ejecta. The asymmetry signature observed in the Hα line smoothly diminishes as a function of viewing angle away from the poles of the elongated ejecta. We propose an asymmetric two-sided distribution of 56 Ni most dominant in the southern far quadrant of SN 1987A as the most probable explanation of the observed light echo spectra. This is evidence that the asymmetry of high-velocity 56 Ni in the first few hundred days after explosion is correlated to the geometry of the ejecta some 25 years later.

  15. 31P NMR imaging of solid bone with solid echoes combined with refocused gradients

    International Nuclear Information System (INIS)

    Li, L.; Utah Univ., Salt Lake City, UT; Kruger, R.A.

    1990-01-01

    This note on 31 p NMR imaging presents some observations of the solid echoes acquired from solid bone and how the proposed solid echo imaging method can be employed to obtain the 31 images of solid bone. (UK)

  16. Simultaneous observations of noctilucent clouds and polar mesosphere summer echoes at Syowa Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Keisuke Hosokawa

    2013-11-01

    Full Text Available This paper reports simultaneous observations of visible noctilucent clouds (NLC and polar mesosphere summer echoes (PMSE at Syowa Station (69°01′S, 38°61′E in Antarctica. During a 1.5 h interval from 2000 to 2130 UT (2300 to 0030 LT on Feb. 11, 2009, visible NLC were observed south of Syowa Station. The oblique sounding HF radar of SuperDARN at Syowa Station simultaneously observed peculiar echoes in the closest two range gates. The echoes had a small Doppler velocity and a narrow spectral width, which are consistent with the characteristics of PMSE in the SuperDARN data. The simultaneous appearance of the visible NLC and peculiar near-range echoes observed by the HF radar suggests that the echoes were actually a signature of PMSE in the HF band. In addition, the data from the simultaneous measurements show that the spatial distributions of NLC and PMSE in the HF band were collocated with each other, which implies that oblique sounding HF radar is a useful tool for estimating the two-dimensional horizontal distribution of PMSE.

  17. Association between exercise intensity and renal blood flow evaluated using ultrasound echo.

    Science.gov (United States)

    Kawakami, Shotaro; Yasuno, Tetsuhiko; Matsuda, Takuro; Fujimi, Kanta; Ito, Ai; Yoshimura, Saki; Uehara, Yoshinari; Tanaka, Hiroaki; Saito, Takao; Higaki, Yasuki

    2018-03-10

    High-intensity exercise reduces renal blood flow (RBF) and may transiently exacerbate renal dysfunction. RBF has previously been measured invasively by administration of an indicator material; however, non-invasive measurement is now possible with technological innovations. This study examined variations in RBF at different exercise intensities using ultrasound echo. Eight healthy men with normal renal function (eGFR cys 114 ± 19 mL/min/1.73 m 2 ) participated in this study. Using a bicycle ergometer, participants underwent an incremental exercise test using a ramp protocol (20 W/min) until exhaustion in Study 1 and the lactate acid breaking point (LaBP) was calculated. Participants underwent a multi-stage test at exercise intensities of 60, 80, 100, 120, and 140% LaBP in Study 2. RBF was measured by ultrasound echo at rest and 5 min after exercise in Study 1 and at rest and immediately after each exercise in Study 2. To determine the mechanisms behind RBF decline, a catheter was placed into the antecubital vein to study vasoconstriction dynamics. RBF after maximum exercise decreased by 51% in Study 1. In Study 2, RBF showed no significant decrease until 80% LaBP, and showed a significant decrease (31%) at 100% LaBP compared with at rest (p blood lactate. Reduction in RBF with exercise above the intensity at LaBP was due to decreased cross-sectional area rather than time-averaged flow velocity.

  18. Output Pressure and Pulse-Echo Characteristics of CMUTs as Function of Plate Dimensions

    DEFF Research Database (Denmark)

    Diederichsen, Søren Elmin; Hansen, Jesper Mark Fly; Engholm, Mathias

    2017-01-01

    This paper presents an experimental study of the acoustic performance of Capacitive Micromachined Ultrasonic Transducers (CMUTs) as function of plate dimensions. The objective is to increase the output pressure without decreasingthe pulse-echo signal. The CMUTs are fabricated with a LOCOS process......-to-peak output pressure and pulse-echo signal is obtained for the 9.3μm plate, which still has a moderate pulseecho bandwidth of 60%. The 9.3μm plate results in a 1.9 times higher peak-to-peak output pressure and a 3.6 times higherpulse-echo signal compared to the 2μm plate. By adjusting the plate dimensions...

  19. Depolarization of neutron spin echo by magnetic fluid

    International Nuclear Information System (INIS)

    Achiwa, N.; Sirozu, G.; Nishioka, T.; Ebisawa, T.; Hino, M.; Tasaki, S.; Kawai, T.; Yamazaki, D.

    2001-01-01

    A new method to study the fluctuations of magnetization in magnetic fluids by measuring relations between the phase shift of Larmor precession and the visibility of the neutron spin echo caused by the change of flight path length is studied. Magnetic fluid in which fine particles of magnetite of about 10 nm diameters coated with oleic acid and suspended in water was used. Thickness of the sample was 2 mm. In the dynamics of magnetic fluids, Brownian motions of colloids and the thermal fluctuations of magnetization known as the superparamagnetism are dominant. Isolated ferromagnetic particles of the present size are superparamagnetic but they aggregate to form clusters in a weak magnetic field in the sample of 40% weight density. When neutrons pass the sample, spins process in the magnetic flux density of the clusters fluctuating in time and space. Consequently the Larmor precession phases become distributed and the quantization axes are fluctuated. The result is observed as a decrease of the visibility of the spin echo signals. The change of magnetic flux density in the magnetic fluid is measured from the change of echo visibility of the neutrons, vice versa. In the present experiment, echo was measured at q=0. It is observed that the phase shift changes as a quadratic function of the sample angle reflecting the change of the path length through the sample. Since the number of Larmor precession is proportional to the product of the magnetic field and the length of the flight path, mean flux density in the magnetic fluid is calculated from the phase shift. On the other hand, the decrease of the spin echo amplitude as the function of the sample angle reflects the time and space fluctuations of the flux density in the sample. If the direction of the magnetic flux density vector (quantization axis) changes slowly enough compared to the Larmor precession period while a neutron passes one magnetic domain, the neutron spin rotation in the domain is given by the spin

  20. Efficient Multichannel NLMS Implementation for Acoustic Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Schüldt Christian

    2007-01-01

    Full Text Available An acoustic echo cancellation structure with a single loudspeaker and multiple microphones is, from a system identification perspective, generally modelled as a single-input multiple-output system. Such a system thus implies specific echo-path models (adaptive filter for every loudspeaker to microphone path. Due to the often large dimensionality of the filters, which is required to model rooms with standard reverberation time, the adaptation process can be computationally demanding. This paper presents a selective updating normalized least mean square (NLMS-based method which reduces complexity to nearly half in practical situations, while showing superior convergence speed performance as compared to conventional complexity reduction schemes. Moreover, the method concentrates the filter adaptation to the filter which is most misadjusted, which is a typically desired feature.

  1. Efficient Multichannel NLMS Implementation for Acoustic Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Fredric Lindstrom

    2007-02-01

    Full Text Available An acoustic echo cancellation structure with a single loudspeaker and multiple microphones is, from a system identification perspective, generally modelled as a single-input multiple-output system. Such a system thus implies specific echo-path models (adaptive filter for every loudspeaker to microphone path. Due to the often large dimensionality of the filters, which is required to model rooms with standard reverberation time, the adaptation process can be computationally demanding. This paper presents a selective updating normalized least mean square (NLMS-based method which reduces complexity to nearly half in practical situations, while showing superior convergence speed performance as compared to conventional complexity reduction schemes. Moreover, the method concentrates the filter adaptation to the filter which is most misadjusted, which is a typically desired feature.

  2. Anomalous diffusion measured by a twice-refocused spin echo pulse sequence: analysis using fractional order calculus.

    Science.gov (United States)

    Gao, Qing; Srinivasan, Girish; Magin, Richard L; Zhou, Xiaohong Joe

    2011-05-01

    To theoretically develop and experimentally validate a formulism based on a fractional order calculus (FC) diffusion model to characterize anomalous diffusion in brain tissues measured with a twice-refocused spin-echo (TRSE) pulse sequence. The FC diffusion model is the fractional order generalization of the Bloch-Torrey equation. Using this model, an analytical expression was derived to describe the diffusion-induced signal attenuation in a TRSE pulse sequence. To experimentally validate this expression, a set of diffusion-weighted (DW) images was acquired at 3 Tesla from healthy human brains using a TRSE sequence with twelve b-values ranging from 0 to 2600 s/mm(2). For comparison, DW images were also acquired using a Stejskal-Tanner diffusion gradient in a single-shot spin-echo echo planar sequence. For both datasets, a Levenberg-Marquardt fitting algorithm was used to extract three parameters: diffusion coefficient D, fractional order derivative in space β, and a spatial parameter μ (in units of μm). Using adjusted R-squared values and standard deviations, D, β, and μ values and the goodness-of-fit in three specific regions of interest (ROIs) in white matter, gray matter, and cerebrospinal fluid, respectively, were evaluated for each of the two datasets. In addition, spatially resolved parametric maps were assessed qualitatively. The analytical expression for the TRSE sequence, derived from the FC diffusion model, accurately characterized the diffusion-induced signal loss in brain tissues at high b-values. In the selected ROIs, the goodness-of-fit and standard deviations for the TRSE dataset were comparable with the results obtained from the Stejskal-Tanner dataset, demonstrating the robustness of the FC model across multiple data acquisition strategies. Qualitatively, the D, β, and μ maps from the TRSE dataset exhibited fewer artifacts, reflecting the improved immunity to eddy currents. The diffusion-induced signal attenuation in a TRSE pulse sequence

  3. Parallel and Multivalued Logic by the Two-Dimensional Photon-Echo Response of a Rhodamine–DNA Complex

    Science.gov (United States)

    2015-01-01

    Implementing parallel and multivalued logic operations at the molecular scale has the potential to improve the miniaturization and efficiency of a new generation of nanoscale computing devices. Two-dimensional photon-echo spectroscopy is capable of resolving dynamical pathways on electronic and vibrational molecular states. We experimentally demonstrate the implementation of molecular decision trees, logic operations where all possible values of inputs are processed in parallel and the outputs are read simultaneously, by probing the laser-induced dynamics of populations and coherences in a rhodamine dye mounted on a short DNA duplex. The inputs are provided by the bilinear interactions between the molecule and the laser pulses, and the output values are read from the two-dimensional molecular response at specific frequencies. Our results highlights how ultrafast dynamics between multiple molecular states induced by light–matter interactions can be used as an advantage for performing complex logic operations in parallel, operations that are faster than electrical switching. PMID:25984269

  4. EchoScan: A new system to objectively assess peripheral hearing disorders

    Directory of Open Access Journals (Sweden)

    Thomas Venet

    2012-01-01

    Full Text Available Pure-tone air-conduction audiometry (PTA is the reference clinical test used in Europe and the United States to measure the extent of hearing loss. It is a subjective, behavioral test, which measures thresholds of hearing sensations and perceptions based on patient responses to frequency-specific pure-tone stimuli. PTA can detect hearing problems due to cochlear or retro-cochlear impairment, without identifying the source of the problem. In contrast, cubic distortion product otoacoustic emissions (DPOAEs detect inner-ear dysfunctions, particularly those involving the outer hair cells sensitive to noise and ototoxicants. Recently, ototoxicants were shown to have an action on the central nuclei driving the middle-ear acoustic reflex. Therefore, a new device, called EchoScan, was conceived to collect and measure performance both in the middle- and inner-ear. Its originality: the use of a battery of DPOAE measurements associated with contra-lateral acoustic stimulation. Changes in DPOAE amplitude due to ageing and gender were incidentally detected and EchoScan was more sensitive than impedancemetry to detect the stapedial reflex. EchoScan can be used both in clinical investigations and in occupational medicine, especially for the auditory follow-up of people exposed to noise or ototoxic agents. EchoScan could be promising to assess early detection in programs to prevent hearing loss.

  5. Self-calibrated multiple-echo acquisition with radial trajectories using the conjugate gradient method (SMART-CG).

    Science.gov (United States)

    Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F

    2011-04-01

    To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast three-dimensional MRI data acquisition. Copyright © 2011 Wiley-Liss, Inc.

  6. Spin-Echo Small-Angle Neutron Scattering Development

    NARCIS (Netherlands)

    Uca, O.

    2003-01-01

    Spin-Echo Small-Angle Neutron Scattering (SESANS) instrument is a novel SANS technique which enables one to characterize distances from a few nanometers up to the micron range. The most striking difference between normal SANS and SESANS is that in SESANS one gets information in real space, whereas

  7. Hemoglobin concentration determination based on near infrared spatially resolved transmission spectra

    Science.gov (United States)

    Zhang, Linna; Li, Gang; Lin, Ling

    2016-10-01

    Spatially resolved diffuse reflectance spectroscopy method has been proved to be more effective than single point spectroscopy method in the experiment to predict the concentration of the Intralipid diluted solutions. However, Intralipid diluted solution is simple, cannot be the representative of turbid liquids. Blood is a natural and meaningful turbid liquid, more complicate. Hemoglobin is the major constituent of the whole blood. And hemoglobin concentration is commonly used in clinical medicine to diagnose many diseases. In this paper, near infrared spatially resolved transmission spectra (NIRSRTS) and Partial Least Square Regression (PLSR) were used to predict the hemoglobin concentration of human blood. The results showed the prediction ability for hemoglobin concentration of the proposed method is better than single point transmission spectroscopy method. This paper demonstrated the feasibility of the spatially resolved diffuse reflectance spectroscopy method for practical liquid composition analysis. This research provided a new thinking of practical turbid liquid composition analysis.

  8. Technical Note: Deep learning based MRAC using rapid ultra-short echo time imaging.

    Science.gov (United States)

    Jang, Hyungseok; Liu, Fang; Zhao, Gengyan; Bradshaw, Tyler; McMillan, Alan B

    2018-05-15

    In this study, we explore the feasibility of a novel framework for MR-based attenuation correction for PET/MR imaging based on deep learning via convolutional neural networks, which enables fully automated and robust estimation of a pseudo CT image based on ultrashort echo time (UTE), fat, and water images obtained by a rapid MR acquisition. MR images for MRAC are acquired using dual echo ramped hybrid encoding (dRHE), where both UTE and out-of-phase echo images are obtained within a short single acquisition (35 sec). Tissue labeling of air, soft tissue, and bone in the UTE image is accomplished via a deep learning network that was pre-trained with T1-weighted MR images. UTE images are used as input to the network, which was trained using labels derived from co-registered CT images. The tissue labels estimated by deep learning are refined by a conditional random field based correction. The soft tissue labels are further separated into fat and water components using the two-point Dixon method. The estimated bone, air, fat, and water images are then assigned appropriate Hounsfield units, resulting in a pseudo CT image for PET attenuation correction. To evaluate the proposed MRAC method, PET/MR imaging of the head was performed on 8 human subjects, where Dice similarity coefficients of the estimated tissue labels and relative PET errors were evaluated through comparison to a registered CT image. Dice coefficients for air (within the head), soft tissue, and bone labels were 0.76±0.03, 0.96±0.006, and 0.88±0.01. In PET quantification, the proposed MRAC method produced relative PET errors less than 1% within most brain regions. The proposed MRAC method utilizing deep learning with transfer learning and an efficient dRHE acquisition enables reliable PET quantification with accurate and rapid pseudo CT generation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. On marginally resolved objects in optical interferometry

    Science.gov (United States)

    Lachaume, R.

    2003-03-01

    With the present and soon-to-be breakthrough of optical interferometry, countless objects shall be within reach of interferometers; yet, most of them are expected to remain only marginally resolved with hectometric baselines. In this paper, we tackle the problem of deriving the properties of a marginally resolved object from its optical visibilities. We show that they depend on the moments of flux distribution of the object: centre, mean angular size, asymmetry, and curtosis. We also point out that the visibility amplitude is a second-order phenomenon, whereas the phase is a combination of a first-order term, giving the location of the photocentre, and a third-order term, more difficult to detect than the visibility amplitude, giving an asymmetry coefficient of the object. We then demonstrate that optical visibilities are not a good model constraint while the object stays marginally resolved, unless observations are carried out at different wavelengths. Finally, we show an application of this formalism to circumstellar discs.

  10. Fast method of NMR imaging based on trains of spin echoes

    International Nuclear Information System (INIS)

    Hennel, F.

    1993-01-01

    A theoretical introduction to Fourier NMR imaging and a discussion of fast methods are presented. Then an application of the method of echo-planar imaging (EPI) with spin echoes in a micro-imaging system is described together with introduced modifications of the sequence. A new technique for the measurement of flow profiles in liquids which results from a modification of x-pulsed EPI is presented. The development of new software for a NMR micro-imaging system is described, too. 51 refs, 29 refs

  11. Fast spine echo and fast fluid attenuated inversion recovery sequences in multiple sclerosis

    International Nuclear Information System (INIS)

    Paolillo, Andrea; Giugni, Elisabetta; Bozzao, Alessandro; Bastianello, Stefano

    1997-01-01

    Fast spin echo (FSE) and fast fluid attenuated inversion recovery (fast-FLAIR) sequences, were compared with conventional spin echo (CSE) in quantitating multiple sclerosis (MS) lesion burden. For each sequence, the total number and volume of MS lesions were calculated in 38 remitting multiple sclerosis patients using a semiautomated lesion detection program. Conventional spin echo, fast spin echo, and fast fluid attenuated inversion recovery image were reported on randomly and at different times by two expert observers. Interobserver differences, the time needed to quantitative multiple sclerosis lesions and lesion signal intensity (contrast-to-noise ratio and overall contrast) were considered. The lesions were classified by site into infratentorial, white matter and cortical/subcortical. A total of 2970 lesions with a volume of 961.7 cm 3 was calculated on conventional spin echo images. Fast spin echo images depicted fewer (16.6%; p < .005) and smaller (24.9%; p < .0001) lesions and the differences were statistically significant. Despite an overall nonsignificant reduction for fast-FLAIR images (-5% and 4.8% for lesion number and volume, respectively), significantly lower values (lesion number: p < 0.1; volume: p < .04)were observed for infratentorial lesions, while significantly higher values were seen for cortical/subcortical lesions (lesion number: p < .01; volume: p < .02). A higher lesion/white matter contrast (p < .002), a significant time saving for lesion burden quantitation (p < .05) and very low interobserver variability were found in favor of fast-FLAIR. Our data suggest that, despite the limitations regarding infratentorial lesions, fast-FLAIR sequences are indicated in R studies because of their good identification of cortical/subcortical lesions, almost complete interobserver agreement, higher contrast-to-noise ratio and limited time needed for semiautomated quantitation

  12. Interferometric Meteor Head Echo Observations using the Southern Argentina Agile Meteor Radar (SAAMER)

    Science.gov (United States)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C; Michell, R.; Samara, M.

    2013-01-01

    A radar meteor echo is the radar scattering signature from the free-electrons in a plasma trail generated by entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head-echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF meteor radars (often called all-sky1radars) primarily detect the specular reflection of meteor trails traveling perpendicular to the line of sight of the scattering trail, while High Power and Large Aperture (HPLA) radars efficiently detect meteor head-echoes and, in some cases, non-specular trails. The fact that head-echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are very sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. In addition, the fact that the simultaneous detection of all different scattering mechanisms can be made with the same instrument, rather than requiring assorted different classes of radars, can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER) deployed at the Estacion Astronomica Rio Grande (EARG) in Tierra del Fuego, Argentina. The results presented here are derived from observations performed over a period of 12 days in August 2011, and include meteoroid dynamical parameter distributions, radiants and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  13. Development of Instrumentation for Spin-Echo Induced Spatial Beam Modulations

    DEFF Research Database (Denmark)

    Sales, Morten

    Spin-Echo Modulated Small Angle Neutron Scattering in Time-of-Flight mode (ToF SEMSANS) is an emerging technique extending the measurable phase space covered by neutron scattering. Using inclined magnetic field surfaces, (very) small angle scattering from a sample can be mapped into the spin...... orientation of the neutron as it has been shown in Spin-Echo Small Angle Neutron Scattering (SESANS). Taking this technique further we have shown that it is possible to perform quantitative Dark-Field Imaging, where the small angle scattering signal of individual areas in a neutron image can be obtained...

  14. Leveraging Scarce Resources With Bone Health TeleECHO to Improve the Care of Osteoporosis.

    Science.gov (United States)

    Lewiecki, E Michael; Rochelle, Rachelle; Bouchonville, Matthew F; Chafey, David H; Olenginski, Thomas P; Arora, Sanjeev

    2017-12-01

    Osteoporosis is a common condition with serious consequences because of fractures. Despite availability of treatments to reduce fracture risk, there is a large osteoporosis treatment gap that has reached crisis proportions. There are too few specialists to provide services for patients who need them. Bone Health Extension for Community Health Care Outcomes (TeleECHO) is a strategy using real-time ongoing videoconferencing technology to mentor health care professionals in rural and underserved communities to achieve an advanced level of knowledge for the care of patients with skeletal diseases. Over the first 21 months of weekly Bone Health TeleECHO programs, there were 263 registered health care professionals in the United States and several other countries, with 221 attending at least 1 online clinic and typically 35 to 40 attendees at each session at the end of the reported period. Assessment of self-confidence in 20 domains of osteoporosis care showed substantial improvement with the ECHO intervention ( P = 0.005). Bone Health TeleECHO can contribute to mitigating the crisis in osteoporosis care by leveraging scarce resources, providing motivated practitioners with skills to provide better skeletal health care, closer to home, with greater convenience, and lower cost than referral to a specialty center. Bone Health TeleECHO can be replicated in any location worldwide to reach anyone with Internet access, allowing access in local time zones and languages. The ECHO model of learning can be applied to other aspects of bone care, including the education of fracture liaison service coordinators, residents and fellows, and physicians with an interest in rare bone diseases.

  15. Adapting the Consolidated Framework for Implementation Research to Create Organizational Readiness and Implementation Tools for Project ECHO.

    Science.gov (United States)

    Serhal, Eva; Arena, Amanda; Sockalingam, Sanjeev; Mohri, Linda; Crawford, Allison

    2018-03-01

    The Project Extension for Community Healthcare Outcomes (ECHO) model expands primary care provider (PCP) capacity to manage complex diseases by sharing knowledge, disseminating best practices, and building a community of practice. The model has expanded rapidly, with over 140 ECHO projects currently established globally. We have used validated implementation frameworks, such as Damschroder's (2009) Consolidated Framework for Implementation Research (CFIR) and Proctor's (2011) taxonomy of implementation outcomes, combined with implementation experience to (1) create a set of questions to assess organizational readiness and suitability of the ECHO model and (2) provide those who have determined ECHO is the correct model with a checklist to support successful implementation. A set of considerations was created, which adapted and consolidated CFIR constructs to create ECHO-specific organizational readiness questions, as well as a process guide for implementation. Each consideration was mapped onto Proctor's (2011) implementation outcomes, and questions relating to the constructs were developed and reviewed for clarity. The Preimplementation list included 20 questions; most questions fall within Proctor's (2001) implementation outcome domains of "Appropriateness" and "Acceptability." The Process Checklist is a 26-item checklist to help launch an ECHO project; items map onto the constructs of Planning, Engaging, Executing, Reflecting, and Evaluating. Given that fidelity to the ECHO model is associated with robust outcomes, effective implementation is critical. These tools will enable programs to work through key considerations to implement a successful Project ECHO. Next steps will include validation with a diverse sample of ECHO projects.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited

  16. Realization of the revival of silenced echo (ROSE) quantum memory scheme in orthogonal geometry

    Science.gov (United States)

    Minnegaliev, M. M.; Gerasimov, K. I.; Urmancheev, R. V.; Moiseev, S. A.; Chanelière, T.; Louchet-Chauvet, A.

    2018-02-01

    We demonstrated quantum memory scheme on revival of silenced echo in orthogonal geometry in Tm3+: Y3Al5O12 crystal. The retrieval efficiency of ˜14% was demonstrated with the 36 µs storage time. In this scheme for the first time we also implemented a suppression of the revived echo signal by applying an external electric field and the echo signal has been recovered on demand if we then applied a second electric pulse with opposite polarity. This technique opens the possibilities for realizing addressing in multi-qubit quantum memory in Tm3+: Y3Al5O12 crystal.

  17. The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes

    Directory of Open Access Journals (Sweden)

    F.-J. Lübken

    2006-01-01

    Full Text Available In January 2005, a total of 18 rockets were launched from the Andøya Rocket Range in Northern Norway (69° N into strong VHF radar echoes called 'Polar Mesosphere Winter Echoes' (PMWE. The echoes were observed in the lower and middle mesosphere during large solar proton fluxes. In general, PMWE occur much more seldom compared to their summer counterparts PMSE (typical occurrence rates at 69° N are 1–3% vs. 80%, respectively. Our in-situ measurements by falling sphere, chaff, and instrumented payloads provide detailed information about the thermal and dynamical state of the atmosphere and therefore allow an unprecedented study of the background atmosphere during PMWE. There are a number of independent observations indicating that neutral air turbulence has caused PMWE. Ion density fluctuations show a turbulence spectrum within PMWE and no fluctuations outside. Temperature lapse rates close to the adiabatic gradient are observed in the vicinity of PMWE indicating persistent turbulent mixing. The spectral broadening of radar echoes is consistent with turbulent velocity fluctuations. Turbulence also explains the mean occurrence height of PMWE (~68–75 km: viscosity increases rapidly with altitude and destroys any small scale fluctuations in the upper mesosphere, whereas electron densities are usually too low in the lower mesosphere to cause significant backscatter. The seasonal variation of echoes in the lower mesosphere is in agreement with a turbulence climatology derived from earlier sounding rocket flights. We have performed model calculations to study the radar backscatter from plasma fluctuations caused by neutral air turbulence. We find that volume reflectivities observed during PMWE are in quantitative agreement with theory. Apart from turbulence the most crucial requirement for PMWE is a sufficiently large number of electrons, for example produced by solar proton events. We have studied the sensitivity of the radar echo strength on

  18. DrSPINE - New approach to data reduction and analysis for neutron spin echo experiments from pulsed and reactor sources

    International Nuclear Information System (INIS)

    Zolnierczuk, P.A.; Ohl, M.; Holderer, O.; Monkenbusch, M.

    2015-01-01

    Neutron spin echo (NSE) method at a pulsed neutron source presents new challenges to the data reduction and analysis as compared to the instruments installed at reactor sources. The main advantage of the pulsed source NSE is the ability to resolve the neutron wavelength and collect neutrons over a wider bandwidth. This allows us to more precisely determine the symmetry phase and measure the data for several Q-values at the same time. Based on the experience gained at the SNS NSE - the first, and to date the only one, NSE instrument installed at a pulsed spallation source, we propose a novel and unified approach to the NSE data processing called DrSPINE. The goals of the DrSPINE project are: -) exploit better symmetry phase determination due to the broader bandwidth at a pulsed source; -) take advantage of larger Q coverage for TOF instruments; -) use objective statistical criteria to get the echo fits right; -) provide robust reduction with report generation; -) incorporate absolute instrument calibration; and -) allow for background subtraction. The software must be able to read the data from various instruments, perform data integrity, consistency and compatibility checks and combine the data from compatible sets, partial scans, etc. We chose to provide a console-based interface with the ability to process macros (scripts) for batch evaluation. And last and not the least, a good software package has to provide adequate documentation. DrSPINE software is currently under development

  19. Comparison of apparent diffusion coefficients (ADCs) between two-point and multi-point analyses using high-B-value diffusion MR imaging

    International Nuclear Information System (INIS)

    Kubo, Hitoshi; Maeda, Masayuki; Araki, Akinobu

    2001-01-01

    We evaluated the accuracy of calculating apparent diffusion coefficients (ADCs) using high-B-value diffusion images. Echo planar diffusion-weighted MR images were obtained at 1.5 tesla in five standard locations in six subjects using gradient strengths corresponding to B values from 0 to 3000 s/mm 2 . Estimation of ADCs was made using two methods: a nonlinear regression model using measurements from a full set of B values (multi-point method) and linear estimation using B values of 0 and max only (two-point method). A high correlation between the two methods was noted (r=0.99), and the mean percentage differences were -0.53% and 0.53% in phantom and human brain, respectively. These results suggest there is little error in estimating ADCs calculated by the two-point technique using high-B-value diffusion MR images. (author)

  20. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  1. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2011-02-15

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  2. Contrast-enhanced dynamic MR imaging of parasellar tumor using fast spin-echo sequence

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Ohue, Shiro; Ichikawa, Haruhisa; Saito, Masahiro; Sadamoto, Kazuhiko; Sakaki, Saburo; Miki, Hitoshi.

    1995-01-01

    We have applied a new dynamic MRI technique that uses a fast spin-echo sequence to parasellar tumors. This sequence has less susceptible effect and better spatial resolution than a gradient echo sequence, providing faster images than a short spin-echo sequence does. Image was obtained in the coronal or sagittal plane using a 1.5T clinical MRI system, and then, dynamic MR images were acquired every 10 to 20 sec after administration of Gd-DTPA (0.1 mmol/kg). The subjects were 12 patients (5 microadenomas, 5 macroadenomas and 2 Rathke's cleft cysts) and 5 normal volunteers. As for volunteers, the cavernous sinus, pituitary stalk and posterior pituitary gland were contrasted on the first image, followed by visualization of the proximal portion adjacent to the junction of the infundibulum and the anterior pituitary gland, and finally by contrasting the distal portion of the anterior pituitary gland. There was a difference with respect to tumor contrast between microadenomas and macroadenomas. In the case of the macroadenomas, the tumor was contrasted at the same time as, or faster than the anterior pituitary gland, while with the microadenomas the tumor was enhanced later than the anterior pituitary gland. No enhancement with contrast medium was seen in Rathke's cleft cysts. In addition, it was possible to differentiate a recurrent tumor from a piece of muscle placed at surgery since the images obtained by the fast spin-echo sequence were clearer than those obtained by gradient echo sequence. (author)

  3. Echo-critical Poetic Narcissisms: Being Transformed in Petrarca, Ronsard, and Shakespeare

    OpenAIRE

    Yinger, Melissa

    2016-01-01

    AbstractEcho-critical Poetic Narcissisms: Being Transformed in Petrarca, Ronsard, and ShakespeareMelissa Yinger “Narcissism” is a term that was popularized by Freud in the twentieth century, but whose roots date back to the first century C.E., to a story from Ovid’s Metamorphoses. In Ovid’s story, Narcissus is a beautiful youth who falls in love with his image in a pool and wastes away, leaving only the Narcissus flower. Only slightly less famous is the story of Echo, with which Narcissus’s...

  4. Application of MSS-neutron spin echo spectrometer to pulsed neutron sources

    International Nuclear Information System (INIS)

    Tasaki, S.; Ebisawa, T.; Hino, M.; Kawai, T.

    2001-01-01

    A multilayer spin splitter (MSS) is a neutron device that gives phase difference between field-parallel and -antiparallel spin component of a superposing state. Since the phase difference is equivalent to the Larmor precession angle, MSS enables us to construct a new type of neutron spin echo (NSE) spectrometer. The new NSE spectrometer has its properties that 1. since the phase shift is neutron flight path length, the spectrometer can be drastically small, 2. the neutron spin echo time is proportional to the neutron wavelength. (author)

  5. Monte Carlo Simulation of the Echo Signals from Low-Flying Targets for Airborne Radar

    Directory of Open Access Journals (Sweden)

    Mingyuan Man

    2014-01-01

    Full Text Available A demonstrated hybrid method based on the combination of half-space physical optics method (PO, graphical-electromagnetic computing (GRECO, and Monte Carlo method on echo signals from low-flying targets based on actual environment for airborne radar is presented in this paper. The half-space physical optics method , combined with the graphical-electromagnetic computing (GRECO method to eliminate the shadow regions quickly and rebuild the target automatically, is employed to calculate the radar cross section (RCS of the conductive targets in half space fast and accurately. The direct echo is computed based on the radar equation. The reflected paths from sea or ground surface cause multipath effects. In order to accurately obtain the echo signals, the phase factors are modified for fluctuations in multipath, and the statistical average value of the echo signals is obtained using the Monte Carlo method. A typical simulation is performed, and the numerical results show the accuracy of the proposed method.

  6. Theoretical and experimental study of trapped particle echoes in a magnetic mirror machine. Application to diffusion study

    International Nuclear Information System (INIS)

    Chatelier, Michel.

    1976-01-01

    A simple mechanical model is used to investigate the various physical mechanisms originating the echoes. The model is applied to nuclear spins and echoes from particles trapped in a magnetostatic well. The theory of echoes from trapped ions in a magnetic machine is developed. The effects that may be observed when two magnetic perturbations are applied to the plasma are described. Diffusion effects in the velocity space are then taken into account when the diffusion is due either to Coulomb collisions or to a microturbulence at the ion cyclotron frequency. The experimental results obtained with the DECA II B machine are described. Emphasis is put upon the effects observed when magnetic perturbations are applied to the plasma and echoes observation independently of the diffusion study, as it is the first time that trapped particle echoes are observed in a hot plasma [fr

  7. Long range echo classification for minehunting sonars

    NARCIS (Netherlands)

    Theije, P.A.M. de; Groen, J.; Sabel, J.C.

    2006-01-01

    This paper focesus on single-ping classification of sea mines, at a range of about 400 m, and combining a hull mounted sonar (HMS) and a propelled variable-depth sonar (PDVS). The deleoped classifier is trained and tested on a set of simulated realistic echoes of mines and non-mines. As the mines

  8. Echo and reverberation in a Pekeris waveguide by convolution and by the product rule

    NARCIS (Netherlands)

    Ainslie, M.A.

    2013-01-01

    The detection performance of an active sonar depends on the intensity of the signal (target echo) relative to that of a background of reverberation plus noise. The echo is calculated for a standard test problem by convolving the time-domain impulse response at the target position with itself. The

  9. Validation of a new bedside echoscopic heart examination resulting in an improvement in echo-lab workflow.

    Science.gov (United States)

    Réant, Patricia; Dijos, Marina; Arsac, Florence; Mignot, Aude; Cadenaule, Fabienne; Aumiaux, Annette; Jimenez, Christine; Dufau, Marilyne; Prévost, Alain; Pillois, Xavier; Fort, Patrick; Roudaut, Raymond; Lafitte, Stéphane

    2011-03-01

    In daily cardiology practice, porters are usually required to transfer inpatients who need an echocardiogram to the echocardiographic department (echo-lab). To assess echo-lab personnel workflow and patient transfer delay by comparing the use of a new, ultraportable, echoscopic, pocket-sized device at the bedside with patient transfer to the echo-lab for conventional transthoracic echocardiography, in patients needing pericardial control after cardiac invasive procedures. After validation of echoscopic capabilities for pericardial effusion, left ventricular function and mitral regurgitation grade compared with conventional echocardiography, we evaluated echo-lab personnel workflow and time to perform bedside echoscopy for pericardial control evaluation after invasive cardiac procedures. This strategy was compared with conventional evaluation at the echo-lab, in terms of personnel workflow, and patients' transfer, waiting and examination times. Concordance between echoscopy and conventional echocardiography for evaluation of pericardial effusion was good (0.97; kappa value 0.86). For left ventricular systolic function and mitral regurgitation evaluations, concordances were 0.96 (kappa value 0.90) and 0.96 (kappa value 0.86), respectively. In the second part of the study, the mean total time required in the bedside echoscopy group was 20.3±5.4 mins vs. 66.0±16.4 mins in the conventional echo-lab group (pporters in 100% of cases; 69% of patients needed a wheelchair. The use of miniaturized echoscopic tools for pericardial control after invasive cardiac procedures was feasible and accurate, allowing improvement in echo-lab workflow and avoiding patient waiting time and transfer. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  10. Particulate Echoes within the Bladder: This is correlated with Urinary Infection?

    International Nuclear Information System (INIS)

    Wilches, Catalina; Gallo, Andrea; Moreno, Angela; Rivero, Oscar; Romero, Javier

    2011-01-01

    Introduction: urinary tract infection is a common disorder in the emergency department, requiring timely diagnosis and appropriate management to avoid potential complications. Urinalysis is used in the emergency department for diagnosis. Renal and urinary tract ultrasound is used to rule out complications and anatomic variants that may predispose to UTI, but not for diagnosis, considering that a urinary tract infection is better diagnosed on the basis of the clinical and laboratory findings. Objective: to determine whether particulate echoes found on urinary tract ultrasound correlate with urinary tract infection. Methods: descriptive analysis of variables such as age, initial diagnosis and final diagnosis of patients coming to the emergency department between January and May 2010. The relationship between the variables was determined and the operational characteristics (sensitivity, specificity, predictive values and probability ratios) were established. Results: seventy per cent of the patients with UTI were older than 65; 56.5% of patients with a finding of particulate echoes in the bladder on ultrasound had urinary tract infection; and 34% had a urinary tract infection but did not show particulate echoes. Conclusion: particulate echoes within the bladder are frequent in ultrasound reports and they should be correlated with urinalysis results in order to rule out a urinary tract infection. However, in the literature, this finding is not considered as an indication of infection. In our case series, particulate urine had low specificity and intermediate sensitivity, indicating that this finding is not a diagnostic criterion for UTI.

  11. An NMR log echo data de-noising method based on the wavelet packet threshold algorithm

    International Nuclear Information System (INIS)

    Meng, Xiangning; Xie, Ranhong; Li, Changxi; Hu, Falong; Li, Chaoliu; Zhou, Cancan

    2015-01-01

    To improve the de-noising effects of low signal-to-noise ratio (SNR) nuclear magnetic resonance (NMR) log echo data, this paper applies the wavelet packet threshold algorithm to the data. The principle of the algorithm is elaborated in detail. By comparing the properties of a series of wavelet packet bases and the relevance between them and the NMR log echo train signal, ‘sym7’ is found to be the optimal wavelet packet basis of the wavelet packet threshold algorithm to de-noise the NMR log echo train signal. A new method is presented to determine the optimal wavelet packet decomposition scale; this is within the scope of its maximum, using the modulus maxima and the Shannon entropy minimum standards to determine the global and local optimal wavelet packet decomposition scales, respectively. The results of applying the method to the simulated and actual NMR log echo data indicate that compared with the wavelet threshold algorithm, the wavelet packet threshold algorithm, which shows higher decomposition accuracy and better de-noising effect, is much more suitable for de-noising low SNR–NMR log echo data. (paper)

  12. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    International Nuclear Information System (INIS)

    Jung, Jee Young; Yoon, Young Cheol; Jung, Jin Young; Choe, Bong-Keun

    2013-01-01

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  13. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jee Young [Dept. of Radiology, Chungang Univ. Hospital, School of Medicine, Chungang Univ. (Korea, Republic of); Yoon, Young Cheol [Dept. of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan Univ. (Korea, Republic of)], e-mail: ycyoon@skku.edu; Jung, Jin Young [Dept. of Radiology, Saint Paul' s Hospital, The Catholic Univ. (Korea, Republic of); Choe, Bong-Keun [Dept. of Preventive Medicine, School of Medicine, Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  14. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kepa, M. W., E-mail: mkepa@staffmail.ed.ac.uk; Huxley, A. D. [SUPA, Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Ridley, C. J.; Kamenev, K. V. [Centre for Science at Extreme Conditions and School of Engineering, University of Edinburgh, Edinburgh EH9 3FD (United Kingdom)

    2016-08-15

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe{sub 2}.

  15. Liver imaging at 3.0 T: Diffusion-induced black-blood echo-planar imaging with large anatomic volumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences: Feasibility study

    NARCIS (Netherlands)

    I.C. van den Bos (Indra); S.M. Hussain (Shahid); G.P. Krestin (Gabriel); P.A. Wielopolski (Piotr)

    2008-01-01

    textabstractInstitutional Review Board approval and signed informed consent were obtained by all participants for an ongoing sequence optimization project at 3.0 T. The purpose of this study was to evaluate breath-hold diffusion-induced blackblood echo-planar imaging (BBEPI) as a potential

  16. Fully phase-encoded MRI near metallic implants using ultrashort echo times and broadband excitation.

    Science.gov (United States)

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Koch, Kevin M; Reeder, Scott B

    2018-04-01

    To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T 1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T 1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T 1 -weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 79:2156-2163, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Point spread functions and deconvolution of ultrasonic images.

    Science.gov (United States)

    Dalitz, Christoph; Pohle-Fröhlich, Regina; Michalk, Thorsten

    2015-03-01

    This article investigates the restoration of ultrasonic pulse-echo C-scan images by means of deconvolution with a point spread function (PSF). The deconvolution concept from linear system theory (LST) is linked to the wave equation formulation of the imaging process, and an analytic formula for the PSF of planar transducers is derived. For this analytic expression, different numerical and analytic approximation schemes for evaluating the PSF are presented. By comparing simulated images with measured C-scan images, we demonstrate that the assumptions of LST in combination with our formula for the PSF are a good model for the pulse-echo imaging process. To reconstruct the object from a C-scan image, we compare different deconvolution schemes: the Wiener filter, the ForWaRD algorithm, and the Richardson-Lucy algorithm. The best results are obtained with the Richardson-Lucy algorithm with total variation regularization. For distances greater or equal twice the near field distance, our experiments show that the numerically computed PSF can be replaced with a simple closed analytic term based on a far field approximation.

  18. Real-Time Forecasting of Echo-Centroid Motion.

    Science.gov (United States)

    1979-01-01

    is apparent that after five observations are obtained, the forecast error drops considerably. The normal lifetime of an echo (25 to 30 min) is...10kmI I ! Fig. 11. Track of 5 April 1978 mesocyclone (M) and two TVS’s (1) and (2). Times are CST. Pumpkin Center tornado is hatched and Marlow tornado is

  19. Quantification of early fatty infiltration of the rotator cuff muscles: comparison of multi-echo Dixon with single-voxel MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Agten, Christoph A.; Rosskopf, Andrea B.; Pfirrmann, Christian W.A. [Balgrist University Hospital, Radiology, Zurich (Switzerland); University of Zurich, Faculty of Medicine, Zurich (Switzerland); Gerber, Christian [Balgrist University Hospital, Orthopaedic Surgery, Zurich (Switzerland); University of Zurich, Faculty of Medicine, Zurich (Switzerland)

    2016-10-15

    To evaluate quantification of early fatty infiltration in supraspinatus muscles with magnetic resonance (MR) imaging using a T2*-corrected multi-echo 3D-gradient-echo Dixon-based sequence (multi-echo Dixon) and compare it to proton-MR-spectroscopy. Sixty subjects (mean age 46 years, 41 men) with good supraspinatus muscle quality on 1.5 T MR imaging were included. Fat percentage (FP) in the supraspinatus muscle was quantified using a multi-echo Dixon compared to single-voxel MR spectroscopy as reference standard. In 18 subjects the multi-echo Dixon was repeated to assess test-retest reliability. Measurements based on multi-echo Dixon were performed by two independent readers by placing regions-of-interest (ROIs) in the supraspinatus muscle corresponding to the MR-spectroscopy voxel. Intraclass and concordance correlation coefficients (ICC/CCC) were used for statistical analysis. Test-retest reliability was substantial for reader 1 (ICC = 0.757) and almost perfect for reader 2 (ICC = 0.873). Inter-reader reliability for multi-echo Dixon was almost perfect (ICC = 0.893, P <.0005). Mean FP in all 60 subjects with multi-echo Dixon was 3.5 ± 1.6 for reader 1, 3.7 ± 1.8 for reader 2, and 2.8 ± 1.4 with MR spectroscopy. Correlation between multi-echo Dixon and MR spectroscopy was moderate (CCC = 0.641). The multi-echo Dixon sequence is a reliable method and comparable to MR-spectroscopy for quantification of low levels of fatty infiltration in the supraspinatus muscle. (orig.)

  20. Diagnostic equivalence of conventional and fast spin echo magnetic resonance imaging of the anterior cruciate ligament of the knee

    International Nuclear Information System (INIS)

    Munk, P.L.; Hilborn, M.D.; Vellet, A.D.; University of Calgary, Calgary, Alberta,; Romano, C.C.; University of Calgary, Calgary, Alberta,

    1997-01-01

    Many techniques and pulse sequences have been devised for the assessment of the anterior cruciate ligament. The present study compares fast spin echo (FSE) imaging to conventional spin echo imaging at a field strength of 1.5 T in an effort to determine if these sequences are diagnostically equivalent. Where available, arthroscopy was also done. A total of 52 patients were imaged using both FSE and conventional spin echo sequences. Eight volunteers were used as controls. Arthroscopy was performed on 10 patients. The anterior cruciate ligament was assessed in a blinded fashion by three radiologists. The Kappa statistic was then used to determine the percentage agreement between FSE and conventional spin echo imaging. Fast spin echo sequencing demonstrated a sensitivity of 100%, a specificity of 94.8% and an accuracy of 96.3% when compared to arthroscopy. Conventional spin echo imaging and arthroscopy had a sensitivity of 100%, specificity of 84.6% and an accuracy of 88.9%. The remaining 34 patients who did not undergo arthroscopy were followed clinically because clinical and imaging findings were not suggestive of ACL tears. These demonstrated 72% agreement between FSE and conventional spin echo imaging using the Kappa statistic, with regards to calling ACL normal or having only a low-grade partial tear. Fast spin echo imaging produces images of the anterior cruciate ligament that have similar diagnostic accuracy to conventional spin echo images (P<0.05) within a much shorter scan time. These results however, require further validation in a larger group, preferably with arthroscopic correlation. (author)

  1. Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation

    International Nuclear Information System (INIS)

    Park, Ik Keun; Park, Un Su; Ahn, Hyung Keun; Kwun, Sook In; Byeon, Jai Won

    2000-01-01

    Recently, advanced signal analysis which is called 'time-frequency analysis' has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and new sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch

  2. Rationale and Design of the Echocardiographic Study of Hispanics/Latinos (ECHO-SOL).

    Science.gov (United States)

    Rodriguez, Carlos J; Dharod, Ajay; Allison, Matthew A; Shah, Sanjiv J; Hurwitz, Barry; Bangdiwala, Shrikant I; Gonzalez, Franklyn; Kitzman, Dalane; Gillam, Linda; Spevack, Daniel; Dadhania, Rupal; Langdon, Sarah; Kaplan, Robert

    2015-01-01

    Information regarding the prevalence and determinants of cardiac structure and function (systolic and diastolic) among the various Hispanic background groups in the United States is limited. The Echocardiographic Study of Latinos (ECHO-SOL) ancillary study recruited 1,824 participants through a stratified-sampling process representative of the population-based Hispanic Communities Health Study - Study of Latinos (HCHS-SOL) across four sites (Bronx, NY; Chicago, Ill; San Diego, Calif; Miami, Fla). The HCHS-SOL baseline cohort did not include an echo exam. ECHO-SOL added the echocardiographic assessment of cardiac structure and function to an array of existing HCHS-SOL baseline clinical, psychosocial, and socioeconomic data and provides sufficient statistical power for comparisons among the Hispanic subgroups. Standard two-dimensional (2D) echocardiography protocol, including M-mode, spectral, color and tissue Doppler study was performed. The main objectives were to: 1) characterize cardiac structure and function and its determinants among Hispanics and Hispanic subgroups; and 2) determine the contributions of specific psychosocial factors (acculturation and familismo) to cardiac structure and function among Hispanics. We describe the design, methods and rationale of currently the largest and most comprehensive study of cardiac structure and function exclusively among US Hispanics. ECHO-SOL aims to enhance our understanding of Hispanic cardiovascular health as well as help untangle the relative importance of Hispanic subgroup heterogeneity and sociocultural factors on cardiac structure and function.

  3. Three-dimensional T1 and T2* mapping of human lung parenchyma using interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE).

    Science.gov (United States)

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-04-01

    To develop and assess a new technique for three-dimensional (3D) full lung T1 and T2* mapping using a single free breathing scan during a clinically feasible time. A 3D stack of dual-echo ultrashort echo time (UTE) radial acquisition interleaved with and without a WET (water suppression enhanced through T1 effects) saturation pulse was used to map T1 and T2* simultaneously in a single scan. Correction for modulation due to multiple views per segment was derived. Bloch simulations were performed to study saturation pulse excitation profile on lung tissue. Optimization of the saturation delay time (for T1 mapping) and echo time (for T2* mapping) was performed. Monte Carlo simulation was done to predict accuracy and precision of the sequence with signal-to-noise ratio of in vivo images used in the simulation. A phantom study was carried out using the 3D interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE) sequence and reference standard inversion recovery spin echo sequence (IR-SE) to compare accuracy of the sequence. Nine healthy volunteers were imaged and mean (SD) of T1 and T2* in lung parenchyma at 3T were estimated through manually assisted segmentation. 3D lung coverage with a resolution of 2.5 × 2.5 × 6 mm 3 was performed and nominal scan time was recorded for the scans. Repeatability was assessed in three of the volunteers. Regional differences in T1/T2* values were also assessed. The phantom study showed accuracy of T1 values to be within 2.3% of values obtained from IR-SE. Mean T1 value in lung parenchyma was 1002 ± 82 ms while T2* was 0.85 ± 0.1 ms. Scan time was ∼10 min for volunteer scans. Mean coefficient of variation (CV) across slices was 0.057 and 0.09, respectively. Regional variation along the gravitational direction and between right and left lung were not significant (P = 0.25 and P = 0.06, respectively) for T1. T2* showed significant variation (P = 0.03) along the

  4. Photon Echoes in the 3P0 ← 3H4 Transition of Pr3+/LaF3

    NARCIS (Netherlands)

    Morsink, Jos B.W.; Wiersma, Douwe A.

    1979-01-01

    Photon-echo quantum beats observed in the two-pulse and three-pulse photon echo of the 3P0 ← 3H4 transition in Pr3+/LaF3 were used to determine the excited-state spin-hamiltonian. In addition we report on the anomalous stimulated photon echo observed in the same transition which in a magnetic field

  5. Measurement of short transverse relaxation times by pseudo-echo nutation experiments

    Science.gov (United States)

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-07-01

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R1 and R2. A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way.

  6. Prospects for Precise Measurements with Echo Atom Interferometry

    Directory of Open Access Journals (Sweden)

    Brynle Barrett

    2016-06-01

    Full Text Available Echo atom interferometers have emerged as interesting alternatives to Raman interferometers for the realization of precise measurements of the gravitational acceleration g and the determination of the atomic fine structure through measurements of the atomic recoil frequency ω q . Here we review the development of different configurations of echo interferometers that are best suited to achieve these goals. We describe experiments that utilize near-resonant excitation of laser-cooled rubidium atoms by a sequence of standing wave pulses to measure ω q with a statistical uncertainty of 37 parts per billion (ppb on a time scale of ∼50 ms and g with a statistical precision of 75 ppb. Related coherent transient techniques that have achieved the most statistically precise measurements of atomic g-factor ratios are also outlined. We discuss the reduction of prominent systematic effects in these experiments using off-resonant excitation by low-cost, high-power lasers.

  7. On the Land-Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models

    Science.gov (United States)

    Matsui, Toshihisa; Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Satoh, Masaki; Hashino, Tempei; Kubota, Takuji

    2016-01-01

    A 14-year climatology of Tropical Rainfall Measuring Mission (TRMM) collocated multi-sensor signal statistics reveal a distinct land-ocean contrast as well as geographical variability of precipitation type, intensity, and microphysics. Microphysics information inferred from the TRMM precipitation radar and Microwave Imager (TMI) show a large land-ocean contrast for the deep category, suggesting continental convective vigor. Over land, TRMM shows higher echo-top heights and larger maximum echoes, suggesting taller storms and more intense precipitation, as well as larger microwave scattering, suggesting the presence of morelarger frozen convective hydrometeors. This strong land-ocean contrast in deep convection is invariant over seasonal and multi-year time-scales. Consequently, relatively short-term simulations from two global storm-resolving models can be evaluated in terms of their land-ocean statistics using the TRMM Triple-sensor Three-step Evaluation via a satellite simulator. The models evaluated are the NASA Multi-scale Modeling Framework (MMF) and the Non-hydrostatic Icosahedral Cloud Atmospheric Model (NICAM). While both simulations can represent convective land-ocean contrasts in warm precipitation to some extent, near-surface conditions over land are relatively moisture in NICAM than MMF, which appears to be the key driver in the divergent warm precipitation results between the two models. Both the MMF and NICAM produced similar frequencies of large CAPE between land and ocean. The dry MMF boundary layer enhanced microwave scattering signals over land, but only NICAM had an enhanced deep convection frequency over land. Neither model could reproduce a realistic land-ocean contrast in in deep convective precipitation microphysics. A realistic contrast between land and ocean remains an issue in global storm-resolving modeling.

  8. Turbo-Proton Echo Planar Spectroscopic Imaging (t-PEPSI) MR technique in the detection of diffuse axonal damage in brain injury. Comparison with Gradient-Recalled Echo (GRE) sequence.

    Science.gov (United States)

    Giugni, E; Sabatini, U; Hagberg, G E; Formisano, R; Castriota-Scanderbeg, A

    2005-01-01

    Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury, and is frequently accompanied by tissue tear haemorrhage. The T2*-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of haemorrhage. This study was undertaken to determine whether turbo-PEPSI, an extremely fast multi-echo-planar-imaging sequence, can be used as an alternative to the GRE sequence for detection of DAI. Nineteen patients (mean age 24,5 year) with severe traumatic brain injury (TBI), occurred at least 3 months earlier, underwent a brain MRI study on a 1.5-Tesla scanner. A qualitative evaluation of the turbo-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and turbo-PEPSI images, and divided according to their anatomic location into lobar and/or deep brain. There was no significant difference between GRE and turbo-PEPSI sequences in the total number of DAI lesions detected (283 vs 225 lesions, respectively). The GRE sequence identified a greater number of hypointense lesions in the temporal lobe compared to the t-PEPSI sequence (72 vs 35, pPEPSI than for the GRE sequence (pPEPSI sequence can be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.

  9. MU head echo observations of the 2010 Geminids: radiant, orbit, and meteor flux observing biases

    Directory of Open Access Journals (Sweden)

    J. Kero

    2013-03-01

    Full Text Available We report Geminid meteor head echo observations with the high-power large-aperture (HPLA Shigaraki middle and upper atmosphere (MU radar in Japan (34.85° N, 136.10° E. The MU radar observation campaign was conducted from 13 December 2010, 08:00 UTC to 15 December, 20:00 UTC and resulted in 48 h of radar data. A total of ~ 270 Geminids were observed among ~ 8800 meteor head echoes with precisely determined orbits. The Geminid head echo activity is consistent with an earlier peak than the visual Geminid activity determined by the International Meteor Organization (IMO. The observed flux of Geminids is a factor of ~ 3 lower than the previously reported flux of the 2009 Orionids measured with an identical MU~radar setup. We use the observed flux ratio to discuss the relation between the head echo mass–velocity selection effect, the mass distribution indices of meteor showers and the mass threshold of the MU radar.

  10. Seafloor characterisation using echo peak amplitudes of multibeam hydrosweep system - A preliminary study at Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Sudhakar, T.

    In this paper an interface to acquire 59-beams echo peak amplitudes of the Hydrosweep Multibeam system is established. The echo peak amplitude values collected at varying seabed provinces of Arabian sea are presented. The study reveals...

  11. THIRTY YEARS OF SN 1980K: EVIDENCE FOR LIGHT ECHOES

    Energy Technology Data Exchange (ETDEWEB)

    Sugerman, Ben E. K. [Department of Physics and Astronomy, Goucher College, 1021 Dulaney Valley Road, Baltimore, MD 21208 (United States); Andrews, Jennifer E. [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Barlow, Michael J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Clayton, Geoffrey C. [Department of Physics and Astronomy, Lousiana State University, 202 Nicholson Hall, Baton Roughe, LA 70803 (United States); Ercolano, Barbara [Excellence Cluster ' Universe' , Universitaets-Sternwarte Muenchen, Scheinerstr. 1, 81679 Muenchen (Germany); Ghavamian, Parviz [Department of Physics, Astronomy and Geosciences, Towson University, Smith Hall, Towson, MD 21252 (United States); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CM3 0HA (United Kingdom); Krause, Oliver [Max Planck Institute for Astronomy, Koenigstuhl 17, 69117 Heidelberg (Germany); Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Otsuka, Masaaki, E-mail: ben.sugerman@goucher.edu [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China)

    2012-04-20

    We report optical and mid-infrared photometry of SN 1980K between 2004 and 2010, which shows slow monotonic fading consistent with previous spectroscopic and photometric observations made 8-17 yr after outburst. The slow rate of change over two decades suggests that this evolution may result from scattered and thermal light echoes off of extended circumstellar material. We present a semi-analytic dust radiative-transfer model that uses an empirically corrected effective optical depth to provide a fast and robust alternative to full Monte Carlo radiative-transfer modeling for homogenous dust at low to intermediate optical depths. We find that unresolved echoes from a thin circumstellar shell 14-15 lt-yr from the progenitor, and containing {approx}< 0.02 M{sub Sun} of carbon-rich dust, can explain the broadband spectral and temporal evolution. The size, mass, and dust composition are in good agreement with the contact discontinuity observed in scattered echoes around SN 1987A. The origin of slowly changing high-velocity [O I] and H{alpha} lines is also considered. We propose an origin in shocked high-velocity metal-rich clumps of ejecta, rather than arising in the impact of ejecta on slowly moving circumstellar material, as is the case with hot spots in SN 1987A.

  12. STIR imaging of lymphadenopathy: Advantages over conventional spin-echo techniques

    International Nuclear Information System (INIS)

    Porter, B.A.; Neumann, E.B.; Olson, D.O.; Nyberg, D.A.; Teefy, S.A.; Shields, A.F.

    1987-01-01

    Spin-echo (SE) imaging of lymphadenopathy has been limited by the high signal of surrounding fat. With short TI Inversion Recovery (STIR), fat is cancelled (black), T1 and T2 contrast are additive, and pathologic nodes are white. STIR images (repetition time, 1,400 - 2,400; echo time, 36 or 40; inversion time, 100 or 125) of 69 patients with malignant adenopathy were compared with T1-weighted spin-echo (T1 SE) or intermediate SE and some T2 SE sequences at 0.15 T. Signal-intensity measurements of nodes versus adjacent tissues were used as a measure of contrast. Ratios of these values ranged from 2.5- to more than 17-fold greater for STIR versus T1 or intermediate SE sequences and to more than 40:1 for STIR versus T2 SE images. Some nodes detected on STIR were only identifiable in retrospection CT or T1 SE. In two cases, STIR detected minimally enlarged nodes not detected on CT; biopsy confirmed malignancy. Normal nodes have lower signal than malignant nodes; inflammatory nodes may mimic neoplasm. The authors replaced T2 SE with a combination of T1 SE and STIR, shortening imaging time and enhancing detection of lymphadenopathy

  13. INTERSTELLAR-MEDIUM MAPPING IN M82 THROUGH LIGHT ECHOES AROUND SUPERNOVA 2014J

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi; Wang, Lifan; Brown, Peter J. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Baade, Dietrich; Patat, Ferdinando; Spyromilio, Jason [European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Straße 2, D-85748 Garching b. München (Germany); Cracraft, Misty; Sparks, William B. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Höflich, Peter A. [Department of Physics, Florida State University, Tallahassee, Florida 32306-4350 (United States); Maund, Justyn; Stevance, Heloise F. [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Wang, Xiaofeng [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing, 100084 (China); Wheeler, J. Craig, E-mail: ngc4594@physics.tamu.edu [Department of Astronomy and McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States)

    2017-01-01

    We present multiple-epoch measurements of the size and surface brightness of the light echoes from supernova (SN) 2014J in the nearby starburst galaxy M82. Hubble Space Telescope ( HST ) ACS/WFC images were taken ∼277 and ∼416 days after B -band maximum in the filters F 475 W , F 606 W , and F 775 W . Observations with HST WFC3/UVIS images at epochs ∼216 and ∼365 days are included for a more complete analysis. The images reveal the temporal evolution of at least two major light-echo components. The first one exhibits a filled ring structure with position-angle-dependent intensity. This radially extended, diffuse echo indicates the presence of an inhomogeneous interstellar dust cloud ranging from ∼100 to ∼500 pc in the foreground of the SN. The second echo component appears as an unresolved luminous quarter-circle arc centered on the SN. The wavelength dependence of scattering measured in different dust components suggests that the dust producing the luminous arc favors smaller grain sizes, while that causing the diffuse light echo may have sizes similar to those of the Milky Way dust. Smaller grains can produce an optical depth consistent with that along the supernova-Earth line of sight measured by previous studies around maximum light. Therefore, it is possible that the dust slab from which the luminous arc arises is also responsible for most of the extinction toward SN 2014J. The optical depths determined from the Milky Way-like dust in the scattering matters are lower than the optical depth produced by the dust slab.

  14. Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2*-relaxometry and chemical shift-based sequences

    Energy Technology Data Exchange (ETDEWEB)

    Henninger, B.; Rauch, S.; Schocke, M.; Jaschke, W.; Kremser, C. [Medical University of Innsbruck, Department of Radiology, Innsbruck (Austria); Zoller, H. [Medical University of Innsbruck, Department of Internal Medicine, Innsbruck (Austria); Kannengiesser, S. [Siemens AG, Healthcare Sector, MR Applications Development, Erlangen (Germany); Zhong, X. [Siemens Healthcare, MR R and D Collaborations, Atlanta, GA (United States); Reiter, G. [Siemens AG, Healthcare Sector, MR R and D Collaborations, Graz (Austria)

    2015-05-01

    To evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference. One hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm (''screening'' sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland-Altman plots were generated and correlation coefficients were calculated to compare the sequences. The screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland-Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement. The screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods. (orig.)

  15. Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2*-relaxometry and chemical shift-based sequences

    International Nuclear Information System (INIS)

    Henninger, B.; Rauch, S.; Schocke, M.; Jaschke, W.; Kremser, C.; Zoller, H.; Kannengiesser, S.; Zhong, X.; Reiter, G.

    2015-01-01

    To evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference. One hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm (''screening'' sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland-Altman plots were generated and correlation coefficients were calculated to compare the sequences. The screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland-Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement. The screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods. (orig.)

  16. Echo pattern of lymph nodes in colorectal cancer

    DEFF Research Database (Denmark)

    Rafaelsen, Søren Rafael; Kronborg, Ole; Fenger, Claus

    1992-01-01

    Surgical specimens from 75 patients with colorectal cancer were examined within 15 min of removal with a 7.5 MHz linear-array transducer. The echo pattern of 139 lymph nodes was analysed to evaluate previous criteria of malignancy and to establish other possible criteria, which could be tested...

  17. Horizontal maps of echo power in the lower stratosphere using the MU radar

    Directory of Open Access Journals (Sweden)

    M. Hirono

    2004-03-01

    Full Text Available In recent works, zenithal and azimuthal angle variations of echo power measured by VHF Stratosphere-Troposphere (ST radars have been analyzed in detail using different radar multi-beam configurations. It was found that the azimuthal angle corresponding to maximum echo power is closely related to the direction of the horizontal wind shear. These properties indicate that local wind shear affects the tilt of the scatterers. Moreover, horizontal maps of echo power collected using a large set of beams steered pulse-to-pulse up to 40 degrees off zenith revealed that the power distribution pattern in the troposphere is often skewed. In this work, a three-dimensional description of echo power variations up to 24 degrees off zenith is shown for measurements in the lower stratosphere (i.e. up to approximately 20km using a "sequential multi-beam" (SMB configuration. Such a description was not possible above the tropopause with classical multi-beam configurations because of the loss of radar sensitivity due to the limited integration time by the use of a large number of beams. This work attempts to complete previous descriptions of the phenomenon by some observations in the lower stratosphere discussed in association with complementary balloon measurements. Key words. Meteorology and atmospheric dynamics (turbulence – Radio Science (remote sensing

  18. Comparison of Multiple-Microphone and Single-Loudspeaker Adaptive Feedback/Echo Cancellation Systems

    DEFF Research Database (Denmark)

    Guo, Meng; Elmedyb, Thomas Bo; Jensen, Søren Holdt

    2011-01-01

    Recently, we introduced a frequency domain measure - the power transfer function - to predict the convergence rate, system stability bound and the steady-state behavior across time and frequency of a least mean square based feedback/echo cancellation algorithm in a general multiple-microphone and......Recently, we introduced a frequency domain measure - the power transfer function - to predict the convergence rate, system stability bound and the steady-state behavior across time and frequency of a least mean square based feedback/echo cancellation algorithm in a general multiple...

  19. Chandra Discovers Light Echo from the Milky Way's Black Hole

    Science.gov (United States)

    2007-01-01

    Like cold case investigators, astronomers have used NASA's Chandra X-ray Observatory to uncover evidence of a powerful outburst from the giant black hole at the Milky Way's center. A light echo was produced when X-ray light generated by gas falling into the Milky Way's supermassive black hole, known as Sagittarius A* (pronounced "A-star"), was reflected off gas clouds near the black hole. While the primary X-rays from the outburst would have reached Earth about 50 years ago, the reflected X-rays took a longer path and arrived in time to be recorded by Chandra. Variability in Chandra Images of Light Echo Variability in Chandra Images of Light Echo "This dramatic event happened before we had satellites in space that could detect it," said Michael Muno of the California Institute of Technology in Pasadena. "So, it's remarkable that we can use Chandra to dig into the past and see this monster black hole's capacity for destruction." Previously, scientists have used Chandra to directly detect smaller and more recent outbursts from the black hole. This latest outburst revealed by the X-ray echo was about 1,000 times brighter and lasted well over 1,000 times longer than any of the recent outbursts observed by Chandra. Theory predicts that an outburst from Sagittarius A* would cause X-ray emission from the clouds to vary in both intensity and shape. Muno and his team found these changes for the first time, thus ruling out other interpretations. The latest results corroborate other independent, but indirect, evidence for light echoes generated by the black hole in the more distant past. Illustrations of Light Echo Illustrations of Light Echo Scientists have long known that Sagittarius A*, with a mass of about 3 million suns, lurked at the center for Milky Way. However, the black hole is incredibly faint at all wavelengths, especially in X-rays. "This faintness implies that stars and gas rarely get close enough to the black hole to be in any danger," said co-author Frederick

  20. Exact 2-point function in Hermitian matrix model

    International Nuclear Information System (INIS)

    Morozov, A.; Shakirov, Sh.

    2009-01-01

    J. Harer and D. Zagier have found a strikingly simple generating function [1,2] for exact (all-genera) 1-point correlators in the Gaussian Hermitian matrix model. In this paper we generalize their result to 2-point correlators, using Toda integrability of the model. Remarkably, this exact 2-point correlation function turns out to be an elementary function - arctangent. Relation to the standard 2-point resolvents is pointed out. Some attempts of generalization to 3-point and higher functions are described.

  1. A 3D T1-weighted gradient-echo sequence for routine use in 3D radiosurgical treatment planning of brain metastases: first clinical results

    International Nuclear Information System (INIS)

    Hawighorst, H.; Schad, L.R.; Gademann, G.; Knopp, M.V.; Wenz, F.; Kaick, G. van

    1995-01-01

    The authors report on a 3D sequence for MRI of the brain and its application in radiosurgical treatment planning of 35 brain metastases. The measuring sequence, called magnetization - prepared rapid gradient echo (MPRAGE), was compared with 2D T1-weighted spin-echo (SE) sequences following intravenous contrast-medium application in 19 patients with brain metastases. The average diameter of all lesions was similar in both sequences, with 16.8 and 17.0 mm for SE and MPRAGE, respectively. Target point definition was equal in 29 metastases, and in 6 cases superior on MPRAGE, due to better gray-white matter contrast and increased contrast enhancement. In cases of bleeding metastases there was improved depiction of internal structures in 3D MRI. Postprocessing of 3D MPRAGE data created multiplanar reconstruction along any chosen plane with isotropic spatial resolution, which helped to improve radiosurgical isodose distribution in 4 cases when compared to 2D SE. However, sensitivity of 3D MPRAGE to detect small lesions (< 3 mm) was decreased in one patient with more than 50 metastases. We conclude that 3D gradient-echo (GE) imaging might be of great value for radiosurgical treatment planning, but does not replace 2D SE with its current parameters. (orig.)

  2. Larry Echo Hawk: A Rising Star from Idaho.

    Science.gov (United States)

    Wisecarver, Charmaine

    1993-01-01

    Larry Echo Hawk, Idaho attorney general and former state legislator, discusses success factors in college and law school; early experiences as an Indian lawyer; first election campaign; and his views on tribal sovereignty, state-tribal relationship, gambling, and his dual responsibility to the general public and Native American issues. (SV)

  3. Conjugate echoes of artifically injected electron beams detected optically by means of new image processing

    International Nuclear Information System (INIS)

    Hallinan, T.J.; Stenbaek-Nielsen, H.C.; Baldridge, J.; Winckler, J.; Malcolm, P.

    1990-01-01

    Following two upward injections of energetic electrons (38 keV and 26 keV) from the Echo 4 rocket-borne electron accelerator, artificial auroral streaks were detected by ground-based low-light-level television. They were delayed relative to the injections by 2.06 s and 2.42 s, respectively. The delays are only 4-5% longer than calculated using a dynamic model of the geomagnetic field. Other field models yielded shorter bounce times. Since the delays were in the inverse ratio of the relativistic velocities calculated for the nominal beam energies, it is concluded that the potential of the payload remained below 1 kV during 45 mA injections at an altitude of 210 km. The echo streaks showed little dispersion in either time or space, indicating that the portion of the beam returning to the northen hemisphere loss cone remained collimated and nearly monoenergetic. But there was a 70% loss in the return flux. A diligent search failed to locate similar echoes from the more powerful injections employed in the Echo 5 and Echo 7 rocket experiments, suggesting flux losses of at least 98% and 92%, respectively. The losses are thought to be due to pitch angle scattering out of the loss cone as the electrons traverse the equatorial region but could also be due to collective beam plasma interactions

  4. Feasibility and applications of the spin-echo modulation option for a small angle neutron scattering instrument at the European Spallation Source

    Science.gov (United States)

    Kusmin, A.; Bouwman, W. G.; van Well, A. A.; Pappas, C.

    2017-06-01

    We describe theoretical and practical aspects of spin-echo modulated small-angle neutron scattering (SEMSANS) as well as the potential combination with SANS. Based on the preliminary technical designs of SKADI (a SANS instrument proposed for the European Spallation Source) and a SEMSANS add-on, we assess the practicability, feasibility and scientific merit of a combined SANS and SEMSANS setup by calculating tentative SANS and SEMSANS results for soft matter, geology and advanced material samples that have been previously studied by scattering methods. We conclude that lengths from 1 nm up to 0.01 mm can be observed simultaneously in a single measurement. Thus, the combination of SANS and SEMSANS instrument is suited for the simultaneous observation of a wide range of length scales, e.g. for time-resolved studies of kinetic processes in complex multiscale systems.

  5. Analysis of multibeam-hydrosweep echo peaks for seabed characterisation

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Schenke, H.W.; Kodagali, V.N.; Hagen, R.

    , in general, Gaussian in nature except in the case of the Kainan Maru seamount summit (area D). The outer beams of the Enderby abyssal plain (area C) echo-peak PDF statistics reveal the highest possible large-scale feature dominance. Interestingly, Extremal...

  6. Seasonal and diel patterns in sedimentary flux of krill fecal pellets recorded by an echo sounder

    KAUST Repository

    Rø stad, Anders; Kaartvedt, Stein

    2013-01-01

    We used a moored upward-facing 200 kHz echo sounder to address sedimentation of fecal pellets (FPs) from dielly migrating Meganyctiphanes norvegica. The echo sounder was located on the bottom at 150 m depth in the Oslofjord, Norway, and was cabled

  7. «Quotation and Literary Echo as Structural Principles in Gabriele Wohmann's Frühherbst in Badenweiler.»

    Directory of Open Access Journals (Sweden)

    Walter H. Sokel

    1980-09-01

    Full Text Available In her novel of 1978, Wohmann uses the montage technique—quotations, literary echoes, erudite allusions—of the «classics of modernism» to put the contemporary West German phenomenon of «New Inwardness» in an ironic light. Her protagonist, the composer Hubert Frey, retreats from the stresses of contemporary life to the Black Forest spa of Badenweiler. New Inwardness in him appears allied to New Conservatism which, in reaction to the New Left of the sixties, revives the old German ideal of the «A-Political Man.» Echoing a work of restaurative mentality, Stifter's Nachsommer , Frey's Frühherbst looks back nostalgically on Goethe's classicist phase. As Goethe put his Storm and Stress behind him, Frey analogously repudiates the turbulent youth of the sixties. He sums up his ethos of withdrawal by quoting a passage from one of Goethe's letters. He quotes inaccurately and his self-identification with Goethe rests on shaky foundations. By revealing her protagonist's erudition as faulty and confused, Wohmann unmasks his whole stance as—literally—false. Another of Frey's models, Conrad Aiken, a writer of inwardness and subjectivity, turns out to have been the wrong author for Frey's choice of Badenweiler. The American writer who had actually sojourned there turns out to have been the realist Stephen Crane. Inwardness thus proves literally incorrect and inappropriate to the protagonist's needs. The displacement of the symbolist Aiken by the realist Crane points ahead to the conclusion of the novel. Whereas a World War had been needed to dislodge Thomas Mann's Hans Castorp from his retreat, a mere mouse, invading Frey's hotel room, serves the analogous function in Wohmann's novel. Literary echo, a structural device, functions thematically as both the symptom and the cure of her protagonist's passing relapse into German inwardness.

  8. Book review: Musical echoes: South African women thinking in jazz ...

    African Journals Online (AJOL)

    Abstract. Title: Musical echoes: South African women thinking in jazz. Author: Muller, Carol and Sathima, Bea Benjamin. Publisher: Duke University Press. Publication year: 2011. ISBN 978-0-8223-4914-3 ...

  9. Searching gamma-ray bursts for gravitational lensing echoes - Implications for compact dark matter

    Science.gov (United States)

    Nemiroff, R. J.; Norris, J. P.; Wickramasinghe, W. A. D. T.; Horack, J. M.; Kouveliotou, C.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.

    1993-01-01

    The first available 44 gamma-ray bursts (GRBs) detected by the Burst and Transient Source Experiment on board the Compton Gamma-Ray Observatory have been inspected for echo signals following shortly after the main signal. No significant echoes have been found. Echoes would have been expected were the GRBs distant enough and the universe populated with a sufficient density of compact objects composing the dark matter. Constraints on dark matter abundance and GRB redshifts from the present data are presented and discussed. Based on these preliminary results, a universe filled to critical density of compact objects between 10 exp 6.5 and 10 exp 8.1 solar masses are now marginally excluded, or the most likely cosmological distance paradigm for GRBs is not correct. We expect future constraints to be able either to test currently popular cosmological dark matter paradigms or to indicate that GRBs do not lie at cosmological distances.

  10. BENCHMARKING THE OPTICAL RESOLVING POWER OF UAV BASED CAMERA SYSTEMS

    Directory of Open Access Journals (Sweden)

    H. Meißner

    2017-08-01

    Full Text Available UAV based imaging and 3D object point generation is an established technology. Some of the UAV users try to address (very highaccuracy applications, i.e. inspection or monitoring scenarios. In order to guarantee such level of detail and accuracy high resolving imaging systems are mandatory. Furthermore, image quality considerably impacts photogrammetric processing, as the tie point transfer, mandatory for forming the block geometry, fully relies on the radiometric quality of images. Thus, empirical testing of radiometric camera performance is an important issue, in addition to standard (geometric calibration, which normally is covered primarily. Within this paper the resolving power of ten different camera/lens installations has been investigated. Selected systems represent different camera classes, like DSLRs, system cameras, larger format cameras and proprietary systems. As the systems have been tested in wellcontrolled laboratory conditions and objective quality measures have been derived, individual performance can be compared directly, thus representing a first benchmark on radiometric performance of UAV cameras. The results have shown, that not only the selection of appropriate lens and camera body has an impact, in addition the image pre-processing, i.e. the use of a specific debayering method, significantly influences the final resolving power.

  11. The Resolved Stellar Populations Early Release Science Program

    Science.gov (United States)

    Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team

    2018-06-01

    The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.

  12. Cerebral hemodynamic changes measured by gradient-echo or spin-echo bolus tracking and its correlation to changes in ICA blood flow measured by phase-mapping MRI

    DEFF Research Database (Denmark)

    Marstrand, J.R.; Rostrup, Egill; Garde, Ellen

    2001-01-01

    Changes in cerebral blood flow (CBF) induced by Acetazolamide (ACZ) were measured using dynamic susceptibility contrast MRI (DSC-MRI) with both spin echo (SE) EPI and gradient echo (GE) EPI, and related to changes in internal carotid artery (ICA) flow measured by phase-mapping. Also examined...... increase in CBF and CBV in response to ACZ, while SE-EPI measured a significant increase in CBV and MTT. CBV and MTT change measured by SE-EPI was sensitive to previous bolus injections. There was a significant linear relation between change in CBF measured by GE-EPI and change in ICA flow. In conclusion......, GE-EPI under the present condition was superior to SE-EPI in monitoring cerebral vascular changes...

  13. The first coordinated observations of mid-latitude E-region quasi-periodic radar echoes and lower thermospheric 557.7-nm airglow

    Directory of Open Access Journals (Sweden)

    T. Ogawa

    2005-10-01

    Full Text Available We present the first coordinated observations of quasi-periodic (QP radar echoes from sporadic-E (Es field-aligned irregularities (FAIs, OI 557.7-nm airglow, and neutral winds in a common volume over Shigaraki, Japan (34.9° N, 136.1° E on the night of 5 August 2002 during the SEEK-2 campaign. QP echo altitudes of 90-110 km were lower than usual by 10 km, enabling us to make a detailed comparison among QP echoes, airglow intensity, and neutral wind at around 96 km altitude. Eastward movement of the QP echo regions is consistent with the motions of neutral winds, airglow structures, and FAIs, suggesting that the electrodynamics of Es-layers is fundamentally controlled by the neutral atmospheric dynamics. During the QP echo event, the echo altitudes clearly went up (down in harmony with an airglow enhancement (subsidence that also moved to the east. This fact suggests that the eastward-moving enhanced airglow region included an upward (downward component of neutral winds to raise (lower the altitude of the wind-shear node responsible for the Es formation. The airglow intensity, echo intensity, and Doppler velocity of FAIs at around 96 km altitude fluctuated with periods from 10 min to 1h, indicating that these parameters were modulated with short-period atmospheric disturbances. Some QP echo regions below 100km altitude contained small-scale QP structures in which very strong neutral winds exceeding 100 m/s existed. The results are compared with recent observations, theories, and simulations of QP echoes. Keywords. Ionosphere (Ionosphere-atmosphere interactions; Ionospheric irregularities; Mid-latitude ionosphere

  14. Infrared photon-echo spectroscopy of water : The thermalization effects

    NARCIS (Netherlands)

    Pshenichnikov, Maxim S.; Yeremenko, Sergey; Wiersma, Douwe A.; Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A.; Okada, Tadashi; Silvestri, Sandro De

    2005-01-01

    The larger part of the nonlinear response in IR photon-echo and transient-grating spectroscopy on HDO-D2O mixtures at > 1-ps delays is found to originate from the D2O refractive index modulation due to local volume thermalization.

  15. The Resolved Stellar Populations Early Release Science Program

    Science.gov (United States)

    Weisz, Daniel; Anderson, J.; Boyer, M.; Cole, A.; Dolphin, A.; Geha, M.; Kalirai, J.; Kallivayalil, N.; McQuinn, K.; Sandstrom, K.; Williams, B.

    2017-11-01

    We propose to obtain deep multi-band NIRCam and NIRISS imaging of three resolved stellar systems within 1 Mpc (NOI 104). We will use this broad science program to optimize observational setups and to develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will combine our expertise in HST resolved star studies with these observations to design, test, and release point spread function (PSF) fitting software specific to JWST. PSF photometry is at the heart of resolved stellar populations studies, but is not part of the standard JWST reduction pipeline. Our program will establish JWST-optimized methodologies in six scientific areas: star formation histories, measurement of the sub-Solar mass stellar IMF, extinction maps, evolved stars, proper motions, and globular clusters, all of which will be common pursuits for JWST in the local Universe. Our observations of globular cluster M92, ultra-faint dwarf Draco II, and star-forming dwarf WLM, will be of high archival value for other science such as calibrating stellar evolution models, measuring properties of variable stars, and searching for metal-poor stars. We will release the results of our program, including PSF fitting software, matched HST and JWST catalogs, clear documentation, and step-by-step tutorials (e.g., Jupyter notebooks) for data reduction and science application, to the community prior to the Cycle 2 Call for Proposals. We will host a workshop to help community members plan their Cycle 2 observations of resolved stars. Our program will provide blueprints for the community to efficiently reduce and analyze JWST observations of resolved stellar populations.

  16. MR fingerprinting using the quick echo splitting NMR imaging technique.

    Science.gov (United States)

    Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A

    2017-03-01

    The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining magnetic resonance fingerprinting (MRF) technique with quick echo splitting NMR imaging technique (QUEST). A QUEST-based MRF sequence was implemented to acquire high-order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T 1 and T 2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The specific absorption rate (SAR) of MRF-QUEST was compared with the clinically available methods. MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head SAR of 0.03 W/kg. T 1 and T 2 values estimated by MRF-QUEST are in good agreement with the traditional methods. The combination of the MRF and the QUEST provides an accurate quantification of T 1 and T 2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. Magn Reson Med 77:979-988, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Horizontal maps of echo power in the lower stratosphere using the MU radar

    Directory of Open Access Journals (Sweden)

    M. Hirono

    2004-03-01

    Full Text Available In recent works, zenithal and azimuthal angle variations of echo power measured by VHF Stratosphere-Troposphere (ST radars have been analyzed in detail using different radar multi-beam configurations. It was found that the azimuthal angle corresponding to maximum echo power is closely related to the direction of the horizontal wind shear. These properties indicate that local wind shear affects the tilt of the scatterers. Moreover, horizontal maps of echo power collected using a large set of beams steered pulse-to-pulse up to 40 degrees off zenith revealed that the power distribution pattern in the troposphere is often skewed. In this work, a three-dimensional description of echo power variations up to 24 degrees off zenith is shown for measurements in the lower stratosphere (i.e. up to approximately 20km using a "sequential multi-beam" (SMB configuration. Such a description was not possible above the tropopause with classical multi-beam configurations because of the loss of radar sensitivity due to the limited integration time by the use of a large number of beams. This work attempts to complete previous descriptions of the phenomenon by some observations in the lower stratosphere discussed in association with complementary balloon measurements.

    Key words. Meteorology and atmospheric dynamics (turbulence – Radio Science (remote sensing

  18. Gradient-recalled echo sequences in direct shoulder MR arthrography for evaluating the labrum

    International Nuclear Information System (INIS)

    Lee, Marc J.; Motamedi, Kambiz; Chow, Kira; Seeger, Leanne L.

    2008-01-01

    The purpose of this study was to determine the utility of fat-suppressed gradient-recalled echo (GRE) compared with conventional spin echo T1-weighted (T1W) sequences in direct shoulder MR arthrography for evaluating labral tears. Three musculoskeletal radiologists retrospectively reviewed MR arthrograms performed over a 12-month period for which surgical correlation was available. Of 180 serial arthrograms, 31 patients had surgery with a mean of 48 days following imaging. Paired coronal oblique and axial T1W or GRE sequences were analyzed by consensus for labral tear (coronal oblique two-dimensional multi-echo data image combination, 2D MEDIC; and axial three-dimensional double-echo steady-state, 3D DESS; Siemens MAGNETOM Sonata 1.5-T MR system). Interpretations were correlated with operative reports. Of 31 shoulders, 25 had labral tears at surgery. The GRE sequences depicted labral tears in 22, while T1W images depicted tears in 16 (sensitivity 88% versus 64%; p 0.7). Specificities were somewhat lower for GRE. Thin section GRE sequences are more sensitive than T1W for the detection of anterior and posterior labral tears. As the specificity of GRE was lower, it should be considered as an adjunctive imaging sequence that may improve depiction of labral tears, particularly smaller tears, in routine MR arthrography protocols. (orig.)

  19. Participatory Culture at the Echo Park Film Center

    Science.gov (United States)

    Rosales, Jennifer Ann

    2013-01-01

    The Echo Park Film Center, a Los Angeles nonprofit media education organization, teaches underprivileged youth how to comprehend and make media in order to empower them to speak and be heard. Due to the organization's nonmainstream media courses and its connection to its community, the Center is able to create a participatory and socially…

  20. Diffusion-weighted echo-planar MRI of lacunar infarcts

    International Nuclear Information System (INIS)

    Noguchi, K.; Nagayoshi, T.; Watanabe, N.; Kanazawa, T.; Toyoshima, S.; Morijiri, M.; Shojaku, H.; Shimizu, M.; Seto, H.

    1998-01-01

    We studied 35 patients with lacunar infarcts, using diffusion-weighted echo-planar imaging (DW-EPI) at 1.5 T. The relative apparent diffusion coefficient ratio (ADCR) of each lesion was calculated and lesion conspicuity on DW-EPI was compared to that on images aquired with fast fluid-attenuated inversion recovery and T2-weighted fast spin-echo sequences. Acute small infarcts (within 3 days) were identified with DW-EPI as an area of decreased ADCR (range 0.33-0.87; mean 0.67) and high signal, subacute small infarcts (4-30 days) as a high-signal or isointense areas of decreased or nearly normal ADCR (0.54-0.98; 0.73), and chronic small infarcts (> 30 days) as low- or high-signal areas of nearly normal or increased ADCR (0.97-1.92; 1.32). In three patients, small infarcts of the brain stem in the hyperacute phase (within 6 h) were seen only with DW-EPI. In five patients, fresh small infarcts adjacent to multiple old infarcts could be distinguished only with DW-EPI. (orig.)

  1. Utility of two types of MR cisternography for patency evaluation of aqueduct and third ventriculostomy site: Three dimentsional sagittal fast spin echo sequence and steady-state coherent fast gradient echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hyun; Kim, Eun Hee; Park, Jong Bin; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheol Kyu; Bae, Yun Jung; Lee, Kyung Mi [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2015-07-15

    We aimed to evaluate the utility of two types of MR cisternography [fast spin echo sequence and steady-state coherent gradient echo (GRE) sequence] in addition to phase contrast-cine imaging (PC-cine), for assessing patency at the aqueduct and third ventriculostomy site. 43 patients (35 patients with suspected aqueductal stenosis and 8 patients with third ventriculostomy) were retrospectively analyzed. PC-cine, 3 dimensional sagittal fast spin echo sequence [driven-equilibrium imaging (DRIVE) or volumetric isotrophic T2-weighted acquisition (T2 VISTA)] and steady-state coherent fast GRE sequence (balanced turbo field echo; bTFE) imaging were performed in all patients. The patency of the aqueduct or third ventriculostomy site was scored. Some pitfalls of each sequence were also analyzed in individual cases. 93% of all cases showed consistent scores in PC-cine, DRIVE/T2 VISTA, and bTFE imaging. DRIVE/T2 VISTA imaging provided functional information of cerebrospinal fluid flow with flow-related artifacts, while bTFE imaging allowed direct visualization of the aqueduct or ventriculostomy site. However, evaluation of anatomical structures was difficult in three cases with strong flow-related artifacts on DRIVE/T2 VISTA and in 2 cases with susceptibility artifacts on bTFE. Both DRIVE/T2 VISTA and bTFE imaging have complementary roles in evaluating the patency of the aqueduct and 3rd ventriculostomy site.

  2. Utility of two types of MR cisternography for patency evaluation of aqueduct and third ventriculostomy site: Three dimentsional sagittal fast spin echo sequence and steady-state coherent fast gradient echo sequence

    International Nuclear Information System (INIS)

    Park, Jung Hyun; Kim, Eun Hee; Park, Jong Bin; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheol Kyu; Bae, Yun Jung; Lee, Kyung Mi

    2015-01-01

    We aimed to evaluate the utility of two types of MR cisternography [fast spin echo sequence and steady-state coherent gradient echo (GRE) sequence] in addition to phase contrast-cine imaging (PC-cine), for assessing patency at the aqueduct and third ventriculostomy site. 43 patients (35 patients with suspected aqueductal stenosis and 8 patients with third ventriculostomy) were retrospectively analyzed. PC-cine, 3 dimensional sagittal fast spin echo sequence [driven-equilibrium imaging (DRIVE) or volumetric isotrophic T2-weighted acquisition (T2 VISTA)] and steady-state coherent fast GRE sequence (balanced turbo field echo; bTFE) imaging were performed in all patients. The patency of the aqueduct or third ventriculostomy site was scored. Some pitfalls of each sequence were also analyzed in individual cases. 93% of all cases showed consistent scores in PC-cine, DRIVE/T2 VISTA, and bTFE imaging. DRIVE/T2 VISTA imaging provided functional information of cerebrospinal fluid flow with flow-related artifacts, while bTFE imaging allowed direct visualization of the aqueduct or ventriculostomy site. However, evaluation of anatomical structures was difficult in three cases with strong flow-related artifacts on DRIVE/T2 VISTA and in 2 cases with susceptibility artifacts on bTFE. Both DRIVE/T2 VISTA and bTFE imaging have complementary roles in evaluating the patency of the aqueduct and 3rd ventriculostomy site

  3. Correction of inhomogeneous RF field using multiple SPGR signals for high-field spin-echo MRI

    International Nuclear Information System (INIS)

    Ishimori, Yoshiyuki; Monma, Masahiko; Yamada, Kazuhiro; Kimura, Hirohiko; Uematsu, Hidemasa; Fujiwara, Yasuhiro; Yamaguchi, Isao

    2007-01-01

    The purpose of this study was to propose a simple and useful method for correcting nonuniformity of high-field (3 Tesla) T 1 -weighted spin-echo (SE) images based on a B1 field map estimated from gradient recalled echo (GRE) signals. The method of this study was to estimate B1 inhomogeneity, spoiled gradient recalled echo (SPGR) images were collected using a fixed repetition time of 70 ms, flip angles of 45 and 90 degrees, and echo times of 4.8 and 10.4 ms. Selection of flip angles was based on the observation that the relative intensity changes in SPGR signals were very similar among different tissues at larger flip angles than the Ernst angle. Accordingly, spatial irregularity that was observed on a signal ratio map of the SPGR images acquired with these 2 flip angles was ascribed to inhomogeneity of the B1 field. Dual echo time was used to eliminate T 2 * effects. The ratio map that was acquired was scaled to provide an intensity correction map for SE images. Both phantom and volunteer studies were performed using a 3T magnetic resonance scanner to validate the method. In the phantom study, the uniformity of the T 1 -weighted SE image improved by 23%. Images of human heads also showed practically sufficient improvement in the image uniformity. The present method improves the image uniformity of high-field T 1 -weighted SE images. (author)

  4. SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR.

    Science.gov (United States)

    Lee, Hyunyeol; Park, Jaeseok

    2013-07-01

    Phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo imaging was recently introduced, producing high-resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted-averaging-based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal-to-noise ratio-optimized version of the phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three-step prescribed signal evolution while those in the second acquisition are calculated using a two-step pseudo-steady state signal transition with a high flip-angle pseudo-steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip-angle pseudo-steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal-to-noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid-attenuated imaging. Copyright © 2012 Wiley Periodicals, Inc.

  5. The Direct Detection and Characterization of M-dwarf Planets Using Light Echoes

    Science.gov (United States)

    Sparks, William B.; White, Richard L.; Lupu, Roxana E.; Ford, Holland C.

    2018-02-01

    Exoplanets orbiting M-dwarf stars are a prime target in the search for life in the universe. M-dwarf stars are active, with powerful flares that could adversely impact prospects for life, though there are counter-arguments. Here, we turn flaring to advantage and describe ways in which it can be used to enhance the detectability of planets, in the absence of transits or a coronagraph, significantly expanding the accessible discovery and characterization space. Flares produce brief bursts of intense luminosity, after which the star dims. Due to the light travel time between the star and planet, the planet receives the high-intensity pulse, which it re-emits through scattering (a light echo) or intrinsic emission when the star is much fainter, thereby increasing the planet’s detectability. The planet’s light-echo emission can potentially be discriminated from that of the host star by means of a time delay, Doppler shift, spatial shift, and polarization, each of which can improve the contrast of the planet to the star. Scattered light can reveal the albedo spectrum of the planet to within a size scale factor, and is likely to be polarized. Intrinsic emission mechanisms include fluorescent pumping of multiple molecular hydrogen and neutral oxygen lines by intense Lyα and Lyβ flare emission, recombination radiation of ionized and photodissociated species, and atmospheric processes such as terrestrial upper atmosphere airglow and near-infrared hydroxyl emission. We discuss the feasibility of detecting light echoes and find that light echo detection is possible under favorable circumstances.

  6. AFSC/ABL: Lynn Canal Echo-Integrated Trawl Surveys, 2001-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The acoustic trawl database for Lynn Canals echo-trawl survey was conducted from 2001 to 2004 throughout southern Lynn Canal in southeast Alaska. Acoustic surveys...

  7. Detection of renal arteries with fast spin-echo magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tello, R.; Mitchell, P.J.; Witte, D.J.; Thomson, K.R. [University of Melbourne, Parkville, VIC (Australia). Department of Radiology

    1998-08-01

    With the increasing use of non-invasive imaging with MR and volumetric CT to evaluate renal arteries, the ability to accurately detect the number and state of native renal arteries becomes critical if conventional angiography is to be supplanted in these settings. The present study evaluated the utility of a fast spin-echo (FSE) T2-weighted sequence to detect the number and course of renal arteries and their ostia compared to conventional angiography. Ten patients underwent conventional catheter angiography either for renal artery stenosis evaluation or as potential renal donors. Each patient then had an MR study of the renal arteries and kidneys with FSE MR (TR = 4000 ms, TE = 102 ms, eight- echo train length, 5-mm-thick interleaved 128 phase encodes, superior and inferior saturation pulses, number of excitations (NEX) = 4, on a 1.5-T superconducting magnet). Images were reviewed by two `blinded` radiologists and renal arteries were counted and their ostia were evaluated. Results were compared with angiography and inter- and intra-observer statistics were calculated. All 10 patients underwent MR successfully, nine for renal artery stenosis (RAS) evaluation and one was a renal donor. A total of 24 renal arteries were imaged in 19 kidneys. Fast spin-echo MR is 95% accurate (95%CI: 88-100%) in detection of renal arteries, with no statistical difference between FSE MR and catheter angiography (McNemar P = 0.0). Inter- and intra-observer statistics demonstrate good-to-excellent agreement in renal artery detection (kappa: 0.63-0.90). In one case of RAS evaluation an incidental adrenal mass was detected as the aetiology of the patient`s hypertension. Fast spin-echo MR can be a useful adjunct as part of the imaging for renal arteries with MRI. Copyright (1998) Blackwell Science Pty Ltd 16 refs., 1 fig.

  8. Detection of renal arteries with fast spin-echo magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tello, R.; Mitchell, P.J.; Witte, D.J.; Thomson, K.R.

    1998-01-01

    With the increasing use of non-invasive imaging with MR and volumetric CT to evaluate renal arteries, the ability to accurately detect the number and state of native renal arteries becomes critical if conventional angiography is to be supplanted in these settings. The present study evaluated the utility of a fast spin-echo (FSE) T2-weighted sequence to detect the number and course of renal arteries and their ostia compared to conventional angiography. Ten patients underwent conventional catheter angiography either for renal artery stenosis evaluation or as potential renal donors. Each patient then had an MR study of the renal arteries and kidneys with FSE MR (TR = 4000 ms, TE = 102 ms, eight- echo train length, 5-mm-thick interleaved 128 phase encodes, superior and inferior saturation pulses, number of excitations (NEX) = 4, on a 1.5-T superconducting magnet. Images were reviewed by two 'blinded' radiologists and renal arteries were counted and their ostia were evaluated. Results were compared with angiography and inter- and intra-observer statistics were calculated. All 10 patients underwent MR successfully, nine for renal artery stenosis (RAS) evaluation and one was a renal donor. A total of 24 renal arteries were imaged in 19 kidneys. Fast spin-echo MR is 95% accurate (95%CI: 88-100%) in detection of renal arteries, with no statistical difference between FSE MR and catheter angiography (McNemar P = 0.0). Inter- and intra-observer statistics demonstrate good-to-excellent agreement in renal artery detection (kappa: 0.63-0.90). In one case of RAS evaluation an incidental adrenal mass was detected as the aetiology of the patient's hypertension. Fast spin-echo MR can be a useful adjunct as part of the imaging for renal arteries with MRI. Copyright (1998) Blackwell Science Pty Ltd

  9. Real-time adaptive concepts in acoustics blind signal separation and multichannel echo cancellation

    CERN Document Server

    Schobben, Daniel W E

    2001-01-01

    Blind Signal Separation (BSS) deals with recovering (filtered versions of) source signals from an observed mixture thereof. The term `blind' relates to the fact that there are no reference signals for the source signals and also that the mixing system is unknown. This book presents a new method for blind signal separation, which is developed to work on microphone signals. Acoustic Echo Cancellation (AEC) is a well-known technique to suppress the echo that a microphone picks up from a loudspeaker in the same room. Such acoustic feedback occurs for example in hands-free telephony and can lead to a perceived loud tone. For an application such as a voice-controlled television, a stereo AEC is required to suppress the contribution of the stereo loudspeaker setup. A generalized AEC is presented that is suited for multi-channel operation. New algorithms for Blind Signal Separation and multi-channel Acoustic Echo Cancellation are presented. A background is given in array signal processing methods, adaptive filter the...

  10. Importance of T2*-weighted gradient-echo MRI for diagnosis of cortical vein thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Fellner, Franz A. [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria) and Zentrales Radiologie Institut, Allgemeines Krankenhaus der Stadt Linz, Krankenhausstr. 9, 4020 Linz (Austria)]. E-mail: franz.fellner@akh.linz.at; Fellner, Claudia [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria); Aichner, Franz T. [Abteilung fuer Neurologie, Landes-Nervenklinik Wagner-Jauregg, Linz (Austria); Moelzer, Guenther [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria)

    2005-11-01

    We examined six patients with isolated venous thrombosis (n = 2), or venous thrombosis combined with sinus thrombosis (n = 4) (CVT). The clinical symptoms were non-specific (acute cephalea, paresis, epileptic seizure, progressive speech disorder). All examinations were performed on a 1.5 T system (Magnetom Symphony, Siemens, Erlangen, Germany), maximum gradient field strength 30 mT/m, minimal gradient rise time 450 {mu}s, according to the following protocol: Transverse T2-weighted turbo spin-echo (TSE), fluid attenuated inversion recovery (FLAIR), T1-weighted spin-echo (SE), before and after administration of contrast medium, T2*-weighted conventional gradient-echo (GRE), T2*-weighted spin-echo echo planar imaging (SE EPI), both without and with diffusion weighting as well as two-dimensional (2D) venous time-of-flight (TOF) MRA. The venous thromboses were best detectable in the T2*-weighted conventional GRE sequence in all patients. In two patients, the CVT was discernible only in this sequence. The sinus thrombosis was well discernible only in the T2*-weighted GRE sequence in only one case; in the remaining cases it was detectable only with difficulty. For these cases, other sequences such as SE, diffusion-weighted, or 2D-TOF-MRA sequence were superior. The T2*-weighted conventional GRE sequence was superior to the T2*-weighted SE EPI sequence in all patients. To sum up, it can be concluded, that T2*-weighted conventional GRE sequences are possibly the best method of detection of acute cortical vein thromboses. Therefore, it seems to be of benefit to integrate a T2*-weighted conventional GRE sequence into the MR-protocol for the diagnosis of isolated cortical vein thrombosis.

  11. Importance of T2*-weighted gradient-echo MRI for diagnosis of cortical vein thrombosis

    International Nuclear Information System (INIS)

    Fellner, Franz A.; Fellner, Claudia; Aichner, Franz T.; Moelzer, Guenther

    2005-01-01

    We examined six patients with isolated venous thrombosis (n = 2), or venous thrombosis combined with sinus thrombosis (n = 4) (CVT). The clinical symptoms were non-specific (acute cephalea, paresis, epileptic seizure, progressive speech disorder). All examinations were performed on a 1.5 T system (Magnetom Symphony, Siemens, Erlangen, Germany), maximum gradient field strength 30 mT/m, minimal gradient rise time 450 μs, according to the following protocol: Transverse T2-weighted turbo spin-echo (TSE), fluid attenuated inversion recovery (FLAIR), T1-weighted spin-echo (SE), before and after administration of contrast medium, T2*-weighted conventional gradient-echo (GRE), T2*-weighted spin-echo echo planar imaging (SE EPI), both without and with diffusion weighting as well as two-dimensional (2D) venous time-of-flight (TOF) MRA. The venous thromboses were best detectable in the T2*-weighted conventional GRE sequence in all patients. In two patients, the CVT was discernible only in this sequence. The sinus thrombosis was well discernible only in the T2*-weighted GRE sequence in only one case; in the remaining cases it was detectable only with difficulty. For these cases, other sequences such as SE, diffusion-weighted, or 2D-TOF-MRA sequence were superior. The T2*-weighted conventional GRE sequence was superior to the T2*-weighted SE EPI sequence in all patients. To sum up, it can be concluded, that T2*-weighted conventional GRE sequences are possibly the best method of detection of acute cortical vein thromboses. Therefore, it seems to be of benefit to integrate a T2*-weighted conventional GRE sequence into the MR-protocol for the diagnosis of isolated cortical vein thrombosis

  12. Non-Cooperative Target Imaging and Parameter Estimation with Narrowband Radar Echoes

    Directory of Open Access Journals (Sweden)

    Chun-mao Yeh

    2016-01-01

    Full Text Available This study focuses on the rotating target imaging and parameter estimation with narrowband radar echoes, which is essential for radar target recognition. First, a two-dimensional (2D imaging model with narrowband echoes is established in this paper, and two images of the target are formed on the velocity-acceleration plane at two neighboring coherent processing intervals (CPIs. Then, the rotating velocity (RV is proposed to be estimated by utilizing the relationship between the positions of the scattering centers among two images. Finally, the target image is rescaled to the range-cross-range plane with the estimated rotational parameter. The validity of the proposed approach is confirmed using numerical simulations.

  13. Chirp echo Fourier transform EPR-detected NMR.

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Chirp echo Fourier transform EPR-detected NMR

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.

  15. MRI of the breast with 2D spin-echo and gradient echo sequences in diagnostically difficult cases

    International Nuclear Information System (INIS)

    Allgayer, B.; Lukas, P.; Loos, W.; Kersting-Sommerhoff, B.

    1993-01-01

    One or both breasts of 296 patients with equivocal clinical or mammographical findings were examined with MRI. T 1 weighted spinecho (SE) and gradient echo (FFE) sequences were acquired before and after i.v. application of Gadolinium DTPA. 50 lesions with enhancement after Gd-DTPA were biopsied -26 carcinomas, 17 proliferating mastopathic tissues, 5 fibroadenomas and 1 abscess were found. Contrast enhanced MRI with 2D-SE and FFE sequences is an effective technqiue for evaluating suspicious breast lesions with high diagnostic acurracy. (orig.) [de

  16. Triple echo steady-state (TESS) relaxometry.

    Science.gov (United States)

    Heule, Rahel; Ganter, Carl; Bieri, Oliver

    2014-01-01

    Rapid imaging techniques have attracted increased interest for relaxometry, but none are perfect: they are prone to static (B0 ) and transmit (B1 ) field heterogeneities, and commonly biased by T2 /T1 . The purpose of this study is the development of a rapid T1 and T2 relaxometry method that is completely (T2 ) or partly (T1 ) bias-free. A new method is introduced to simultaneously quantify T1 and T2 within one single scan based on a triple echo steady-state (TESS) approach in combination with an iterative golden section search. TESS relaxometry is optimized and evaluated from simulations, in vitro studies, and in vivo experiments. It is found that relaxometry with TESS is not biased by T2 /T1 , insensitive to B0 heterogeneities, and, surprisingly, that TESS-T2 is not affected by B1 field errors. Consequently, excellent correspondence between TESS and reference spin echo data is observed for T2 in vitro at 1.5 T and in vivo at 3 T. TESS offers rapid T1 and T2 quantification within one single scan, and in particular B1 -insensitive T2 estimation. As a result, the new proposed method is of high interest for fast and reliable high-resolution T2 mapping, especially of the musculoskeletal system at high to ultra-high fields. Copyright © 2013 Wiley Periodicals, Inc.

  17. Evaluation of diffusivity in the anterior lobe of the pituitary gland: 3D turbo field echo with diffusion-sensitized driven-equilibrium preparation.

    Science.gov (United States)

    Hiwatashi, A; Yoshiura, T; Togao, O; Yamashita, K; Kikuchi, K; Kobayashi, K; Ohga, M; Sonoda, S; Honda, H; Obara, M

    2014-01-01

    3D turbo field echo with diffusion-sensitized driven-equilibrium preparation is a non-echo-planar technique for DWI, which enables high-resolution DWI without field inhomogeneity-related image distortion. The purpose of this study was to evaluate the feasibility of diffusion-sensitized driven-equilibrium turbo field echo in evaluating diffusivity in the normal pituitary gland. First, validation of diffusion-sensitized driven-equilibrium turbo field echo was attempted by comparing it with echo-planar DWI. Five healthy volunteers were imaged by using diffusion-sensitized driven-equilibrium turbo field echo and echo-planar DWI. The imaging voxel size was 1.5 × 1.5 × 1.5 mm(3) for diffusion-sensitized driven-equilibrium turbo field echo and 1.5 × 1.9 × 3.0 mm(3) for echo-planar DWI. ADCs measured by the 2 methods in 15 regions of interests (6 in gray matter and 9 in white matter) were compared by using the Pearson correlation coefficient. The ADC in the pituitary anterior lobe was then measured in 10 volunteers by using diffusion-sensitized driven-equilibrium turbo field echo, and the results were compared with those in the pons and vermis by using a paired t test. The ADCs from the 2 methods showed a strong correlation (r = 0.79; P pituitary gland were 1.37 ± 0.13 × 10(-3) mm(2)/s, which were significantly higher than those in the pons (1.01 ± 0.24 × 10(-3) mm(2)/s) and the vermis (0.89 ± 0.25 × 10(-3) mm(2)/s, P pituitary gland.

  18. Studying the potential of point detectors in time-resolved dose verification of dynamic radiotherapy

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Behrens, C. F.; Andersen, Claus E.

    2015-01-01

    based on fiber-coupled plastic scintillator detectors was evaluated and compared with a Farmer-type ionization chamber and a small-volume ionization chamber. An important feature of scintillator detectors is that the sensitive volume of the detector can easily be scaled, and five scintillator detectors......-volume ionization chamber and the smallest scintillators. The time-resolved RapidArc dose profiles revealed volume-dependent discrepancies between scintillator and ionization chamber response, which confirmed that correction factors for ionization chambers in high temporal and spatial dose gradients are dominated...

  19. Imaging of the Achilles tendon in spondyloarthritis: a comparison of ultrasound and conventional, short and ultrashort echo time MRI with and without intravenous contrast

    International Nuclear Information System (INIS)

    Hodgson, R.J.; Emery, P.; Grainger, A.J.; O'Connor, P.J.; Evans, R.; Coates, L.; Marzo-Ortega, H.; Helliwell, P.; McGonagle, D.; Robson, M.D.

    2011-01-01

    To compare conventional MRI, ultrashort echo time MRI and ultrasound for assessing the extent of tendon abnormalities in spondyloarthritis. 25 patients with spondyloarthritis and Achilles symptoms were studied with MRI and ultrasound. MR images of the Achilles tendon were acquired using T1-weighted spin echo, gradient echo and ultrashort echo time (UTE) sequences with echo times (TE) between 0.07 and 16 ms, before and after intravenous contrast medium. Greyscale and power Doppler ultrasound were also performed. The craniocaudal extent of imaging abnormalities measured by a consultant musculoskeletal radiologist was compared between the different techniques. Abnormalities were most extensive on spoiled gradient echo images with TE=2 ms. Contrast enhancement after intravenous gadolinium was greatest on the UTE images (TE=0.07 ms). Fewer abnormalities were demonstrated using unenhanced UTE. Abnormalities were more extensive on MRI than ultrasound. Contrast enhancement was more extensive than power Doppler signal. 3D spoiled gradient echo images with an echo time of 2 ms demonstrate more extensive tendon abnormalities than the other techniques in spondyloarthritis. Abnormalities of vascularity are best demonstrated on enhanced ultrashort echo time images. (orig.)

  20. Three-dimensional gradient echo versus spin echo sequence in contrast-enhanced imaging of the pituitary gland at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Kakite, Suguru, E-mail: sugkaki@med.tottori-u.ac.jp [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Fujii, Shinya [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Kurosaki, Masamichi [Department of Neurosurgery, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Kanasaki, Yoshiko; Matsusue, Eiji; Kaminou, Toshio; Ogawa, Toshihide [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan)

    2011-07-15

    Introduction: To clarify whether a three-dimensional-gradient echo (3D-GRE) or spin echo (SE) sequence is more useful for evaluating sellar lesions on contrast-enhanced T1-weighted MR imaging at 3.0 Tesla (T). Methods: We retrospectively assessed contrast-enhanced T1-weighted images using 3D-GRE and SE sequences at 3.0 T obtained from 33 consecutive patients with clinically suspected sellar lesions. Two experienced neuroradiologists evaluated the images qualitatively in terms of the following criteria: boundary edge of the cavernous sinus and pituitary gland, border of sellar lesions, delineation of the optic nerve and cranial nerves within the cavernous sinus, susceptibility and flow artifacts, and overall image quality. Results: At 3.0 T, 3D-GRE provided significantly better images than the SE sequence in terms of the border of sellar lesions, delineation of cranial nerves, and overall image quality; there was no significant difference regarding the boundary edge of the cavernous sinus and pituitary gland. In addition, the 3D-GRE sequence showed fewer pulsation artifacts but more susceptibility artifacts. Conclusion: Our results indicate that 3D-GRE is the more suitable sequence for evaluating sellar lesions on contrast-enhanced T1-weighted imaging at 3.0 T.

  1. Anteroinferior tears of the glenoid labrum: fat-suppressed fast spin-echo T2 versus gradient-recalled echo MR images

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); De Smet, A A [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); Norris, M A [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); Orwin, J F [Department of Orthopedic Surgery, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States)

    1997-05-01

    Objective. To compare fat-suppressed fast spin-echo (FSE) T2-weighted images with gradient-recalled echo (GRE) T2*-weighted images in the evaluation of anteroinferior labral tears. Design. MR images were retrospectively reviewed by two radiologists masked to the history and arthroscopic findings. They separately interpreted the anteroinferior labrum as torn or intact, first on one pulse sequence and then, 4 weeks later, on the other sequence. The MR interpretations were correlated with the arthroscopic findings. Patients. Nine patients with anteroinferior labral tears, and nine similarly-aged patients with normal, labra were studied. Results and conclusions. Observer 1 had a sensitivity of 0.56 on the GRE images and 0.67 on the FSE images (P>0.5), with a specificity of 1.0 for both sequences. Observer 2 had a sensitivity of 0.78 and a specificity of 0.89 for both sequences. In this small study there is no significant difference between GRE and fat-suppressed FSE images in their ability to diagnose anteroinferior labral tears. When evaluating the labrum with conventional MRI, axial fat-suppressed FSE T2-weighted images can be used in place of GRE images without a loss of accuracy. (orig.). With 3 figs., 1 tab.

  2. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    Science.gov (United States)

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Numerical experiment with modelled return echo of a satellite

    Indian Academy of Sciences (India)

    Abstract. We have simulated the return echo of a satellite altimeter from a rough ocean surface using an analytical formula and have studied its sensitivity with respect to various oceanic and altimeter parameters. Our numerical expcriment shows that for normally observed significant wave heights (SWFI) the effect of ...

  4. Quantitative comparison between a multiecho sequence and a single-echo sequence for susceptibility-weighted phase imaging.

    Science.gov (United States)

    Gilbert, Guillaume; Savard, Geneviève; Bard, Céline; Beaudoin, Gilles

    2012-06-01

    The aim of this study was to investigate the benefits arising from the use of a multiecho sequence for susceptibility-weighted phase imaging using a quantitative comparison with a standard single-echo acquisition. Four healthy adult volunteers were imaged on a clinical 3-T system using a protocol comprising two different three-dimensional susceptibility-weighted gradient-echo sequences: a standard single-echo sequence and a multiecho sequence. Both sequences were repeated twice in order to evaluate the local noise contribution by a subtraction of the two acquisitions. For the multiecho sequence, the phase information from each echo was independently unwrapped, and the background field contribution was removed using either homodyne filtering or the projection onto dipole fields method. The phase information from all echoes was then combined using a weighted linear regression. R2 maps were also calculated from the multiecho acquisitions. The noise standard deviation in the reconstructed phase images was evaluated for six manually segmented regions of interest (frontal white matter, posterior white matter, globus pallidus, putamen, caudate nucleus and lateral ventricle). The use of the multiecho sequence for susceptibility-weighted phase imaging led to a reduction of the noise standard deviation for all subjects and all regions of interest investigated in comparison to the reference single-echo acquisition. On average, the noise reduction ranged from 18.4% for the globus pallidus to 47.9% for the lateral ventricle. In addition, the amount of noise reduction was found to be strongly inversely correlated to the estimated R2 value (R=-0.92). In conclusion, the use of a multiecho sequence is an effective way to decrease the noise contribution in susceptibility-weighted phase images, while preserving both contrast and acquisition time. The proposed approach additionally permits the calculation of R2 maps. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Benefits of the Multiple Echo Technique for Ultrasonic Thickness Testing

    Energy Technology Data Exchange (ETDEWEB)

    Elder, J.; Vandekamp, R.

    2011-02-10

    Much effort has been put into determining methods to make accurate thickness measurements, especially at elevated temperatures. An accuracy of +/- 0.001 inches is typically noted for commercial ultrasonic thickness gauges and ultrasonic thickness techniques. Codes and standards put limitations on many inspection factors including equipment, calibration tolerance and temperature variations. These factors are important and should be controlled, but unfortunately do not guarantee accurate and repeatable measurements in the field. Most technicians long for a single technique that is best for every situation, unfortunately, there are no 'silver bullets' when it comes to nondestructive testing. This paper will describe and discuss some of the major contributors to measurement error as well as some advantages and limitations of multiple echo techniques and why multiple echo techniques should be more widely utilized for ultrasonic thickness measurements.

  6. Inaudible functional MRI using a truly mute gradient echo sequence

    International Nuclear Information System (INIS)

    Marcar, V.L.; Girard, F.; Rinkel, Y.; Schneider, J.F.; Martin, E.

    2002-01-01

    We performed functional MRI experiments using a mute version of a gradient echo sequence on adult volunteers using either a simple visual stimulus (flicker goggles: 4 subjects) or an auditory stimulus (music: 4 subjects). Because the mute sequence delivers fewer images per unit time than a fast echo planar imaging (EPI) sequence, we explored our data using a parametric ANOVA test and a non-parametric Wilcoxon-Mann-Whitney test in addition to performing a cross-correlation analysis. All three methods were in close agreement regarding the location of the BOLD contrast signal change. We demonstrated that, using appropriate statistical analysis, functional MRI using an MR sequence that is acoustically inaudible to the subject is feasible. Furthermore compared with the ''silent'' event-related procedures involving an EPI protocol, our mGE protocol compares favourably with respect to experiment time and the BOLD signal. (orig.)

  7. Echo detected EPR as a tool for detecting radiation-induced defect signals in pottery

    International Nuclear Information System (INIS)

    Zoleo, Alfonso; Bortolussi, Claudia; Brustolon, Marina

    2011-01-01

    Archaeological fragments of pottery have been investigated by using CW-EPR and Echo Detected EPR (EDEPR). EDEPR allows to remove the CW-EPR dominant Fe(III) background spectrum, hiding much weaker signals potentially useful for dating purpose. EDEPR spectra attributed to a methyl radical and to feldspar defects have been recorded at room and low temperature for an Iron Age cooking ware (700 B.C.). A study on the dependence of EDEPR intensity over absorbed dose on a series of γ-irradiated brick samples (estimated age of 562 ± 140 B.C.) has confirmed the potential efficacy of the proposed method for spotting defect signals out of the strong iron background. - Highlights: → Fe(III) CW-EPR signals cover CW-EPR-detectable defects in ceramics. → Echo detected EPR gets rid of Fe(III) signals, disclosing defect signals. → Echo detected EPR detects defect signals even at relatively low doses.

  8. Modelling of oscillations in two-dimensional echo-spectra of the Fenna-Matthews-Olson complex

    International Nuclear Information System (INIS)

    Hein, Birgit; Kreisbeck, Christoph; Kramer, Tobias; Rodríguez, Mirta

    2012-01-01

    Recent experimental observations of time-dependent beatings in the two-dimensional echo-spectra of light-harvesting complexes at ambient temperatures have opened up the question of whether coherence and wave-like behaviour play a significant role in photosynthesis. We carry out a numerical study of the absorption and echo-spectra of the Fenna-Matthews-Olson (FMO) complex in Chlorobium tepidum and analyse the requirements in the theoretical model needed to reproduce beatings in the calculated spectra. The energy transfer in the FMO pigment-protein complex is theoretically described by an exciton Hamiltonian coupled to a phonon bath which accounts for the pigments' electronic and vibrational excitations, respectively. We use the hierarchical equations of motions method to treat the strong couplings in a non-perturbative way. We show that the oscillations in the two-dimensional echo-spectra persist in the presence of thermal noise and static disorder. (paper)

  9. Efficient multichannel acoustic echo cancellation using constrained tap selection schemes in the subband domain

    Science.gov (United States)

    Desiraju, Naveen Kumar; Doclo, Simon; Wolff, Tobias

    2017-12-01

    Acoustic echo cancellation (AEC) is a key speech enhancement technology in speech communication and voice-enabled devices. AEC systems employ adaptive filters to estimate the acoustic echo paths between the loudspeakers and the microphone(s). In applications involving surround sound, the computational complexity of an AEC system may become demanding due to the multiple loudspeaker channels and the necessity of using long filters in reverberant environments. In order to reduce the computational complexity, the approach of partially updating the AEC filters is considered in this paper. In particular, we investigate tap selection schemes which exploit the sparsity present in the loudspeaker channels for partially updating subband AEC filters. The potential for exploiting signal sparsity across three dimensions, namely time, frequency, and channels, is analyzed. A thorough analysis of different state-of-the-art tap selection schemes is performed and insights about their limitations are gained. A novel tap selection scheme is proposed which overcomes these limitations by exploiting signal sparsity while not ignoring any filters for update in the different subbands and channels. Extensive simulation results using both artificial as well as real-world multichannel signals show that the proposed tap selection scheme outperforms state-of-the-art tap selection schemes in terms of echo cancellation performance. In addition, it yields almost identical echo cancellation performance as compared to updating all filter taps at a significantly reduced computational cost.

  10. Radar cross sections for mesospheric echoes at Jicamarca

    Directory of Open Access Journals (Sweden)

    G. A. Lehmacher

    2009-07-01

    Full Text Available Radar cross sections (RCS of mesospheric layers at 50 MHz observed at Jicamarca, Peru, range from 10−18 to 10−16 m−1, three orders of magnitudes smaller than cross sections reported for polar mesospheric winter echoes during solar proton events and six orders of magnitude smaller than polar mesospheric summer echoes. Large RCS are found in thick layers around 70 km that also show wide radar spectra, which is interpreted as turbulent broadening. For typical atmospheric and ionospheric conditions, volume scattering RCS for stationary, homogeneous, isotropic turbulence at 3 m are also in the range 10−18 to 10−16 m−1, in reasonable agreement with measurements. Moreover, theory predicts maximum cross sections around 70 km, also in agreement with observations. Theoretical values are still a matter of order-of-magnitude estimation, since the Bragg scale of 3 m is near or inside the viscous subrange, where the form of the turbulence spectrum is not well known. In addition, steep electron density gradients can increase cross-sections significantly. For thin layers with large RCS and narrow spectra, isotropic turbulence theory fails and scattering or reflection from anisotropic irregularities may gain relevance.

  11. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts

    International Nuclear Information System (INIS)

    Bonel, H.; Frei, K.A.; Raio, L.; Meyer-Wittkopf, M.; Remonda, L.; Wiest, R.

    2008-01-01

    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 ± 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 ± 0.58 vs. 3.65 ± 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 ± 7.27 to 19.83 ± 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement. (orig.)

  12. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts.

    Science.gov (United States)

    Bonel, H; Frei, K A; Raio, L; Meyer-Wittkopf, M; Remonda, L; Wiest, R

    2008-04-01

    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 +/- 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 +/- 0.58 vs. 3.65 +/- 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 +/- 7.27 to 19.83 +/- 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement.

  13. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Bonel, H. [University Hospital Berne-Inselspital, Freiburgstrasse, Institute of Diagnostic, Interventional and Pediatric Radiology, Bern (Switzerland); Frei, K.A.; Raio, L.; Meyer-Wittkopf, M. [University of Berne, Women' s' Hospital, Bern (Switzerland); Remonda, L.; Wiest, R. [University of Berne, Institute of Diagnostic and Interventional Neuroradiology (DIN), Inselspital, Bern (Switzerland)

    2008-04-15

    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 {+-} 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 {+-} 0.58 vs. 3.65 {+-} 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 {+-} 7.27 to 19.83 {+-} 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement. (orig.)

  14. Seasonal and diel patterns in sedimentary flux of krill fecal pellets recorded by an echo sounder

    KAUST Repository

    Røstad, Anders

    2013-11-01

    We used a moored upward-facing 200 kHz echo sounder to address sedimentation of fecal pellets (FPs) from dielly migrating Meganyctiphanes norvegica. The echo sounder was located on the bottom at 150 m depth in the Oslofjord, Norway, and was cabled to shore for continuous measurements during winter and spring. Records of sinking pellets were for the first time observed with an echo sounder. Seasonal patterns of sedimentation of krill FPs were strongly correlated with data from continuous measurement of fluorescence, which illustrate the development of the spring bloom. Sedimenting particles were first observed as fluorescence values started to increase at the end of February and continued to increase until the bloom suddenly culminated at the end of March. This collapse of the bloom was detected on the echo sounder as a pulse of slowly sinking acoustic targets over a 2 d period. Prior to this event, there was a strong diel pattern in sedimentation, which correlated, with some time lag, with the diel migration of krill foraging at night near the surface. Pellet average sinking speeds ranged between 423 m d−1 and 804 m d−1, with a strong relation to pellet target strength, which is an acoustic proxy for size. This novel approach shows that echo sounders may be a valuable tool in studies of vertical pellet flux and, thereby, carbon flux, providing temporal resolution and direct observation of the sedimentation process, which are not obtained from standard methods.

  15. Detection of generalized synchronization using echo state networks

    OpenAIRE

    Ibáñez-Soria, D.; García Ojalvo, Jordi; Soria Frisch, Aureli; Ruffini, G.

    2018-01-01

    Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences i...

  16. Numerical evaluation of pulse-echo damage detection in train rail

    CSIR Research Space (South Africa)

    Long, CS

    2014-01-01

    Full Text Available A guided wave based monitoring system for welded freight rail, has previously been developed. The existing system was designed to only detect complete breaks. Current research efforts are focused on including a pulse-echo mode of operation in order...

  17. Acoustic structure and echo character of surficial sediments of the northern Hatteras Abyssal Plain

    International Nuclear Information System (INIS)

    McCreery, C.J.; Laine, E.P.

    1986-05-01

    A study has been made of the high frequency acoustic response of abyssal plain depositional facies. Piston cores have been obtained at six stations and deep hydrophone recordings at three stations on the northern Hatteras Abyssal Plain. 3.5 kHz seismic profiles indicate acoustically transparent lobes of surficial sediment which thicken towards the Hatteral Transverse Canyon and Sohm Gap/Wilmington Fan. Physical property data from piston cores indicate a higher percentage of coarse sediment in the areas of transparent acoustic response. Many of the characteristics normally used in mapping of conventional 3.5 kHz profiler acoustic response varied only slightly in the study area. Regions of diffuse 3.5 kHz surface echoes, similar to prolonged echoes attributed to high percent sand beds, have been identified in the study area. High trace to trace variation in deep hydrophone/pinger recordings in these areas suggests that the diffuse echo returns are due to unresolved microtopography and are not necessarily associated with a sandy seafloor

  18. Inaudible functional MRI using a truly mute gradient echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Marcar, V.L. [University of Zurich, Department of Psychology, Neuropsychology, Treichlerstrasse 10, 8032 Zurich (Switzerland); Girard, F. [GE Medical Systems SA, 283, rue de la Miniere B.P. 34, 78533 Buc Cedex (France); Rinkel, Y.; Schneider, J.F.; Martin, E. [University Children' s Hospital, Neuroradiology and Magnetic Resonance, Department of Diagnostic Imaging, Steinwiesstrasse 75, 8032 Zurich (Switzerland)

    2002-11-01

    We performed functional MRI experiments using a mute version of a gradient echo sequence on adult volunteers using either a simple visual stimulus (flicker goggles: 4 subjects) or an auditory stimulus (music: 4 subjects). Because the mute sequence delivers fewer images per unit time than a fast echo planar imaging (EPI) sequence, we explored our data using a parametric ANOVA test and a non-parametric Wilcoxon-Mann-Whitney test in addition to performing a cross-correlation analysis. All three methods were in close agreement regarding the location of the BOLD contrast signal change. We demonstrated that, using appropriate statistical analysis, functional MRI using an MR sequence that is acoustically inaudible to the subject is feasible. Furthermore compared with the ''silent'' event-related procedures involving an EPI protocol, our mGE protocol compares favourably with respect to experiment time and the BOLD signal. (orig.)

  19. Resolved Companions of Cepheids as Seen by HST and XMM

    Science.gov (United States)

    Evans, Nancy Remage; Bond, Howard E.; Schaefer, Gail; Mason, Brian D.; Tingle, Evan; Karovska, Margarita; Pillitteri, Ignazio; Wolk, Scott J.; Guinan, Edward F.; Engle, Scott G.

    2016-01-01

    We have conducted a survey of 70 classical Cepheids with the Hubble Wide Field Camera3 (WFC3) to identify possible resolved companions. Data cover the range of 0.3" to 20" which typically corresponds to 200 AU to 0.1 pc. At present only possible companions greater than 5" from the Cepheid are discussed, since closer companions require a sophisticated point spread correction for the light of the much brighter Cepheid. We have followed up a subset of the possible resolved companions with XMM observations to determine whether they are young (X-ray active) enough to be physical companions of the Cepheids. We estimate that 4% of the Cepheids have a physical resolved companion, with the widest having a separation of 4000 AU. The one wider young star is in the field of S Nor, but since it is a cluster member, the companion is not assumed to be gravitationally bound to the Cepheid.

  20. Characterization of trehalose aqueous solutions by neutron spin echo

    CERN Document Server

    Branca, C; Magazù, S; Maisano, G; Mangione, A; Pappas, C; Triolo, A

    2002-01-01

    The present work reports neutron spin-echo (NSE) results on aqueous mixtures of trehalose, a naturally occurring disaccharide of glucose, which shows an extraordinary bioprotective effectiveness against dehydration and freezing. The aim of the work is to furnish new results on the dynamics of the trehalose/water system on the nano- and picosecond scales. (orig.)

  1. Characterization of trehalose aqueous solutions by neutron spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Faraone, A.; Magazu' , S.; Maisano, G.; Mangione, A. [Dipartimento di Fisica and INFM, Universita di Messina, PO Box 55, 98166 Messina (Italy); Pappas, C.; Triolo, A. [Hahn-Meitner-Institut, BENSC (NI), Glienicker Strasse, 14109 Berlin (Germany)

    2002-07-01

    The present work reports neutron spin-echo (NSE) results on aqueous mixtures of trehalose, a naturally occurring disaccharide of glucose, which shows an extraordinary bioprotective effectiveness against dehydration and freezing. The aim of the work is to furnish new results on the dynamics of the trehalose/water system on the nano- and picosecond scales. (orig.)

  2. The role of envelope shape in the localization of multiple sound sources and echoes in the barn owl.

    Science.gov (United States)

    Baxter, Caitlin S; Nelson, Brian S; Takahashi, Terry T

    2013-02-01

    Echoes and sounds of independent origin often obscure sounds of interest, but echoes can go undetected under natural listening conditions, a perception called the precedence effect. How does the auditory system distinguish between echoes and independent sources? To investigate, we presented two broadband noises to barn owls (Tyto alba) while varying the similarity of the sounds' envelopes. The carriers of the noises were identical except for a 2- or 3-ms delay. Their onsets and offsets were also synchronized. In owls, sound localization is guided by neural activity on a topographic map of auditory space. When there are two sources concomitantly emitting sounds with overlapping amplitude spectra, space map neurons discharge when the stimulus in their receptive field is louder than the one outside it and when the averaged amplitudes of both sounds are rising. A model incorporating these features calculated the strengths of the two sources' representations on the map (B. S. Nelson and T. T. Takahashi; Neuron 67: 643-655, 2010). The target localized by the owls could be predicted from the model's output. The model also explained why the echo is not localized at short delays: when envelopes are similar, peaks in the leading sound mask corresponding peaks in the echo, weakening the echo's space map representation. When the envelopes are dissimilar, there are few or no corresponding peaks, and the owl localizes whichever source is predicted by the model to be less masked. Thus the precedence effect in the owl is a by-product of a mechanism for representing multiple sound sources on its map.

  3. A conception of a new neutron spin echo reflectometer

    International Nuclear Information System (INIS)

    Kali, Gy.

    1999-01-01

    Complete text of publication follows. The tilted field technique in the neutron spin echo (NSE) spectroscopy came into the centre of attention in the recent few years. The method was first proposed by F. Mezei and R. Pynn in 1980. A real measurement for high resolution small angle scattering (SANS) on their resonance spin-echo spectrometer was published by Keller et al. [1]. A conception of a new instrument was proposed by M.T. Rekveldt [2] for SANS and reflectometry, using dc field perpendicular to the neutron beam. By further developing these ideas, the setup of a multitask instrument using the traditional way (dc field parallel to the beam) is discussed. This spectrometer may be best applicable in liquid surface reflectometry combining NSE by separating specular and nonspecular reflection. This instrument setup uses wide wavelength band and/or non-collimated neutron beam. (author) [1] T. Keller et al, Neutron News 6, no 3 (1995) 16.; [2] M.T. Rekveldt, Nuc. Inst. and Meth. in Physics Res. B 114 (1996) 366

  4. Exact infinite-time statistics of the Loschmidt echo for a quantum quench.

    Science.gov (United States)

    Campos Venuti, Lorenzo; Jacobson, N Tobias; Santra, Siddhartha; Zanardi, Paolo

    2011-07-01

    The equilibration dynamics of a closed quantum system is encoded in the long-time distribution function of generic observables. In this Letter we consider the Loschmidt echo generalized to finite temperature, and show that we can obtain an exact expression for its long-time distribution for a closed system described by a quantum XY chain following a sudden quench. In the thermodynamic limit the logarithm of the Loschmidt echo becomes normally distributed, whereas for small quenches in the opposite, quasicritical regime, the distribution function acquires a universal double-peaked form indicating poor equilibration. These findings, obtained by a central limit theorem-type result, extend to completely general models in the small-quench regime.

  5. AFSC/ABL: Frederick Sound Echo-integrated Trawl Survey, 2001 to 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The acoustic trawl database for Frederick Sounds echo-trawl survey was conducted from 2001 to 2004. The surveys were conducted throughout most of the southern part...

  6. MR imaging characteristics of intracranial hemorrhage using gradient-echo signal acquisition at 1.5 T: Comparison with spin-echo imaging and clinical applications

    International Nuclear Information System (INIS)

    Atlas, S.W.; Grossman, R.I.; Gomori, J.M.; Hackney, D.B.; Goldberg, H.I.; Bilaniuk, L.T.; Zimmerman, R.A.

    1987-01-01

    Evolving paramagnetic blood-breakdown products create static local magnetic susceptibility gradients, which induce rapid phase dispersion on the basis of T2/sup */ shortening. The authors evaluated 30 patients with 50 separate hemorrhagic intracranial lesions with both spin-echo (SE) and gradient echo signal acquisition (GESA) MR imaging at 1.5 T. GESA sequences used repetition time (TR) of 200-750 msec, echo time (TE) of 50-80 msec, and flip angles of 10 0 to 15 0 to emphasize T2/sup */-based contributions to contrast. SE sequences in all cases utilized both short and long TR (600 and 2,500-3,000 msec), with TE of 20-120 msec. Advantages of GESA imaging with Long TE and short flip angles in the evaluation of intracranial hemorrhage include (1) increased sensitivity to susceptibility-induced phase loss from T2/sup */ shortening, resulting in detection of hemorrhagic lesions not seen on conventional long TR/long TE SE images, and (2) very rapid acquisition of images with T2/sup */-based contrast. Limitations of this sequence include (1) severe diamagnetic susceptibility-induced artifacts, especially near air-brain interfaces, which often obscure large portions of the brain and occasionally simulate serious pathology, (2) characteristic internal signal intensity patterns demonstrated by SE imaging, such as in evolving hematomas, occult vascular malformations, and hemorrhagic malignancies, are often obscured by marked hypointensity on GESA images, and (3) reduced signal-noise ratio. The authors conclude that, although images with marked sensitivity to T2/sup */ effects can be rapidly generated by GESA, there is only a limited role for this sequence when evaluating intracranial hemorrhage at 1.5 T, and, in fact, significant information is lost when compared to SE images

  7. High-resolution T2-weighted MR imaging of the inner ear using a long echo-train-length 3D fast spin-echo sequence

    International Nuclear Information System (INIS)

    Naganawa, S.; Yamakawa, K.; Fukatsu, H.; Ishigaki, T.; Nakashima, T.; Sugimoto, H.; Aoki, I.; Miyazaki, M.; Takai, H.

    1996-01-01

    The purpose of this study was to assess the value of a long echo-train-length 3D fast spin-echo (3D-FSE) sequence in visualizing the inner ear structures. Ten normal ears and 50 patient ears were imaged on a 1.5T MR unit using a head coil. Axial high-resolution T2-weighted images of the inner ear and the internal auditory canal (IAC) were obtained in 15 min. In normal ears the reliability of the visualization for the inner ear structures was evaluated on original images and the targeted maximum intensity projection (MIP) images of the labyrinth. In ten normal ears, 3D surface display (3D) images were also created and compared with MIP images. On the original images the cochlear aqueduct, the vessels in the vicinity of the IAC, and more than three branches of the cranial nerves were visualized in the IAC in all the ears. The visibility of the endolympathic duct was 80%. On the MIP images the visibility of the three semicircular canals, anterior and posterior ampulla, and of more than two turns of the cochlea was 100%. The MIP images and 3D images were almost comparable. The visibility of the endolymphatic duct was 80% in normal ears and 0% in the affected ears of the patients with Meniere's disease (p<0.001). In one patient ear a small intracanalicular tumor was depicted clearly. In conclusion, the long echo train length T2-weighted 3D-FSE sequence enables the detailed visualization of the tiny structures of the inner ear and the IAC within a clinically acceptable scan time. Furthermore, obtaining a high contrast between the soft/bony tissue and the cerebrospinal/endolymph/perilymph fluid would be of significant value in the diagnosis of the pathologic conditions around the labyrinth and the IAC. (orig.)

  8. Artifact Reduction of Susceptibility-Weighted Imaging Using a Short-Echo Phase Mask

    International Nuclear Information System (INIS)

    Ishimori, Y.; Monma, M.; Kohno, Y.

    2009-01-01

    Background: Susceptibility-weighted imaging (SWI) is utilized in magnetic resonance (MR) venography and other applications, but can include artifacts caused by the phase-masking process. Purpose: To demonstrate risks of filter processes used in making phase masks for SWI, and to propose a simple method for reducing artifacts. Material and Methods: Phase linearity related to echo time (TE) was evaluated for the original phase and high-pass-filtered phase using a CuSO 4 -doped water phantom. Effect of filter size of the Hanning window and background homogeneity were also evaluated in a phantom study. Use of a phase mask generated by data with differing magnitudes of TE was attempted in a human study. Shorter TE was used for making the phase mask, and the number of multiplications was increased. As short and long TEs were necessary simultaneously for phase mask and T2* contrast, a dual-echo technique was used. Results: Linearity of TE and phase value collapsed, and an unexpected negative phase appeared in the high-pass-filtered phase. Using a short-TE phase mask, phase-aliasing artifacts were reduced and visibility of deep veins was equivalent to that under conventional methods with an increased number of multiplications. Conclusion: Use of a short-echo phase mask in SWI is useful for reducing artifacts

  9. Teaching Social Work Students to Resolve Ethical Dilemmas in Domestic Violence

    Science.gov (United States)

    Bent-Goodley, Tricia B.

    2007-01-01

    This article examines findings from three focus groups conducted about resolving ethical dilemmas in the area of domestic violence. The study's findings point to the need to increase content on domestic violence throughout the social work curriculum and provide educational opportunities for field instructors and local professionals. Helping…

  10. Worldwide Echo-Sounding Correction Tables to Convert to Standard Velocity Depths

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Echo-sounding tables (3rd Edition) were prepared by D.J.T. Carter of the Marine Information and Advisory Service (United Kingdom) for the conversion of raw...

  11. Neutron spin echo spectroscopy. Its application to the study of the dynamics of polymers in solution; La spectrometrie par echos de spins de neutrons. Application a l'etude de la dynamique des polymeres en solution

    Energy Technology Data Exchange (ETDEWEB)

    Papoular, Robert

    1992-06-15

    This work focuses on Neutron Spin Echo (NSE) spectroscopy and on the NSE spectrometer MESS, which we have built at the L.L.B. (CE Saclay). After analyzing in detail the classical and quantum principles of this type of instrument, and illustrated them with optical analogies, we expound a simple formalism for the interpretation of polarized neutron experiments of the most general type. In a second part, we describe the MESS spectrometer extensively; its characteristics and performances as well as the first results obtained with this instrument. In particular, we include two papers showing how the neutron depolarization, spin rotation and echoes can be used to investigate high-Tc superconductors. The last part deals with the dynamics of Polymer-Polymer-Solvent ternary solutions and demonstrates how the Neutron Spin Echo technique becomes a privileged tool for such physico-chemical studies thanks to the joint use of NSE and contrast variation methods, coupled with the adequate ranges of time and scattering vectors accessible. Finally, we describe the specific case of partially deuterated polydimethyl-siloxane (PDMS) in semi-dilute solution in Toluene. We have experimentally and separately evidenced the cooperative and inter-diffusive diffusion modes predicted by the theory of Akcasu, Benoit, Benmouna et al. These results, obtained at the L.L.B. (CE Saclay) are the subject matter of the last paper included in this work. (author) [French] Ce memoire est centre sur la spectroscopie par echos de spins de neutrons, et plus particulierement, sur le spectrometre a echos de spins MESS que nous avons construit au L.L.B (CE/Saclay). Apres avoir detaille les principes classique et quantique de ce type d'instrument et les avoir illustres par des analogies optiques, nous detaillons un formalisme simple permettant d'interpreter les experiences utilisant les neutrons polarises dans le cas le plus general. Une seconde partie decrit de maniere approfondie le spectrometre MESS de Saclay

  12. Application of diffusion-weighted echo planar imaging for diagnosis of small acute and subacute brain ischemic lesions

    International Nuclear Information System (INIS)

    Enomoto, Kyoko; Watanabe, Tsuneya; Amanuma, Makoto; Heshiki, Atsuko

    1997-01-01

    The aim of this study was to determine the utility of diffusion-weighted echo planar imaging (DW-EPI) for detecting acute and subacute brain ischemic foci less than 2 cm in size. Thirty patients underwent DW-EPI on a 1.5 T super-conducting unit using a SE-EPI sequence with an arbitrary pair of Stejskal-Tanner gradients applied along the imaging axes. DW-EPI demonstrated all the mast recent ischemic lesions as areas of decreased diffusion, providing greater conspicuity and larger size than conventional spin-echo imaging. DW-EPI is a promising method to detect within a subsecond early ischemia and reversible ischemic changes that are not demonstrate on routine spin-echo images. (author)

  13. Echo Planar Diffusion-Weighted Imaging: Possibilities and Considerations with 12- and 32-Channel Head Coils

    Directory of Open Access Journals (Sweden)

    John N Morelli

    2012-01-01

    Full Text Available Interest in clinical brain magnetic resonance imaging using 32-channel head coils for signal reception continues to increase. The present investigation assesses possibilities for improving diffusion-weighted image quality using a 32-channel in comparison to a conventional 12-channel coil. The utility of single-shot (ss and an approach to readout-segmented (rs echo planar imaging (EPI are examined using both head coils. Substantial image quality improvements are found with rs-EPI. Imaging with a 32-channel head coil allows for implementation of greater parallel imaging acceleration factors or acquisition of scans at a higher resolution. Specifically, higher resolution imaging with rs-EPI can be achieved by increasing the number of readout segments without increasing echo-spacing or echo time to the degree necessary with ss-EPI - a factor resulting in increased susceptibility artifact and reduced signal-to-noise with the latter.

  14. Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP

    CERN Document Server

    Del Zanna, L; Inghirami, G; Rolando, V; Beraudo, A; De Pace, A; Pagliara, G; Drago, A; Becattini, F

    2013-01-01

    We present ECHO-QGP, a numerical code for $(3+1)$-dimensional relativistic viscous hydrodynamics designed for the modeling of the space-time evolution of the matter created in high energy nuclear collisions. The code has been built on top of the \\emph{Eulerian Conservative High-Order} astrophysical code for general relativistic magneto-hydrodynamics [\\emph{Del Zanna et al., Astron. Astrophys. 473, 11, 2007}] and here it has been upgraded to handle the physics of the Quark-Gluon Plasma. ECHO-QGP features second-order treatment of causal relativistic viscosity effects in both Minkowskian or Bjorken coordinates; partial or complete chemical equilibrium of hadronic species before kinetic freeze-out; initial conditions based on the optical Glauber model, including a Monte-Carlo routine for event-by-event fluctuating initial conditions; a freeze-out procedure based on the Cooper-Frye prescription. The code is extensively validated against several test problems and results always appear accurate, as guaranteed by th...

  15. Gradient-recalled echo sequences in direct shoulder MR arthrography for evaluating the labrum

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Marc J.; Motamedi, Kambiz; Chow, Kira; Seeger, Leanne L. [David Geffen School of Medicine at UCLA, Department of Radiology, 200 UCLA Medical Plaza, Suite 165-59, Box 956952, Los Angeles, CA (United States)

    2008-01-15

    The purpose of this study was to determine the utility of fat-suppressed gradient-recalled echo (GRE) compared with conventional spin echo T1-weighted (T1W) sequences in direct shoulder MR arthrography for evaluating labral tears. Three musculoskeletal radiologists retrospectively reviewed MR arthrograms performed over a 12-month period for which surgical correlation was available. Of 180 serial arthrograms, 31 patients had surgery with a mean of 48 days following imaging. Paired coronal oblique and axial T1W or GRE sequences were analyzed by consensus for labral tear (coronal oblique two-dimensional multi-echo data image combination, 2D MEDIC; and axial three-dimensional double-echo steady-state, 3D DESS; Siemens MAGNETOM Sonata 1.5-T MR system). Interpretations were correlated with operative reports. Of 31 shoulders, 25 had labral tears at surgery. The GRE sequences depicted labral tears in 22, while T1W images depicted tears in 16 (sensitivity 88% versus 64%; p < 0.05). Subdividing the labrum, GRE was significantly more sensitive for the posterior labrum (75% versus 25%; p < 0.05) with a trend toward greater sensitivity at the anterior labrum (78% versus 56%; p = 0.157) but not significantly different for the superior labrum (50% versus 57%; p > 0.7). Specificities were somewhat lower for GRE. Thin section GRE sequences are more sensitive than T1W for the detection of anterior and posterior labral tears. As the specificity of GRE was lower, it should be considered as an adjunctive imaging sequence that may improve depiction of labral tears, particularly smaller tears, in routine MR arthrography protocols. (orig.)

  16. MR cholangiography using a fast spin-echo technique: prospective evaluation in 20 patients

    International Nuclear Information System (INIS)

    Rondeau, Y.; Meduri, B.; Spelle, L.; Gouhiri, M.; Aubert, A.; Scherrer, A.; Soyer, Ph.; Rymer, R.

    1998-01-01

    To evaluate a MR cholangiographic technique using a non breath-hold fast spin-echo technique in patients with suspected bile duct obstruction. Twenty patients with suspected bile duct obstruction were prospectively investigated with MR cholangiography using a T2-weighted non breath-hold fast spin-echo technique (TR 8000-9000 msec, effective TE 120-266 msec, ETL = 16-32, acquisition time = 1-3 min) with a body coil. Results of MR cholangiography were compared to those obtained with endoscopic retrograde cholangiography (n = 20 patients) and endoscopic sonography (n 12 patients) that were considered as reference. MR cholangiography provided high-quality images in 19 out of 20 cases (95 %). MR cholangiography had 100 % sensitivity, 100 % specificity and 73 % accuracy in the diagnosis of bile duct obstruction. MR cholangiography failed to depict small stones (< 3 mm) of the main bile duct in 4 cases in which no bile duct dilation was found. MR cholangiography using a non breath-hold fast spin-echo technique depicts bile duct dilatation with a degree of accuracy comparable to that achieved with endoscopic examination. In the absence of bile duct dilatation, small stones of the main bile duct may be undetected with MR cholangiography. (author)

  17. Sum-frequency generation echo and grating from interface

    International Nuclear Information System (INIS)

    Volkov, Victor

    2014-01-01

    The work addresses spectroscopy of fourth-order Sum Frequency Generation Echo and Grating responses as an experimental tool to study structure and dynamics at interfaces. First, it addresses experimental geometry to extract background-free fourth-order Echo and Grating responses. Further, the article provides the analytical expressions of the response functions for these nonlinearities. The derived expressions are used to model the χ (4) two-dimensional spectral responses of a hydrated methyl acetate, which resembles a hydrated carbonyl moiety at the polar outer side of a phospholipid membrane. Orientation, transition dipole moments, and Raman tensors are obtained from the results of classical and quantum calculations, respectively. The numerical studies for the nonlinear responses under different polarization schemes and timings suggest the possibility of securely factoring of spectral contributions of χ YYYZX and χ YYYZY macroscopic susceptibilities. As such, the nonlinearities provide an experimental perspective on orientation of a generic (low-symmetry) molecular system at interfaces. Besides, the spectral properties of the tensors may reflect correlations of the in-plane and out-of-plane field components specific to the interface. For the case of a phospholipid membrane, the experiment would address in-plane and out-of-plane anisotropy of hydrogen bonding and related dynamics

  18. Sum-frequency generation echo and grating from interface

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Victor [Bereozovaya 2A, Konstantinovo, Moscow Region 140207 (Russian Federation)

    2014-10-14

    The work addresses spectroscopy of fourth-order Sum Frequency Generation Echo and Grating responses as an experimental tool to study structure and dynamics at interfaces. First, it addresses experimental geometry to extract background-free fourth-order Echo and Grating responses. Further, the article provides the analytical expressions of the response functions for these nonlinearities. The derived expressions are used to model the χ{sup (4)} two-dimensional spectral responses of a hydrated methyl acetate, which resembles a hydrated carbonyl moiety at the polar outer side of a phospholipid membrane. Orientation, transition dipole moments, and Raman tensors are obtained from the results of classical and quantum calculations, respectively. The numerical studies for the nonlinear responses under different polarization schemes and timings suggest the possibility of securely factoring of spectral contributions of χ{sub YYYZX} and χ{sub YYYZY} macroscopic susceptibilities. As such, the nonlinearities provide an experimental perspective on orientation of a generic (low-symmetry) molecular system at interfaces. Besides, the spectral properties of the tensors may reflect correlations of the in-plane and out-of-plane field components specific to the interface. For the case of a phospholipid membrane, the experiment would address in-plane and out-of-plane anisotropy of hydrogen bonding and related dynamics.

  19. Contactless friction and the {sup 3}He-{sup 4}He dimer. Studies with the atomic-beam spin-echo spectrometer; Kontaktlose Reibung und das {sup 3}He-{sup 4}He-Dimer. Untersuchungen mit dem Atomstrahlspinechospektrometer

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Matthias

    2016-04-20

    In this thesis the time of flight resolved atomic beam spin echo method (SEToF) is applied to a {sup 3}He-beam for the first time and studied systematically. This method is shown to be superior to the usual atomic beam spin echo technique. With SEToF it is possible to almost completely remove unpolarized background and to reach a beam polarisation close to 100%. The SEToF technique is shown to be crucial for the first experimental proof of the existence of the {sup 3}He-{sup 4}He dimer. This dimer is the weakest bound van-der-Waals-molecule known to date. Furthermore, a drag force between an atom and a dielectric surface is detected originating from the fluctuating dipole moment of the atom. Not only the measured friction coefficients match their theoretical predictions perfectly, but our data also shows the correct temperature dependence. A great many technological renewals and improvements were installed in the apparatus during this thesis work. They have become necessary or sensible due to the relocation of the physics institute. A few of them are documented and motivated in this thesis.

  20. Resolvent-based feedback control for turbulent friction drag reduction

    Science.gov (United States)

    Kawagoe, Aika; Nakashima, Satoshi; Luhar, Mitul; Fukagata, Koji

    2017-11-01

    Suboptimal control for turbulent friction drag reduction has been studied extensively. Nakashima et al. (accepted) extended resolvent analysis to suboptimal control, and for the control where the streamwise wall shear stress is used as an input (Case ST), they revealed the control effect across spectral space is mixed: there are regions of drag increase as well as reduction. This suggests that control performance may be improved if the control is applied for selective wavelengths, or if a new law is designed to suppress the spectral region leading to drag increase. In the present study, we first assess the effect of suboptimal control for selective wavelengths via DNS. The friction Reynolds number is set at 180. For Case ST, resolvent analysis predicts drag reduction at long streamwise wavelengths. DNS with control applied only for this spectral region, however, did not result in drag reduction. Then, we seek an effective control law using resolvent analysis and propose a new law. DNS results for this law are consistent with predictions from resolvent analysis, and about 10% drag reduction is attained. Further, we discuss how this law reduces the drag from a dynamical and theoretical point of view. This work was supported through Grant-in-Aid for Scientic Research (C) (No. 25420129) by Japan Society for the Promotion of Science (JSPS).

  1. Low flip angle spin-echo MR imaging to obtain better Gd-DTPA enhanced imaging with ECG gating

    International Nuclear Information System (INIS)

    Sugimura, Kazuro; Kawamitsu, Hideaki; Yoshikawa, Kazuaki; Kasai, Toshifumi; Yuasa, Koji; Ishida, Tetsuya

    1992-01-01

    ECG-gated spin-echo imaging (ECG-SE) can reduce physiological motion artifact. However, ECG-SE does not provide strong T1-weighted images because repetition time (TR) depends on heart rate (HR). We investigated the usefulness of low flip angle spin-echo imaging (LFSE) in obtaining more T1-dependent contrast with ECG gating. In computer simulation, the predicted image contrast and single-to-noise ratio (SNR) obtained for each flip angle (0-180deg) and each TR (300 msec-1200 msec) were compared with those obtained by conventional T1-weighted spin-echo imaging (CSE: TR=500 msec, TE=20 msec). In clinical evaluation, tissue contrast [contrast index (CI): (SI of lesion-SI of muslce) 2* 100/SI of muscle] obtained by CSE and LFSE were compared in 17 patients. At a TR of 1,000 msec, T1-dependent contrast increased with decreasing flip angle and that at 38deg was identical to that with T1-weighted spin-echo. SNR increased with the flip angle until 100deg, and that at 53deg was identical to that with T1-weighted spin-echo. CI on LFSE (74.0±52.0) was significantly higher than CI on CSE (40.9±35.9). ECG-gated LFSE imaging provides better T1-dependent contrast than conventional ECG-SE. This method was especially useful for Gd-DTPA enhanced MR imaging. (author)

  2. Echo signal from rough planar interfaces influence of roughness, angle, range and transducer type

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, P.C.; Jacobsen, S.M.

    1998-01-01

    The received electrical signal from a pulse-echo system insonifying a planar acoustical interface was measured for varying degrees of rms roughness (0-0.16 mm), angle of incidence (typically +/-7°) and range to the transducer. A planar and a focused 5 MHz transducer was used. When insonifying...... a smooth interface, the normalized spectrum of the received signals for a planar transducer exhibits an increasing number of nulls with increased angle of insonification, as predicted from numerical modeling while the dependence on insonification angle for the focused transducer was smaller and the null...... pattern was much less distinct. For the planar transducer and for the focused transducer with the interface located at the geometrical point of focus, the energy of the received signal as a function of incident angle was approximately Gaussian with maximum at 0°. For the smooth interface, the -3 dB width...

  3. A TEMPORAL MAP IN GEOSTATIONARY ORBIT: THE COVER ETCHING ON THE EchoStar XVI ARTIFACT

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, Joel M., E-mail: jweisber@carleton.edu [Department of Physics and Astronomy, Carleton College, Northfield, MN 55057 (United States); Paglen, Trevor, E-mail: trevor@paglen.com

    2012-10-01

    Geostationary satellites are unique among orbital spacecraft in that they experience no appreciable atmospheric drag. After concluding their respective missions, geostationary spacecraft remain in orbit virtually in perpetuity. As such, they represent some of human civilization's longest lasting artifacts. With this in mind, the EchoStar XVI satellite, to be launched in fall 2012, will play host to a time capsule intended as a message for the deep future. Inspired in part by the Pioneer Plaque and Voyager Golden Records, the EchoStar XVI Artifact is a pair of gold-plated aluminum jackets housing a small silicon disk containing 100 photographs. The Cover Etching, the subject of this paper, is etched onto one of the two jackets. It is a temporal map consisting of a star chart, pulsar timings, and other information describing the epoch from which EchoStar XVI came. The pulsar sample consists of 13 rapidly rotating objects, 5 of which are especially stable, having spin periods <10 ms and extremely small spin-down rates. In this paper, we discuss our approach to the time map etched onto the cover and the scientific data shown on it, and we speculate on the uses that future scientists may have for its data. The other portions of the EchoStar XVI Artifact will be discussed elsewhere.

  4. A TEMPORAL MAP IN GEOSTATIONARY ORBIT: THE COVER ETCHING ON THE EchoStar XVI ARTIFACT

    International Nuclear Information System (INIS)

    Weisberg, Joel M.; Paglen, Trevor

    2012-01-01

    Geostationary satellites are unique among orbital spacecraft in that they experience no appreciable atmospheric drag. After concluding their respective missions, geostationary spacecraft remain in orbit virtually in perpetuity. As such, they represent some of human civilization's longest lasting artifacts. With this in mind, the EchoStar XVI satellite, to be launched in fall 2012, will play host to a time capsule intended as a message for the deep future. Inspired in part by the Pioneer Plaque and Voyager Golden Records, the EchoStar XVI Artifact is a pair of gold-plated aluminum jackets housing a small silicon disk containing 100 photographs. The Cover Etching, the subject of this paper, is etched onto one of the two jackets. It is a temporal map consisting of a star chart, pulsar timings, and other information describing the epoch from which EchoStar XVI came. The pulsar sample consists of 13 rapidly rotating objects, 5 of which are especially stable, having spin periods <10 ms and extremely small spin-down rates. In this paper, we discuss our approach to the time map etched onto the cover and the scientific data shown on it, and we speculate on the uses that future scientists may have for its data. The other portions of the EchoStar XVI Artifact will be discussed elsewhere.

  5. Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions.

    Science.gov (United States)

    Chauhan, Munish; Vidya Shankar, Rohini; Ashok Kumar, Neeta; Kodibagkar, Vikram D; Sadleir, Rosalind

    2018-01-01

    Magnetic resonance electrical impedance tomography (MREIT) sequences typically use conventional spin or gradient echo-based acquisition methods for reconstruction of conductivity and current density maps. Use of MREIT in functional and electroporation studies requires higher temporal resolution and faster sequences. Here, single and multishot echo planar imaging (EPI) based MREIT sequences were evaluated to see whether high-quality MREIT phase data could be obtained for rapid reconstruction of current density, conductivity, and electric fields. A gel phantom with an insulating inclusion was used as a test object. Ghost artifact, geometric distortion, and MREIT correction algorithms were applied to the data. The EPI-MREIT-derived phase-projected current density and conductivity images were compared with simulations and spin-echo images as a function of EPI shot number. Good agreement among measures in simulated, spin echo, and EPI data was achieved. Current density errors were stable and below 9% as the shot number decreased from 64 to 2, but increased for single-shot images. Conductivity reconstruction relative contrast ratios were stable as the shot number decreased. The derived electric fields also agreed with the simulated data. The EPI methods can be combined successfully with MREIT reconstruction algorithms to achieve fast imaging of current density, conductivity, and electric field. Magn Reson Med 79:71-82, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Usefulness of fluid attenuated inversion recovery(FLAIR) image in mesial temporal sclerosis : comparison with turbo spin-echo T2-weighted image

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seok Hyun; Chang, Seung Kuk; Eun, Choong Ki [Pusan Paik Hospital, Inje Univ. College of Medicine, Kimhae (Korea, Republic of)

    1999-12-01

    To determine the usefulness of fluid attenuated inversion recovery(FLAIR) imaging for the in detection of high signal intensity of hippocampus or amygdala in mesial temporal sclerosis (MTS), compared with that of turbo spin-echo T2-weighted imaging. Two neuroradiologists independently analyzed randomly mixed MR images of 20 lesions of 17 patients in whom MTS had been diagnosed, and ten normal controls. All subjects underwent both who performed both FLAIR and turbo spin-echo T2-weighted imaging, in a blind fashion. In order to determine hippocampal morphology, oblique coronal images perpendicular to the long axis of the hippocampus were obtained. The detection rate of high signal intensity in hippocampus or amygdala, the radiologists' preferred imaging sequence, and intersubject consistency of detection were evaluated. Signal intensity in hippocampus or amygdala was considered high if substantially higher than signal intensity in the cortex of adjacent temporo-parietal lobe. In all normal controls, FLAIR and spin-echo T2-weighted images showed normal signal intensity in hippocampus or amygdala. In MTS, the mean detection rate of high signal intensity in hippocampus or amygdala, as seen on FLAIR images was 93%, compared with 43% on spin-echo T2-weighted images. In all cases in which signal intensity on FLAIR images was normal, signal intensity on spin-echo T2-weighted images was also normal. The radiologists preferred the contrast properties of FLAIR to those of spin-echo T2-weighted images. In the diagnosis of MTS using MRI, FLAIR images are more useful for the detection of high signal intensity of hippocampus or amygdala than are spin-echo T2-weighted images. In the diagnosis of MTS, FLAIR imaging is therefore a suitable alternative to spin-echo T2-weighted imaging.

  7. Usefulness of fluid attenuated inversion recovery(FLAIR) image in mesial temporal sclerosis : comparison with turbo spin-echo T2-weighted image

    International Nuclear Information System (INIS)

    Son, Seok Hyun; Chang, Seung Kuk; Eun, Choong Ki

    1999-01-01

    To determine the usefulness of fluid attenuated inversion recovery(FLAIR) imaging for the in detection of high signal intensity of hippocampus or amygdala in mesial temporal sclerosis (MTS), compared with that of turbo spin-echo T2-weighted imaging. Two neuroradiologists independently analyzed randomly mixed MR images of 20 lesions of 17 patients in whom MTS had been diagnosed, and ten normal controls. All subjects underwent both who performed both FLAIR and turbo spin-echo T2-weighted imaging, in a blind fashion. In order to determine hippocampal morphology, oblique coronal images perpendicular to the long axis of the hippocampus were obtained. The detection rate of high signal intensity in hippocampus or amygdala, the radiologists' preferred imaging sequence, and intersubject consistency of detection were evaluated. Signal intensity in hippocampus or amygdala was considered high if substantially higher than signal intensity in the cortex of adjacent temporo-parietal lobe. In all normal controls, FLAIR and spin-echo T2-weighted images showed normal signal intensity in hippocampus or amygdala. In MTS, the mean detection rate of high signal intensity in hippocampus or amygdala, as seen on FLAIR images was 93%, compared with 43% on spin-echo T2-weighted images. In all cases in which signal intensity on FLAIR images was normal, signal intensity on spin-echo T2-weighted images was also normal. The radiologists preferred the contrast properties of FLAIR to those of spin-echo T2-weighted images. In the diagnosis of MTS using MRI, FLAIR images are more useful for the detection of high signal intensity of hippocampus or amygdala than are spin-echo T2-weighted images. In the diagnosis of MTS, FLAIR imaging is therefore a suitable alternative to spin-echo T2-weighted imaging

  8. Loschmidt echo of a two-level qubit coupled to nonuniform anisotropic XY chains in a transverse field

    International Nuclear Information System (INIS)

    Zhong Ming; Tong Peiqing

    2011-01-01

    The Loschmidt echo (LE) of a central two-level qubit coupled to nonuniform anisotropic XY chains in a transverse field is studied. A general formula for LE is derived, which we use to discuss the influence of the criticality of the environment on LE. It is found that for the periodic XY chain the behaviors of LE in the vicinity of the critical points are similar to those of the uniform case. It is different for the disordered transverse Ising chains. For the aperiodic chains, if the surrounding systems are bounded chains, the behaviors of LE are similar to those of the uniform case, while if the surrounding systems are unbounded chains, they are similar to those of the disordered case.

  9. Sensitivity enhancement of 13C nuclei in 2D J-resolved NMR spectroscopy using a recycled-flow system

    International Nuclear Information System (INIS)

    Ha, S.T.K.; Lee, R.W.K.; Wilkins, C.L.

    1987-01-01

    Recycled-flow nuclear magnetic resonance for sensitivity enhancement in 1/2 spin nuclei has been reported previously, achieving several-fold signal enhancement. The success of the method depends upon premagnetization of nuclei prior to flowing into the detector region, obviating the need for delays following data acquisition to allow spin-lattice relaxation and reduce experiment time. The actual gains of sensitivity enhancement for 13 C- 1 H 2D J-resolved NMR using a recycled-flow method are evaluated. Possible enhancements for two types of J-resolved measurements, namely, one-bond 13 C- 1 H and long range J-resolved spectroscopy, are estimated using a simple Carr-Purcell spin-echo approach to quantify the 13 C signals. The pulse sequence is simply 90 0 -t /sub 1/2/-180 0 -t/sub 1/2/-AT-t/sub d/, where t/sub 1/2/ is half the evolution time, AT is the acquisition time, and t/sub d/ the experiment repetition time. In a static 2D NMR experiment, t/sub d/ usually must be the same order of the longest spin-lattice relaxation time (T 1 ) of nuclei. Quantitative measurements using a recycled-flow system indicate t/dub d/ can be reduced to a fraction of T 1 ; hence significant time savings can be achieved. Time-savings of between 2 and 25 can be anticipated for 2D spectroscopy under flow measurement conditions used in the present study. Other types of 2D NMR spectroscopy (autocorrelation and double quantum NMR) are discussed

  10. Operating point resolved loss computation in electrical machines

    Directory of Open Access Journals (Sweden)

    Pfingsten Georg Von

    2016-03-01

    Full Text Available Magnetic circuits of electromagnetic energy converters, such as electrical machines, are nowadays highly utilized. This proposition is intrinsic for the magnetic as well as the electric circuit and depicts that significant enhancements of electrical machines are difficult to achieve in the absence of a detailed understanding of underlying effects. In order to improve the properties of electrical machines the accurate determination of the locally distributed iron losses based on idealized model assumptions solely is not sufficient. Other loss generating effects have to be considered and the possibility being able to distinguish between the causes of particular loss components is indispensable. Parasitic loss mechanisms additionally contributing to the total losses originating from field harmonics, non-linear material behaviour, rotational magnetizations, and detrimental effects caused by the manufacturing process or temperature, are not explicitly considered in the common iron-loss models, probably even not specifically contained in commonly used calibration factors. This paper presents a methodology being able to distinguish between different loss mechanisms and enables to individually consider particular loss mechanisms in the model of the electric machine. A sensitivity analysis of the model parameters can be performed to obtain information about which decisive loss origin for which working point has to be manipulated by the electromagnetic design or the control of the machine.

  11. Polarimetric neutron spin echo: Feasibility and first results

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, C. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany)], E-mail: pappas@hmi.de; Lelievre-Berna, E. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Bentley, P. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany); Bourgeat-Lami, E. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Moskvin, E. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany); PNPI, 188300 Gatchina, Leningrad District (Russian Federation); Thomas, M. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Grigoriev, S.; Dyadkin, V. [PNPI, 188300 Gatchina, Leningrad District (Russian Federation)

    2008-07-21

    Neutron Spin Echo (NSE) spectroscopy uses polarized neutrons and accordingly polarization analysis is an intrinsic feature of NSE. However, the multifaceted dynamics of antiferromagnets and helimagnets require more than the classical NSE set-up. Here we present the feasibility test and first results of a new and powerful technique: Polarimetric NSE, obtained by combining the wide angle NSE spectrometer SPAN, developed at HMI with the zero-field polarimeter Cryopad developed at ILL.

  12. Polarimetric neutron spin echo: Feasibility and first results

    International Nuclear Information System (INIS)

    Pappas, C.; Lelievre-Berna, E.; Bentley, P.; Bourgeat-Lami, E.; Moskvin, E.; Thomas, M.; Grigoriev, S.; Dyadkin, V.

    2008-01-01

    Neutron Spin Echo (NSE) spectroscopy uses polarized neutrons and accordingly polarization analysis is an intrinsic feature of NSE. However, the multifaceted dynamics of antiferromagnets and helimagnets require more than the classical NSE set-up. Here we present the feasibility test and first results of a new and powerful technique: Polarimetric NSE, obtained by combining the wide angle NSE spectrometer SPAN, developed at HMI with the zero-field polarimeter Cryopad developed at ILL

  13. Cerebral hemodynamic changes measured by gradient-echo or spin-echo bolus tracking and its correlation to changes in ICA blood flow measured by phase-mapping MRI

    DEFF Research Database (Denmark)

    Marstrand, J.R.; Rostrup, Egill; Garde, Ellen

    2001-01-01

    Changes in cerebral blood flow (CBF) induced by Acetazolamide (ACZ) were measured using dynamic susceptibility contrast MRI (DSC-MRI) with both spin echo (SE) EPI and gradient echo (GE) EPI, and related to changes in internal carotid artery (ICA) flow measured by phase-mapping. Also examined...... was the effect of repeated bolus injections. CBF, cerebral blood volume (CBV), and mean transit time (MTT) were calculated by singular value decomposition (SVD) and by deconvolution using an exponential function as kernel. The results showed no dependency on calculation method. GE-EPI measured a significant...... increase in CBF and CBV in response to ACZ, while SE-EPI measured a significant increase in CBV and MTT. CBV and MTT change measured by SE-EPI was sensitive to previous bolus injections. There was a significant linear relation between change in CBF measured by GE-EPI and change in ICA flow. In conclusion...

  14. Comparison of intravoxel incoherent motion diffusion-weighted imaging between turbo spin-echo and echo-planar imaging of the head and neck

    Energy Technology Data Exchange (ETDEWEB)

    Mikayama, Ryoji; Yabuuchi, Hidetake; Nagatomo, Kazuya; Kimura, Mitsuhiro; Kumazawa, Seiji [Kyushu University, Department of Health Sciences, Graduate School of Medical Sciences, Fukuoka (Japan); Sonoda, Shinjiro; Kobayashi, Koji [Kyushu University Hospital, Division of Radiology, Department of Medical Technology, Fukuoka (Japan); Kawanami, Satoshi; Kamitani, Takeshi; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan)

    2018-01-15

    To compare image quality, apparent diffusion coefficient (ADC), and intravoxel incoherent motion (IVIM)-derived parameters between turbo spin-echo (TSE)-diffusion-weighted imaging (DWI) and echo-planar imaging (EPI)-DWI of the head and neck. Fourteen volunteers underwent head and neck imaging using TSE-DWI and EPI-DWI. Distortion ratio (DR), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), ADC and IVIM-derived parameters were compared between the two techniques. Bland-Altman analysis was performed to analyse reproducibility between the quantitative parameters of TSE-DWI and EPI-DWI. DR of TSE-DWI was significantly smaller than that of EPI-DWI. SNR and CNR of TSE-DWI were significantly higher than those of EPI-DWI. ADC and IVIM-derived parameters of TSE-DWI showed higher values than those of EPI-DWI, although the difference was not significant. Bland-Altman analysis showed wide limits of agreement between the two sequences. TSE-DWI can produce better image quality than EPI-DWI, while TSE-DWI possibly exhibits different values of quantitative parameters. Therefore, TSE-DWI could be a good alternative to EPI-DWI for patients sensitive to distortion. However, it is not recommended to use both TSE-DWI and EPI-DWI on follow-up. (orig.)

  15. [Echo-tracking technology for evaluating femoral artery endothelial function in patients with Grave's disease].

    Science.gov (United States)

    Wei, Wei; Wang, Jingyuan; Zhao, Qiaoling; Yang, Jinru

    2012-10-01

    To assess the value of echo-tracking technology in evaluating endothelial function of the femoral artery in patients with Grave's disease. Thirty-four patients with Grave's disease patients and 30 normal adults as controls were recruited in this study. The intima-media thickness (IMT), arterial stiffness (β), pressure strain elastic modulus (Ep), arterial compliance (AC), pulse wave conducting velocity (PWVβ) and augmentation index (AI) parameters were examined using echo-tracking technology for evaluating the right femoral arterial elasticity. Compared with the control subjects, the patients with Grave's disease showed significantly increased β, Ep, and PWVβ and significantly decreased AC (P0.05). In patients with Grave's disease, β and Ep were positively correlated with FT3, FT4, TT3, TT4, and PWVβ was positively correlated with FT3 and FT4. Echo-tracking technology can provide more accurate quantitative evidences for early diagnosis of femoral artery endothelial dysfunction in patients with Grave's disease, but the influence of procedural factors on the measurement accuracy should be considered in the evaluation.

  16. The science of EChO

    Science.gov (United States)

    Tinetti, Giovanna; Cho, James Y.-K.; Griffith, Caitlin A.; Grasset, Olivier; Grenfell, Lee; Guillot, Tristan; Koskinen, Tommi T.; Moses, Julianne I.; Pinfield, David; Tennyson, Jonathan; Tessenyi, Marcell; Wordsworth, Robin; Aylward, Alan; van Boekel, Roy; Coradini, Angioletta; Encrenaz, Therese; Snellen, Ignas; Zapatero-Osorio, Maria R.; Bouwman, Jeroen; Coudé du Foresto, Vincent; Lopez-Morales, Mercedes; Mueller-Wodarg, Ingo; Pallé, Enric; Selsis, Franck; Sozzetti, Alessandro; Beaulieu, Jean-Philippe; Henning, Thomas; Meyer, Michael; Micela, Giuseppina; Ribas, Ignasi; Stam, Daphne; Swain, Mark; Krause, Oliver; Ollivier, Marc; Pace, Emanuele; Swinyard, Bruce; Ade, Peter A. R.; Achilleos, Nick; Adriani, Alberto; Agnor, Craig B.; Afonso, Cristina; Allende Prieto, Carlos; Bakos, Gaspar; Barber, Robert J.; Barlow, Michael; Bernath, Peter; Bézard, Bruno; Bordé, Pascal; Brown, Linda R.; Cassan, Arnaud; Cavarroc, Céline; Ciaravella, Angela; Cockell, Charles; Coustenis, Athéna; Danielski, Camilla; Decin, Leen; De Kok, Remco; Demangeon, Olivier; Deroo, Pieter; Doel, Peter; Drossart, Pierre; Fletcher, Leigh N.; Focardi, Matteo; Forget, Francois; Fossey, Steve; Fouqué, Pascal; Frith, James; Galand, Marina; Gaulme, Patrick; González Hernández, Jonay I.; Grassi, Davide; Griffin, Matt J.; Grözinger, Ulrich; Guedel, Manuel; Guio, Pactrick; Hainaut, Olivier; Hargreaves, Robert; Hauschildt, Peter H.; Heng, Kevin; Heyrovsky, David; Hueso, Ricardo; Irwin, Pat; Kaltenegger, Lisa; Kervella, Patrick; Kipping, David; Kovacs, Geza; La Barbera, Antonino; Lammer, Helmut; Lellouch, Emmanuel; Leto, Giuseppe; Lopez Morales, Mercedes; Valverde, Lopez Miguel A.; Lopez-Puertas, Manuel; Lovi, Christophe; Maggio, Antonio; Maillard, Jean-Pierre; Prado, Jesus Maldonado; Marquette, Jean-Baptiste; Martin-Torres, Francisco J.; Maxted, Pierre; Miller, Steve; Molinari, Sergio; Montes, David; Moro-Martin, Amaya; Mousis, Olivier; Tuong, Napoléon Nguyen; Nelson, Richard; Orton, Glenn S.; Pantin, Eric; Pascale, Enzo; Pezzuto, Stefano; Poretti, Ennio; Prinja, Raman; Prisinzano, Loredana; Réess, Jean-Michel; Reiners, Ansgar; Samuel, Benjamin; Sanz Forcada, Jorge; Sasselov, Dimitar; Savini, Giorgio; Sicardy, Bruno; Smith, Alan; Stixrude, Lars; Strazzulla, Giovanni; Vasisht, Gautam; Vinatier, Sandrine; Viti, Serena; Waldmann, Ingo; White, Glenn J.; Widemann, Thomas; Yelle, Roger; Yung, Yuk; Yurchenko, Sergey

    2011-11-01

    The science of extra-solar planets is one of the most rapidly changing areas of astrophysics and since 1995 the number of planets known has increased by almost two orders of magnitude. A combination of ground-based surveys and dedicated space missions has resulted in 560-plus planets being detected, and over 1200 that await confirmation. NASA's Kepler mission has opened up the possibility of discovering Earth-like planets in the habitable zone around some of the 100,000 stars it is surveying during its 3 to 4-year lifetime. The new ESA's Gaia mission is expected to discover thousands of new planets around stars within 200 parsecs of the Sun. The key challenge now is moving on from discovery, important though that remains, to characterisation: what are these planets actually like, and why are they as they are? In the past ten years, we have learned how to obtain the first spectra of exoplanets using transit transmission and emission spectroscopy. With the high stability of Spitzer, Hubble, and large ground-based telescopes the spectra of bright close-in massive planets can be obtained and species like water vapour, methane, carbon monoxide and dioxide have been detected. With transit science came the first tangible remote sensing of these planetary bodies and so one can start to extrapolate from what has been learnt from Solar System probes to what one might plan to learn about their faraway siblings. As we learn more about the atmospheres, surfaces and near-surfaces of these remote bodies, we will begin to build up a clearer picture of their construction, history and suitability for life. The Exoplanet Characterisation Observatory, EChO, will be the first dedicated mission to investigate the physics and chemistry of Exoplanetary Atmospheres. By characterising spectroscopically more bodies in different environments we will take detailed planetology out of the Solar System and into the Galaxy as a whole. EChO has now been selected by the European Space Agency to be

  17. Geometrically undistorted MRI in the presence of field inhomogeneities using compressed sensing accelerated broadband 3D phase encoded turbo spin-echo imaging

    International Nuclear Information System (INIS)

    Van Gorp, Jetse S; Bakker, Chris J G; Bouwman, Job G; Zijlstra, Frank; Seevinck, Peter R; Smink, Jouke

    2015-01-01

    In this study, we explore the potential of compressed sensing (CS) accelerated broadband 3D phase-encoded turbo spin-echo (3D-PE-TSE) for the purpose of geometrically undistorted imaging in the presence of field inhomogeneities. To achieve this goal 3D-PE-SE and 3D-PE-TSE sequences with broadband rf pulses and dedicated undersampling patterns were implemented on a clinical scanner. Additionally, a 3D multi-spectral spin-echo (ms3D-SE) sequence was implemented for reference purposes. First, we demonstrated the influence of susceptibility induced off-resonance effects on the spatial encoding of broadband 3D-SE, ms3D-SE, 3D-PE-SE and 3D-PE-TSE using a grid phantom containing a titanium implant (Δχ = 182 ppm) with x-ray CT as a gold standard. These experiments showed that the spatial encoding of 3D-PE-(T)SE was unaffected by susceptibility induced off-resonance effects, which caused geometrical distortions and/or signal hyper-intensities in broadband 3D-SE and, to a lesser extent, in ms3D-SE frequency encoded methods. Additionally, an SNR analysis was performed and the temporally resolved signal of 3D-PE-(T)SE sequences was exploited to retrospectively decrease the acquisition bandwidth and obtain field offset maps. The feasibility of CS acceleration was studied retrospectively and prospectively for the 3D-PE-SE sequence using an existing CS algorithm adapted for the reconstruction of 3D data with undersampling in all three phase encoded dimensions. CS was combined with turbo-acceleration by variable density undersampling and spherical stepwise T 2 weighting by randomly sorting consecutive echoes in predefined spherical k-space layers. The CS-TSE combination resulted in an overall acceleration factor of 60, decreasing the original 3D-PE-SE scan time from 7 h to 7 min. Finally, CS accelerated 3D-PE-TSE in vivo images of a titanium screw were obtained within 10 min using a micro-coil demonstrating the feasibility of geometrically undistorted MRI near severe

  18. Dual-echo, chemical shift gradient-echo magnetic resonance imaging to quantify hepatic steatosis: Implications for living liver donation.

    Science.gov (United States)

    Rinella, Mary E; McCarthy, Richard; Thakrar, Kiran; Finn, John Paul; Rao, Sambasiva M; Koffron, Alan J; Abecassis, Michael; Blei, Andres T

    2003-08-01

    In living liver donation, a fatty liver poses risks for both recipient and donor. Currently, liver biopsy is the standard for assessing the presence and extent of steatosis. The goals of this study were to correlate a steatosis index derived from magnetic resonance imaging (MRI) to the histologic grade on biopsy as well as to determine the topographic distribution of steatosis within the liver. We examined the ability of dual-echo, chemical shift gradient-echo MRI to predict the degree of steatosis on liver biopsy. A total of 22 subjects received both a liver biopsy and detailed MRI evaluation. These individuals included 15 potential living donors and 7 patients with nonalcoholic fatty liver disease. MRI steatosis index was then compared with histologic grade on liver biopsy. The topographic distribution of hepatic steatosis was determined from those subjects in whom MRI detected hepatic steatosis. The steatosis index had a positive correlation with grade of steatosis on liver biopsy (correlation coefficient, 0.84). There was no significant variation in the degree of steatosis among segments. A steatosis index of >0.2 had good positive and negative predictive value for the presence of significant steatosis (>15%) on biopsy. Our quantitative MRI protocol can predict the degree of hepatic steatosis when it is minimal to moderate, and may obviate the need for liver biopsy for the purpose of quantification of steatosis in living donors. Fat saturation added to the MRI protocol may further improve diagnostic accuracy. This technique may be applicable to the larger population with hepatic steatosis.

  19. Approach to resolving mechanism of epilepsy in autism spectrum disorders

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Toshiaki; Tsuda, Yoshimi [Naruto Univ. of Education, Naruto, Tokushima (Japan); Mori, Kenji; Fujii, Emiko; Fukumoto, Rei; Miyazaki, Masahito; Harada, Masashi [Tokushima Univ., Faculty of Medicine, Tokushima, Tokushima (Japan)

    2007-12-15

    Electroencephalography (EEG) abnormality is highly frequent in the autism spectrum disorders (ASD), where epilepsy is also highly complicated relative to general population. Authors have found that the abnormal EEG is evoked mainly from the forehead area. For the purpose to resolve the mechanism of epilepsy, the present study was performed on single photon emission computed tomography (SPECT) and {sup 1}H- MR spectroscopy (MRS) images in ASD patients. In the former, 167 MBq of {sup 123}I-iomazenil was intravenously injected to 24 patients (5-21 years old, M/F 21/3) and SPECT was done 3 hrs later, of which findings suggested the lowered activity of gamma aminobutyric acid (GABA) receptors in the frontal lobe. The latter {sup 1}H-MRS was performed in 44 patients (2-17 years old, M/F 36/8) and 10 controls of the same generation with GE Signa Vhi 3T with the region of interest (ROI) of the left frontal lobe. MEGA-PRESS and stimulated-echo acquisition mode (STEAM) methods were applied for GABA and N-acetylaspartate (NAA) measurements, respectively, with LC Model for their levels. The GABA level was found lower in the lobe than control. Results above suggested the presence of a certain functional abnormality in GABA system in ASD. (R.T.)

  20. Approach to resolving mechanism of epilepsy in autism spectrum disorders

    International Nuclear Information System (INIS)

    Hashimoto, Toshiaki; Tsuda, Yoshimi; Mori, Kenji; Fujii, Emiko; Fukumoto, Rei; Miyazaki, Masahito; Harada, Masashi

    2007-01-01

    Electroencephalography (EEG) abnormality is highly frequent in the autism spectrum disorders (ASD), where epilepsy is also highly complicated relative to general population. Authors have found that the abnormal EEG is evoked mainly from the forehead area. For the purpose to resolve the mechanism of epilepsy, the present study was performed on single photon emission computed tomography (SPECT) and 1 H- MR spectroscopy (MRS) images in ASD patients. In the former, 167 MBq of 123 I-iomazenil was intravenously injected to 24 patients (5-21 years old, M/F 21/3) and SPECT was done 3 hrs later, of which findings suggested the lowered activity of gamma aminobutyric acid (GABA) receptors in the frontal lobe. The latter 1 H-MRS was performed in 44 patients (2-17 years old, M/F 36/8) and 10 controls of the same generation with GE Signa Vhi 3T with the region of interest (ROI) of the left frontal lobe. MEGA-PRESS and stimulated-echo acquisition mode (STEAM) methods were applied for GABA and N-acetylaspartate (NAA) measurements, respectively, with LC Model for their levels. The GABA level was found lower in the lobe than control. Results above suggested the presence of a certain functional abnormality in GABA system in ASD. (R.T.)

  1. Echoing in Autistic Children: A Chronometric Study of Semantic Processing.

    Science.gov (United States)

    Shapiro, Theodore; Lucy, Peter

    1978-01-01

    Explores the idea that echoing in autistics differs from normal imitation and represents a different species of production. Subjects were five autistic children, ranging in age from 3 years 10 months to 6 years 8 months, and two normal children, aged 2 years 6 months and 3 years 11 months. (MP)

  2. Quantification of liver iron concentration with magnetic resonance imaging by combining T1-, T2-weighted spin echo sequences and a gradient echo sequence

    NARCIS (Netherlands)

    Kreeftenberg, HG; Mooyaart, EL; Sluiter, WJ; Kreeftenberg, HG; Huizenga, Reint

    Background: The aim of the study was to quantify hepatic iron by MRI for practical use. Methods: In twenty-three patients with various degrees of iron overload, measurements were carried out with a 1.5 Tesla MR unit. A combination of pulse sequences (T1, T2 and gradient echo) enabled us to quantify

  3. Analysis of Acoustic Feedback/Echo Cancellation in Multiple-Microphone and Single-Loudspeaker Systems Using a Power Transfer Function Method

    DEFF Research Database (Denmark)

    Guo, Meng; Bo Elmedyb, Thomas; Jensen, Søren Holdt

    2011-01-01

    In this work, we analyze a general multiple-microphone and single-loudspeaker audio processing system, where a multichannel adaptive system is used to cancel the effect of acoustic feedback/echo, and a beamformer processes the feedback/echo canceled signals. We introduce and derive an accurate...

  4. Artifact Reduction of Susceptibility-Weighted Imaging Using a Short-Echo Phase Mask

    Energy Technology Data Exchange (ETDEWEB)

    Ishimori, Y.; Monma, M. (Dept. of Radiological Sciences, Ibaraki Prefectural Univ. of Health Sciences, Inashiki-gun, Ibaraki (Japan)); Kohno, Y. (Dept. of Neurology, Ibaraki Prefectural Univ. of Health Sciences, Inashiki-gun, Ibaraki (Japan))

    2009-11-15

    Background: Susceptibility-weighted imaging (SWI) is utilized in magnetic resonance (MR) venography and other applications, but can include artifacts caused by the phase-masking process. Purpose: To demonstrate risks of filter processes used in making phase masks for SWI, and to propose a simple method for reducing artifacts. Material and Methods: Phase linearity related to echo time (TE) was evaluated for the original phase and high-pass-filtered phase using a CuSO{sub 4}-doped water phantom. Effect of filter size of the Hanning window and background homogeneity were also evaluated in a phantom study. Use of a phase mask generated by data with differing magnitudes of TE was attempted in a human study. Shorter TE was used for making the phase mask, and the number of multiplications was increased. As short and long TEs were necessary simultaneously for phase mask and T2 contrast, a dual-echo technique was used. Results: Linearity of TE and phase value collapsed, and an unexpected negative phase appeared in the high-pass-filtered phase. Using a short-TE phase mask, phase-aliasing artifacts were reduced and visibility of deep veins was equivalent to that under conventional methods with an increased number of multiplications. Conclusion: Use of a short-echo phase mask in SWI is useful for reducing artifacts

  5. A Framework for Music-Speech Segregation using Music Fingerprinting and Acoustic Echo Cancellation Principle

    International Nuclear Information System (INIS)

    Hussain, F.; Habib, H. A.; Khan, M. J.

    2015-01-01

    Background interference creates voice intelligibility issue for listerner. This research work considers background music as interference for communication through smart phone in areas with loud background music. This paper proposes a novel framework for background music segregation from human speech using music fingerprinting and acoustic echo cancellation. Initially, background music is searched in the database by music fingerprinting. Identified background music is registered and segregated using acoustic echo cancellation. Proposed approach generates better quality music speech segregation than existing algorithms. The research work is novel and segregates background music completely in comparison to existing approaches where single instruments are segregated successfully. (author)

  6. Echo Chambers: Emotional Contagion and Group Polarization on Facebook

    Science.gov (United States)

    Del Vicario, Michela; Vivaldo, Gianna; Bessi, Alessandro; Zollo, Fabiana; Scala, Antonio; Caldarelli, Guido; Quattrociocchi, Walter

    2016-12-01

    Recent findings showed that users on Facebook tend to select information that adhere to their system of beliefs and to form polarized groups - i.e., echo chambers. Such a tendency dominates information cascades and might affect public debates on social relevant issues. In this work we explore the structural evolution of communities of interest by accounting for users emotions and engagement. Focusing on the Facebook pages reporting on scientific and conspiracy content, we characterize the evolution of the size of the two communities by fitting daily resolution data with three growth models - i.e. the Gompertz model, the Logistic model, and the Log-logistic model. Although all the models appropriately describe the data structure, the Logistic one shows the best fit. Then, we explore the interplay between emotional state and engagement of users in the group dynamics. Our findings show that communities’ emotional behavior is affected by the users’ involvement inside the echo chamber. Indeed, to an higher involvement corresponds a more negative approach. Moreover, we observe that, on average, more active users show a faster shift towards the negativity than less active ones.

  7. Electron spin echo study of the E'-center phase relaxation in γ-irradiated quartz glass

    International Nuclear Information System (INIS)

    Dudkin, V.I.; Petrun'kin, V.Yu.; Rubinov, S.V.; Uspenskij, L.I.

    1986-01-01

    Experimental studies of phase relaxation of E'-centres in γ-irradiated quartz glass are conducted by the method of electron spin echo (ESE) for different concentrations of paramagnetic centres. Contribution of mechanisms of spectral and prompt diffusion to kinetics of amplitude drop of echo signal is proved to reduce with growth of delay time between exciting microwave pulse that results in increase of phase memory time at large delays. The mentioned property can be used in electric controlled delay lines on the base of ESE

  8. 32 CFR 199.5 - TRICARE Extended Care Health Option (ECHO).

    Science.gov (United States)

    2010-07-01

    ... medicines. Drugs and medicines that do not meet the requirements of § 199.4 or § 199.21 are excluded. (17..., as determined by the Director, TRICARE Management Activity or designee. (B) Alternative allocation... following the death of a beneficiary or as of the effective date of a beneficiary's loss of ECHO eligibility...

  9. Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging

    Directory of Open Access Journals (Sweden)

    Fabio Baselice

    2014-01-01

    Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.

  10. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    Science.gov (United States)

    Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.

    2016-02-01

    We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.

  11. Ultrasonic waves scattering through dissimilar welds: application to characterisation of spurious echoes detected during inspection; Etude de la diffusion des ondes ultrasonores dans les soudures austeno-ferritiques: application a la caracterisation des echos de lignes observes lors du controle des soudures bimetalliques

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F

    1999-07-01

    Ultrasonic testing of bimetallic welds can show the presence of structural echoes. In pulse echo mode inspections at oblique incidence, these echoes are detected close to the back-wall (surface opposite to the control). These echoes have a specific shape: the amplitude is distributed along lines parallel to the weld sides. Such echoes can disturb the inspection: they can be misinterpreted as provided by a defect, or they can mask a possible defect. The aim of this thesis is to explain this phenomenon with an interpretation based on the anisotropic property of the weld. In such a structure, specific mode conversions in the lasts welding pass arise. Mode converted waves can reflect normally on the back-wall and therefore back propagate to the transducer along the same wave path as the forward propagation. Some generalities of ultrasonic testing of bimetallic welds are given in a preliminary chapter. In the first chapter, various experiments showed that these structural echoes do not result from beam deflection in the weld and that this phenomenon occurs in the last millimeters under the back-wall. According to these results, an interpretation for these echoes based on the anisotropic and the inhomogeneous structure of the weld is given in the last welding pass, oblique compression waves may be converted into normal shear waves. The second chapter presented a theoretical analysis of these mode conversions phenomenon between two metallurgical structures with different dendrite orientations. The analysis of the welding passes metallography and a bibliographic study summarizes on the relevancy to use a orthotropic symmetry to describe the metallurgical structure of the material under test. The third chapter deals with experimental studies to confirm this hypothesis. Detection of shear waves in the last welding passes near the back-wall mock-up using a specific sensor, able to discriminate the polarisation wave at the reception, validate the mode conversion hypothesis

  12. Bathymetry and acoustic echo character lower continental rise study area, E-N2

    International Nuclear Information System (INIS)

    Laine, E.P.; Friedrich, N.E.

    1985-01-01

    A bathymetric map of area E-N2 was constructed using navigational and bathymetric data supplied by the Defense Mapping Agency and navigational and bathymetric data obtained during Endeavor cruises. E-N2 contains two dominant echo-types: an area of submarine canyons, and an area of levee deposits and debris flow deposits. The canyon system is complex, characterized by many channels and inter-channel levee deposits. The second echo province, characterized by levee and debris flow deposits, is a region suitable for the proposed operations (low-level radioactive waste disposal). Given a favorable analysis of data collected on cruise EN-084, attention will be focused at shallower depths to determine slope stability and other seabed conditions. 4 figures

  13. Resolvent convergence in norm for Dirac operator with Aharonov-Bohm field

    International Nuclear Information System (INIS)

    Tamura, Hideo

    2003-01-01

    We consider the Hamiltonian for relativistic particles moving in the Aharonov-Bohm magnetic field in two dimensions. The field has δ-like singularity at the origin, and the Hamiltonian is not necessarily essentially self-adjoint. The self-adjoint realization requires one parameter family of boundary conditions at the origin. We approximate the point-like field by smooth ones and study the problem of norm resolvent convergence to see which boundary condition is physically reasonable among admissible boundary conditions. We also study the effect of perturbations by scalar potentials. Roughly speaking, the obtained result is that the limit self-adjoint realization is different even for small perturbation of scalar potentials according to the values of magnetic fluxes. It changes at half-integer fluxes. The method is based on the resolvent analysis at low energy on magnetic Schroedinger operators with resonance at zero energy and the resonance plays an important role from a mathematical point of view. However it has been neglected in earlier physical works. The emphasis here is placed on this natural aspect

  14. Initial experience in perfusion MR imaging of intracranial major artery occlusion with echo-planar technique

    International Nuclear Information System (INIS)

    Tsuchiya, Kazuhiro; Mizutani, Yoshiyuki; Inaoka, Sayuki; Hachiya, Junichi

    1997-01-01

    The purpose of this study was to evaluate the usefulness of perfusion MR imaging using a single-shot echo-planar technique in occlusion of intracranial main arteries. Our patient group consisted of 16 patients with internal carotid artery occlusion (n=9), Moyamoya disease (n=4), and middle cerebral artery occlusion (n=3). We performed the echo-planar perfusion studies with a 1.5-T unit using a free-induction-decay-type echo-planar sequence. With a bolus injection of Gd-DTPA, 30 consecutive scans were obtained at 10 sections every 2 seconds. The data were analyzed in three ways: a time-intensity curves in the territory of the involved artery (n=16); semiquantitative flow map of each section representing signal changes due to passage of Gd-DTPA (n=15); and serial images at a selected section (n=7). The time intensity curves were abnormal in 13 patients. The peak of signal drop was delayed in all of them. Flow maps showed focal flow abnormalities in 11 patients, but they were apparently normal in 4 patients probably due to collateral flow. In serial images, delay in appearance and/or disappearance of Gd-DTPA was noted in 6 patients. In patients with occlusion of intracranial main arteries, MR single-shot echo-planar technique is of clinical use because it can provide information about hemodynamic changes in a short examination time, in multiple sections, and with good temporal resolution. (author)

  15. An Astronomical Time Machine: Light Echoes from Historic Supernovae and Stellar Eruptions

    Science.gov (United States)

    Rest, Armin

    2014-01-01

    Tycho Brahe's observations of a supernova in 1572 challenged the dogma that the celestial realm was unchanging. Now, 440 years later we have once again seen the light that Tycho saw as simple reflections from walls of Galactic dust. These light echoes, as well as ones detected from other historical events such as Cas A and Eta Carinae's Great Eruption, give us a rare opportunity in astronomy: the direct observation of the cause (the explosion/eruption) and the effect (the remnant) of the same astronomical event. But we can do more: the light echoes let us look at the explosion from different angles, and permit us to map the asymmetries in the explosion. I will discuss how the unprecedented three-dimensional view of these exciting events allows us to unravel some of their secrets.

  16. Matching fields and lattice points of simplices

    OpenAIRE

    Loho, Georg; Smith, Ben

    2018-01-01

    We show that the Chow covectors of a linkage matching field define a bijection of lattice points and we demonstrate how one can recover the linkage matching field from this bijection. This resolves two open questions from Sturmfels & Zelevinsky (1993) on linkage matching fields. For this, we give an explicit construction that associates a bipartite incidence graph of an ordered partition of a common set to all lattice points in a dilated simplex. Given a triangulation of a product of two simp...

  17. Recent Results for the ECHo Experiment

    Science.gov (United States)

    Hassel, C.; Blaum, K.; Goodacre, T. Day; Dorrer, H.; Düllmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Filianin, P.; Fäßler, A.; Fleischmann, A.; Gastaldo, L.; Goncharov, M.; Hengstler, D.; Jochum, J.; Johnston, K.; Keller, M.; Kempf, S.; Kieck, T.; Köster, U.; Krantz, M.; Marsh, B.; Mokry, C.; Novikov, Yu. N.; Ranitzsch, P. C. O.; Rothe, S.; Rischka, A.; Runke, J.; Saenz, A.; Schneider, F.; Scholl, S.; Schüssler, R. X.; Simkovic, F.; Stora, T.; Thörle-Pospiech, P.; Türler, A.; Veinhard, M.; Wegner, M.; Wendt, K.; Zuber, K.

    2016-08-01

    The Electron Capture in ^{163}Ho experiment, ECHo, is designed to investigate the electron neutrino mass in the sub-eV range by means of the analysis of the calorimetrically measured spectrum following the electron capture (EC) in ^{163}Ho. Arrays of low-temperature metallic magnetic calorimeters (MMCs), read-out by microwave SQUID multiplexing, will be used in this experiment. With a first MMC prototype having the ^{163}Ho source ion-implanted into the absorber, we performed the first high energy resolution measurement of the EC spectrum, which demonstrated the feasibility of such an experiment. In addition to the technological challenges for the development of MMC arrays, which preserve the single pixel performance in terms of energy resolution and bandwidth, the success of the experiment relies on the availability of large ultra-pure ^{163}Ho samples, on the precise description of the expected spectrum, and on the identification and reduction of background. We present preliminary results obtained with standard MMCs developed for soft X-ray spectroscopy, maXs-20, where the ^{163}Ho ion-implantation was performed using a high-purity ^{163}Ho source produced by advanced chemical and mass separation. With these measurements, we aim at determining an upper limit for the background level due to source contamination and provide a refined description of the calorimetrically measured spectrum. We discuss the plan for a medium scale experiment, ECHo-1k, in which about 1000 mathrm {Bq} of high-purity ^{163}Ho will be ion-implanted into detector arrays. With one year of measuring time, we will be able to achieve a sensitivity on the electron neutrino mass below 20 eV/c^2 (90 % C.L.), improving the present limit by more than one order of magnitude. This experiment will guide the necessary developments to reach the sub-eV sensitivity.

  18. Short echo time proton spectroscopy of the brain in healthy volunteers using an insert gradient head coil

    DEFF Research Database (Denmark)

    Gideon, P; Danielsen, E R; Schneider, M

    1995-01-01

    An insert gradient head coil with built-in X, Y, and Z gradients was used for localized proton spectroscopy in the brain of healthy volunteers, using short echo time stimulated echo acquisition mode (STEAM) sequences. Volume of interest size was 3.4 ml, repetition time was 6.0 s, and echo times...... were 10 and 20 ms, respectively. Good quality proton spectra with practically no eddy current artefacts were acquired allowing observation of strongly coupled compounds, and compounds with short T2 relaxation times. The gradient head coil thus permits further studies of compounds such as glutamine....../glutamate and myo-inositols. These compounds were more prominent within grey matter than within white matter. Rough estimations of metabolite concentrations using water as an internal standard were in good agreement with previous reports....

  19. Characteristics Analysis of Joint Acoustic Echo and Noise Suppression in Periodic Drillstring Waveguide

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2014-01-01

    Full Text Available A new method of wireless data telemetry used by oil industry uses compressional acoustic waves to transmit downhole information from the bottom hole to the surface. Unfortunately, acoustic echoes and drilling vibration noises in periodic drillstring are a major issue in transmission performance. A combined acoustic echo and noise suppression method based on wave motion characteristic in drillstring is adopted to enhance an upward-going transmitted acoustic signal. The presented scheme consists of a primary acoustic echo canceller using an array of two accelerometers for dealing with the downward-going noises and a secondary acoustic insulation structure for restraining the upward-going vibration noises. Furthermore, the secondary acoustic insulation structure exhibits a banded and dispersive spectral structure because of periodic groove configuration. By using a finite-differential algorithm for the one-dimensional propagation of longitudinal waves, acoustic receiving characteristics of transmitted signals are simulated with additive Gaussian noise in a periodic pipe structure of limited length to investigate the effects on transmission performance optimization. The results reveal that the proposed scheme can achieve a much lower error bit ratio over a specified acoustic isolation frequency range with a 30–40 dB reduction in the average noise level compared to traditional single-receiver scheme.

  20. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chandarana, Hersh; Block, Kai T.; Winfeld, Matthew J.; Lala, Shailee V.; Mazori, Daniel; Giuffrida, Emalyn; Babb, James S.; Milla, Sarah S. [New York University Langone Medical Center, Department of Radiology, New York, NY (United States)

    2014-02-15

    To compare the image quality of contrast-enhanced abdominopelvic 3D fat-suppressed T1-weighted gradient-echo imaging with radial and conventional Cartesian k-space acquisition schemes in paediatric patients. Seventy-three consecutive paediatric patients were imaged at 1.5 T with sequential contrast-enhanced T1-weighted Cartesian (VIBE) and radial gradient echo (GRE) acquisition schemes with matching parameters when possible. Cartesian VIBE was acquired as a breath-hold or as free breathing in patients who could not suspend respiration, followed by free-breathing radial GRE in all patients. Two paediatric radiologists blinded to the acquisition schemes evaluated multiple parameters of image quality on a five-point scale, with higher score indicating a more optimal examination. Lesion presence or absence, conspicuity and edge sharpness were also evaluated. Mixed-model analysis of variance was performed to compare radial GRE and Cartesian VIBE. Radial GRE had significantly (all P < 0.001) higher scores for overall image quality, hepatic edge sharpness, hepatic vessel clarity and respiratory motion robustness than Cartesian VIBE. More lesions were detected on radial GRE by both readers than on Cartesian VIBE, with significantly higher scores for lesion conspicuity and edge sharpness (all P < 0.001). Radial GRE has better image quality and lesion conspicuity than conventional Cartesian VIBE in paediatric patients undergoing contrast-enhanced abdominopelvic MRI. (orig.)