WorldWideScience

Sample records for echo mri characterization

  1. Liver iron content determined by MRI. Spin-echo vs. gradient-echo

    Energy Technology Data Exchange (ETDEWEB)

    Juchems, M.S.; Wunderlich, A.P. [Universitaetskliniken Ulm (Germany). Klinik fuer Diagnostische und Interventionelle Radiologie; Cario, H. [Universitaetskliniken Ulm (Germany). Klinik fuer Kinder- und Jugendmedizin; Schmid, M. [Stadtspital Triemli, Zuerich (Switzerland). Medizinische Onkologie und Haematologie

    2012-05-15

    Purpose: Liver iron content (LIC) measurement plays a central role in the management of patients with transfusional iron overload. Calculating the LIC with data obtained from standardized MRI sequences represents an attractive alternative diagnostic possibility. The purpose of this study was to compare the LIC measurement obtained with gradient-echo (GRE) sequences to the mean liver proton transverse relaxation (R2) acquired with SE sequences. Materials and Methods: 68 patients with iron overload (median age: 24, range: 3 - 88) underwent 1.5 T MRI for liver iron content measurement. All patients received spin-echo (SE) and gradient-echo (GRE) sequences. Results: The two MRI methods revealed different liver iron content results although a significant correlation was found (r = 0.85, p < 0.001). Values evaluated using GRE sequences (median: 260 {mu}mol/g dry weight [d.w.], range: 6 - 732) were generally higher than those obtained by SE examinations (median: 161 {mu}mol /g d.w., range: 5 - 830). Conclusion: In conclusion, our study revealed different results for both MRI measurements, which could lead to different decisions concerning the management of chelation therapy in individual patients. (orig.)

  2. Inaudible functional MRI using a truly mute gradient echo sequence

    International Nuclear Information System (INIS)

    Marcar, V.L.; Girard, F.; Rinkel, Y.; Schneider, J.F.; Martin, E.

    2002-01-01

    We performed functional MRI experiments using a mute version of a gradient echo sequence on adult volunteers using either a simple visual stimulus (flicker goggles: 4 subjects) or an auditory stimulus (music: 4 subjects). Because the mute sequence delivers fewer images per unit time than a fast echo planar imaging (EPI) sequence, we explored our data using a parametric ANOVA test and a non-parametric Wilcoxon-Mann-Whitney test in addition to performing a cross-correlation analysis. All three methods were in close agreement regarding the location of the BOLD contrast signal change. We demonstrated that, using appropriate statistical analysis, functional MRI using an MR sequence that is acoustically inaudible to the subject is feasible. Furthermore compared with the ''silent'' event-related procedures involving an EPI protocol, our mGE protocol compares favourably with respect to experiment time and the BOLD signal. (orig.)

  3. Inaudible functional MRI using a truly mute gradient echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Marcar, V.L. [University of Zurich, Department of Psychology, Neuropsychology, Treichlerstrasse 10, 8032 Zurich (Switzerland); Girard, F. [GE Medical Systems SA, 283, rue de la Miniere B.P. 34, 78533 Buc Cedex (France); Rinkel, Y.; Schneider, J.F.; Martin, E. [University Children' s Hospital, Neuroradiology and Magnetic Resonance, Department of Diagnostic Imaging, Steinwiesstrasse 75, 8032 Zurich (Switzerland)

    2002-11-01

    We performed functional MRI experiments using a mute version of a gradient echo sequence on adult volunteers using either a simple visual stimulus (flicker goggles: 4 subjects) or an auditory stimulus (music: 4 subjects). Because the mute sequence delivers fewer images per unit time than a fast echo planar imaging (EPI) sequence, we explored our data using a parametric ANOVA test and a non-parametric Wilcoxon-Mann-Whitney test in addition to performing a cross-correlation analysis. All three methods were in close agreement regarding the location of the BOLD contrast signal change. We demonstrated that, using appropriate statistical analysis, functional MRI using an MR sequence that is acoustically inaudible to the subject is feasible. Furthermore compared with the ''silent'' event-related procedures involving an EPI protocol, our mGE protocol compares favourably with respect to experiment time and the BOLD signal. (orig.)

  4. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging

    Directory of Open Access Journals (Sweden)

    Boujraf Said

    2009-01-01

    Full Text Available The choice of imaging parameters for functional MRI can have an impact on the accuracy of functional localization by affecting the image quality and the degree of blood oxygenation-dependent (BOLD contrast achieved. By improving sampling efficiency, parallel acquisition techniques such as sensitivity encoding (SENSE have been used to shorten readout trains in single-shot (SS echo planar imaging (EPI. This has been applied to susceptibility artifact reduction and improving spatial resolution. SENSE together with single-shot spin-echo (SS-SE imaging may also reduce off-resonance artifacts. The goal of this work was to investigate the BOLD response of a SENSE-adapted SE-EPI on a three Tesla scanner. Whole-brain fMRI studies of seven healthy right hand-dominant volunteers were carried out in a three Tesla scanner. fMRI was performed using an SS-SE EPI sequence with SENSE. The data was processed using statistical parametric mapping. Both, group and individual subject data analyses were performed. Individual average percentage and maximal percentage signal changes attributed to the BOLD effect in M1 were calculated for all the subjects as a function of echo time. Corresponding activation maps and the sizes of the activated clusters were also calculated. Our results show that susceptibility artifacts were reduced with the use of SENSE; and the acquired BOLD images were free of the typical quadrature artifacts of SS-EPI. Such measures are crucial at high field strengths. SS SE-EPI with SENSE offers further benefits in this regard and is more specific for oxygenation changes in the microvasculature bed. Functional brain activity can be investigated with the help of single-shot spin echo EPI using SENSE at high magnetic fields.

  5. Comparison of multi-echo and single-echo gradient-recalled echo sequences for SPIO-enhanced Liver MRI at 3 T

    International Nuclear Information System (INIS)

    Choi, J.S.; Kim, M.-J.; Kim, J.H.; Choi, J.-Y.; Chung, Y.E.; Park, M.-S.; Kim, K.W.

    2010-01-01

    Aim: To assess the utility of a T2*-weighted, multi-echo data imaging combination sequenced on superparamagnetic iron oxide (SPIO)-enhanced liver magnetic resonance imaging (MRI) using a 3 T system. Materials and methods: Fifty patients underwent SPIO-enhanced MRI at 3 T using T2*-weighted, single-echo, gradient-recalled echo (GRE) sequences [fast imaging with steady precession; repetition time (TR)/echo time (TE), 126 ms/9 ms; flip angle, 30 o ] and multi-echo GRE (multi-echo data image combination) sequences (TR/TE, 186 ms/9 ms; flip angle, 30 o ). Three radiologists independently reviewed the images in a random order. The sensitivity and accuracy for the detection of focal hepatic lesions (a total of 76 lesions in 33 patients; 48 solid lesions, 28 non-solid lesions) were compared by analysing the area under the receiver operating characteristic curves. Image artefacts (flow artefacts, susceptibility artefacts, dielectric artefacts, and motion artefacts), lesion conspicuity, and overall image quality were evaluated according to a four-point scale: 1, poor; 2, fair; 3, good; 4, excellent. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the lesions were compared. Results: Image artefacts were more frequent with single-echo GRE (p < 0.05). The mean scale of image quality assessment for flow, susceptibility, dielectric, and motion artefacts were 2.76, 3.13, 3.42, and 2.89 with singe-echo, respectively, compared with 3.47, 3.43, 3.47, and 3.39, respectively, with multi-echo GRE. There was no significant difference in lesion conspicuity between single-echo (3.15) and multi-echo (3.30) GRE sequences. The overall image quality was significantly (p < 0.05) better with multi-echo (3.37) than with single-echo GRE (2.89). The mean SNR and CNR of the lesions were significantly (p < 0.05) higher on multi-echo (79 ± 23 and 128 ± 59, respectively) images than on single-echo (38 ± 11 and 102 ± 44, respectively) images. Lesion detection accuracy and

  6. High temporal resolution functional MRI using parallel echo volumar imaging

    International Nuclear Information System (INIS)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F.; Le Roux, P.; Dehaine-Lambertz, G.

    2008-01-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  7. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    International Nuclear Information System (INIS)

    Kretzschmar, M.; Hainc, N.; Studler, U.; Bieri, O.; Miska, M.; Wiewiorski, M.; Valderrabano, V.

    2015-01-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm 2 /ms) was significantly higher compared to normal cartilage (1.46 μm 2 /ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  8. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, M.; Hainc, N.; Studler, U. [University Hospital Basel, Department of Radiology, Basel (Switzerland); Bieri, O. [University Hospital Basel, Division of Radiological Physics, Basel (Switzerland); Miska, M. [University Hospital, Department of Orthopedics, Heidelberg (Germany); Wiewiorski, M.; Valderrabano, V. [University Hospital Basel, Department of Orthopedic Surgery, Basel (Switzerland)

    2015-04-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm{sup 2}/ms) was significantly higher compared to normal cartilage (1.46 μm{sup 2}/ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  9. Clinical characteristics in normal healthy adults with microbleeds on echo-planar gradient-echo T2*-weighted MRI

    International Nuclear Information System (INIS)

    Takahashi, Wakoh; Ide, Michiru; Ohnuki, Tomohide; Takagi, Shigeharu; Shinohara, Yukito

    2004-01-01

    The gradient-echo T 2 * -weighted sequence in magnetic resonance imaging is known to be useful for detecting microbleeds (MBs) in patients with intracranial hemorrhage or lacunar stroke. We investigated the characteristics of apparently healthy adults with MBs but without stroke, employing echo-planar gradient-echo T 2 * -weighted MRI. The subjects were recruited from among 3,537 participants who underwent brain check-ups at the HIMEDIC Imaging Center. Of the 3,537 participants, 3,296 (mean age, 55±11 years) without any history of cerebrovascular disease or apparent focal neurological manifestations were selected for the present study. MBs on echo-planar gradient-echo T 2 * -weighted MRI were observed in 74 (2.2%) of the 3,296 subjects. Of a total of 133 lesions found in these 74 persons, 31 were located in the basal ganglia or cortico-subcortical regions. Thirty were in the deep white matter, 19 in the thalamus, 16 in the cerebellum, and 6 in the brain stem. The subjects with MBs were significantly older than the subjects without MBs, and the mean values for their systolic and diastolic blood pressures were higher than those in the subjects without MBs. Asymptomatic cerebral infarction, periventricular hyperintensity, and deep and subcortical white matter hyperintensity on T 1 - and T 2 -weighted MRI were more frequent in the subjects with MBs, as compared with those without MBs. Asymptomatic cerebral infarction, periventricular hyperintensity, and deep and subcortical white matter hyperintensity on T 1 - and T 2 -weighted MRI were more frequent in the subjects with MBs of the basal ganglia or thalamus than in those with MBs in other regions. MBs on echo-planar gradient-echo T 2 * -weighted MRI were thus relatively rare in apparently healthy adults. However, MBs in the basal ganglia or thalamus are suggested to be closely related to intracerebral microangiopathy. Persons with MBs in such regions should therefore be carefully checked for cerebrovascular risk

  10. Exact algebraization of the signal equation of spoiled gradient echo MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dathe, Henning [Department of Orthodontics, Biomechanics Group, University Medical Centre, Goettingen (Germany); Helms, Gunther, E-mail: ghelms@gwdg.d [MR-Research in Neurology and Psychiatry, University Medical Centre, Goettingen (Germany)

    2010-08-07

    The Ernst equation for Fourier transform nuclear magnetic resonance (MR) describes the spoiled steady-state signal created by periodic partial excitation. In MR imaging (MRI), it is commonly applied to spoiled gradient-echo acquisition in the steady state, created by a small flip angle {alpha} at a repetition time TR much shorter than the longitudinal relaxation time T{sub 1}. We describe two parameter transformations of {alpha} and TR/T{sub 1}, which render the Ernst equation as a low-order rational function. Computer algebra can be readily applied for analytically solving protocol optimization, as shown for the dual flip angle experiment. These transformations are based on the half-angle tangent substitution and its hyperbolic analogue. They are monotonic and approach identity for small {alpha} and small TR/T{sub 1} with a third-order error. Thus, the exact algebraization can be readily applied to fast gradient echo MRI to yield a rational approximation in {alpha} and TR/T{sub 1}. This reveals a fundamental relationship between the square of the flip angle and TR/T{sub 1} which characterizes the Ernst angle, constant degree of T{sub 1}-weighting and the influence of the local radio-frequency field.

  11. MRI of the breast with 2D spin-echo and gradient echo sequences in diagnostically difficult cases

    International Nuclear Information System (INIS)

    Allgayer, B.; Lukas, P.; Loos, W.; Kersting-Sommerhoff, B.

    1993-01-01

    One or both breasts of 296 patients with equivocal clinical or mammographical findings were examined with MRI. T 1 weighted spinecho (SE) and gradient echo (FFE) sequences were acquired before and after i.v. application of Gadolinium DTPA. 50 lesions with enhancement after Gd-DTPA were biopsied -26 carcinomas, 17 proliferating mastopathic tissues, 5 fibroadenomas and 1 abscess were found. Contrast enhanced MRI with 2D-SE and FFE sequences is an effective technqiue for evaluating suspicious breast lesions with high diagnostic acurracy. (orig.) [de

  12. Fast spin echo MRI techniques. Contrast characteristics and clinical potential

    International Nuclear Information System (INIS)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N.; Oshio, K.; Jolesz, F.; Pourcelot, L.; Einstein, S.

    1993-01-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode

  13. Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations

    Directory of Open Access Journals (Sweden)

    Adam Kettinger

    2016-12-01

    Full Text Available Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate how these advance echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1 simple arithmetic averaging, (2 BOLD sensitivity weighting, (3 temporal-signal-to-noise ratio weighting and (4 temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e. group-level t-values compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned.

  14. Echo

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Dustin Yewell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-25

    This document is a white paper marketing proposal for Echo™ is a data analysis platform designed for efficient, robust, and scalable creation and execution of complex workflows. Echo’s analysis management system refers to the ability to track, understand, and reproduce workflows used for arriving at results and decisions. Echo improves on traditional scripted data analysis in MATLAB, Python, R, and other languages to allow analysts to make better use of their time. Additionally, the Echo platform provides a powerful data management and curation solution allowing analysts to quickly find, access, and consume datasets. After two years of development and a first release in early 2016, Echo is now available for use with many data types in a wide range of application domains. Echo provides tools that allow users to focus on data analysis and decisions with confidence that results are reported accurately.

  15. Improved sensitivity and specificity for resting state and task fMRI with multiband multi-echo EPI compared to multi-echo EPI at 7T.

    NARCIS (Netherlands)

    Boyacioglu, R.; Schulz, J.; Koopmans, P.J.; Barth, M.; Norris, David Gordon

    2015-01-01

    A multiband multi-echo (MBME) sequence is implemented and compared to a matched standard multi-echo (ME) protocol to investigate the potential improvement in sensitivity and spatial specificity at 7 T for resting state and task fMRI. ME acquisition is attractive because BOLD sensitivity is less

  16. Reliability of the echoMRI infant system for water and fat measurements in newborns

    Science.gov (United States)

    The precision and accuracy of a quantitative magnetic resonance (EchoMRI Infants) system in newborns were determined. Canola oil and drinking water phantoms (increments of 10 g to 1.9 kg) were scanned four times. Instrument reproducibility was assessed from three scans (within 10 minutes) in 42 heal...

  17. Diffusion-weighted echo-planar MRI of lacunar infarcts

    International Nuclear Information System (INIS)

    Noguchi, K.; Nagayoshi, T.; Watanabe, N.; Kanazawa, T.; Toyoshima, S.; Morijiri, M.; Shojaku, H.; Shimizu, M.; Seto, H.

    1998-01-01

    We studied 35 patients with lacunar infarcts, using diffusion-weighted echo-planar imaging (DW-EPI) at 1.5 T. The relative apparent diffusion coefficient ratio (ADCR) of each lesion was calculated and lesion conspicuity on DW-EPI was compared to that on images aquired with fast fluid-attenuated inversion recovery and T2-weighted fast spin-echo sequences. Acute small infarcts (within 3 days) were identified with DW-EPI as an area of decreased ADCR (range 0.33-0.87; mean 0.67) and high signal, subacute small infarcts (4-30 days) as a high-signal or isointense areas of decreased or nearly normal ADCR (0.54-0.98; 0.73), and chronic small infarcts (> 30 days) as low- or high-signal areas of nearly normal or increased ADCR (0.97-1.92; 1.32). In three patients, small infarcts of the brain stem in the hyperacute phase (within 6 h) were seen only with DW-EPI. In five patients, fresh small infarcts adjacent to multiple old infarcts could be distinguished only with DW-EPI. (orig.)

  18. Size Distribution Imaging by Non-Uniform Oscillating-Gradient Spin Echo (NOGSE MRI.

    Directory of Open Access Journals (Sweden)

    Noam Shemesh

    Full Text Available Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems - ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE, can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE's ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions - where the ground truth can be determined from ancillary microscopy - corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE's potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development.

  19. Semicircular canal dehiscence: comparison of T2-weighted turbo spin-echo MRI and CT

    International Nuclear Information System (INIS)

    Krombach, G.A.; Schmitz-Rode, T.; Haage, P.; Guenther, R.W.; DiMartino, E.; Prescher, A.; Kinzel, S.

    2004-01-01

    We assessed the value of MRI for delineation of dehiscence of the superior or posterior semicircular canal, as compared with CT, the current standard study for this entity. We reviewed heavily T2-weighted fast spin-echo images and high-resolution CT of the temporal bones of 185 patients independently semicircular canal dehiscence and its extent. In 30 patients (19 men, 11 women) we identified dehiscence of the bone over the superior and/or posterior semicircular canal on MRI. In 27 of these cases CT also showed circumscribed bone defects. In one patient dehiscence of the superior semicircular canal was initially overlooked on MRI, but seen on CT. MRI imaging thus had a sensitivity of 96% and specificity of 98%. Knowledge of the appearances of this entity on MRI may contribute to early diagnosis in patients with vertigo due to semicircular canal dehiscence. (orig.)

  20. Semicircular canal dehiscence: comparison of T2-weighted turbo spin-echo MRI and CT

    Energy Technology Data Exchange (ETDEWEB)

    Krombach, G.A.; Schmitz-Rode, T.; Haage, P.; Guenther, R.W. [Department of Diagnostic Radiology, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany); DiMartino, E. [Department of Otorhinolaryngology, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany); Prescher, A. [Department of Anatomy, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany); Kinzel, S. [Department of Experimental Veterinary Medicine, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany)

    2004-04-01

    We assessed the value of MRI for delineation of dehiscence of the superior or posterior semicircular canal, as compared with CT, the current standard study for this entity. We reviewed heavily T2-weighted fast spin-echo images and high-resolution CT of the temporal bones of 185 patients independently semicircular canal dehiscence and its extent. In 30 patients (19 men, 11 women) we identified dehiscence of the bone over the superior and/or posterior semicircular canal on MRI. In 27 of these cases CT also showed circumscribed bone defects. In one patient dehiscence of the superior semicircular canal was initially overlooked on MRI, but seen on CT. MRI imaging thus had a sensitivity of 96% and specificity of 98%. Knowledge of the appearances of this entity on MRI may contribute to early diagnosis in patients with vertigo due to semicircular canal dehiscence. (orig.)

  1. Fully phase-encoded MRI near metallic implants using ultrashort echo times and broadband excitation.

    Science.gov (United States)

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Koch, Kevin M; Reeder, Scott B

    2018-04-01

    To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T 1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T 1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T 1 -weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 79:2156-2163, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Optimization image of magnetic resonance imaging (MRI) T2 fast spin echo (FSE) with variation echo train length (ETL) on the rupture tendon achilles case

    International Nuclear Information System (INIS)

    Muzamil, Akhmad; Firmansyah, Achmad Haries

    2017-01-01

    The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (p<0.05) of Tendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information. (paper)

  3. MRI detection of hypointense brain lesions in patients with multiple sclerosis: T1 spin-echo vs. gradient-echo

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Sheena L.; Tauhid, Shahamat; Kim, Gloria; Chu, Renxin; Tummala, Subhash [Departments of Neurology, Brigham and Women' s Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA (United States); Hurwitz, Shelley [Departments of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Bakshi, Rohit, E-mail: rbakshi@bwh.harvard.edu [Departments of Neurology, Brigham and Women' s Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA (United States); Departments of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2015-08-15

    Highlights: • Compared T1SE and T1GE in detecting hypointense brain lesions in MS patients. • T1GE detected a higher cerebral lesion volume and number than T1SE. • T1SE correlated significantly with disability, while T1GE did not. • Hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. - Abstract: Objective: Compare T1 spin-echo (T1SE) and T1 gradient-echo (T1GE) sequences in detecting hypointense brain lesions in multiple sclerosis (MS). Background: Chronic hypointense lesions on T1SE MRI scans are a surrogate of severe demyelination and axonal loss in MS. The role of T1GE images in the detection of such lesions has not been clarified. Design/methods: In 45 patients with MS [Expanded Disability Status Scale (EDSS) score (mean ± SD) 3.5 ± 2.0; 37 relapsing-remitting (RR); 8 secondary progressive (SP)], cerebral T1SE, T1GE, and T2-weighted fluid-attenuated inversion-recovery (FLAIR) images were acquired on a 1.5 T MRI scanner. Images were re-sampled to axial 5 mm slices before directly comparing lesion detectability using Jim (v.7, Xinapse Systems). Statistical methods included Wilcoxon signed rank tests to compare sequences and Spearman correlations to test associations. Results: Considering the entire cohort, T1GE detected a higher lesion volume (5.90 ± 6.21 vs. 4.17 ± 4.84 ml, p < 0.0001) and higher lesion number (27.82 ± 20.66 vs. 25.20 ± 20.43, p < 0.05) than T1SE. Lesion volume differences persisted when considering RR and SP patients separately (both p < 0.01). A higher lesion number by T1GE was seen only in the RR group (p < 0.05). When comparing correlations between lesion volume and overall neurologic disability (EDSS score), T1SE correlated with EDSS (Spearman r = 0.29, p < 0.05) while T1GE (r = 0.23, p = 0.13) and FLAIR (r = 0.24, p = 0.12) did not. Conclusion: Our data suggest that hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. Based on these results, we hypothesize that T1GE

  4. MRI detection of hypointense brain lesions in patients with multiple sclerosis: T1 spin-echo vs. gradient-echo

    International Nuclear Information System (INIS)

    Dupuy, Sheena L.; Tauhid, Shahamat; Kim, Gloria; Chu, Renxin; Tummala, Subhash; Hurwitz, Shelley; Bakshi, Rohit

    2015-01-01

    Highlights: • Compared T1SE and T1GE in detecting hypointense brain lesions in MS patients. • T1GE detected a higher cerebral lesion volume and number than T1SE. • T1SE correlated significantly with disability, while T1GE did not. • Hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. - Abstract: Objective: Compare T1 spin-echo (T1SE) and T1 gradient-echo (T1GE) sequences in detecting hypointense brain lesions in multiple sclerosis (MS). Background: Chronic hypointense lesions on T1SE MRI scans are a surrogate of severe demyelination and axonal loss in MS. The role of T1GE images in the detection of such lesions has not been clarified. Design/methods: In 45 patients with MS [Expanded Disability Status Scale (EDSS) score (mean ± SD) 3.5 ± 2.0; 37 relapsing-remitting (RR); 8 secondary progressive (SP)], cerebral T1SE, T1GE, and T2-weighted fluid-attenuated inversion-recovery (FLAIR) images were acquired on a 1.5 T MRI scanner. Images were re-sampled to axial 5 mm slices before directly comparing lesion detectability using Jim (v.7, Xinapse Systems). Statistical methods included Wilcoxon signed rank tests to compare sequences and Spearman correlations to test associations. Results: Considering the entire cohort, T1GE detected a higher lesion volume (5.90 ± 6.21 vs. 4.17 ± 4.84 ml, p < 0.0001) and higher lesion number (27.82 ± 20.66 vs. 25.20 ± 20.43, p < 0.05) than T1SE. Lesion volume differences persisted when considering RR and SP patients separately (both p < 0.01). A higher lesion number by T1GE was seen only in the RR group (p < 0.05). When comparing correlations between lesion volume and overall neurologic disability (EDSS score), T1SE correlated with EDSS (Spearman r = 0.29, p < 0.05) while T1GE (r = 0.23, p = 0.13) and FLAIR (r = 0.24, p = 0.12) did not. Conclusion: Our data suggest that hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. Based on these results, we hypothesize that T1GE

  5. MRI in neuro-Behcet's syndrome: comparison of conventional spin-echo and FLAIR pulse sequences

    International Nuclear Information System (INIS)

    Jaeger, H.R.; Albrecht, T.; Curati-Alasonatti, W.L.; Williams, E.J.; Haskard, D.O.

    1999-01-01

    We compared the sensitivity of a fluid-attenuated inversion-recovery (FLAIR) sequence with that of a conventional dual-echo spin-echo (SE) sequence to brain lesions in 20 patients with Behcet's syndrome. They underwent 25 MRI examinations. The images were independently analysed for the number, type and anatomical location of lesions shown. There were 18 abnormal studies (13 initial and 5 follow-up). The FLAIR sequence detected significantly more lesions than the SE TE 80 (P < 0.05) and SE TE 20 (P < 0.01) sequences. It was particularly useful for demonstrating lesions in the juxtacortical white matter, which accounted for over half the lesions detected on the FLAIR images. Of patients presenting with nonspecific symptoms such as headache, seven had normal and five had abnormal studies. All patients presenting with focal neurological signs had abnormal imaging. We found supratentorial and, in particular, juxtacortical lesions to be more frequent than previously described. (orig.)

  6. Phosphorus-31 MRI of bones using quadratic echo line-narrowing

    Science.gov (United States)

    Frey, Merideth; Barrett, Sean; Insogna, Karl; Vanhouten, Joshua

    2012-02-01

    There is a great need to probe the internal composition of bone on the sub-0.1 mm length scale, both to study normal features and to look for signs of disease. Despite the obvious importance of the mineral fraction to the biomechanical properties of skeletal tissue, few non-destructive techniques are available to evaluate changes in its chemical structure and functional microarchitecture on the interior of bones. MRI would be an excellent candidate, but bone is a particularly challenging tissue to study given the relatively low water density and wider linewidths of its solid components. Recent fundamental research in quantum computing gave rise to a new NMR pulse sequence - the quadratic echo - that can be used to narrow the broad NMR spectrum of solids. This offers a new route to do high spatial resolution, 3D ^31P MRI of bone that complements conventional MRI and x-ray based techniques to study bone physiology and structure. We have used our pulse sequence to do 3D ^31P MRI of ex vivo bones with a spatial resolution of (sub-450 μm)^3, limited only by the specifications of a conventional 4 Tesla liquid-state MRI system. We will describe our plans to push this technique towards the factor of 1000 increase in spatial resolution imposed by fundamental limits.

  7. Evaluation of turbo spin echo sequences for MRI of focal liver lesions at 0.5 T

    International Nuclear Information System (INIS)

    Kreft, B.; Layer, G.; Steudel, A.; Spiller, L.; Heuck, A.; Mueller, A.; Gieseke, J.; Reiser, M.F.

    1994-01-01

    To determine whether turbo spin echo (TSE) sequences can replace conventional T2-weighted spin echo (SE) sequences in MRI of the liver, 40 patients with focal liver lesions were imaged at 0.5 T. A T2-weighted SE sequence (TR/TE 1800/90 ms, number of signals averaged [NEX] = 2, scan time 7:16 min), a TSE sequence (TR/TE 1800/90 ms, NEX = 4, number of echos per excitation = 13, echo spacing = 12.9 ms, scan time = 4:16 min) and a T1-weighted SE sequence (TR/TE 350/15 ms, NEX = 2, scan time = 4:21 min) were obtained and image quality, lesion detectability and lesion differentiation were evaluated qualitatively by subjective assessment using scores and quantitatively by lesion-liver contrast-to-noise (CNR) and tumour/liver signal intensity (SI) ratios. The image quality of the TSE sequence was substantially better compared with the T2-weighted SE sequence due to a reduction in motion artefacts and better delineation of anatomical details. Of a total of 158 visible lesions the T1-weighted SE, TSE and T2-weighted SE sequences showed 91 %, 81 % and 65 % of the lesions, respectively. Thus the TSE sequence depicted 24 % (P < 0.001) more lesions than the T2-weighted SE sequence. In all types of pathology the lesion-liver CNR of the TSE sequence was significantly (P < 0.001) higher compared to the CNR of the T2-weighted SE sequence ( +55-65 %), indicating superior lesion conspicuity. Lesion characterization was equally good on the two T2-weighted sequences with no difference in the tumour/liver SI ratio. Using a criterion of tumour/liver SI ratio equal to or higher than 2, haemangiomas larger than 1 cm in diameter could be differentiated from other lesions with a sensitivity and specificity of 95 % and 96 %, respectively. Our results indicate that the TSE sequence is suitable for replacing the conventional T2-weighted SE sequence in MRI of focal liver lesions. (orig.)

  8. Detection and quantification of regional cortical gray matter damage in multiple sclerosis utilizing gradient echo MRI

    Directory of Open Access Journals (Sweden)

    Jie Wen

    2015-01-01

    Full Text Available Cortical gray matter (GM damage is now widely recognized in multiple sclerosis (MS. The standard MRI does not reliably detect cortical GM lesions, although cortical volume loss can be measured. In this study, we demonstrate that the gradient echo MRI can reliably and quantitatively assess cortical GM damage in MS patients using standard clinical scanners. High resolution multi-gradient echo MRI was used for regional mapping of tissue-specific MRI signal transverse relaxation rate values (R2* in 10 each relapsing–remitting, primary-progressive and secondary-progressive MS subjects. A voxel spread function method was used to correct artifacts induced by background field gradients. R2* values from healthy controls (HCs of varying ages were obtained to establish baseline data and calculate ΔR2* values – age-adjusted differences between MS patients and HC. Thickness of cortical regions was also measured in all subjects. In cortical regions, ΔR2* values of MS patients were also adjusted for changes in cortical thickness. Symbol digit modalities (SDMT and paced auditory serial addition (PASAT neurocognitive tests, as well as Expanded Disability Status Score, 25-foot timed walk and nine-hole peg test results were also obtained on all MS subjects. We found that ΔR2* values were lower in multiple cortical GM and normal appearing white matter (NAWM regions in MS compared with HC. ΔR2* values of global cortical GM and several specific cortical regions showed significant (p < 0.05 correlations with SDMT and PASAT scores, and showed better correlations than volumetric measures of the same regions. Neurological tests not focused on cognition (Expanded Disability Status Score, 25-foot timed walk and nine-hole peg tests showed no correlation with cortical GM ΔR2* values. The technique presented here is robust and reproducible. It requires less than 10 min and can be implemented on any MRI scanner. Our results show that quantitative tissue-specific R2

  9. A case of Marchiafava-Bignami disease: MRI findings on spin-echo and fluid attenuated inversion recovery (FLAIR) images

    International Nuclear Information System (INIS)

    Yamamoto, Takashi; Ashikaga, Ryuichiro; Araki, Yutaka; Nishimura, Yasumasa

    2000-01-01

    Marchiafava-Bignami disease (MBD) was diagnosed in a 56-year-old man. Spin-echo (SE) magnetic resonance imaging (MRI) at the acute phase showed normal signal areas in the central layer of the corpus callosum (CC), although the intensity of these areas revealed abnormal hyperintensity on fluid attenuated inversion recovery (FLAIR). On follow-up SE MRI at the late phase, the central layer of the CC showed fluid-like intensity. On FLAIR MRI, the lesions of the CC turned into hypointense cores surrounded by hyperintense rims indicating central necrosis and peripheral demyelination. Degenerative changes of the CC in MBD were clearly demonstrated by FLAIR MRI

  10. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI.

    Science.gov (United States)

    Kundu, Prantik; Inati, Souheil J; Evans, Jennifer W; Luh, Wen-Ming; Bandettini, Peter A

    2012-04-15

    A central challenge in the fMRI based study of functional connectivity is distinguishing neuronally related signal fluctuations from the effects of motion, physiology, and other nuisance sources. Conventional techniques for removing nuisance effects include modeling of noise time courses based on external measurements followed by temporal filtering. These techniques have limited effectiveness. Previous studies have shown using multi-echo fMRI that neuronally related fluctuations are Blood Oxygen Level Dependent (BOLD) signals that can be characterized in terms of changes in R(2)* and initial signal intensity (S(0)) based on the analysis of echo-time (TE) dependence. We hypothesized that if TE-dependence could be used to differentiate BOLD and non-BOLD signals, non-BOLD signal could be removed to denoise data without conventional noise modeling. To test this hypothesis, whole brain multi-echo data were acquired at 3 TEs and decomposed with Independent Components Analysis (ICA) after spatially concatenating data across space and TE. Components were analyzed for the degree to which their signal changes fit models for R(2)* and S(0) change, and summary scores were developed to characterize each component as BOLD-like or not BOLD-like. These scores clearly differentiated BOLD-like "functional network" components from non BOLD-like components related to motion, pulsatility, and other nuisance effects. Using non BOLD-like component time courses as noise regressors dramatically improved seed-based correlation mapping by reducing the effects of high and low frequency non-BOLD fluctuations. A comparison with seed-based correlation mapping using conventional noise regressors demonstrated the superiority of the proposed technique for both individual and group level seed-based connectivity analysis, especially in mapping subcortical-cortical connectivity. The differentiation of BOLD and non-BOLD components based on TE-dependence was highly robust, which allowed for the

  11. Evaluation of renal function with dynamic MRI-T2-weighted gradient echo technique

    International Nuclear Information System (INIS)

    Kato, Katsuya

    1995-01-01

    To evaluate the usefulness of dynamic MRI of kidneys in healthy volunteers and patients with different 24-hour creatinine clearance (Ccr) levels, a dynamic study that employed the T2 weighted gradient echo technique (FLASH: TR/TE=34/25 msec, flip angle= 20 degrees) with single images during breathhold was performed on 10 healthy volunteers and 35 patients, all examined for the Ccr and suspected of having renal parenchymal disease after a phantom study. T1-weighted and dynamic MR imagings were obtained with a 1.5T imager. I analyzed the time-intensity curve of renal cortex and medulla, and defined a cortex decreased ratio (CDR) and medulla decreased ratio (MDR) in comparison with the Ccr. The cortico-medullary difference ratio (CMDR) of T1WI was also compared with the Ccr. The parameters of the T2 dynamic MRI study (CDR, MDR) better correlated with the Ccr than CMDR. Renal function can be quantitatively evaluated with the T2 dynamic MRI and there is a possibility that we can qualitatively evaluate the renal dysfunction and estimate its cause. (author)

  12. Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7 T

    NARCIS (Netherlands)

    Koopmans, P.J.; Boyacioglu, R.; Barth, M.; Norris, David Gordon

    2012-01-01

    This article demonstrates the application of spin-echo EPI for resting state fMRI at 7 T. A short repetition time of 1860 ms was made possible by the use of slice multiplexing which permitted whole brain coverage at high spatial resolution (84 slices of 1.6 mm thickness). Radiofrequency power

  13. Differential diagnosis of extra-axial intracranial tumours by dynamic spin-echo MRI

    International Nuclear Information System (INIS)

    Joo, Y.G.; Korogi, Y.; Hirai, T.; Sakamoto, Y.; Sumi, M.; Takahashi, M.; Ushio, Y.

    1995-01-01

    Dynamic MRI was performed on 22 patients with extra-axial intracranial tumours. Serial images were obtained every 30 s for 3 min using a spin-echo sequence (TR 200, TE 15 ms) after rapid injection of Gd-DTPA, 0.1 mmol/kg body weight. The contrast medium enhancement ratio (CER) was correlated with the histology of the tumours. Meningiomas and extra-axial metastases showed a sharp rise, then a gradual decline. Although both had a definite early peak of CER, metastases showed a more rapid decline. Neuromas and extra-axial lymphoma showed a slow, steady increase with no peak within 180 s. This study indicates that the CER is helpful in the differentiation of extra-axial tumours. (orig.)

  14. Parameter Optimization for Quantitative Signal-Concentration Mapping Using Spoiled Gradient Echo MRI

    Directory of Open Access Journals (Sweden)

    Gasser Hathout

    2012-01-01

    Full Text Available Rationale and Objectives. Accurate signal to tracer concentration maps are critical to quantitative MRI. The purpose of this study was to evaluate and optimize spoiled gradient echo (SPGR MR sequences for the use of gadolinium (Gd-DTPA as a kinetic tracer. Methods. Water-gadolinium phantoms were constructed for a physiologic range of gadolinium concentrations. Observed and calculated SPGR signal to concentration curves were generated. Using a percentage error determination, optimal pulse parameters for signal to concentration mapping were obtained. Results. The accuracy of the SPGR equation is a function of the chosen MR pulse parameters, particularly the time to repetition (TR and the flip angle (FA. At all experimental values of TR, increasing FA decreases the ratio between observed and calculated signals. Conversely, for a constant FA, increasing TR increases this ratio. Using optimized pulse parameter sets, it is possible to achieve excellent accuracy (approximately 5% over a physiologic range of concentration tracer concentrations. Conclusion. Optimal pulse parameter sets exist and their use is essential for deriving accurate signal to concentration curves in quantitative MRI.

  15. Mapping brain activity in gradient-echo functional MRI using principal component analysis

    Science.gov (United States)

    Khosla, Deepak; Singh, Manbir; Don, Manuel

    1997-05-01

    The detection of sites of brain activation in functional MRI has been a topic of immense research interest and many technique shave been proposed to this end. Recently, principal component analysis (PCA) has been applied to extract the activated regions and their time course of activation. This method is based on the assumption that the activation is orthogonal to other signal variations such as brain motion, physiological oscillations and other uncorrelated noises. A distinct advantage of this method is that it does not require any knowledge of the time course of the true stimulus paradigm. This technique is well suited to EPI image sequences where the sampling rate is high enough to capture the effects of physiological oscillations. In this work, we propose and apply tow methods that are based on PCA to conventional gradient-echo images and investigate their usefulness as tools to extract reliable information on brain activation. The first method is a conventional technique where a single image sequence with alternating on and off stages is subject to a principal component analysis. The second method is a PCA-based approach called the common spatial factor analysis technique (CSF). As the name suggests, this method relies on common spatial factors between the above fMRI image sequence and a background fMRI. We have applied these methods to identify active brain ares during visual stimulation and motor tasks. The results from these methods are compared to those obtained by using the standard cross-correlation technique. We found good agreement in the areas identified as active across all three techniques. The results suggest that PCA and CSF methods have good potential in detecting the true stimulus correlated changes in the presence of other interfering signals.

  16. WE-DE-206-04: MRI Pulse Sequences - Spin Echo, Gradient Echo, EPI, Non-Cartesia

    Energy Technology Data Exchange (ETDEWEB)

    Pooley, R. [Mayo Clinic (United States)

    2016-06-15

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner, and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.

  17. Imaging of the Achilles tendon in spondyloarthritis: a comparison of ultrasound and conventional, short and ultrashort echo time MRI with and without intravenous contrast

    International Nuclear Information System (INIS)

    Hodgson, R.J.; Emery, P.; Grainger, A.J.; O'Connor, P.J.; Evans, R.; Coates, L.; Marzo-Ortega, H.; Helliwell, P.; McGonagle, D.; Robson, M.D.

    2011-01-01

    To compare conventional MRI, ultrashort echo time MRI and ultrasound for assessing the extent of tendon abnormalities in spondyloarthritis. 25 patients with spondyloarthritis and Achilles symptoms were studied with MRI and ultrasound. MR images of the Achilles tendon were acquired using T1-weighted spin echo, gradient echo and ultrashort echo time (UTE) sequences with echo times (TE) between 0.07 and 16 ms, before and after intravenous contrast medium. Greyscale and power Doppler ultrasound were also performed. The craniocaudal extent of imaging abnormalities measured by a consultant musculoskeletal radiologist was compared between the different techniques. Abnormalities were most extensive on spoiled gradient echo images with TE=2 ms. Contrast enhancement after intravenous gadolinium was greatest on the UTE images (TE=0.07 ms). Fewer abnormalities were demonstrated using unenhanced UTE. Abnormalities were more extensive on MRI than ultrasound. Contrast enhancement was more extensive than power Doppler signal. 3D spoiled gradient echo images with an echo time of 2 ms demonstrate more extensive tendon abnormalities than the other techniques in spondyloarthritis. Abnormalities of vascularity are best demonstrated on enhanced ultrashort echo time images. (orig.)

  18. Quantification of neonatal lung parenchymal density via ultrashort echo time MRI with comparison to CT.

    Science.gov (United States)

    Higano, Nara S; Fleck, Robert J; Spielberg, David R; Walkup, Laura L; Hahn, Andrew D; Thomen, Robert P; Merhar, Stephanie L; Kingma, Paul S; Tkach, Jean A; Fain, Sean B; Woods, Jason C

    2017-10-01

    To demonstrate that ultrashort echo time (UTE) magnetic resonance imaging (MRI) can achieve computed tomography (CT)-like quantification of lung parenchyma in free-breathing, non-sedated neonates. Because infant CTs are used sparingly, parenchymal disease evaluation via UTE MRI has potential for translational impact. Two neonatal control cohorts without suspected pulmonary morbidities underwent either a research UTE MRI (n = 5; 1.5T) or a clinically-ordered CT (n = 9). Whole-lung means and anterior-posterior gradients of UTE-measured image intensity (arbitrary units, au, normalized to muscle) and CT-measured density (g/cm 3 ) were compared (Mann-Whitney U-test). Separately, a diseased neonatal cohort (n = 5) with various pulmonary morbidities underwent both UTE MRI and CT. UTE intensity and CT density were compared with Spearman correlations within ∼33 anatomically matched regions of interest (ROIs) in each diseased subject, spanning low- to high-density tissues. Radiological classifications were evaluated in all ROIs, with mean UTE intensities and CT densities compared in each classification. In control subjects, whole-lung UTE intensities (0.51 ± 0.04 au) were similar to CT densities (0.44 ± 0.09 g/cm 3 ) (P = 0.062), as were UTE (0.021 ± 0.020 au/cm) and CT (0.034 ± 0.024 [g/cm 3 ]/cm) anterior-posterior gradients (P = 0.351). In diseased subjects' ROIs, significant correlations were observed between UTE and CT (P ≤0.007 in each case). Relative differences between UTE and CT were small in all classifications (4-25%). These results demonstrate a strong association between UTE image intensity and CT density, both between whole-lung tissue in control patients and regional radiological pathologies in diseased patients. This indicates the potential for UTE MRI to longitudinally evaluate neonatal pulmonary disease and to provide visualization of pathologies similar to CT, without sedation/anesthesia or ionizing radiation

  19. Diagnositc value of 3D-gradient echo dynamic contrast enhanced MRI in breast cancer

    International Nuclear Information System (INIS)

    Yang, Ik; Chung, Soo Young; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Shim, Jeong Won

    1997-01-01

    To assess the usefulness of 3D-gradient echo dynamic contrast enhanced MRI (3D-DMRI) in the diagnosis of breast cancer and to determine the most useful parameter for this diagnosis. Using a 1.0T MR unit, (Magnetom, Siemens, Erlaugen, Germany), 3D-DMRI (TR/TE=3D30/12) with Gd-DTPA was performed in 38 cases of breast cancer, 22 of fibroadenoma, and in three normal volunteers. We retrospectively evaluated the findings according to the speed on dynamic study and maximal amount of contrast enhancement during the delayed phase;we calculated the contrast index and morphology of the cancers and compared diagnostic accuracy among these three diagnostic parameters. On conventional spin-echo T1-and T2-weighted images, there was no significant difference of signal intensity between benign fibroadenoma and breast carcinoma. Rapid contrast enhancement (within one minute) was noted in 35 breast cancer lesions (92.1%), but relatively low and slow contrast enhancement (after five minutes) was noted in three such lesions (7.9%). Gradual contrast enhancement was noted in 21 lesions of fibroadenoma(95.5%), but a moderate degree of rapid contrast enhancement (from three to five minutes) was noted in the other case (7.9%). of On the delayed enhanced phase of 3D-DMRI, the maximal amount of contrast enhancement showed no significant difference between fibroadenoma and cancer. On 3D-DMRI, an irregular, spiculated border, with high contrast enhancement was noted in all cases of breast cancer, in particular, irregular thick peripheral contrast enhancement with central necrosis was noted 11cases(28.9%). For the diagnosis of breast cancer, 3D-DMRI is a useful technique. Among the diagnostic criteria of speed, maximal amount of contrast enhancement and morphology, morphologic change after contrast enhancement study was the most useful diagnostic parameter.=20

  20. Diagnositc value of 3D-gradient echo dynamic contrast enhanced MRI in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ik; Chung, Soo Young; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Shim, Jeong Won [Hallym Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-10-01

    To assess the usefulness of 3D-gradient echo dynamic contrast enhanced MRI (3D-DMRI) in the diagnosis of breast cancer and to determine the most useful parameter for this diagnosis. Using a 1.0T MR unit, (Magnetom, Siemens, Erlaugen, Germany), 3D-DMRI (TR/TE=3D30/12) with Gd-DTPA was performed in 38 cases of breast cancer, 22 of fibroadenoma, and in three normal volunteers. We retrospectively evaluated the findings according to the speed on dynamic study and maximal amount of contrast enhancement during the delayed phase;we calculated the contrast index and morphology of the cancers and compared diagnostic accuracy among these three diagnostic parameters. On conventional spin-echo T1-and T2-weighted images, there was no significant difference of signal intensity between benign fibroadenoma and breast carcinoma. Rapid contrast enhancement (within one minute) was noted in 35 breast cancer lesions (92.1%), but relatively low and slow contrast enhancement (after five minutes) was noted in three such lesions (7.9%). Gradual contrast enhancement was noted in 21 lesions of fibroadenoma(95.5%), but a moderate degree of rapid contrast enhancement (from three to five minutes) was noted in the other case (7.9%). of On the delayed enhanced phase of 3D-DMRI, the maximal amount of contrast enhancement showed no significant difference between fibroadenoma and cancer. On 3D-DMRI, an irregular, spiculated border, with high contrast enhancement was noted in all cases of breast cancer, in particular, irregular thick peripheral contrast enhancement with central necrosis was noted 11cases(28.9%). For the diagnosis of breast cancer, 3D-DMRI is a useful technique. Among the diagnostic criteria of speed, maximal amount of contrast enhancement and morphology, morphologic change after contrast enhancement study was the most useful diagnostic parameter.=20.

  1. MRI of the cervical spine with 3D gradient echo sequence at 3 T: initial experience

    International Nuclear Information System (INIS)

    Xiao, L.; Siu, C.W.J.; Yeung, K.; Leung, A.; Yuen, M.K.; Wong, Y.C.

    2015-01-01

    Aim: The aim of this study was to compare three-dimensional (3D) high resolution T2*-weighted gradient echo (3D FFE) magnetic resonance (MR) sequence with conventional 2D T2-weighted turbo spin echo (TSE) MR sequence for imaging of the cervical spine, especially to assess the detectability of the internal anatomy of the cervical spinal cord, i.e. to distinguish the grey and white matter. Methods: Fifteen volunteers were examined at 3.0T MR unit. Signal-to-noise (SNR), contrast-to-noise (CNR) and image homogeneity were evaluated. In the visual analysis, the visibility of anatomical structures of the cervical spine and artifacts were assessed. The nonparametric method of paired sample t-test was adopted to evaluate the differences between the sequences. Results: The 3D FFE sequence provided better results for CNR, cerebrospinal fluid (CSF) versus white matter, grey matter, disk and bone. Moreover, it yielded good results for the CNR grey matter versus white matter. The butterfly-shaped “H” is clearly displayed in the 3D FFE sequence. The statistical analysis revealed the statistically significant difference between the 2D TSE and 3D FFE sequences for the contrast of CSF versus spinal cord (both grey matter and white matter). Conclusion: The 3D FFE sequence in MR imaging of the cervical spinal cord is superior in delineation of spinal cord anatomical structures compared to 2D TSE sequence. -- Highlights: •We investigate the potential of 3D FFE sequence to distinguish the grey-white of the cervical spinal cord at 3T MRI system. •We optimized The 3D FFE sequence was optimized to increase the grey-white contrast. •Utilizing medium TE for T2W and the shortest TR for reduction of susceptibility related artifacts and motion artefacts. •This technique may increase the confidence in the diagnosis of disease with the improved delineation of cord anatomy

  2. Reference-free unwarping of single-shot spatiotemporally encoded MRI using asymmetric self-refocused echoes acquisition

    Science.gov (United States)

    Chen, Ying; Chen, Song; Zhong, Jianhui; Chen, Zhong

    2015-05-01

    This paper presents a phase evolution rewinding algorithm for correcting the geometric and intensity distortions in single-shot spatiotemporally encoded (SPEN) MRI with acquisition of asymmetric self-refocused echo trains. Using the field map calculated from the phase distribution of the source image, the off-resonance induced phase errors are successfully rewound through deconvolution. The alias-free partial Fourier transform reconstruction helps improve the signal-to-noise ratio of the field maps and the output images. The effectiveness of the proposed algorithm was validated through 7 T MRI experiments on a lemon, a water phantom, and in vivo rat head. SPEN imaging was evaluated using rapid acquisition by sequential excitation and refocusing (RASER) which produces uniform T2 weighting. The results indicate that the new technique can more robustly deal with the cases in which the images obtained with conventional single-shot spin-echo EPI are difficult to be restored due to serious field variations.

  3. Characterization of trehalose aqueous solutions by neutron spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Faraone, A.; Magazu' , S.; Maisano, G.; Mangione, A. [Dipartimento di Fisica and INFM, Universita di Messina, PO Box 55, 98166 Messina (Italy); Pappas, C.; Triolo, A. [Hahn-Meitner-Institut, BENSC (NI), Glienicker Strasse, 14109 Berlin (Germany)

    2002-07-01

    The present work reports neutron spin-echo (NSE) results on aqueous mixtures of trehalose, a naturally occurring disaccharide of glucose, which shows an extraordinary bioprotective effectiveness against dehydration and freezing. The aim of the work is to furnish new results on the dynamics of the trehalose/water system on the nano- and picosecond scales. (orig.)

  4. Characterization of trehalose aqueous solutions by neutron spin echo

    CERN Document Server

    Branca, C; Magazù, S; Maisano, G; Mangione, A; Pappas, C; Triolo, A

    2002-01-01

    The present work reports neutron spin-echo (NSE) results on aqueous mixtures of trehalose, a naturally occurring disaccharide of glucose, which shows an extraordinary bioprotective effectiveness against dehydration and freezing. The aim of the work is to furnish new results on the dynamics of the trehalose/water system on the nano- and picosecond scales. (orig.)

  5. A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times

    DEFF Research Database (Denmark)

    Edmund, Jens Morgenthaler; Kjer, Hans Martin; Van Leemput, Koen

    2014-01-01

    including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT...... receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation...... significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI comparison. The mean dosimetric deviation for photons and protons compared to the CT was about 2% and highest in the gradient dose...

  6. Screening for skeletal metastases of the spine and pelvis: gradient echo opposed-phase MRI compared with bone scintigraphy

    International Nuclear Information System (INIS)

    Neumann, K.; Hosten, N.; Venz, S.

    1995-01-01

    Opposed-phase gradient echo (GRE) MRI at 0.5 T was compared with T1-weighted GRE MRI and bone scintigraphy regarding the detection of malignant bone marrow infiltrates of the spine and pelvis. Seventeen control patients and 41 patients with suspected skeletal metastases were studied with plain and gadolinium-enhanced MRI. In the control group only a vertebral haemangioma showed contrast enhancement, while all metastases (confirmed histologically or by follow-up) were enhancing. Opposed-phase surface coil MRI showed a significantly higher contrast-to-noise ratio of 56 metastases than T1-weighted images. In 28 patients body coil opposed-phase MRI detected more metastatic foci of the spine and pelvis than did bone scintigraphy (84 vs 56). No scintigraphically visualised lesion was missed by MRI. In conclusion, body coil gadolinium-enhanced opposed-phase GRE MRI may be applied as a screening method for skeletal metastases of the spine and pelvis at intermediate field strengths. (orig.)

  7. Screening for skeletal metastases of the spine and pelvis: gradient echo opposed-phase MRI compared with bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, K. [Zentralinstitut fuer Roentgendiagnostik, Universitaetsklinikum Essen, Gesamthochschule Essen (Germany); Hosten, N. [Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf Virchow, Freie Univ. Berlin (Germany); Venz, S. [Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf Virchow, Freie Univ. Berlin (Germany)

    1995-11-01

    Opposed-phase gradient echo (GRE) MRI at 0.5 T was compared with T1-weighted GRE MRI and bone scintigraphy regarding the detection of malignant bone marrow infiltrates of the spine and pelvis. Seventeen control patients and 41 patients with suspected skeletal metastases were studied with plain and gadolinium-enhanced MRI. In the control group only a vertebral haemangioma showed contrast enhancement, while all metastases (confirmed histologically or by follow-up) were enhancing. Opposed-phase surface coil MRI showed a significantly higher contrast-to-noise ratio of 56 metastases than T1-weighted images. In 28 patients body coil opposed-phase MRI detected more metastatic foci of the spine and pelvis than did bone scintigraphy (84 vs 56). No scintigraphically visualised lesion was missed by MRI. In conclusion, body coil gadolinium-enhanced opposed-phase GRE MRI may be applied as a screening method for skeletal metastases of the spine and pelvis at intermediate field strengths. (orig.)

  8. Simultaneous pH-sensitive and oxygen-sensitive MRI of human gliomas at 3 T using multi-echo amine proton chemical exchange saturation transfer spin-and-gradient echo echo-planar imaging (CEST-SAGE-EPI).

    Science.gov (United States)

    Harris, Robert J; Yao, Jingwen; Chakhoyan, Ararat; Raymond, Catalina; Leu, Kevin; Liau, Linda M; Nghiemphu, Phioanh L; Lai, Albert; Salamon, Noriko; Pope, Whitney B; Cloughesy, Timothy F; Ellingson, Benjamin M

    2018-04-06

    To introduce a new pH-sensitive and oxygen-sensitive MRI technique using amine proton CEST echo spin-and-gradient echo (SAGE) EPI (CEST-SAGE-EPI). pH-weighting was obtained using CEST estimations of magnetization transfer ratio asymmetry (MTR asym ) at 3 ppm, and oxygen-weighting was obtained using R2' measurements. Glutamine concentration, pH, and relaxation rates were varied in phantoms to validate simulations and estimate relaxation rates. The values of MTR asym and R2' in normal-appearing white matter, T 2 hyperintensity, contrast enhancement, and macroscopic necrosis were measured in 47 gliomas. Simulation and phantom results confirmed an increase in MTR asym with decreasing pH. The CEST-SAGE-EPI estimates of R 2 , R2*, and R2' varied linearly with gadolinium diethylenetriamine penta-acetic acid concentration (R 2  = 6.2 mM -1 ·sec -1 and R2* = 6.9 mM -1 ·sec -1 ). The CEST-SAGE-EPI and Carr-Purcell-Meiboom-Gill estimates of R 2 (R 2  = 0.9943) and multi-echo gradient-echo estimates of R2* (R 2  = 0.9727) were highly correlated. T 2 lesions had lower R2' and higher MTR asym compared with normal-appearing white matter, suggesting lower hypoxia and high acidity, whereas contrast-enhancement tumor regions had elevated R2' and MTR asym , indicating high hypoxia and acidity. The CEST-SAGE-EPI technique provides simultaneous pH-sensitive and oxygen-sensitive image contrasts for evaluation of the brain tumor microenvironment. Advantages include fast whole-brain acquisition, in-line B 0 correction, and simultaneous estimation of CEST effects, R 2 , R2*, and R2' at 3 T. © 2018 International Society for Magnetic Resonance in Medicine.

  9. MRI of bone marrow: opposed-phase gradient-echo sequences with long repetition time

    International Nuclear Information System (INIS)

    Seiderer, M.; Staebler, A.; Wagner, H.

    1999-01-01

    Signal intensity for opposed-phase gradient-echo (GE) sequences of tissues composed of fat- and water-equivalent cells such as red bone marrow is extremely sensitive to variation of the ratio of both cell populations (fat-to-water ratio Q F/W ). Because most bone marrow pathology results in variation of Q F/W , GE sequences are characterized by high-contrast imaging of pathology. The aim of this study was to evaluate the influence of TR, TE, FA, Q F/W and histology on signal intensity. Signal intensity of opposed-phase GE sequences as a function of TR, TE, FA, and Q F/W was measured for a fat-water phantom and cadaver specimens of normal bone marrow (red and yellow) and pathological bone marrow (tumors). All specimens were correlated to histology. Opposed-phase GE imaging of red bone marrow pathology results in low-signal-intensity imaging of intact red bone marrow and high-signal-intensity positive contrast imaging of pathology associated with a change in Q F/W . In first-order approximation the signal intensity of pathology is linearly correlated to the change in Q F/W . Opposed-phase GE imaging is a sensitive imaging technique for red bone marrow pathology. Relative contrast of red bone marrow pathology is similar to fat-suppressed imaging techniques. Acquisition time is identical to T1-weighted SE sequences. (orig.)

  10. Mixed model phase evolution for correction of magnetic field inhomogeneity effects in 3D quantitative gradient echo-based MRI

    DEFF Research Database (Denmark)

    Fatnassi, Chemseddine; Boucenna, Rachid; Zaidi, Habib

    2017-01-01

    PURPOSE: In 3D gradient echo magnetic resonance imaging (MRI), strong field gradients B0macro are visually observed at air/tissue interfaces. At low spatial resolution in particular, the respective field gradients lead to an apparent increase in intravoxel dephasing, and subsequently, to signal...... loss or inaccurate R2* estimates. If the strong field gradients are measured, their influence can be removed by postprocessing. METHODS: Conventional corrections usually assume a linear phase evolution with time. For high macroscopic gradient inhomogeneities near the edge of the brain...

  11. Lesion discrimination in optic neuritis using high-resolution fat-suppressed fast spin-echo MRI

    International Nuclear Information System (INIS)

    Gass, A.; Moseley, I.F.; Barker, G.J.; Jones, S.; MacManus, D.; McDonald, W.I.; Miller, D.H.

    1996-01-01

    Fast spin-echo (FSE) is a new sequence with acquisition times currently down to one-sixteenth of those obtained with conventional spin-echo sequences, which allows high-resolution (512 x 512 matrix) images to be acquired in an acceptable time. We compared the higher resolution of FSE with the medium resolution of a short inversion-time inversion-recovery (STIR) sequence in depicting the optic nerves of healthy controls and patients with optic neuritis. Optic nerve MRI examinations were performed in 18 patients with optic neuritis and 10 normal controls. Two sequences were obtained coronally: fat-suppressed FSE (FSE TR 3250 ms/TEef 68 ms, echo-train length 16, 4 excitations, 24 cm rectangular field of view, 3 mm interleaved contiguous slices, in-plane resolution 0.5 x 0.5 mm) and STIR (TR 2000 ms/TE 50 ms/TI 175 ms, in-plane resolution 0.8 x 0.8 mm, slice thickness 5 mm). FSE demonstrated much more anatomical detail than STIR, e. g. distinction of optic nerve and sheath. Lesions were seen in 20 of 21 symptomatic nerves using FSE and in 18 of 21 using STIR. Nerve swelling or partial cross-sectional lesions of the optic nerve were each seen only on FSE in 3 cases. Fat-suppressed FSE imaging of the optic nerve improves anatomical definition and increases lesion detection in optic neuritis. (orig.). With 5 figs

  12. Inner ear malformations in patients with sensorineural heating loss: detection with gradient-echo (3DFT-CISS) MRI

    Energy Technology Data Exchange (ETDEWEB)

    Casselman, J.W. [Dept. of Radiology, A.Z. St.-Jan Brugge, Bruges (Belgium); Kuhweide, R. [Dept. of Otorhinolaryngology, A.Z. St.-Jan Brugge, Bruges (Belgium); Ampe, W. [Dept. of Otorhinolaryngology, A.Z. St.-Jan Brugge, Bruges (Belgium); D`Hont, G.D. [Dept. of Otorhinolaryngology, A.Z. St.-Jan Brugge, Bruges (Belgium); Offeciers, E.F. [ENT Dept., Sint-Augustinus Medical Inst., Univ. of Antwerp (Belgium); Faes, W.K. [Dept. of Radiology, A.Z. St.-Jan Brugge, Bruges (Belgium); Pattyn, G. [Dept. of Radiology, A.Z. St.-Jan Brugge, Bruges (Belgium)

    1996-04-01

    The sensitivity of different MRI sequences in the detection of inner ear malformations in patients presenting with sensorineural hearing loss (SNHL) and/or vertigo was evaluated. We studied 650 patients presenting with SNHL and/or vertigo, clinically not suspected of having inner ear malformations. The sensitivity of T1-weigted, Gd-enhanced T1-weighted and (when available) T2-weighted spin-echo images, and three-dimensional Fourier transformation-constructive interference in steady state (3DFT-CISS) gradient-echo images, to unexpected malformations was assessed. Inner ear malformations were found in 15 (2.3%) of these patients. Enlargement of the endolymphatic duct and sac was the most frequent malformation, found in 11 patients. The 3DFT-CISS images showed all lesions; the other sequences were less sensitive and the pathology was missed, partially or only retrospectively seen in 11 of the 15 patients. Therefore, in addition to the routine unenhanced and Gd-enhanced T1-weighted and T2-weighted images, thin gradient-echo (3DFT-CISS) images are necessary to detect all clinically unexpected inner ear malformations in patients presenting with vertigo and/or SNHL. (orig.)

  13. Inner ear malformations in patients with sensorineural heating loss: detection with gradient-echo (3DFT-CISS) MRI

    International Nuclear Information System (INIS)

    Casselman, J.W.; Kuhweide, R.; Ampe, W.; D'Hont, G.D.; Offeciers, E.F.; Faes, W.K.; Pattyn, G.

    1996-01-01

    The sensitivity of different MRI sequences in the detection of inner ear malformations in patients presenting with sensorineural hearing loss (SNHL) and/or vertigo was evaluated. We studied 650 patients presenting with SNHL and/or vertigo, clinically not suspected of having inner ear malformations. The sensitivity of T1-weigted, Gd-enhanced T1-weighted and (when available) T2-weighted spin-echo images, and three-dimensional Fourier transformation-constructive interference in steady state (3DFT-CISS) gradient-echo images, to unexpected malformations was assessed. Inner ear malformations were found in 15 (2.3%) of these patients. Enlargement of the endolymphatic duct and sac was the most frequent malformation, found in 11 patients. The 3DFT-CISS images showed all lesions; the other sequences were less sensitive and the pathology was missed, partially or only retrospectively seen in 11 of the 15 patients. Therefore, in addition to the routine unenhanced and Gd-enhanced T1-weighted and T2-weighted images, thin gradient-echo (3DFT-CISS) images are necessary to detect all clinically unexpected inner ear malformations in patients presenting with vertigo and/or SNHL. (orig.)

  14. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    International Nuclear Information System (INIS)

    Jung, Jee Young; Yoon, Young Cheol; Jung, Jin Young; Choe, Bong-Keun

    2013-01-01

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  15. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jee Young [Dept. of Radiology, Chungang Univ. Hospital, School of Medicine, Chungang Univ. (Korea, Republic of); Yoon, Young Cheol [Dept. of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan Univ. (Korea, Republic of)], e-mail: ycyoon@skku.edu; Jung, Jin Young [Dept. of Radiology, Saint Paul' s Hospital, The Catholic Univ. (Korea, Republic of); Choe, Bong-Keun [Dept. of Preventive Medicine, School of Medicine, Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  16. Role of diffusion-weighted echo-planar MRI in distinguishing between brain abscess and tumour: a preliminary report

    International Nuclear Information System (INIS)

    Noguchi, K.; Watanabe, N.; Nagayoshi, T.; Kanazawa, T.; Toyoshima, S.; Shimizu, M.; Seto, H.

    1999-01-01

    Our purpose was to evaluate diffusion-weighted (DW) echo-planar MRI in differentiating between brain abscess and tumour. We examined two patients with surgically confirmed pyogenic brain abscess and 18 with metastatic brain tumours or high-grade glioma, using a 1.5 T system. The apparent diffusion coefficient (ADC) of each necrotic or solid contrast-enhancing lesion was measured with two different b values (20 and 1200 s/mm 2 ). All capsule-stage brain abscesses (4 lesions) and zones of cerebritis (2 lesions) were identified on high-b-value DWI as markedly high-signal areas of decreased ADC (range, 0.58-0.70 [(10-3 mm 2 /s; mean, 0.63)]). All cystic or necrotic portions of brain tumours (14 lesions) were identified on high-b-value DWI as low-signal areas of increased ADC (range, 2.20-3.20 [(10-3 mm 2 /s; mean, 2.70)]). Solid, contrast-enhancing portions of brain tumours (19 lesions) were identified on high-b-value DWI as high-signal areas of sightly decreased or increased ADC (range, 0.77-1.29 [(10-3 mm 2 /s; mean, 0.94)]). Our preliminary results indicate that DW echo-planar MRI be used for distinguishing between brain abscess and tumour. (orig.) (orig.)

  17. Propagation of error from parameter constraints in quantitative MRI: Example application of multiple spin echo T2 mapping.

    Science.gov (United States)

    Lankford, Christopher L; Does, Mark D

    2018-02-01

    Quantitative MRI may require correcting for nuisance parameters which can or must be constrained to independently measured or assumed values. The noise and/or bias in these constraints propagate to fitted parameters. For example, the case of refocusing pulse flip angle constraint in multiple spin echo T 2 mapping is explored. An analytical expression for the mean-squared error of a parameter of interest was derived as a function of the accuracy and precision of an independent estimate of a nuisance parameter. The expression was validated by simulations and then used to evaluate the effects of flip angle (θ) constraint on the accuracy and precision of T⁁2 for a variety of multi-echo T 2 mapping protocols. Constraining θ improved T⁁2 precision when the θ-map signal-to-noise ratio was greater than approximately one-half that of the first spin echo image. For many practical scenarios, constrained fitting was calculated to reduce not just the variance but the full mean-squared error of T⁁2, for bias in θ⁁≲6%. The analytical expression derived in this work can be applied to inform experimental design in quantitative MRI. The example application to T 2 mapping provided specific cases, depending on θ⁁ accuracy and precision, in which θ⁁ measurement and constraint would be beneficial to T⁁2 variance or mean-squared error. Magn Reson Med 79:673-682, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times

    Science.gov (United States)

    Edmund, Jens M.; Kjer, Hans M.; Van Leemput, Koen; Hansen, Rasmus H.; Andersen, Jon AL; Andreasen, Daniel

    2014-12-01

    Radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, so-called MRI-only RT, would remove the systematic registration error between MR and computed tomography (CT), and provide co-registered MRI for assessment of treatment response and adaptive RT. Electron densities, however, need to be assigned to the MRI images for dose calculation and patient setup based on digitally reconstructed radiographs (DRRs). Here, we investigate the geometric and dosimetric performance for a number of popular voxel-based methods to generate a so-called pseudo CT (pCT). Five patients receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation and (3) statistical regression. Each approach contained two methods. Approach 1 used bulk density assignment of MRI voxels into air, soft tissue and bone based on logical masks and the transverse relaxation time T2 of the bone. Approach 2 used similar bulk density assignments with Bayesian statistics including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT agreement with the pCT of each method was quantified and compared with the other methods geometrically and dosimetrically using both a number of reported metrics and introducing some novel metrics. The best geometrical agreement with CT was obtained with the statistical regression methods which performed significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI

  19. Importance of T2*-weighted gradient-echo MRI for diagnosis of cortical vein thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Fellner, Franz A. [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria) and Zentrales Radiologie Institut, Allgemeines Krankenhaus der Stadt Linz, Krankenhausstr. 9, 4020 Linz (Austria)]. E-mail: franz.fellner@akh.linz.at; Fellner, Claudia [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria); Aichner, Franz T. [Abteilung fuer Neurologie, Landes-Nervenklinik Wagner-Jauregg, Linz (Austria); Moelzer, Guenther [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria)

    2005-11-01

    We examined six patients with isolated venous thrombosis (n = 2), or venous thrombosis combined with sinus thrombosis (n = 4) (CVT). The clinical symptoms were non-specific (acute cephalea, paresis, epileptic seizure, progressive speech disorder). All examinations were performed on a 1.5 T system (Magnetom Symphony, Siemens, Erlangen, Germany), maximum gradient field strength 30 mT/m, minimal gradient rise time 450 {mu}s, according to the following protocol: Transverse T2-weighted turbo spin-echo (TSE), fluid attenuated inversion recovery (FLAIR), T1-weighted spin-echo (SE), before and after administration of contrast medium, T2*-weighted conventional gradient-echo (GRE), T2*-weighted spin-echo echo planar imaging (SE EPI), both without and with diffusion weighting as well as two-dimensional (2D) venous time-of-flight (TOF) MRA. The venous thromboses were best detectable in the T2*-weighted conventional GRE sequence in all patients. In two patients, the CVT was discernible only in this sequence. The sinus thrombosis was well discernible only in the T2*-weighted GRE sequence in only one case; in the remaining cases it was detectable only with difficulty. For these cases, other sequences such as SE, diffusion-weighted, or 2D-TOF-MRA sequence were superior. The T2*-weighted conventional GRE sequence was superior to the T2*-weighted SE EPI sequence in all patients. To sum up, it can be concluded, that T2*-weighted conventional GRE sequences are possibly the best method of detection of acute cortical vein thromboses. Therefore, it seems to be of benefit to integrate a T2*-weighted conventional GRE sequence into the MR-protocol for the diagnosis of isolated cortical vein thrombosis.

  20. Importance of T2*-weighted gradient-echo MRI for diagnosis of cortical vein thrombosis

    International Nuclear Information System (INIS)

    Fellner, Franz A.; Fellner, Claudia; Aichner, Franz T.; Moelzer, Guenther

    2005-01-01

    We examined six patients with isolated venous thrombosis (n = 2), or venous thrombosis combined with sinus thrombosis (n = 4) (CVT). The clinical symptoms were non-specific (acute cephalea, paresis, epileptic seizure, progressive speech disorder). All examinations were performed on a 1.5 T system (Magnetom Symphony, Siemens, Erlangen, Germany), maximum gradient field strength 30 mT/m, minimal gradient rise time 450 μs, according to the following protocol: Transverse T2-weighted turbo spin-echo (TSE), fluid attenuated inversion recovery (FLAIR), T1-weighted spin-echo (SE), before and after administration of contrast medium, T2*-weighted conventional gradient-echo (GRE), T2*-weighted spin-echo echo planar imaging (SE EPI), both without and with diffusion weighting as well as two-dimensional (2D) venous time-of-flight (TOF) MRA. The venous thromboses were best detectable in the T2*-weighted conventional GRE sequence in all patients. In two patients, the CVT was discernible only in this sequence. The sinus thrombosis was well discernible only in the T2*-weighted GRE sequence in only one case; in the remaining cases it was detectable only with difficulty. For these cases, other sequences such as SE, diffusion-weighted, or 2D-TOF-MRA sequence were superior. The T2*-weighted conventional GRE sequence was superior to the T2*-weighted SE EPI sequence in all patients. To sum up, it can be concluded, that T2*-weighted conventional GRE sequences are possibly the best method of detection of acute cortical vein thromboses. Therefore, it seems to be of benefit to integrate a T2*-weighted conventional GRE sequence into the MR-protocol for the diagnosis of isolated cortical vein thrombosis

  1. Assessment of the characteristics of MRI coils in terms of RF non-homogeneity using routine spin echo sequences

    International Nuclear Information System (INIS)

    Oghabian, M. A.; Mehdipour, Sh.; RiahicAlam, N.; Rafie, B.; Ghanaati, H.

    2005-01-01

    One of the major causes of image non-uniformity in MRI is due to the existence of non-homogeneity in RF receive and transmit. This can be the most effective source of error in quantitative studies in MRI imaging. Part of this non-homogeneity demonstrates the characteristics of RF coil and part of it is due to the interaction of RF field with the material being imaged. In this study, RF field non-homogeneity of surface and volume coils is measured using an oil phantom. The method employed in this work is based on a routine Spin Echo based sequence as proposed by this group previously. Materials and Methods: For the determination of RF non-uniformity, a method based on Spin Echo sequence (8θ-180) was used as reported previously by the same author. In this method, several images were obtained from one slice using different flip angles while keeping all other imaging parameters constant. Then, signal intensity at a ROI from all of these images were measured and fitted to the MRI defined mathematical model. Since this mathematical model describes the relation between signal intensity and flip angle in a (8θ-180) Spin Echo sequence, it is possible to obtain the variation in receive and transmit sensitivity in terms of the variation of signal intensity from the actual expected values. Since surface coils are functioning as only receiver (RF transmission is done by Body coil), first the results of receive coil homogeneity is measured, then characteristic of transmit coil (for the body coil) is evaluated Results: The coefficient of variation (C.V.) found for T(r) value obtained from images using head coils was in the order of 0.6%. Since the head coil is functioning as both transmitter and receiver, any non-uniformity in either transmit or receive stage can lead to non-homogeneity in RF field. A part from the surface coils, the amount of non-homogeneity due to receive coil was less than that of the transmit coil. In the case of the surface coils the variation in receive

  2. Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI

    DEFF Research Database (Denmark)

    Nunes, Daniel; Cruz, Tomás L; Jespersen, Sune N

    2017-01-01

    available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time...... the quantitative results are compared against ground-truth histology, they seem to reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing......-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures – such as axons and extra-axonal spaces, which we here used in a simple model for the microstructure – and that, for axons parallel to the main magnetic field...

  3. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    International Nuclear Information System (INIS)

    Sharma, Rakesh

    2010-01-01

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  4. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rakesh, E-mail: rs05h@fsu.ed [Departments of Chemical Engineering and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States)

    2010-07-21

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  5. A diffusion model-free framework with echo time dependence for free-water elimination and brain tissue microstructure characterization.

    Science.gov (United States)

    Molina-Romero, Miguel; Gómez, Pedro A; Sperl, Jonathan I; Czisch, Michael; Sämann, Philipp G; Jones, Derek K; Menzel, Marion I; Menze, Bjoern H

    2018-03-23

    The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS). This framework yields proton density, relaxation times, volume fractions, and signal disentanglement, allowing for separation of the free-water component. Diffusion experiments repeated for several different echo times, contain entangled diffusion and relaxation compartmental information. These can be disentangled by BSS using a physically constrained nonnegative matrix factorization. Computer simulations, phantom studies, together with repeatability and reproducibility experiments demonstrated that BSS is capable of estimating proton density, compartmental volume fractions and transversal relaxations. In vivo results proved its potential to correct for free-water contamination and to estimate tissue parameters. Formulation of the diffusion-relaxation dependence as a BSS problem introduces a new framework for studying microstructure compartmentalization, and a novel tool for free-water elimination. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Cerebral hemodynamic changes measured by gradient-echo or spin-echo bolus tracking and its correlation to changes in ICA blood flow measured by phase-mapping MRI

    DEFF Research Database (Denmark)

    Marstrand, J.R.; Rostrup, Egill; Garde, Ellen

    2001-01-01

    Changes in cerebral blood flow (CBF) induced by Acetazolamide (ACZ) were measured using dynamic susceptibility contrast MRI (DSC-MRI) with both spin echo (SE) EPI and gradient echo (GE) EPI, and related to changes in internal carotid artery (ICA) flow measured by phase-mapping. Also examined...... was the effect of repeated bolus injections. CBF, cerebral blood volume (CBV), and mean transit time (MTT) were calculated by singular value decomposition (SVD) and by deconvolution using an exponential function as kernel. The results showed no dependency on calculation method. GE-EPI measured a significant...... increase in CBF and CBV in response to ACZ, while SE-EPI measured a significant increase in CBV and MTT. CBV and MTT change measured by SE-EPI was sensitive to previous bolus injections. There was a significant linear relation between change in CBF measured by GE-EPI and change in ICA flow. In conclusion...

  7. Cerebral hemodynamic changes measured by gradient-echo or spin-echo bolus tracking and its correlation to changes in ICA blood flow measured by phase-mapping MRI

    DEFF Research Database (Denmark)

    Marstrand, J.R.; Rostrup, Egill; Garde, Ellen

    2001-01-01

    Changes in cerebral blood flow (CBF) induced by Acetazolamide (ACZ) were measured using dynamic susceptibility contrast MRI (DSC-MRI) with both spin echo (SE) EPI and gradient echo (GE) EPI, and related to changes in internal carotid artery (ICA) flow measured by phase-mapping. Also examined...... increase in CBF and CBV in response to ACZ, while SE-EPI measured a significant increase in CBV and MTT. CBV and MTT change measured by SE-EPI was sensitive to previous bolus injections. There was a significant linear relation between change in CBF measured by GE-EPI and change in ICA flow. In conclusion......, GE-EPI under the present condition was superior to SE-EPI in monitoring cerebral vascular changes...

  8. Hemodynamic analysis of bladder tumors using T1-dynamic contrast-enhanced fast spin-echo MRI

    International Nuclear Information System (INIS)

    Kanazawa, Yuki; Miyati, Tosiaki; Sato, Osamu

    2012-01-01

    Objectives: To evaluate the hemodynamics of bladder tumors, we developed a method to calculate change in R 1 value (ΔR 1 ) from T 1 -dynamic contrast-enhanced fast spin-echo magnetic resonance imaging (T 1 DCE-FSE-MRI). Materials and methods: On a 1.5-T MR system, T 1 DCE-FSE-MRI was performed. This study was applied to 12 patients with urinary bladder tumor, i.e. urothelial carcinoma. We compared ΔR 1 –time and ΔSI–time between a peak in the ΔR 1 –time and ΔSI–time curve occurred during the first pass within 60 s. Next, we assessed the slope of increase for 180 s after CA injection (Slope 0–180 ). Results: The mean slope of the first pass was significantly higher for bladder tumors on both the ΔR 1 –time and the ΔSI–time curve compared with normal bladder walls. Moreover, a significant difference was apparent between bladder tumors and normal bladder walls on the mean Slope 0–180 in the ΔR 1 -time curve. However, no significant difference in the mean Slope 0–180 was observed on the ΔSI-time curve between bladder tumors and normal bladder walls. Conclusion: T 1 DCE-FSE-MRI offers three advantages: quantitative analysis; high-quality (i.e., artifact-free) images; and high temporal resolution even for SE images. Use of ΔR 1 analysis with T 1 DCE-FSE-MRI allows more detailed information on the hemodynamics of bladder tumors to be obtained and assists in differentiation between bladder tumors and the normal bladder wall.

  9. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    International Nuclear Information System (INIS)

    Yoshino, Ayako

    1998-01-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds (ΔRT2) was calculated by the following equation: ΔRT2 = (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  10. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Ayako [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-07-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds ({Delta}RT2) was calculated by the following equation: {Delta}RT2 (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  11. MRI of the breast with 2D spin-echo and gradient echo sequences in diagnostically difficult cases. MRT der Mamma mit 2D-Spinecho- und Gradientenecho-Sequenzen in diagnostischen Problemfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Allgayer, B. (Technische Univ. Muenchen (Germany). Inst. fuer Roentgendiagnostik); Lukas, P. (Technische Univ. Muenchen (Germany). Inst. und Poliklinik fuer Strahlentherapie und Radiologische Onkologie); Loos, W. (Technische Univ. Muenchen (Germany). Frauenklinik und Poliklinik); Kersting-Sommerhoff, B. (Technische Univ. Muenchen (Germany). Inst. fuer Roentgendiagnostik)

    1993-05-01

    One or both breasts of 296 patients with equivocal clinical or mammographical findings were examined with MRI. T[sub 1] weighted spinecho (SE) and gradient echo (FFE) sequences were acquired before and after i.v. application of Gadolinium DTPA. 50 lesions with enhancement after Gd-DTPA were biopsied - 26 carcinomas, 17 proliferating mastopathic tissues, 5 fibroadenomas and 1 abscess were found. Contrast enhanced MRI with 2D-SE and FFE sequences is an effective technqiue for evaluating suspicious breast lesions with high diagnostic acurracy. (orig.)

  12. Fast spin echo MRI techniques. Contrast characteristics and clinical potential. Techniques d'IRM en fast spin echo. Caracteristiques de contraste et potentiels cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N. (Harvard Medical School, Boston, MA (United States)); Oshio, K.; Jolesz, F. (Keio Univ., Tokyo (Japan)); Pourcelot, L. (Hopital Bretonneau, 37 - Tours (France)); Einstein, S. (General Electric Medical System, Milwaukee, WI (United States))

    1993-03-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode.

  13. Usefulness and limitation of functional MRI with echo planar imaging using clinical MR apparatus

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Zenke, Kiichiro; Saito, Masahiro; Sadamoto, Kazuhiko; Ohue, Shiro; Sakaki, Saburo; Kumon, Yoshiaki; Kabasawa, Hiroyuki; Nagasawa, Kiyoshi

    1998-01-01

    We studied blood oxygen level-dependent (BOLD) functional MRI (fMRI) with EPI sequence in 21 normal volunteers and 8 presurgical clinical patients using a 1.5 T clinical MRI apparatus. To optimize the imaging parameters, we compared the fMRI images obtained by GFE-EPI and by SE-EPI in normal volunteers while each squeezed a sponge ball. We identified the motor cortex in 85.7% of normal volunteers by GFE-EPI in contrast to only 28.6% by SE-EPI. In addition, our clinical MR apparatus, using optimized parameters, maximally provides 15 slices per 5 seconds. In patients with brain tumor close to the sensorimotor cortex, we attempted to identify the motor cortex preoperatively by this procedure and found a significant increase of signal intensity in the motor cortex in 5 of 8 patients. In conclusion, fMRI using EPI may be useful for identifying the motor cortex preoperatively. However, further development of the apparatus is needed to obtain better temporal and spatial resolution for clinical applications. (author)

  14. Robust water fat separated dual-echo MRI by phase-sensitive reconstruction.

    Science.gov (United States)

    Romu, Thobias; Dahlström, Nils; Leinhard, Olof Dahlqvist; Borga, Magnus

    2017-09-01

    The purpose of this work was to develop and evaluate a robust water-fat separation method for T1-weighted symmetric two-point Dixon data. A method for water-fat separation by phase unwrapping of the opposite-phase images by phase-sensitive reconstruction (PSR) is introduced. PSR consists of three steps; (1), identification of clusters of tissue voxels; (2), unwrapping of the phase in each cluster by solving Poisson's equation; and (3), finding the correct sign of each unwrapped opposite-phase cluster, so that the water-fat images are assigned the correct identities. Robustness was evaluated by counting the number of water-fat swap artifacts in a total of 733 image volumes. The method was also compared to commercial software. In the water-fat separated image volumes, the PSR method failed to unwrap the phase of one cluster and misclassified 10. One swap was observed in areas affected by motion and was constricted to the affected area. Twenty swaps were observed surrounding susceptibility artifacts, none of which spread outside the artifact affected regions. The PSR method had fewer swaps when compared to commercial software. The PSR method can robustly produce water-fat separated whole-body images based on symmetric two-echo spoiled gradient echo images, under both ideal conditions and in the presence of common artifacts. Magn Reson Med 78:1208-1216, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. A study of MRI gradient echo signals from discrete magnetic particles with considerations of several parameters in simulations.

    Science.gov (United States)

    Kokeny, Paul; Cheng, Yu-Chung N; Xie, He

    2018-05-01

    Modeling MRI signal behaviors in the presence of discrete magnetic particles is important, as magnetic particles appear in nanoparticle labeled cells, contrast agents, and other biological forms of iron. Currently, many models that take into account the discrete particle nature in a system have been used to predict magnitude signal decays in the form of R2* or R2' from one single voxel. Little work has been done for predicting phase signals. In addition, most calculations of phase signals rely on the assumption that a system containing discrete particles behaves as a continuous medium. In this work, numerical simulations are used to investigate MRI magnitude and phase signals from discrete particles, without diffusion effects. Factors such as particle size, number density, susceptibility, volume fraction, particle arrangements for their randomness, and field of view have been considered in simulations. The results are compared to either a ground truth model, theoretical work based on continuous mediums, or previous literature. Suitable parameters used to model particles in several voxels that lead to acceptable magnetic field distributions around particle surfaces and accurate MR signals are identified. The phase values as a function of echo time from a central voxel filled by particles can be significantly different from those of a continuous cubic medium. However, a completely random distribution of particles can lead to an R2' value which agrees with the prediction from the static dephasing theory. A sphere with a radius of at least 4 grid points used in simulations is found to be acceptable to generate MR signals equivalent from a larger sphere. Increasing number of particles with a fixed volume fraction in simulations reduces the resulting variance in the phase behavior, and converges to almost the same phase value for different particle numbers at each echo time. The variance of phase values is also reduced when increasing the number of particles in a fixed

  16. Functional imaging of submandibular glands: diffusion-weighted echo-planar MRI before and after stimulation

    International Nuclear Information System (INIS)

    Arndt, C.; Cramer, M.C.; Weiss, F.; Kaul, M.G.; Adam, G.; Habermann, C.R.; Graessner, J.; Petersen, K.; Reitmeier, F.; Jaehne, M.

    2006-01-01

    Purpose: To investigate the feasibility of diffusion-weighted (DWI) echo-planar imaging (EPI) to depict the submandibular glands and to measure different functional conditions. Materials and Methods: Twenty-seven healthy volunteers were examined. Diffusion weighted sequence was performed prior to stimulation. Exactly 30 seconds after a commercially available lemon juice was given orally, the diffusion weighted sequence was repeated. All examinations were performed by using a 1.5-T superconducting system with a 30 mT/m maximum gradient capability and maximum slew rate of 125 mT/m/sec (Magnetom Symphony, Siemens, Erlangen, Germany). The lower part of the circularly polarized (CP) head coil and a standard two-element CP neck array coil were used. The flexibility of the neck array coil allowed positioning the N1 element (upper part of the coil) right next to the submandibular gland. The axial diffusion-weighted EPI (echo planar imaging) sequence was performed using a matrix of 119 x 128, a field of view of 250 x 250 mm (pixel size 2.1 x 1.95 mm), a section thickness of 5 mm with an interslice gap of 1 mm. The b factors used were 0 sec/mm 2 , 500 sec/mm 2 and 1000 sec/mm 2 . Apparent diffusion coefficient (ADC) maps were digitally transferred to MRIcro (Chris Rorden, University of Nottingham, Great Britain). After detecting the submandibular glands a region of interest (ROI) was placed manually exactly within the boarder of both submandibular glands, excluding the external carotid artery on ADC maps. These procedures were performed on all ADC slices the submandibular glands could be differentiated in before and after oral stimulation. For statistical comparison of results, a student's t-test was performed with an overall two-tailed significance level of p=0.05. Results: The visualization of the submandibular glands using the diffusion-weighted EPI sequence was possible in all of the 27 volunteers. Prior to oral stimulation an ADC of 1.31 x 10 -3 mm 2 /sec (95% CI, 1

  17. Functional imaging of parotid glands: Diffusion-weighted echo-planar MRI before and after stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Habermann, C.R.; Cramer, M.C.; Gossrau, P.; Adam, G. [University Hospital Hamburg-Eppendorf (Germany). Department of Diagnostic and Interventional Radiology; Graessner, J. [Siemens AG, Hamburg (Germany). Medical Solutions; Reitmeier, F.; Jaehne, M. [University Hospital Hamburg-Eppendorf (Germany). Department of Oto-, Rhino-, Laryngology; Fiehler, J. [University Hospital Hamburg-Eppendorf (Germany). Department of Neuroradiology; Schoder, V. [University Hospital Hamburg-Eppendorf (Germany). Institute for Medical Biometry and Epidemiology

    2004-10-01

    Purpose: To investigate the feasibility of diffusion-weighted (DW) echo-planar imaging (EPI) for measuring different functional conditions of the parotid gland and to compare different measurement approaches. Materials and Methods: Parotid glands of 27 healthy volunteers were examined with a DW EPI sequence (TR 1,500 msec, TE 77 msec, field-of-view 250 x 250 mm, pixel size 2.10 x 1.95 mm, section thickness 5 mm) before and after oral stimulation with commercially available lemon juice. The b factors used were 0, 500, and 1,000 sec/mm{sup 2}. Apparent diffusion coefficient (ADC) maps were digitally transferred to MRIcro (Chris Rorden, University of Nottingham, Great Britain) and evaluated with a manually placed circular region of interest (ROI) containing 100-200 pixel. Additional ROIs including the entire parotid gland were placed on either side. The results of both measurements were compared, using the Student's t test based on the median ADC values for each person. A two-tailed p-value of less than.05 was determined to indicate statistical significance. To compare both measurement approaches, the Pearson's correlation coefficient (r) was calculated. Results: Diffusion-weighted echo-planar MR imaging successfully visualized the parotid gland of all volunteers. In a first step, the median ADC value per person was computed. Using ROIs of 100-200 pixels, the mean was calculated to be 1.08 x 10{sup -3} mm{sup 2}/sec{+-}0.12 x 10{sup -3} mm{sup 2}/sec for both parotid glands prior to simulation. After stimulation, the mean ADC was measured at 1.15 x 10{sup -3} mm{sup 2}/sec{+-}0.11 x 10{sup -3} mm{sup 2}/sec for both parotid glands. Evaluating the entire parotid gland, the ADC was 1.12 x 10{sup -3} mm{sup 2}/sec{+-}0.08 x 10{sup -3} mm{sup 2}/sec prior to simulation, whereas the ADC increased to 1.18 x 10{sup -3} mm{sup 2}/sec{+-}0.09 x 10{sup -3} mm{sup 2}/sec after simulation with lemon juice. For both types of measurements, the increase in ADC after

  18. Kinematic MRI using short TR single shot fast spin echo (SSFSE) in evaluating swallowing

    Energy Technology Data Exchange (ETDEWEB)

    Isogai, Satoshi; Takehara, Yasuo; Isoda, Haruo; Kodaira, Nami; Masunaga, Hatsuko; Ozawa, Fukujirou; Kaneko, Masao [Hamamatsu Univ. School of Medicine, Shizuoka (Japan); Nozaki, Atsushi; Kabasawa, Hiroyuki

    1999-03-01

    The utility of short TR single shot fast spin echo (SSFSE) MR imaging for evaluating swallowing was determined. Five healthy volunteers underwent kinematic MR imaging of swallowing with a 1.5 T MR scanner using the short TR (300 ms) SSFSE sequence. Twenty phases of sagittal sections were acquired within 6 sec, where the temporal resolution was 300 ms. For oral contrast medium, we used prune yogurt juice with Fe added. The image contrast of short TR SSFSE was found to be somewhere like that of T1-weighted images. In all cases, both the buccal and pharyngeal stages of swallowing were successfully depicted. The Fe-added prune yogurt juice performed as a positive contrast medium and helped determine anatomical structures in the buccal stage. Short TR (300 ms) SSFSE was useful in evaluating swallowing. The combined use of Fe-added prune yogurt juice was helpful in enhancing the surface of the oropharynx. (author)

  19. Kinematic MRI using short TR single shot fast spin echo (SSFSE) in evaluating swallowing

    International Nuclear Information System (INIS)

    Isogai, Satoshi; Takehara, Yasuo; Isoda, Haruo; Kodaira, Nami; Masunaga, Hatsuko; Ozawa, Fukujirou; Kaneko, Masao; Nozaki, Atsushi; Kabasawa, Hiroyuki

    1999-01-01

    The utility of short TR single shot fast spin echo (SSFSE) MR imaging for evaluating swallowing was determined. Five healthy volunteers underwent kinematic MR imaging of swallowing with a 1.5 T MR scanner using the short TR (300 ms) SSFSE sequence. Twenty phases of sagittal sections were acquired within 6 sec, where the temporal resolution was 300 ms. For oral contrast medium, we used prune yogurt juice with Fe added. The image contrast of short TR SSFSE was found to be somewhere like that of T1-weighted images. In all cases, both the buccal and pharyngeal stages of swallowing were successfully depicted. The Fe-added prune yogurt juice performed as a positive contrast medium and helped determine anatomical structures in the buccal stage. Short TR (300 ms) SSFSE was useful in evaluating swallowing. The combined use of Fe-added prune yogurt juice was helpful in enhancing the surface of the oropharynx. (author)

  20. Ultrashort time-to-echo MRI of the cartilaginous endplate: technique and association with intervertebral disc degeneration

    International Nuclear Information System (INIS)

    Law, Travis; Anthony, Marina-Portia; Kim, Mina; Khong, Pek-Lan; Chan, Queenie; Samartzis, Dino

    2013-01-01

    The purpose of this study was to report the feasibility of the ultrashort time-to-echo (UTE) MRI technique to assess cartilaginous endplate (CEP) defects in humans in vivo and to assess their relationship with intervertebral disc (IVD) degeneration. Nine volunteer subjects (mean age=43.9 years; range=22–61 years) were recruited, representing 54 IVDs and 108 CEPs. The subjects underwent T2-weighted and UTE MRI to assess for the presence and severity of IVD degeneration, and for the presence of CEP defects, respectively, from T12 to S1. IVD degeneration was graded according to the Schneiderman et al. classification on T2-weighted MRI. CEP defects were defined on UTE MRI as discontinuity of high signal over four consecutive images and were independently assessed by two observers. Thirty-seven out of 108 (34.3%) CEPs had defects, which mainly occurred at T12/L1, L1/L2 and L4/L5 (P=0.008). Multivariate logistic regression revealed that lower body mass index (P=0.009) and younger (P=0.034) individuals had a decreased likelihood of having CEP defects. A statistically significant association was found to exist between the presence of CEP defects and IVD degeneration (P=0.036). A higher prevalence of degenerated IVDs with CEP defects was found at L4/5 and L5/S1, while degenerated IVDs with no CEP defects were found throughout the whole lumbar region. Mean IVD degeneration scores of the L4/5 and L5/S1 levels with CEP defects were higher in comparison with those with no CEP defects. Our study demonstrates the feasibility of using UTE MRI in humans in vivo to assess the integrity of the CEP. A statistically significant association was found to exist between the presence of CEP defects and IVD degeneration. In the lower lumbar region, more severe degeneration was found to occur in the IVDs with CEP defects than in those without defects.

  1. The Direct Detection and Characterization of M-dwarf Planets Using Light Echoes

    Science.gov (United States)

    Sparks, William B.; White, Richard L.; Lupu, Roxana E.; Ford, Holland C.

    2018-02-01

    Exoplanets orbiting M-dwarf stars are a prime target in the search for life in the universe. M-dwarf stars are active, with powerful flares that could adversely impact prospects for life, though there are counter-arguments. Here, we turn flaring to advantage and describe ways in which it can be used to enhance the detectability of planets, in the absence of transits or a coronagraph, significantly expanding the accessible discovery and characterization space. Flares produce brief bursts of intense luminosity, after which the star dims. Due to the light travel time between the star and planet, the planet receives the high-intensity pulse, which it re-emits through scattering (a light echo) or intrinsic emission when the star is much fainter, thereby increasing the planet’s detectability. The planet’s light-echo emission can potentially be discriminated from that of the host star by means of a time delay, Doppler shift, spatial shift, and polarization, each of which can improve the contrast of the planet to the star. Scattered light can reveal the albedo spectrum of the planet to within a size scale factor, and is likely to be polarized. Intrinsic emission mechanisms include fluorescent pumping of multiple molecular hydrogen and neutral oxygen lines by intense Lyα and Lyβ flare emission, recombination radiation of ionized and photodissociated species, and atmospheric processes such as terrestrial upper atmosphere airglow and near-infrared hydroxyl emission. We discuss the feasibility of detecting light echoes and find that light echo detection is possible under favorable circumstances.

  2. Reducing task-based fMRI scanning time using simultaneous multislice echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Mate [Hungarian Academy of Sciences, Brain Imaging Centre, Research Centre for Natural Sciences, Budapest (Hungary); Janos Szentagothai PhD School, MR Research Centre, Budapest (Hungary); National Institute of Clinical Neuroscience, Department of Neuroradiology, Budapest (Hungary); Hermann, Petra; Vidnyanszky, Zoltan; Gal, Viktor [Hungarian Academy of Sciences, Brain Imaging Centre, Research Centre for Natural Sciences, Budapest (Hungary)

    2018-03-15

    To maintain alertness and to remain motionless during scanning represent a substantial challenge for patients/subjects involved in both clinical and research functional magnetic resonance imaging (fMRI) examinations. Therefore, availability and application of new data acquisition protocols allowing the shortening of scan time without compromising the data quality and statistical power are of major importance. Higher order category-selective visual cortical areas were identified individually, and rapid event-related fMRI design was used to compare three different sampling rates (TR = 2000, 1000, and 410 ms, using state-of-the-art simultaneous multislice imaging) and four different scanning lengths to match the statistical power of the traditional scanning methods to high sampling-rate design. The results revealed that ∝ 4 min of the scan time with 1 Hz (TR = 1000 ms) sampling rate and ∝ 2 min scanning at ∝ 2.5 Hz (TR = 410 ms) sampling rate provide similar localization sensitivity and selectivity to that obtained with 11-min session at conventional, 0.5 Hz (TR = 2000 ms) sampling rate. Our findings suggest that task-based fMRI examination of clinical population prone to distress such as presurgical mapping experiments might substantially benefit from the reduced (20-40%) scanning time that can be achieved by the application of simultaneous multislice sequences. (orig.)

  3. T1-weighted dual-echo MRI for fat quantification in pediatric nonalcoholic fatty liver disease.

    Science.gov (United States)

    Pacifico, Lucia; Martino, Michele Di; Catalano, Carlo; Panebianco, Valeria; Bezzi, Mario; Anania, Caterina; Chiesa, Claudio

    2011-07-07

    To determine in obese children with nonalcoholic fatty liver disease (NAFLD) the accuracy of magnetic resonance imaging (MRI) in assessing liver fat concentration. A case-control study was performed. Cases were 25 obese children with biopsy-proven NAFLD. Controls were 25 obese children matched for age and gender, without NAFLD at ultrasonography and with normal levels of aminotransferases and insulin. Hepatic fat fraction (HFF) by MRI was obtained using a modification of the Dixon method. HFF ranged from 2% to 44% [mean, 19.0% (95% CI, 15.1-27.4)] in children with NAFLD, while in the controls this value ranged from 0.08% to 4.69% [2.0% (1.3-2.5), P steatosis (r = 0.883, P steatosis, the mean HFF was 8.7% (95% CI, 6.0-11.6) for mild, 21.6% (15.3-27.0) for moderate, and 39.7% (34.4-45.0) for severe fatty liver infiltration. With a cutoff of 4.85%, HFF had a sensitivity of 95.8% for the diagnosis of histological steatosis ≥ 5%. All control children had HFF lower than 4.85%; thus, the specificity was 100%. After 12 mo, children with weight loss displayed a significant decrease in HFF. MRI is an accurate methodology for liver fat quantification in pediatric NAFLD.

  4. Study on diffusion anisotropy of cerebral ischemia using diffusion weighted echo-planar MRI

    International Nuclear Information System (INIS)

    Kajima, Toshio

    1997-01-01

    Focal cerebral ischemia was produced by occlusion of the intracranial main cerebral artery with a silicone cylinder in Wistar rats. Diffusion-weighted echo-planar images (DW-EPls) using the motion-probing gradient (MPG) method were acquired at 1-3 hours and 24-48 hours after occlusion. Apparent diffusion coefficients (ADCs) were calculated from these images in ischemic lesions and in normal unoccluded regions. Results were as follows. Ischemic lesions could be detected on the DW-EPIs at 1 hour after occlusion. The ADC of water in the brain tissue was smaller than that of free water as a result of restricted diffusion. Anisotropic diffusion that probably can be attributed to the myelin sheath was observed in the normal white matter. In the ischemic lesions, the ADC decreased rapidly within 1-3 hours after occlusion and then decreased gradually after 24-48 hours. In the ischemic white matter, diffusion anisotropy disappeared at 24-48 hours after occlusion. Diffusion-weighted imaging may have applications in the examination of pathophysiological mechanisms in cerebral ischemia by means of evaluation of ADC and diffusion anisotropy. (author)

  5. Evaluation of Sinus/Edge-Corrected Zero-Echo-Time-Based Attenuation Correction in Brain PET/MRI.

    Science.gov (United States)

    Yang, Jaewon; Wiesinger, Florian; Kaushik, Sandeep; Shanbhag, Dattesh; Hope, Thomas A; Larson, Peder E Z; Seo, Youngho

    2017-11-01

    In brain PET/MRI, the major challenge of zero-echo-time (ZTE)-based attenuation correction (ZTAC) is the misclassification of air/tissue/bone mixtures or their boundaries. Our study aimed to evaluate a sinus/edge-corrected (SEC) ZTAC (ZTAC SEC ), relative to an uncorrected (UC) ZTAC (ZTAC UC ) and a CT atlas-based attenuation correction (ATAC). Methods: Whole-body 18 F-FDG PET/MRI scans were obtained for 12 patients after PET/CT scans. Only data acquired at a bed station that included the head were used for this study. Using PET data from PET/MRI, we applied ZTAC UC , ZTAC SEC , ATAC, and reference CT-based attenuation correction (CTAC) to PET attenuation correction. For ZTAC UC , the bias-corrected and normalized ZTE was converted to pseudo-CT with air (-1,000 HU for ZTE 0.75), and bone (-2,000 × [ZTE - 1] + 42 HU for 0.2 ≤ ZTE ≤ 0.75). Afterward, in the pseudo-CT, sinus/edges were automatically estimated as a binary mask through morphologic processing and edge detection. In the binary mask, the overestimated values were rescaled below 42 HU for ZTAC SEC For ATAC, the atlas deformed to MR in-phase was segmented to air, inner air, soft tissue, and continuous bone. For the quantitative evaluation, PET mean uptake values were measured in twenty 1-mL volumes of interest distributed throughout brain tissues. The PET uptake was compared using a paired t test. An error histogram was used to show the distribution of voxel-based PET uptake differences. Results: Compared with CTAC, ZTAC SEC achieved the overall PET quantification accuracy (0.2% ± 2.4%, P = 0.23) similar to CTAC, in comparison with ZTAC UC (5.6% ± 3.5%, P PET quantification in brain PET/MRI, comparable to the accuracy achieved by CTAC, particularly in the cerebellum. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  6. MRI dosimetry using an echo-quotient technique for high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Ansbacher, W.

    1996-01-01

    MRI gel dosimetry is a relatively new technique that has many advantages over conventional methods, and is particularly suited to High Dose Rate (HDR) Brachytherapy. The dosimeter has high spatial resolution and a water-equivalent response over a wide range of photon energies. Because it is an integrating dosimeter, it allows for efficient mapping of the dynamically-produced distributions from an HDR source. As an example of this technique, the dose response, which is calibrated in terms of the change in spin-spin relaxation time, has been used to investigate the anisotropy of an HDR source. (author). 1 fig

  7. Predictive value of PWI for blood supply and T1-spin echo MRI for consistency of pituitary adenoma

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zengyi; He, Wenqiang; Zhao, Yao; Zhang, Qilin; Li, Shiqi; Wang, Yongfei [Fudan University, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Shanghai (China); Shanghai Pituitary Tumor Center, Shanghai (China); Yuan, Jie; Wu, Yue; Yao, Zhenwei [Fudan University, Department of Radiology, Huashan Hospital, Shanghai Medical College, Shanghai (China); Chen, Hong [Fudan University, Department of Neuropathology, Huashan Hospital, Shanghai Medical College, Shanghai (China)

    2016-01-15

    It is a common view that consistency and blood supply of pituitary adenoma (PA) can influence the surgical effect. The aim of this study was to determine whether MRI signal intensity (SI) was correlated to the consistency or blood supply of pituitary macroadenoma. Forty eight pituitary macroadenoma patients were underwent preoperative MRI, including precontrast and contrast-enhanced (CE) T1-spin echo (T1-SE) imaging, CE-sampling perfection with application-optimized contrasts by using different flip angle evolutions (SPACE) imaging, and perfusion-weighted imaging (PWI). The tumor consistency and blood supply were determined by neurosurgeons. The expression of collagen IV and MIB-1 was detected with immunohistology. The correlation of the relative SI (rSI) values (tumor to normal frontal white matter SI) and PWI data to the tumor consistency, blood supply, and the expression level of collagen IV and MIB-1 was statistically studied by Kruskal-Wallis rank test (K-W test). A significant correlation was observed between the tumor consistency and the rSI on precontrast T1-SE imaging (P = 0.004) but not on CE T1-SE and CE SPACE imaging. The expression of collagen IV was also significantly associated with rSI on T1-SE imaging (P = 0.010). The blood supply was correlated with the relative CBV (rCBV) (P = 0.030). In addition, the expression of MIB-1 was correlated with rSI of CE T1-SE imaging (P = 0.007). Our results suggest that T1-SE imaging may be a simple and useful method for predicting consistency of PA. CBV value can provide helpful information for assessing the blood supply of pituitary macroadenoma. (orig.)

  8. Efficacy of T2*-Weighted Gradient-Echo MRI in Early Diagnosis of Cerebral Venous Thrombosis with Unilateral Thalamic Lesion

    Directory of Open Access Journals (Sweden)

    Shingo Mitaki

    2013-01-01

    Full Text Available Cerebral venous thrombosis (CVT is an uncommon cause of stroke with diverse etiologies and varied clinical presentations. Because of variability in clinical presentation and neuroimaging, CVT remains a diagnostic challenge. Recently, some studies have highlighted the value of T2*-weighted gradient-echo MRI (T2*WI in the diagnosis of CVT. We report the case of a 79-year-old woman with CVT due to a hypercoagulable state associated with cancer. On the initial T2-weighted image (T2WI, there was a diffuse high-intensity lesion in the right thalamus, extending into the posterior limb of the internal capsule and midbrain. T2*WI showed diminished signal and enlargement of the right basilar vein and the vein of Galen. Even though there is a wide range of differential diagnoses in unilateral thalamic lesions, and a single thalamus lesion is a rare entity of CVT, based on T2*WI findings we could make an early diagnosis and perform treatment. Our case report suggests that T2*WI could detect thrombosed veins and be a useful method of early diagnosis in CVT.

  9. Three-dimensional ultrashort echo time MRI and Short T2 images generated from subtraction for determination of tumor burden in lung cancer: Preclinical investigation in transgenic mice.

    Science.gov (United States)

    Müller, Andreas; Jagoda, Philippe; Fries, Peter; Gräber, Stefan; Bals, Robert; Buecker, Arno; Jungnickel, Christopher; Beisswenger, Christoph

    2018-02-01

    To investigate the potential of 3D ultrashort echo time MRI and short T 2 images generated by subtraction for determination of total tumor burden in lung cancer. As an animal model of spontaneously developing non-small cell lung cancer, the K-rasLA1 transgenic mouse was used. Three-dimensional MR imaging was performed with radial k-space acquisition and echo times of 20 µs and 1 ms. For investigation of the short T 2 component in the recorded signal, subtraction images were generated from these data sets and used for consensus identification of tumors. Next, manual segmentation was performed on all MR images by two independent investigators. MRI data were compared with the results from histologic investigations and among the investigators. Tumor number and total tumor burden from imaging experiments correlated strongly with the results of histologic investigations. Intra- and interuser comparison showed highest correlations between the individual measurements for ultra-short TE MRI. Three-dimensional MRI protocols facilitate accurate tumor identification in mice harboring lung tumors. Ultrashort TE MRI is the superior imaging strategy when investigating lung tumors of miscellaneous size with 3D MR imaging strategies. Magn Reson Med 79:1052-1060, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Associations between Dietary Nutrient Intakes and Hepatic Lipid Contents in NAFLD Patients Quantified by 1H-MRS and Dual-Echo MRI

    Directory of Open Access Journals (Sweden)

    Yipeng Cheng

    2016-08-01

    Full Text Available Dietary habits are crucial in the progression of hepatic lipid accumulation and nonalcoholic fatty liver disease (NAFLD. However, there are limited studies using 1H-magnetic resonance spectroscopy (1H-MRS and dual-echo in-phase and out-phase magnetic resonance spectroscopy imaging (dual-echo MRI to assess the effects of dietary nutrient intakes on hepatic lipid contents. In the present study, we recruited 36 female adults (NAFLD:control = 19:17 to receive questionnaires and medical examinations, including dietary intakes, anthropometric and biochemical measurements, and 1H-MRS and dual-echo MRI examinations. NAFLD patients were found to consume diets higher in energy, protein, fat, saturated fatty acid (SFA, and polyunsaturated fatty acid (PUFA. Total energy intake was positively associated with hepatic fat fraction (HFF and intrahepatic lipid (IHL after adjustment for age and body-mass index (BMI (HFF: β = 0.24, p = 0.02; IHL: β = 0.38, p = 0.02. Total fat intake was positively associated with HFF and IHL after adjustment for age, BMI and total energy intake (HFF: β = 0.36, p = 0.03; IHL: β = 0.42, p = 0.01. SFA intake was positively associated with HFF and IHL after adjustments (HFF: β = 0.45, p = 0.003; IHL: β = 1.16, p = 0.03. In conclusion, hepatic fat content was associated with high energy, high fat and high SFA intakes, quantified by 1H-MRS and dual-echo MRI in our population. Our findings are useful to provide dietary targets to prevent the hepatic lipid accumulation and NAFLD.

  11. Comparison between gadolinium-enhanced 2D T1-weighted gradient-echo and spin-echo sequences in the detection of active multiple sclerosis lesions on 3.0T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Aymerich, F.X. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, MR Unit. Department of Radiology (IDI), Barcelona (Spain); Universitat Politecnica de Catalunya - Barcelona Tech (UPC), Department of Automatic Control (ESAII), Barcelona (Spain); Auger, C.; Alcaide-Leon, P.; Pareto, D.; Huerga, E.; Corral, J.F.; Mitjana, R.; Rovira, A. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, MR Unit. Department of Radiology (IDI), Barcelona (Spain); Sastre-Garriga, J.; Montalban, X. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, Centre d' Esclerosi Multiple de Catalunya (Cemcat), Department of Neurology/Neuroimmunology, Barcelona (Spain)

    2017-04-15

    To compare the sensitivity of enhancing multiple sclerosis (MS) lesions in gadolinium-enhanced 2D T1-weighted gradient-echo (GRE) and spin-echo (SE) sequences, and to assess the influence of visual conspicuity and laterality on detection of these lesions. One hundred MS patients underwent 3.0T brain MRI including gadolinium-enhanced 2D T1-weighted GRE and SE sequences. The two sets of contrast-enhanced scans were evaluated in random fashion by three experienced readers. Lesion conspicuity was assessed by the image contrast ratio (CR) and contrast-to-noise ratio (CNR). The intracranial region was divided into four quadrants and the impact of lesion location on detection was assessed in each slice. Six hundred and seven gadolinium-enhancing MS lesions were identified. GRE images were more sensitive for lesion detection (0.828) than SE images (0.767). Lesions showed a higher CR in SE than in GRE images, whereas the CNR was higher in GRE than SE. Most misclassifications occurred in the right posterior quadrant. The gadolinium-enhanced 2D T1-weighted GRE sequence at 3.0T MRI enables detection of enhancing MS lesions with higher sensitivity and better lesion conspicuity than 2D T1-weighted SE. Hence, we propose the use of gadolinium-enhanced GRE sequences rather than SE sequences for routine scanning of MS patients at 3.0T. (orig.)

  12. Free-breathing pediatric chest MRI: Performance of self-navigated golden-angle ordered conical ultrashort echo time acquisition.

    Science.gov (United States)

    Zucker, Evan J; Cheng, Joseph Y; Haldipur, Anshul; Carl, Michael; Vasanawala, Shreyas S

    2018-01-01

    To assess the feasibility and performance of conical k-space trajectory free-breathing ultrashort echo time (UTE) chest magnetic resonance imaging (MRI) versus four-dimensional (4D) flow and effects of 50% data subsampling and soft-gated motion correction. Thirty-two consecutive children who underwent both 4D flow and UTE ferumoxytol-enhanced chest MR (mean age: 5.4 years, range: 6 days to 15.7 years) in one 3T exam were recruited. From UTE k-space data, three image sets were reconstructed: 1) one with all data, 2) one using the first 50% of data, and 3) a final set with soft-gating motion correction, leveraging the signal magnitude immediately after each excitation. Two radiologists in blinded fashion independently scored image quality of anatomical landmarks on a 5-point scale. Ratings were compared using Wilcoxon rank-sum, Wilcoxon signed-ranks, and Kruskal-Wallis tests. Interobserver agreement was assessed with the intraclass correlation coefficient (ICC). For fully sampled UTE, mean scores for all structures were ≥4 (good-excellent). Full UTE surpassed 4D flow for lungs and airways (P 93% scans for all techniques (P = 0.27). Interobserver agreement was excellent for combined scores (ICC = 0.83). High-quality free-breathing conical UTE chest MR is feasible, surpassing 4D flow for lungs and airways, with equivalent PA visualization. Data subsampling only mildly degraded images, favoring lesser scan times. Soft-gating motion correction overall did not improve image quality. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:200-209. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI.

    Science.gov (United States)

    Leynes, Andrew P; Yang, Jaewon; Wiesinger, Florian; Kaushik, Sandeep S; Shanbhag, Dattesh D; Seo, Youngho; Hope, Thomas A; Larson, Peder E Z

    2018-05-01

    Accurate quantification of uptake on PET images depends on accurate attenuation correction in reconstruction. Current MR-based attenuation correction methods for body PET use a fat and water map derived from a 2-echo Dixon MRI sequence in which bone is neglected. Ultrashort-echo-time or zero-echo-time (ZTE) pulse sequences can capture bone information. We propose the use of patient-specific multiparametric MRI consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize pseudo-CT images with a deep learning model: we call this method ZTE and Dixon deep pseudo-CT (ZeDD CT). Methods: Twenty-six patients were scanned using an integrated 3-T time-of-flight PET/MRI system. Helical CT images of the patients were acquired separately. A deep convolutional neural network was trained to transform ZTE and Dixon MR images into pseudo-CT images. Ten patients were used for model training, and 16 patients were used for evaluation. Bone and soft-tissue lesions were identified, and the SUV max was measured. The root-mean-squared error (RMSE) was used to compare the MR-based attenuation correction with the ground-truth CT attenuation correction. Results: In total, 30 bone lesions and 60 soft-tissue lesions were evaluated. The RMSE in PET quantification was reduced by a factor of 4 for bone lesions (10.24% for Dixon PET and 2.68% for ZeDD PET) and by a factor of 1.5 for soft-tissue lesions (6.24% for Dixon PET and 4.07% for ZeDD PET). Conclusion: ZeDD CT produces natural-looking and quantitatively accurate pseudo-CT images and reduces error in pelvic PET/MRI attenuation correction compared with standard methods. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  14. Image correction during large and rapid B(0) variations in an open MRI system with permanent magnets using navigator echoes and phase compensation.

    Science.gov (United States)

    Li, Jianqi; Wang, Yi; Jiang, Yu; Xie, Haibin; Li, Gengying

    2009-09-01

    An open permanent magnet system with vertical B(0) field and without self-shielding can be quite susceptible to perturbations from external magnetic sources. B(0) variation in such a system located close to a subway station was measured to be greater than 0.7 microT by both MRI and a fluxgate magnetometer. This B(0) variation caused image artifacts. A navigator echo approach that monitored and compensated the view-to-view variation in magnetic resonance signal phase was developed to correct for image artifacts. Human brain imaging experiments using a multislice gradient-echo sequence demonstrated that the ghosting and blurring artifacts associated with B(0) variations were effectively removed using the navigator method.

  15. Comparison of the artifacts caused by metallic implants in breast MRI using dual-echo dixon versus conventional fat-suppression techniques.

    Science.gov (United States)

    Le, Yuan; Kipfer, Hal D; Majidi, Shadie S; Holz, Stephanie; Lin, Chen

    2014-09-01

    The purpose of this article is to evaluate and compare the artifacts caused by metal implants in breast MR images acquired with dual-echo Dixon and two conventional fat-suppression techniques. Two types of biopsy markers were embedded into a uniform fat-water emulsion. T1-weighted gradient-echo images were acquired on a clinical 3-T MRI scanner with three different fat-suppression techniques-conventional or quick fat saturation, spectrally selective adiabatic inversion recovery (SPAIR), and dual-echo Dixon-and the 3D volumes of artifacts were measured. Among the subjects of a clinical breast MRI study using the same scanner, five patients were found to have one or more metal implants. The artifacts in Dixon and SPAIR fat-suppressed images were evaluated by three radiologists, and the results were compared with those of the phantom study. In the phantom study, the artifacts appeared as interleaved bright and dark rings on SPAIR and quick-fat-saturation images, whereas they appeared as dark regions with a thin bright rim on Dixon images. The artifacts imaged with the Dixon technique had the smallest total volume. However, the reviewers found larger artifact diameters on patient images using the Dixon sequence because only the central region was recognized as an artifact on the SPAIR images. Metal implants introduce artifacts of different types and sizes, according to the different fat-suppression techniques used. The dual-echo Dixon technique produces a larger central void, allowing the implant to be easily identified, but presents a smaller overall artifact volume by obscuring less area in the image, according to a quantitative phantom study.

  16. Functional localization in the human brain: Gradient-echo, spin-echo, and arterial spin-labeling fMRI compared with neuronavigated TMS.

    NARCIS (Netherlands)

    Diekhoff, S.; Uludag, K.; Sparing, R.; Tittgemeyer, M.; von Cramon, D.Y.; Grefkes, C.

    2010-01-01

    A spatial mismatch of up to 14 mm between optimal transcranial magnetic stimulation (TMS) site and functional magnetic resonance imaging (fMRI) signal has consistently been reported for the primary motor cortex. The underlying cause might be the effect of magnetic susceptibility around large

  17. Long T2 suppression in native lung 3-D imaging using k-space reordered inversion recovery dual-echo ultrashort echo time MRI.

    Science.gov (United States)

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-08-01

    Long T2 species can interfere with visualization of short T2 tissue imaging. For example, visualization of lung parenchyma can be hindered by breathing artifacts primarily from fat in the chest wall. The purpose of this work was to design and evaluate a scheme for long T2 species suppression in lung parenchyma imaging using 3-D inversion recovery double-echo ultrashort echo time imaging with a k-space reordering scheme for artifact suppression. A hyperbolic secant (HS) pulse was evaluated for different tissues (T1/T2). Bloch simulations were performed with the inversion pulse followed by segmented UTE acquisition. Point spread function (PSF) was simulated for a standard interleaved acquisition order and a modulo 2 forward-reverse acquisition order. Phantom and in vivo images (eight volunteers) were acquired with both acquisition orders. Contrast to noise ratio (CNR) was evaluated in in vivo images prior to and after introduction of the long T2 suppression scheme. The PSF as well as phantom and in vivo images demonstrated reduction in artifacts arising from k-space modulation after using the reordering scheme. CNR measured between lung and fat and lung and muscle increased from -114 and -148.5 to +12.5 and 2.8 after use of the IR-DUTE sequence. Paired t test between the CNRs obtained from UTE and IR-DUTE showed significant positive change (p lung-fat CNR and p = 0.03 for lung-muscle CNR). Full 3-D lung parenchyma imaging with improved positive contrast between lung and other long T2 tissue types can be achieved robustly in a clinically feasible time using IR-DUTE with image subtraction when segmented radial acquisition with k-space reordering is employed.

  18. Novel use of non-echo-planar diffusion weighted MRI in monitoring disease activity and treatment response in active Grave's orbitopathy: An initial observational cohort study.

    Science.gov (United States)

    Lingam, Ravi Kumar; Mundada, Pravin; Lee, Vickie

    2018-01-10

    To examine the novel use of non-echo-planar diffusion weighted MRI (DWI) in depicting activity and treatment response in active Grave's orbitopathy (GO) by assessing, with inter-observer agreement, for a correlation between its apparent diffusion coefficients (ADCs) and conventional Short tau Inversion Recovery (STIR) MRI signal-intensity ratios (SIRs). A total of 23 actively inflamed muscles and 30 muscle response episodes were analysed in patients with active GO who underwent medical treatment. The MRI orbit scans included STIR sequences and non-echo-planar DWI were evaluated. Two observers independently assessed the images qualitatively for the presence of activity in the extraocular muscles (EOMs) and recorded the STIR signal-intensity (SI), SIR (SI ratio of EOM/temporalis muscle), and ADC values of any actively inflamed muscle on the pre-treatment scans and their corresponding values on the subsequent post-treatment scans. Inter-observer agreement was examined. There was a significant positive correlation (0.57, p < 0.001) between ADC and both SIR and STIR SI of the actively inflamed EOM. There was also a significant positive correlation (0.75, p < 0.001) between SIR and ADC values depicting change in muscle activity associated with treatment response. There was good inter-observer agreement. Our preliminary results indicate that quantitative evaluation with non-echo-planar DWI ADC values correlates well with conventional STIR SIR in detecting active GO and monitoring its treatment response, with good inter-observer agreement.

  19. Magnetic resonance imaging (MRI) of articular cartilage of the knee using ultrashort echo time (uTE) sequences with spiral acquisition

    International Nuclear Information System (INIS)

    Goto, Hajimu; Fujii, Masahiko; Iwama, Yuki; Aoyama, Nobukazu; Ohno, Yoshiharu; Sugimura, Kazuro

    2012-01-01

    The objective of this study was to evaluate the sensitivity of ultrashort echo time (uTE) sequence for visualisation of calcified deep layers of articular cartilage. MRI with a uTE sequence was performed on five healthy volunteers. Signals from the calcified deep layers of the articular knee cartilage were evaluated on uTE subtraction images and computed tomography images. The calcified deep layers of the articular cartilage changed from having a low to a high signal when imaged with a uTE sequence. The reported uTE sequence was effective in imaging the deep layers of the knee cartilage.

  20. Multi-site Study of Diffusion Metric Variability: Characterizing the Effects of Site, Vendor, Field Strength, and Echo Time using the Histogram Distance

    Science.gov (United States)

    Helmer, K. G.; Chou, M-C.; Preciado, R. I.; Gimi, B.; Rollins, N. K.; Song, A.; Turner, J.; Mori, S.

    2016-01-01

    MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables. PMID:27350723

  1. Multi-site Study of Diffusion Metric Variability: Characterizing the Effects of Site, Vendor, Field Strength, and Echo Time using the Histogram Distance.

    Science.gov (United States)

    Helmer, K G; Chou, M-C; Preciado, R I; Gimi, B; Rollins, N K; Song, A; Turner, J; Mori, S

    2016-02-27

    MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables.

  2. Cartilage volume quantification with multi echo data image combination sequence in swine knee at 3.0 T MRI

    International Nuclear Information System (INIS)

    Zhang Lirong; Wang Dongqing; Wei Chuanshe; Ma Cong; Wang Dehang

    2010-01-01

    Objective: To investigate the accuracy and reproducibility of multi echo data imagine combination (MEDIC) sequence with water excitation at 3.0 T in swine knee cartilage. Methods: Sagittal MEDIC sequences (0.6 mm slice thickness, isotropic) were acquired twice at 3.0 T MRI in 30 swine knees. The knee cartilage was then removed and the volume was directly measured with water substitution method. The cartilage volume was also determined with a validated open source image software OsiriX by two observers (A and B). The cartilage volumes obtained by two methods were compared. The reproducibility of MEDIC for quantitative measurement was accessed by the root-mean-square (RMS) of variation coefficient. Interobserver and intraobserver precision errors were compared using a paired students t-test. The accuracy of MEDIC for quantitative measurement was determined by the random pairwise differences, systematic pairwise differences and the Pearson, correlation coefficients. Time of semiautomatic and manual segmentation were recorded. Results: Time was saved about 75% by using semiautomatic segmentation methods [(4.0± 1.5) min] versus manual segmentation [(16.0±0.9) min]. Interobserver precision errors (RMS CV% for paired analysis) between A and B for cartilage volume measurement were (2.66±0.82) ml and(2.61± 0.81) ml, t=0.24, P=0.81 (patella); (2.40±0.69) ml and (2.49±0.85) ml, t=-0.45, P=0.65 (medial femoral condyle); (2.28±0.74) ml and(2.41±0.78) ml, t=-0.66, P=0.51 (lateral femoral condyle); (3.43±1.28) ml and (3.51±1.08) ml, t=-0.26, P=0.79 (femora trochlea) with sagittal MEDIC. Intraobserver precision errors (RMS CV% for paired analysis) of observer A for the first and second cartilage volume measurement were (2.64±0.62) ml and (2.67±0.60) ml, t=-0.19, P=0.85 (patella); (2.43±0.60) ml and (2.39±0.59) ml, t=0.26, P=0.80 (medial femoral condyle); (2.26±0.56) ml and (2.30±0.57) ml, t=-0.27, P=0.78 (lateral femoral condyle); (3.40± 1.20) ml and (3.47±1

  3. MRI in multiple sclerosis of the spinal cord: evaluation of fast short-tan inversion-recovery and spin-echo sequences

    International Nuclear Information System (INIS)

    Dietemann, J.L.; Thibaut-Menard, A.; Neugroschl, C.; Gillis, C.; Abu Eid, M.; Bogorin, A.; Warter, J.M.; Tranchant, C.

    2000-01-01

    We compared the sensitivity of T2-weighted spin-echo (FSE) and fast short-tau inversion-recovery (fSTIR) sequences in detection of multiple sclerosis of the spinal cord in 100 consecutive patients with clinically confirmed multiple sclerosis (MS); 86 patients underwent also brain MRI. In all, 310 focal lesions were detected on fSTIR and 212 on T2-weighted FSE, spinal cord lesions were seen better on fSTIR images, with a higher contrast between the lesion and the normal spinal cord. In 24 patients in whom cord plaques were shown with both sequences, the cranial study was normal or inconclusive. Assessment of spinal plaques can be particularly important when MRI of the brain is inconclusive, and in there situations fSTIR can be helpful. (orig.)

  4. Can unenhanced multiparametric MRI substitute gadolinium-enhanced MRI in the characterization of vertebral marrow infiltrative lesions?

    Directory of Open Access Journals (Sweden)

    Dalia Z. Zidan

    2014-06-01

    Conclusion: Unenhanced-multiparametric MRI is compatible with gadolinium-enhanced MRI in reliable characterization of marrow infiltrative lesions. The routine MRI protocol of cancer patients should be altered to accommodate the evolving MRI technology and cost effectively substitute the need for a gadolinium enhanced scan.

  5. Correction of inhomogeneous RF field using multiple SPGR signals for high-field spin-echo MRI

    International Nuclear Information System (INIS)

    Ishimori, Yoshiyuki; Monma, Masahiko; Yamada, Kazuhiro; Kimura, Hirohiko; Uematsu, Hidemasa; Fujiwara, Yasuhiro; Yamaguchi, Isao

    2007-01-01

    The purpose of this study was to propose a simple and useful method for correcting nonuniformity of high-field (3 Tesla) T 1 -weighted spin-echo (SE) images based on a B1 field map estimated from gradient recalled echo (GRE) signals. The method of this study was to estimate B1 inhomogeneity, spoiled gradient recalled echo (SPGR) images were collected using a fixed repetition time of 70 ms, flip angles of 45 and 90 degrees, and echo times of 4.8 and 10.4 ms. Selection of flip angles was based on the observation that the relative intensity changes in SPGR signals were very similar among different tissues at larger flip angles than the Ernst angle. Accordingly, spatial irregularity that was observed on a signal ratio map of the SPGR images acquired with these 2 flip angles was ascribed to inhomogeneity of the B1 field. Dual echo time was used to eliminate T 2 * effects. The ratio map that was acquired was scaled to provide an intensity correction map for SE images. Both phantom and volunteer studies were performed using a 3T magnetic resonance scanner to validate the method. In the phantom study, the uniformity of the T 1 -weighted SE image improved by 23%. Images of human heads also showed practically sufficient improvement in the image uniformity. The present method improves the image uniformity of high-field T 1 -weighted SE images. (author)

  6. The Usefulness of Readout-Segmented Echo-Planar Imaging (RESOLVE) for Bio-phantom Imaging Using 3-Tesla Clinical MRI.

    Science.gov (United States)

    Yoshimura, Yuuki; Kuroda, Masahiro; Sugiantoc, Irfan; Bamgbosec, Babatunde O; Miyahara, Kanae; Ohmura, Yuichi; Kurozumi, Akira; Matsushita, Toshi; Ohno, Seiichiro; Kanazawa, Susumu; Asaumi, Junichi

    2018-02-01

    Readout-segmented echo-planar imaging (RESOLVE) is a multi-shot echo-planar imaging (EPI) modality with k-space segmented in the readout direction. We investigated whether RESOLVE decreases the distortion and artifact in the phase direction and increases the signal-to-noise ratio (SNR) in phantoms image taken with 3-tesla (3T) MRI versus conventional EPI. We used a physiological saline phantom and subtraction mapping and observed that RESOLVE's SNR was higher than EPI's. Using RESOLVE, the combination of a special-purpose coil and a large-loop coil had a higher SNR compared to using only a head/neck coil. RESOLVE's image distortioas less than EPI's. We used a 120 mM polyethylene glycol phantom to examine the phase direction artifact.vThe range where the artifact appeared in the apparent diffusion coefficient (ADC) image was shorter with RESOLVE compared to EPI. We used RESOLVE to take images of a Jurkat cell bio-phantom: the cell-region ADC was 856×10-6mm2/sec and the surrounding physiological saline-region ADC was 2,951×10-6mm2/sec. The combination of RESOLVE and the 3T clinical MRI device reduced image distortion and improved SNR and the identification of accurate ADC values due to the phase direction artifact reduction. This combination is useful for obtaining accurate ADC values of bio-phantoms.

  7. Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2 *-weighted magnetic resonance imaging at 7 T.

    Science.gov (United States)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W; Yu, Qiang; Yang, Qianqian; Vegh, Viktor

    2017-04-01

    To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain. Magn Reson Med 77:1485-1494, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Characterization of echoes: A Dyson-series representation of individual pulses

    Science.gov (United States)

    Correia, Miguel R.; Cardoso, Vitor

    2018-04-01

    The ability to detect and scrutinize gravitational waves from the merger and coalescence of compact binaries opens up the possibility to perform tests of fundamental physics. One such test concerns the dark nature of compact objects: are they really black holes? It was recently pointed out that the absence of horizons—while keeping the external geometry very close to that of General Relativity—would manifest itself in a series of echoes in gravitational wave signals. The observation of echoes by LIGO/Virgo or upcoming facilities would likely inform us on quantum gravity effects or unseen types of matter. Detection of such signals is in principle feasible with relatively simple tools but would benefit enormously from accurate templates. Here we analytically individualize each echo waveform and show that it can be written as a Dyson series, for arbitrary effective potential and boundary conditions. We further apply the formalism to explicitly determine the echoes of a simple toy model: the Dirac delta potential. Our results allow to read off a few known features of echoes and may find application in the modeling for data analysis.

  9. [Role of MRI for detection and characterization of pulmonary nodules].

    Science.gov (United States)

    Sommer, G; Koenigkam-Santos, M; Biederer, J; Puderbach, M

    2014-05-01

    Due to physical and technical limitations, magnetic resonance imaging (MRI) has hitherto played only a minor role in image-based diagnostics of the lungs. However, as a consequence of important methodological developments during recent years, MRI has developed into a technically mature and clinically well-proven method for specific pulmonary questions. The purpose of this article is to provide an overview on the currently available sequences and techniques for assessment of pulmonary nodules and analyzes the clinical significance according to the current literature. The main focus is on the detection of lung metastases, the detection of primary pulmonary malignancies in high-risk individuals and the differentiation between pulmonary nodules of benign and malignant character. The MRI technique has a sensitivity of approximately 80 % for detection of malignant pulmonary nodules compared to the reference standard low-dose computed tomography (CT) and is thus somewhat inferior to CT. Advantages of MRI on the other hand are a higher specificity in differentiating malignant and benign pulmonary nodules and the absence of ionizing radiation exposure. A systematic use of MRI as a primary tool for detection and characterization of pulmonary nodules is currently not recommended due to insufficient data. The diagnostic potential of MRI for early detection and staging of malignant pulmonary diseases, however, seems promising. Therefore, further evaluation of MRI as a secondary imaging modality in clinical trials is highly warranted.

  10. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France); Hasboun, D. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France)]|[Dept. of Neurology, Paris VI Univ. (France); Bazin, B.; Samson, S.; Baulac, M. [Dept. of Neurology, Paris VI Univ. (France)

    1999-07-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  11. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    International Nuclear Information System (INIS)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C.; Hasboun, D.; Bazin, B.; Samson, S.; Baulac, M.

    1999-01-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  12. Whole brain, high resolution multiband spin-echo EPI fMRI at 7 T: A comparison with gradient-echo EPI using a color-word Stroop task

    NARCIS (Netherlands)

    Boyacioglu, R.; Schulz, J.; Müller, N.C.J.; Koopmans, P.J.; Barth, M.; Norris, David Gordon

    2014-01-01

    A whole brain, multiband spin-echo (SE) echo planar imaging (EPI) sequence employing a high spatial (1.5 mm isotropic) and temporal (TR of 2 s) resolution was implemented at 7 T. Its overall performance (tSNR, sensitivity and CNR) was assessed and compared to a geometrically matched gradient-echo

  13. Optimization of DSC MRI Echo Times for CBV Measurements Using Error Analysis in a Pilot Study of High-Grade Gliomas.

    Science.gov (United States)

    Bell, L C; Does, M D; Stokes, A M; Baxter, L C; Schmainda, K M; Dueck, A C; Quarles, C C

    2017-09-01

    The optimal TE must be calculated to minimize the variance in CBV measurements made with DSC MR imaging. Simulations can be used to determine the influence of the TE on CBV, but they may not adequately recapitulate the in vivo heterogeneity of precontrast T2*, contrast agent kinetics, and the biophysical basis of contrast agent-induced T2* changes. The purpose of this study was to combine quantitative multiecho DSC MRI T2* time curves with error analysis in order to compute the optimal TE for a traditional single-echo acquisition. Eleven subjects with high-grade gliomas were scanned at 3T with a dual-echo DSC MR imaging sequence to quantify contrast agent-induced T2* changes in this retrospective study. Optimized TEs were calculated with propagation of error analysis for high-grade glial tumors, normal-appearing white matter, and arterial input function estimation. The optimal TE is a weighted average of the T2* values that occur as a contrast agent bolus transverses a voxel. The mean optimal TEs were 30.0 ± 7.4 ms for high-grade glial tumors, 36.3 ± 4.6 ms for normal-appearing white matter, and 11.8 ± 1.4 ms for arterial input function estimation (repeated-measures ANOVA, P optimal TE values for high-grade gliomas, and mean values of all 3 ROIs were statistically significant. The optimal TE for the arterial input function estimation is much shorter; this finding implies that quantitative DSC MR imaging acquisitions would benefit from multiecho acquisitions. In the case of a single-echo acquisition, the optimal TE prescribed should be 30-35 ms (without a preload) and 20-30 ms (with a standard full-dose preload). © 2017 by American Journal of Neuroradiology.

  14. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chandarana, Hersh; Block, Kai T.; Winfeld, Matthew J.; Lala, Shailee V.; Mazori, Daniel; Giuffrida, Emalyn; Babb, James S.; Milla, Sarah S. [New York University Langone Medical Center, Department of Radiology, New York, NY (United States)

    2014-02-15

    To compare the image quality of contrast-enhanced abdominopelvic 3D fat-suppressed T1-weighted gradient-echo imaging with radial and conventional Cartesian k-space acquisition schemes in paediatric patients. Seventy-three consecutive paediatric patients were imaged at 1.5 T with sequential contrast-enhanced T1-weighted Cartesian (VIBE) and radial gradient echo (GRE) acquisition schemes with matching parameters when possible. Cartesian VIBE was acquired as a breath-hold or as free breathing in patients who could not suspend respiration, followed by free-breathing radial GRE in all patients. Two paediatric radiologists blinded to the acquisition schemes evaluated multiple parameters of image quality on a five-point scale, with higher score indicating a more optimal examination. Lesion presence or absence, conspicuity and edge sharpness were also evaluated. Mixed-model analysis of variance was performed to compare radial GRE and Cartesian VIBE. Radial GRE had significantly (all P < 0.001) higher scores for overall image quality, hepatic edge sharpness, hepatic vessel clarity and respiratory motion robustness than Cartesian VIBE. More lesions were detected on radial GRE by both readers than on Cartesian VIBE, with significantly higher scores for lesion conspicuity and edge sharpness (all P < 0.001). Radial GRE has better image quality and lesion conspicuity than conventional Cartesian VIBE in paediatric patients undergoing contrast-enhanced abdominopelvic MRI. (orig.)

  15. Detection of hyperacute parenchymal hemorrhage of the brain using echo-planar T2{sup *}-weighted and diffusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Wiesmann, M. [Dept. of Radiology, Medizinische Universitaet zu Luebeck (Germany); Mayer, T.E.; Yousry, I.; Brueckmann, H. [Dept. of Neuroradiology, Klinikum Grosshadern, Ludwig-Maximilians-Universitaet, Muenchen (Germany); Hamann, G.F. [Dept. of Neurology, Klinikum Grosshadern, Ludwig-Maximilians-Universitaet, Muenchen (Germany)

    2001-05-01

    We investigated the usefulness of echo-planar imaging (EPI) as well as T2{sup *}-weighted and diffusion-weighted MRI (DWI) to identify hyperacute hemorrhage (within 24 h after ictus) in the brain. Seven patients were examined 3.5 to 24 h after onset of symptoms using a whole-body 1.5-T MR system. Two diffusion-weighted sequences were run to obtain isotropic and anisotropic diffusion images. Apparent diffusion coefficients (ADC) were calculated from the isotropic diffusion images. All DWI images as well as the T2*-weighted EPI images showed the hematomas as either discrete, deeply hypointense homogeneous lesions, or as lesions of mixed signal intensity containing hypointense areas. We conclude that even in the early phase after hemorrhage, sufficient amounts of paramagnetic deoxyhemoglobin are present in intracerebral hemorrhages to cause hypointensity on EPI T2{sup *}-weighted and DWI images; thus, use of ultrafast EPI allows identification of intracerebral hemorrhage. (orig.)

  16. ECHO virus

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that can lead ...

  17. BOLD contrast fMRI of whole rodent tumour during air or carbogen breathing using echo-planar imaging at 1.5 T

    International Nuclear Information System (INIS)

    Landuyt, W.; Bogaert, W. van den; Lambin, P.; Hermans, R.; Bosmans, H.; Sunaert, S.; Beatse, E.; Farina, D.; Meijerink, M.; Zhang, H.; Marchal, G.

    2001-01-01

    The aim of this study was to evaluate the feasibility of functional MR imaging (fMRI) at 1.5 T, exploiting blood oxygenation level-dependent (BOLD) contrast, for detecting changes in whole-tumour oxygenation induced by carbogen (5% CO 2 +95% O 2 ) inhalation of the host. Adult WAG/Rij rats with rhabdomyosarcomas growing subcutaneously in the lower flank were imaged when tumours reached sizes between 1 and 11 cm 3 (n=12). Air and carbogen were alternatively supplied at 2 l/min using a snout mask. Imaging was done on a 1.5-T MR scanner using a T2*-weighted gradient-echo, echo-planar imaging (GE-EPI) sequence. Analysis of the whole-tumour EPI images was based on statistical parametric maps. Voxels with and without signal intensity changes (SIC) were recorded. Significance thresholds were set at p<0.05, corrected for multiple comparisons. In continuous air breathing condition, 3 of 12 tumours showed significant negative SIC and 1 tumour had a clear-cut positive SIC. The remaining tumours showed very little or no change. When switching to carbogen breathing, the SIC were significantly positive in 10 of 12 tumours. Negative SIC were present in 4 tumours, of which three were simultaneously characterised by positive SIC. The overall analysis indicated that 6 of the 12 tumours could be considered as strong positive responders to carbogen. Our research demonstrates the applicability of fMRI GE-EPI at 1.5 T to study whole-tumour oxygenation non-invasively. The observed negative SIC during air condition may reflect the presence of transient hypoxia during these measurements. Selection of tumours on the basis of their individual response to carbogen is possible, indicating a role of such non-invasive measurements for using tailor-made treatments. (orig.)

  18. Semiquantitative assessment of focal cartilage damage at 3 T MRI: A comparative study of dual echo at steady state (DESS) and intermediate-weighted (IW) fat suppressed fast spin echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Roemer, Frank W., E-mail: froemer@bu.edu [Quantitative Imaging Center (QIC), Department of Radiology, Boston University Medical Center, Boston, MA (United States); Department of Radiology, Klinikum Augsburg, Augsburg (Germany); Kwoh, C. Kent [Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine (United States); VA Pittsburgh Healthcare System (United States); Hannon, Michael J. [Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine (United States); Crema, Michel D. [Quantitative Imaging Center (QIC), Department of Radiology, Boston University Medical Center, Boston, MA (United States); Moore, Carolyn E. [Department of Nutrition and Food Sciences, Texas Woman' s University (United States); Jakicic, John M. [Department of Health and Physical Activity, University of Pittsburgh (United States); Green, Stephanie M. [Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine (United States); Guermazi, Ali [Quantitative Imaging Center (QIC), Department of Radiology, Boston University Medical Center, Boston, MA (United States)

    2011-11-15

    Purpose: The aim of the study was to compare semiquantitative assessment of focal cartilage damage using the dual echo at steady state (DESS)- and intermediate-weighted (IW) fat suppressed (fs) sequences at 3 T MRI. Methods: Included were 201 subjects aged 35-65 with frequent knee pain. MRI was performed with the same sequence protocol as in the Osteoarthritis Initiative (OAI): sagittal IW fs, triplanar DESS and coronal IW sequences. Cartilage status was scored according to the WORMS system using all five sequences. A total of 243 focal defects were detected. In an additional consensus reading, the lesions were evaluated side-by-side using only the sagittal DESS and IW fs sequences. Lesion conspicuity was graded from 0 to 3, intrachondral signal changes adjacent to the defect were recorded and the sequence that depicted the lesion with larger diameter was noted. Wilcoxon signed-rank tests, controlled for clustering by person, were used to examine differences between the sequences. Results: 37 (17.5%) of the scorable lesions were located in the medial tibio-femoral (TF), 48 (22.7%) in the lateral TF and 126 (59.7%) in the patello-femoral compartment. 82.5% were superficial and 17.5% full-thickness defects. Conspicuity was superior for the IW sequence (p < 0.001). The DESS sequence showed more associated intrachondral signal changes (p < 0.001). In 103 (48.8%) cases, the IW fs sequence depicted the lesions as being larger (p < 0.001). Conclusions: The IW fs sequence detected more and larger focal cartilage defects than the DESS. More intrachondral signal changes were observed with the DESS.

  19. Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer

    Science.gov (United States)

    Wetterling, Friedrich; Corteville, Dominique M.; Kalayciyan, Raffi; Rennings, Andreas; Konstandin, Simon; Nagel, Armin M.; Stark, Helmut; Schad, Lothar R.

    2012-07-01

    Sodium magnetic resonance imaging (23Na MRI) is a non-invasive technique which allows spatial resolution of the tissue sodium concentration (TSC) in the human body. TSC measurements could potentially serve to monitor early treatment success of chemotherapy on patients who suffer from whole body metastases. Yet, the acquisition of whole body sodium (23Na) images has been hampered so far by the lack of large resonators and the extremely low signal-to-noise ratio (SNR) achieved with existing resonator systems. In this study, a 23Na resonator was constructed for whole body 23Na MRI at 3T comprising of a 16-leg, asymmetrical birdcage structure with 34 cm height, 47.5 cm width and 50 cm length. The resonator was driven in quadrature mode and could be used either as a transceiver resonator or, since active decoupling was included, as a transmit-only resonator in conjunction with a receive-only (RO) surface resonator. The relative B1-field profile was simulated and measured on phantoms, and 3D whole body 23Na MRI data of a healthy male volunteer were acquired in five segments with a nominal isotropic resolution of (6 × 6 × 6) mm3 and a 10 min acquisition time per scan. The measured SNR values in the 23Na-MR images varied from 9 ± 2 in calf muscle, 15 ± 2 in brain tissue, 23 ± 2 in the prostate and up to 42 ± 5 in the vertebral discs. Arms, legs, knees and hands could also be resolved with applied resonator and short time-to-echo (TE) (0.5 ms) radial sequence. Up to fivefold SNR improvement was achieved through combining the birdcage with local RO surface coil. In conclusion, 23Na MRI of the entire human body provides sub-cm spatial resolution, which allows resolution of all major human body parts with a scan time of less than 60 min.

  20. Short-scan-time multi-slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging.

    Science.gov (United States)

    Callot, Virginie; Duhamel, Guillaume; Cozzone, Patrick J; Kober, Frank

    2008-10-01

    Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images

  1. MRI of acute cerebral infarction: a comparison of FLAIR and T2-weighted fast spin-echo imaging

    International Nuclear Information System (INIS)

    Noguchi, K.; Ogawa, T.; Inugami, A.; Fujita, H.; Hatazawa, J.; Shimosegawa, E.; Okudera, T.; Uemura, K.; Seto, H.

    1997-01-01

    Fluid-attenuated inversion-recovery (FLAIR) sequences have been reported to provide high sensitivity to a wide range of central nervous system diseases. To our knowledge, however, FLAIR sequences have not been used to study patients with acute cerebral infarcts. We evaluated the usefulness of FLAIR sequences in this context. FLAIR sequences were acquired on a 0.5 T superconducting unit within 8 h of the onset in 19 patients (aged 26-80 years) with a total of 23 ischaemic lesions. The images were reviewed retrospectively by three neuroradiologists, and the FLAIR images were compared with T2-weighted fast spin-echo images. All but one of the ischaemic lesions involving grey matter was clearly demonstrated on FLAIR images as increased signal intensity in cortical or central grey matter. FLAIR images were particularly useful for detecting the hyperacute cortical infarcts within 3 h of onset, which were not readily detected on the spin-echo images. In 9 of 11 patients with complete proximal occlusion, the distal portion of the cerebral artery was visible as an area of high signal intensity on FLAIR images. (orig.). With 4 figs., 1 tab

  2. Can cardiovascular MRI be used to more definitively characterize cardiac masses initially identified using echocardiography?

    Science.gov (United States)

    Rathi, Vikas K; Czajka, Anna T; Thompson, Diane V; Doyle, Mark; Tewatia, Tarun; Yamrozik, June; Williams, Ronald B; Biederman, Robert W W

    2018-05-01

    In diagnosing cardiac and paracardiac masses, cardiac MRI (CMR) has gained acceptance as the gold standard. CMR has been observed to be superior to echocardiography in characterizing soft-tissue structures and, specifically, in classifying cardiac masses. The aim of our study was to evaluate the association between mortality and cardiac or paracardiac masses initially identified by echocardiography (ECHO) and confirmed by CMR. Between January 2002 and August 2007, a total of 158 patients underwent both ECHO and CMR for the evaluation of cardiac masses that were equivocal or undefined by ECHO. The primary study endpoints were 5-year all-cause mortality and 5-year cardiac mortality. Causes of death as of April 1, 2015 were obtained from medical records or the National Death Index. Patients were analyzed according to mass type determined by CMR using the Kruskal-Wallis test, Kaplan-Meier curves, and the log-rank test. Over a mean duration of follow-up of 10.4 ± 2.9 years (range: 0.01-12 years) post-CMR, the overall all-cause mortality rate was 25.9% (41/158). Median age at death was 76 years and there were 21 females (51.2%). Mortality rates in the different classifications of cardiac masses by CMR were as follows: 20% (1/5) in patients with a Nondiagnostic CMR; 20% (1/5) in Other Diagnoses; 17.9% (7/39) in No Masses (includes Normal Anatomical Variants); 16.7% (3/18) in Benign Masses; 23.8% (15/63) in Fat; 50% (5/10) in Thrombus; and 61.5% (8/13) in Malignant Mass. The mean survival time in patients with No Mass (n = 39) was not significantly longer than patients with any type of cardiac mass (n = 114) (P = .16). No significant difference was found in age at death between patients when grouped by CMR classification (P = .40). However, among CMR-confirmed masses, there were some significant differences by mass classification type (P = .006). During the follow-up period, 26% (41/158) of patients died and 22% (9/41) of the deaths were cardiovascular

  3. Comparative study of image quality between axial T2-weighted BLADE and turbo spin-echo MRI of the upper abdomen on 3.0 T.

    Science.gov (United States)

    Zhang, Lin; Tian, ChunMei; Wang, PeiYuan; Chen, Liang; Mao, XiJin; Wang, ShanShan; Wang, Xu; Dong, JingMin; Wang, Bin

    2015-09-01

    To compare image quality of turbo spin-echo (TSE) with BLADE [which is also named periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER)] on magnetic resonance imaging (MRI) for upper abdomen. This study involved the retrospective evaluation of 103 patients (63 males, 40 females; age range 19-76 years; median age 53.8 years) who underwent 3.0 T MRI with both conventional TSE T2-weighted imaging (T2WI) and BLADE TSE T2WI. Two radiologists assessed respiratory motion, gastrointestinal peristalsis, and vascular pulsation artifacts, as well as the sharpness of the liver and pancreas edges. Scores for all magnetic resonance (MR) images were recorded. Wilcoxon's rank test was used to compare hierarchical data. Cohen's kappa coefficient was adopted to analyze interobserver consistency. Compared to TSE T2WI, BLADE TSE T2WI reduced all of the examined motion artifacts and increased the sharpness of the liver and pancreas edges (all P image quality.

  4. An analysis of the uncertainty and bias in DCE-MRI measurements using the spoiled gradient-recalled echo pulse sequence

    International Nuclear Information System (INIS)

    Subashi, Ergys; Choudhury, Kingshuk R.; Johnson, G. Allan

    2014-01-01

    Purpose: The pharmacokinetic parameters derived from dynamic contrast-enhanced (DCE) MRI have been used in more than 100 phase I trials and investigator led studies. A comparison of the absolute values of these quantities requires an estimation of their respective probability distribution function (PDF). The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. Methods: The variance in the SPGR signal intensity arises from quadrature detection and excitation flip angle inconsistency. The noise power was measured in 11 phantoms of contrast agent concentration in the range [0–1] mM (in steps of 0.1 mM) and in onein vivo acquisition of a tumor-bearing mouse. The distribution of the flip angle was determined in a uniform 10 mM CuSO 4 phantom using the spin echo double angle method. The PDF of a wide range of T1 values measured with the varying flip angle (VFA) technique was estimated through numerical simulations of the SPGR equation. The resultant uncertainty in contrast agent concentration was incorporated in the most common model of tracer exchange kinetics and the PDF of the derived pharmacokinetic parameters was studied numerically. Results: The VFA method is an unbiased technique for measuringT1 only in the absence of bias in excitation flip angle. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted uncertainty. The uncertainty in measuring K trans with SPGR pulse sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time (T1 0 ). The lowest achievable bias/uncertainty in estimating this parameter is approximately 20%–70% higher than the bias/uncertainty in the measurement of the pre-injection T1 map. The fractional volume parameters derived from the extended Tofts model were found to be

  5. MRI of the lumbar spine: comparison of 3D isotropic turbo spin-echo SPACE sequence versus conventional 2D sequences at 3.0 T.

    Science.gov (United States)

    Lee, Sungwon; Jee, Won-Hee; Jung, Joon-Yong; Lee, So-Yeon; Ryu, Kyeung-Sik; Ha, Kee-Yong

    2015-02-01

    Three-dimensional (3D) fast spin-echo sequence with variable flip-angle refocusing pulse allows retrospective alignments of magnetic resonance imaging (MRI) in any desired plane. To compare isotropic 3D T2-weighted (T2W) turbo spin-echo sequence (TSE-SPACE) with standard two-dimensional (2D) T2W TSE imaging for evaluating lumbar spine pathology at 3.0 T MRI. Forty-two patients who had spine surgery for disk herniation and had 3.0 T spine MRI were included in this study. In addition to standard 2D T2W TSE imaging, sagittal 3D T2W TSE-SPACE was obtained to produce multiplanar (MPR) images. Each set of MR images from 3D T2W TSE and 2D TSE-SPACE were independently scored for the degree of lumbar neural foraminal stenosis, central spinal stenosis, and nerve compression by two reviewers. These scores were compared with operative findings and the sensitivities were evaluated by McNemar test. Inter-observer agreements and the correlation with symptoms laterality were assessed with kappa statistics. The 3D T2W TSE and 2D TSE-SPACE had similar sensitivity in detecting foraminal stenosis (78.9% versus 78.9% in 32 foramen levels), spinal stenosis (100% versus 100% in 42 spinal levels), and nerve compression (92.9% versus 81.8% in 59 spinal nerves). The inter-observer agreements (κ = 0.849 vs. 0.451 for foraminal stenosis, κ = 0.809 vs. 0.503 for spinal stenosis, and κ = 0.681 vs. 0.429 for nerve compression) and symptoms correlation (κ = 0.449 vs. κ = 0.242) were better in 3D TSE-SPACE compared to 2D TSE. 3D TSE-SPACE with oblique coronal MPR images demonstrated better inter-observer agreements compared to 3D TSE-SPACE without oblique coronal MPR images (κ = 0.930 vs. κ = 0.681). Isotropic 3D T2W TSE-SPACE at 3.0 T was comparable to 2D T2W TSE for detecting foraminal stenosis, central spinal stenosis, and nerve compression with better inter-observer agreements and symptom correlation. © The Foundation Acta Radiologica 2014 Reprints and

  6. 3D Ultrashort TE MRI for Evaluation of Cartilaginous Endplate of Cervical Disk In Vivo: Feasibility and Correlation With Disk Degeneration in T2-Weighted Spin-Echo Sequence.

    Science.gov (United States)

    Kim, Yeo Ju; Cha, Jang Gyu; Shin, Yoon Sang; Chaudhari, Akshay S; Suh, Young Ju; Hwan Yoon, Seung; Gold, Garry E

    2018-05-01

    The purpose of this study was to evaluate the feasibility of 3D ultrashort TE (UTE) MRI in depicting the cartilaginous endplate (CEP) and its abnormalities and to investigate the association between CEP abnormalities and disk degeneration on T2-weighted spin-echo (SE) MR images in cervical disks in vivo. Eight healthy volunteers and 70 patients were examined using 3-T MRI with the 3D UTE cones trajectory technique (TR/TE, 16.1/0.032, 6.6). In the volunteer study, quantitative and qualitative assessments of CEP depiction were conducted for the 3D UTE and T2-weighted SE imaging. In the patient study, CEP abnormalities were analyzed. Intersequence agreement between the images obtained with the first-echo 3D UTE sequence and the images created by subtracting the second-echo from the first-echo 3D UTE sequence (subtracted 3D UTE) and the intraobserver and interobserver agreements for 3D UTE overall were also tested. The CEP abnormalities on the 3D UTE images correlated with the Miyazaki grading of the T2-weighted SE images. In the volunteer study, the CEP was well visualized on 3D UTE images but not on T2-weighted SE images (p evaluation of CEP abnormalities, intersequence agreements were substantial to almost perfect, intraobserver agreements were substantial to almost perfect, and interobserver agreements were moderate to substantial (p T2-weighted SE MRI.

  7. Effect of Task-Correlated Physiological Fluctuations and Motion in 2D and 3D Echo-Planar Imaging in a Higher Cognitive Level fMRI Paradigm.

    Science.gov (United States)

    Ladstein, Jarle; Evensmoen, Hallvard R; Håberg, Asta K; Kristoffersen, Anders; Goa, Pål E

    2016-01-01

    To compare 2D and 3D echo-planar imaging (EPI) in a higher cognitive level fMRI paradigm. In particular, to study the link between the presence of task-correlated physiological fluctuations and motion and the fMRI contrast estimates from either 2D EPI or 3D EPI datasets, with and without adding nuisance regressors to the model. A signal model in the presence of partly task-correlated fluctuations is derived, and predictions for contrast estimates with and without nuisance regressors are made. Thirty-one healthy volunteers were scanned using 2D EPI and 3D EPI during a virtual environmental learning paradigm. In a subgroup of 7 subjects, heart rate and respiration were logged, and the correlation with the paradigm was evaluated. FMRI analysis was performed using models with and without nuisance regressors. Differences in the mean contrast estimates were investigated by analysis-of-variance using Subject, Sequence, Day, and Run as factors. The distributions of group level contrast estimates were compared. Partially task-correlated fluctuations in respiration, heart rate and motion were observed. Statistically significant differences were found in the mean contrast estimates between the 2D EPI and 3D EPI when using a model without nuisance regressors. The inclusion of nuisance regressors for cardiorespiratory effects and motion reduced the difference to a statistically non-significant level. Furthermore, the contrast estimate values shifted more when including nuisance regressors for 3D EPI compared to 2D EPI. The results are consistent with 3D EPI having a higher sensitivity to fluctuations compared to 2D EPI. In the presence partially task-correlated physiological fluctuations or motion, proper correction is necessary to get expectation correct contrast estimates when using 3D EPI. As such task-correlated physiological fluctuations or motion is difficult to avoid in paradigms exploring higher cognitive functions, 2D EPI seems to be the preferred choice for higher

  8. Differentiation between grade 3 and grade 4 articular cartilage defects of the knee: Fat-suppressed proton density-weighted versus fat-suppressed three-dimensional gradient-echo MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Yeon; Jee, Won-Hee; Kim, Sun Ki (Dept. of Radiology, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea)), e-mail: whjee@catholic.ac.kr; Koh, In-Jun (Dept. of Joint Reconstruction Center, Seoul National Univ. Bundang Hospital, Seoul (Korea)); Kim, Jung-Man (Dept. of Orthopedic Surgery, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea))

    2010-05-15

    Background: Fat-suppressed (FS) proton density (PD)-weighted magnetic resonance imaging (MRI) and FS three-dimensional (3D) gradient-echo imaging such as spoiled gradient-recalled (SPGR) sequence have been established as accurate methods for detecting articular cartilage defects. Purpose: To retrospectively compare the diagnostic efficacy between FS PD-weighted and FS 3D gradient-echo MRI for differentiating between grade 3 and grade 4 cartilage defects of the knee with arthroscopy as the standard of reference. Material and Methods: Twenty-one patients who had grade 3 or 4 cartilage defects in medial femoral condyle at arthroscopy and knee MRI were included in this study: grade 3, >50% cartilage defects; grade 4, full thickness cartilage defects exposed to the bone. Sagittal FS PD-weighted MR images and FS 3D gradient-echo images with 1.5 T MR images were independently graded for the cartilage abnormalities of medial femoral condyle by two musculoskeletal radiologists. Statistical analysis was performed by Fisher's exact test. Inter-observer agreement in grading of cartilage was assessed using ? coefficients. Results: Arthroscopy revealed grade 3 defects in 17 patients and grade 4 defects in 4 patients in medial femoral condyles. For FS 3D gradient-echo images grade 3 defects were graded as grade 3 (n=15) and grade 4 (n=2), and all grade 4 defects (n=4) were correctly graded. However, for FS PD-weighted MR images all grade 3 defects were misinterpreted as grade 1 (n=1) and grade 4 (n=16), whereas all grade 4 defects (n=4) were correctly graded. FS 3D gradient-echo MRI could differentiate grade 3 from grade 4 defects (P=0.003), whereas FS PD-weighted imaging could not (P=1.0). Inter-observer agreement was substantial (?=0.70) for grading of cartilage using FS PD-weighted imaging, whereas it was moderate (?=0.46) using FS 3D gradient-echo imaging. Conclusion: FS 3D gradient-echo MRI is more helpful for differentiating between grade 3 and grade 4 cartilage

  9. Geometrically undistorted MRI in the presence of field inhomogeneities using compressed sensing accelerated broadband 3D phase encoded turbo spin-echo imaging

    International Nuclear Information System (INIS)

    Van Gorp, Jetse S; Bakker, Chris J G; Bouwman, Job G; Zijlstra, Frank; Seevinck, Peter R; Smink, Jouke

    2015-01-01

    In this study, we explore the potential of compressed sensing (CS) accelerated broadband 3D phase-encoded turbo spin-echo (3D-PE-TSE) for the purpose of geometrically undistorted imaging in the presence of field inhomogeneities. To achieve this goal 3D-PE-SE and 3D-PE-TSE sequences with broadband rf pulses and dedicated undersampling patterns were implemented on a clinical scanner. Additionally, a 3D multi-spectral spin-echo (ms3D-SE) sequence was implemented for reference purposes. First, we demonstrated the influence of susceptibility induced off-resonance effects on the spatial encoding of broadband 3D-SE, ms3D-SE, 3D-PE-SE and 3D-PE-TSE using a grid phantom containing a titanium implant (Δχ = 182 ppm) with x-ray CT as a gold standard. These experiments showed that the spatial encoding of 3D-PE-(T)SE was unaffected by susceptibility induced off-resonance effects, which caused geometrical distortions and/or signal hyper-intensities in broadband 3D-SE and, to a lesser extent, in ms3D-SE frequency encoded methods. Additionally, an SNR analysis was performed and the temporally resolved signal of 3D-PE-(T)SE sequences was exploited to retrospectively decrease the acquisition bandwidth and obtain field offset maps. The feasibility of CS acceleration was studied retrospectively and prospectively for the 3D-PE-SE sequence using an existing CS algorithm adapted for the reconstruction of 3D data with undersampling in all three phase encoded dimensions. CS was combined with turbo-acceleration by variable density undersampling and spherical stepwise T 2 weighting by randomly sorting consecutive echoes in predefined spherical k-space layers. The CS-TSE combination resulted in an overall acceleration factor of 60, decreasing the original 3D-PE-SE scan time from 7 h to 7 min. Finally, CS accelerated 3D-PE-TSE in vivo images of a titanium screw were obtained within 10 min using a micro-coil demonstrating the feasibility of geometrically undistorted MRI near severe

  10. Inter- and intra-rater reliability of patellofemoral kinematic and contact area quantification by fast spin echo MRI and correlation with cartilage health by quantitative T1ρ MRI.

    Science.gov (United States)

    Lau, Brian C; Thuillier, Daniel U; Pedoia, Valentina; Chen, Ellison Y; Zhang, Zhihong; Feeley, Brian T; Souza, Richard B

    2016-01-01

    Patellar maltracking is a leading cause of patellofemoral pain syndrome (PFPS). The aim of this study was to determine the inter- and intra-rater reliability of a semi-automated program for magnetic resonance imaging (MRI) based patellofemoral kinematics. Sixteen subjects (10 with PFPS [mean age 32.3; SD 5.2; eight females] and six controls without PFPS 19 [mean age 28.6; SD 2.8; three females]) participated in the study. One set of T2-weighted, fat-saturated fast spin-echo (FSE) MRIs were acquired from each subject in full extension and 30° of knee flexion. MRI including axial T1ρ relaxation time mapping sequences was also performed on each knee. Following image acquisitions, regions of interest for kinematic MRI, and patellar and trochlear cartilage were segmented and quantified with in-house designed spline- based MATLAB semi-automated software. Intraclass Correlations Coefficients (ICC) of calculated kinematic parameters were good to excellent, ICC > 0.8 in patellar flexion, rotation, tilt, and translation (anterior -posterior, medial -lateral, and superior -inferior), and contact area translation. Only patellar tilt in the flexed position and motion from extended to flexed state was significantly different between PFPS and control patients (p=0.002 and p=0.006, respectively). No significant correlations were identified between patellofemoral kinematics and contact area with T1ρ relaxation times. A semi-automated, spline-based kinematic MRI technique for patellofemoral kinematic and contact area quantification is highly reproducible with the potential to help better understand the role of patellofemoral maltracking in PFPS and other knee disorders. Level IV. Published by Elsevier B.V.

  11. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria.

    Science.gov (United States)

    Miller, G Wilson; Eames, Matthew; Snell, John; Aubry, Jean-François

    2015-05-01

    Transcranial magnetic resonance-guided focused ultrasound (TcMRgFUS) brain treatment systems compensate for skull-induced beam aberrations by adjusting the phase and amplitude of individual ultrasound transducer elements. These corrections are currently calculated based on a preacquired computed tomography (CT) scan of the patient's head. The purpose of the work presented here is to demonstrate the feasibility of using ultrashort echo-time magnetic resonance imaging (UTE MRI) instead of CT to calculate and apply aberration corrections on a clinical TcMRgFUS system. Phantom experiments were performed in three ex-vivo human skulls filled with tissue-mimicking hydrogel. Each skull phantom was imaged with both CT and UTE MRI. The MR images were then segmented into "skull" and "not-skull" pixels using a computationally efficient, threshold-based algorithm, and the resulting 3D binary skull map was converted into a series of 2D virtual CT images. Each skull was mounted in the head transducer of a clinical TcMRgFUS system (ExAblate Neuro, Insightec, Israel), and transcranial sonications were performed using a power setting of approximately 750 acoustic watts at several different target locations within the electronic steering range of the transducer. Each target location was sonicated three times: once using aberration corrections calculated from the actual CT scan, once using corrections calculated from the MRI-derived virtual CT scan, and once without applying any aberration correction. MR thermometry was performed in conjunction with each 10-s sonication, and the highest single-pixel temperature rise and surrounding-pixel mean were recorded for each sonication. The measured temperature rises were ∼ 45% larger for aberration-corrected sonications than for noncorrected sonications. This improvement was highly significant (p skull-induced ultrasound aberration corrections. Their results suggest that UTE MRI could be used instead of CT to implement such corrections on

  12. Differential diagnosis of pituitary adenomas and Rathke's cleft cysts by diffusion-weighted MRI using single-shot fast spin echo technique

    International Nuclear Information System (INIS)

    Abe, Takumi; Izumiyama, Hitoshi; Fukuda, Ataru; Tanioka, Daisuke; Kunii, Norihiko; Komatsu, Daisuke; Fujita, Shogo; Ukisu, Ryutaro; Moritani, Toshio

    2002-01-01

    The purpose of the present study was to prospectively evaluate the diagnostic ability of diffusion-weighted magnetic resonance imaging (DWI) using single-shot fast spin echo (SSFSE) technique to discriminate pituitary adenomas from Rathke's cleft cysts. DWIs were obtained from 40 patients with pathologically proven pituitary macroadenomas and 15 patients with proven Rathke's cleft cysts. Pituitary adenomas were divided into 27 cases with solid components alone, five with non-hemorrhagic large cysts, and eight with intratumoral hemorrhage. On SSFSE DWI, solid components of pituitary adenomas revealed iso or slightly increased intensity and intratumoral hemorrhage showed higher intensity than normal brain parenchyma, whereas Rathke's cleft cysts and intratumoral cysts demonstrated very low intensity. SSFSE DWI did not display the susceptibility artifacts that are seen close to the skull base and sinonasal cavities on echo planar diffusion imaging. On the basis of our preliminary findings, DWI may enable us to differentiate pituitary adenomas with only solid components and hemorrhagic pituitary adenomas appearing hyperintense on T1-weighted images from Rathke's cleft cysts without administration of gadolinium-DTPA. SSFSE DWI appears to be a useful technique for characterizing pituitary diseases without the susceptibility artifacts. Our study is the first report to demonstrate the identification of pituitary disorders on SSFSE DWI. (author)

  13. Differential diagnosis of pituitary adenomas and Rathke's cleft cysts by diffusion-weighted MRI using single-shot fast spin echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Takumi; Izumiyama, Hitoshi; Fukuda, Ataru; Tanioka, Daisuke; Kunii, Norihiko; Komatsu, Daisuke; Fujita, Shogo; Ukisu, Ryutaro; Moritani, Toshio [Showa Univ., Tokyo (Japan). School of Medicine

    2002-09-01

    The purpose of the present study was to prospectively evaluate the diagnostic ability of diffusion-weighted magnetic resonance imaging (DWI) using single-shot fast spin echo (SSFSE) technique to discriminate pituitary adenomas from Rathke's cleft cysts. DWIs were obtained from 40 patients with pathologically proven pituitary macroadenomas and 15 patients with proven Rathke's cleft cysts. Pituitary adenomas were divided into 27 cases with solid components alone, five with non-hemorrhagic large cysts, and eight with intratumoral hemorrhage. On SSFSE DWI, solid components of pituitary adenomas revealed iso or slightly increased intensity and intratumoral hemorrhage showed higher intensity than normal brain parenchyma, whereas Rathke's cleft cysts and intratumoral cysts demonstrated very low intensity. SSFSE DWI did not display the susceptibility artifacts that are seen close to the skull base and sinonasal cavities on echo planar diffusion imaging. On the basis of our preliminary findings, DWI may enable us to differentiate pituitary adenomas with only solid components and hemorrhagic pituitary adenomas appearing hyperintense on T1-weighted images from Rathke's cleft cysts without administration of gadolinium-DTPA. SSFSE DWI appears to be a useful technique for characterizing pituitary diseases without the susceptibility artifacts. Our study is the first report to demonstrate the identification of pituitary disorders on SSFSE DWI. (author)

  14. The maturity characterization of orange fruit by using high frequency ultrasonic echo pulse method

    International Nuclear Information System (INIS)

    Aboudaoud, I; Faiz, B; Aassif, E; Izbaim, D; Abassi, D; Malainine, M; Azergui, M; Moudden, A

    2012-01-01

    In this present work, we develop a new ultrasonic echo pulse method in order to study the feasibility of maturity assessment of orange fruit. This study concerns two varieties of orange (Navel and Mandarin) which are the most harvested in the region of Souss-Massa-Drāa in Morocco. We worked in the range of high frequencies by the means of a focusing transducer with 20MHz as a central frequency. By taking into account the strong attenuation of the ultrasounds in the texture of fruits and vegetables, we limited our study only to the external layer of orange peel. This control is based mainly on the measure of the ultrasonic parameters eventually velocity and attenuation in order to check the aptitude of this technique to detect the maturity degree of the fruit without passing by penetrometric and biochemical measurements which are generally destructives but the mostly correlated with human perception concerning the firmness of the fruit.

  15. Closed-form expressions for flip angle variation that maximize total signal in T1-weighted rapid gradient echo MRI.

    Science.gov (United States)

    Drobnitzky, Matthias; Klose, Uwe

    2017-03-01

    Magnetization-prepared rapid gradient-echo (MPRAGE) sequences are commonly employed for T1-weighted structural brain imaging. Following a contrast preparation radiofrequency (RF) pulse, the data acquisition proceeds under nonequilibrium conditions of the relaxing longitudinal magnetization. Variation of the flip angle can be used to maximize total available signal. Simulated annealing or greedy algorithms have so far been published to numerically solve this problem, with signal-to-noise ratios optimized for clinical imaging scenarios by adhering to a predefined shape of the signal evolution. We propose an unconstrained optimization of the MPRAGE experiment that employs techniques from resource allocation theory. A new dynamic programming solution is introduced that yields closed-form expressions for optimal flip angle variation. Flip angle series are proposed that maximize total transverse magnetization (Mxy) for a range of physiologic T1 values. A 3D MPRAGE sequence is modified to allow for a controlled variation of the excitation angle. Experiments employing a T1 contrast phantom are performed at 3T. 1D acquisitions without phase encoding permit measurement of the temporal development of Mxy. Image mean signal and standard deviation for reference flip angle trains are compared in 2D measurements. Signal profiles at sharp phantom edges are acquired to access image blurring related to nonuniform Mxy development. A novel closed-form expression for flip angle variation is found that constitutes the optimal policy to reach maximum total signal. It numerically equals previously published results of other authors when evaluated under their simplifying assumptions. Longitudinal magnetization (Mz) is exhaustively used without causing abrupt changes in the measured MR signal, which is a prerequisite for artifact free images. Phantom experiments at 3T verify the expected benefit for total accumulated k-space signal when compared with published flip angle series. Describing

  16. Comparison of 3D turbo spin-echo SPACE sequences with conventional 2D MRI sequences to assess the shoulder joint

    Energy Technology Data Exchange (ETDEWEB)

    Kloth, Jost Karsten, E-mail: jost.kloth@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany); Winterstein, Marianne, E-mail: marianne.winterstein@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany); Akbar, Michael, E-mail: michael.akbar@med.uni-heidelberg.de [Orthopedic and Trauma Surgery, University Hospital Heidelberg, Schlierbacher Landstraße 200a, D-69118 Heidelberg (Germany); Meyer, Esther, E-mail: esther.meyer@siemens.com [Siemens Healthcare, Erlangen (Germany); Paul, Dominik, E-mail: dominik.paul@siemens.com [Siemens Healthcare, Erlangen (Germany); Kauczor, Haus-Ulrich, E-mail: hans-ulrich.kauczor@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany); Weber, Marc-André, E-mail: marcandre.weber@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany)

    2014-10-15

    Highlights: • 3D SPACE and conventional 2D TSE MRI for assessment of the shoulder joint were compared. • Concordance for most pathologys was substantial to almost perfect. • Examination time could be reduced up to 8 min (27%). • Regarding rotator cuff injuries an additional sagittal T2w TSE sequence in 3D protocol is recommended. - Abstract: Purpose: To determine the accuracy and reliability of three-dimensional (3D) T1- and proton density (PD)-weighted turbo spin-echo (TSE) sampling perfection with application-optimized contrasts using different flip-angle evolution (SPACE) compared with conventional 2D sequences in assessment of the shoulder-joint. Materials and methods: Ninety-three subjects were examined on a 3-T MRI system with both conventional 2D-TSE sequences in T1-, T2- and PD-weighting and 3D SPACE sequences in T1- and PD-weighting. All examinations were assessed independently by two reviewers for common pathologies of the shoulder-joint. Agreement between 2D- and 3D-sequences and inter-observer-agreement was evaluated using kappa-statistics. Results: Using conventional 2D TSE sequences as standard of reference, sensitivity, specificity, and accuracy values of 3D SPACE were 81.8%, 95.1%, and 93.5% for injuries of the supraspinatus-tendon (SSP), 81.3%, 93.5%, and 91.4% for the cartilage layer and 82.4%, 98.5%, and 97.5% for the long biceps tendon. Concordance between 2D and 3D was almost perfect for tendinopathies of the SSP (κ = 0.85), osteoarthritis (κ = 1), luxation of the biceps tendon (κ = 1) and adjacent bone marrow (κ = 0.92). Inter-observer-agreement was generally higher for conventional 2D TSE sequences (κ, 0.23–1.0), when compared to 3D SPACE sequences (κ, −0.33 to 1.0) except for disorders of the long biceps tendon and supraspinatus tendon rupture. Conclusion: Because of substantial and almost perfect concordance with conventional 2D TSE sequences for common shoulder pathologies, MRI examination-time can be reduced by nearly 40

  17. Updates in MRI characterization of the thymus in myasthenic patients.

    Science.gov (United States)

    Popa, G A; Preda, E M; Scheau, C; Vilciu, C; Lupescu, I G

    2012-06-12

    To evaluate the imaging appearance of the thymus in the myasthenic patients by using chemical shift magnetic resonance imaging, and, to correlate the chemical shift ratio (CSR) with pathologic findings after surgical excision. In the past year, a total of 11 myasthenic patients (4 males, 7 females; age range of 26-65 years), have been investigated by MRI centered at the thymic lodge. Our protocol included a Dual-Echo technique, T1-weighted In-phase/Opposed-phase MR images in all patients. A chemical shift ratio (CSR) was calculated by comparing the signal intensity of the thymus gland with that of the chest wall muscle for quantitative analysis. For this purpose, we have used standard region-of-interest electronic cursors at a slice level of the maximum axial surface of the thymus. We have identified two patients groups: a thymic hyperplasia group and a thymic tumoral group. With the decrease in the signal intensity of the thymus gland at chemical shift, the MR imaging was evident only in the hyperplasia group. The mean CSR in the hyperplasia group was considerably lower than that in the tumor group, 0,4964 ± 0,1841, compared with 1,0398 ± 0,0244. The difference in CSR between the hyperplasia and tumor groups was statistically significant (P=0,0028). MR imaging using T1-weighted In-phase/Opposed-phase images could be a useful diagnostic tool in the preoperative assessment of the thymic lodge and may help differentiate thymic hyperplasia from tumors of the thymus gland.

  18. Rapid Gradient-Echo Imaging

    Science.gov (United States)

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  19. Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Dournes, Gael [University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux (France); INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux (France); CHU de Bordeaux, Service d' Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d' Exploration Fonctionnelle Respiratoire, Pessac (France); Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, U1045, Universite de Bordeaux, Bordeaux (France); Menut, Fanny [CHU de Bordeaux, Service d' Imagerie de la Femme et de l' Enfant, Unite de Pneumologie pediatrique, Bordeaux (France); Macey, Julie; Montaudon, Michel; Berger, Patrick; Laurent, Francois [University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux (France); INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux (France); CHU de Bordeaux, Service d' Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d' Exploration Fonctionnelle Respiratoire, Pessac (France); Fayon, Michael [University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux (France); INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux (France); CHU de Bordeaux, Service d' Imagerie de la Femme et de l' Enfant, Unite de Pneumologie pediatrique, Bordeaux (France); Chateil, Jean-Francois [CHU de Bordeaux, Service d' Imagerie de la Femme et de l' Enfant, Unite de Pneumologie pediatrique, Bordeaux (France); University of Bordeaux, Centre de Resonance Magnetique des Systemes Biologiques, Bordeaux (France); Salel, Marjorie; Corneloup, Olivier [University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux (France); CHU de Bordeaux, Service d' Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d' Exploration Fonctionnelle Respiratoire, Pessac (France)

    2016-11-15

    We hypothesized that non-contrast-enhanced PETRA (pointwise encoding time reduction with radial acquisition) MR (magnetic resonance) sequencing could be an alternative to unenhanced computed tomography (CT) in assessing cystic fibrosis (CF) lung structural alterations, as well as compared agreements and concordances with those of conventional T1-weighted and T2-weighted sequences. Thirty consecutive CF patients completed both CT and MRI the same day. No contrast injection was used. Agreement in identifying structural alterations was evaluated at the segmental level using a kappa test. Intraclass correlation coefficients (ICC) and Bland-Altman analysis were used to assess concordances and reproducibility in Helbich-Bhalla disease severity scoring. Agreement between PETRA and CT was higher than that of T1- or T2-weighted sequences, notably in assessing the segmental presence of bronchiectasis (Kappa = 0.83; 0.51; 0.49, respectively). The concordance in Helbich-Bhalla scores was very good using PETRA (ICC = 0.97), independently from its magnitude (mean difference (MD) = -0.3 [-2.8; 2.2]), whereas scoring was underestimated using both conventional T1 and T2 sequences (MD = -3.6 [-7.4; 0.1]) and MD = -4.6 [-8.2; -1.0], respectively. Intra- and interobserver reproducibility were very good for all imaging modalities (ICC = 0.86-0.98). PETRA showed higher agreement in describing CF lung morphological changes than that of conventional sequences, whereas the Helbich-Bhalla scoring matched closely with that of CT. (orig.)

  20. EchoSeed Model 6733 Iodine-125 brachytherapy source: Improved dosimetric characterization using the MCNP5 Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Mosleh-Shirazi, M. A.; Hadad, K.; Faghihi, R.; Baradaran-Ghahfarokhi, M.; Naghshnezhad, Z.; Meigooni, A. S. [Center for Research in Medical Physics and Biomedical Engineering and Physics Unit, Radiotherapy Department, Shiraz University of Medical Sciences, Shiraz 71936-13311 (Iran, Islamic Republic of); Radiation Research Center and Medical Radiation Department, School of Engineering, Shiraz University, Shiraz 71936-13311 (Iran, Islamic Republic of); Comprehensive Cancer Center of Nevada, Las Vegas, Nevada 89169 (United States)

    2012-08-15

    This study primarily aimed to obtain the dosimetric characteristics of the Model 6733 {sup 125}I seed (EchoSeed) with improved precision and accuracy using a more up-to-date Monte-Carlo code and data (MCNP5) compared to previously published results, including an uncertainty analysis. Its secondary aim was to compare the results obtained using the MCNP5, MCNP4c2, and PTRAN codes for simulation of this low-energy photon-emitting source. The EchoSeed geometry and chemical compositions together with a published {sup 125}I spectrum were used to perform dosimetric characterization of this source as per the updated AAPM TG-43 protocol. These simulations were performed in liquid water material in order to obtain the clinically applicable dosimetric parameters for this source model. Dose rate constants in liquid water, derived from MCNP4c2 and MCNP5 simulations, were found to be 0.993 cGyh{sup -1} U{sup -1} ({+-}1.73%) and 0.965 cGyh{sup -1} U{sup -1} ({+-}1.68%), respectively. Overall, the MCNP5 derived radial dose and 2D anisotropy functions results were generally closer to the measured data (within {+-}4%) than MCNP4c and the published data for PTRAN code (Version 7.43), while the opposite was seen for dose rate constant. The generally improved MCNP5 Monte Carlo simulation may be attributed to a more recent and accurate cross-section library. However, some of the data points in the results obtained from the above-mentioned Monte Carlo codes showed no statistically significant differences. Derived dosimetric characteristics in liquid water are provided for clinical applications of this source model.

  1. Detection of optic nerve atrophy following a single episode of unilateral optic neuritis by MRI using a fat-saturated short-echo fast FLAIR sequence

    International Nuclear Information System (INIS)

    Hickman, S.J.; Brex, P.A.; Silver, N.C.; Barker, G.J.; Miller, D.H.; Brierley, C.M.H.; Compston, D.A.S.; Scolding, N.J.; Moseley, I.F.; Plant, G.T.

    2001-01-01

    We describe an MRI technique for quantifying optic nerve atrophy resulting from a single episode of unilateral optic neuritis. We imaged 17 patients, with a median time since onset of optic neuritis of 21 months (range 3-81 months), using a coronal-oblique fat-saturated short-echo fast fluid-attenuated inversion-recovery (sTE fFLAIR) sequence. The mean cross-sectional area of the intraorbital portion of the optic nerves was calculated by a blinded observer from five consecutive 3 mm slices from the orbital apex forwards using a semiautomated contouring technique and compared with data from 16 controls. The mean optic nerve area was 11.2mm 2 in the affected eye of the patients, 12.9mm 2 in the contralateral eye (P = 0.006 compared to the affected eye) and 12.8mm 2 in controls (P = 0.03 compared to the affected eyes). There was a significant negative correlation between disease duration and the size of the affected optic nerve (r = -0.59, P = 0.012). The measurement coefficient of variation was 4.8 %. The sTE fFLAIR sequence enables measurement of optic nerve area with sufficient reproducibility to show optic nerve atrophy following a single episode of unilateral optic neuritis. The correlation of increasing optic nerve atrophy with disease duration would be consistent with ongoing axonal loss in a persistently demyelinated lesion, or Wallerian degeneration following axonal damage during the acute inflammatory phase. (orig.)

  2. Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multi-echo 3-D stack-of-radial MRI technique.

    Science.gov (United States)

    Armstrong, Tess; Ly, Karrie V; Murthy, Smruthi; Ghahremani, Shahnaz; Kim, Grace Hyun J; Calkins, Kara L; Wu, Holden H

    2018-05-04

    In adults, noninvasive chemical shift encoded Cartesian magnetic resonance imaging (MRI) and single-voxel magnetic resonance (MR) spectroscopy (SVS) accurately quantify hepatic steatosis but require breath-holding. In children, especially young and sick children, breath-holding is often limited or not feasible. Sedation can facilitate breath-holding but is highly undesirable. For these reasons, there is a need to develop free-breathing MRI technology that accurately quantifies steatosis in all children. This study aimed to compare non-sedated free-breathing multi-echo 3-D stack-of-radial (radial) MRI versus standard breath-holding MRI and SVS techniques in a group of children for fat quantification with respect to image quality, accuracy and repeatability. Healthy children (n=10, median age [±interquartile range]: 10.9 [±3.3] years) and overweight children with nonalcoholic fatty liver disease (NAFLD) (n=9, median age: 15.2 [±3.2] years) were imaged at 3 Tesla using free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS. Acquisitions were performed twice to assess repeatability (within-subject mean difference, MD within ). Images and hepatic proton-density fat fraction (PDFF) maps were scored for image quality. Free-breathing and breath-holding PDFF were compared using linear regression (correlation coefficient, r and concordance correlation coefficient, ρ c ) and Bland-Altman analysis (mean difference). Phepatic PDFF measurements and improved image quality, compared to standard breath-holding MR techniques.

  3. Comparative diagnostic performance of multidetector computed tomography and MRI for characterization of pancreatic cystic lesions

    International Nuclear Information System (INIS)

    Moon, Sung Min; Shin, Sang Soo; Park, Jin Gyoon; Jeong, Yong Yeon

    2015-01-01

    To compare the diagnostic performance of multidetector computed tomography (MDCT) and magnetic resonance imaging (MRI) in characterization of pancreatic cystic lesions. We conducted a retrospective study on 34 patients with histopathologically proven cystic pancreatic lesions who underwent both preoperative MDCT and MRI. CT and MRI were independently evaluated for differentiating mucinous vs. non-mucinous lesions, differentiating aggressive vs. non-aggressive lesion, analyzing morphological features, and evaluating specific leading diagnoses. Sensitivity, specificity, and accuracy were determined. Competency assessment of lesional morphology analysis was performed using the kappa values of the 2 tests. The sensitivity, specificity, and accuracy of MRI for differentiating mucinous vs. non-mucinous lesions were higher than CT (p = 0.03). For differentiating aggressiveness, the sensitivity of MRI was better than CT, but the specificity of CT was better than MRI. In evaluation of morphologic features, MRI showed better performance in characterization of septa and wall. Otherwise, the 2 modalities showed similarly good performance. MRI was better than CT in determining a specific diagnosis (58.8% vs. 47.2%, respectively). CT and MRI are reasonable diagnostic methods for characterization of pancreatic cystic lesions. However, MRI enables more confident assessment than CT in differentiating mucinous vs. non-mucinous lesions and characterization of the septa and wall

  4. Clinical Evaluation of Zero-Echo-Time Attenuation Correction for Brain 18F-FDG PET/MRI: Comparison with Atlas Attenuation Correction.

    Science.gov (United States)

    Sekine, Tetsuro; Ter Voert, Edwin E G W; Warnock, Geoffrey; Buck, Alfred; Huellner, Martin; Veit-Haibach, Patrick; Delso, Gaspar

    2016-12-01

    Accurate attenuation correction (AC) on PET/MR is still challenging. The purpose of this study was to evaluate the clinical feasibility of AC based on fast zero-echo-time (ZTE) MRI by comparing it with the default atlas-based AC on a clinical PET/MR scanner. We recruited 10 patients with malignant diseases not located on the brain. In all patients, a clinically indicated whole-body 18 F-FDG PET/CT scan was acquired. In addition, a head PET/MR scan was obtained voluntarily. For each patient, 2 AC maps were generated from the MR images. One was atlas-AC, derived from T1-weighted liver acquisition with volume acceleration flex images (clinical standard). The other was ZTE-AC, derived from proton-density-weighted ZTE images by applying tissue segmentation and assigning continuous attenuation values to the bone. The AC map generated by PET/CT was used as a silver standard. On the basis of each AC map, PET images were reconstructed from identical raw data on the PET/MR scanner. All PET images were normalized to the SPM5 PET template. After that, these images were qualified visually and quantified in 67 volumes of interest (VOIs; automated anatomic labeling, atlas). Relative differences and absolute relative differences between PET images based on each AC were calculated. 18 F-FDG uptake in all 670 VOIs and generalized merged VOIs were compared using a paired t test. Qualitative analysis shows that ZTE-AC was robust to patient variability. Nevertheless, misclassification of air and bone in mastoid and nasal areas led to the overestimation of PET in the temporal lobe and cerebellum (%diff of ZTE-AC, 2.46% ± 1.19% and 3.31% ± 1.70%, respectively). The |%diff| of all 670 VOIs on ZTE was improved by approximately 25% compared with atlas-AC (ZTE-AC vs. atlas-AC, 1.77% ± 1.41% vs. 2.44% ± 1.63%, P PET in regions near the skull base. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  5. Echo project

    DEFF Research Database (Denmark)

    Gfader, Verina; Carson, Rebecca; Kraus, Chris

    2016-01-01

    team to both present the printed matter in the format of running a book stall, and stage a discursive event at the Classroom. Echo reverberates some of the encounters and debates there, with new commissioned chapters propelling a ongoing correspondence across urban environs: An essay on the General...... mothers and demonology (Kathy Acker’s property deals in the UK), and more; and future materials formalized as poster texts . . ....

  6. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    International Nuclear Information System (INIS)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja; Espinosa, Norman

    2017-01-01

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  7. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    Energy Technology Data Exchange (ETDEWEB)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Department of Radiology, Zurich (Switzerland); Espinosa, Norman [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Orthopedic Surgery, Zurich (Switzerland)

    2017-08-15

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  8. Dynamic MRI of the liver with parallel acquisition technique. Characterization of focal liver lesions and analysis of the hepatic vasculature in a single MRI session

    International Nuclear Information System (INIS)

    Heilmaier, C.; Sutter, R.; Lutz, A.M.; Willmann, J.K.; Seifert, B.

    2008-01-01

    Purpose: to retrospectively evaluate the performance of breath-hold contrast-enhanced 3D dynamic parallel gradient echo MRI (pMRT) for the characterization of focal liver lesions (standard of reference: histology) and for the analysis of hepatic vasculature (standard of reference: contrast-enhanced 64-detector row computed tomography; MSCT) in a single MRI session. Materials and method: two blinded readers independently analyzed preoperative pMRT data sets (1.5T-MRT) of 45 patients (23 men, 22 women; 28 - 77 years, average age, 48 years) with a total of 68 focal liver lesions with regard to image quality of hepatic arteries, portal and hepatic veins, presence of variant anatomy of the hepatic vasculature, as well as presence of portal vein thrombosis and hemodynamically significant arterial stenosis. In addition, both readers were asked to identify and characterize focal liver lesions. Imaging parameters of pMRT were: TR/TE/matrix/slice thickness/acquisition time: 3.1 ms/1.4 ms/384 x 224/4 mm/15 - 17 s. MSCT was performed with a pitch of 1.2, an effective slice thickness of 1 mm and a matrix of 512 x 512. Results: based on histology, the 68 liver lesions were found to be 42 hepatocellular carcinomas (HCC), 20 metastases, 3 cholangiocellular carcinomas (CCC) as well as 1 dysplastic nodule, 1 focal nodular hyperplasia (FNH) and 1 atypical hemangioma. Overall, the diagnostic accuracy was high for both readers (91 - 100%) in the characterization of these focal liver lesions with an excellent interobserver agreement (κ-values of 0.89 [metastases], 0.97 [HCC] and 1 [CCC]). On average, the image quality of all vessels under consideration was rated good or excellent in 89% (reader 1) and 90% (reader 2). Anatomical variants of the hepatic arteries, hepatic veins and portal vein as well as thrombosis of the portal vein were reliably detected by pMRT. Significant arterial stenosis was found with a sensitivity between 86% and 100% and an excellent interobserver agreement (κ

  9. Analysis of artefacts and detail resolution of lung MRI with breath-hold T1-weighted gradient-echo and T2-weighted fast spin-echo sequences with respiratory triggering

    International Nuclear Information System (INIS)

    Biederer, J.; Reuter, M.; Both, M.; Grimm, J.; Heller, M.; Muhle, C.; Graessner, J.

    2002-01-01

    The aim of this study was to evaluate feasibility and limitations of two MR sequences for imaging of the lung using a semi-quantitative rating scale. Ten healthy volunteers were assessed with a breath-hold T1-weighted gradient-recalled-echo (TR/TE=129/2.2 ms, matrix 173 x 256) and a T2-weighted turbo spin-echo (TSE) sequence with respiratory triggering (TR/TE=3000-5000/120 ms, matrix 270 x 512) in axial 6-mm slices. The T1-weighted GRE protocol included a pre-saturation pulse over the mediastinal structures. Artefacts and resolution of vessel/airway structures in each lung segment were evaluated by two observers (10 volunteers, 180 segments). Cardiac and vessel pulsation artefacts predominated on T1-weighted GRE, respiration artefacts on T2-weighted TSE (lingula and middle lobe). Pre-saturation of the mediastinum reduced pulsation artefacts on T1-weighted GRE. T1-weighted GRE images were improved by bright flow signal of vessels, whereas image quality of T2-weighted TSE was reduced by black-blood effects in central parts of the lung. Delineation of lung periphery and the mediastinum was superior with T2-weighted TSE. Segmental/sub-segmental vessels (up to fourth/fifth order) and bronchi (up to third order) were identified. All 180 lung segments were imaged in diagnostic quality with at least one of the two sequences (T1-weighted GRE not diagnostic in 9 of 180, T2-weighted TSE in 4 of 180). Both sequences were found to be complementary: superior identification of gross lung anatomy with T1-weighted GRE and higher detail resolution in the periphery and the mediastinum with T2-weighted TSE. (orig.)

  10. Characterization of tumor vasculature in mouse brain by USPIO contrast-enhanced MRI.

    NARCIS (Netherlands)

    Gambarota, G.; Leenders, W.P.J.

    2011-01-01

    Detailed characterization of the tumor vasculature provides a better understanding of the complex mechanisms associated with tumor development and is especially important to evaluate responses to current therapies which target the tumor vasculature. Magnetic resonance imaging (MRI) studies of tumors

  11. fMRI characterization of visual working memory recognition.

    Science.gov (United States)

    Rahm, Benjamin; Kaiser, Jochen; Unterrainer, Josef M; Simon, Juliane; Bledowski, Christoph

    2014-04-15

    Encoding and maintenance of information in visual working memory have been extensively studied, highlighting the crucial and capacity-limiting role of fronto-parietal regions. In contrast, the neural basis of recognition in visual working memory has remained largely unspecified. Cognitive models suggest that recognition relies on a matching process that compares sensory information with the mental representations held in memory. To characterize the neural basis of recognition we varied both the need for recognition and the degree of similarity between the probe item and the memory contents, while independently manipulating memory load to produce load-related fronto-parietal activations. fMRI revealed a fractionation of working memory functions across four distributed networks. First, fronto-parietal regions were activated independent of the need for recognition. Second, anterior parts of load-related parietal regions contributed to recognition but their activations were independent of the difficulty of matching in terms of sample-probe similarity. These results argue against a key role of the fronto-parietal attention network in recognition. Rather the third group of regions including bilateral temporo-parietal junction, posterior cingulate cortex and superior frontal sulcus reflected demands on matching both in terms of sample-probe-similarity and the number of items to be compared. Also, fourth, bilateral motor regions and right superior parietal cortex showed higher activation when matching provided clear evidence for a decision. Together, the segregation between the well-known fronto-parietal activations attributed to attentional operations in working memory from those regions involved in matching supports the theoretical view of separable attentional and mnemonic contributions to working memory. Yet, the close theoretical and empirical correspondence to perceptual decision making may call for an explicit consideration of decision making mechanisms in

  12. MRI before and after external beam intensity-modulated radiotherapy of patients with prostate cancer: The feasibility of monitoring of radiation-induced tissue changes using a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence

    International Nuclear Information System (INIS)

    Franiel, Tobias; Luedemann, Lutz; Taupitz, Matthias; Boehmer, Dirk; Beyersdorff, Dirk

    2009-01-01

    Purpose: To identify and quantify suitable pharmacokinetic MRI parameters for monitoring tissue changes after external beam intensity-modulated radiotherapy of prostate cancer. Material and methods: Six patients with biopsy-proven prostate cancer (initial PSA, 6.0-81.4 ng/ml) underwent MRI at 1.5 T using a combined endorectal/body phased-array coil and a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence (T1/T2*w; 1.65 s temporal resolution). MRI was performed before and immediately after radiotherapy, at 3 months and at 1 year. Perfusion, blood volume, mean transit time, delay, dispersion, interstitial volume, and extraction coefficient were calculated in prostate cancer and normal prostate for all four time points using a sequential 3-compartment model. Results: Prostate cancer and normal prostate tissue showed a statistically significant decrease in perfusion (p = 0.006, p = 0.001) and increase in extraction coefficient (p = 0.004, p 3 min, p = 0.028) and a smaller extraction coefficient (0.42 vs. 0.64, p = 0.028). Conclusions: Two pharmacokinetic parameters, perfusion and extraction coefficient, appear to be suitable candidates for monitoring the response to percutaneous intensity-modulated radiotherapy of prostate cancer.

  13. MRI

    DEFF Research Database (Denmark)

    Schroeter, Aileen; Rudin, Markus; Gianolio, Eliana

    2017-01-01

    This chapter discusses principles of nuclear magnetic resonance (NMR) and MRI followed by a survey on the major classes of MRI contrast agents (CA), their modes of action, and some of the most significative applications. The two more established classes of MRI-CA are represented by paramagnetic...... been attained that markedly increase the number and typology of systems with CEST properties. Currently much attention is also devoted to hyperpolarized molecules that display a sensitivity enhancement sufficient for their direct exploitation for the formation of the MR image. A real breakthrough...

  14. Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo sequence: improvement of the image quality of oxygen-enhanced MRI

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Higashino, Takanori; Kawamitsu, Hideaki; Watanabe, Hirokazu; Takenaka, Daisuke; Cauteren, Marc van; Sugimura, Kazuro

    2004-01-01

    Purpose: The purpose of the study presented here was to determine the improvement in image quality of oxygen-enhanced magnetic resonance (MR) subtraction imaging obtained with a centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence compared with that obtained with a conventional sequentially reordered inversion recovery single-shot HASTE (s-IR-HASTE) sequence for pulmonary imaging. Materials and methods: Oxygen-enhanced MR imaging using a 1.5 T whole body scanner was performed on 12 healthy, non-smoking volunteers. Oxygen-enhanced MR images were obtained with the coronal two-dimensional (2D) c-IR-HASTE sequence and 2D s-IR-HASTE sequence combined with respiratory triggering. For a 256x256 matrix, 132 phase-encoding steps were acquired including four steps for phase correction. Inter-echo spacing for each sequence was 4.0 ms. The effective echo time (TE) for c-IR-HASTE was 4.0 ms, and 16 ms for s-IR-HASTE. The inversion time (TI) was 900 ms. To determine the improvement in oxygen-enhanced MR subtraction imaging by c-IR-HASTE, CNRs of subtraction image, overall image quality, and image degradation of the c-IR-HASTE and s-IR-HASTE techniques were statistically compared. Results: CNR, overall image quality, and image degradation of c-IR-HASTE images showed significant improvement compared to those s-IR-HASTE images (P<0.05). Conclusion: Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence enhanced the signal from the lung and improved the image quality of oxygen-enhanced MR subtraction imaging

  15. Usefulness of MRI-assisted metabolic volumetric parameters provided by simultaneous {sup 18}F-fluorocholine PET/MRI for primary prostate cancer characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-il [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Cheon, Gi Jeong [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Radiological Science Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Nuclear Medicine, 101 Daehak-ro, Chongno-gu, Seoul (Korea, Republic of); Paeng, Jin Chul [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Cho, Jeong Yeon [Seoul National University College of Medicine, Radiological Science Research Institute, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Chongno-gu, Seoul (Korea, Republic of); Kwak, Cheol [Seoul National University Hospital, Department of Urology, Seoul (Korea, Republic of); Kang, Keon Wook; Chung, June-Key [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Radiological Science Research Institute, Seoul (Korea, Republic of); Kim, Euishin Edmund [Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); University of California, Department of Radiological Sciences, Irvine, CA (United States); Lee, Dong Soo [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of)

    2015-07-15

    The aim of this study was to determine the usefulness of MRI-assisted positron emission tomography (PET) parameters provided by simultaneous {sup 18}F-fluorocholine (FCH) PET/MRI for characterization of primary prostate cancer. Thirty patients with localized prostate cancer (mean age 69.4 ± 6.7 years) confirmed by biopsy were prospectively enrolled for simultaneous PET/MRI imaging. The patients underwent {sup 18}F-FCH PET/MRI 1 week before undergoing total prostatectomy. Multiple parameters of diffusion-weighted MRI [minimum and mean apparent diffusion coefficient (ADC{sub min} and ADC{sub mean})], metabolic PET [maximum and mean standardized uptake value (SUV{sub max} and SUV{sub mean})], and metabolic volumetric PET [metabolic tumor volume (MTV) and uptake volume product (UVP)] were compared with laboratory, pathologic, and immunohistochemical (IHC) features of the prostate cancer specimen. PET parameters were divided into two categories as follows: volume of interest (VOI) of prostate by SUV cutoff 2.5 (SUV{sub max}, SUV{sub mean}, MTV{sub SUV}, and UVP{sub SUV}) and MRI-assisted VOI of prostate cancer (SUV{sub maxMRI}, SUV{sub meanMRI}, MTV{sub MRI}, and UVP{sub MRI}). The rates of prostate cancer-positive cases identified by MRI alone, {sup 18}F-FCH PET alone, and {sup 18}F-FCH PET/MRI were 83.3, 80.0, and 93.3 %, respectively. Among the multiple PET/MRI parameters, MTV{sub MRI} showed fair correlation with serum prostate-specific antigen (PSA; r = 0.442, p = 0.014) and highest correlation with tumor volume (r = 0.953, p < 0.001). UVP{sub MRI} showed highest correlation with serum PSA (r = 0.531, p = 0.003), good correlation with tumor volume (r = 0.908, p < 0.001), and it was significantly associated with Gleason score (p = 0.041). High MTV{sub MRI} and UVP{sub MRI} values were significant for perineural invasion, lymphatic invasion, extracapsular extension, seminal vesicle invasion, and positive B-cell lymphoma 2 (Bcl-2) expression (all p < 0

  16. MRI

    Science.gov (United States)

    ... the room. Pins, hairpins, metal zippers, and similar metallic items can distort the images. Removable dental work ... an MRI can cause heart pacemakers and other implants not to work as well. The magnets can ...

  17. Quantitative 3D ultrashort time-to-echo (UTE) MRI and micro-CT (μCT) evaluation of the temporomandibular joint (TMJ) condylar morphology

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Daniel [Sapienza University of Rome, Department of Radiological, Oncological and Pathological Sciences, Rome (Italy); Bae, Won C.; Statum, Sheronda; Du, Jiang; Chung, Christine B. [University of California-San Diego, Department of Radiology, San Diego, CA (United States)

    2014-01-15

    Temporomandibular dysfunction involves osteoarthritis of the TMJ, including degeneration and morphologic changes of the mandibular condyle. The purpose of this study was to determine the accuracy of novel 3D-UTE MRI versus micro-CT (μCT) for quantitative evaluation of mandibular condyle morphology. Nine TMJ condyle specimens were harvested from cadavers (2 M, 3 F; age 85 ± 10 years, mean ± SD). 3D-UTE MRI (TR = 50 ms, TE = 0.05 ms, 104-μm isotropic-voxel) was performed using a 3-T MR scanner and μCT (18-μm isotropic-voxel) was also performed. MR datasets were spatially registered with a μCT dataset. Two observers segmented bony contours of the condyles. Fibrocartilage was segmented on the MR dataset. Using a custom program, bone and fibrocartilage surface coordinates, Gaussian curvature, volume of segmented regions, and fibrocartilage thickness were determined for quantitative evaluation of joint morphology. Agreement between techniques (MRI vs. μCT) and observers (MRI vs. MRI) for Gaussian curvature, mean curvature, and segmented volume of the bone were determined using intraclass correlation coefficient (ICC) analysis. Between MRI and μCT, the average deviation of surface coordinates was 0.19 ± 0.15 mm, slightly higher than the spatial resolution of MRI. Average deviation of the Gaussian curvature and volume of segmented regions, from MRI to μCT, was 5.7 ± 6.5 % and 6.6 ± 6.2 %, respectively. ICC coefficients (MRI vs. μCT) for Gaussian curvature, mean curvature, and segmented volumes were 0.892, 0.893, and 0.972, respectively. Between observers (MRI vs. MRI), the ICC coefficients were 0.998, 0.999, and 0.997, respectively. Fibrocartilage thickness was 0.55 ± 0.11 mm, as previously described in the literature for grossly normal TMJ samples. 3D-UTE MR quantitative evaluation of TMJ condyle morphology ex-vivo, including surface, curvature, and segmented volume, shows high correlation against μCT and between observers. In addition, UTE MRI allows

  18. The time window of MRI of murine atherosclerotic plaques after administration of CB2 receptor targeted micelles: inter-scan variability and relation between plaque signal intensity increase and gadolinium content of inversion recovery prepared versus non-prepared fast spin echo

    NARCIS (Netherlands)

    te Boekhorst, B. C. M.; Bovens, S. M.; van de Kolk, C. W. A.; Cramer, M. J. M.; Doevendans, P. A. F. M.; ten Hove, M.; van der Weerd, L.; Poelmann, R.; Strijkers, G. J.; Pasterkamp, G.; van Echteld, C. J. A.

    2010-01-01

    Single fast spin echo scans covering limited time frames are mostly used for contrast-enhanced MRI of atherosclerotic plaque biomarkers. Knowledge on inter-scan variability of the normalized enhancement ratio of plaque (NER(plaque)) and relation between NER(plaque) and gadolinium content for

  19. MRI characterization of the glenohumeral joint in Apert syndrome

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Tami [University of Illinois-Chicago, Department of Radiology, Chicago, IL (United States); Wyers, Mary [Children' s Memorial Hospital, Department of Medical Imaging, Children' s Plaza, Box 9, Chicago, IL (United States); King, Erik [Children' s Memorial Hospital, Orthopaedic Surgery, Chicago, IL (United States)

    2007-06-15

    The features of craniosynostosis, facial dysmorphism, and distal extremity syndactyly in Apert syndrome are well known. However, there have been limited descriptions of the associated glenohumeral joint findings. We report the radiographic and MRI abnormalities of the glenohumeral joints in a 10-month-old girl with Apert syndrome. The MRI findings in the girl support the hypothesis that the pathogenesis of Apert syndrome is caused by defective cartilage segmentation with premature and abnormal ossification of a cartilage bar within a joint space. The resultant shoulder joint deformity is related to glenoid hypoplasia and growth arrest of the medial aspect of the humeral head. (orig.)

  20. Inter- and intra-rater reliability of patellofemoral kinematic and contact area quantification by fast spin echo MRI and correlation with cartilage health by quantitative T1ρ MRI☆

    Science.gov (United States)

    Lau, Brian C.; Thuillier, Daniel U.; Pedoia, Valentina; Chen, Ellison Y.; Zhang, Zhihong; Feeley, Brian T.; Souza, Richard B.

    2016-01-01

    Background Patellar maltracking is a leading cause of patellofemoral pain syndrome (PFPS). The aim of this study was to determine the inter- and intra-rater reliability of a semi-automated program for magnetic resonance imaging (MRI) based patellofemoral kinematics. Methods Sixteen subjects (10 with PFPS [mean age 32.3; SD 5.2; eight females] and six controls without PFPS 19 [mean age 28.6; SD 2.8; three females]) participated in the study. One set of T2-weighted, fat-saturated fast spin-echo (FSE) MRIs were acquired from each subject in full extension and 30° of knee flexion. MRI including axial T1ρ relaxation time mapping sequences was also performed on each knee. Following image acquisitions, regions of interest for kinematic MRI, and patellar and trochlear cartilage were segmented and quantified with in-house designed spline- based MATLAB semi-automated software. Results Intraclass Correlations Coefficients (ICC) of calculated kinematic parameters were good to excellent, ICC > 0.8 in patellar flexion, rotation, tilt, and translation (anterior -posterior, medial -lateral, and superior -inferior), and contact area translation. Only patellar tilt in the flexed position and motion from extended to flexed state was significantly different between PFPS and control patients (p = 0.002 and p = 0.006, respectively). No significant correlations were identified between patellofemoral kinematics and contact area with T1ρ relaxation times. Conclusions A semi-automated, spline-based kinematic MRI technique for patellofemoral kinematic and contact area quantification is highly reproducible with the potential to help better understand the role of patellofemoral maltracking in PFPS and other knee disorders. PMID:26746045

  1. Characterization of D-maltose as a T2 -exchange contrast agent for dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Goldenberg, Joshua M; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2018-09-01

    We sought to investigate the potential of D-maltose, D-sorbitol, and D-mannitol as T 2 exchange magnetic resonance imaging (MRI) contrast agents. We also sought to compare the in vivo pharmacokinetics of D-maltose with D-glucose with dynamic contrast enhancement (DCE) MRI. T 1 and T 2 relaxation time constants of the saccharides were measured using eight pH values and nine concentrations. The effect of echo spacing in a multiecho acquisition sequence used for the T 2 measurement was evaluated for all samples. Finally, performances of D-maltose and D-glucose during T 2 -weighted DCE-MRI were compared in vivo. Estimated T 2 relaxivities (r 2 ) of D-glucose and D-maltose were highly and nonlinearly dependent on pH and echo spacing, reaching their maximum at pH = 7.0 (∼0.08 mM -1 s -1 ). The r 2 values of D-sorbitol and D-mannitol were estimated to be ∼0.02 mM -1 s -1 and were invariant to pH and echo spacing for pH ≤7.0. The change in T 2 in tumor and muscle tissues remained constant after administration of D-maltose, whereas the change in T 2 decreased in tumor and muscle after administration of D-glucose. Therefore, D-maltose has a longer time window for T 2 -weighted DCE-MRI in tumors. We have demonstrated that D-maltose can be used as a T 2 exchange MRI contrast agent. The larger, sustained T 2 -weighted contrast from D-maltose relative to D-glucose has practical advantages for tumor diagnoses during T 2 -weighted DCE-MRI. Magn Reson Med 80:1158-1164, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  2. Modern MRI tools for the characterization of acute demyelinating lesions: value of chemical shift and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Kueker, W.; Mehnert, F.; Mader, I.; Naegele, T.; Ruff, J.; Gaertner, S.

    2004-01-01

    Acute demyelinating lesions occur in various inflammatory disorders of the CNS. Apart from multiple sclerosis, most cases can be attributed to an overshooting immunological response to infectious agents called acute disseminated encephalomyelitis (ADEM). ADEM, which is mostly characterized by a monophasic course, has a multiphasic variant (MDEM). The early application of corticosteroids has been shown to be beneficial for the outcome; thus, an early diagnosis is highly desirable. Furthermore, the differential diagnosis ruling out neoplastic disorders may be difficult using conventional MRI alone. The potential diagnostic value of advanced MR techniques such as chemical shift imaging (CSI) and diffusion-weighted imaging (DWI) was investigated in a patient with MDEM, who had a new lesion in continuity with the initial disease manifestation. CSI was performed at 1.5 T with a long echo time of 135 ms for the evaluation of N-acetyl-aspartate (NAA) and choline (Cho) and with short TE of 30 ms for macromolecules (mm) and myo-Inositol (mI). DWI was performed using a single-shot isotropic EPI sequence. Whereas acute and chronic areas of demyelination were neither distinguishable on T2- nor on contrast-enhanced T1-weigted images, CSI and DWI revealed different metabolite concentrations and diffusion characteristics within the composite lesion, clearly separating acute from chronic areas of demyelination. In conclusion, the addition of CSI and DWI may add to the diagnostic power of MRI in the setting of demyelinating disorders by identifying areas of acute and chronic demyelination, even in the absence of contrast enhancement. (orig.)

  3. Comparison of two-dimensional fast spin echo T2 weighted sequences and three-dimensional volume isotropic T2 weighted fast spin echo (VISTA) MRI in the evaluation of triangular fibrocartilage of the wrist.

    Science.gov (United States)

    Park, Hee Jin; Lee, So Yeon; Kang, Kyung A; Kim, Eun Young; Shin, Hun Kyu; Park, Se Jin; Park, Jai Hyung; Kim, Eugene

    2018-04-01

    To compare image quality of three-dimensional volume isotropic T 2 weighted fast spin echo (3D VISTA) and two-dimensional (2D) T 2 weighted images (T2WI) for evaluation of triangular fibrocartilage (TFC) and to investigate whether 3D VISTA can replace 2D T 2 WI in evaluating TFC injury. This retrospective study included 69 patients who received wrist MRIs using both 2D T 2 WI and 3D VISTA techniques for assessment of wrist pathology, including TFC injury. Two radiologists measured the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) of the two sequences. The anatomical identification score and diagnostic performance were independently assessed by two interpreters. The diagnostic abilities of 3D VISTA and 2D T 2 WI were analysed by sensitivity, specificity and accuracy for diagnosing TFC injury using surgically or clinically confirmed diagnostic reference standards. 17 cases (25%) were classified as having TFC injury. 2 cases (12%) were diagnosed surgically, and 15 cases (88%) were diagnosed by physical examination. 52 cases (75%) were diagnosed as having intact TFC. 8 of these cases (15%) were surgically confirmed, while the others were diagnosed by physical examination and clinical findings. The 3D VISTA images had significantly higher SNR and CNR values for the TFC than 2D T 2 WI images. The scores of 3D VISTA's total length, full width and sharpness were similar to those of 2D T 2 WI. We were unable to find a significant difference between 3D VISTA and 2D T 2 WI in the ability to diagnose TFC injury. 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment. Advances in knowledge: 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment.

  4. Dose characterization of the new Bebig IsoSeed'' (registered) I25.S17 using polymer gel and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Pantelis, Evaggelos [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece)]. E-mail: vpantelis@phys.uoa.gr; Baltas, Dimos [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece): Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach, 63069 Offenbach (Germany); Georgiou, Evaggelos [Medical Physics Department, University of Athens, 75 Mikras Asias, 115 27 Athens (Greece); Karaiskos, Pantelis [Medical Physics Department, University of Athens, 75 Mikras Asias, 115 27 Athens (Greece): Medical Physics Department, Hygeia Hospital, Kiffisias Avenue and 4 Erythrou Stavrou, Marousi, 151 23 Athens (Greece); Lymperopoulou, Georgia [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece); Papagiannis, Panagiotis [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece); Sakelliou, Loukas [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece); Seimenis, Ioannis [Philips Hellas Medical Systems, 44 Kifissias Ave., Maroussi 151 25, Athens (Greece); Stilliaris, Efstathios [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece): Institute of Accelerating Systems and Applications (IASA), P.O. Box 17214, GR-10024, Athens (Greece)

    2006-12-20

    A new, molybdenum core, {sup 125}I interstitial brachytherapy seed is marketed by Bebig GmbH (IsoSeed'' (registered) I25.S17) and our group has performed its Dosimetric characterization using Monte Carlo (MC) simulation and Thermoluminescence dosimetry (TLD) as recommended by the AAPM TG-43U1 prior to the clinical implementation of new low-energy seeds. This work presents the results of a supplementary experimental dosimetry study performed using PABIG polymer gel and Magnetic Resonance Imaging (MRI). One new I25.S17 seed and a commercially available, gold core, Bebig IsoSeed'' (registered) I25.S06 {sup 125}I seed were positioned at two different locations in a vial filled with water equivalent, PABIG-polymer gel. The gel with the sources in place was MR scanned in 3D at various time intervals after seed placement using a time efficient, 3D, dual echo Turbo Spin Echo pulse sequence. The consensus dosimetry parameters published in the TG-43U1 for the I25.S06 seed were used to derive the gel response calibration curve for each scanning session. The calibration data were then used to provide dosimetry results for the new I25.S17 seed. Experimental results for the new seed in the form of dose distributions as well as dosimetric quantities in the prevalent TG-43 dosimetric formalism were found to be in close agreement with corresponding MC and TLD results. This finding suggests that the polymer gel-MRI method could at least play a supplementary role to TLD dosimetry in the dose characterization of low energy/low dose rate brachytherapy sources, especially in view of its potential for measurements with a fine spatial resolution down to short distances which are inhibitory to conventional experimental techniques.

  5. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tryggestad, E. [Mayo Clinic (United States)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  6. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    International Nuclear Information System (INIS)

    Tryggestad, E.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  7. MRI of the anterior talofibular ligament, talar cartilage and os subfibulare: Comparison of isotropic resolution 3D and conventional 2D T2-weighted fast spin-echo sequences at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jisook; Cha, Jang Gyu [Soonchunhyang University Bucheon Hospital, Department of Radiology, Wonmi-gu, Bucheon-si (Korea, Republic of); Lee, Young Koo [Soonchunhyang University Bucheon Hospital, Department of Orthopedics, Wonmi-gu, Bucheon-si (Korea, Republic of); Lee, Bo Ra [Soonchunhyang University Bucheon Hospital, Department of Biomedical Statistics, Wonmi-gu, Bucheon-si (Korea, Republic of); Jeon, Chan Hong [Soonchunhyang University Bucheon Hospital, Division of Rheumatology, Department of Internal Medicine, Wonmi-gu, Bucheon-si (Korea, Republic of)

    2016-07-15

    To determine the accuracy of a three-dimensional (3D) T2-weighted fast spin-echo (FSE) magnetic resonance (MR) sequence compared with two-dimensional (2D) sequence for diagnosing anterior talofibular ligament (ATFL) tears, chondral lesion of the talus (CLT) and os subfibulare/avulsion fracture of the distal fibula (OSF). Thirty-five patients were included, who had undergone ankle MRI with 3D T2-weighted FSE and 2D T2-weighted FSE sequences, as well as subsequent ankle arthroscopy, between November 2013 and July 2014. Each MR imaging sequence was independently scored by two readers retrospectively for the presence of ATFL tears, CLT and OSF. The area under the receiver operating curve (AUC) was compared to determine the discriminatory power of the two image sequences. Interobserver agreement was expressed as unweighted kappa value. Arthroscopic findings confirmed 21 complete tears of the ATFL, 14 partial tears of the ATFL, 17 CLTs and 7 OSFs. There were no significant differences in the diagnoses of ATFL tears (p = 0.074-0.501), CLT (p = 0.090-0.450) and OSF (p = 0.317) obtained from the 2D and 3D sequences by either reader. The interobserver agreement rates between two readers using the 3D T2-weighted FSE sequence versus those obtained with the 2D sequence were substantial (κ = 0.659) versus moderate (κ = 0.553) for ATFL tears, moderate (κ = 0.499) versus substantial (κ = 0.676) for CLT and substantial (κ = 0.621) versus substantial (κ = 0.689) for OSF. Three-dimensional isotropic T2-weighted FSE MRI of the ankle resulted in no statistically significant difference in diagnostic performance compared to two-dimensional T2-weighted FSE MRI in the evaluation of ATFL tears, CLTs and OSFs. (orig.)

  8. MRI of the anterior talofibular ligament, talar cartilage and os subfibulare: Comparison of isotropic resolution 3D and conventional 2D T2-weighted fast spin-echo sequences at 3.0 T

    International Nuclear Information System (INIS)

    Yi, Jisook; Cha, Jang Gyu; Lee, Young Koo; Lee, Bo Ra; Jeon, Chan Hong

    2016-01-01

    To determine the accuracy of a three-dimensional (3D) T2-weighted fast spin-echo (FSE) magnetic resonance (MR) sequence compared with two-dimensional (2D) sequence for diagnosing anterior talofibular ligament (ATFL) tears, chondral lesion of the talus (CLT) and os subfibulare/avulsion fracture of the distal fibula (OSF). Thirty-five patients were included, who had undergone ankle MRI with 3D T2-weighted FSE and 2D T2-weighted FSE sequences, as well as subsequent ankle arthroscopy, between November 2013 and July 2014. Each MR imaging sequence was independently scored by two readers retrospectively for the presence of ATFL tears, CLT and OSF. The area under the receiver operating curve (AUC) was compared to determine the discriminatory power of the two image sequences. Interobserver agreement was expressed as unweighted kappa value. Arthroscopic findings confirmed 21 complete tears of the ATFL, 14 partial tears of the ATFL, 17 CLTs and 7 OSFs. There were no significant differences in the diagnoses of ATFL tears (p = 0.074-0.501), CLT (p = 0.090-0.450) and OSF (p = 0.317) obtained from the 2D and 3D sequences by either reader. The interobserver agreement rates between two readers using the 3D T2-weighted FSE sequence versus those obtained with the 2D sequence were substantial (κ = 0.659) versus moderate (κ = 0.553) for ATFL tears, moderate (κ = 0.499) versus substantial (κ = 0.676) for CLT and substantial (κ = 0.621) versus substantial (κ = 0.689) for OSF. Three-dimensional isotropic T2-weighted FSE MRI of the ankle resulted in no statistically significant difference in diagnostic performance compared to two-dimensional T2-weighted FSE MRI in the evaluation of ATFL tears, CLTs and OSFs. (orig.)

  9. Depiction and characterization of liver lesions in whole body [18F]-FDG PET/MRI

    International Nuclear Information System (INIS)

    Beiderwellen, Karsten; Gomez, Benedikt; Buchbender, Christian; Hartung, Verena; Poeppel, Thorsten D.; Nensa, Felix; Kuehl, Hilmar; Bockisch, Andreas; Lauenstein, Thomas C.

    2013-01-01

    Objectives: To assess the value of PET/MRI with [ 18 F]-FDG using a whole body protocol for the depiction and characterization of liver lesions in comparison to PET/CT. Methods: 70 patients (31 women, 39 men) with solid tumors underwent [ 18 F]-FDG PET/CT and followed by an additional PET/MRI using an integrated scanner. Two readers rated the datasets (PET/CT; PET/MRI) regarding conspicuity of hepatic lesions (4-point ordinal scale) and diagnostic confidence (5-point ordinal scale). Median scores for lesion conspicuity and diagnostic confidence were compared using Wilcoxon's rank sum test. Prior examinations, histopathology and clinical follow-up (116 ± 54 days) served as standard of reference. Results: 36 of 70 (51%) patients showed liver lesions. Using PET/CT and PET/MRI all patients with liver metastases could correctly be identified. A total of 97 lesions were found (malignant n = 26; benign n = 71). For lesion conspicuity significantly higher scores were obtained for PET/MRI in comparison to PET/CT (p < 0.001). Significantly better performance for diagnostic confidence was observed in PET/MRI, both for malignant as for benign lesions (p < 0.001). Conclusions: PET/MRI, even in the setting of a whole body approach, provides higher lesion conspicuity and diagnostic confidence compared to PET/CT and may therefore evolve as an attractive alternative in oncologic imaging

  10. A rabbit model of atherosclerosis at carotid artery: MRI visualization and histopathological characterization

    International Nuclear Information System (INIS)

    Ma, Zhan-Long; Teng, Gao-Jun; Chen, Jun; Zhang, Hong-Ying; Cao, Ai-Hong; Ni, Yicheng

    2008-01-01

    To induce a rabbit model of atherosclerosis at carotid artery, to visualize the lesion evolution with magnetic resonance imaging (MRI), and to characterize the lesion types by histopathology. Atherosclerosis at the right common carotid artery (RCCA) was induced in 23 rabbits by high-lipid diet following balloon catheter injury to the endothelium. The rabbits were examined in vivo with a 1.5-T MRI and randomly divided into three groups of 6 weeks (n=6), 12 weeks (n=8) and 15 weeks (n=9) for postmortem histopathology. The lesions on both MRI and histology were categorized according to the American Heart Association (AHA) classifications of atherosclerosis. Type I and type II of atherosclerotic changes were detected at week 6, i.e., nearly normal signal intensity (SI) of the injured RCCA wall without stenosis on MRI, but with subendothelial inflammatory infiltration and proliferation of smooth muscle cells on histopathology. At week 12, 75.0% and 62.5% of type III changes were encountered on MRI and histopathology respectively with thicker injured RCCA wall of increased SI on T 1 -weighted and proton density (PD)-weighted MRI and microscopically a higher degree of plaque formation. At week 15, carotid atherosclerosis became more advanced, i.e., type IV and type V in 55.6% and 22.2% of the lesions with MRI and 55.6% and 33.3% of the lesions with histopathology, respectively. Statistical analysis revealed a significant agreement (p<0.05) between the MRI and histological findings for lesion classification (r=0.96). A rabbit model of carotid artery atherosclerosis has been successfully induced and noninvasively visualized. The atherosclerotic plaque formation evolved from type I to type V with time, which could be monitored with 1.5-T MRI and confirmed with histomorphology. This experimental setting can be applied in preclinical research on atherosclerosis. (orig.)

  11. Characterization of the murine orthotopic adamantinomatous craniopharyngioma PDX model by MRI in correlation with histology.

    Science.gov (United States)

    Hölsken, Annett; Schwarz, Marc; Gillmann, Clarissa; Pfister, Christina; Uder, Michael; Doerfler, Arnd; Buchfelder, Michael; Schlaffer, Sven; Fahlbusch, Rudolf; Buslei, Rolf; Bäuerle, Tobias

    2018-01-01

    Adamantinomatous craniopharyngiomas (ACP) as benign sellar brain tumors are challenging to treat. In order to develop robust in vivo drug testing methodology, the murine orthotopic craniopharyngioma model (PDX) was characterized by magnetic resonance imaging (MRI) and histology in xenografts from three patients (ACP1-3). In ACP PDX, multiparametric MRI was conducted to assess morphologic characteristics such as contrast-enhancing tumor volume (CETV) as well as functional parameters from dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI) including area-under-the-curve (AUC), peak enhancement (PE), time-to-peak (TTP) and apparent diffusion coefficient (ADC). These MRI parameters evaluated in 27 ACP PDX were correlated to histological features and percentage of vital tumor cell content. Qualitative analysis of MRI and histology from PDX revealed a similar phenotype as seen in patients, although the MRI appearance in mice resulted in a more solid tumor growth than in humans. CETV were significantly higher in ACP2 xenografts relative to ACP1 and ACP3 which correspond to respective average vitality of 41%, <10% and 26% determined histologically. Importantly, CETV prove tumor growth of ACP2 PDX as it significantly increases in longitudinal follow-up of 110 days. Furthermore, xenografts from ACP2 revealed a significantly higher AUC, PE and TTP in comparison to ACP3, and significantly increased ADC relative to ACP1 and ACP3 respectively. Overall, DCE-MRI and DWI can be used to distinguish vital from non-vital grafts, when using a cut off value of 15% for vital tumor cell content. MRI enables the assessment of craniopharyngioma PDX vitality in vivo as validated histologically.

  12. MRI characterization of brown adipose tissue in obese and normal-weight children

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jie; Rigsby, Cynthia K.; Shore, Richard M. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, 225 E. Chicago Ave., Box 9, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Schoeneman, Samantha E. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, 225 E. Chicago Ave., Box 9, Chicago, IL (United States); Zhang, Huiyuan [John H. Stroger, Jr. Hospital of Cook County, Collaborative Research Unit, Chicago, IL (United States); Kwon, Soyang [Ann and Robert H. Lurie Children' s Hospital of Chicago, Stanley Manne Children' s Research Institute, Chicago, IL (United States); Northwestern University, Department of Pediatrics, Feinberg School of Medicine, Chicago, IL (United States); Josefson, Jami L. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Division of Endocrinology, Chicago, IL (United States); Northwestern University, Department of Pediatrics, Feinberg School of Medicine, Chicago, IL (United States)

    2015-10-15

    Brown adipose tissue (BAT) is identified in mammals as an adaptive thermogenic organ for modulation of energy expenditure and heat generation. Human BAT may be primarily composed of brown-in-white (BRITE) adipocytes and stimulation of BRITE may serve as a potential target for obesity interventions. Current imaging studies of BAT detection and characterization have been mainly limited to PET/CT. MRI is an emerging application for BAT characterization in healthy children. To exploit Dixon and diffusion-weighted MRI methods to characterize cervical-supraclavicular BAT/BRITE properties in normal-weight and obese children while accounting for pubertal status. Twenty-eight healthy children (9-15 years old) with a normal or obese body mass index participated. MRI exams were performed to characterize supraclavicular adipose tissues by measuring tissue fat percentage, T2*, tissue water mobility, and microvasculature properties. We used multivariate linear regression models to compare tissue properties between normal-weight and obese groups while accounting for pubertal status. MRI measurements of BAT/BRITE tissues in obese children showed higher fat percentage (P < 0.0001), higher T2* (P < 0.0001), and lower diffusion coefficient (P = 0.015) compared with normal-weight children. Pubertal status was a significant covariate for the T2* measurement, with higher T2* (P = 0.0087) in pubertal children compared to prepubertal children. Perfusion measurements varied by pubertal status. Compared to normal-weight children, obese prepubertal children had lower perfusion fraction (P = 0.003) and pseudo-perfusion coefficient (P = 0.048); however, obese pubertal children had higher perfusion fraction (P = 0.02) and pseudo-perfusion coefficient (P = 0.028). This study utilized chemical-shift Dixon MRI and diffusion-weighted MRI methods to characterize supraclavicular BAT/BRITE tissue properties. The multi-parametric evaluation revealed evidence of morphological differences in brown

  13. MRI characterization of brown adipose tissue in obese and normal-weight children

    International Nuclear Information System (INIS)

    Deng, Jie; Rigsby, Cynthia K.; Shore, Richard M.; Schoeneman, Samantha E.; Zhang, Huiyuan; Kwon, Soyang; Josefson, Jami L.

    2015-01-01

    Brown adipose tissue (BAT) is identified in mammals as an adaptive thermogenic organ for modulation of energy expenditure and heat generation. Human BAT may be primarily composed of brown-in-white (BRITE) adipocytes and stimulation of BRITE may serve as a potential target for obesity interventions. Current imaging studies of BAT detection and characterization have been mainly limited to PET/CT. MRI is an emerging application for BAT characterization in healthy children. To exploit Dixon and diffusion-weighted MRI methods to characterize cervical-supraclavicular BAT/BRITE properties in normal-weight and obese children while accounting for pubertal status. Twenty-eight healthy children (9-15 years old) with a normal or obese body mass index participated. MRI exams were performed to characterize supraclavicular adipose tissues by measuring tissue fat percentage, T2*, tissue water mobility, and microvasculature properties. We used multivariate linear regression models to compare tissue properties between normal-weight and obese groups while accounting for pubertal status. MRI measurements of BAT/BRITE tissues in obese children showed higher fat percentage (P < 0.0001), higher T2* (P < 0.0001), and lower diffusion coefficient (P = 0.015) compared with normal-weight children. Pubertal status was a significant covariate for the T2* measurement, with higher T2* (P = 0.0087) in pubertal children compared to prepubertal children. Perfusion measurements varied by pubertal status. Compared to normal-weight children, obese prepubertal children had lower perfusion fraction (P = 0.003) and pseudo-perfusion coefficient (P = 0.048); however, obese pubertal children had higher perfusion fraction (P = 0.02) and pseudo-perfusion coefficient (P = 0.028). This study utilized chemical-shift Dixon MRI and diffusion-weighted MRI methods to characterize supraclavicular BAT/BRITE tissue properties. The multi-parametric evaluation revealed evidence of morphological differences in brown

  14. Functional imaging of submandibular glands: diffusion-weighted echo-planar MRI before and after stimulation; Diffusionsgewichtete MRT zur Funktionsdiagnostik der Glandula submandibularis

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, C.; Cramer, M.C.; Weiss, F.; Kaul, M.G.; Adam, G.; Habermann, C.R. [Zentrum fuer Bildgebende Diagnostik und Intervention, Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum Hamburg-Eppendorf (Germany); Graessner, J. [Siemens Medical Solutions (Germany); Petersen, K. [Zentrum fuer Psychosoziale Medizin, Klinik und Poliklinik fuer Psychiatrie und Psychotherapie, Universitaetsklinikum Hamburg-Eppendorf (Germany); Reitmeier, F.; Jaehne, M. [Kopf und Hautzentrum, Klinik und Poliklinik fuer Hals-, Nasen- und Ohrenheilkunde, Universitaetsklinikum Hamburg Eppendorf (Germany)

    2006-09-15

    Purpose: To investigate the feasibility of diffusion-weighted (DWI) echo-planar imaging (EPI) to depict the submandibular glands and to measure different functional conditions. Materials and Methods: Twenty-seven healthy volunteers were examined. Diffusion weighted sequence was performed prior to stimulation. Exactly 30 seconds after a commercially available lemon juice was given orally, the diffusion weighted sequence was repeated. All examinations were performed by using a 1.5-T superconducting system with a 30 mT/m maximum gradient capability and maximum slew rate of 125 mT/m/sec (Magnetom Symphony, Siemens, Erlangen, Germany). The lower part of the circularly polarized (CP) head coil and a standard two-element CP neck array coil were used. The flexibility of the neck array coil allowed positioning the N1 element (upper part of the coil) right next to the submandibular gland. The axial diffusion-weighted EPI (echo planar imaging) sequence was performed using a matrix of 119 x 128, a field of view of 250 x 250 mm (pixel size 2.1 x 1.95 mm), a section thickness of 5 mm with an interslice gap of 1 mm. The b factors used were 0 sec/mm{sup 2}, 500 sec/mm{sup 2} and 1000 sec/mm{sup 2}. Apparent diffusion coefficient (ADC) maps were digitally transferred to MRIcro (Chris Rorden, University of Nottingham, Great Britain). After detecting the submandibular glands a region of interest (ROI) was placed manually exactly within the boarder of both submandibular glands, excluding the external carotid artery on ADC maps. These procedures were performed on all ADC slices the submandibular glands could be differentiated in before and after oral stimulation. For statistical comparison of results, a student's t-test was performed with an overall two-tailed significance level of p=0.05. Results: The visualization of the submandibular glands using the diffusion-weighted EPI sequence was possible in all of the 27 volunteers. Prior to oral stimulation an ADC of 1.31 x 10{sup -3

  15. MRI of intracranial vertebral artery dissection: evaluation of intramural haematoma using a black blood, variable-flip-angle 3D turbo spin-echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Koichi; Yamashita, Shinnichi; Kuwabara, Yasuo; Yoshimitsu, Kengo [Fukuoka University, Department of Radiology, Faculty of Medicine, Fukuoka-shi, Fukuoka (Japan); Takemoto, Koichiro; Inoue, Tooru [Fukuoka University, Department of Neurosurgery, Faculty of Medicine, Fukuoka (Japan)

    2013-07-15

    We investigated the efficacy of three-dimensional black blood T1-weighted imaging (3D-BB-T1WI) using a variable refocusing flip angle turbo spin-echo sequence in the diagnosis of intracranial vertebral artery dissection (VAD). Sixteen consecutive patients diagnosed with intracranial VAD underwent magnetic resonance imaging that included 3D time-of-flight-MRA, axial spin-echo T1-weighted images (SE-T1WI) and oblique coronal 3D-BB-T1WI sequences. The visualization, morphology and extent of intramural haematomas were assessed and compared among the sequences. Results obtained by digital subtraction angiography (DSA), 3D-angiography and/or 3D-CT angiography (CTA) were used as standards of reference. 3D-BB-T1WI revealed intramural haematomas in all cases, whereas SE-T1WI and magnetic resonance angiography (MRA) failed to reveal a haematoma in one case and three cases, respectively. The mean visualization grading score for the intramural haematoma was the highest for 3D-BB-T1WI, and there was a statistically significant difference among the sequences (p < 0.001). At least a portion of the intramural haematoma was distinguishable from the lumen on 3D-BB-T1WI, whereas the haematomas were entirely indistinguishable from intraluminal signals on MRA in two cases (12.5 %) and on SE-T1WI in one case (6.3 %). 3D-BB-T1WI revealed the characteristic crescent shape of the intramural haematoma in 14 cases (87.5 %), whereas SE-T1WI and MRA revealed a crescent shape in only 7 cases (43.8 %) and 8 cases (50 %), respectively. In a consensus reading, 3D-BB-T1WI was considered the most consistent sequence in representing the extent and morphology of the lesion in 14 cases (87.5 %), compared to DSA and CTA. 3D-BB-T1WI is a promising method to evaluate intramural haematoma in patients with suspected intracranial VAD. (orig.)

  16. Vitamin B12 deficiency: Characterization of psychometrics and MRI morphometrics.

    Science.gov (United States)

    Hsu, Yen-Hsuan; Huang, Ching-Feng; Lo, Chung-Ping; Wang, Tzu-Lan; Tu, Min-Chien

    2016-01-01

    Vitamin B12 is essential for the integrity of the central nervous system. However, performances in different cognitive domains relevant to vitamin B12 deficiency remain to be detailed. To date, there have been limited studies that examined the relationships between cognitions and structural neuroimaging in a single cohort of low-vitamin B12 status. The present study aimed to depict psychometrics and magnetic resonance imaging (MRI) morphometrics among patients with vitamin B12 deficiency, and to examine their inter-relations. We compared 34 consecutive patients with vitamin B12 deficiency (serum level ≤ 250 pg/ml) to 34 demographically matched controls by their cognitive performances and morphometric indices of brain MRI. The correlations between psychometrics and morphometrics were analyzed. The vitamin B12 deficiency group had lower scores than the controls on total scores of Mini-Mental Status Examination (MMSE) and Cognitive Abilities Screening Instrument (CASI) (both P psychometric and morphometric indices, pronounced correlations between bicaudate ratio and long-term memory, mental manipulation, orientation, language, and verbal fluency were noted (all P < 0.01). Vitamin B12 deficiency is associated with a global cognition decline with language, orientation, and mental manipulation selectively impaired. Preferential atrophy in frontal regions is the main neuroimaging feature. Although the frontal ratio highlights the relevant atrophy among patients, the bicaudate ratio might be the best index on the basis of its strong association with global cognition and related cognitive domains, implying dysfunction of fronto-subcortical circuits as the fundamental pathogenesis related to vitamin B12 deficiency.

  17. Model-based characterization of the transpulmonary circulation by DCE-MRI

    NARCIS (Netherlands)

    Saporito, S.; Herold, I.H.F.; Houthuizen, P.; den Boer, J.; Van Den Bosch, H.; Korsten, H.; van Assen, H.C.; Mischi, M.

    2016-01-01

    Objective measures to assess pulmonary circulation status would improve heart failure patient care. We propose a method for the characterization of the transpulmonary circulation by DCE-MRI. Parametric deconvolution was performed between contrast agent fifirst passage time-enhancement curves derived

  18. Metal artefact suppression at 3 T MRI: comparison of MAVRIC-SL with conventional fast spin echo sequences in patients with Hip joint arthroplasty

    International Nuclear Information System (INIS)

    Kretzschmar, Martin; Nardo, Lorenzo; Han, Misung M.; Heilmeier, Ursula; Sam, Craig; Joseph, Gabby B.; Krug, Roland; Link, Thomas M.; Koch, Kevin M.

    2015-01-01

    The aim of our study was to evaluate the clinical feasibility and diagnostic value of a new MRI metal artefact reduction pulse sequence called MAVRIC-SL in a 3 T MRI environment. Two MAVRIC-SL sequences obtained in 61 patients with symptomatic total hip replacement were compared with standard FSE-STIR sequences optimized for imaging around metal. Artefact size was measured on the slice of greatest extent. Image quality, fat saturation, image distortion, visibility of anatomical structures, and detectability of joint abnormalities were visually assessed and graded on qualitative scales. Differences between MAVRIC-SL and FSE sequences were tested with the Wilcoxon signed-rank test. MAVRIC-SL sequences at 3 T showed significantly smaller metal artefacts compared to FSE-STIR sequences (p < 0.0001). The general image quality of MAVRIC-SL sequences was reduced with regard to spatial resolution, noise and contrast (p = 0.001), and fat saturation (p < 0.0001). The reduction of artefact size and image distortion significantly improved visualization of joint anatomy (p < 0.0001) and diagnostic confidence regarding implant-associated abnormalities (p = 0.0075 to <0.0001). Although the image quality of MAVRIC-SL sequences is limited at 3 T, its clinical application is feasible and provides important additional diagnostic information for the workup of patients with symptomatic hip replacement through substantially reduced metal artefacts. (orig.)

  19. Metal artefact suppression at 3 T MRI: comparison of MAVRIC-SL with conventional fast spin echo sequences in patients with Hip joint arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, Martin; Nardo, Lorenzo; Han, Misung M.; Heilmeier, Ursula; Sam, Craig; Joseph, Gabby B.; Krug, Roland; Link, Thomas M. [University of California San Francisco, Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Koch, Kevin M. [Medical Collage of Wisconsin, Departments of Biophysics and Radiology, Milwaukee, WI (United States)

    2015-08-15

    The aim of our study was to evaluate the clinical feasibility and diagnostic value of a new MRI metal artefact reduction pulse sequence called MAVRIC-SL in a 3 T MRI environment. Two MAVRIC-SL sequences obtained in 61 patients with symptomatic total hip replacement were compared with standard FSE-STIR sequences optimized for imaging around metal. Artefact size was measured on the slice of greatest extent. Image quality, fat saturation, image distortion, visibility of anatomical structures, and detectability of joint abnormalities were visually assessed and graded on qualitative scales. Differences between MAVRIC-SL and FSE sequences were tested with the Wilcoxon signed-rank test. MAVRIC-SL sequences at 3 T showed significantly smaller metal artefacts compared to FSE-STIR sequences (p < 0.0001). The general image quality of MAVRIC-SL sequences was reduced with regard to spatial resolution, noise and contrast (p = 0.001), and fat saturation (p < 0.0001). The reduction of artefact size and image distortion significantly improved visualization of joint anatomy (p < 0.0001) and diagnostic confidence regarding implant-associated abnormalities (p = 0.0075 to <0.0001). Although the image quality of MAVRIC-SL sequences is limited at 3 T, its clinical application is feasible and provides important additional diagnostic information for the workup of patients with symptomatic hip replacement through substantially reduced metal artefacts. (orig.)

  20. Intradiurnal fluctuations of off-resonance saturation effects in healthy human achilles tendons assessed with a 3D ultrashort echo time MRI sequence at 3 tesla

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, U.; Syha, R.; Kessler, D.E.; Bongers, M.; Seith, F.; Nikolaou, K.; Springer, F. [University Hospital Tuebingen (Germany). Dept. of Diagnostic and Interventional Radiology; Partovi, S.; Robbin, M. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Radiology; Schick, F. [University Hospital Tuebingen (Germany). Section on Experimental Radiology

    2015-11-15

    The purpose of this study was to evaluate whether gravitational interstitial fluid accumulation in healthy subjects has an impact on off-resonance saturation ratios (OSR) or the volume of the Achilles tendon after a prolonged time of reduced levels of physical activity. 7 healthy volunteers were repeatedly investigated on 3 consecutive days on a 3 T whole body MR scanner using an ultrashort echo time (UTE) imaging sequence with a Gaussian off-resonance saturation pulse at a frequency offset of 2000 Hz to calculate OSR values. For accurate volumetric quantification of the Achilles tendon, a newly developed contour detection snake algorithm was applied on high-resolution isotropic T2-weighted SPACE sequence datasets. Single-measure intraclass correlation coefficients (ICC) were calculated to estimate test-retest reliability. For OSR and tendon volume measurements on three consecutive days, excellent reproducibility could be achieved with ICC values above 0.96 and 0.97, respectively. Comparing the results of all three days, a statistically significant mean individual percentage decrease (-4.1 ± 1.5 %; p=0.001) of calculated tendon OSR values was found for the evening measurements. No statistically significant difference between tendon volumes in the morning and the evening could be detected (p=0.589). The results of this in-vivo study demonstrate a significant influence of gravitational interstitial fluid accumulation after reduced physical activity on OSR values in the Achilles tendon, but not on tendon volume. Taken together with the demonstrated excellent reproducibility, these findings are important for future studies investigating temporal changes of the Achilles tendon microstructure.

  1. Intradiurnal fluctuations of off-resonance saturation effects in healthy human achilles tendons assessed with a 3D ultrashort echo time MRI sequence at 3 tesla

    International Nuclear Information System (INIS)

    Grosse, U.; Syha, R.; Kessler, D.E.; Bongers, M.; Seith, F.; Nikolaou, K.; Springer, F.; Partovi, S.; Robbin, M.; Schick, F.

    2015-01-01

    The purpose of this study was to evaluate whether gravitational interstitial fluid accumulation in healthy subjects has an impact on off-resonance saturation ratios (OSR) or the volume of the Achilles tendon after a prolonged time of reduced levels of physical activity. 7 healthy volunteers were repeatedly investigated on 3 consecutive days on a 3 T whole body MR scanner using an ultrashort echo time (UTE) imaging sequence with a Gaussian off-resonance saturation pulse at a frequency offset of 2000 Hz to calculate OSR values. For accurate volumetric quantification of the Achilles tendon, a newly developed contour detection snake algorithm was applied on high-resolution isotropic T2-weighted SPACE sequence datasets. Single-measure intraclass correlation coefficients (ICC) were calculated to estimate test-retest reliability. For OSR and tendon volume measurements on three consecutive days, excellent reproducibility could be achieved with ICC values above 0.96 and 0.97, respectively. Comparing the results of all three days, a statistically significant mean individual percentage decrease (-4.1 ± 1.5 %; p=0.001) of calculated tendon OSR values was found for the evening measurements. No statistically significant difference between tendon volumes in the morning and the evening could be detected (p=0.589). The results of this in-vivo study demonstrate a significant influence of gravitational interstitial fluid accumulation after reduced physical activity on OSR values in the Achilles tendon, but not on tendon volume. Taken together with the demonstrated excellent reproducibility, these findings are important for future studies investigating temporal changes of the Achilles tendon microstructure.

  2. Synthesis and characterization of superparamagnetic iron oxide nanoparticles as calcium-responsive MRI contrast agents

    International Nuclear Information System (INIS)

    Xu, Pengfei; Shen, Zhiwei; Zhang, Baolin; Wang, Jun; Wu, Renhua

    2016-01-01

    Highlights: • SPIONs were conjugated with EGTA by EDC/sulfo-NHS method. • The presence of Ca"2"+ induced the aggregation of EGTA-SPIONs. • The aggregation of EGTA-SPIONs increased the T2 relaxation time. • EGTA-SPIONs can be used for the calcium imaging with MRI. - Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) as T2 contrast agents have great potential to sense calcium ion (Ca"2"+) using magnetic resonance imaging (MRI). Here we prepared calcium-responsive SPIONs for MRI, formed by combining poly(ethylene glycol) (PEG) and polyethylenimine (PEI) coated iron oxide nanoparticle (PEI/PEG-SPIONs) contrast agents with the straightforward calcium-sensing compound EGTA (ethylene glycol tetraacetic acid). EGTA was conjugated onto PEI/PEG-SPIONs using EDC/sulfo-NHS method. EGTA-SPIONs were characterized using TEM, XPS, DSL, TGA and SQUIID. DSL results show that the SPIONs aggregate in the presence of Ca"2"+. MRI analyses indicate that the water proton T2 relaxation rates in HEPES suspensions of the EGTA-SPIONs significantly increase with the calcium concentration because the SPIONs aggregate in the presence of Ca"2"+. The T2 values decreased 25% when Ca"2"+ concentration decreased from 1.2 to 0.8 mM. The aggregation of EGTA-SPIONs could be reversed by EDTA. EGTA-SPIONs have potential as smart contrast agents for Ca"2"+-sensitive MRI.

  3. Synthesis and characterization of superparamagnetic iron oxide nanoparticles as calcium-responsive MRI contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Pengfei [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, School of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004 (China); Shen, Zhiwei [Second Affiliated Hospital of Shantou University Medical College, Dong Xia North Road, Shantou 515041,China (China); Zhang, Baolin, E-mail: baolinzhang@ymail.com [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, School of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004 (China); Wang, Jun [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, School of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004 (China); Wu, Renhua, E-mail: rhwu@stu.edu.cn [Second Affiliated Hospital of Shantou University Medical College, Dong Xia North Road, Shantou 515041,China (China)

    2016-12-15

    Highlights: • SPIONs were conjugated with EGTA by EDC/sulfo-NHS method. • The presence of Ca{sup 2+} induced the aggregation of EGTA-SPIONs. • The aggregation of EGTA-SPIONs increased the T2 relaxation time. • EGTA-SPIONs can be used for the calcium imaging with MRI. - Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) as T2 contrast agents have great potential to sense calcium ion (Ca{sup 2+}) using magnetic resonance imaging (MRI). Here we prepared calcium-responsive SPIONs for MRI, formed by combining poly(ethylene glycol) (PEG) and polyethylenimine (PEI) coated iron oxide nanoparticle (PEI/PEG-SPIONs) contrast agents with the straightforward calcium-sensing compound EGTA (ethylene glycol tetraacetic acid). EGTA was conjugated onto PEI/PEG-SPIONs using EDC/sulfo-NHS method. EGTA-SPIONs were characterized using TEM, XPS, DSL, TGA and SQUIID. DSL results show that the SPIONs aggregate in the presence of Ca{sup 2+}. MRI analyses indicate that the water proton T2 relaxation rates in HEPES suspensions of the EGTA-SPIONs significantly increase with the calcium concentration because the SPIONs aggregate in the presence of Ca{sup 2+}. The T2 values decreased 25% when Ca{sup 2+} concentration decreased from 1.2 to 0.8 mM. The aggregation of EGTA-SPIONs could be reversed by EDTA. EGTA-SPIONs have potential as smart contrast agents for Ca{sup 2+}-sensitive MRI.

  4. ECHO Gov Login | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  5. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Tatsuya J. [Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Nofiele, Joris; Yuan, Qing [Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Madhuranthakam, Ananth J.; Pedrosa, Ivan; Chopra, Rajiv [Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Sawant, Amit, E-mail: amit.sawant@utsouthwestern.edu [Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 (United States)

    2016-06-15

    Purpose: Sparse-sampling and reconstruction techniques represent an attractive strategy to achieve faster image acquisition speeds, while maintaining adequate spatial resolution and signal-to-noise ratio in rapid magnetic resonance imaging (MRI). The authors investigate the use of one such sequence, broad-use linear acquisition speed-up technique (k-t BLAST) in monitoring tumor motion for thoracic and abdominal radiotherapy and examine the potential trade-off between increased sparsification (to increase imaging speed) and the potential loss of “true” information due to greater reliance on a priori information. Methods: Lung tumor motion trajectories in the superior–inferior direction, previously recorded from ten lung cancer patients, were replayed using a motion phantom module driven by an MRI-compatible motion platform. Eppendorf test tubes filled with water which serve as fiducial markers were placed in the phantom. The modeled rigid and deformable motions were collected in a coronal image slice using balanced fast field echo in conjunction with k-t BLAST. Root mean square (RMS) error was used as a metric of spatial accuracy as measured trajectories were compared to input data. The loss of spatial information was characterized for progressively increasing acceleration factor from 1 to 16; the resultant sampling frequency was increased approximately from 2.5 to 19 Hz when the principal direction of the motion was set along frequency encoding direction. In addition to the phantom study, respiration-induced tumor motions were captured from two patients (kidney tumor and lung tumor) at 13 Hz over 49 s to demonstrate the impact of high speed motion monitoring over multiple breathing cycles. For each subject, the authors compared the tumor centroid trajectory as well as the deformable motion during free breathing. Results: In the rigid and deformable phantom studies, the RMS error of target tracking at the acquisition speed of 19 Hz was approximately 0.3–0

  6. Physiological neuronal decline in healthy aging human brain - An in vivo study with MRI and short echo-time whole-brain (1)H MR spectroscopic imaging.

    Science.gov (United States)

    Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich

    2016-08-15

    Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Grating stimulated echo

    International Nuclear Information System (INIS)

    Dubetsky, B.; Berman, P.R.; Sleator, T.

    1992-01-01

    A theory of a grating simulated echo (GTE) is developed. The GSE involves the sequential excitation of atoms by two counterpropagating traveling waves, a standing wave, and a third traveling wave. It is shown that the echo signal is very sensitive to small changes in atomic velocity, much more sensitive than the normal stimulated echo. Use of the GSE as a collisional probe or accelerometer is discussed

  8. Secretin-stimulated MRI characterization of pancreatic morphology and function in patients with chronic pancreatitis.

    Science.gov (United States)

    Madzak, Adnan; Olesen, Søren Schou; Haldorsen, Ingfrid Salvesen; Drewes, Asbjørn Mohr; Frøkjær, Jens Brøndum

    Chronic pancreatitis (CP) is characterized by abnormal pancreatic morphology and impaired endocrine and exocrine function. However, little is known about the relationship between pancreatic morphology and function, and also the association with the etiology and clinical manifestations of CP. The aim was to explore pancreatic morphology and function with advanced MRI in patients with CP and healthy controls (HC) METHODS: Eighty-two patients with CP and 22 HC were enrolled in the study. Morphological imaging parameters included pancreatic main duct diameter, gland volume, fat signal fraction and apparent diffusion coefficient (ADC) values. Functional secretin-stimulated MRI (s-MRI) parameters included pancreatic secretion (bowel fluid volume) and changes in pancreatic ADC value before and after secretin stimulation. Patients were classified according to the modified Cambridge and M-ANNHEIM classification system and fecal elastase was collected. All imaging parameters differentiated CP patients from HC; however, correlations between morphological and functional parameters in CP were weak. Patients with alcoholic and non-alcoholic etiology had comparable s-MRI findings. Fecal elastase was positively correlated to pancreatic gland volume (r = 0.68, P = 0.0016) and negatively correlated to Cambridge classification (r = -0.35, P pancreatic gland volume was significantly decreased in the severe stages of CP (P = 0.001). S-MRI provides detailed information about pancreatic morphology and function and represents a promising non-invasive imaging method to characterize pancreatic pathophysiology and may enable monitoring of disease progression in patients with CP. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  9. MRI evaluation of myometrial invasion by endometrial carcinoma. Comparison between fast-spin-echo T2W and coronal FMPSPGR Gadolinium-Dota-Enhanced Sequences

    International Nuclear Information System (INIS)

    Nasi, Francesca; Fiocchi, Federica; Pecchi, Annarita; Torricelli, Pietro; Rivasi, Francesco

    2005-01-01

    Purpose. The depth of myometrial invasion by endometrial carcinoma strongly affects the incidence of metastasis to regional nodes and influences the surgical strategies. The aim of this paper is to compare the results of FSE T2-w and Gadolinium-enhanced FMPSGR MR sequences in assessing the depth of myometrial invasion by endometrial cancer. Materials and methods. Forty-five women with histopathologically-proven endometrial carcinoma underwent preoperative MRI. Axial SE TI w, axial, sagittal and para-coronal FSE T2w and para-coronal Gadolinium enhanced FMPSGR sequences were performed using a high field strength magnet (1.5T). Within one month of MR all patients underwent hysterectomy, and anatomical evaluation of the surgical specimen was done sectioning the uterus along the short axis. Based upon the results of the histological evaluation the results of the FSE T2w and Gadolinium-enhanced sequences were compared and the statistical difference between the results obtained was statistically evaluated. Results. The histological evaluation showed intra mucosal neoplasm in 11 patients, myometrial infiltration less than 50% in 31 patients, myometrial infiltration more than 50% in 12 patients and transmural cancer 1 patient. Statistical evaluation showed that the FSE T2w sequence had a global sensitivity and specificity of 80.6% and 87.6%, respectively, with a mean Negative Predictive Value of 92.6% and a mean Positive Predictive Value of 86%. Gadolinium-enhanced FMPSPGR sequence had a global sensitivity and specificity of 90.6% and 93.3%, respectively, with a mean Negative Predictive Value of 96,3% and a mean Positive Predictive Value of 88%. The staging accuracy (χ 2 test) on FMPSPGR images (95%) was higher than that on FSE T2w images (78%). Conclusions. In our experience Gadolinium-enhanced dynamic sequences increase the accuracy of MR imaging in diagnosing the depth of myometrial invasion. In particular they improve the visualisation of the inner myometrium, the so

  10. TU-H-206-03: Characterizing B1 Inhomogeneities in DCE MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gach, H [Washington University in St. Louis, St. Louis, MO (United States); Mason, N [University of Pittsburgh, Pittsburgh, PA (United States)

    2016-06-15

    Purpose: Dynamic Contrast Enhanced (DCE) MRI is a valuable technique for measuring perfusion and permeability characteristics of tumors. Exogenous contrast concentrations are calculated based on changes in T{sub 1} measured using fast 3D gradient echo (FLASH) sequences. However, the slab selective pulses used in 3D MRI may result in B{sub 1} inhomogeneities across the volume of interest that can lead to errors in T{sub 1} and thus the estimated gadolinium concentration. We compared three FLASH DCE sequences (GRE, TWIST, and VIBE) to determine their signal homogeneity across slices and the accuracy in calculating T{sub 1} using acquisitions with variable flip angles. Methods: The sequences were tested at 3 T on a Siemens mMR (VB20P) using a doped water phantom 3.75 g/L NiSO{sub 4} - 6H{sub 2}O + 5 g/L NaCl (T{sub 1} = 104 ms) and a 2% agar, 0.67% NaCl phantom (T{sub 1}= 1.71 s). 2D EPI B{sub 1} maps and inversion recovery T{sub 1}maps were acquired for ground truth. 3D MRI was acquired at different flip angles to generate a T{sub 1} map. Regions of interest were drawn to measure signal inside the phantoms as a function of slice position. The T{sub 1} for each slice ROI was fit to the FLASH steady-state model of magnetization. Results: Based on the data, GRE gave the most uniform signal homogeneity and T{sub 1} values in the middle slices of the 3D volume. The 3D VIBE sequence had the largest region of signal inhomogeneity compared to the 3D GRE and TWIST sequences. VIBE’s B{sub 1} inhomogeneity is inconsistent at low flip angles. However, VIBE resulted in more slices with T{sub 1} values similar to the ground truth. Conclusion: The central 1/3 of the slices yielded signals that result in T{sub 1} fits consistent with the ground truth. However, the remaining slices required some form of B{sub 1} inhomogeneity correction for quantitative DCE analysis. The research was supported in part by NIH NCI Grant R01CA159471.

  11. TU-H-206-03: Characterizing B1 Inhomogeneities in DCE MRI

    International Nuclear Information System (INIS)

    Gach, H; Mason, N

    2016-01-01

    Purpose: Dynamic Contrast Enhanced (DCE) MRI is a valuable technique for measuring perfusion and permeability characteristics of tumors. Exogenous contrast concentrations are calculated based on changes in T 1 measured using fast 3D gradient echo (FLASH) sequences. However, the slab selective pulses used in 3D MRI may result in B 1 inhomogeneities across the volume of interest that can lead to errors in T 1 and thus the estimated gadolinium concentration. We compared three FLASH DCE sequences (GRE, TWIST, and VIBE) to determine their signal homogeneity across slices and the accuracy in calculating T 1 using acquisitions with variable flip angles. Methods: The sequences were tested at 3 T on a Siemens mMR (VB20P) using a doped water phantom 3.75 g/L NiSO 4 - 6H 2 O + 5 g/L NaCl (T 1 = 104 ms) and a 2% agar, 0.67% NaCl phantom (T 1 = 1.71 s). 2D EPI B 1 maps and inversion recovery T 1 maps were acquired for ground truth. 3D MRI was acquired at different flip angles to generate a T 1 map. Regions of interest were drawn to measure signal inside the phantoms as a function of slice position. The T 1 for each slice ROI was fit to the FLASH steady-state model of magnetization. Results: Based on the data, GRE gave the most uniform signal homogeneity and T 1 values in the middle slices of the 3D volume. The 3D VIBE sequence had the largest region of signal inhomogeneity compared to the 3D GRE and TWIST sequences. VIBE’s B 1 inhomogeneity is inconsistent at low flip angles. However, VIBE resulted in more slices with T 1 values similar to the ground truth. Conclusion: The central 1/3 of the slices yielded signals that result in T 1 fits consistent with the ground truth. However, the remaining slices required some form of B 1 inhomogeneity correction for quantitative DCE analysis. The research was supported in part by NIH NCI Grant R01CA159471.

  12. Echo-Interleaved-Spiral MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Shirrie; Azhari, Haim [Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000 (Israel); Montag, Avram [Elscint Ltd., MRI division, Haifa (Israel)

    1999-12-31

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors) 4 refs., 3 figs.

  13. Echo-Interleaved-Spiral MR Imaging

    International Nuclear Information System (INIS)

    Rosenthal, Shirrie; Azhari, Haim; Montag, Avram

    1998-01-01

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors)

  14. A computerized system based on an alternative pulse echo immersion technique for acoustic characterization of non-porous solid tissue mimicking materials

    Science.gov (United States)

    Nazihah Mat Daud, Anis; Jaafar, Rosly; Kadri Ayop, Shahrul; Supar Rohani, Md

    2018-04-01

    This paper discusses the development of a computerized acoustic characterization system of non-porous solid tissue mimicking materials. This system employs an alternative pulse echo immersion technique and consists of a pulser/receiver generator, a transducer used as both a transmitter and a receiver, a digital oscilloscope, and a personal computer with a custom-developed program installed. The program was developed on the LabVIEW 2012 platform and comprises two main components, a user interface and a block diagram. The user interface consists of three panels: a signal acquisition and selection panel, a display panel, and a calculation panel. The block diagram comprises four blocks: a signal acquisition block, a peak signal analysis block, an acoustic properties calculation and display block, and an additional block. Interestingly, the system can be operated in both online and offline modes. For the online mode, the measurements are performed by connecting the system with a Rigol DS2000 Series digital oscilloscope. In contrast, the measurements are carried out by processing the saved data on the computer for the offline mode. The accuracy and consistency of the developed system was validated by a KB-Aerotech Alpha Series transducer with 5 MHz center frequency and a Rigol DS2202 two-channel 200 MHz 2 GSa s-1 digital oscilloscope, based on the measurement of the acoustic properties of three poly(methyl methacrylate) samples immersed in a medium at a temperature of (24.0  ±  0.1) °C. The findings indicated that the accuracy and consistency of the developed system was exceptionally high, within a 1.04% margin of error compared to the reference values. As such, this computerized system can be efficiently used for the acoustic characterization of non-porous solid tissues, given its spontaneous display of results, user-friendly interface, and convenient hardware connection.

  15. Diffusion MRI processing for multi-compartment characterization of brain pathology

    International Nuclear Information System (INIS)

    Hedouin, Renaud

    2017-01-01

    Diffusion weighted imaging (DWI) is a specific type of MRI acquisition based on the direction of diffusion of the brain water molecules. It allows, through several acquisitions, to model the brain microstructure, as white matter, which is significantly smaller than the voxel-resolution. To acquire a large number of images in a clinical setting, very-fast acquisition techniques are required as single-shot imaging. However these acquisitions suffer locally large distortions. We propose a block-matching registration method based on the acquisition of images with opposite phase-encoding directions (PED). This technique specially designed for Echo-Planar Images (EPI) robustly correct images and provides a deformation field. This field is applicable to an entire DWI series from only one reversed EPI allowing distortion correction with a minimal acquisition time cost. This registration algorithm has been validated both on phantom and on in vivo data and is available in our source medical image processing toolbox Anima. From these diffusion images, we are able to construct multi-compartments models (MCM) which can represent complex brain microstructure. Doing registration, averaging and atlas creation on these MCM images is required to perform studies and statistic analyses. We propose a general method to interpolate MCM as a simplification problem based on spectral clustering. This technique, which is adaptable for any MCM, has been validated on both synthetic and real data. Then, from a registered dataset, we performed a patient to population analysis at a voxel-level computing statistics on MCM parameters. Specifically designed tractography can also be used to make analysis, following tracks, based on individual anisotropic compartments. All these tools are designed and used on real data and contribute to the search of bio-markers for brain diseases such as multiple sclerosis. (author)

  16. Whole-body MRI for full assessment and characterization of diffuse inflammatory myopathy

    Directory of Open Access Journals (Sweden)

    Saleh Saleh Elessawy

    2016-09-01

    Full Text Available Background Conventional magnetic resonance imaging (MRI is a highly valuable tool for full assessment of the extent of bilateral symmetrical diffuse inflammatory myopathy, owing to its high sensitivity in the detection of edema which correlates with, and sometimes precedes, clinical findings. Purpose To evaluate the use of whole-body (WB-MRI in characterization and full assessment of the extent and distribution of diffuse inflammatory myopathy. Material and Methods A prospective study on 15 patients presenting with clinical evidence of inflammatory myopathy. It included 4 boys/men and 11 girls/women (age range, 6–44 years; mean age, 25.5 years. 1.5 T WB-MRI was performed and the distribution and extent of disease severity was assessed according to muscle edema on STIR images. Results Four cases of dermatomyositis showed lower limb disease predilection with edema in gluteal, thigh, and calf muscles. The same finding was seen in one case with recurrent polymyositis and three cases with overlap myositis with systemic lupus erythematosus (SLE. Bilateral upper and lower limb myositis was demonstrated in three cases of polymyositis and one case of overlap myositis with scleroderma. Bilateral edema involving all scanned muscle groups was detected in three cases of polymyositis with paraneoplastic syndrome, SLE, and severe active dermatomyositis (including the neck muscles. Conclusion WB-MRI is the diagnostic modality of choice for cases of inflammatory myopathy. It accurately detects the most severely affected muscles candidate for biopsy and provides a reliable baseline study for follow-up of disease progression as well as response to treatment.

  17. Characterization and optimization of the visualization performance of continuous flow overhauser DNP hyperpolarized water MRI: Inversion recovery approach.

    Science.gov (United States)

    Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria

    2016-03-01

    Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.

  18. Happy birthday Echo!

    CERN Document Server

    Staff Association

    2010-01-01

    You are reading the number hundred and one (no. 101) edition of our bulletin Echo. Just over four years ago, on 27th March 2006, the first untitled edition was published (Fig. 1 on the left). The title Echo appeared on the second edition on 10th April 2006 (Fig. 1 in the centre). Today (see Fig. 1 on the right), the layout is slightly different, but the structure of each edition has remained more or less the same: an editorial informing you of the important issues, followed by articles on club life, cultural activities (exhibitions and conferences), information from GAC-EPA, and special offers for our members.     Fig. 1 : Nos. 1, 2 and 100 of our twice-monthly publication Echo Echo was created in March 2006 when, much to our regret, CERN official communication and that of your representatives were separated. November 2009 saw a return to normal practice, and since then the CERN st...

  19. Short-echo 3D H-1 Magnetic Resonance Spectroscopic Imaging of patients with glioma at 7T for characterization of differences in metabolite levels

    Science.gov (United States)

    Li, Yan; Larson, Peder; Chen, Albert P.; Lupo, Janine M.; Ozhinsky, Eugene; Kelley, Douglas; Chang, Susan M.; Nelson, Sarah J.

    2014-01-01

    Purpose The purpose of this study was to evaluate the feasibility of using a short echo time, 3D H-1 magnetic resonance spectroscopic imaging (MRSI) sequence at 7T to assess the metabolic signature of lesions for patients with glioma. Materials and Methods 29 patients with glioma were studied. MRSI data were obtained using CHESS water suppression, spectrally-selective adiabatic inversion-recovery pulses and automatically prescribed outer-volume-suppression for lipid suppression, and spin echo slice selection (TE=30ms). An interleaved flyback echo-planar trajectory was applied to shorten the total acquisition time (~10min). Relative metabolite ratios were estimated in tumor and in normal-appearing white and gray matter (NAWM, GM). Results Levels of glutamine, myo-inositol, glycine and glutathione relative to total creatine (tCr) were significantly increased in the T2 lesions for all tumor grades compared to those in the NAWM (p < 0.05), while N-acetyl aspartate to tCr were significantly decreased (p < 0.05). In grade 2 gliomas, level of total choline-containing-compounds to tCr was significantly increased (p = 0.0137), while glutamate to tCr was significantly reduced (p = 0.0012). Conclusion The improved sensitivity of MRSI and the increased number of metabolites that can be evaluated using 7T MR scanners is of interest for evaluating patients with glioma. This study has successfully demonstrated the application of a short-echo spin-echo MRSI sequence to detect characteristic differences in regions of tumor versus normal appearing brain. PMID:24935758

  20. How can dolphins recognize fish according to their echoes? A statistical analysis of fish echoes.

    Directory of Open Access Journals (Sweden)

    Yossi Yovel

    Full Text Available Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders. In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification.

  1. Depiction and characterization of liver lesions in whole body [{sup 18}F]-FDG PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Beiderwellen, Karsten, E-mail: karsten.beiderwellen@uk-essen.de [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany); Gomez, Benedikt, E-mail: Benedikt.gomez@uk-essen.de [Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany); Buchbender, Christian, E-mail: Christian.buchbender@med.uni-duesseldorf.de [Department of Diagnostic and Interventional Radiology, University of Dusseldorf, 40225 Dusseldorf (Germany); Hartung, Verena, E-mail: Verena.hartung@uk-essen.de [Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany); Poeppel, Thorsten D., E-mail: Thorsten.Poeppel@uk-essen.de [Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany); Nensa, Felix, E-mail: felix.nensa@gmail.com [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany); Kuehl, Hilmar, E-mail: Hilmar.Kuehl@uk-essen.de [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany); Bockisch, Andreas, E-mail: Andreas.bockisch@uk-essen.de [Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany); Lauenstein, Thomas C., E-mail: Thomas.Lauenstein@uk-essen.de [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany)

    2013-11-01

    Objectives: To assess the value of PET/MRI with [{sup 18}F]-FDG using a whole body protocol for the depiction and characterization of liver lesions in comparison to PET/CT. Methods: 70 patients (31 women, 39 men) with solid tumors underwent [{sup 18}F]-FDG PET/CT and followed by an additional PET/MRI using an integrated scanner. Two readers rated the datasets (PET/CT; PET/MRI) regarding conspicuity of hepatic lesions (4-point ordinal scale) and diagnostic confidence (5-point ordinal scale). Median scores for lesion conspicuity and diagnostic confidence were compared using Wilcoxon's rank sum test. Prior examinations, histopathology and clinical follow-up (116 ± 54 days) served as standard of reference. Results: 36 of 70 (51%) patients showed liver lesions. Using PET/CT and PET/MRI all patients with liver metastases could correctly be identified. A total of 97 lesions were found (malignant n = 26; benign n = 71). For lesion conspicuity significantly higher scores were obtained for PET/MRI in comparison to PET/CT (p < 0.001). Significantly better performance for diagnostic confidence was observed in PET/MRI, both for malignant as for benign lesions (p < 0.001). Conclusions: PET/MRI, even in the setting of a whole body approach, provides higher lesion conspicuity and diagnostic confidence compared to PET/CT and may therefore evolve as an attractive alternative in oncologic imaging.

  2. Rotary spin echoes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, I. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Centre d' Etudes Nucleaires de Saclay, BP2, Gif-sur-Yvette (France)

    1959-07-01

    Torrey has observed the free precession of nuclear spins around an r-f field H{sub 1}, fixed in a frame rotating at the Larmor frequency ω{sub 0} = γH{sub 0} around a large d-c magnetic field H{sub 0}. He showed that for an H{sub 1}, much larger than inhomogeneity of H{sub 0}, the latter has a negligible effect on the decay of the spin magnetization which is mainly due to the inhomogeneity of H{sub 1}. We report here on a method of overcoming the inhomogeneity of H{sub 1}, by production of echoes in the rotating frame ('rotary echoes'). These echoes are obtained by a 180 deg. phase shift at t = τ on the r-f field so that H{sub 1}, is suddenly reversed, producing a re-focussing of the magnetization vectors at the time t = 2 τ. The rotary echoes so obtained are very similar to the usual spin-echoes with, however some specific features that make them particularly suitable for the measurement of long relaxation times. Reprint of a paper published in Physical Review Letters, vol. 2, no. 7, Apr 1959, p. 301-302.

  3. Rotary spin echoes

    International Nuclear Information System (INIS)

    Solomon, I.

    1959-01-01

    Torrey has observed the free precession of nuclear spins around an r-f field H 1 , fixed in a frame rotating at the Larmor frequency ω 0 = γH 0 around a large d-c magnetic field H 0 . He showed that for an H 1 , much larger than inhomogeneity of H 0 , the latter has a negligible effect on the decay of the spin magnetization which is mainly due to the inhomogeneity of H 1 . We report here on a method of overcoming the inhomogeneity of H 1 , by production of echoes in the rotating frame ('rotary echoes'). These echoes are obtained by a 180 deg. phase shift at t = τ on the r-f field so that H 1 , is suddenly reversed, producing a re-focussing of the magnetization vectors at the time t = 2 τ. The rotary echoes so obtained are very similar to the usual spin-echoes with, however some specific features that make them particularly suitable for the measurement of long relaxation times. Reprint of a paper published in Physical Review Letters, vol. 2, no. 7, Apr 1959, p. 301-302

  4. Role of quantitative pharmacokinetic parameter (transfer constant: Ktrans in the characterization of breast lesions on MRI

    Directory of Open Access Journals (Sweden)

    Jena Amarnath

    2013-01-01

    Full Text Available Background: The semi-quantitative analysis of the time-intensity curves in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI has a limited specificity due to overlapping enhancement patterns after gadolinium administration. With the advances in technology and faster sequences, imaging of the entire breast can be done in a few seconds, which allows measuring the transit of contrast (transfer constant: K trans through the vascular bed at capillary level that reflects quantitative measure of porosity/permeability of tumor vessels. Aim: Our study aims to evaluate the pharmacokinetic parameter K trans for enhancing breast lesions and correlate it with histopathology, and assess accuracy, sensitivity, and specificity of this parameter in discriminating benign and malignant breast lesions. Materials and Methods: One hundred and fifty-one women with 216 histologically proved enhancing breast lesions underwent high temporal resolution DCE-MRI for the early dynamic analysis for calculation of pharmacokinetic parameters (K trans using standard two compartment model. The calculated values of K trans were correlated with histopathology to calculate the sensitivity, specificity, and accuracy. Results: Receiver operating characteristic (ROC curve analysis revealed a mean K trans value of 0.56, which reliably distinguished benign and malignant breast lesions with a sensitivity of 91.1% and specificity of 90.3% with an overall accuracy of 89.3%. The area under curve (AUC was 0.907. Conclusion: K trans is a reliable quantitative parameter for characterizing benign and malignant lesions in routine DCE-MRI of breasts.

  5. Empirical evaluation of cross-site reproducibility in radiomic features for characterizing prostate MRI

    Science.gov (United States)

    Chirra, Prathyush; Leo, Patrick; Yim, Michael; Bloch, B. Nicolas; Rastinehad, Ardeshir R.; Purysko, Andrei; Rosen, Mark; Madabhushi, Anant; Viswanath, Satish

    2018-02-01

    The recent advent of radiomics has enabled the development of prognostic and predictive tools which use routine imaging, but a key question that still remains is how reproducible these features may be across multiple sites and scanners. This is especially relevant in the context of MRI data, where signal intensity values lack tissue specific, quantitative meaning, as well as being dependent on acquisition parameters (magnetic field strength, image resolution, type of receiver coil). In this paper we present the first empirical study of the reproducibility of 5 different radiomic feature families in a multi-site setting; specifically, for characterizing prostate MRI appearance. Our cohort comprised 147 patient T2w MRI datasets from 4 different sites, all of which were first pre-processed to correct acquisition-related for artifacts such as bias field, differing voxel resolutions, as well as intensity drift (non-standardness). 406 3D voxel wise radiomic features were extracted and evaluated in a cross-site setting to determine how reproducible they were within a relatively homogeneous non-tumor tissue region; using 2 different measures of reproducibility: Multivariate Coefficient of Variation and Instability Score. Our results demonstrated that Haralick features were most reproducible between all 4 sites. By comparison, Laws features were among the least reproducible between sites, as well as performing highly variably across their entire parameter space. Similarly, the Gabor feature family demonstrated good cross-site reproducibility, but for certain parameter combinations alone. These trends indicate that despite extensive pre-processing, only a subset of radiomic features and associated parameters may be reproducible enough for use within radiomics-based machine learning classifier schemes.

  6. Combined gadoxetic acid and gadofosveset enhanced liver MRI for detection and characterization of liver metastases

    International Nuclear Information System (INIS)

    Bannas, Peter; Bookwalter, Candice A.; Ziemlewicz, Tim; Munoz del Rio, Alejandro; Potretzke, Theodora A.; Motosugi, Utaroh; Nagle, Scott K.; Reeder, Scott B.

    2017-01-01

    To compare gadoxetic acid alone and combined gadoxetic acid/gadofosveset trisodium-enhanced liver MRI for detection of metastases and differentiation of metastases from haemangiomas. Ninety-one patients underwent gadoxetic acid-enhanced liver MRI before and after additional injection of gadofosveset. First, two readers retrospectively identified metastases on gadoxetic acid alone enhanced delayed hepatobiliary phase T1-weighted images together with all other MR images (dynamic images, T2-weighted images, diffusion-weighted images). Second, readers assessed additional T1-weighted images obtained after administration of gadofosveset trisodium. For both interpretations, readers rated lesion conspicuity and confidence in differentiating metastases from haemangiomas. Results were compared using alternative free-response receiver-operating characteristic (AFROC) and conventional ROC methods. Histology and follow-up served as reference standard. There were 145 metastases and 16 haemangiomas. Both readers detected more metastases using combined gadoxetic acid/gadofosveset (reader 1 = 130; reader 2 = 124) compared to gadoxetic acid alone (reader 1 = 104; reader 2 = 103). Sensitivity of combined gadoxetic acid/gadofosveset (reader 1 = 90 %; reader 2 = 86 %) was higher than that of gadoxetic acid alone (reader 1 = 72 %; reader 2 = 71 %, both P < 0.01). AFROC-AUC was higher for the combined technique (0.92 vs. 0.86, P < 0.001). Sensitivity for correct differentiation of metastases from haemangiomas was higher for the combined technique (reader 1 = 98 %; reader 2 = 99 % vs. reader 1 = 86 %; reader 2 = 91 %, both P < 0.01). ROC-AUC was significantly higher for the combined technique (reader 1 = 1.00; reader 2 = 1.00 vs. reader 1 = 0.87; reader 2 = 0.92, both P < 0.01). Combined gadoxetic acid/gadofosveset-enhanced MRI improves detection and characterization of liver metastases compared to gadoxetic acid alone. (orig.)

  7. Combined gadoxetic acid and gadofosveset enhanced liver MRI for detection and characterization of liver metastases

    Energy Technology Data Exchange (ETDEWEB)

    Bannas, Peter [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); University Medical Center Hamburg-Eppendorf, Department of Radiology, University Hospital, Hamburg (Germany); Bookwalter, Candice A.; Ziemlewicz, Tim; Munoz del Rio, Alejandro; Potretzke, Theodora A. [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); Motosugi, Utaroh [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); University of Yamanashi, Department of Radiology, Yamanashi (Japan); Nagle, Scott K. [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin-Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin-Madison, Department of Pediatrics, Madison, WI (United States); Reeder, Scott B. [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin-Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, WI (United States); University of Wisconsin-Madison, Department of Medicine, Madison, WI (United States); University of Wisconsin-Madison, Department of Emergency Medicine, Madison, WI (United States)

    2017-01-15

    To compare gadoxetic acid alone and combined gadoxetic acid/gadofosveset trisodium-enhanced liver MRI for detection of metastases and differentiation of metastases from haemangiomas. Ninety-one patients underwent gadoxetic acid-enhanced liver MRI before and after additional injection of gadofosveset. First, two readers retrospectively identified metastases on gadoxetic acid alone enhanced delayed hepatobiliary phase T1-weighted images together with all other MR images (dynamic images, T2-weighted images, diffusion-weighted images). Second, readers assessed additional T1-weighted images obtained after administration of gadofosveset trisodium. For both interpretations, readers rated lesion conspicuity and confidence in differentiating metastases from haemangiomas. Results were compared using alternative free-response receiver-operating characteristic (AFROC) and conventional ROC methods. Histology and follow-up served as reference standard. There were 145 metastases and 16 haemangiomas. Both readers detected more metastases using combined gadoxetic acid/gadofosveset (reader 1 = 130; reader 2 = 124) compared to gadoxetic acid alone (reader 1 = 104; reader 2 = 103). Sensitivity of combined gadoxetic acid/gadofosveset (reader 1 = 90 %; reader 2 = 86 %) was higher than that of gadoxetic acid alone (reader 1 = 72 %; reader 2 = 71 %, both P < 0.01). AFROC-AUC was higher for the combined technique (0.92 vs. 0.86, P < 0.001). Sensitivity for correct differentiation of metastases from haemangiomas was higher for the combined technique (reader 1 = 98 %; reader 2 = 99 % vs. reader 1 = 86 %; reader 2 = 91 %, both P < 0.01). ROC-AUC was significantly higher for the combined technique (reader 1 = 1.00; reader 2 = 1.00 vs. reader 1 = 0.87; reader 2 = 0.92, both P < 0.01). Combined gadoxetic acid/gadofosveset-enhanced MRI improves detection and characterization of liver metastases compared to gadoxetic acid alone. (orig.)

  8. In vivo characterization of a smart MRI agent that displays an inverse response to calcium concentration.

    Science.gov (United States)

    Mamedov, Ilgar; Canals, Santiago; Henig, Jörg; Beyerlein, Michael; Murayama, Yusuke; Mayer, Hermann A; Logothetis, Nikos K; Angelovski, Goran

    2010-12-15

    Contrast agents for magnetic resonance imaging (MRI) that exhibit sensitivity toward specific ions or molecules represent a challenging but attractive direction of research. Here a Gd(3+) complex linked to an aminobis(methylenephosphonate) group for chelating Ca(2+) was synthesized and investigated. The longitudinal relaxivity (r(1)) of this complex decreases during the relaxometric titration with Ca(2+) from 5.76 to 3.57 mM(-1) s(-1) upon saturation. The r(1) is modulated by changes in the hydration number, which was confirmed by determination of the luminescence emission lifetimes of the analogous Eu(3+) complex. The initial in vivo characterization of this responsive contrast agent was performed by means of electrophysiology and MRI experiments. The investigated complex is fully biocompatible, having no observable effect on neuronal function after administration into the brain ventricles or parenchyma. Distribution studies demonstrated that the diffusivity of this agent is significantly lower compared with that of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA).

  9. Combined 18F-Fluciclovine PET/MRI Shows Potential for Detection and Characterization of High-Risk Prostate Cancer.

    Science.gov (United States)

    Elschot, Mattijs; Selnæs, Kirsten M; Sandsmark, Elise; Krüger-Stokke, Brage; Størkersen, Øystein; Giskeødegård, Guro F; Tessem, May-Britt; Moestue, Siver A; Bertilsson, Helena; Bathen, Tone F

    2018-05-01

    The objective of this study was to investigate whether quantitative imaging features derived from combined 18 F-fluciclovine PET/multiparametric MRI show potential for detection and characterization of primary prostate cancer. Methods: Twenty-eight patients diagnosed with high-risk prostate cancer underwent simultaneous 18 F-fluciclovine PET/MRI before radical prostatectomy. Volumes of interest (VOIs) for prostate tumors, benign prostatic hyperplasia (BPH) nodules, prostatitis, and healthy tissue were delineated on T2-weighted images, using histology as a reference. Tumor VOIs were marked as high-grade (≥Gleason grade group 3) or not. MRI and PET features were extracted on the voxel and VOI levels. Partial least-squared discriminant analysis (PLS-DA) with double leave-one-patient-out cross-validation was performed to distinguish tumors from benign tissue (BPH, prostatitis, or healthy tissue) and high-grade tumors from other tissue (low-grade tumors or benign tissue). The performance levels of PET, MRI, and combined PET/MRI features were compared using the area under the receiver-operating-characteristic curve (AUC). Results: Voxel and VOI features were extracted from 40 tumor VOIs (26 high-grade), 36 BPH VOIs, 6 prostatitis VOIs, and 37 healthy-tissue VOIs. PET/MRI performed better than MRI and PET alone for distinguishing tumors from benign tissue (AUCs of 87%, 81%, and 83%, respectively, at the voxel level and 96%, 93%, and 93%, respectively, at the VOI level) and high-grade tumors from other tissue (AUCs of 85%, 79%, and 81%, respectively, at the voxel level and 93%, 93%, and 91%, respectively, at the VOI level). T2-weighted MRI, diffusion-weighted MRI, and PET features were the most important for classification. Conclusion: Combined 18 F-fluciclovine PET/multiparametric MRI shows potential for improving detection and characterization of high-risk prostate cancer, in comparison to MRI and PET alone. © 2018 by the Society of Nuclear Medicine and Molecular

  10. Characterizing Heterogeneity within Head and Neck Lesions Using Cluster Analysis of Multi-Parametric MRI Data.

    Directory of Open Access Journals (Sweden)

    Marco Borri

    Full Text Available To describe a methodology, based on cluster analysis, to partition multi-parametric functional imaging data into groups (or clusters of similar functional characteristics, with the aim of characterizing functional heterogeneity within head and neck tumour volumes. To evaluate the performance of the proposed approach on a set of longitudinal MRI data, analysing the evolution of the obtained sub-sets with treatment.The cluster analysis workflow was applied to a combination of dynamic contrast-enhanced and diffusion-weighted imaging MRI data from a cohort of squamous cell carcinoma of the head and neck patients. Cumulative distributions of voxels, containing pre and post-treatment data and including both primary tumours and lymph nodes, were partitioned into k clusters (k = 2, 3 or 4. Principal component analysis and cluster validation were employed to investigate data composition and to independently determine the optimal number of clusters. The evolution of the resulting sub-regions with induction chemotherapy treatment was assessed relative to the number of clusters.The clustering algorithm was able to separate clusters which significantly reduced in voxel number following induction chemotherapy from clusters with a non-significant reduction. Partitioning with the optimal number of clusters (k = 4, determined with cluster validation, produced the best separation between reducing and non-reducing clusters.The proposed methodology was able to identify tumour sub-regions with distinct functional properties, independently separating clusters which were affected differently by treatment. This work demonstrates that unsupervised cluster analysis, with no prior knowledge of the data, can be employed to provide a multi-parametric characterization of functional heterogeneity within tumour volumes.

  11. MRI as an accurate tool for the diagnosis and characterization of different knee joint meniscal injuries

    Directory of Open Access Journals (Sweden)

    Ayman F. Ahmed

    2017-12-01

    Conclusion: MRI of the knee will give the orthopedic surgeons ability to select suitable treatment and arthroscopic interference for their patients. MRI has high accuracy in meniscal tears diagnosis allowing accurate grading of them.

  12. Cine MRI of dissecting aneurysm

    International Nuclear Information System (INIS)

    Takaki, Hajime

    1991-01-01

    Cine MRI was performed in 25 cases of aortic dissection and comparative study among cine MRI, spin-echo static MRI, contrast-enhanced CT and intravenous digital subtraction angiography (IVDSA) was made. Cine MRI accurately detected aortic dissection. It was most accurate among various diagnostic methods in demonstration of entry site of dissection. Take-off of renal artery and its relation to true and false channels was also accurately demonstrated by cine MRI. The above results suggest that cine MRI can be an important diagnostic modality with almost equal diagnostic quality to those of conventional angiography. However, further technical improvement to shorten the imaging time seems necessary to replace angiography. (author)

  13. Synthesis and characterization of Gadolinium-Lectin conjugates as selective blood-vessel contrast agents for magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Pashkunova-Martic, I.

    2004-11-01

    Molecular imaging without use of ionizing radiation has recently been developed for both magnetic resonance and ultrasound imaging (MRI, US) and is expected to play a major future role in diagnosis and monitoring of tumours. In MRI, targeted nanoparticle contrast media (CM) with high relaxivities are required in order to obtain adequate signal-to-noise ratios, due to the low number of target sites. The size, charge and chemical constitution of the targeted nanoparticle CM are expected to influence nanoparticle interactions with cells and tissue elements significantly, and hence the targeting, the accumulation and dwell time at the targeted site, and the type and rate of clearance of the nanoparticles. The work reported here aims to characterise and optimise these parameters in mouse and human models, using nanoparticles targeted to a major carbohydrate determinant of the endothelial cell surface which is present in all blood vessels. Specific binding to the endothelium was demonstrated in both living and chemically fixed human vessels and in mice. Long-standing spin-echo and FLASH-3D images were obtained in the vasculature of living mice, in strong contrast to the rapid renal clearance of gadolinium-DTPA chelates which are widely used in the clinic. Nanoparticle size was found to be a major determinant of the biological response, and our data indicate that an optimal nanoparticle size lies between 50-100 nm diameter. We expect that hyperpermeable vessels present in tumours will permit targeting of optimised nanoparticles to the tumour cells, permitting MRI monitoring of the tumour. (author)

  14. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, L.B.; Trandafir, D.L. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Turcu, R.V.F. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Todea, M. [Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania)

    2016-11-01

    Highlights: • Dysprosium containing silica microparticles obtained by freeze and spray drying. • Higher structural units interconnection achieved in freeze vs. spray dried samples. • Dy occurance on the outermost layer of the microparticles evidenced by XPS. • Enhanced MRI contrast observed for freeze dried samples with 5% mol Dy{sub 2}O{sub 3}. - Abstract: The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, {sup 29}Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T{sub 1} and RARE-T{sub 2} protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T{sub 2}-weighted MRI contrast properties.

  15. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    International Nuclear Information System (INIS)

    Chiriac, L.B.; Trandafir, D.L.; Turcu, R.V.F.; Todea, M.; Simon, S.

    2016-01-01

    Highlights: • Dysprosium containing silica microparticles obtained by freeze and spray drying. • Higher structural units interconnection achieved in freeze vs. spray dried samples. • Dy occurance on the outermost layer of the microparticles evidenced by XPS. • Enhanced MRI contrast observed for freeze dried samples with 5% mol Dy_2O_3. - Abstract: The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, "2"9Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T_1 and RARE-T_2 protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T_2-weighted MRI contrast properties.

  16. Harmonic analysis for the characterization and correction of geometric distortion in MRI.

    Science.gov (United States)

    Tadic, Tony; Jaffray, David A; Stanescu, Teodor

    2014-11-01

    Magnetic resonance imaging (MRI) is gaining widespread use in radiation therapy planning, patient setup verification, and real-time guidance of radiation delivery. Successful implementation of these technologies relies on the development of simple and efficient methods to characterize and monitor the geometric distortions arising due to system imperfections and gradient nonlinearities. To this end, the authors present the theory and validation of a novel harmonic approach to the quantification of system-related distortions in MRI. The theory of spatial encoding in MRI is applied to demonstrate that the 3D distortion vector field (DVF) is given by the solution of a second-order boundary value problem (BVP). This BVP is comprised of Laplace's equation and a limited measurement of the distortion on the boundary of a specified region of interest (ROI). An analytical series expansion solving this BVP within a spherical ROI is obtained, and a statistical uncertainty analysis is performed to determine how random errors in the boundary measurements propagate to the ROI interior. This series expansion is then evaluated to obtain volumetric DVF mappings that are compared to reference data obtained on a 3 T full-body scanner. This validation is performed within two spheres of 20 cm diameter (one centered at the scanner origin and the other offset +3 cm along each of the transverse directions). Initially, a high-order mapping requiring measurements at 5810 boundary points is used. Then, after exploring the impact of the boundary sampling density and the effect of series truncation, a reduced-order mapping requiring measurements at 302 boundary points is evaluated. The volumetric DVF mappings obtained from the harmonic analysis are in good agreement with the reference data. Following distortion correction using the high-order mapping, the authors estimate a reduction in the mean distortion magnitude from 0.86 to 0.42 mm and from 0.93 to 0.39 mm within the central and offset

  17. Harmonic analysis for the characterization and correction of geometric distortion in MRI

    International Nuclear Information System (INIS)

    Tadic, Tony; Stanescu, Teodor; Jaffray, David A.

    2014-01-01

    Purpose: Magnetic resonance imaging (MRI) is gaining widespread use in radiation therapy planning, patient setup verification, and real-time guidance of radiation delivery. Successful implementation of these technologies relies on the development of simple and efficient methods to characterize and monitor the geometric distortions arising due to system imperfections and gradient nonlinearities. To this end, the authors present the theory and validation of a novel harmonic approach to the quantification of system-related distortions in MRI. Methods: The theory of spatial encoding in MRI is applied to demonstrate that the 3D distortion vector field (DVF) is given by the solution of a second-order boundary value problem (BVP). This BVP is comprised of Laplace’s equation and a limited measurement of the distortion on the boundary of a specified region of interest (ROI). An analytical series expansion solving this BVP within a spherical ROI is obtained, and a statistical uncertainty analysis is performed to determine how random errors in the boundary measurements propagate to the ROI interior. This series expansion is then evaluated to obtain volumetric DVF mappings that are compared to reference data obtained on a 3 T full-body scanner. This validation is performed within two spheres of 20 cm diameter (one centered at the scanner origin and the other offset +3 cm along each of the transverse directions). Initially, a high-order mapping requiring measurements at 5810 boundary points is used. Then, after exploring the impact of the boundary sampling density and the effect of series truncation, a reduced-order mapping requiring measurements at 302 boundary points is evaluated. Results: The volumetric DVF mappings obtained from the harmonic analysis are in good agreement with the reference data. Following distortion correction using the high-order mapping, the authors estimate a reduction in the mean distortion magnitude from 0.86 to 0.42 mm and from 0.93 to 0.39 mm

  18. Characterization of ductal carcinoma in situ on diffusion weighted breast MRI

    International Nuclear Information System (INIS)

    Rahbar, Habib; Partridge, Savannah C.; Eby, Peter R.; DeMartini, Wendy B.; Gutierrez, Robert L.; Peacock, Sue; Lehman, Constance D.

    2011-01-01

    To characterize ductal carcinoma in situ (DCIS) and its subtypes on diffusion-weighted imaging (DWI). We retrospectively reviewed 74 pure DCIS lesions in 69 women who underwent DWI at 1.5 T (b = 0 and 600 s/mm 2 ). Each lesion was characterized by qualitative DWI intensity, quantitative DWI lesion-to-normal contrast-to-noise ratio (CNR), and quantitative apparent diffusion coefficient (ADC). The detection rate was calculated with predetermined thresholds for each parameter. The effects of lesion size, grade, morphology, and necrosis were assessed. Ninety-six percent (71/74) of DCIS lesions demonstrated greater qualitative DWI intensity than normal breast tissue. Quantitatively, DCIS lesions demonstrated on average 56% greater signal than normal tissue (mean CNR = 1.83 ± 2.7) and lower ADC values (1.50 ± 0.28 x 10 -3 mm 2 /s) than normal tissue (2.01 ± 0.37 x 10 -3 mm 2 /s, p -3 mm 2 /s). Non-high-grade DCIS exhibited greater qualitative DWI intensity (p = 0.02) and quantitative CNR (p = 0.01) than high-grade DCIS but no difference in ADC (p = 0.40). Lesion size, morphology, and necrosis did not affect qualitative or quantitative DWI parameters of DCIS lesions (p > 0.05). DCIS lesions have higher DWI signal intensity and lower ADC values than normal breast tissue. DWI warrants further investigation as a potential non-contrast MRI tool for early breast cancer detection. (orig.)

  19. A multimodal MRI approach to identify and characterize microstructural brain changes in neuropsychiatric systemic lupus erythematosus.

    Science.gov (United States)

    Ercan, Ece; Ingo, Carson; Tritanon, Oranan; Magro-Checa, Cesar; Smith, Alex; Smith, Seth; Huizinga, Tom; van Buchem, Mark A; Ronen, Itamar

    2015-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with multi-organ involvement and results in neurological and psychiatric (NP) symptoms in up to 40% of the patients. To date, the diagnosis of neuropsychiatric systemic lupus erythematosus (NPSLE) poses a challenge due to the lack of neuroradiological gold standards. In this study, we aimed to better localize and characterize normal appearing white matter (NAWM) changes in NPSLE by combining data from two quantitative MRI techniques, diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI). 9 active NPSLE patients (37 ± 13 years, all females), 9 SLE patients without NP symptoms (44 ± 11 years, all females), and 14 healthy controls (HC) (40 ± 9 years, all females) were included in the study. MTI, DTI and fluid attenuated inversion recovery (FLAIR) images were collected from all subjects on a 3 T MRI scanner. Magnetization transfer ratio (MTR), mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD) maps and white matter lesion maps based on the FLAIR images were created for each subject. MTR and DTI data were then co-analyzed using tract-based spatial statistics and a cumulative lesion map to exclude lesions. Significantly lower MTR and FA and significantly higher AD, RD and MD were found in NPSLE compared to HC in NAWM regions. The differences in DTI measures and in MTR, however, were only moderately co-localized. Additionally, significant differences in DTI measures, but not in MTR, were found between NPSLE and SLE patients, suggesting that the underlying microstructural changes detected by MD are linked to the onset of NPSLE. The co-analysis of the anatomical distribution of MTI and DTI measures can potentially improve the diagnosis of NPSLE and contribute to the understanding of the underlying microstructural damage.

  20. Influence of Free Radicals on the Intrinsic MRI Relaxation Properties.

    Science.gov (United States)

    Tain, Rong-Wen; Scotti, Alessandro M; Li, Weiguo; Zhou, Xiaohong Joe; Cai, Kejia

    2017-01-01

    Free radicals are critical contributors in various conditions including normal aging, Alzheimer's disease, cancer, and diabetes. Currently there is no non-invasive approach to image tissue free radicals based on endogenous contrast due to their extremely short lifetimes and low in vivo concentrations. In this study we aim at characterizing the influence of free radicals on the MRI relaxation properties. Phantoms containing free radicals were created by treating egg white with various H 2 O 2 concentrations and scanned on a 9.4 T MRI scanner at room temperature. T 1 and T 2 relaxation maps were generated from data acquired with an inversion recovery sequence with varied inversion times and a multi-echo spin echo sequence with varied echo times (TEs), respectively. Results demonstrated that free radicals express a strong shortening effect on T 1 , which was proportional to the H 2 O 2 concentration, and a relatively small reduction in T 2 (free radicals was estimated to be in the pM range that is within the physiological range of in vivo free radical expression. In conclusion, the free radicals show a strong paramagnetic effect that may be utilized as an endogenous MRI contrast for its non-invasive in vivo imaging.

  1. Fast spin-echo imaging

    International Nuclear Information System (INIS)

    Mackey, K.; Zoarski, G.; Bentson, J.R.; Lufkin, R.B.; Melki, P.; Jolesz, F.

    1991-01-01

    This paper reports on a partial radio-frequency (RF) echo-planar pulse sequence called contiguous slice fast spin echo (CSFSE) which is undergoing clinical trials for spine MR imaging. In this variation of rapid acquisition relaxation enhanced (RARE) spin-echo imaging, rapid 180 degrees RF pulse generated refocused echoes, producing T2-weighted images in about one-third the time of conventional double-echo technique. Forty patients with suspected pathology of the spine were imaged with conventional double-echo and closely matched CSFSE techniques on a GE Signa 1.5-T Advantage system. Cases were reviewed by two board-certified neuroradiologists. In all cases the CSFSE images were of equal or superior quality compared with those obtained with the conventional double-echo technique. Pathologic processes that were imaged consisted of inflammatory, neoplastic, posttraumatic, and degenerative conditions

  2. Characterization of functional brain activity and connectivity using EEG and fMRI in patients with sickle cell disease.

    Science.gov (United States)

    Case, Michelle; Zhang, Huishi; Mundahl, John; Datta, Yvonne; Nelson, Stephen; Gupta, Kalpna; He, Bin

    2017-01-01

    Sickle cell disease (SCD) is a red blood cell disorder that causes many complications including life-long pain. Treatment of pain remains challenging due to a poor understanding of the mechanisms and limitations to characterize and quantify pain. In the present study, we examined simultaneously recording functional MRI (fMRI) and electroencephalogram (EEG) to better understand neural connectivity as a consequence of chronic pain in SCD patients. We performed independent component analysis and seed-based connectivity on fMRI data. Spontaneous power and microstate analysis was performed on EEG-fMRI data. ICA analysis showed that patients lacked activity in the default mode network (DMN) and executive control network compared to controls. EEG-fMRI data revealed that the insula cortex's role in salience increases with age in patients. EEG microstate analysis showed patients had increased activity in pain processing regions. The cerebellum in patients showed a stronger connection to the periaqueductal gray matter (involved in pain inhibition), and negative connections to pain processing areas. These results suggest that patients have reduced activity of DMN and increased activity in pain processing regions during rest. The present findings suggest resting state connectivity differences between patients and controls can be used as novel biomarkers of SCD pain.

  3. Multi-feature-based plaque characterization in ex vivo MRI trained by registration to 3D histology

    International Nuclear Information System (INIS)

    Van Engelen, Arna; Niessen, Wiro J; Klein, Stefan; De Bruijne, Marleen; Groen, Harald C; Wentzel, Jolanda J; Verhagen, Hence JM; Lugt, Aad van der

    2012-01-01

    We present a new method for automated characterization of atherosclerotic plaque composition in ex vivo MRI. It uses MRI intensities as well as four other types of features: smoothed, gradient magnitude and Laplacian images at several scales, and the distances to the lumen and outer vessel wall. The ground truth for fibrous, necrotic and calcified tissue was provided by histology and μCT in 12 carotid plaque specimens. Semi-automatic registration of a 3D stack of histological slices and μCT images to MRI allowed for 3D rotations and in-plane deformations of histology. By basing voxelwise classification on different combinations of features, we evaluated their relative importance. To establish whether training by 3D registration yields different results than training by 2D registration, we determined plaque composition using (1) a 2D slice-based registration approach for three manually selected MRI and histology slices per specimen, and (2) an approach that uses only the three corresponding MRI slices from the 3D-registered volumes. Voxelwise classification accuracy was best when all features were used (73.3 ± 6.3%) and was significantly better than when only original intensities and distance features were used (Friedman, p < 0.05). Although 2D registration or selection of three slices from the 3D set slightly decreased accuracy, these differences were non-significant. (paper)

  4. Characterization of an experimental venous thrombus model with MRI, phlebography and histology

    International Nuclear Information System (INIS)

    Schmitz, S.A.; Schiffler, S.; Gust, R.; Winterhalter, S.; Wolf, K.J.; Coupland, S.E.

    2005-01-01

    Introduction: Several magnetic resonance (MR) techniques designed to demonstrate the characteristic signal intensity of blood degeneration products of thrombi have been suggested, but the effect of thrombus organization on the MR display, in particular with regard to its temporal evolution, remains to be determined. It is the purpose of this study to develop a stagnation thrombus model in rabbits and to characterize thrombus at different ages with two (MR) imaging techniques, phlebography and histology. Materials and Methods: Venous stagnation thrombi were induced in the external jugular veins of rabbits using a minimally invasive radiological technique to produce artificial embolic vascular occlusion and hypercoagulability. Twenty-five animals were divided into 5 groups of 5 animals, and each group underwent 1.5 T MR imaging at 1, 3, 5, 7 and 9 days after thrombus induction using a T1-weighted magnetization-prepared rapid gradient-echo sequence (MP-RAGE: TR 10.4 msec, TE 4.0 msec, FA 15 ) and a T2-weighted fast low-angle shot sequence (FLASH: TR 54 msec, TE 18 msec, FA15 ). The thrombus length was measured on the T1-weighted images. Thrombus conspicuity, signal intensity, and heterogeneity on T2* weighted images were described using visual scales. Radiographic venography and histology served as reference methods. Results: Thrombi were successfully induced in all animals. The overall thrombus length decreased from 43±9 (day 1 after induction) to 23±4 mm (day 9). On 3D-reconstructions of the T1-weighted images, the visible portion of the true thrombus length relative to the overall thrombus length was 0.16±0.3 (day 1), 0.24±0.3 (day 3),0.38±0.5 (day 5), 0.06±0.1 (day 7) and 0.00 (day 9). Sixteen of 25 thrombi were detectable with the T2*-weighted technique. The overall thrombus signal intensity decreased with the age of the thrombus from day 1 to day 9. The histological evaluation showed that the rabbit thrombi closely resemble human thrombi morphologically

  5. Non-contrast 3D black blood MRI for abdominal aortic aneurysm surveillance: comparison with CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chengcheng; Leach, Joseph R.; Hope, Michael D. [University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Tian, Bing; Liu, Qi; Lu, Jianping; Chen, Luguang [Changhai Hospital, Department of Radiology, Shanghai (China); Saloner, David [University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Radiology Service, VA Medical Center, San Francisco, CA (United States)

    2017-05-15

    Management of abdominal aortic aneurysms (AAAs) is based on diameter. CT angiography (CTA) is commonly used, but requires radiation and iodinated contrast. Non-contrast MRI is an appealing alternative that may allow better characterization of intraluminal thrombus (ILT). This study aims to 1) validate non-contrast MRI for measuring AAA diameter, and 2) to assess ILT with CTA and MRI. 28 patients with AAAs (diameter 50.7 ± 12.3 mm) underwent CTA and non-contrast MRI. MRI was acquired at 3 T using 1) a conventional 3D gradient echo (GRE) sequence and 2) a 3D T{sub 1}-weighted black blood fast-spin-echo sequence. Two radiologists independently measured the AAA diameter. The ratio of signal of ILT and adjacent psoas muscle (ILT{sub r} = signal{sub ILT}/signal{sub Muscle}) was quantified. Strong agreement between CTA and non-contrast MRI was shown for AAA diameter (intra-class coefficient > 0.99). Both approaches had excellent inter-observer reproducibility (ICC > 0.99). ILT appeared homogenous on CTA, whereas MRI revealed compositional variations. Patients with AAAs ≥5.5 cm and <5.5 cm had a variety of distributions of old/fresh ILT types. Non-contrast 3D black blood MRI provides accurate and reproducible AAA diameter measurements as validated by CTA. It also provides unique information about ILT composition, which may be linked with elevated risk for disease progression. (orig.)

  6. Non-contrast 3D black blood MRI for abdominal aortic aneurysm surveillance: comparison with CT angiography

    International Nuclear Information System (INIS)

    Zhu, Chengcheng; Leach, Joseph R.; Hope, Michael D.; Tian, Bing; Liu, Qi; Lu, Jianping; Chen, Luguang; Saloner, David

    2017-01-01

    Management of abdominal aortic aneurysms (AAAs) is based on diameter. CT angiography (CTA) is commonly used, but requires radiation and iodinated contrast. Non-contrast MRI is an appealing alternative that may allow better characterization of intraluminal thrombus (ILT). This study aims to 1) validate non-contrast MRI for measuring AAA diameter, and 2) to assess ILT with CTA and MRI. 28 patients with AAAs (diameter 50.7 ± 12.3 mm) underwent CTA and non-contrast MRI. MRI was acquired at 3 T using 1) a conventional 3D gradient echo (GRE) sequence and 2) a 3D T_1-weighted black blood fast-spin-echo sequence. Two radiologists independently measured the AAA diameter. The ratio of signal of ILT and adjacent psoas muscle (ILT_r = signal_I_L_T/signal_M_u_s_c_l_e) was quantified. Strong agreement between CTA and non-contrast MRI was shown for AAA diameter (intra-class coefficient > 0.99). Both approaches had excellent inter-observer reproducibility (ICC > 0.99). ILT appeared homogenous on CTA, whereas MRI revealed compositional variations. Patients with AAAs ≥5.5 cm and <5.5 cm had a variety of distributions of old/fresh ILT types. Non-contrast 3D black blood MRI provides accurate and reproducible AAA diameter measurements as validated by CTA. It also provides unique information about ILT composition, which may be linked with elevated risk for disease progression. (orig.)

  7. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing

    Energy Technology Data Exchange (ETDEWEB)

    Hébert, Clément, E-mail: clement.hebert@cea.fr [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Warnking, Jan; Depaulis, Antoine [INSERM, U836, Grenoble Institut des Neurosciences, Grenoble (France); Garçon, Laurie Amandine [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); CEA/INAC/SPrAM/CREAB, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Mermoux, Michel [Université Grenoble Alpes, LEPMI, F-38000 Grenoble (France); CNRS, LEPMI, F-38000 Grenoble (France); Eon, David [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Mailley, Pascal [CEA-LETI-DTBS Minatec, 17 rue des Martyres, 38054 Grenoble (France); Omnès, Franck [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France)

    2015-01-01

    Neural interfacing still requires highly stable and biocompatible materials, in particular for in vivo applications. Indeed, most of the currently used materials are degraded and/or encapsulated by the proximal tissue leading to a loss of efficiency. Here, we considered boron doped diamond microelectrodes to address this issue and we evaluated the performances of a diamond microelectrode array. We described the microfabrication process of the device and discuss its functionalities. We characterized its electrochemical performances by cyclic voltammetry and impedance spectroscopy in saline buffer and observed the typical diamond electrode electrochemical properties, wide potential window and low background current, allowing efficient electrochemical detection. The charge storage capacitance and the modulus of the electrochemical impedance were found to remain in the same range as platinum electrodes used for standard commercial devices. Finally we observed a reduced Magnetic Resonance Imaging artifact when the device was implanted on a rat cortex, suggesting that boron doped-diamond is a very promising electrode material allowing functional imaging. - Highlights: • Microfabrication of all-diamond microelectrode array • Evaluation of as-grown nanocrystalline boron-doped diamond for electrical neural interfacing • MRI compatibility of nanocrystalline boron-doped diamond.

  8. Characterizing amide proton transfer imaging in haemorrhage brain lesions using 3T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ha-Kyu [Philips Korea, Seoul (Korea, Republic of); Korea Basic Science Institute, Chungcheongbuk-do (Korea, Republic of); Han, Kyunghwa [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, Seodaemun-gu, Seoul (Korea, Republic of); Yonsei University College of Medicine, Yonsei Biomedical Research Institute, Seoul (Korea, Republic of); Zhou, Jinyuan [Johns Hopkins University School of Medicine, Division of MRI Research, Department of Radiology, Baltimore, MD (United States); Zhao, Yansong [Philips Healthcare, MR Clinical Science, Cleveland, OH (United States); Choi, Yoon Seong; Lee, Seung-Koo; Ahn, Sung Soo [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, Seodaemun-gu, Seoul (Korea, Republic of)

    2017-04-15

    The aim of this study was to characterize amide proton transfer (APT)-weighted signals in acute and subacute haemorrhage brain lesions of various underlying aetiologies. Twenty-three patients with symptomatic haemorrhage brain lesions including tumorous (n = 16) and non-tumorous lesions (n = 7) were evaluated. APT imaging was performed and analyzed with magnetization transfer ratio asymmetry (MTR{sub asym}). Regions of interest were defined as the enhancing portion (when present), acute or subacute haemorrhage, and normal-appearing white matter based on anatomical MRI. MTR{sub asym} values were compared among groups and components using a linear mixed model. MTR{sub asym} values were 3.68 % in acute haemorrhage, 1.6 % in subacute haemorrhage, 2.65 % in the enhancing portion, and 0.38 % in normal white matter. According to the linear mixed model, the distribution of MTR{sub asym} values among components was not significantly different between tumour and non-tumour groups. MTR{sub asym} in acute haemorrhage was significantly higher than those in the other regions regardless of underlying pathology. Acute haemorrhages showed high MTR{sub asym} regardless of the underlying pathology, whereas subacute haemorrhages showed lower MTR{sub asym} than acute haemorrhages. These results can aid in the interpretation of APT imaging in haemorrhage brain lesions. (orig.)

  9. Phase-encoded MRI for geometrically undistorted imaging and signal characterization

    NARCIS (Netherlands)

    van Gorp, JS

    2016-01-01

    Magnetic resonance imaging (MRI) is a versatile diagnostic modality that has earned its place in clinical practice all over the world. MRI delivers excellent soft-tissue contrast that can be utilized to detect disease and measure physiological properties in a non-invasive manner. As long as the main

  10. Let's go out of the breast: prevalence of extra-mammary findings and their characterization on breast MRI.

    Science.gov (United States)

    Moschetta, Marco; Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe

    2014-06-01

    The aim of this study is to assess the prevalence, the site and the nature of extra-mammary findings on breast magnetic resonance imaging (MRI) and to determine its accuracy in the characterization of the discovered lesions. A retrospective review of 308 female patients (mean age 50 ± 20) who underwent breast MRI with 1.5T device was performed. 125 out of 308 (40.5%) had a positive personal history of breast cancer (pre-operative n=80; follow-up n=45), while the remaining 183 without history of breast cancer (high familiar risk for breast cancer n=80; dense breast n=103). All incidental findings were characterized by means of additional imaging (US; Bone scintigraphy-MRI; CT-PET-CT). 59 incidental findings were found in 53/308 (17%) examined patients. 9/59 incidental findings (15%) were confirmed to be malignant while the remaining 50/59 (84%) benign. The most common site was the liver (33/59; 55.8%), followed by the lung (6/59; 10.1%), bone (6/59; 10.1%), diaphragm (6/59; 10.1%) spleen (3/59; 5%), kidney (2/59; 3.4%), gall bladder (1/5; 1.5%), ascending aorta (1/59; 1.5%), thyroid (1/59; 1.5%). The incidence of malignant incidental findings resulted to be higher in the group of patients with personal breast cancer (36%) than in the other one (8%). By comparing MRI findings with the additional definitive imaging tools, breast MRI allowed a correct diagnosis in 58/59 cases with a diagnostic accuracy value of 98%. Incidental extramammary findings on breast MRI are common. Benign lesions represent the most frequent findings, however malignant ones need to be searched especially in patients with personal history of breast cancer because they could influence the clinical patient management. Breast MRI can characterize incidental findings with high accuracy value. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging

    Science.gov (United States)

    Nguyen, Thinh; Potter, Thomas; Grossman, Robert; Zhang, Yingchun

    2018-06-01

    Objective. Neuroimaging has been employed as a promising approach to advance our understanding of brain networks in both basic and clinical neuroscience. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) represent two neuroimaging modalities with complementary features; EEG has high temporal resolution and low spatial resolution while fMRI has high spatial resolution and low temporal resolution. Multimodal EEG inverse methods have attempted to capitalize on these properties but have been subjected to localization error. The dynamic brain transition network (DBTN) approach, a spatiotemporal fMRI constrained EEG source imaging method, has recently been developed to address these issues by solving the EEG inverse problem in a Bayesian framework, utilizing fMRI priors in a spatial and temporal variant manner. This paper presents a computer simulation study to provide a detailed characterization of the spatial and temporal accuracy of the DBTN method. Approach. Synthetic EEG data were generated in a series of computer simulations, designed to represent realistic and complex brain activity at superficial and deep sources with highly dynamical activity time-courses. The source reconstruction performance of the DBTN method was tested against the fMRI-constrained minimum norm estimates algorithm (fMRIMNE). The performances of the two inverse methods were evaluated both in terms of spatial and temporal accuracy. Main results. In comparison with the commonly used fMRIMNE method, results showed that the DBTN method produces results with increased spatial and temporal accuracy. The DBTN method also demonstrated the capability to reduce crosstalk in the reconstructed cortical time-course(s) induced by neighboring regions, mitigate depth bias and improve overall localization accuracy. Significance. The improved spatiotemporal accuracy of the reconstruction allows for an improved characterization of complex neural activity. This improvement can be

  12. Hemodynamic and metabolic characterization of orthotopic rat prostate carcinomas using dynamic MRI and proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Kiessling, F.; Lichy, M.; Kauczor, H.U.; Schlemmer, H.P.; Grobholz, R.; Heilmann, M.; Meding, J.; Huber, P.E.; Peschke, P.

    2003-01-01

    The aim of this study was the noninvasive characterization of prostate carcinoma orthotopically implanted in rats using Gd-DTPA-assisted dynamic MRI (dMRI) and proton magnetic resonance spectroscopy ( 1 H-MRS). After surgical exposure of the prostate, Dunning R3327 orthotopic prostate carcinoma was induced by injecting cells of the MAT-LyLu subline. Six rats were examined 5 and 14 days after tumor induction with dMRI and 1 H-MRS at 1.5 T. Six tumor-free rats served as controls. Using an open two-compartment model, the parameters A (amplitude) and k ep (exchange rate constants) were calculated from the signal time curves of the dMRI. The relative signal intensities (Cho/Cr) of the resonances of choline (Cho) and the creatine-phosphocreatine complex (Cr) were computed from the MR spectra. Already after 5 days, the tumors in the prostate could be clearly identified based on the decrease in signal intensity to T2w and increase of A and k ep . High Cho/Cr levels and resonances of two lipid fractions (Lip 1 at 0.8-1.5 ppm and Lip 2 at 2.0-2.2 ppm) were observed by MRS in the highly necrotic tumors. The orthotopic rat prostate carcinoma model resembles human prostate carcinoma in regard to MR morphology, dMRI, and 1 H-MRS. The noninvasive characterization of perfusion and metabolism makes a comparative examination of different treatment modalities possible. (orig.) [de

  13. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Juras, Vladimir; Szomolanyi, Pavol [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Institute of Measurement Science, Department of Imaging Methods, Bratislava (Slovakia); Bohndorf, Klaus; Kronnerwetter, Claudia; Hager, Benedikt; Zbyn, Stefan [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Heule, Rahel; Bieri, Oliver [University of Basel Hospital, Division of Radiological Physics, Department of Radiology, Basel (Switzerland); Trattnig, Siegfried [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna (Austria); Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna (Austria)

    2016-06-15

    To assess the clinical relevance of T{sub 2} relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T{sub 2}-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T{sub 2} mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T{sub 2} values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T{sub 2} values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B{sub 1} and B{sub 0} changes. (orig.)

  14. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage.

    Science.gov (United States)

    Juras, Vladimir; Bohndorf, Klaus; Heule, Rahel; Kronnerwetter, Claudia; Szomolanyi, Pavol; Hager, Benedikt; Bieri, Oliver; Zbyn, Stefan; Trattnig, Siegfried

    2016-06-01

    To assess the clinical relevance of T2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T2-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B1 and B0 changes. • 3D-TESS T 2 mapping provides clinically comparable results to CPMG in shorter scan-time. • Clinical and investigational studies may benefit from high temporal resolution of 3D-TESS. • 3D-TESS T 2 values are able to differentiate between healthy and damaged cartilage.

  15. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage

    International Nuclear Information System (INIS)

    Juras, Vladimir; Szomolanyi, Pavol; Bohndorf, Klaus; Kronnerwetter, Claudia; Hager, Benedikt; Zbyn, Stefan; Heule, Rahel; Bieri, Oliver; Trattnig, Siegfried

    2016-01-01

    To assess the clinical relevance of T 2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T 2 -mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T 2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T 2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T 2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B 1 and B 0 changes. (orig.)

  16. Characterization of acoustic noise in a neonatal intensive care unit MRI system

    Energy Technology Data Exchange (ETDEWEB)

    Tkach, Jean A.; Li, Yu; Pratt, Ronald G.; Loew, Wolfgang; Daniels, Barret R.; Giaquinto, Randy O.; Dumoulin, Charles L. [Cincinnati Children' s Hospital Medical Center, Imaging Research Center, Department of Radiology, Cincinnati, OH (United States); Baroch, Kelly A. [Cincinnati Children' s Hospital Medical Center, Division of Audiology, Cincinnati, OH (United States); Merhar, Stephanie L. [Cincinnati Children' s Hospital Medical Center, Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati, OH (United States); Kline-Fath, Beth M. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2014-08-15

    To eliminate the medical risks and logistical challenges of transporting infants from the neonatal intensive care unit (NICU) to the radiology department for magnetic resonance imaging, a small-footprint 1.5-T MRI scanner has been developed for neonatal imaging within the NICU. MRI is known to be noisy, and exposure to excessive acoustic noise has the potential to elicit physiological distress and impact development in the term and preterm infant. To measure and compare the acoustic noise properties of the NICU MRI system against those of a conventional 1.5-T MRI system. We performed sound pressure level measurements in the NICU MRI scanner and in a conventional adult-size whole-body 1.5-T MRI system. Sound pressure level measurements were made for six standard clinical MR imaging protocols. The average sound pressure level value, reported in unweighted (dB) and A-weighted (dBA) decibels for all six imaging pulse sequences, was 73.8 dB and 88 dBA for the NICU scanner, and 87 dB and 98.4 dBA for the conventional MRI scanner. The sound pressure level values measured on the NICU scanner for each of the six MR imaging pulse sequences were consistently and significantly (P = 0.03) lower, with an average difference of 14.2 dB (range 10-21 dB) and 11 dBA (range 5-18 dBA). The sound pressure level frequency response of the two MR systems showed a similar harmonic structure above 200 Hz for all imaging sequences. The amplitude, however, was appreciably lower for the NICU scanner, by as much as 30 dB, for frequencies below 200 Hz. The NICU MRI system is quieter than conventional MRI scanners, improving safety for the neonate and facilitating siting of the unit within the NICU. (orig.)

  17. Characterization of acoustic noise in a neonatal intensive care unit MRI system

    International Nuclear Information System (INIS)

    Tkach, Jean A.; Li, Yu; Pratt, Ronald G.; Loew, Wolfgang; Daniels, Barret R.; Giaquinto, Randy O.; Dumoulin, Charles L.; Baroch, Kelly A.; Merhar, Stephanie L.; Kline-Fath, Beth M.

    2014-01-01

    To eliminate the medical risks and logistical challenges of transporting infants from the neonatal intensive care unit (NICU) to the radiology department for magnetic resonance imaging, a small-footprint 1.5-T MRI scanner has been developed for neonatal imaging within the NICU. MRI is known to be noisy, and exposure to excessive acoustic noise has the potential to elicit physiological distress and impact development in the term and preterm infant. To measure and compare the acoustic noise properties of the NICU MRI system against those of a conventional 1.5-T MRI system. We performed sound pressure level measurements in the NICU MRI scanner and in a conventional adult-size whole-body 1.5-T MRI system. Sound pressure level measurements were made for six standard clinical MR imaging protocols. The average sound pressure level value, reported in unweighted (dB) and A-weighted (dBA) decibels for all six imaging pulse sequences, was 73.8 dB and 88 dBA for the NICU scanner, and 87 dB and 98.4 dBA for the conventional MRI scanner. The sound pressure level values measured on the NICU scanner for each of the six MR imaging pulse sequences were consistently and significantly (P = 0.03) lower, with an average difference of 14.2 dB (range 10-21 dB) and 11 dBA (range 5-18 dBA). The sound pressure level frequency response of the two MR systems showed a similar harmonic structure above 200 Hz for all imaging sequences. The amplitude, however, was appreciably lower for the NICU scanner, by as much as 30 dB, for frequencies below 200 Hz. The NICU MRI system is quieter than conventional MRI scanners, improving safety for the neonate and facilitating siting of the unit within the NICU. (orig.)

  18. Plaque characterization in ex vivo MRI evaluated by dense 3D correspondence with histology

    DEFF Research Database (Denmark)

    van Engelen, Arna; de Bruijne, Marleen; Klein, Stefan

    2011-01-01

    registration of histology data with ex vivo MRI data, using non-rigid registration, both for training and evaluation. This is more objective than previously presented methods, as it eliminates selection bias that is introduced when 2D MRI slices are manually matched to histological slices before evaluation....... Histological slices of human atherosclerotic plaques were manually segmented into necrotic core, fibrous tissue and calcification. Classification of these three components was voxelwise evaluated. As features the intensity, gradient magnitude and Laplacian in four MRI sequences after different degrees...

  19. Dissecting a Light Echo

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for audio animation This animation illustrates how a light echo works, and how an optical illusion of material moving outward is created. A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The animation starts by showing the explosion of a star, which results in a flash of light that moves outward in all directions. The direction of our line of sight from Earth is indicated by the blue arrow. When the light flash reaches surrounding dust, shown here as three dark clouds, the dust is heated up, creating infrared light that begins to travel toward Earth (indicated by the red arrows). Dust closest to the explosion lights up first, while the explosion's shock wave takes longer to reach more distant material. This results in light from different parts of the cloud reaching Earth at different times, creating the illusion of motion over time. As the animation shows, the inclination of the cloud toward our line of sight can result in the material seeming to move both away from and toward the central star.

  20. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging

    International Nuclear Information System (INIS)

    Zonari, Paolo; Baraldi, Patrizia; Crisi, Girolamo

    2007-01-01

    Diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI) and MR spectroscopy (MRS) provide useful data for tumor evaluation. To assess the contribution of these multimodal techniques in grading glial neoplasms, we compared the value of DWI, PWI and MRS in the evaluation of histologically proven high- and low-grade gliomas in a population of 105 patients. Independently for each modality, the following variables were used to compare the tumors: minimum apparent diffusion coefficient (ADC) and maximum relative cerebral blood volume (rCBV) normalized values between tumor and healthy tissue, maximum Cho/Cr ratio and minimum NAA/Cr ratio in tumor, and scored lactate and lipid values in tumor. The Mann-Whitney and Wilcoxon tests were employed to compare DWI, PWI and MRS between tumor types. Logistic regression analysis was used to determine which parameters best increased the diagnostic accuracy in terms of sensitivity, specificity, and positive and negative predictive values. ROC curves were determined for parameters with high sensitivity and specificity to identify threshold values to separate high- from low-grade lesions. Statistically significant differences were found for rCBV tumor/normal tissue ratio, and NAA/Cr ratio in tumor and Cho/Cr ratio in tumor between low- and high-grade tumors. The best performing single parameter for group classification was the normalized rCBV value; including all parameters, statistical significance was reached by rCBV tumor/normal tissue ratio, NAA/Cr tumor ratio and lactate. From the ROC curves, a high probability for a neoplasm to be a high-grade lesion was associated with a rCBV tumor/normal tissue ratio of >1.16 and NAA/Cr tumor ratio of <0.44. Combining PWI and MRS with conventional MR imaging increases the accuracy of the attribution of malignancy to glial neoplasms. The best performing parameter was found to be the perfusion level. (orig.)

  1. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

    International Nuclear Information System (INIS)

    Magro, Elsa; Moreau, Tristan; Gibaud, Bernard; Seizeur, Romuald; Morandi, Xavier

    2012-01-01

    Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)

  2. MRI-based morphological modeling, synthesis and characterization of cardiac tissue-mimicking materials.

    Science.gov (United States)

    Kossivas, Fotis; Angeli, S; Kafouris, D; Patrickios, C S; Tzagarakis, V; Constantinides, C

    2012-06-01

    This study uses standard synthetic methodologies to produce tissue-mimicking materials that match the morphology and emulate the in vivo murine and human cardiac mechanical and imaging characteristics, with dynamic mechanical analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM) and magnetic resonance imaging. In accordance with such aims, poly(glycerol sebacate) (PGS) elastomeric materials were synthesized (at two different glycerol (G)-sebacic (S) acid molar ratios; the first was synthesized using a G:S molar ratio of 2:2, while the second from a 2:5 G:S molar ratio, resulting in PGS2:2 and PGS2:5 elastomers, respectively). Unlike the synthesized PGS2:2 elastomers, the PGS2:5 materials were characterized by an overall mechanical instability in their loading behavior under the three successive loading conditions tested. An oscillatory response in the mechanical properties of the synthesized elastomers was observed throughout the loading cycles, with measured increased storage modulus values at the first loading cycle, stabilizing to lower values at subsequent cycles. These elastomers were characterized at 4 °C and were found to have storage modulus values of 850 and 1430 kPa at the third loading cycle, respectively, in agreement with previously reported values of the rat and human myocardium. SEM of surface topology indicated minor degradation of synthesized materials at 10 and 20 d post-immersion in the PBS buffer solution, with a noted cluster formation on the PGS2:5 elastomers. AFM nanoindentation experiments were also conducted for the measurement of the Young modulus of the sample surface (no bulk contribution). Correspondingly, the PGS2:2 elastomer indicated significantly decreased surface Young's modulus values 20 d post-PBS immersion, compared to dry conditions (Young's modulus = 1160 ± 290 kPa (dry) and 200 ± 120 kPa (20 d)). In addition to the two-dimensional (2D) elastomers, an integrative platform for accurate construction of

  3. MRI-based morphological modeling, synthesis and characterization of cardiac tissue-mimicking materials

    International Nuclear Information System (INIS)

    Kossivas, Fotis; Angeli, S; Constantinides, C; Kafouris, D; Patrickios, C S; Tzagarakis, V

    2012-01-01

    This study uses standard synthetic methodologies to produce tissue-mimicking materials that match the morphology and emulate the in vivo murine and human cardiac mechanical and imaging characteristics, with dynamic mechanical analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM) and magnetic resonance imaging. In accordance with such aims, poly(glycerol sebacate) (PGS) elastomeric materials were synthesized (at two different glycerol (G)–sebacic (S) acid molar ratios; the first was synthesized using a G:S molar ratio of 2:2, while the second from a 2:5 G:S molar ratio, resulting in PGS2:2 and PGS2:5 elastomers, respectively). Unlike the synthesized PGS2:2 elastomers, the PGS2:5 materials were characterized by an overall mechanical instability in their loading behavior under the three successive loading conditions tested. An oscillatory response in the mechanical properties of the synthesized elastomers was observed throughout the loading cycles, with measured increased storage modulus values at the first loading cycle, stabilizing to lower values at subsequent cycles. These elastomers were characterized at 4 °C and were found to have storage modulus values of 850 and 1430 kPa at the third loading cycle, respectively, in agreement with previously reported values of the rat and human myocardium. SEM of surface topology indicated minor degradation of synthesized materials at 10 and 20 d post-immersion in the PBS buffer solution, with a noted cluster formation on the PGS2:5 elastomers. AFM nanoindentation experiments were also conducted for the measurement of the Young modulus of the sample surface (no bulk contribution). Correspondingly, the PGS2:2 elastomer indicated significantly decreased surface Young's modulus values 20 d post-PBS immersion, compared to dry conditions (Young's modulus = 1160 ± 290 kPa (dry) and 200 ± 120 kPa (20 d)). In addition to the two-dimensional (2D) elastomers, an integrative platform for accurate construction of

  4. Comparative study between MRI and echocardiography in noncompaction of ventricular myocardium

    International Nuclear Information System (INIS)

    Sun Ziyan; Xia Liming; Wang Chengyuan; Rao Jingjing; Shenyu Weihui

    2007-01-01

    Objective: To investigate the MRI and echocardiography manifestations of noncompaction of ventricular myocardium(NVM) and assess the role of MR1 in the diagnosis of NVM by comparing it with echocardiography. Methods: Fourteen cases of NVM diagnosed by echocardiography were examined with MRI, including scanning of black-blood sequences, double inversion recovery fast spin echo (DIBFSE) and triple inversion recovery fast spin echo (TIRFSE), and white blood sequence: fast imaging employ steady state acquisition (FIESTA). Scanning plane includes short axis view, four-chamber view and long axis view. Results: Both MRI and echocardiography displayed involvement of left ventricles in thirteen cases and involvement of double ventricles in one case. Apexes of heart and the intermedius are commonly affected. MRI showed 54 segments and echocardiography showed 53 segments affected, and there is no significant difference between the capability of MRI and echocardiography (P=1,000). The affected myocardium consisted of two layers: subendocardial noncompacted myocardium and epicardial compacted myocardium, and the ratio measurement of N/C by MRI was 3.37±0.89 and it was 3.19±0.82 by echocardiography. Noncompacted myocardium was characterized by prominent and excessive myocardial trabeculations and deep intratrabecular recesses, in which the blood flow was communicated with the ventricle. One case was complicated with ventricular aneurysm, and coronary arteriography was performed with unremarkable findings. One case underwent heart transplantation because of progressive heart failure, Gross findings demonstrated prominent muscular' trabeculations with deep intratrabecular recesses, which coincided well with MRI findings. Conclusion: The MRI manifestation of NVM is characteristic, and MRI with multiple series and planes is helpful in the diagnose of NVM. Compared with echocardiography, MRI could display the pathological cardiac muscle more clearly, because of its high soft

  5. MRI in head trauma

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Kyo [Shin Wha Hospital, Seoul (Korea, Republic of)

    1986-02-15

    In the diagnosis of head injury, Magnetic Resonance Imaging (MRI), like CT, is an effective method of distinguishing between intracerebral and extracerebral lesions. In our experience of MRI, early hematomas are almost isointense by Saturation Recovery (SR) method, so these must be performed with Spin Echo (SE) method for better visualization of hematomas. Isodense subdural hematomas, which is a diagnostic dilemma on CT images, are clearly seen on MRI. Delayed hematomas or residual parenchymal lesions are better demonstrated on MRI than on CT. Direct cornal, sagittal images and multiplanar facility of MRI provides excellent visualization of the the location and shape of extracerebral collection of hematoma. For the screening of head traumas, SE method is a technique of choice because of its excellent sensitivity within limited time.

  6. MRI in head trauma

    International Nuclear Information System (INIS)

    Hong, Jin Kyo

    1986-01-01

    In the diagnosis of head injury, Magnetic Resonance Imaging (MRI), like CT, is an effective method of distinguishing between intracerebral and extracerebral lesions. In our experience of MRI, early hematomas are almost isointense by Saturation Recovery (SR) method, so these must be performed with Spin Echo (SE) method for better visualization of hematomas. Isodense subdural hematomas, which is a diagnostic dilemma on CT images, are clearly seen on MRI. Delayed hematomas or residual parenchymal lesions are better demonstrated on MRI than on CT. Direct cornal, sagittal images and multiplanar facility of MRI provides excellent visualization of the the location and shape of extracerebral collection of hematoma. For the screening of head traumas, SE method is a technique of choice because of its excellent sensitivity within limited time.

  7. Comparison of Diffusion-Weighted Imaging in the Human Brain Using Readout-Segmented EPI and PROPELLER Turbo Spin Echo With Single-Shot EPI at 7 T MRI.

    Science.gov (United States)

    Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David

    2016-07-01

    The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both

  8. USPIO-enhanced 3D-cine self-gated cardiac MRI based on a stack-of-stars golden angle short echo time sequence: Application on mice with acute myocardial infarction.

    Science.gov (United States)

    Trotier, Aurélien J; Castets, Charles R; Lefrançois, William; Ribot, Emeline J; Franconi, Jean-Michel; Thiaudière, Eric; Miraux, Sylvain

    2016-08-01

    To develop and assess a 3D-cine self-gated method for cardiac imaging of murine models. A 3D stack-of-stars (SOS) short echo time (STE) sequence with a navigator echo was performed at 7T on healthy mice (n = 4) and mice with acute myocardial infarction (MI) (n = 4) injected with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. In all, 402 spokes were acquired per stack with the incremental or the golden angle method using an angle increment of (360/402)° or 222.48°, respectively. A cylindrical k-space was filled and repeated with a maximum number of repetitions (NR) of 10. 3D cine cardiac images at 156 μm resolution were reconstructed retrospectively and compared for the two methods in terms of contrast-to-noise ratio (CNR). The golden angle images were also reconstructed with NR = 10, 6, and 3, to assess cardiac functional parameters (ejection fraction, EF) on both animal models. The combination of 3D SOS-STE and USPIO injection allowed us to optimize the identification of cardiac peaks on navigator signal and generate high CNR between blood and myocardium (15.3 ± 1.0). The golden angle method resulted in a more homogeneous distribution of the spokes inside a stack (P cine images could be obtained without electrocardiogram or respiratory gating in mice. It allows precise measurement of cardiac functional parameters even on MI mice. J. Magn. Reson. Imaging 2016;44:355-365. © 2016 Wiley Periodicals, Inc.

  9. Benchtop-magnetic resonance imaging (BT-MRI) characterization of push-pull osmotic controlled release systems.

    Science.gov (United States)

    Malaterre, Vincent; Metz, Hendrik; Ogorka, Joerg; Gurny, Robert; Loggia, Nicoletta; Mäder, Karsten

    2009-01-05

    The mechanism of drug release from push-pull osmotic systems (PPOS) has been investigated by Magnetic Resonance Imaging (MRI) using a new benchtop apparatus. The signal intensity profiles of both PPOS layers were monitored non-invasively over time to characterize the hydration and swelling kinetics. The drug release performance was well-correlated to the hydration kinetics. The results show that (i) hydration and swelling critically depend on the tablet core composition, (ii) high osmotic pressure developed by the push layer may lead to bypassing the drug layer and incomplete drug release and (iii) the hydration of both the drug and the push layers needs to be properly balanced to efficiently deliver the drug. MRI is therefore a powerful tool to get insights on the drug delivery mechanism of push-pull osmotic systems, which enable a more efficient optimization of such formulations.

  10. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

    Energy Technology Data Exchange (ETDEWEB)

    Magro, Elsa [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); Moreau, Tristan; Gibaud, Bernard [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); Seizeur, Romuald [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); INSERM UMR 1101 LaTIM, Brest (France); Morandi, Xavier [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Pontchaillou, Service de Neurochirurgie, Rennes (France)

    2012-11-15

    Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)

  11. The clinical potential of ultra-high-speed echo-planar imaging

    International Nuclear Information System (INIS)

    Worthington, B.S.; Firth, J.L.; Morris, G.K.; Johnson, I.R.; Coxon, R.; Blamire, A.M.; Gibbs, P.; Mansfield, P.

    1990-01-01

    Ultra-high-speed echo-planar imaging (EPI) allows acquisition of a complete two-dimensional image in 64 to 128 ms devoid of movement artefact and without sacrifice of contrast due to relaxation time effects. In conventional whole-body MRI, however, obtrusive movement artefact and extended imaging time, resulting from the need to apply multiple sequences to facilitate lesion detection and pathological characterization, remain limitations. Reduced total examination time increases patient tolerance and throughput; furthermore optimization of contrast to achieve maximal conspicuity of particular features in liver or brain pathology is achieved simply and interactively by real time adjustment of the imaging parameters. The method provides the opportunity to study in real time dynamic events such as flow phenomena in the vascular and cerebrospinal fluid compartments of the brain as well as the kinetics of administered contrast agents. EPI is the only means of capturing the irregular motion of aperiodic cardiac events and bowel peristalsis. (author)

  12. MRI characterization of temporal lobe epilepsy using rapidly measurable spatial indices with hemisphere asymmetries and gender features

    International Nuclear Information System (INIS)

    Datta, Siddhartha; Chakrabarti, Nilkanta; Sarkar, Sudipta; Chakraborty, Sumit; Basu, Swadhapriya; Mulpuru, Sai Krishna; Tiwary, Basant K.; Roy, Prasun Kumar

    2015-01-01

    The paucity of morphometric markers for hemispheric asymmetries and gender variations in hippocampi and amygdalae in temporal lobe epilepsy (TLE) calls for better characterization of TLE by finding more useful prognostic MRI parameter(s). T1-weighted MRI (3 T) morphometry using multiple parameters of hippocampus-parahippocampus (angular and linear measures, volumetry) and amygdalae (volumetry) including their hemispheric asymmetry indices (AI) were evaluated in both genders. The cutoff values of parameters were statistically estimated from measurements of healthy subjects to characterize TLE (57 patients, 55 % male) alterations. TLE had differential categories with hippocampal atrophy, parahippocampal angle (PHA) acuteness, and several other parametric changes. Bilateral TLE categories were much more prevalent compared to unilateral TLE categories. Female patients were considerably more disposed to bilateral TLE categories than male patients. Male patients displayed diverse categories of unilateral abnormalities. Few patients (both genders) had combined bilateral appearances of hippocampal atrophy, amygdala atrophy, PHA acuteness, and increase in hippocampal angle (HA) where medial distance ratio (MDR) varied among genders. TLE had gender-specific and hemispheric dominant alterations in AI of parameters. Maximum magnitude of parametric changes in TLE includes (a) AI increase in HA of both genders, (b) HA increase (bilateral) in female patients, and (c) increase in ratio of amygdale/hippocampal volume (unilateral, right hemispheric), and AI decrease in MDR, in male patients. Multiparametric MRI studies of hippocampus and amygdalae, including their hemispheric asymmetry, underscore better characterization of TLE. Rapidly measurable single-slice parameters (HA, PHA, MDR) can readily delineate TLE in a time-constrained clinical setting, which contrasts with customary three-dimensional hippocampal volumetry that requires many slice computation. (orig.)

  13. MRI characterization of temporal lobe epilepsy using rapidly measurable spatial indices with hemisphere asymmetries and gender features

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Siddhartha; Chakrabarti, Nilkanta [University of Calcutta, Department of Physiology and UGC-CPEPA Centre for ' ' Electro-physiological and Neuro-imaging studies including Mathematical Modelling' ' , Kolkata (India); Sarkar, Sudipta; Chakraborty, Sumit; Basu, Swadhapriya [IPGME and R, SSKM Hospital, Department of Radiodiagnosis, Kolkata (India); Mulpuru, Sai Krishna [National Brain Research Centre, National Neuro-Imaging Facility, Manesar (India); Tiwary, Basant K. [Pondicherry University, Centre for Bioinformatics, School of Life Sciences, Pondicherry (India); Roy, Prasun Kumar [National Brain Research Centre, Computational Neuroimaging Division, Manesar (India); National Brain Research Centre, Clinical Neuroscience Unit, Gurgaon (India)

    2015-09-15

    The paucity of morphometric markers for hemispheric asymmetries and gender variations in hippocampi and amygdalae in temporal lobe epilepsy (TLE) calls for better characterization of TLE by finding more useful prognostic MRI parameter(s). T1-weighted MRI (3 T) morphometry using multiple parameters of hippocampus-parahippocampus (angular and linear measures, volumetry) and amygdalae (volumetry) including their hemispheric asymmetry indices (AI) were evaluated in both genders. The cutoff values of parameters were statistically estimated from measurements of healthy subjects to characterize TLE (57 patients, 55 % male) alterations. TLE had differential categories with hippocampal atrophy, parahippocampal angle (PHA) acuteness, and several other parametric changes. Bilateral TLE categories were much more prevalent compared to unilateral TLE categories. Female patients were considerably more disposed to bilateral TLE categories than male patients. Male patients displayed diverse categories of unilateral abnormalities. Few patients (both genders) had combined bilateral appearances of hippocampal atrophy, amygdala atrophy, PHA acuteness, and increase in hippocampal angle (HA) where medial distance ratio (MDR) varied among genders. TLE had gender-specific and hemispheric dominant alterations in AI of parameters. Maximum magnitude of parametric changes in TLE includes (a) AI increase in HA of both genders, (b) HA increase (bilateral) in female patients, and (c) increase in ratio of amygdale/hippocampal volume (unilateral, right hemispheric), and AI decrease in MDR, in male patients. Multiparametric MRI studies of hippocampus and amygdalae, including their hemispheric asymmetry, underscore better characterization of TLE. Rapidly measurable single-slice parameters (HA, PHA, MDR) can readily delineate TLE in a time-constrained clinical setting, which contrasts with customary three-dimensional hippocampal volumetry that requires many slice computation. (orig.)

  14. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    Science.gov (United States)

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  15. MRI Primer

    International Nuclear Information System (INIS)

    Oldendorf, W.; Oldendorf, W. Jr.

    1991-01-01

    Designed for studies, radiologists, and clinicians at all levels of training, this book provides a basic introduction to the principles, physics, and instrumentation of magnetic resonance imaging. The fundamental concepts that are essential for the optimal clinical use of MRI are thoroughly explained in easily accessible terms. To facilitate the reader's comprehension, the material is presented nonmathematically, using no equations and a minimum of symbols and abbreviations. MRI Primer presents a clear account of the phenomenon of nuclear magnetic resonance and the use of gradient magnetic fields to create clinically useful images of cross-sectional slices. Close attention is given to the magnetization vector as a means of expressing nuclear behavior, the role of T 1 and T 2 weighing in imaging, the use of contrast agents, and the pulse sequences most often used in clinical practice, as well as to the relative capabilities and limitations of MRI and CT. The basic hardware components of an MRI scanner are described in detail. Sample MRI scans illustrate how MRI characterizes tissue. An appendix provides a brief introduction to quantum processes in MRI

  16. Help Content for ECHO Reports | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  17. ECHO-UseFY17.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  18. Design and characterization of Stormram 4 : an MRI-compatible robotic system for breast biopsy

    NARCIS (Netherlands)

    Groenhuis, Vincent; Siepel, Françoise Jeanette; Veltman, Jeroen; Stramigioli, Stefano

    2017-01-01

    Targeting of small lesions with high precision is essential in an early phase of breast cancer for diagnosis and accurate follow up, and subsequently determines prognosis. Current techniques to diagnose breast cancer are suboptimal, and there is a need for a small, MRI-compatible robotic system able

  19. A comparative quantitative analysis of the IDEAL (iterative decomposition of water and fat with echo asymmetry and least-squares estimation) and the CHESS (chemical shift selection suppression) techniques in 3.0 T L-spine MRI

    Science.gov (United States)

    Kim, Eng-Chan; Cho, Jae-Hwan; Kim, Min-Hye; Kim, Ki-Hong; Choi, Cheon-Woong; Seok, Jong-min; Na, Kil-Ju; Han, Man-Seok

    2013-03-01

    This study was conducted on 20 patients who had undergone pedicle screw fixation between March and December 2010 to quantitatively compare a conventional fat suppression technique, CHESS (chemical shift selection suppression), and a new technique, IDEAL (iterative decomposition of water and fat with echo asymmetry and least squares estimation). The general efficacy and usefulness of the IDEAL technique was also evaluated. Fat-suppressed transverse-relaxation-weighed images and longitudinal-relaxation-weighted images were obtained before and after contrast injection by using these two techniques with a 1.5T MR (magnetic resonance) scanner. The obtained images were analyzed for image distortion, susceptibility artifacts and homogenous fat removal in the target region. The results showed that the image distortion due to the susceptibility artifacts caused by implanted metal was lower in the images obtained using the IDEAL technique compared to those obtained using the CHESS technique. The results of a qualitative analysis also showed that compared to the CHESS technique, fewer susceptibility artifacts and more homogenous fat removal were found in the images obtained using the IDEAL technique in a comparative image evaluation of the axial plane images before and after contrast injection. In summary, compared to the CHESS technique, the IDEAL technique showed a lower occurrence of susceptibility artifacts caused by metal and lower image distortion. In addition, more homogenous fat removal was shown in the IDEAL technique.

  20. Sjoegren's syndrome of the parotid gland: value of diffusion-weighted echo-planar MRI for diagnosis at an early stage based on MR sialography grading in comparison with healthy volunteers

    International Nuclear Information System (INIS)

    Regier, Marc; Ries, T.; Arndt, C.; Cramer, M.C.; Adam, G.; Habermann, C.R.; Graessner, J.; Reitmeier, F.; Jaehne, M.

    2009-01-01

    To investigate the value of diffusion-weighted echo-planar imaging (DW-EPI) for quantifying functional changes of the parotid gland in Sjoegren's disease and to evaluate whether ADC mapping allows for early diagnosis based on MR sialography grading. Using a DW-EPI sequence at 1.5T (b-factors: 0, 500 and 1000 sec/mm 2 ), the parotid glands of 52 healthy volunteers and 13 patients with histologically verified affection of Sjoegren's disease were examined. All scans were performed prior to and following gustatory stimulation with 5 ml of lemon juice. ADC maps were evaluated by placing an inordinate region-of-interest (ROI) enclosing the entire parotid gland. Sjoegren's disease was graded based on MR sialography findings using a 4-point grading-scale. Statistics included student t-test and kappa-analysis. In healthy volunteers mean ADCs of 1.14 x 10 -3 mm 2 /sec before and 1.2 x 10 -3 mm 2 /sec after stimulation were observed. Higher ADCs were determined for early-stage Sjoegren's disease, averaging 1.22 x 10 -3 mm 2 /sec before and 1.29 x 10 -3 mm 2 /sec after stimulation. Advanced disease revealed significantly lower ADCs (0.97 x 10 -3 mm 2 /sec (p = 0.002) before and 1.01 x 10 -3 mm 2 /sec (p < 0.001) after stimulation). (orig.)

  1. MRI and intraocular tamponade media

    International Nuclear Information System (INIS)

    Manfre, I.; Fabbri, G.; Avitabile, T.; Biondi, P.; Reibaldi, A.; Pero, G.

    1993-01-01

    Thirteen patients who underwent surgery for retinal detachment and injection of intraocular tamponade media (silicone oil, flurosilicone oil, or perfluoro-carbon liquid) underwent magnetic resonance imaging (MRI), using spin-echo T1- and T2-weighted images. The ophthalmic tamponade media showed different signal intensity, according to their chemical structure. Unlike ophthalmoscopy or ultrasonography, MRI showed no oil-related artefact, making possible recognition of recurrent retinal detachment. (orig.)

  2. MRI and intraocular tamponade media

    Energy Technology Data Exchange (ETDEWEB)

    Manfre, I. (Dept. of Neuroradiology, Inst. of Neurosurgery, Univ. of Catania (Italy)); Fabbri, G. (Dept. of Neuroradiology, Inst. of Neurosurgery, Univ. of Catania (Italy)); Avitabile, T. (Inst. of Ophthalmology, Univ. of Catania (Italy)); Biondi, P. (Inst. of Ophthalmology, Univ. of Catania (Italy)); Reibaldi, A. (Inst. of Ophthalmology, Univ. of Catania (Italy)); Pero, G. (Dept. of Neuroradiology, Inst. of Neurosurgery, Univ. of Catania (Italy))

    1993-05-01

    Thirteen patients who underwent surgery for retinal detachment and injection of intraocular tamponade media (silicone oil, flurosilicone oil, or perfluoro-carbon liquid) underwent magnetic resonance imaging (MRI), using spin-echo T1- and T2-weighted images. The ophthalmic tamponade media showed different signal intensity, according to their chemical structure. Unlike ophthalmoscopy or ultrasonography, MRI showed no oil-related artefact, making possible recognition of recurrent retinal detachment. (orig.)

  3. Custom Search | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  4. Watershed Statistics | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  5. Heart MRI

    Science.gov (United States)

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  6. Sjoegren's syndrome of the parotid gland: value of diffusion-weighted echo-planar MRI for diagnosis at an early stage based on MR sialography grading in comparison with healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Regier, Marc; Ries, T.; Arndt, C.; Cramer, M.C.; Adam, G.; Habermann, C.R. [Universitaetsklinikum Hamburg-Eppendorf (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Graessner, J. [Siemens AG, Hamburg (Germany). Medical Solutions; Reitmeier, F.; Jaehne, M. [Universitaetsklinikum Hamburg-Eppendorf (Germany). Klinik und Poliklinik fuer Hals-, Nasen- und Ohrenheilkunde

    2009-03-15

    To investigate the value of diffusion-weighted echo-planar imaging (DW-EPI) for quantifying functional changes of the parotid gland in Sjoegren's disease and to evaluate whether ADC mapping allows for early diagnosis based on MR sialography grading. Using a DW-EPI sequence at 1.5T (b-factors: 0, 500 and 1000 sec/mm{sup 2}), the parotid glands of 52 healthy volunteers and 13 patients with histologically verified affection of Sjoegren's disease were examined. All scans were performed prior to and following gustatory stimulation with 5 ml of lemon juice. ADC maps were evaluated by placing an inordinate region-of-interest (ROI) enclosing the entire parotid gland. Sjoegren's disease was graded based on MR sialography findings using a 4-point grading-scale. Statistics included student t-test and kappa-analysis. In healthy volunteers mean ADCs of 1.14 x 10{sup -3} mm{sup 2} /sec before and 1.2 x 10{sup -3} mm{sup 2} /sec after stimulation were observed. Higher ADCs were determined for early-stage Sjoegren's disease, averaging 1.22 x 10{sup -3} mm{sup 2} /sec before and 1.29 x 10{sup -3} mm{sup 2} /sec after stimulation. Advanced disease revealed significantly lower ADCs (0.97 x 10{sup -3} mm{sup 2} /sec (p = 0.002) before and 1.01 x 10{sup -3} mm{sup 2} /sec (p < 0.001) after stimulation). (orig.)

  7. Characterization of glial tumors in PET/CT 18F-dopa and in perfusion MRI

    International Nuclear Information System (INIS)

    Nioche, Christophe

    2011-01-01

    MRI provides morphological information about a tumour, as well as information regarding its micro-vascularisation of the tumour. In PET/CT, accumulation of 18 F-Dopa in tumour cells results from the metabolic activity greater than that of healthy tissues.We studied 28 gliomas for which we analysed data from MRI and PET/CT. A registration method has been developed to combine information from both PET and MRI and to extract volumes of interest consistent with the information included in the two modalities. In these volumes, the tumour compartment and normal tissue compartment were identified using a Gaussian mixture model. Parameters from PET or MRI data were then calculated in these compartments. ROC analyses combined with linear discriminant analyses were used to assess whether joint observation of standardized uptake value (SUVmax) and relative Cerebral Blood Volume (rCBV) or of relative rk1 and rCBV could distinguish between low grade and high grade tumours. We found that using this joint analysis, 82% of high-grade tumors and 70% of low grade tumors were correctly classified (AUC of 0.88 for [SUVmax, rCBV] and of 0.92 for [rk1, rCBV]). Considering the combined information from [SUVmax, rCBV], the sensitivity for detecting high-grade tumors was 95% with a specificity of 60%. The negative predictive value was 52% for a positive predictive value of 95%. Similarly, considering the combined information from [rk1, rCBV], we also obtain a specificity of 60% associated with a 95% sensitivity for detecting high-grade tumors, with a negative predictive value of 60% and positive predictive value of 95%. Our work shows that joint analysis of information from microvascular and metabolic is possible by combining PET and MR imaging data. However, we found that, in our patient population, the microvascular information obtained through MR did not achieve better discrimination than the metabolic information derived from PET only. (author)

  8. Classification of autistic individuals and controls using cross-task characterization of fMRI activity

    Directory of Open Access Journals (Sweden)

    Guillaume Chanel

    2016-01-01

    Full Text Available Multivariate pattern analysis (MVPA has been applied successfully to task-based and resting-based fMRI recordings to investigate which neural markers distinguish individuals with autistic spectrum disorders (ASD from controls. While most studies have focused on brain connectivity during resting state episodes and regions of interest approaches (ROI, a wealth of task-based fMRI datasets have been acquired in these populations in the last decade. This calls for techniques that can leverage information not only from a single dataset, but from several existing datasets that might share some common features and biomarkers. We propose a fully data-driven (voxel-based approach that we apply to two different fMRI experiments with social stimuli (faces and bodies. The method, based on Support Vector Machines (SVMs and Recursive Feature Elimination (RFE, is first trained for each experiment independently and each output is then combined to obtain a final classification output. Second, this RFE output is used to determine which voxels are most often selected for classification to generate maps of significant discriminative activity. Finally, to further explore the clinical validity of the approach, we correlate phenotypic information with obtained classifier scores. The results reveal good classification accuracy (range between 69% and 92.3%. Moreover, we were able to identify discriminative activity patterns pertaining to the social brain without relying on a priori ROI definitions. Finally, social motivation was the only dimension which correlated with classifier scores, suggesting that it is the main dimension captured by the classifiers. Altogether, we believe that the present RFE method proves to be efficient and may help identifying relevant biomarkers by taking advantage of acquired task-based fMRI datasets in psychiatric populations.

  9. Classification of autistic individuals and controls using cross-task characterization of fMRI activity

    Science.gov (United States)

    Chanel, Guillaume; Pichon, Swann; Conty, Laurence; Berthoz, Sylvie; Chevallier, Coralie; Grèzes, Julie

    2015-01-01

    Multivariate pattern analysis (MVPA) has been applied successfully to task-based and resting-based fMRI recordings to investigate which neural markers distinguish individuals with autistic spectrum disorders (ASD) from controls. While most studies have focused on brain connectivity during resting state episodes and regions of interest approaches (ROI), a wealth of task-based fMRI datasets have been acquired in these populations in the last decade. This calls for techniques that can leverage information not only from a single dataset, but from several existing datasets that might share some common features and biomarkers. We propose a fully data-driven (voxel-based) approach that we apply to two different fMRI experiments with social stimuli (faces and bodies). The method, based on Support Vector Machines (SVMs) and Recursive Feature Elimination (RFE), is first trained for each experiment independently and each output is then combined to obtain a final classification output. Second, this RFE output is used to determine which voxels are most often selected for classification to generate maps of significant discriminative activity. Finally, to further explore the clinical validity of the approach, we correlate phenotypic information with obtained classifier scores. The results reveal good classification accuracy (range between 69% and 92.3%). Moreover, we were able to identify discriminative activity patterns pertaining to the social brain without relying on a priori ROI definitions. Finally, social motivation was the only dimension which correlated with classifier scores, suggesting that it is the main dimension captured by the classifiers. Altogether, we believe that the present RFE method proves to be efficient and may help identifying relevant biomarkers by taking advantage of acquired task-based fMRI datasets in psychiatric populations. PMID:26793434

  10. Comparative utility of MRI perfusion with MSIDR and DWIBS for the characterization of breast tumors

    International Nuclear Information System (INIS)

    Zhang, Bing; Zhu, Bin; Li, Ming

    2012-01-01

    Background. In recent years, breast magnetic resonance imaging (MRI) has been used to evaluate the morphology and functional markers of breast lesions, which might influence local staging and surgical planning. Purpose. To evaluate the feasibility of a one stop MRI protocol combined with diffusion-weighted imaging with background body signal suppression (DWIBS), T2*-weighted perfusion imaging (T2*-PWI) and delayed contrast-enhanced T1-weighted MRI (T1W-C+). Material and Methods. All experiments were conducted with a 3-T clinical MRI scanner. The apparent diffusion coefficient (ADC) and detectability of lesions in DWIBS, the maximal signal intensity drop rate (MSIDR) in T2*-PWI and the intensity increasing rate (IIR) on T1W-C+ were compared between breast malignancies (n = 29) and benign lesions (n = 31). The time-signal curves in the T2*-PWI sequences were classified into two subtypes (a and b) according to the end of the curve. The ADC, MSIDR, the first maximal signal intensity decrease time (MSIDT), and IIR between the malignant and benign lesions were statistically analyzed by unpaired t-tests. Results. Overall, 90% of the lesions were detected by DWIBS. There were significant differences in ADC, MSIDR, and IIR between the carcinomas and benign lesions. The Ib subtype in T2*-PWI demonstrated a specificity of 66.7% in differentiating between carcinomas and benign lesions. At a fixed specificity of 93.5%, the MSIDR, IIR, and ADC differentiated breast carcinomas from benign lesions with sensitivities of 82.8%, 44.8%, and 86.2%, respectively. Conclusion. DWIBS might be a compensation sequence for detecting breast lesions in pre-contrast sequences. MSIDR from T2*-PWI had the best specificity index, and the two subtypes in the T2*-PWI curve were helpful in the differential diagnosis of carcinomas from benign lesions

  11. Partial volume effect in MRI

    International Nuclear Information System (INIS)

    Maeda, Munehiro; Yoshiya, Kazuhiko; Suzuki, Eiji

    1989-01-01

    According to the direction and the thickness of the imaging slice in tomography, the border between the tissues becomes unclear (partial volume effect). In the present MRI experiment, we examined border area between fat and water components using phantom in order to investigate the partial volume effect in MRI. In spin echo sequences, the intensity of the border area showed a linear relationship with composition of fat and water. Whereas, in inversion recovery and field echo sequences, we found the parameters to produce an extremely low intensity area at the border region between fat and water. This low intensity area was explained by cancellation of NMR signals from fat and water due to the difference in the direction of magnetic vectors. Clinically, partial volume effect can cause of mis-evaluation of walls, small nodules, tumor capsules and the tumor invasion in the use of inversion recovery and field echo sequences. (author)

  12. Heroin-induced leukoencephalopathy: characterization using MRI, diffusion-weighted imaging, and MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Offiah, C. [Department of Neuroradiology, St Bartholomew' s and the London Hospitals NHS Trust, London (United Kingdom); Hall, E. [Department of Neuroradiology, St Bartholomew' s and the London Hospitals NHS Trust, London (United Kingdom)], E-mail: curtis.offiah@bartsandthelondon.nhs.uk

    2008-02-15

    Aim: To describe the magnetic resonance imaging (MRI) characteristics of heroin-induced leukoencephalopathy or 'chasing the dragon syndrome' and, in particular, the diffusion-weighted imaging (DWI) and MR spectroscopy (MRS) features. Material and methods: Six patients with a clinical or histopathological diagnosis of heroin-induced leukoencephalopathy were identified and MRI examinations, including DWI and single-voxel MRS, reviewed. Results: Cerebellar white matter was involved in all six cases demonstrating similar symmetrical distribution with sparing of the dentate nuclei. Brain stem signal change was evident in five of the six patients imaged. Supratentorial brain parenchymal involvement, as well as brain stem involvement, correlated anatomically with corticospinal tract distribution. None of the areas of signal abnormality were restricted on DWI. Of those patients subjected to MRS, the areas of parenchymal damage demonstrated reduced N-acetylaspartate, reduced choline, and elevated lactate. Conclusion: Heroin-induced leukoencephalopathy results in characteristic and highly specific signal abnormalities on MRI, which can greatly aid diagnosis. DWI and MRS findings can be explained by known reported neuropathological descriptions in this condition and can be used to support a proposed mechanism for the benefit of current recommended drug treatment regimes.

  13. High-resolution morphologic and ultrashort time-to-echo quantitative magnetic resonance imaging of the temporomandibular joint

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Won C.; Chang, Eric Y.; Biswas, Reni; Statum, Sheronda; Chung, Christine B. [Veterans Administration San Diego Healthcare System, Department of Radiology, San Diego, CA (United States); University of California, San Diego, School of Medicine, Department of Radiology, San Diego, CA (United States); Tafur, Monica; Du, Jiang; Healey, Robert [University of California, San Diego, School of Medicine, Department of Radiology, San Diego, CA (United States); Kwack, Kyu-Sung [Ajou University Medical Center, Department of Radiology, Wonchon-dong, Yeongtong-gu, Gyeonggi-do, Suwon (Korea, Republic of)

    2016-03-15

    To implement high-resolution morphologic and quantitative magnetic resonance imaging (MRI) of the temporomandibular joint (TMJ) using ultrashort time-to-echo (UTE) techniques in cadavers and volunteers. This study was approved by the institutional review board. TMJs of cadavers and volunteers were imaged on a 3-T MR system. High-resolution morphologic and quantitative sequences using conventional and UTE techniques were performed in cadaveric TMJs. Morphologic and UTE quantitative sequences were performed in asymptomatic and symptomatic volunteers. Morphologic evaluation demonstrated the TMJ structures in open- and closed-mouth position. UTE techniques facilitated the visualization of the disc and fibrocartilage. Quantitative UTE MRI was successfully performed ex vivo and in vivo, reflecting the degree of degeneration. There was a difference in the mean UTE T2* values between asymptomatic and symptomatic volunteers. MRI evaluation of the TMJ using UTE techniques allows characterization of the internal structure and quantification of the MR properties of the disc. Quantitative UTE MRI can be performed in vivo with short scan times. (orig.)

  14. MRI-induced retrocalcaneal bursitis

    NARCIS (Netherlands)

    Tol, J. L.; van Dijk, C. N.; Maas, M.

    1999-01-01

    This case report describes a patient with acute retrocalcaneal bursitis, which developed after MRI examination of the ankle. The sagittal T2*-weighted gradient echo sequence revealed an extensive susceptibility artifact in the area surrounding the Achilles tendon near its insertion at the os calcis.

  15. Congenital bronchobiliary fistula: MRI appearance

    International Nuclear Information System (INIS)

    Hourigan, Jon S.; Carr, Michael G.; Burton, Edward M.; Ledbetter, Joel C.

    2004-01-01

    Congenital bronchobiliary fistula (CBBF) is a rare anomaly. Twenty-three cases have been reported since the anomaly was first described in 1952. Most of these cases were diagnosed by bronchoscopy, cholangiography, or hepatobiliary nuclear imaging. Our case of a newborn with bilious emesis with CBBF was depicted by T1-weighted gradient-echo MRI sequences. (orig.)

  16. Quantification of liver iron concentration with magnetic resonance imaging by combining T1-, T2-weighted spin echo sequences and a gradient echo sequence

    NARCIS (Netherlands)

    Kreeftenberg, HG; Mooyaart, EL; Sluiter, WJ; Kreeftenberg, HG; Huizenga, Reint

    Background: The aim of the study was to quantify hepatic iron by MRI for practical use. Methods: In twenty-three patients with various degrees of iron overload, measurements were carried out with a 1.5 Tesla MR unit. A combination of pulse sequences (T1, T2 and gradient echo) enabled us to quantify

  17. Dual-echo, chemical shift gradient-echo magnetic resonance imaging to quantify hepatic steatosis: Implications for living liver donation.

    Science.gov (United States)

    Rinella, Mary E; McCarthy, Richard; Thakrar, Kiran; Finn, John Paul; Rao, Sambasiva M; Koffron, Alan J; Abecassis, Michael; Blei, Andres T

    2003-08-01

    In living liver donation, a fatty liver poses risks for both recipient and donor. Currently, liver biopsy is the standard for assessing the presence and extent of steatosis. The goals of this study were to correlate a steatosis index derived from magnetic resonance imaging (MRI) to the histologic grade on biopsy as well as to determine the topographic distribution of steatosis within the liver. We examined the ability of dual-echo, chemical shift gradient-echo MRI to predict the degree of steatosis on liver biopsy. A total of 22 subjects received both a liver biopsy and detailed MRI evaluation. These individuals included 15 potential living donors and 7 patients with nonalcoholic fatty liver disease. MRI steatosis index was then compared with histologic grade on liver biopsy. The topographic distribution of hepatic steatosis was determined from those subjects in whom MRI detected hepatic steatosis. The steatosis index had a positive correlation with grade of steatosis on liver biopsy (correlation coefficient, 0.84). There was no significant variation in the degree of steatosis among segments. A steatosis index of >0.2 had good positive and negative predictive value for the presence of significant steatosis (>15%) on biopsy. Our quantitative MRI protocol can predict the degree of hepatic steatosis when it is minimal to moderate, and may obviate the need for liver biopsy for the purpose of quantification of steatosis in living donors. Fat saturation added to the MRI protocol may further improve diagnostic accuracy. This technique may be applicable to the larger population with hepatic steatosis.

  18. Quantitative evaluation of benign and malignant vertebral fractures with diffusion-weighted MRI: what is the optimum combination of b values for ADC-based lesion differentiation with the single-shot turbo spin-echo sequence?

    Science.gov (United States)

    Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Duerr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea

    2014-09-01

    The purpose of our study was to determine the optimum combination of b values for calculating the apparent diffusion coefficient (ADC) using a diffusion-weighted (DW) single-shot turbo spin-echo (TSE) sequence in the differentiation between acute benign and malignant vertebral body fractures. Twenty-six patients with osteoporotic (mean age, 69 years; range, 31.5-86.2 years) and 20 patients with malignant vertebral fractures (mean age, 63.4 years; range, 24.7-86.4 years) were studied. T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW single-shot TSE sequence at different b values (100, 250, 400, and 600 s/mm(2)) was applied. On the DW images for each evaluated fracture, an ROI was manually adapted to the area of hyperintense signal intensity on STIR-hypointense signal on T1-weighted images. For each ROI, nine different combinations of two, three, and four b values were used to calculate the ADC using a least-squares algorithm. The Student t test and Mann-Whitney U test were used to determine significant differences between benign and malignant fractures. An ROC analysis and the Youden index were used to determine cutoff values for assessment of the highest sensitivity and specificity for the different ADC values. The positive (PPV) and negative predictive values (NPV) were also determined. All calculated ADCs (except the combination of b = 400 s/mm(2) and b = 600 s/mm(2)) showed statistically significant differences between benign and malignant vertebral body fractures, with benign fractures having higher ADCs than malignant ones. The use of higher b values resulted in lower ADCs than those calculated with low b values. The highest AUC (0.85) showed the ADCs calculated with b = 100 and 400 s/mm(2), and the second highest AUC (0.829) showed the ADCs calculated with b = 100, 250, and 400 s/mm(2). The Youden index with equal weight given to sensitivity and specificity suggests use of an ADC calculated with b = 100, 250, and 400 s/mm(2) (cutoff

  19. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Rusu, Mirabela, E-mail: mirabela.rusu@gmail.com; Wang, Haibo; Madabhushi, Anant [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Golden, Thea; Gow, Andrew [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-08-15

    Purpose: Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors’ framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. Methods: The authors’ image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. Results: The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology—MRI fusion, in the context of an initial use case involving characterization of chronic

  20. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model

    International Nuclear Information System (INIS)

    Rusu, Mirabela; Wang, Haibo; Madabhushi, Anant; Golden, Thea; Gow, Andrew

    2015-01-01

    Purpose: Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors’ framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. Methods: The authors’ image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. Results: The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology—MRI fusion, in the context of an initial use case involving characterization of chronic

  1. Preoperative local MRI-staging of patients with a suspected pancreatic mass

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U.; Vosshenrich, R.; Salamat, B.; Baum, F.; Grabbe, E. [Department of Radiology, Georg August University, Goettingen (Germany); Horstmann, O.; Becker, H. [Department of Surgery, Georg August University, Goettingen (Germany)

    2002-02-01

    The aim of this study was to define the value of MRI of the pancreas for preoperative local staging of patients with a suspected pancreatic mass. Ninety-four patients (41 women, 53 men; age range 32-87 years) with a suspected pancreatic tumor underwent preoperative staging with MRI on a 1.5-T system. The MRI protocol included breath-hold MR cholangiopancreatography in turbo spin-echo technique, biphasic contrast-enhanced 3D MR angiography, and MRI of the upper abdomen with breath-hold T2-weighted half-Fourier acquired single-shot turbo spin-echo and T1-weighted fast-low-angle-shot (pre- and postcontrast) sequences. Data were collected prospectively and analyzed by two radiologists in agreement modality. Evaluation criteria were vascular involvement, resectability, and a characterization benign vs malignant. Results were compared to histopathology in 78 patients. Sixteen patients were followed-up. In 74 of 94 patients a solid tumor or an inflammation of the pancreas (n=62) or the papilla (n=12) was detected. In this group, MRI had a sensitivity of 98%, a specificity of 92%, and an accuracy of 96% in the characterization of malignant tumors. Regarding only the solid tumors, the positive predictive value of MRI was 87% with respect to resectability. Other pathologic findings included adenoma or inflammation of the duodenum (n=5), carcinoma or benign stenosis of the choledochus duct (n=7) and carcinoma of the gall bladder (n=2). In 6 patients MRI did not depict any pathologic findings, and follow-up confirmed this interpretation. Magnetic resonance imaging allows a local preoperative staging in patients with suspected pancreatic tumor. Limitations, however, concern to the diagnostics of peritoneal and/or liver metastases. (orig.)

  2. Preoperative local MRI-staging of patients with a suspected pancreatic mass.

    Science.gov (United States)

    Fischer, U; Vosshenrich, R; Horstmann, O; Becker, H; Salamat, B; Baum, F; Grabbe, E

    2002-02-01

    The aim of this study was to define the value of MRI of the pancreas for preoperative local staging of patients with a suspected pancreatic mass. Ninety-four patients (41 women, 53 men; age range 32-87 years) with a suspected pancreatic tumor underwent preoperative staging with MRI on a 1.5-T system. The MRI protocol included breath-hold MR cholangiopancreatography in turbo spin-echo technique, biphasic contrast-enhanced 3D MR angiography, and MRI of the upper abdomen with breath-hold T2-weighted half-Fourier acquired single-shot turbo spin-echo and T1-weighted fast-low-angle-shot (pre- and postcontrast) sequences. Data were collected prospectively and analyzed by two radiologists in agreement modality. Evaluation criteria were vascular involvement, resectability, and a characterization benign vs malignant. Results were compared to histopathology in 78 patients. Sixteen patients were followed-up. In 74 of 94 patients a solid tumor or an inflammation of the pancreas ( n=62) or the papilla ( n=12) was detected. In this group, MRI had a sensitivity of 98%, a specificity of 92%, and an accuracy of 96% in the characterization of malignant tumors. Regarding only the solid tumors, the positive predictive value of MRI was 87% with respect to resectability. Other pathologic findings included adenoma or inflammation of the duodenum ( n=5), carcinoma or benign stenosis of the choledochus duct ( n=7) and carcinoma of the gall bladder ( n=2). In 6 patients MRI did not depict any pathologic findings, and follow-up confirmed this interpretation. Magnetic resonance imaging allows a local preoperative staging in patients with suspected pancreatic tumor. Limitations, however, concern to the diagnostics of peritoneal and/or liver metastases.

  3. Preoperative local MRI-staging of patients with a suspected pancreatic mass

    International Nuclear Information System (INIS)

    Fischer, U.; Vosshenrich, R.; Salamat, B.; Baum, F.; Grabbe, E.; Horstmann, O.; Becker, H.

    2002-01-01

    The aim of this study was to define the value of MRI of the pancreas for preoperative local staging of patients with a suspected pancreatic mass. Ninety-four patients (41 women, 53 men; age range 32-87 years) with a suspected pancreatic tumor underwent preoperative staging with MRI on a 1.5-T system. The MRI protocol included breath-hold MR cholangiopancreatography in turbo spin-echo technique, biphasic contrast-enhanced 3D MR angiography, and MRI of the upper abdomen with breath-hold T2-weighted half-Fourier acquired single-shot turbo spin-echo and T1-weighted fast-low-angle-shot (pre- and postcontrast) sequences. Data were collected prospectively and analyzed by two radiologists in agreement modality. Evaluation criteria were vascular involvement, resectability, and a characterization benign vs malignant. Results were compared to histopathology in 78 patients. Sixteen patients were followed-up. In 74 of 94 patients a solid tumor or an inflammation of the pancreas (n=62) or the papilla (n=12) was detected. In this group, MRI had a sensitivity of 98%, a specificity of 92%, and an accuracy of 96% in the characterization of malignant tumors. Regarding only the solid tumors, the positive predictive value of MRI was 87% with respect to resectability. Other pathologic findings included adenoma or inflammation of the duodenum (n=5), carcinoma or benign stenosis of the choledochus duct (n=7) and carcinoma of the gall bladder (n=2). In 6 patients MRI did not depict any pathologic findings, and follow-up confirmed this interpretation. Magnetic resonance imaging allows a local preoperative staging in patients with suspected pancreatic tumor. Limitations, however, concern to the diagnostics of peritoneal and/or liver metastases. (orig.)

  4. Effect of pulse sequence parameter selection on signal strength in positive-contrast MRI markers for MRI-based prostate postimplant assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Tze Yee [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas at Houston Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Kudchadker, Rajat J., E-mail: rkudchad@mdanderson.org; Wang, Jihong; Ibbott, Geoffrey S. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Stafford, R. Jason [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); MacLellan, Christopher [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas at Houston Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Rao, Arvind [Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Frank, Steven J. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)

    2016-07-15

    Purpose: For postimplant dosimetric assessment, computed tomography (CT) is commonly used to identify prostate brachytherapy seeds, at the expense of accurate anatomical contouring. Magnetic resonance imaging (MRI) is superior to CT for anatomical delineation, but identification of the negative-contrast seeds is challenging. Positive-contrast MRI markers were proposed to replace spacers to assist seed localization on MRI images. Visualization of these markers under varying scan parameters was investigated. Methods: To simulate a clinical scenario, a prostate phantom was implanted with 66 markers and 86 seeds, and imaged on a 3.0T MRI scanner using a 3D fast radiofrequency-spoiled gradient recalled echo acquisition with various combinations of scan parameters. Scan parameters, including flip angle, number of excitations, bandwidth, field-of-view, slice thickness, and encoding steps were systematically varied to study their effects on signal, noise, scan time, image resolution, and artifacts. Results: The effects of pulse sequence parameter selection on the marker signal strength and image noise were characterized. The authors also examined the tradeoff between signal-to-noise ratio, scan time, and image artifacts, such as the wraparound artifact, susceptibility artifact, chemical shift artifact, and partial volume averaging artifact. Given reasonable scan time and managable artifacts, the authors recommended scan parameter combinations that can provide robust visualization of the MRI markers. Conclusions: The recommended MRI pulse sequence protocol allows for consistent visualization of the markers to assist seed localization, potentially enabling MRI-only prostate postimplant dosimetry.

  5. Characterization of Focal Liver Lesions using CEUS and MRI with Liver-Specific Contrast Media: Experience of a Single Radiologic Center.

    Science.gov (United States)

    Beyer, Lukas Philipp; Wassermann, Florian; Pregler, Benedikt; Michalik, Katharina; Rennert, Janine; Wiesinger, Isabel; Stroszczynski, Christian; Wiggermann, Philipp; Jung, Ernst Michael

    2017-12-01

     The purpose of this study was to compare contrast-enhanced ultrasound (CEUS), magnetic resonance imaging (MRI) using liver-specific contrast agent and a combination of both for the characterization of focal liver lesions (FLL).  83 patients with both benign and malignant liver lesions were examined using CEUS and MRI after the intravenous administration of liver-specific contrast media. All patients had inconclusive results from prior imaging examinations. Histopathological specimens could be obtained in 53 patients. Ultrasound was performed using a multi-frequency curved probe (1 - 6 MHz) after the injection of 1 - 2.4 ml ultrasound contrast media. The sensitivity, specificity, positive predictive value and negative predictive value of CEUS, MRI and a combination of both (CEUS + MRI) were compared.  The sensitivity, specificity, positive and negative predictive values regarding lesion classification were 90.9 %, 70.6 %, 92.3 % and 66.6 %, respectively, for CEUS; 90.9 %, 82.4 %, 95.2 % and 70.0 %, respectively, for MRI; and 96.9 %, 70.6 %, 92.7 % and 85.7 % respectively, for CEUS + MRI. There were no statistically significant differences. 6 malignant lesions were missed using CEUS or MRI alone (false negatives). The use of both modalities combined reduced the false-negative results to 2.  CEUS and MRI with liver-specific contrast media are very reliable and of equal informative value in the characterization of focal liver lesions. The number of false-negative results can be decreased using a combination of the two methods. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Thrombotic stroke in the anesthetized monkey (Macaca mulatta): characterization by MRI - A pilot study

    International Nuclear Information System (INIS)

    Gauberti, Maxime; Gakuba, Clement; Orset, Cyrille; Obiang, Pauline; Guedin, Pierre; Balossier, Anne; Diependaele, Anne-Sophie; Young, Alan R.; Agin, Veronique; Chazalviel, Laurent; Vivien, Denis

    2012-01-01

    The lack of a relevant stroke model in large nonhuman primates hinders the development of innovative diagnostic/therapeutic approaches concerned with this cerebrovascular disease. Our objective was to develop a novel and clinically relevant model of embolic stroke in the anesthetized monkey that incorporates readily available clinical imaging techniques and that would allow the possibility of drug delivery including strategies of reperfusion. Thrombin was injected into the lumen of the middle cerebral artery (MCA) in 12 anesthetized (sevoflurane) male rhesus macaques (Macaca mulatta). Sequential MRI studies (including angiography, FLAIR, PWI, DWI, and gadolinium-enhanced T1W imaging) were performed in a 3 T clinical MRI. Physiological and biochemical parameters were monitored throughout the investigations. Once standardized, the surgical procedure induced transient occlusion of the middle cerebral artery in all operated animals. All animals studied showed spontaneous reperfusion, which occurred some time between 2 h and 7 days post-ictus. Eighty percent of the studied animals showed diffusion/perfusion mismatch. The ischemic lesions at 24 h spared both superficial and profound territories of the MCA. Some animals presented hemorrhagic transformation at 7 days post-ictus. In this study, we developed a pre-clinically relevant model of embolic stroke in the anesthetized nonhuman primate. (authors)

  7. Combined diffusion-weighted, blood oxygen level-dependent, and dynamic contrast-enhanced MRI for characterization and differentiation of renal cell carcinoma.

    Science.gov (United States)

    Notohamiprodjo, Mike; Staehler, Michael; Steiner, Nicole; Schwab, Felix; Sourbron, Steven P; Michaely, Henrik J; Helck, Andreas D; Reiser, Maximilian F; Nikolaou, Konstantin

    2013-06-01

    To investigate a multiparametric magnetic resonance imaging (MRI) approach comprising diffusion-weighted imaging (DWI), blood oxygen-dependent (BOLD), and dynamic contrast-enhanced (DCE) MRI for characterization and differentiation of primary renal cell carcinoma (RCC). Fourteen patients with clear-cell carcinoma and four patients with papillary RCC were examined with DWI, BOLD MRI, and DCE MRI at 1.5T. The apparent diffusion coefficient (ADC) was calculated with a monoexponential decay. The spin-dephasing rate R2* was derived from parametric R2* maps. DCE-MRI was analyzed using a two-compartment exchange model allowing separation of perfusion (plasma flow [FP] and plasma volume [VP]), permeability (permeability surface area product [PS]), and extravascular extracellular volume (VE). Statistical analysis was performed with Wilcoxon signed-rank test, Pearson's correlation coefficient, and receiver operating characteristic curve analysis. Clear-cell RCC showed higher ADC and lower R2* compared to papillary subtypes, but differences were not significant. FP of clear-cell subtypes was significantly higher than in papillary RCC. Perfusion parameters showed moderate but significant inverse correlation with R2*. VE showed moderate inverse correlation with ADC. Fp and Vp showed best sensitivity for histological differentiation. Multiparametric MRI comprising DWI, BOLD, and DCE MRI is feasible for assessment of primary RCC. BOLD moderately correlates to DCE MRI-derived perfusion. ADC shows moderate correlation to the extracellular volume, but does not correlate to tumor oxygenation or perfusion. In this preliminary study DCE-MRI appeared superior to BOLD and DWI for histological differentiation. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  8. Preparation and characterization of Fe3O4@Au-C225 composite targeted nanoparticles for MRI of human glioma.

    Science.gov (United States)

    Ge, Yaoqi; Zhong, Yuejiao; Ji, Guozhong; Lu, Qianling; Dai, Xinyu; Guo, Zhirui; Zhang, Peng; Peng, Gang; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    To study the characterization of Fe3O4@Au-C225 composite targeted MNPs. Fe3O4@Au-C225 was prepared by the absorption method. The immunosorbent assay was used to evaluate its absorption efficiency at C225 Fc. ZETA SIZER3000 laser particle size analyzer, ultraviolet photometer and its characteristics were analyzed by VSM. the targeting effect of Fe3O4@Au-C225 composite targeted MNPs on U251 cells in vitro were detected by 7.0 Tesla Micro-MR; and subcutaneous transplanted human glioma in nude mice were performed the targeting effect in vivo after tail vein injection of Fe3O4@Au-C225 composite targeted MNPs by MRI. The self-prepared Fe3O4@Au composite MNPs can adsorb C225 with high efficiency of adsorption so that Fe3O4@Au-C225 composite targeted MNPs were prepared successfully. Fe3O4@Au-C225 composite targeted MNPs favorably targeted human glioma cell line U251 in vitro; Fe3O4@Au-C225 composite targeted MNPs have good targeting ability to xenografted glioma on nude mice in vivo, and can be traced by MRI. The Fe3O4@Au-C225 composite targeted MNPs have the potential to be used as a tracer for glioma in vivo.

  9. Hypocaeruloplasminaemia with heteroallelic caeruloplasmin gene mutation: MRI of the brain

    International Nuclear Information System (INIS)

    Daimon, M.; Moriai, S.; Susa, S.; Yamatani, K.; Kato, T.; Hosoya, T.

    1999-01-01

    We present two patients with hypocaeruloplasminaemia and a heteroallelic caeruloplasmin gene mutation (HypoCPGM). These patients had diabetes mellitus and tremor of the hands, respectively. T2-weighted fast spin-echo MRI showed mildly reduced intensity of the putamen, much more marked on echo-planar imaging. (orig.) (orig.)

  10. Potential role of combined FDG PET/CT & contrast enhancement MRI in a rectal carcinoma model with nodal metastases characterized by a poor FDG-avidity.

    Science.gov (United States)

    Farace, Paolo; Conti, Giamaica; Merigo, Flavia; Tambalo, Stefano; Marzola, Pasquina; Sbarbati, Andrea; Quarta, Carmelo; D'Ambrosio, Daniela; Chondrogiannis, Sotirios; Nanni, Cristina; Rubello, Domenico

    2012-04-01

    To investigate the additional role of MRI contrast enhancement (CE) in the primary tumor and the FDG uptake at PET in the lymph-node metastases. A model of colorectal cancer induced by orthotopic HT-29 cells microinjection, producing pelvic lymph node metastases, was assessed using CE-MRI and FDG-PET. Histology and GLUT-1 immunohistochemistry were performed on primary tumors and iliac lymph nodes. Primary tumors were characterized by low FDG-uptake but high CE-MRI, particularly at tumor periphery. Undetectable FDG-uptake characterized the metastatic lymph-nodes. Histology revealed large stromal bundles at tumor periphery and a dense network of stromal fibers and neoplastic cells in the inner portion of the tumors. Both primary tumors and positive lymph nodes showed poor GLUT-1 staining. Our data support the complementary role of MRI-CE and FDG PET in some types of carcinomas characterized by abundant cancer-associated stroma and poor FDG avidity consequent to poor GLUT-1 transported. In these tumors FDG-PET alone may be not completely adequate to obtain an adequate tumor radiotherapy planning, and a combination with dual CE-MRI is strongly recommended. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Potential role of combined FDG PET/CT and contrast enhancement MRI in a rectal carcinoma model with nodal metastases characterized by a poor FDG-avidity

    International Nuclear Information System (INIS)

    Farace, Paolo; Conti, Giamaica; Merigo, Flavia; Tambalo, Stefano; Marzola, Pasquina; Sbarbati, Andrea; Quarta, Carmelo; D’Ambrosio, Daniela; Chondrogiannis, Sotirios; Nanni, Cristina; Rubello, Domenico

    2012-01-01

    Purpose: To investigate the additional role of MRI contrast enhancement (CE) in the primary tumor and the FDG uptake at PET in the lymph-node metastases. Materials and methods: A model of colorectal cancer induced by orthotopic HT-29 cells microinjection, producing pelvic lymph node metastases, was assessed using CE-MRI and FDG-PET. Histology and GLUT-1 immunohistochemistry were performed on primary tumors and iliac lymph nodes. Results: Primary tumors were characterized by low FDG-uptake but high CE-MRI, particularly at tumor periphery. Undetectable FDG-uptake characterized the metastatic lymph-nodes. Histology revealed large stromal bundles at tumor periphery and a dense network of stromal fibers and neoplastic cells in the inner portion of the tumors. Both primary tumors and positive lymph nodes showed poor GLUT-1 staining. Conclusion: Our data support the complementary role of MRI-CE and FDG PET in some types of carcinomas characterized by abundant cancer-associated stroma and poor FDG avidity consequent to poor GLUT-1 transported. In these tumors FDG-PET alone may be not completely adequate to obtain an adequate tumor radiotherapy planning, and a combination with dual CE-MRI is strongly recommended.

  12. Echo phenomena in a plasma

    International Nuclear Information System (INIS)

    Pavlenko, V.N.

    1983-01-01

    The mechanism of echo phenomenon in different plasma media: laboratory and cosmic plasma, metals and semiconductors is analyzed to get a more comprehensive idea on collective processes in a plasma and for practical applications in radiophysics and plasma diagnostics. The echo phenomenon permitted to confirm a reversible nature of the Landau damping, to prove the fact that the information on perturbation is conserved in a plasma (as non-damping oscillations of the distribution function) even after disappearing of the macroscopic field. The dependence of the diffusion coefficient on the velocity is measured, microturbulences in a plasma are investigated. New ways of the plasma wave conversion are suggested, as well as ''lightning'' of super-critical plasma layers and regions of plasma non-transparency. Prospective advantages of using echo for studying the mechanisms of charged particle interaction with the surface bounding a plasma are revealed

  13. Comparison of neuroendocrine tumor detection and characterization using DOTATOC-PET in correlation with contrast enhanced CT and delayed contrast enhanced MRI

    International Nuclear Information System (INIS)

    Giesel, F.L.; Kratochwil, C.; Mehndiratta, A.; Wulfert, S.; Moltz, J.H.; Zechmann, C.M.; Kauczor, H.U.; Haberkorn, U.; Ley, S.

    2012-01-01

    Purpose: We evaluated the rate of successful characterization of gastroenteropancreatic neuroendocrine tumors (NETs) present with an increased somatostatin receptor, comparing CE-CT with CE-MRI, each in correlation with DOTATOC-PET. Methods and materials: 8 patients with GEP-NET were imaged using CE-MRI (Gd-EOB-DTPA), CE-CT (Imeron 400) and DOTATOC-PET. Contrast-enhancement of normal liver-tissue and metastasis was quantified with ROI-technique. Tumor delineation was assessed with visual-score in blind-read-analysis by two experienced radiologists. Results: Out of 40 liver metastases in patients with NETs, all were detected by CE-MRI and the lesion extent could be adequately assessed, whereas CT failed to detect 20% of all metastases. The blind-read-score of CT in arterial and portal phase was median −0.65 and −1.4, respectively, and 2.7 for delayed-MRI. The quantitative ROI-analysis presented an improved contrast-enhancement-ratio with a median of 1.2, 1.6 and 3.3 for CE-CT arterial, portal-phase and delayed-MRI respectively. Conclusion: Late CE-MRI was superior to CE-CT in providing additionally morphologic characterization and exact lesion extension of hepatic metastases from neuroendocrine tumor detected with DOTATOC-PET. Therefore, late enhanced Gd-EOB-DTPA-MRI seems to be the adequate imaging modality for combination with DOTATOC-PET to provide complementary (macroscopic and molecular) tumor characterization in hepatic metastasized NETs

  14. Spin-Echo Small-Angle Neutron Scattering Development

    NARCIS (Netherlands)

    Uca, O.

    2003-01-01

    Spin-Echo Small-Angle Neutron Scattering (SESANS) instrument is a novel SANS technique which enables one to characterize distances from a few nanometers up to the micron range. The most striking difference between normal SANS and SESANS is that in SESANS one gets information in real space, whereas

  15. MRI of the cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, H.; Noebauer-Huhmann, I.-M.; Krestan, C.; Gahleitner, A.; Marlovits, S.; Trattnig, S. [Department of Osteology, Universitaetklinik fuer Radiodiagnostik, AKH-Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Sulzbacher, I. [Universitaetsklinik fuer Pathologie Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2002-11-01

    With the introduction of fat-suppressed gradient-echo and fast spin-echo (FSE) sequences in clinical routine MR visualization of the hyaline articular cartilage is routinely possible in the larger joints. While 3D gradient-echo with fat suppression allows exact depiction of the thickness and surface of cartilage, FSE outlines the normal and abnormal internal structures of the hyaline cartilage; therefore, both sequences seem to be necessary in a standard MRI protocol for cartilage visualization. In diagnostically ambiguous cases, in which important therapeutic decisions are required, direct MR arthrography is the established imaging standard as an add-on procedure. Despite the social impact and prevalence, until recent years there was a paucity of knowledge about the pathogenesis of cartilage damage. With the introduction of high-resolution MRI with powerful surface coils and fat-suppression techniques, visualization of the articular cartilage is now routinely possible in many joints. After a short summary of the anatomy and physiology of the hyaline cartilage, the different MR imaging methods are discussed and recommended standards are suggested. (orig.)

  16. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging.

    Science.gov (United States)

    De Ciantis, Alessio; Barba, Carmen; Tassi, Laura; Cosottini, Mirco; Tosetti, Michela; Costagli, Mauro; Bramerio, Manuela; Bartolini, Emanuele; Biagi, Laura; Cossu, Massimo; Pelliccia, Veronica; Symms, Mark R; Guerrini, Renzo

    2016-03-01

    To assess the diagnostic yield of 7T magnetic resonance imaging (MRI) in detecting and characterizing structural lesions in patients with intractable focal epilepsy and unrevealing conventional (1.5 or 3T) MRI. We conducted an observational clinical imaging study on 21 patients (17 adults and 4 children) with intractable focal epilepsy, exhibiting clinical and electroencephalographic features consistent with a single seizure-onset zone (SOZ) and unrevealing conventional MRI. Patients were enrolled at two tertiary epilepsy surgery centers and imaged at 7T, including whole brain (three-dimensional [3D] T1 -weighted [T1W] fast-spoiled gradient echo (FSPGR), 3D susceptibility-weighted angiography [SWAN], 3D fluid-attenuated inversion recovery [FLAIR]) and targeted imaging (2D T2*-weighted dual-echo gradient-recalled echo [GRE] and 2D gray-white matter tissue border enhancement [TBE] fast spin echo inversion recovery [FSE-IR]). MRI studies at 1.5 or 3T deemed unrevealing at the referral center were reviewed by three experts in epilepsy imaging. Reviewers were provided information regarding the suspected localization of the SOZ. The same team subsequently reviewed 7T images. Agreement in imaging interpretation was reached through consensus-based discussions based on visual identification of structural abnormalities and their likely correlation with clinical and electrographic data. 7T MRI revealed structural lesions in 6 (29%) of 21 patients. The diagnostic gain in detection was obtained using GRE and FLAIR images. Four of the six patients with abnormal 7T underwent epilepsy surgery. Histopathology revealed focal cortical dysplasia (FCD) in all. In the remaining 15 patients (71%), 7T MRI remained unrevealing; 4 of the patients underwent epilepsy surgery and histopathologic evaluation revealed gliosis. 7T MRI improves detection of epileptogenic FCD that is not visible at conventional field strengths. A dedicated protocol including whole brain FLAIR and GRE images at 7T

  17. Magnetic field mapping around metal implants using an asymmetric spin-echo sequence

    Czech Academy of Sciences Publication Activity Database

    Bartušek, Karel; Dokoupil, Zdeněk; Gescheidtová, E.

    2006-01-01

    Roč. 17, č. 12 (2006), s. 3293-3300 ISSN 0957-0233 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : nuclear magnetic resonance * spin echo * MRI * B0 mapping * dental material Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 1.228, year: 2006

  18. A new technique for MR elastography of the supraspinatus muscle: A gradient-echo type multi-echo sequence.

    Science.gov (United States)

    Ito, Daiki; Numano, Tomokazu; Mizuhara, Kazuyuki; Takamoto, Koichi; Onishi, Takaaki; Nishijo, Hisao

    2016-10-01

    Magnetic resonance elastography (MRE) can measure tissue stiffness quantitatively and noninvasively. Supraspinatus muscle injury is a significant problem among throwing athletes. The purpose of this study was to develop an MRE technique for application to the supraspinatus muscle by using a conventional magnetic resonance imaging (MRI). MRE acquisitions were performed with a gradient-echo type multi-echo MR sequence at 100Hz pneumatic vibration. A custom-designed vibration pad was used as a pneumatic transducer in order to adapt to individual shoulder shapes. In a gradient-echo type multi-echo MR sequence, without motion encoding gradient (MEG) that synchronizes with vibrations, bipolar readout gradient lobes achieved a similar function to MEG (MEG-like effect). In other words, a dedicated MRE sequence (built-in MEG) is not always necessary for MRE. In this study, 7 healthy volunteers underwent MRE. We investigated the effects of direction of the MEG-like effect and selected imaging planes on the patterns of wave propagation (wave image). The results indicated that wave images showed clear wave propagation on a condition that the direction of the MEG-like effect was nearly perpendicular to the long axis of the supraspinatus muscle, and that the imaging plane was superior to the proximal supraspinatus muscle. This limited condition might be ascribed to specific features of fibers in the supraspinatus muscle and wave reflection from the boundaries of the supraspinous fossa. The mean stiffness of the supraspinatus muscle was 10.6±3.17kPa. Our results demonstrated that using MRE, our method can be applied to the supraspinatus muscle by using conventional MRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Perceptual Characterization of the Macronutrient Picture System (MaPS for Food Image fMRI

    Directory of Open Access Journals (Sweden)

    Jill L. King

    2018-01-01

    Full Text Available Food image fMRI paradigms are used widely for investigating the neural basis of ingestive behavior. However, these paradigms have not been validated in terms of ingestive behavior constructs, engagement of food-relevant neural systems, or test-retest reliability, making the generalizability of study findings unclear. Therefore, we validated the Macronutrient Picture System (MaPS (McClernon et al., 2013, which includes food images from the six categories represented in the Geiselman Food Preference Questionnaire (FPQ (Geiselman et al., 1998. Twenty-five healthy young adults (n = 21 female, mean age = 20.6 ± 1.1 years, mean BMI = 22.1 ± 1.9 kg/m2 rated the MaPS images in terms of visual interest, appetitive quality, nutrition, emotional valence, liking, and frequency of consumption, and completed the FPQ. In a second study, 12 individuals (n=8 female, mean age = 25.0 ± 6.5 years, mean BMI = 28.2 ± 8.7 kg/m2 viewed MaPS and control images (vegetables and non-food during two separate 3T BOLD fMRI scans after fasting overnight. Intuitively, high fat/high sugar (HF/HS and high fat/high complex carbohydrate (HF/HCCHO images achieved higher liking and appetitive ratings, and lower nutrition ratings, than low fat/low complex carbohydrate/high protein (LF/LCHO/HP images on average. Within each food category, FPQ scores correlated strongly with MaPS image liking ratings (p < 0.001. Brain activation differences between viewing images of HF/HS and vegetables, and between HF/HCCHO and vegetables, were seen in several reward-related brain regions (e.g., putamen, insula, and medial frontal gyrus. Intra-individual, inter-scan agreement in a summary measure of brain activation differences in seven reward network regions of interest was high (ICC = 0.61, and was even higher when two distinct sets of food images with matching visual ratings were shown in the two scans (ICC = 0.74. These results suggest that the MaPS provides valid representation of food

  20. Spontaneous cerebral microbleeds on gradient echo MR imaging in the stroke patients

    International Nuclear Information System (INIS)

    Kwak, Seong Ho; Song, Chang June; Kim, Dae Bong; Jeong, Geum Chae

    2003-01-01

    To investigate the spontaneous cerebral microbleeding occurring at gradient-echo MRI, and its relationship with associated stroke lesions and risk factors. Between September 2001 and December, 2002, 32 patients (21 men and 11 women; mean age 63 years) in whom cerebral microbleeding occurred at gradient-echo MRI were retrospectively investigated. Using a 1.5T MR imager, spin-echo T1-weighted, fast spin-echo T2-weighted, diffusion-weighted, and gradient-echo images were obtained. The number and location of microbleeds seen on gradient echo images, patients data, and associated stroke lesions such as intracerebral hemorrhage and lacunar and territorial infarction were assessed. Among the 32 patients, 563 microbleeds and between 1 and 66 (mean, 17.6) were noted at gradient-echo imaging. Microbleeding occurred in the cortical/subcortical area (n=216), the basal ganglia (n=173), thalamus (n=92), cerebellum (n=41), brainstem (n=36) and corpus callosum (n=1), and in 20 patients was bilateral. Patients had a history of hypertension (n=26), hypertriglycemia (n=12), heart disease (n=4), and diabetes mellitus (n=3). Stroke lesions were seen in 27 patients, intracerebral hemorrhage in ten, lacunar infarction in 24, and territorial infarction in four. The incidence and number of microbleeds was greater in older patients and in those with hypertension, hypertriglycemia, and stroke lesions such as intracerebral hemorrhage or lacunar infarction. The detection of microbleeding at gradient-echo imaging is helpful, since it predicts the possibility of cerebral hemorrhage in these patients

  1. High signal intensity of fat on fast spin echo imaging

    International Nuclear Information System (INIS)

    Ogura, Akio; Yamazaki, Masaru; Hongoh, Takaharu; Inoue, Hiroshi; Ishikuro, Akihiro

    2000-01-01

    The fast spin echo (FSE) technique of producing T 2 -weighted images in greatly reduced imaging times has recently been used for routine clinical study. FSE images show contrast that is very similar in most tissues to that of conventional SE images. However, fat shows a high signal intensity that is influenced by j-coupling and the magnetization transfer effect. The purpose of this study was to assess whether the higher signal intensity of fat is different among MRI systems and to examine the effects of j-coupling and magnetization transfer on the high signal intensity of fat on FSE. The contrast in signal intensity between fat and water was measured for various echo train lengths (ETL) with and without multislicing on FSE using a contrast phantom. Measurements were obtained with four different MRI systems. In addition, the effective T 2 values of fat were calculated for the above conditions. Results indicated that contrast for fat and water was reduced with increased ETL and by using multislicing and was different among the four MRI systems. The effective T 2 values of fat were extended for increased ETL and were not dependent on multislicing. They also differed among the four MRI systems. The extent of effective T 2 values was affected by j-coupling. In this study, it was indicated that the degree of the high signal intensity of fat on FSE differed for different MRI systems. In addition, the reasons for the high signal intensity of fat on FSE were related to the effects of j-coupling and magnetization transfer. (author)

  2. Comparison of spin echo T1-weighted sequences versus fast spin-echo proton density-weighted sequences for evaluation of meniscal tears at 1.5 T

    International Nuclear Information System (INIS)

    Wolff, Andrew B.; Pesce, Lorenzo L.; Wu, Jim S.; Smart, L.R.; Medvecky, Michael J.; Haims, Andrew H.

    2009-01-01

    At our institution, fast spin-echo (FSE) proton density (PD) imaging is used to evaluate articular cartilage, while conventional spin-echo (CSE) T1-weighted sequences have been traditionally used to characterize meniscal pathology. We sought to determine if FSE PD-weighted sequences are equivalent to CSE T1-weighted sequences in the detection of meniscal tears, obviating the need to perform both sequences. We retrospectively reviewed the records of knee arthroscopies performed by two arthroscopy-focused surgeons from an academic medical center over a 2-year period. The preoperative MRI images were interpreted independently by two fellowship-trained musculoskeletal radiologists who graded the sagittal CSE T1 and FSE PD sequences at different sittings with grades 1-5, where 1 = normal meniscus, 2 = probable normal meniscus, 3 indeterminate, 4 = probable torn meniscus, and 5 = torn meniscus. Each meniscus was divided into an anterior and posterior half, and these halves were graded separately. Operative findings provided the gold standard. Receiver operating characteristic (ROC) analysis was performed to compare the two sequences. There were 131 tears in 504 meniscal halves. Using ROC analysis, the reader 1 area under curve for FSE PD was significantly better than CSE T1 (0.939 vs. 0.902, >95% confidence). For reader 2, the difference met good criteria for statistical non-inferiority but not superiority (0.913 for FSE PD and 0.908 for CSE T1; >95% non-inferiority for difference at most of -0.027). FSE PD-weighted sequences, using our institutional protocol, are not inferior to CSE T1-weighted sequences for the detection of meniscal tears and may be superior. (orig.)

  3. Fractal analysis of MRI data for the characterization of patients with schizophrenia and bipolar disorder

    Science.gov (United States)

    Squarcina, Letizia; De Luca, Alberto; Bellani, Marcella; Brambilla, Paolo; Turkheimer, Federico E.; Bertoldo, Alessandra

    2015-02-01

    Fractal geometry can be used to analyze shape and patterns in brain images. With this study we use fractals to analyze T1 data of patients affected by schizophrenia or bipolar disorder, with the aim of distinguishing between healthy and pathological brains using the complexity of brain structure, in particular of grey matter, as a marker of disease. 39 healthy volunteers, 25 subjects affected by schizophrenia and 11 patients affected by bipolar disorder underwent an MRI session. We evaluated fractal dimension of the brain cortex and its substructures, calculated with an algorithm based on the box-count algorithm. We modified this algorithm, with the aim of avoiding the segmentation processing step and using all the information stored in the image grey levels. Moreover, to increase sensitivity to local structural changes, we computed a value of fractal dimension for each slice of the brain or of the particular structure. To have reference values in comparing healthy subjects with patients, we built a template by averaging fractal dimension values of the healthy volunteers data. Standard deviation was evaluated and used to create a confidence interval. We also performed a slice by slice t-test to assess the difference at slice level between the three groups. Consistent average fractal dimension values were found across all the structures in healthy controls, while in the pathological groups we found consistent differences, indicating a change in brain and structures complexity induced by these disorders.

  4. Fractal analysis of MRI data for the characterization of patients with schizophrenia and bipolar disorder

    International Nuclear Information System (INIS)

    Squarcina, Letizia; Bellani, Marcella; De Luca, Alberto; Bertoldo, Alessandra; Brambilla, Paolo; Turkheimer, Federico E

    2015-01-01

    Fractal geometry can be used to analyze shape and patterns in brain images. With this study we use fractals to analyze T1 data of patients affected by schizophrenia or bipolar disorder, with the aim of distinguishing between healthy and pathological brains using the complexity of brain structure, in particular of grey matter, as a marker of disease. 39 healthy volunteers, 25 subjects affected by schizophrenia and 11 patients affected by bipolar disorder underwent an MRI session. We evaluated fractal dimension of the brain cortex and its substructures, calculated with an algorithm based on the box-count algorithm. We modified this algorithm, with the aim of avoiding the segmentation processing step and using all the information stored in the image grey levels. Moreover, to increase sensitivity to local structural changes, we computed a value of fractal dimension for each slice of the brain or of the particular structure. To have reference values in comparing healthy subjects with patients, we built a template by averaging fractal dimension values of the healthy volunteers data. Standard deviation was evaluated and used to create a confidence interval. We also performed a slice by slice t-test to assess the difference at slice level between the three groups. Consistent average fractal dimension values were found across all the structures in healthy controls, while in the pathological groups we found consistent differences, indicating a change in brain and structures complexity induced by these disorders. (paper)

  5. Characterization of in vivo MRI detectable thalamic amyloid plaques from APP/PS1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Dhenain, M. [URA CEA CNRS 2210, I2BM, SHFJ, 4 Place du General Leclerc, 91401 Orsay Cedex (France); Dhenain, M.; El Tannir El Tayara, N.; Wu, T.D.; Volk, A.; Quintana, C. [U759 INSERM, Centre Universitaire, Laboratoire 112, 91405 Orsay Cedex (France); Dhenain, M.; El Tannir El Tayara, N.; Wu, T.D.; Volk, A.; Quintana, C. [Institut Curie, Centre Universitaire, Laboratoire 112, 91405 Orsay Cedex (France); Guegan, M.; Delatour, B. [Instituto de Microelectronica de Madrid-CSIC, 8, Isaac Newton, 28760 Tres Cantos, Madrid (Spain)

    2009-07-01

    Amyloid deposits are one of the hallmarks of Alzheimer's disease. Recent studies, in transgenic mice modeling Alzheimer's disease showed that, using in vivo, contrast agent-free, MRI, thalamic amyloid plaques are more easily detected than other plaques of the brain. Our study evaluated the characteristics of these thalamic plaques in a large population of APP/PS1, PS1 and C57BL/6 mice. Thalamic spots were detected in all mice but with different frequency and magnitude. Hence, the prevalence and size of the lesions were higher in APP/PS1 mice. However, even in APP/PS1 mice, thalamic spots did not occur in all the old animals. In APP/PS1 mice, spots detection was related to high iron and calcium load within amyloid plaques and thus reflects the ability of such plaque to capture large amounts of minerals. Interestingly, calcium and iron was also detected in extra-thalamic plaques but with a lower intensity. Hypointense lesions in the thalamus were not associated with the iron load in the tissue surrounding the plaques, nor with micro-hemorrhages, inflammation, or a neuro-degenerative context. (authors)

  6. Comparison of third-order plasma wave echoes with ballistic second-order plasma wave echoes

    International Nuclear Information System (INIS)

    Leppert, H.D.; Schuelter, H.; Wiesemann, K.

    1982-01-01

    The apparent dispersion of third-order plasma wave echoes observed in a high frequency plasma is compared with that of simultaneously observed ballistic second-order echoes. Amplitude and wavelength of third-order echoes are found to be always smaller than those of second-order echoes, however, the dispersion curves of both types of echoes are very similar. These observations are in qualitative agreement with calculations of special ballistic third-order echoes. The ballistic nature of the observed third-order echoes may, therefore, be concluded from these measurements. (author)

  7. Characterization of Pancreatic Tumor Motion Using Cine MRI: Surrogates for Tumor Position Should Be Used With Caution

    International Nuclear Information System (INIS)

    Feng, Mary; Balter, James M.; Normolle, Daniel; Adusumilli, Saroja; Cao Yue; Chenevert, Thomas L.; Ben-Josef, Edgar

    2009-01-01

    Purpose: Our current understanding of intrafraction pancreatic tumor motion due to respiration is limited. In this study, we characterized pancreatic tumor motion and evaluated the application of several radiotherapy motion management strategies. Methods and Materials: Seventeen patients with unresectable pancreatic cancer were enrolled in a prospective internal review board-approved study and imaged during shallow free-breathing using cine MRI on a 3T scanner. Tumor borders were agreed on by a radiation oncologist and an abdominal MRI radiologist. Tumor motion and correlation with the potential surrogates of the diaphragm and abdominal wall were assessed. These data were also used to evaluate planning target volume margin construction, respiratory gating, and four-dimensional treatment planning for pancreatic tumors. Results: Tumor borders moved much more than expected. To provide 99% geometric coverage, margins of 20 mm inferiorly, 10 mm anteriorly, 7 mm superiorly, and 4 mm posteriorly are required. Tumor position correlated poorly with diaphragm and abdominal wall position, with patient-level Pearson correlation coefficients of -0.18-0.43. Sensitivity and specificity of gating with these surrogates was also poor, at 53%-68%, with overall error of 35%-38%, suggesting that the tumor may be underdosed and normal tissues overdosed. Conclusions: Motion of pancreatic tumor borders is highly variable between patients and larger than expected. There is substantial deformation with breathing, and tumor border position does not correlate well with abdominal wall or diaphragmatic position. Current motion management strategies may not account fully for tumor motion and should be used with caution.

  8. Multi-site study of diffusion metric variability: effects of site, vendor, field strength, and echo time on regions-of-interest and histogram-bin analyses.

    Science.gov (United States)

    Helmer, K G; Chou, M-C; Preciado, R I; Gimi, B; Rollins, N K; Song, A; Turner, J; Mori, S

    2016-02-27

    It is now common for magnetic-resonance-imaging (MRI) based multi-site trials to include diffusion-weighted imaging (DWI) as part of the protocol. It is also common for these sites to possess MR scanners of different manufacturers, different software and hardware, and different software licenses. These differences mean that scanners may not be able to acquire data with the same number of gradient amplitude values and number of available gradient directions. Variability can also occur in achievable b-values and minimum echo times. The challenge of a multi-site study then, is to create a common protocol by understanding and then minimizing the effects of scanner variability and identifying reliable and accurate diffusion metrics. This study describes the effect of site, scanner vendor, field strength, and TE on two diffusion metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA) using two common analyses (region-of-interest and mean-bin value of whole brain histograms). The goal of the study was to identify sources of variability in diffusion-sensitized imaging and their influence on commonly reported metrics. The results demonstrate that the site, vendor, field strength, and echo time all contribute to variability in FA and MD, though to different extent. We conclude that characterization of the variability of DTI metrics due to site, vendor, field strength, and echo time is a worthwhile step in the construction of multi-center trials.

  9. Short echo time, fast gradient-echo imaging

    International Nuclear Information System (INIS)

    Haacke, E.M.; Lenz, G.W.

    1987-01-01

    Present fast-gradient-echoes schemes can acquire volume data rapidly and are flexible in T1 or T1/T2 contrast behavior. However, sequences used to date employ echo time (TE) values of about 15 ms +- 5 and, because of in vivo field inhomogeneities (short T2), they suffer badly from signal loss near sinuses and tissue boundaries. The authors implemented sequences with TE = 4-6 ms and found significant improvement in image quality, especially at high fields. Examples with long TEs vs. short TEs are given in the knee, spine, head, and orbits. Further advantages include (1) faster repetition times (15 ms), (2) higher-quality spin-density or T1-weighted images, and (3) reduction of blood motion artifacts

  10. Titania-coated manganite nanoparticles: Synthesis of the shell, characterization and MRI properties

    Energy Technology Data Exchange (ETDEWEB)

    Jirák, Zdeněk; Kuličková, Jarmila [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Herynek, Vít [Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21 Praha 4 (Czech Republic); Maryško, Miroslav [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Koktan, Jakub [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6 (Czech Republic); Kaman, Ondřej, E-mail: kamano@seznam.cz [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic)

    2017-04-01

    Novel procedure for coating of oxide nanoparticles with titania, employing hydrolysis and polycondensation of titanium alkoxides under high-dilution conditions and cationic surfactants, is developed and applied to magnetic cores of perovskite manganite. Bare particles of the ferromagnetic La{sub 0.65}Sr{sub 0.35}MnO{sub 3} phase, possessing high magnetization, M{sub 10} {sub kOe}(4.5 K) = 63.5 emu g{sup −1}, and Curie temperature, T{sub C} = 355 K, are synthesized by sol-gel procedure and subsequently coated with titania. Further, a comparative silica-coated product is prepared. In order to analyse the morphology, colloidal stability, and surface properties of these two types of coated particles, a detailed study by means of transmission electron microscopy, dynamic light scattering, zeta-potential measurements, and IR spectroscopy is carried out. The experiments on the titania-coated sample reveal a continuous though porous character of the TiO{sub 2} shell, the nature of which is amorphous but can be transformed to anatase at higher temperatures. Finally, the relaxometric study at the magnetic field of 0.5 T, performed to quantity the transverse relaxivity and its temperature dependence, reveals important differences between the titania-coated and silica-coated nanoparticles. - Highlights: • Magnetic nanoparticles of perovskite La{sub 0.65}Sr{sub 0.35}MnO{sub 3} phase are coated with TiO{sub 2}. • The titania forms a continuous and amorphous shell and provides colloidal stability. • Morphology and surface properties are compared to a silica-coated product. • MRI properties of both the titania- and silica-coated particles are studied at 0.5 T. • The temperature dependence of r{sub 2} is strongly affected by the type of coating.

  11. Enhanced disease characterization through multi network functional normalization in fMRI.

    Science.gov (United States)

    Çetin, Mustafa S; Khullar, Siddharth; Damaraju, Eswar; Michael, Andrew M; Baum, Stefi A; Calhoun, Vince D

    2015-01-01

    Conventionally, structural topology is used for spatial normalization during the pre-processing of fMRI. The co-existence of multiple intrinsic networks which can be detected in the resting brain are well-studied. Also, these networks exhibit temporal and spatial modulation during cognitive task vs. rest which shows the existence of common spatial excitation patterns between these identified networks. Previous work (Khullar et al., 2011) has shown that structural and functional data may not have direct one-to-one correspondence and functional activation patterns in a well-defined structural region can vary across subjects even for a well-defined functional task. The results of this study and the existence of the neural activity patterns in multiple networks motivates us to investigate multiple resting-state networks as a single fusion template for functional normalization for multi groups of subjects. We extend the previous approach (Khullar et al., 2011) by co-registering multi group of subjects (healthy control and schizophrenia patients) and by utilizing multiple resting-state networks (instead of just one) as a single fusion template for functional normalization. In this paper we describe the initial steps toward using multiple resting-state networks as a single fusion template for functional normalization. A simple wavelet-based image fusion approach is presented in order to evaluate the feasibility of combining multiple functional networks. Our results showed improvements in both the significance of group statistics (healthy control and schizophrenia patients) and the spatial extent of activation when a multiple resting-state network applied as a single fusion template for functional normalization after the conventional structural normalization. Also, our results provided evidence that the improvement in significance of group statistics lead to better accuracy results for classification of healthy controls and schizophrenia patients.

  12. Myocardial viability: comparison of free-breathing navigator-echo-gated three-dimensional inversion-recovery gradient-echo MR and standard multiple breath-hold two-dimensional inversion-recovery gradient-echo MR

    International Nuclear Information System (INIS)

    Kim, Jin Hee; Seo, Joon Beom; Do, Kyung Hyun; Yang, Dong Hyun; Lee, Soo Hyun; Ko, Sung Min; Heo, Jeong Nam; Lim, Tae Hwan

    2004-01-01

    To compare a free-breathing, navigator-echo-gated, three-dimensional, inversion-recovery, gradient-echo, MR pulse sequence (3D-MRI) with standard, multiple breath-hold, two-dimensional, inversion-recovery, gradient-echo MR (2D-MRI) for the evaluation of delayed hyperenhancement of nonviable myocardium in patients with chronic ischemic heart disease. Ten patients with chronic ischemic heart disease were enrolled in this study. MRI was performed on a 1.5-T system. 3D-MRI was obtained in the short axis plane at 10 minutes after the administration of Gd-DTPA (0.2 mmol/kg, 4 cc/sec). Prospective gating of the acquisition based on the navigator echo was applied. 2D-MRI was performed immediately after finishing 3D-MRI. The area of total and hyperenhanced myocardium measured on both image sets was compared with paired Student t-test and Bland-Altman method. By using a 60-segment model, the transmural extent and segment width of the hyperenhanced area were recorded by 3-scale grading method. The agreement between the two sequences was evaluated with kappa statistics. We also evaluated the agreement of hyperenhancement among the three portions (apical, middle and basal portion) of the left ventricle with kappa statistics. The two sequences showed good agreement for the measured area of total and hyperenhanced myocardium on paired t-test (ρ = 0.11 and ρ = 0.34, respectively). No systematic bias was shown on Bland-Altman analysis. Good agreement was found for the segmental width (Κ = 0.674) and transmural extent (Κ = 0.615) of hyperenhancement on the segmented analysis. However, the agreement of the transmural extent of hyperenhancement in the apical segments was relatively poor compared with that in the middle or basal portions. This study showed good agreement between 3D-MRI and 2D-MRI in evaluation of non-viable myocardium. Therefore, 3D-MRI may be useful in the assessment of myocardial viability in patients with dyspnea and children because it allows free

  13. Fully refocused multi-shot spatiotemporally encoded MRI: robust imaging in the presence of metallic implants.

    Science.gov (United States)

    Ben-Eliezer, Noam; Solomon, Eddy; Harel, Elad; Nevo, Nava; Frydman, Lucio

    2012-12-01

    An approach has been recently introduced for acquiring arbitrary 2D NMR spectra or images in a single scan, based on the use of frequency-swept RF pulses for the sequential excitation and acquisition of the spins response. This spatiotemporal-encoding (SPEN) approach enables a unique, voxel-by-voxel refocusing of all frequency shifts in the sample, for all instants throughout the data acquisition. The present study investigates the use of this full-refocusing aspect of SPEN-based imaging in the multi-shot MRI of objects, subject to sizable field inhomogeneities that complicate conventional imaging approaches. 2D MRI experiments were performed at 7 T on phantoms and on mice in vivo, focusing on imaging in proximity to metallic objects. Fully refocused SPEN-based spin echo imaging sequences were implemented, using both Cartesian and back-projection trajectories, and compared with k-space encoded spin echo imaging schemes collected on identical samples under equal bandwidths and acquisition timing conditions. In all cases assayed, the fully refocused spatiotemporally encoded experiments evidenced a ca. 50 % reduction in signal dephasing in the proximity of the metal, as compared to analogous results stemming from the k-space encoded spin echo counterparts. The results in this study suggest that SPEN-based acquisition schemes carry the potential to overcome strong field inhomogeneities, of the kind that currently preclude high-field, high-resolution tissue characterizations in the neighborhood of metallic implants.

  14. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity.

    Science.gov (United States)

    Cohen, Alexander D; Nencka, Andrew S; Lebel, R Marc; Wang, Yang

    2017-01-01

    A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI.

  15. Spatiotemporal alignment of in utero BOLD-MRI series.

    Science.gov (United States)

    Turk, Esra Abaci; Luo, Jie; Gagoski, Borjan; Pascau, Javier; Bibbo, Carolina; Robinson, Julian N; Grant, P Ellen; Adalsteinsson, Elfar; Golland, Polina; Malpica, Norberto

    2017-08-01

    To present a method for spatiotemporal alignment of in-utero magnetic resonance imaging (MRI) time series acquired during maternal hyperoxia for enabling improved quantitative tracking of blood oxygen level-dependent (BOLD) signal changes that characterize oxygen transport through the placenta to fetal organs. The proposed pipeline for spatiotemporal alignment of images acquired with a single-shot gradient echo echo-planar imaging includes 1) signal nonuniformity correction, 2) intravolume motion correction based on nonrigid registration, 3) correction of motion and nonrigid deformations across volumes, and 4) detection of the outlier volumes to be discarded from subsequent analysis. BOLD MRI time series collected from 10 pregnant women during 3T scans were analyzed using this pipeline. To assess pipeline performance, signal fluctuations between consecutive timepoints were examined. In addition, volume overlap and distance between manual region of interest (ROI) delineations in a subset of frames and the delineations obtained through propagation of the ROIs from the reference frame were used to quantify alignment accuracy. A previously demonstrated rigid registration approach was used for comparison. The proposed pipeline improved anatomical alignment of placenta and fetal organs over the state-of-the-art rigid motion correction methods. In particular, unexpected temporal signal fluctuations during the first normoxia period were significantly decreased (P quantitative studies of placental function by improving spatiotemporal alignment across placenta and fetal organs. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:403-412. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Longitudinal collective echoes in coasting particle beams

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Khateeb

    2003-01-01

    Full Text Available Longitudinal ballistic and collective beam echoes with diffusion effects are investigated theoretically. In the presence of the space-charge impedance, the collective echo amplitude is obtained as a closed form expression. In contrast to the ballistic case, the collective echo amplitude consists of one maximum at time t_{echo}. The echo amplitude grows up and damps down with a rate proportional to the Landau damping rate of space-charge waves. The effect of weak diffusion is found to modify the ballistic and the collective echo amplitudes in the same manner. This effect of diffusion was confirmed using a “noiseless,” grid-based simulation code. As a first application the amount of numerical diffusion in our simulation code was determined using the echo effect.

  17. Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour acute hypoxia?

    International Nuclear Information System (INIS)

    Baudelet, Christine; Ansiaux, Reginald; Jordan, Benedicte F; Havaux, Xavier; Macq, Benoit; Gallez, Bernard

    2004-01-01

    T2*-weighted gradient-echo magnetic resonance imaging (T2*-weighted GRE MRI) was used to investigate spontaneous fluctuations in tumour vasculature non-invasively. FSa fibrosarcomas, implanted intramuscularly (i.m.) in the legs of mice, were imaged at 4.7 T, over a 30 min or 1 h sampling period. On a voxel-by-voxel basis, time courses of signal intensity were analysed using a power spectrum density (PSD) analysis to isolate voxels for which signal changes did not originate from Gaussian white noise or linear drift. Under baseline conditions, the tumours exhibited spontaneous signal fluctuations showing spatial and temporal heterogeneity over the tumour. Statistically significant fluctuations occurred at frequencies ranging from 1 cycle/3 min to 1 cycle/h. The fluctuations were independent of the scanner instabilities. Two categories of signal fluctuations were reported: (i) true fluctuations (TFV), i.e., sequential signal increase and decrease, and (ii) profound drop in signal intensity with no apparent signal recovery (SDV). No temporal correlation between tumour and contralateral muscle fluctuations was observed. Furthermore, treatments aimed at decreasing perfusion-limited hypoxia, such as carbogen combined with nicotinamide and flunarizine, decreased the incidence of tumour T2*-weighted GRE fluctuations. We also tracked dynamic changes in T2* using multiple GRE imaging. Fluctuations of T2* were observed; however, fluctuation maps using PSD analysis could not be generated reliably. An echo-time dependency of the signal fluctuations was observed, which is typical to physiological noise. Finally, at the end of T2*-weighted GRE MRI acquisition, a dynamic contrast-enhanced MRI was performed to characterize the microenvironment in which tumour signal fluctuations occurred in terms of vessel functionality, vascularity and microvascular permeability. Our data showed that TFV were predominantly located in regions with functional vessels, whereas SDV occurred in regions

  18. Contrast-enhanced dynamic MR imaging of parasellar tumor using fast spin-echo sequence

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Ohue, Shiro; Ichikawa, Haruhisa; Saito, Masahiro; Sadamoto, Kazuhiko; Sakaki, Saburo; Miki, Hitoshi.

    1995-01-01

    We have applied a new dynamic MRI technique that uses a fast spin-echo sequence to parasellar tumors. This sequence has less susceptible effect and better spatial resolution than a gradient echo sequence, providing faster images than a short spin-echo sequence does. Image was obtained in the coronal or sagittal plane using a 1.5T clinical MRI system, and then, dynamic MR images were acquired every 10 to 20 sec after administration of Gd-DTPA (0.1 mmol/kg). The subjects were 12 patients (5 microadenomas, 5 macroadenomas and 2 Rathke's cleft cysts) and 5 normal volunteers. As for volunteers, the cavernous sinus, pituitary stalk and posterior pituitary gland were contrasted on the first image, followed by visualization of the proximal portion adjacent to the junction of the infundibulum and the anterior pituitary gland, and finally by contrasting the distal portion of the anterior pituitary gland. There was a difference with respect to tumor contrast between microadenomas and macroadenomas. In the case of the macroadenomas, the tumor was contrasted at the same time as, or faster than the anterior pituitary gland, while with the microadenomas the tumor was enhanced later than the anterior pituitary gland. No enhancement with contrast medium was seen in Rathke's cleft cysts. In addition, it was possible to differentiate a recurrent tumor from a piece of muscle placed at surgery since the images obtained by the fast spin-echo sequence were clearer than those obtained by gradient echo sequence. (author)

  19. Magentic resonance imaging and characterization of normal and abnormal intracranial cerebrospinal fluid (CSF) spaces: Initial observations

    International Nuclear Information System (INIS)

    Brant-Zawadzki, M.; Kelly, W.; Kjos, B.; Newton, T.H.; Norman, D.; Dillon, W.; Sobel, D.

    1985-01-01

    A retrospective review of twenty-five normal MRI brain studies performed with the spin-echo technique focused special attention on the ventricular and extraventricular cerebrospinal fluid (CSF) and revealed unique signal intensity characteristics in the two locations. In addition, MRI studies of ten patients with abnormal extraaxial fluid collections either missed with CT or indistinguishable from CSF on CT images were also analyzed. MRI is more sensitive when compared to CT in evaluating the composition of CSF. Unique signal intensity characterizes the two major CSF compartments and presumably reflects their known but subtle difference in protein concentration (10-15 mg%). Normal variant or abnormal developmental fluid collections can be better characterized with MRI than with CT. These preliminary observations are offered in view of their implications for patient management and suggest further investigation. (orig.)

  20. Comparison of multiple quantitative MRI parameters for characterization of the goat cartilage in an ongoing osteoarthritis: dGEMRIC, T1ρ and sodium

    International Nuclear Information System (INIS)

    Schrauth, Joachim H.X.; Lykowsky, Gunthard; Hemberger, Kathrin; Kreutner, Jakob; Jakob, Peter M.; Weber, Daniel; Haddad, Daniel; Rackwitz, Lars; Noeth, Ulrich

    2016-01-01

    Osteoarthritis (OA) is a degenerative joint disease leading to cartilage deterioration by loss of matrix, fibrillation, formation of fissures, and ultimately complete loss of the cartilage surface. Here, three magnetic resonance imaging (MRI) techniques, dGEMRIC (delayed Gadolinium enhanced MRI of cartilage; dG 1 = T 1,post ; dG 2 = 1/T 1,post -1/T 1,pre ), T 1ρ , and sodium MRI, are compared in a preclinical in vivo study to evaluate the differences in their potential for cartilage characterization and to establish an examination protocol for a following clinical study. OA was induced in 12 caprine knees (6 control, 6 therapy). Adipose derived stem cells were injected afterwards as a treatment. The animals were examined healthy, 3 and 16 weeks postoperatively with all three MRI methods. Using statistical analysis, the OA development and the degree of correlation between the different MRI methods were determined. A strong correlation was observed between the dGEMRIC indices dG 1 and dG 2 (r=-0.87) which differ only in considering or not considering the T 1 baseline. Moderate correlations were found between T 1ρ and dG 1 (r=0.55), T 1ρ and dG 2 (r=0.47) and at last, sodium and dG 1 (r=0.45). The correlations found in this study match to the biomarkers which the methods are sensitive to. Even though the goat cartilage is significantly thinner than the human cartilage and even more in a degenerated cartilage, all three methods were able to characterize the cartilage over the whole period of time during an ongoing OA.Due to measurement and post processing optimizations, as well as the correlations detected in this work, the overall measurement time in future goat studies can be minimized. Moreover, an examination protocol for characterizing the cartilage in a clinical study was established.

  1. Independence of echo-threshold and echo-delay in the barn owl.

    Directory of Open Access Journals (Sweden)

    Brian S Nelson

    Full Text Available Despite their prevalence in nature, echoes are not perceived as events separate from the sounds arriving directly from an active source, until the echo's delay is long. We measured the head-saccades of barn owls and the responses of neurons in their auditory space-maps while presenting a long duration noise-burst and a simulated echo. Under this paradigm, there were two possible stimulus segments that could potentially signal the location of the echo. One was at the onset of the echo; the other, after the offset of the direct (leading sound, when only the echo was present. By lengthening the echo's duration, independently of its delay, spikes and saccades were evoked by the source of the echo even at delays that normally evoked saccades to only the direct source. An echo's location thus appears to be signaled by the neural response evoked after the offset of the direct sound.

  2. Iterative Decomposition of Water and Fat with Echo Asymmetric and Least—Squares Estimation (IDEAL (Reeder et al. 2005 Automated Spine Survey Iterative Scan Technique (ASSIST (Weiss et al. 2006

    Directory of Open Access Journals (Sweden)

    Kenneth L. Weiss

    2008-01-01

    Full Text Available Background and Purpose: Multi-parametric MRI of the entire spine is technologist-dependent, time consuming, and often limited by inhomogeneous fat suppression. We tested a technique to provide rapid automated total spine MRI screening with improved tissue contrast through optimized fat-water separation.Methods: The entire spine was auto-imaged in two contiguous 35 cm field of view (FOV sagittal stations, utilizing out-of-phase fast gradient echo (FGRE and T1 and/or T2 weighted fast spin echo (FSE IDEAL (Iterative Decomposition of Water and Fat with Echo Asymmetric and Least-squares Estimation sequences. 18 subjects were studied, one twice at 3.0T (pre and post contrast and one at both 1.5 T and 3.0T for a total of 20 spine examinations (8 at 1.5 T and 12 at 3.0T. Images were independently evaluated by two neuroradiologists and run through Automated Spine Survey Iterative Scan Technique (ASSIST analysis software for automated vertebral numbering.Results: In all 20 total spine studies, neuroradiologist and computer ASSIST labeling were concordant. In all cases, IDEAL provided uniform fat and water separation throughout the entire 70 cm FOV imaged. Two subjects demonstrated breast metastases and one had a large presumptive schwannoma. 14 subjects demonstrated degenerative disc disease with associated Modic Type I or II changes at one or more levels. FGRE ASSIST afforded subminute submillimeter in-plane resolution of the entire spine with high contrast between discs and vertebrae at both 1.5 and 3.0T. Marrow signal abnormalities could be particularly well characterized with IDEAL derived images and parametric maps.Conclusion: IDEAL ASSIST is a promising MRI technique affording a rapid automated high resolution, high contrast survey of the entire spine with optimized tissue characterization.

  3. TU-EF-BRA-03: Free Induction Decay (without the Decay) and Spin-Echo Imaging

    International Nuclear Information System (INIS)

    Price, R.

    2015-01-01

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common

  4. TU-EF-BRA-03: Free Induction Decay (without the Decay) and Spin-Echo Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Price, R. [Vanderbilt Medical Center (United States)

    2015-06-15

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common

  5. Evaluation of the chondromalacia patella using a microscopy coil: comparison of the two-dimensional fast spin echo techniques and the three-dimensional fast field echo techniques.

    Science.gov (United States)

    Kim, Hyun-joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung-Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast field echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FS-PD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p chondromalacia patella.

  6. 3D printed phantoms mimicking cortical bone for the assessment of ultrashort echo time magnetic resonance imaging.

    Science.gov (United States)

    Rai, Robba; Manton, David; Jameson, Michael G; Josan, Sonal; Barton, Michael B; Holloway, Lois C; Liney, Gary P

    2018-02-01

    Human cortical bone has a rapid T2∗ decay, and it can be visualized using ultrashort echo time (UTE) techniques in magnetic resonance imaging (MRI). These sequences operate at the limits of gradient and transmit-receive signal performance. Development of multicompartment anthropomorphic phantoms that can mimic human cortical bone can assist with quality assurance and optimization of UTE sequences. The aims of this study were to (a) characterize the MRI signal properties of a photopolymer resin that can be 3D printed, (b) develop multicompartment phantoms based on the resin, and (c) demonstrate the feasibility of using these phantoms to mimic human anatomy in the assessment of UTE sequences. A photopolymer resin (Prismlab China Ltd, Shanghai, China) was imaged on a 3 Tesla MRI system (Siemens Skyra) to characterize its MRI properties with emphasis on T2∗ signal and longevity. Two anthropomorphic phantoms, using the 3D printed resin to simulate skeletal anatomy, were developed and imaged using UTE sequences. A skull phantom was developed and used to assess the feasibility of using the resin to develop a complex model with realistic morphological human characteristics. A tibia model was also developed to assess the suitability of the resin at mimicking a simple multicompartment anatomical model and imaged using a three-dimensional UTE sequence (PETRA). Image quality measurements of signal-to-noise ratio (SNR) and contrast factor were calculated and these were compared to in vivo values. The T2∗ and T 1 (mean ± standard deviation) of the photopolymer resin was found to be 411 ± 19 μs and 74.39 ± 13.88 ms, respectively, and demonstrated no statistically significant change during 4 months of monitoring. The resin had a similar T2∗ decay to human cortical bone; however, had lower T 1 properties. The bone water concentration of the resin was 59% relative to an external water reference phantom, and this was higher than in vivo values reported for human cortical

  7. Characterization of Adrenal Lesions on Unenhanced MRI Using Texture Analysis: A Machine-Learning Approach.

    Science.gov (United States)

    Romeo, Valeria; Maurea, Simone; Cuocolo, Renato; Petretta, Mario; Mainenti, Pier Paolo; Verde, Francesco; Coppola, Milena; Dell'Aversana, Serena; Brunetti, Arturo

    2018-01-17

    Adrenal adenomas (AA) are the most common benign adrenal lesions, often characterized based on intralesional fat content as either lipid-rich (LRA) or lipid-poor (LPA). The differentiation of AA, particularly LPA, from nonadenoma adrenal lesions (NAL) may be challenging. Texture analysis (TA) can extract quantitative parameters from MR images. Machine learning is a technique for recognizing patterns that can be applied to medical images by identifying the best combination of TA features to create a predictive model for the diagnosis of interest. To assess the diagnostic efficacy of TA-derived parameters extracted from MR images in characterizing LRA, LPA, and NAL using a machine-learning approach. Retrospective, observational study. Sixty MR examinations, including 20 LRA, 20 LPA, and 20 NAL. Unenhanced T 1 -weighted in-phase (IP) and out-of-phase (OP) as well as T 2 -weighted (T 2 -w) MR images acquired at 3T. Adrenal lesions were manually segmented, placing a spherical volume of interest on IP, OP, and T 2 -w images. Different selection methods were trained and tested using the J48 machine-learning classifiers. The feature selection method that obtained the highest diagnostic performance using the J48 classifier was identified; the diagnostic performance was also compared with that of a senior radiologist by means of McNemar's test. A total of 138 TA-derived features were extracted; among these, four features were selected, extracted from the IP (Short_Run_High_Gray_Level_Emphasis), OP (Mean_Intensity and Maximum_3D_Diameter), and T 2 -w (Standard_Deviation) images; the J48 classifier obtained a diagnostic accuracy of 80%. The expert radiologist obtained a diagnostic accuracy of 73%. McNemar's test did not show significant differences in terms of diagnostic performance between the J48 classifier and the expert radiologist. Machine learning conducted on MR TA-derived features is a potential tool to characterize adrenal lesions. 4 Technical Efficacy: Stage 2 J

  8. Analysis of the acoustic sound in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Tetsuro; Hara, Akira; Kusakari, Jun; Yoshioka, Hiroshi; Niitsu, Mamoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Ase, Yuji

    1999-04-01

    The noise level and power spectra of the acoustic sound exposed during the examination of Magnetic Resonance Imaging (MRI) using a MRI scanner (Philips Gyroscan 1.5 T) were measured at the position of the human auricle. The overall noise levels on T1-weighted images and T2-weighted images with Spin Echo were 105 dB and 98 dB, respectively. The overall noise level on T2-weighted images with Turbo Spin Echo was 110 dB. Fourier analysis revealed energy peaks ranging from 225 to 325 Hz and a steep high frequency cutoff for each pulse sequence. The MRI noise was not likely to cause permanent threshold shift. However, because of the inter-subject variation in susceptibility to acoustic trauma and to exclude the anxiety in patients, ear protectors were recommended for all patients during MRI testing. (author)

  9. Placental baseline conditions modulate the hyperoxic BOLD-MRI response.

    Science.gov (United States)

    Sinding, Marianne; Peters, David A; Poulsen, Sofie S; Frøkjær, Jens B; Christiansen, Ole B; Petersen, Astrid; Uldbjerg, Niels; Sørensen, Anne

    2018-01-01

    Human pregnancies complicated by placental dysfunction may be characterized by a high hyperoxic Blood oxygen level-dependent (BOLD) MRI response. The pathophysiology behind this phenomenon remains to be established. The aim of this study was to evaluate whether it is associated with altered placental baseline conditions, including a lower oxygenation and altered tissue morphology, as estimated by the placental transverse relaxation time (T2*). We included 49 normal pregnancies (controls) and 13 pregnancies complicated by placental dysfunction (cases), defined by a birth weight baseline BOLD)/baseline BOLD) from a dynamic single-echo gradient-recalled echo (GRE) MRI sequence and the absolute ΔT2* (hyperoxic T2*- baseline T2*) from breath-hold multi-echo GRE sequences. In the control group, the relative ΔBOLD response increased during gestation from 5% in gestational week 20 to 20% in week 40. In the case group, the relative ΔBOLD response was significantly higher (mean Z-score 4.94; 95% CI 2.41, 7.47). The absolute ΔT2*, however, did not differ between controls and cases (p = 0.37), whereas the baseline T2* was lower among cases (mean Z-score -3.13; 95% CI -3.94, -2.32). Furthermore, we demonstrated a strong negative linear correlation between the Log 10 ΔBOLD response and the baseline T2* (r = -0.88, p baseline conditions, as the absolute increase in placental oxygenation (ΔT2*) does not differ between groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Synthesis and Characterization of Chitosan Coated Manganese Zinc Ferrite Nanoparticles as MRI Contrast Agents

    Directory of Open Access Journals (Sweden)

    M. Zahraei

    2015-04-01

    Full Text Available Manganese zinc ferrite nanoparticles (MZF NPs were synthesized by using a direct, efficient and environmental friendly hydrothermal method. To improve the colloidal stability of MZF NPs for biomedical applications, NPs were coated with chitosan by ionic gelation technique using sodium tripolyphosphate (TPP as crosslinker. The synthesized NPs were characterized by X ray diffraction (XRD analysis, inductively coupled plasma optical emission spectrometry (ICP-OES, fourier transform infrared (FTIR spectroscopy, transmission electron microscopy (TEM, vibrating sample magnetometer (VSM and the dynamic light scattering (DLS methods. The results confirmed the spinel ferrite phase formation without any calcination process after synthesis. Mean particle size of bare NPs was around 14 nm. Moreover, certain molar ratio of chitosan to TPP was required for encapsulation of NPs in chitosan. Coated NPs showed hydrodynamic size of 300 nm and polydispersity index about 0.3.

  11. Classification of radar echoes using fractal geometry

    International Nuclear Information System (INIS)

    Azzaz, Nafissa; Haddad, Boualem

    2017-01-01

    Highlights: • Implementation of two concepts of fractal geometry to classify two types of meteorological radar echoes. • A new approach, called a multi-scale fractal dimension is used for classification between fixed echoes and rain echoes. • An Automatic identification system of meteorological radar echoes was proposed using fractal geometry. - Abstract: This paper deals with the discrimination between the precipitation echoes and the ground echoes in meteorological radar images using fractal geometry. This study aims to improve the measurement of precipitations by weather radars. For this, we considered three radar sites: Bordeaux (France), Dakar (Senegal) and Me lbourne (USA). We showed that the fractal dimension based on contourlet and the fractal lacunarity are pertinent to discriminate between ground and precipitation echoes. We also demonstrated that the ground echoes have a multifractal structure but the precipitations are more homogeneous than ground echoes whatever the prevailing climate. Thereby, we developed an automatic classification system of radar using a graphic interface. This interface, based on the fractal geometry makes possible the identification of radar echoes type in real time. This system can be inserted in weather radar for the improvement of precipitation estimations.

  12. Diagnostic accuracy of dual-echo (in- and opposed-phase) T1-weighted gradient recalled echo for detection and grading of hepatic iron using quantitative and visual assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schieda, Nicola; Ramanathan, Subramaniyan; Ryan, John; Khanna, Maneesh; Virmani, Vivek; Avruch, Leonard [The University of Ottawa, The Ottawa Hospital, Ottawa, Ontario (Canada)

    2014-07-15

    Detection and quantification of hepatic iron with dual-echo gradient recalled echo (GRE) has been proposed as a rapid alternative to other magnetic resonance imaging (MRI) techniques. Co-existing steatosis and T1 weighting are limitations. This study assesses the accuracy of routine dual-echo GRE. Between 2010 and 2013, 109 consecutive patients underwent multi-echo (ME) MRI and dual-echo GRE for quantification of hepatic iron. Liver iron concentration (LIC) was calculated from ME-MRI. Relative signal intensity (RSI) and fat signal fraction (FSF) were calculated from dual-echo GRE. Four radiologists subjectively evaluated dual-echo GRE (±subtraction). Diagnostic accuracy was compared between techniques and correlated with biopsy using Fisher's exact test, Spearman correlation and regression. The sensitivity of visual detection of iron ranged from 48 to 55 %. Subtraction did not increase sensitivity (p < 0.001). Inter-observer variability was substantial (κ = 0.72). The specificity of visual detection of iron approached 100 % with false-positive diagnoses observed using subtraction. LIC showed a higher correlation with histopathological iron grade (r = 0.94, p < 0.001) compared with RSI (r = 0.65, p = 0.02). Univariate regression showed an association between RSI and LIC (B = 0.98, p < 0.001, CI 0.73-1.23); however, the association was not significant with multi-variate regression including FSF (p = 0.28). Dual-echo GRE has low sensitivity for hepatic iron. Subtraction imaging can result in false-positive diagnoses. (orig.)

  13. Placenta accreta: MRI antenatal diagnosis and surgical correlation.

    Science.gov (United States)

    Ha, T P; Li, K C

    1998-01-01

    We describe a case of a placenta previa accreta that was diagnosed antenatally by MRI with subsequent surgical confirmation. We show the advantages of ultrafast MRI single shot (SS) fast spin echo (FSE) techniques for accurate diagnosis with minimal scan time and fetal motion artifacts.

  14. Let's go out of the breast: Prevalence of extra-mammary findings and their characterization on breast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Moschetta, Marco, E-mail: marco.moschetta@gmail.com; Telegrafo, Michele, E-mail: mikitele@hotmail.it; Rella, Leonarda, E-mail: lea.rella@gmail.com; Stabile Ianora, Amato Antonio, E-mail: a.stabile@radiologia.uniba.it; Angelelli, Giuseppe, E-mail: g.angellelli@radiologia.uniba.it

    2014-06-15

    Purpose: The aim of this study is to assess the prevalence, the site and the nature of extra-mammary findings on breast magnetic resonance imaging (MRI) and to determine its accuracy in the characterization of the discovered lesions. Materials and methods: A retrospective review of 308 female patients (mean age 50 ± 20) who underwent breast MRI with 1.5 T device was performed. 125 out of 308 (40.5%) had a positive personal history of breast cancer (pre-operative n = 80; follow-up n = 45), while the remaining 183 without history of breast cancer (high familiar risk for breast cancer n = 80; dense breast n = 103). All incidental findings were characterized by means of additional imaging (US; Bone scintigraphy-MRI; CT-PET-CT). Results: 59 incidental findings were found in 53/308 (17%) examined patients. 9/59 incidental findings (15%) were confirmed to be malignant while the remaining 50/59 (84%) benign. The most common site was the liver (33/59; 55.8%), followed by the lung (6/59; 10.1%), bone (6/59; 10.1%), diaphragm (6/59; 10.1%) spleen (3/59; 5%), kidney (2/59; 3.4%), gall bladder (1/5; 1.5%), ascending aorta (1/59; 1.5%), thyroid (1/59; 1.5%). The incidence of malignant incidental findings resulted to be higher in the group of patients with personal breast cancer (36%) than in the other one (8%). By comparing MRI findings with the additional definitive imaging tools, breast MRI allowed a correct diagnosis in 58/59 cases with a diagnostic accuracy value of 98%. Conclusion: Incidental extramammary findings on breast MRI are common. Benign lesions represent the most frequent findings, however malignant ones need to be searched especially in patients with personal history of breast cancer because they could influence the clinical patient management. Breast MRI can characterize incidental findings with high accuracy value.

  15. Let's go out of the breast: Prevalence of extra-mammary findings and their characterization on breast MRI

    International Nuclear Information System (INIS)

    Moschetta, Marco; Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe

    2014-01-01

    Purpose: The aim of this study is to assess the prevalence, the site and the nature of extra-mammary findings on breast magnetic resonance imaging (MRI) and to determine its accuracy in the characterization of the discovered lesions. Materials and methods: A retrospective review of 308 female patients (mean age 50 ± 20) who underwent breast MRI with 1.5 T device was performed. 125 out of 308 (40.5%) had a positive personal history of breast cancer (pre-operative n = 80; follow-up n = 45), while the remaining 183 without history of breast cancer (high familiar risk for breast cancer n = 80; dense breast n = 103). All incidental findings were characterized by means of additional imaging (US; Bone scintigraphy-MRI; CT-PET-CT). Results: 59 incidental findings were found in 53/308 (17%) examined patients. 9/59 incidental findings (15%) were confirmed to be malignant while the remaining 50/59 (84%) benign. The most common site was the liver (33/59; 55.8%), followed by the lung (6/59; 10.1%), bone (6/59; 10.1%), diaphragm (6/59; 10.1%) spleen (3/59; 5%), kidney (2/59; 3.4%), gall bladder (1/5; 1.5%), ascending aorta (1/59; 1.5%), thyroid (1/59; 1.5%). The incidence of malignant incidental findings resulted to be higher in the group of patients with personal breast cancer (36%) than in the other one (8%). By comparing MRI findings with the additional definitive imaging tools, breast MRI allowed a correct diagnosis in 58/59 cases with a diagnostic accuracy value of 98%. Conclusion: Incidental extramammary findings on breast MRI are common. Benign lesions represent the most frequent findings, however malignant ones need to be searched especially in patients with personal history of breast cancer because they could influence the clinical patient management. Breast MRI can characterize incidental findings with high accuracy value

  16. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing.

    Science.gov (United States)

    Hébert, Clément; Warnking, Jan; Depaulis, Antoine; Garçon, Laurie Amandine; Mermoux, Michel; Eon, David; Mailley, Pascal; Omnès, Franck

    2015-01-01

    Neural interfacing still requires highly stable and biocompatible materials, in particular for in vivo applications. Indeed, most of the currently used materials are degraded and/or encapsulated by the proximal tissue leading to a loss of efficiency. Here, we considered boron doped diamond microelectrodes to address this issue and we evaluated the performances of a diamond microelectrode array. We described the microfabrication process of the device and discuss its functionalities. We characterized its electrochemical performances by cyclic voltammetry and impedance spectroscopy in saline buffer and observed the typical diamond electrode electrochemical properties, wide potential window and low background current, allowing efficient electrochemical detection. The charge storage capacitance and the modulus of the electrochemical impedance were found to remain in the same range as platinum electrodes used for standard commercial devices. Finally we observed a reduced Magnetic Resonance Imaging artifact when the device was implanted on a rat cortex, suggesting that boron doped-diamond is a very promising electrode material allowing functional imaging. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. MRI-induced retrocalcaneal bursitis

    International Nuclear Information System (INIS)

    Tol, J.L.; Dijk, C.N. van; Maas, M.

    1999-01-01

    This case report describes a patient with acute retrocalcaneal bursitis, which developed after MRI examination of the ankle. The sagittal T2*-weighted gradient echo sequence revealed an extensive susceptibility artifact in the area surrounding the Achilles tendon near its insertion at the os calcis. This artifact was caused by postsurgical metallic particles. We postulate that these particles were mechanically stimulated by the magnetic field and induced the inflammatory response. (orig.)

  18. MRI-induced retrocalcaneal bursitis

    Energy Technology Data Exchange (ETDEWEB)

    Tol, J.L.; Dijk, C.N. van [Dept. of Orthopaedic Surgery, University of Amsterdam (Netherlands); Maas, M. [Dept. of Radiology, University of Amsterdam (Netherlands)

    1999-10-01

    This case report describes a patient with acute retrocalcaneal bursitis, which developed after MRI examination of the ankle. The sagittal T2*-weighted gradient echo sequence revealed an extensive susceptibility artifact in the area surrounding the Achilles tendon near its insertion at the os calcis. This artifact was caused by postsurgical metallic particles. We postulate that these particles were mechanically stimulated by the magnetic field and induced the inflammatory response. (orig.)

  19. Rabbit model of intervertebral disc degeneration by external compression device characterized by X-ray, MRI, histology, and cell viability

    Directory of Open Access Journals (Sweden)

    Ismail Ismail

    2006-12-01

    Full Text Available Appropriate experimental animal models, which mimic the degenerative process occurring in human intervertebral disc (IVD breakdown and can be used for new treatment studies such as tissue engineering or disc distraction are lacking. We studied the external compression device that used by Kroeber et al to create intervertebral disc degeneration in rabbit model characterized by X-ray, MRI, Histology, and Cell Viability. Ten NZW rabbit were randomly assigned to one of five groups. Intervertebral disc VL4-L5 are compressed using an external loading device, 1.9 MPa. First group rabbit are loaded for 14 days, second loaded for 28 days, thirth group are loaded for 14 days, and unloaded for 14 days, fourth group loaded for 28 days and unloaded for 28 days. The fifth group, rabbits underwent a sham operation. Additional, rabbits were used as sample for cell viability study. In disc height : sample in group one have biggest decreasing of disc height, that is 23.9 unit. In MRI assessment, the worst grade is grade 3. In histological score, the worst group is group three (58.69, and the best is group 4 (45.69. Group one have the largest dead cell, that are 403.5, and the smallest is group four (124.75. Trypan blue staining showed that group four have better viable cell (91.1 compare than group three (86.4. The study conclude disc degeneration can be created by external axial loading for 14 days in rabbit intervertebral disc. Duration of 28 days unloading gave better result for cells to recover. (Med J Indones 2006; 15:199-207  Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Keywords: Rabbit model –intervertebral disc degeneration- external compression device-X-ray, MRI, Histology, and Cell viabilty /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso

  20. MRI of orbital hydroxyapatite implants

    International Nuclear Information System (INIS)

    Flanders, A.E.; De Potter P.; Rao, V.M.; Tom, B.M.; Shields, C.L.; Shields, J.A.

    1996-01-01

    Our aim was to use MRI for the postsurgical assessment of a new form of integrated orbital implant composed of a porous calcium phosphate hydroxyapatite substrate. We studied ten patients 24-74 years of age who underwent enucleation and implantation of a hydroxyapatite ball; 5-13 months after surgery, each patient was examined by spin-echo MRI, with fat suppression and gadolinium enhancement. Fibrovascular ingrowth was demonstrated in all ten patients as areas of enhancement at the periphery of the hydroxyapatite sphere that extended to the center to a variable degree. The radiologist should aware of the MRI appearances of the coralline hydroxyapatite orbital implant since it is now widely used following enucleation. MRI is a useful means to determine successful incorporation of the substrate into the orbital tissues. The normal pattern of contrast enhancement should not be mistaken for recurrent tumor or infection. (orig.)

  1. MRI-based tumor motion characterization and gating schemes for radiation therapy of pancreatic cancer

    International Nuclear Information System (INIS)

    Heerkens, Hanne D.; Vulpen, Marco van; Berg, Cornelis A.T. van den; Tijssen, Rob H.N.; Crijns, Sjoerd P.M.; Molenaar, Izaak Q.; Santvoort, Hjalmar C. van; Reerink, Onne; Meijer, Gert J.

    2014-01-01

    Background and purpose: To characterize pancreatic tumor motion and to develop a gating scheme for radiotherapy in pancreatic cancer. Materials and methods: Two cine MRIs of 60 s each were performed in fifteen pancreatic cancer patients, one in sagittal direction and one in coronal direction. A Minimum Output Sum of Squared Error (MOSSE) adaptive correlation filter was used to quantify tumor motion in craniocaudal, lateral and anteroposterior directions. To develop a gating scheme, stability of the breathing phases was examined and a gating window assessment was created, incorporating tumor motion, treatment time and motion margins. Results: The largest tumor motion was found in craniocaudal direction, with an average peak-to-peak amplitude of 15 mm (range 6–34 mm). Amplitude of the tumor in the anteroposterior direction was on average 5 mm (range 1–13 mm). The least motion was seen in lateral direction (average 3 mm, range 2–5 mm). The end exhale position was the most stable position in the breathing cycle and tumors spent more time closer to the end exhale position than to the end inhale position. On average, a margin of 25% of the maximum craniocaudal breathing amplitude was needed to achieve full target coverage with a duty cycle of 50%. When reducing the duty cycle to 50%, a margin of 5 mm was sufficient to cover the target in 11 out of 15 patients. Conclusion: Gated delivery for radiotherapy of pancreatic cancer is best performed around the end exhale position as this is the most stable position in the breathing cycle. Considerable margin reduction can be established at moderate duty cycles, yielding acceptable treatment efficiency. However, motion patterns and amplitude do substantially differ between individual patients. Therefore, individual treatment strategies should be considered for radiotherapy in pancreatic cancer

  2. Synthesis and characterization of an MRI Gd-based probe designed to target the translocator protein

    International Nuclear Information System (INIS)

    Cerutti, Erika; Aime, Silvio; Damont, Annelaure; Dolle, Frederic; Baroni, Simona

    2013-01-01

    DPA-713 is the lead compound of a recently reported pyrazolo[1,5-a]pyrimidine acetamide series, targeting the translocator protein (TSPO 18 kDa), and as such, this structure, as well as closely related derivatives, have been already successfully used as positron emission tomography radioligands. On the basis of the pharmacological core of this ligands series, a new magnetic resonance imaging probe, coded DPA-C6-(Gd)DOTAMA was designed and successfully synthesized in six steps and 13% overall yield from DPA-713. The Gd-DOTA monoamide cage (DOTA = 1,4,7,10-tetraaza-cyclododecane-1,4,7,10-tetraacetic acid) represents the magnetic resonance imaging reporter, which is spaced from the phenyl-pyrazolo[1,5-a]pyrimidine acetamide moiety (DPA-713 motif) by a six carbon-atom chain. DPA-C6-(Gd)DOTAMA relaxometric characterization showed the typical behavior of a small-sized molecule (relaxivity value: 6.02 mM -1 s -1 at 20 MHz). The good hydrophilicity of the metal chelate makes DPAC6-(Gd)DOTAMA soluble in water, affecting thus its biodistribution with respect to the parent lipophilic DPA-713 molecule. For this reason, it was deemed of interest to load the probe to a large carrier in order to increase its residence lifetime in blood. Whereas DPA-C6-(Gd)DOTAMA binds to serum albumin with a low affinity constant, it can be entrapped into liposomes (both in the membrane and in the inner aqueous cavity). The stability of the supramolecular adduct formed by the Gd-complex and liposomes was assessed by a competition test with albumin. (authors)

  3. A radar-echo model for Mars

    International Nuclear Information System (INIS)

    Thompson, T.W.; Moore, H.J.

    1990-01-01

    Researchers developed a radar-echo model for Mars based on 12.6 cm continuous wave radio transmissions backscattered from the planet. The model broadly matches the variations in depolarized and polarized total radar cross sections with longitude observed by Goldstone in 1986 along 7 degrees S. and yields echo spectra that are generally similiar to the observed spectra. Radar map units in the model include an extensive cratered uplands unit with weak depolarized echo cross sections, average thermal inertias, moderate normal refelectivities, and moderate rms slopes; the volcanic units of Tharsis, Elysium, and Amazonis regions with strong depolarized echo cross sections, low thermal inertia, low normal reflectivities, and large rms slopes; and the northern planes units with moderate to strong depolarized echo cross sections, moderate to very high thermal inertias, moderate to large normal reflectivities, and moderate rms slopes. The relevance of the model to the interpretation of radar echoes from Mars is discussed

  4. The acoustics of the echo cornet

    Science.gov (United States)

    Pyle, Robert W., Jr.; Klaus, Sabine K.

    2002-11-01

    The echo cornet was an instrument produced by a number of makers in several countries from about the middle of the nineteenth to the early twentieth centuries. It consists of an ordinary three-valve cornet to which a fourth valve has been added, downstream of the three normal valves. The extra valve diverts the airstream from the normal bell to an ''echo'' bell that gives a muted tone quality. Although the air column through the echo bell is typically 15 cm longer than the path through the normal bell, there is no appreciable change of playing pitch when the echo bell is in use. Acoustic input impedance and impulse response measurements and consideration of the standing-wave pattern within the echo bell show how this can be so. Acoustically, the echo bell is more closely related to hand-stopping on the French horn than to the mutes commonly used on the trumpet and cornet.

  5. Beam echoes in the presence of coupling

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Axel [Case Western Reserve U.

    2017-10-03

    Transverse beam echoes could provide a new technique of measuring diusion characteristics orders of magnitude faster than the current methods; however, their interaction with many accelerator parameters is poorly understood. Using a program written in C, we explored the relationship between coupling and echo strength. We found that echoes could be generated in both dimensions, even with a dipole kick in only one dimension. We found that the echo eects are not destroyed even when there is strong coupling, falling o only at extremely high coupling values. We found that at intermediate values of skew quadrupole strength, the decoherence time of the beam is greatly increased, causing a destruction of the echo eects. We found that this is caused by a narrowing of the tune width of the particles. Results from this study will help to provide recommendations to IOTA (Integrable Optics Test Accelerator) for their upcoming echo experiment.

  6. MRI of the shoulder

    Energy Technology Data Exchange (ETDEWEB)

    Vahlensieck, M.

    2000-02-01

    Shoulder imaging is one of the major applications in musculoskeletal MRI. In order to analyze the images it is important to keep informed about anatomical and pathological findings and publications. In this article MRI technique, anatomy and pathology is reviewed. Technical considerations about MR sequences and examination strategy are only shortly discussed with emphasis on turbo spin echo and short T1 inversion recovery imaging. Basic anatomy as well as recent findings, including macroscopic aspects of the supraspinatus fat pad, composition of the supraspinatus muscle belly, and variability of the glenohumeral ligaments or coracoid ligament, are presented. Basic pathological conditions are described in detail, e. g. instability particularly problems in differentiating the various subtypes of labral pathology. Rotator cuff diseases are elucidated with emphasis on some rarer entities such as subscapularis calcifying tendinitis, coracoid impingement, chronic bursitis producing the double-line sign, prominent coraco-acromial ligament and the impingement due to an inflamed os acromiale. (orig.)

  7. MRI of the shoulder

    International Nuclear Information System (INIS)

    Vahlensieck, M.

    2000-01-01

    Shoulder imaging is one of the major applications in musculoskeletal MRI. In order to analyze the images it is important to keep informed about anatomical and pathological findings and publications. In this article MRI technique, anatomy and pathology is reviewed. Technical considerations about MR sequences and examination strategy are only shortly discussed with emphasis on turbo spin echo and short T1 inversion recovery imaging. Basic anatomy as well as recent findings, including macroscopic aspects of the supraspinatus fat pad, composition of the supraspinatus muscle belly, and variability of the glenohumeral ligaments or coracoid ligament, are presented. Basic pathological conditions are described in detail, e. g. instability particularly problems in differentiating the various subtypes of labral pathology. Rotator cuff diseases are elucidated with emphasis on some rarer entities such as subscapularis calcifying tendinitis, coracoid impingement, chronic bursitis producing the double-line sign, prominent coraco-acromial ligament and the impingement due to an inflamed os acromiale. (orig.)

  8. Magnetic resonance imaging of lumbar spine. Comparison of multiple spin echo and low flip angle gradient echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Takamichi; Fujita, Norihiko; Harada, Koushi; Kozuka, Takahiro (Osaka Univ. (Japan). Faculty of Medicine)

    1989-07-01

    Sixteen patients including 13 cases with disk herniation and 3 cases with spondylosis of lumbar spine were examined on a resistive MRI system operating at 0.1 T. All lesions were studied with both multiple spin echo (MSE) and low flip angle gradient echo (LF) techniques to evaluate which technique is more effective in detecting the disk degeneration and the indentation on subarachnoid space. MSE images were obtained with repetition time (TR) of 1100-1500 ms or cardiac gating, an echo time (TE) of 30, 60, 90, 120, 150, and 180 ms symmetrical 6 echoes, and total acquisition time of more than 281 sec. LF images were obtained with TR of 500, 250, and 100 ms, TE of 18 ms, a flip angle of 30 degree, and total acquisition time of 128 sec. Eleven lesions of spinal disk degeneration and 12 of indentation on subarachnoid space were detected with LF. On the other hand, 26 lesions of spinal disk degeneration and 38 of indentation on subarachnoid space were detected with MSE. Although the parameters of LF employed in this study were relatively effective to emphasize T2{sup *}-based contrast, the ability of LF in detection of spinal disk degeneration and indentation on subarachnoid space is less than that of MSE. Signal contrast to noise ratios for normal disk and degenerative disk, epidural-fat and disk herniated material, CSF and disk herniated material, and epidural-fat and CSF were less than 4 with LF, but more than 4 with MSE. This difference of contrast to noise ratio between MSE and LF was one of the main causes of the difference of the detection rate of spinal disk degeneration and indentation on subarachnoid space. (author).

  9. Mono-Exponential Fitting in T2-Relaxometry: Relevance of Offset and First Echo.

    Directory of Open Access Journals (Sweden)

    David Milford

    Full Text Available T2 relaxometry has become an important tool in quantitative MRI. Little focus has been put on the effect of the refocusing flip angle upon the offset parameter, which was introduced to account for a signal floor due to noise or to long T2 components. The aim of this study was to show that B1 imperfections contribute significantly to the offset. We further introduce a simple method to reduce the systematic error in T2 by discarding the first echo and using the offset fitting approach.Signal curves of T2 relaxometry were simulated based on extended phase graph theory and evaluated for 4 different methods (inclusion and exclusion of the first echo, while fitting with and without the offset. We further performed T2 relaxometry in a phantom at 9.4T magnetic resonance imaging scanner and used the same methods for post-processing as in the extended phase graph simulated data. Single spin echo sequences were used to determine the correct T2 time.The simulation data showed that the systematic error in T2 and the offset depends on the refocusing pulse, the echo spacing and the echo train length. The systematic error could be reduced by discarding the first echo. Further reduction of the systematic T2 error was reached by using the offset as fitting parameter. The phantom experiments confirmed these findings.The fitted offset parameter in T2 relaxometry is influenced by imperfect refocusing pulses. Using the offset as a fitting parameter and discarding the first echo is a fast and easy method to minimize the error in T2, particularly for low to intermediate echo train length.

  10. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology.

    Directory of Open Access Journals (Sweden)

    Justin Y Kwan

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disorder characterized by cortical and spinal motor neuron dysfunction. Routine magnetic resonance imaging (MRI studies have previously shown hypointense signal in the motor cortex on T(2-weighted images in some ALS patients, however, the cause of this finding is unknown. To investigate the utility of this MR signal change as a marker of cortical motor neuron degeneration, signal abnormalities on 3T and 7T MR images of the brain were compared, and pathology was obtained in two ALS patients to determine the origin of the motor cortex hypointensity. Nineteen patients with clinically probable or definite ALS by El Escorial criteria and 19 healthy controls underwent 3T MRI. A 7T MRI scan was carried out on five ALS patients who had motor cortex hypointensity on the 3T FLAIR sequence and on three healthy controls. Postmortem 7T MRI of the brain was performed in one ALS patient and histological studies of the brains and spinal cords were obtained post-mortem in two patients. The motor cortex hypointensity on 3T FLAIR images was present in greater frequency in ALS patients. Increased hypointensity correlated with greater severity of upper motor neuron impairment. Analysis of 7T T(2(*-weighted gradient echo imaging localized the signal alteration to the deeper layers of the motor cortex in both ALS patients. Pathological studies showed increased iron accumulation in microglial cells in areas corresponding to the location of the signal changes on the 3T and 7T MRI of the motor cortex. These findings indicate that the motor cortex hypointensity on 3T MRI FLAIR images in ALS is due to increased iron accumulation by microglia.

  11. Diagnostic value of diffusion-weighted MRI for tumor characterization, differentiation and monitoring in pediatric patients with neuroblastic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Henning [Univ. Hospital Ulm (Germany). Dept. of Diagnostic and Interventional Radiology; Univ. Hospital Wuerzburg (Germany). Dept. of Diagnostic and Interventional Radiology; Li, Mengxia [Univ. Hospital Wuerzburg (Germany). Dept. of Radiation Oncology; Mueller, Verena Rabea [Univ. Hospital Wuerzburg (Germany). Dept. of Paediatrics; Pabst, Thomas [Univ. Hospital Wuerzburg (Germany). Dept. of Diagnostic and Interventional Radiology; Beer, Meinrad [Univ. Hospital Ulm (Germany). Dept. of Diagnostic and Interventional Radiology

    2017-07-15

    We explored the diagnostic value of diffusion-weighted MRI (DWI) for tumor characterization, differentiation and therapy monitoring in pediatric patients with extracranial neuroblastic tumors. All 29 patients (14 girls, median age: 3 years) with neuroblastoma (NB, n = 19), ganglioneuroblastoma (GNB, n = 4) and ganglioneuroma (GN, n = 6) who had had at least one in-house DWI examination since 2005 were identified and retrospectively analyzed. Two independent blinded readers measured ADC values (unit: 10-3 mm{sup 2}/s) and signal intensity ratios (SIRs) of the primary tumor and, if applicable, of the tumor after chemotherapy, metastases and tumor relapse. The pre-treatment ADC was 0.90 ± 0.23 in NB/GNB and 1.70 ± 0.36 in GN without overlap between the two entities for both readers, 0.67 ± 0.14 in metastases and 0.72 ± 0.18 in tumor relapse. With chemotherapy, mean ADC increased to 1.54 ± 0.33 in NB/GNB and to 1.23 ± 0.27 in metastases (p < 0.05). The median SIRs of various tumor lesions vs. liver, vs. muscle tissue and vs. adjacent tissue were significantly higher on DWI (range: 2.4 -9.9) than on ce-T1w (range: 1.0 - 1.8, all p < 0.05). The coefficient of variation (CV) was ≤ 8.0% for ADC and ≤ 16.4% for signal intensity data. Based on mean ADC, DWI distinguishes between NB/GNB and GN with high certainty and provides plausible quantitative data on tumor response to therapy. Lesion conspicuity, as measured by SIR, is superior on DWI, compared to ce-T1w. DWI as a noninvasive, radiation-free and widely available imaging technique should be an integral part of MR imaging for neuroblastic tumors and should undergo prospective evaluation in multicenter studies.

  12. How to misuse echo contrast

    Directory of Open Access Journals (Sweden)

    Missios Anna

    2009-01-01

    Full Text Available Abstract Background Primary intracardiac tumours are rare, there are however several entities that can mimic tumours. Contrast echocardiography has been suggested to aid the differentiation of various suspected masses. We present a case where transthoracic echocardiography completely misdiagnosed a left atrial mass, partly due to use of echo contrast. Case presentation An 80 year-old woman was referred for transthoracic echocardiography because of one-month duration of worsening of dyspnoea. Transthoracic echocardiography displayed a large echodense mass in the left atrium. Intravenous injection of contrast (SonoVue, Bracco Inc., It indicated contrast-enhancement of the structure, suggesting tumour. Transesophageal echocardiography revealed, however, a completely normal finding in the left atrium. Subsequent gastroscopy examination showed a hiatal hernia. Conclusion It is noteworthy that the transthoracic echocardiographic exam completely misdiagnosed what seemed like a left atrial mass, which in part was an effect of the use of echo contrast. This example highlights that liberal use of transoesophageal echocardiography is often warranted if optimal display of cardiac structures is desired.

  13. Light echoes - Type II supernovae

    International Nuclear Information System (INIS)

    Schaefer, B.E.

    1987-01-01

    Type II supernovae (SNs) light curves show a remarkable range of shapes. Data have been collected for the 12 Type II SNs that have light curve information for more than four months past maximum. Contrary to previous reports, it is found that (1) the decay rate after 100 days past maximum varies by almost an order of magnitude and (2) the light curve shapes are not bimodally distributed, but actually form a continuum. In addition, it is found that the extinctions to the SNs are related to the light curve shapes. This implies that the absorbing dust is local to the SNs. The dust is likely to be part of a circumstellar shell emitted by the SN progenitor that Dwek (1983) has used to explain infrared echoes. The optical depth of the shell can get quite large. In such cases, it is found that the photons scattered and delayed by reflection off dust grains will dominate the light curve several months after peak brightness. This light echo offers a straightforward explanation of the diversity of Type II SN light curves. 22 references

  14. On the characterization of single-event related brain activity from functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh; Zayane, Chadia; Laleg-Kirati, Taous-Meriem; Djellouli, Rabia

    2014-01-01

    We propose an efficient numerical technique for calibrating the mathematical model that describes the singleevent related brain response when fMRI measurements are given. This method employs a regularized Newton technique in conjunction with a

  15. On the characterization of single-event related brain activity from functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh

    2014-08-01

    We propose an efficient numerical technique for calibrating the mathematical model that describes the singleevent related brain response when fMRI measurements are given. This method employs a regularized Newton technique in conjunction with a Kalman filtering procedure. We have applied this method to estimate the biophysiological parameters of the Balloon model that describes the hemodynamic brain responses. Illustrative results obtained with both synthetic and real fMRI measurements are presented. © 2014 IEEE.

  16. Physiologic characterization of inflammatory arthritis in a rabbit model with BOLD and DCE MRI at 1.5 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Nasui, Otilia C.; Chan, Michael W.; Nathanael, George; Rayner, Tammy; Weiss, Ruth; Detzler, Garry; Zhong, Anguo [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); Crawley, Adrian [University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); Toronto Western Hospital, Department of Medical Imaging, Toronto, ON (Canada); Miller, Elka [Children' s Hospital of Eastern Ontario (CHEO), Department of Diagnostic Imaging, Ottawa, ON (Canada); Belik, Jaques [The Hospital for Sick Children, Department of Neonatology, Toronto, ON (Canada); Cheng, Hai-Ling; Kassner, Andrea; Doria, Andrea S. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); Moineddin, Rahim [Department of Public Health, Family and Community Medicine, Toronto, ON (Canada); Jong, Roland; Rogers, Marianne [Mount Sinai Hospital, Department of Pathology, Toronto, ON (Canada)

    2014-11-15

    Our aim was to test the feasibility of blood oxygen level dependent magnetic resonance imaging (BOLD MRI) and dynamic contrast-enhanced (DCE) MRI to monitor periarticular hypoxic/inflammatory changes over time in a juvenile rabbit model of arthritis. We examined arthritic and contralateral nonarthritic knees of 21 juvenile rabbits at baseline and days 1,14, and 28 after induction of arthritis by unilateral intra-articular injection of carrageenin with BOLD and DCE MRI at 1.5 Tesla (T). Nine noninjected rabbits served as controls. Associations between BOLD and DCE-MRI and corresponding intra-articular oxygen pressure (PO{sub 2}) and blood flow [blood perfusion units (BPU)] (polarographic probes, reference standards) or clinical-histological data were measured by correlation coefficients. Percentage BOLD MRI change obtained in contralateral knees correlated moderately with BPU on day 0 (r = -0.51, p = 0.02) and excellently on day 28 (r = -0.84, p = 0.03). A moderate correlation was observed between peak enhancement DCE MRI (day 1) and BPU measurements in arthritic knees (r = 0.49, p = 0.04). In acute arthritis, BOLD and DCE MRI highly correlated (r = 0.89, p = 0.04; r = 1.0, p < 0.0001) with histological scores in arthritic knees. The proposed techniques are feasible to perform at 1.5 T, and they hold potential as surrogate measures to monitor hypoxic and inflammatory changes over time in arthritis at higher-strength MRI fields. (orig.)

  17. Neonatal Pulmonary MRI of Bronchopulmonary Dysplasia Predicts Short-term Clinical Outcomes.

    Science.gov (United States)

    Higano, Nara S; Spielberg, David R; Fleck, Robert J; Schapiro, Andrew H; Walkup, Laura L; Hahn, Andrew D; Tkach, Jean A; Kingma, Paul S; Merhar, Stephanie L; Fain, Sean B; Woods, Jason C

    2018-05-23

    Bronchopulmonary dysplasia (BPD) is a serious neonatal pulmonary condition associated with premature birth, but the underlying parenchymal disease and trajectory are poorly characterized. The current NICHD/NHLBI definition of BPD severity is based on degree of prematurity and extent of oxygen requirement. However, no clear link exists between initial diagnosis and clinical outcomes. We hypothesized that magnetic resonance imaging (MRI) of structural parenchymal abnormalities will correlate with NICHD-defined BPD disease severity and predict short-term respiratory outcomes. Forty-two neonates (20 severe BPD, 6 moderate, 7 mild, 9 non-BPD controls; 40±3 weeks post-menstrual age) underwent quiet-breathing structural pulmonary MRI (ultrashort echo-time and gradient echo) in a NICU-sited, neonatal-sized 1.5T scanner, without sedation or respiratory support unless already clinically prescribed. Disease severity was scored independently by two radiologists. Mean scores were compared to clinical severity and short-term respiratory outcomes. Outcomes were predicted using univariate and multivariable models including clinical data and scores. MRI scores significantly correlated with severities and predicted respiratory support at NICU discharge (P<0.0001). In multivariable models, MRI scores were by far the strongest predictor of respiratory support duration over clinical data, including birth weight and gestational age. Notably, NICHD severity level was not predictive of discharge support. Quiet-breathing neonatal pulmonary MRI can independently assess structural abnormalities of BPD, describe disease severity, and predict short-term outcomes more accurately than any individual standard clinical measure. Importantly, this non-ionizing technique can be implemented to phenotype disease and has potential to serially assess efficacy of individualized therapies.

  18. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom.

    Science.gov (United States)

    Jiang, Yun; Ma, Dan; Keenan, Kathryn E; Stupic, Karl F; Gulani, Vikas; Griswold, Mark A

    2017-10-01

    The purpose of this study was to evaluate accuracy and repeatability of T 1 and T 2 estimates of a MR fingerprinting (MRF) method using the ISMRM/NIST MRI system phantom. The ISMRM/NIST MRI system phantom contains multiple compartments with standardized T 1 , T 2 , and proton density values. Conventional inversion-recovery spin echo and spin echo methods were used to characterize the T 1 and T 2 values in the phantom. The phantom was scanned using the MRF-FISP method over 34 consecutive days. The mean T 1 and T 2 values were compared with the values from the spin echo methods. The repeatability was characterized as the coefficient of variation of the measurements over 34 days. T 1 and T 2 values from MRF-FISP over 34 days showed a strong linear correlation with the measurements from the spin echo methods (R 2  = 0.999 for T 1 ; R 2  = 0.996 for T 2 ). The MRF estimates over the wide ranges of T 1 and T 2 values have less than 5% variation, except for the shortest T 2 relaxation times where the method still maintains less than 8% variation. MRF measurements of T 1 and T 2 are highly repeatable over time and across wide ranges of T 1 and T 2 values. Magn Reson Med 78:1452-1457, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. MRI for characterization of primary tumors in the non-cirrhotic liver: Added value of Gd-EOB-DTPA enhanced hepatospecific phase

    Energy Technology Data Exchange (ETDEWEB)

    Donati, Olivio F.; Hunziker, Roger; Fischer, Michael A. [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich (Switzerland); Raptis, Dimitri A.; Breitenstein, Stefan [Department of Visceral and Transplant Surgery, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich (Switzerland); Patak, Michael A., E-mail: Michael.Patak@hirslanden.ch [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich (Switzerland); Clinic Hirslanden, Hirslanden Hospital Group, Zurich (Switzerland)

    2014-07-15

    Purpose: To evaluate the added value of hepatospecific phase in Gd-EOB-DTPA enhanced magnetic resonance imaging (MRI) in patients with primary tumors in non-cirrhotic liver. Methods: Twenty-nine patients (median, 39 years; range, 18–81 years; 11 male) underwent preoperative Gd-EOB-DTPA enhanced MRI including hepatospecific phase after 10 and 20 min of contrast injection at four institutions in Europe, North America and New Zealand. Images were evaluated by three different readers (R1–R3) who characterized liver tumors with and without consultation of the hepatospecific phase images. Confidence in diagnosis was scored on a visual analog scale from 1 to 10. Histopathology (adenoma, n = 5; focal nodular hyperplasia, n = 11 and hepatocellular carcinoma, n = 13) in all patients served as the standard of reference. Differences were evaluated using the McNemar and Wilcoxon signed rank test. Results: Without hepatospecific phase images available, 22 (76%), 19 (66%) and 19 (66%) of 29 tumors were characterized correctly by the three readers respectively. Mean confidence in diagnosis was 6.1, 5.7 and 5.8. With the hepatospecific phase included, characterization of liver tumors did not change significantly with 21 (72%), 23 (79%) and 19 (66%) of 29 tumors diagnosed correctly (p > 0.05). According confidence ratings increased to 6.3, 6.5 and 7.7, respectively. Increase in diagnostic confidence was significant for R2 and R3 (p < 0.05) and independent of reader's experience. Conclusion: The additional hepatospecific phase in Gd-EOB-DTPA enhanced MRI did not significantly increase diagnostic accuracy in characterization of primary tumors in the non-cirrhotic liver. However, 2/3 readers showed a significant increase in diagnostic confidence after consultation of the hepatospecific phase.

  20. TH-A-BRF-04: Intra-Fraction Motion Characterization for Early Stage Rectal Cancer Using Cine-MRI

    International Nuclear Information System (INIS)

    Kleijnen, J; Asselen, B; Burbach, M; Intven, M; Reerink, O; Philippens, M; Lagendijk, J; Raaymakers, B

    2014-01-01

    Purpose: To investigate the intra-fraction motion in patients with early stage rectal cancer using cine-MRI. Methods: Sixteen patient diagnosed with early stage rectal cancer underwent 1.5 T MR imaging prior to each treatment fraction of their short course radiotherapy (n=76). During each scan session, three 2D sagittal cine-MRIs were performed: at the beginning (Start), after 9:30 minutes (Mid), and after 18 minutes (End). Each cine-MRI has a duration of one minute at 2Hz temporal resolution, resulting in a total of 3:48 hours of cine-MRI. Additionally, standard T2-weighted (T2w) imaging was performed. Clinical target volume (CTV) an tumor (GTV) were delineated on the T2w scan and transferred to the first time-point of each cine-MRI scan. Within each cine-MRI, the first frame was registered to the remaining frames of the scan, using a non-rigid B-spline registration. To investigate potential drifts, a similar registration was performed between the first frame of the Start and End scans.To evaluate the motion, the distances by which the edge pixels of the delineations move in anterior-posterior (AP) and cranial-caudal (CC) direction, were determined using the deformation field of the registrations. The distance which incorporated 95% of these edge pixels (dist95%) was determined within each cine-MRI, and between Start- End scans, respectively. Results: Within a cine-MRI, we observed an average dist95% for the CTV of 1.3mm/1.5mm (SD=0.7mm/0.6mm) and for the GTV of 1.2mm/1.5mm (SD=0.8mm/0.9mm), in respectively AP/CC. For the CTV motion between the Start and End scan, an average dist95% of 5.5mm/5.3mm (SD=3.1mm/2.5mm) was found, in respectively AP/CC. For the GTV motion, an average dist95% of 3.6mm/3.9mm (SD=2.2mm/2.5mm) was found in AP/CC, respectively. Conclusion: Although intra-fraction motion within a one minute cine-MRI is limited, substantial intra-fraction motion was observed within the 18 minute time period between the Start and End cine-MRI

  1. Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging

    Directory of Open Access Journals (Sweden)

    Fabio Baselice

    2014-01-01

    Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.

  2. Comparison of multiple quantitative MRI parameters for characterization of the goat cartilage in an ongoing osteoarthritis: dGEMRIC, T{sub 1ρ} and sodium

    Energy Technology Data Exchange (ETDEWEB)

    Schrauth, Joachim H.X.; Lykowsky, Gunthard; Hemberger, Kathrin; Kreutner, Jakob; Jakob, Peter M. [MRB Research Center for Magnetic Resonance Bavaria, Wuerzburg (Germany); Wuerzburg Univ. (Germany). Dept. of Experimental Physics 5 (Biophysics); Weber, Daniel; Haddad, Daniel [MRB Research Center for Magnetic Resonance Bavaria, Wuerzburg (Germany); Rackwitz, Lars; Noeth, Ulrich [Orthopedic Center for Musculoskeletal Research, Wuerzburg (Germany)

    2016-11-01

    Osteoarthritis (OA) is a degenerative joint disease leading to cartilage deterioration by loss of matrix, fibrillation, formation of fissures, and ultimately complete loss of the cartilage surface. Here, three magnetic resonance imaging (MRI) techniques, dGEMRIC (delayed Gadolinium enhanced MRI of cartilage; dG{sub 1} = T{sub 1,post}; dG{sub 2} = 1/T{sub 1,post}-1/T{sub 1,pre}), T{sub 1ρ}, and sodium MRI, are compared in a preclinical in vivo study to evaluate the differences in their potential for cartilage characterization and to establish an examination protocol for a following clinical study. OA was induced in 12 caprine knees (6 control, 6 therapy). Adipose derived stem cells were injected afterwards as a treatment. The animals were examined healthy, 3 and 16 weeks postoperatively with all three MRI methods. Using statistical analysis, the OA development and the degree of correlation between the different MRI methods were determined. A strong correlation was observed between the dGEMRIC indices dG{sub 1} and dG{sub 2} (r=-0.87) which differ only in considering or not considering the T{sub 1} baseline. Moderate correlations were found between T{sub 1ρ} and dG{sub 1} (r=0.55), T{sub 1ρ} and dG{sub 2} (r=0.47) and at last, sodium and dG{sub 1} (r=0.45). The correlations found in this study match to the biomarkers which the methods are sensitive to. Even though the goat cartilage is significantly thinner than the human cartilage and even more in a degenerated cartilage, all three methods were able to characterize the cartilage over the whole period of time during an ongoing OA.Due to measurement and post processing optimizations, as well as the correlations detected in this work, the overall measurement time in future goat studies can be minimized. Moreover, an examination protocol for characterizing the cartilage in a clinical study was established.

  3. Cerebral blood flow measured by arterial-spin labeling MRI: A useful biomarker for characterization of minimal hepatic encephalopathy in patients with cirrhosis

    International Nuclear Information System (INIS)

    Zheng, Gang; Zhang, Long Jiang; Zhong, Jianhui; Wang, Ze; Qi, Rongfeng; Shi, Donghong; Lu, Guang Ming

    2013-01-01

    Purpose: To investigate the role of arterial-spin labeling (ASL) MRI to non-invasively characterize the patterns of cerebral blood flow (CBF) changes in cirrhotic patients and to assess the potential of ASL MRI to characterize minimal hepatic encephalopathy (MHE). Materials and methods: This study was approved by the local ethics committee, and written informed consent was obtained from all participants. Thirty six cirrhosis patients without overt hepatic encephalopathy (16 MHE patients and 20 non hepatic encephalopathy (non-HE) patients) and 25 controls underwent ASL MRI, and CBF was measured for each subject. One-way ANOCOVA test with age and gender as covariences was used to compare CBF difference among three groups, and post hoc analysis was performed between each two groups. Region-based correlation analysis was applied between Child–Pugh score, venous blood ammonia level, neuropsychological tests and CBF values in cirrhosis patients. Receiver operator characteristic (ROC) analysis was used for assessing CBF measurements in ASL MRI to differentiate MHE from non-HE patients. Results: The gray matter CBF of MHE patients (71.09 ± 11.88 mL min −1 100 g −1 ) was significantly higher than that of non-HE patients (55.28 ± 12.30 mL min −1 100 g −1 , P < 0.01) and controls (52.09 ± 9.27 mL min −1 100 g −1 , P < 0.001). Voxel-wise ANOCOVA results showed that CBFs were significantly different among three groups in multiple gray matter areas (P < 0.05, Bonferroni corrected). Post hoc comparisons showed that CBF of these brain regions was increased in MHE patients compared with controls and non-HE patients (P < 0.05, Bonferroni corrected). CBF of the right putamen was of the highest sensitivity (93.8%) and moderate specificity (75.0%) for characterization of MHE when using the cutoff value of 50.57 mL min −1 100 g −1 . CBFs in the bilateral median cingulate gyri, left supramarginal gyrus, right angular gyrus, right heschl gyrus and right superior

  4. Cerebral blood flow measured by arterial-spin labeling MRI: A useful biomarker for characterization of minimal hepatic encephalopathy in patients with cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Gang [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, 210002 (China); College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016 (China); Zhang, Long Jiang, E-mail: kevinzhlj@163.com [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, 210002 (China); Zhong, Jianhui [Department of Imaging Sciences, University of Rochester School of Medicine and Dentistry, Box648, 601 Elmwood Avenue, Rochester, NY 14642-8648 (United States); Wang, Ze [Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3900 Chestnut St., Philadelphia, PA 19104 (United States); Qi, Rongfeng; Shi, Donghong [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, 210002 (China); Lu, Guang Ming, E-mail: cjr.luguangming@vip.163.com [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, 210002 (China)

    2013-11-01

    Purpose: To investigate the role of arterial-spin labeling (ASL) MRI to non-invasively characterize the patterns of cerebral blood flow (CBF) changes in cirrhotic patients and to assess the potential of ASL MRI to characterize minimal hepatic encephalopathy (MHE). Materials and methods: This study was approved by the local ethics committee, and written informed consent was obtained from all participants. Thirty six cirrhosis patients without overt hepatic encephalopathy (16 MHE patients and 20 non hepatic encephalopathy (non-HE) patients) and 25 controls underwent ASL MRI, and CBF was measured for each subject. One-way ANOCOVA test with age and gender as covariences was used to compare CBF difference among three groups, and post hoc analysis was performed between each two groups. Region-based correlation analysis was applied between Child–Pugh score, venous blood ammonia level, neuropsychological tests and CBF values in cirrhosis patients. Receiver operator characteristic (ROC) analysis was used for assessing CBF measurements in ASL MRI to differentiate MHE from non-HE patients. Results: The gray matter CBF of MHE patients (71.09 ± 11.88 mL min{sup −1} 100 g{sup −1}) was significantly higher than that of non-HE patients (55.28 ± 12.30 mL min{sup −1} 100 g{sup −1}, P < 0.01) and controls (52.09 ± 9.27 mL min{sup −1} 100 g{sup −1}, P < 0.001). Voxel-wise ANOCOVA results showed that CBFs were significantly different among three groups in multiple gray matter areas (P < 0.05, Bonferroni corrected). Post hoc comparisons showed that CBF of these brain regions was increased in MHE patients compared with controls and non-HE patients (P < 0.05, Bonferroni corrected). CBF of the right putamen was of the highest sensitivity (93.8%) and moderate specificity (75.0%) for characterization of MHE when using the cutoff value of 50.57 mL min{sup −1} 100 g{sup −1}. CBFs in the bilateral median cingulate gyri, left supramarginal gyrus, right angular gyrus, right

  5. Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data

    OpenAIRE

    Renvall, Ville; Witzel, Thomas; Wald, Lawrence L.; Polimeni, Jonathan R.

    2016-01-01

    Echo planar imaging (EPI) is the method of choice for the majority of functional magnetic resonance imaging (fMRI), yet EPI is prone to geometric distortions and thus misaligns with conventional anatomical reference data. The poor geometric correspondence between functional and anatomical data can lead to severe misplacements and corruption of detected activation patterns. However, recent advances in imaging technology have provided EPI data with increasing quality and resolution. Here we pre...

  6. Fast triple-spin-echo Dixon (FTSED) sequence for water and fat imaging

    Czech Academy of Sciences Publication Activity Database

    Kořínek, Radim; Bartušek, Karel; Starčuk jr., Zenon

    2017-01-01

    Roč. 37, APR (2017), s. 164-170 ISSN 0730-725X R&D Projects: GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : fast triple-spin-echo Dixon * sequence * MRI * fat fraction * water-fat * ultra-high field * 9.4 T * FTSED Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 2.225, year: 2016

  7. Dedifferentiated chondrosarcoma: use of MRI to guide needle biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Saifuddin, A. E-mail: asaifuddin@aol.com; Mann, B.S.; Mahroof, S.; Pringle, J.A.S.; Briggs, T.W.R.; Cannon, S.R

    2004-03-01

    AIM: To describe the use of MRI to identify and biopsy areas of dedifferentiation in patients with a suspected diagnosis of dedifferentiated chondrosarcoma. MATERIALS AND METHODS: Low-grade chondrosarcoma is characterized at magnetic resonance imaging (MRI) as having a lobulate, hyperintense appearance on T2-weighted spin-echo sequences. T2-weighted MR images were assessed in 15 patients with a final pathological diagnosis of dedifferentiated chondrosarcoma for regions of atypical reduced signal intensity. Information regarding the site of ultrasound or computed tomography (CT)-guided biopsy was available in 10 cases. RESULTS: Nine patients were male and six female with a mean age of 60 years (range 25-77 years). The sites involved were the distal femur (n=4), pelvis (n=3), proximal femur (n=4), femoral diaphysis (n=1), proximal humerus (n=2) and proximal tibia (n=1). The dedifferentiated component consisted of osteosarcoma (n=5), malignant fibrous histiocytoma (n=6), spindle cell sarcoma (n=1), leiomyosarcoma (n=1) and pleomorphic sarcoma (n=1). In 14 of the 15 cases, areas of lower signal intensity lacking in lobulation were identified. In nine of the 10 cases, biopsy site included such areas and yielded high-grade sarcoma. CONCLUSIONS: Dedifferentiation within chondrosarcoma may be identified on T2-weighted MRI as areas of reduced signal intensity. These areas should be the preferred site of biopsy.

  8. MRI findings of central nervous system granulocytic sarcoma (chloroma)

    International Nuclear Information System (INIS)

    Lee, Chang Man; Kim, Myung Soon; Kim, Ik Soo; Cho, Kwan Soo

    1997-01-01

    To characterize MRI findings of central nervous system (CNS) granulocytic sarcoma (chloroma) and to analyse the points which differentiate it from other CNS tumors. We evaluated MRI in six patients with CNS granulocytic sarcoma proven by surgery or bone marrow biopsy (intracranical, one case and spine five cases). A 0.5T superconductive MR machine was used for diagnosis and, axial, coronal and sagittal T1- and T2-weighted spin echo images and Gd-DTPA enhanced T1-weighted images were obtained. We retrospectively analized the location, signal intensity, margin, contrast enhancement and homogeneity, and bony change around the tumor. MRI findings of CNS granulocytic sarcomas were as follows : one tumor was seen to be an extra-axial mass in the posterior fossa of the brain, four were epidural, and one was an epidural and presacral masses in the spine;tumor magins were lobulated and three were smooth. On T1-weighted images, all tumors were of isoignal intensity;on T2-weighted images, four were of isosignal intersity and two were of high signal intensity. Contrast enhancement was inhomogeneous in five of six cases. Bony change around the tumor was seen in two cases. On T1-weighted images, CNS granulocytic sarcomas (chloromas) were of isosignal intensity, relative to brain parenchyma or spinal cord;on T2-weighted images, they were of iso or high signal intensity, with relative contrast enhancement. These points could be useful in differentiating them from other CNS tumors

  9. Evaluation of malignant and benign renal lesions using diffusion-weighted MRI with multiple b values

    International Nuclear Information System (INIS)

    Erbay, Gurcan; Koc, Zafer; Karadeli, Elif; Kuzgunbay, Baris; Goren, M. Resit; Bal, Nebil

    2012-01-01

    Background: Limited data are available regarding the use of diffusion-weighted (DW) magnetic resonance imaging (MRI) with multiple b values for characterization of renal lesions. Purpose: To demonstrate and compare the diagnostic performance of DW-MRI with multiple b values for renal lesion characterization. Material and Methods: Sixty-three lesions (36 malignant, 27 benign) in 60 consecutive patients (48 men, 12 women; age 60 ± 12.5 years) with solid/cystic renal lesion diagnosed after MRI were included prospectively. Single-shot echo-planar DW abdominal MRI (1.5T) was obtained using seven b values with eight apparent diffusion coefficient (ADC) maps. Contrast-to-noise ratios (CNRs), signal intensities, lesion ADCs, and lesion/normal parenchyma ADC ratios were analyzed. Receiver-operating characteristic analysis was performed. Results: The mean signal intensities of malignant lesions (at b0, 50, and 200 s/mm 2 ) were significantly lower than those of benign lesions (P 2 . ADC with all b values could better distinguish between benign and malignant lesions. A 1.35 x 10 -3 mm 2 /s threshold ADC value permitted this distinction with 85.2% sensitivity and 65.6% specificity. The lesion/normal parenchyma ADC ratio was more effective than the lesion ADC. Conclusion: In addition to the ADC value, the signal intensity curve on DW images using multiple b values could be helpful for differentiation of malignant and benign renal lesions

  10. Utility of echo-planar gradient-echo T2*-weighted MR images in patients with primary intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Yokoe, Toshio; Yoshida, Tazuka; Kobayashi, Nozomu; Nakamura, Yukihiro; Kubota, Kazuyuki

    2005-01-01

    Magnetic resonance imaging (MRI) has the potential to reveal residues of intracerabral hemorrhage (ICH) throughout life because of the high sensitivity for iron-containing compounds. Gradient-echo T2 * -weighted MR imaging (T2 * MRI) requiring short times for complete acquisition is known to detect small areas of signal loss without surrounding edema representing microbleeds (MBs). MBs in the basal ganglia including the thalami are suggested to be closely related to intracerebral atherosclerotic microangiopathy. We looked for more than 3 MBs in basal ganglia or thalamus of patients with and without episodes of previous ICH. Twelve patients with previous hemorrhagic stroke and 82 without were studied. Multiple MBs in those regions were significantly more frequent in patients with recurrent ICH. In addition, a 76-year-old woman with a history of hypertension was transferred to our hospital for treatment of head injury. She had multiple incidental old basal ganglionic and thalamic MBs. The patient had an asymptomatic primary ICH on computed tomography (CT) 3 months later. In conclusion, MR evidence of multiple MBs in the basal ganglia and thalamus might identify patients at a risk for new and recurrent ICH. Therefore, patients with multiple MBs in those regions should be treated for cerebrovascular risk factors, especially hypertension. Our results appear to confirm the utility of T2 * MRI in hemorrhagic stroke. (author)

  11. MRI of neuronal migration disorders

    International Nuclear Information System (INIS)

    Engelbrecht, V.

    1996-01-01

    Twenty-one MRI examinations of the brain were performed in 19 children with neuronal migration disorders. Multiplanar oriented spin-echo sequences were on a scanner with 1.5 T. In 8 children we performed an additional turbo-inversion recovery (TIR) sequence. Results of sonography or CT from five children were compared with MRI scans. Using the actual nomenclature, we found the following migration disorders: Lissencephaly (n=6), cobblestone lissencephaly with Walker-Warbung syndrome (WWS) (n=2), polymicrogyria and schizencephaly (n=2), focal heterotopia (n=5), diffuse heterotopie (n=2) and hemimegalencephaly (n=2). MRI was superior to CT and sonography in all children. Except for the two boys with WWS, the TIR sequence was the best to demonstrate the changes in migration disorder because of the high contrast between gray and white matter. We demonstrate the characteristic features of the different migration disorders and compare them with the existing literature. (orig.) [de

  12. SU-E-J-210: Characterizing Tissue Equivalent Materials for the Development of a Dual MRI-CT Heterogeneous Anthropomorphic Phantom Designed Specifically for MRI Guided Radiotherapy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, A; Stafford, R; Yung, J; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: MRI guided radiotherapy (MRIgRT) is an emerging technology which will eventually require a proficient quality auditing system. Due to different principles in which MR and CT acquire images, there is a need for a multi-imaging-modality, end-to-end QA phantom for MRIgRT. The purpose of this study is to identify lung, soft tissue, and tumor equivalent substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times). Methods: Materials of interested such as common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR. Materials that could be seen on both T1-weighted and T2-weighted images were then scanned on a GE Lightspeed RT16 CT simulator and a GE Discovery 750HD CT scanner and their HU values were then measured. The materials with matching HU values of lung (−500 to −700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times from varying parameters of TI and TE. Results: Materials that could be visualized on T1-weighted and T2-weighted images from a 1.5T MR unit and had an appropriate average CT number, −650, −685, 46,169, and 168 HUs were: compressed cork saturated with water, Polytek Platsil™ Gel-00 combined with mini styrofoam balls, radiotherapy bolus material, SmoothOn Dragon-Skin™ and SmoothOn Ecoflex™, respectively. Conclusion: Post processing analysis is currently being performed to accurately map T1 and T2 values for each material tested. From previous MR visualization and CT examinations it is expected that Dragon-Skin™, Ecoflex™ and bolus will have values consistent with tissue and tumor substitutes. We also expect compressed cork statured with water, and Polytek™-styrofoam combination to have approximate T1 and T2 values suitable for lung-equivalent materials.

  13. SU-E-J-210: Characterizing Tissue Equivalent Materials for the Development of a Dual MRI-CT Heterogeneous Anthropomorphic Phantom Designed Specifically for MRI Guided Radiotherapy Systems

    International Nuclear Information System (INIS)

    Steinmann, A; Stafford, R; Yung, J; Followill, D

    2015-01-01

    Purpose: MRI guided radiotherapy (MRIgRT) is an emerging technology which will eventually require a proficient quality auditing system. Due to different principles in which MR and CT acquire images, there is a need for a multi-imaging-modality, end-to-end QA phantom for MRIgRT. The purpose of this study is to identify lung, soft tissue, and tumor equivalent substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times). Methods: Materials of interested such as common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR. Materials that could be seen on both T1-weighted and T2-weighted images were then scanned on a GE Lightspeed RT16 CT simulator and a GE Discovery 750HD CT scanner and their HU values were then measured. The materials with matching HU values of lung (−500 to −700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times from varying parameters of TI and TE. Results: Materials that could be visualized on T1-weighted and T2-weighted images from a 1.5T MR unit and had an appropriate average CT number, −650, −685, 46,169, and 168 HUs were: compressed cork saturated with water, Polytek Platsil™ Gel-00 combined with mini styrofoam balls, radiotherapy bolus material, SmoothOn Dragon-Skin™ and SmoothOn Ecoflex™, respectively. Conclusion: Post processing analysis is currently being performed to accurately map T1 and T2 values for each material tested. From previous MR visualization and CT examinations it is expected that Dragon-Skin™, Ecoflex™ and bolus will have values consistent with tissue and tumor substitutes. We also expect compressed cork statured with water, and Polytek™-styrofoam combination to have approximate T1 and T2 values suitable for lung-equivalent materials

  14. Measuring the mutual effects between a CZT detector and MRI for the development of a simultaneous MBI/MRI insert

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Ashley [McMaster University (Canada); Farncombe, Troy [Hamilton Health Sciences (Canada); Noseworthy, Michael [McMaster University (Canada)

    2015-05-18

    While mammography is the gold standard for breast cancer screening, it suffers from poor sensitivity in women with dense breast tissue. Both breast MRI and molecular breast imaging (MBI) have been used as secondary imaging techniques. However, breast MRI suffers from low specificity and low sensitivity in MBI. A CZT based detector system has been developed with the goal of simultaneous MBI/MRI imaging to address the shortcomings of each modality. The performance of each modality needs to be addressed separately and together. The CZT system is comprised of four Redlen CZT modules tiled in a 2x2 array. Each module consists of 256 pixels and feature a builtin on-board ASIC and FPGA. A custom digital readout circuit board was designed to interface the four modules with a microcontroller to a PC. MR images were acquired with a 3T GE Discovery MR750 and Hologic breast coils. A gradient echo imaging sequence was used for all image acquisitions. A tissue mimicking phantom with a plastic grid insert (1 cm spacing) was used to evaluate geometric accuracy with the CZT detectors in the MRI bore. The average distance between the grid markers was 1Å 0.2cm indicating negligible geometric distortion. Field maps were generated with a uniform phantom to quantify the effect on magnetic field homogeneity. Early results indicate a significant distortion (~10ppm) in the magnetic field closest to the coil. Further analysis of the MR images will determine the extent of image quality degradation. A flood map of Tc-99m was acquired to evaluate and implement an energy correction map and a uniformity map. In the absence of a magnetic field, the mean energy resolution at 140keV was 6.3%. After fully characterizing the uniformity, geometric accuracy and sensitivity, the same metrics will be evaluated in the MRI bore.

  15. Gravitational wave sources: reflections and echoes

    Science.gov (United States)

    Price, Richard H.; Khanna, Gaurav

    2017-11-01

    The recent detection of gravitational waves has generated interest in alternatives to the black hole interpretation of sources. A subset of such alternatives involves a prediction of gravitational wave ‘echoes’. We consider two aspects of possible echoes: first, general features of echoes coming from spacetime reflecting conditions. We find that the detailed nature of such echoes does not bear any clear relationship to quasi-normal frequencies. Second, we point out the pitfalls in the analysis of local reflecting ‘walls’ near the horizon of rapidly rotating black holes.

  16. Gravitational wave sources: reflections and echoes

    International Nuclear Information System (INIS)

    Price, Richard H; Khanna, Gaurav

    2017-01-01

    The recent detection of gravitational waves has generated interest in alternatives to the black hole interpretation of sources. A subset of such alternatives involves a prediction of gravitational wave ‘echoes’. We consider two aspects of possible echoes: first, general features of echoes coming from spacetime reflecting conditions. We find that the detailed nature of such echoes does not bear any clear relationship to quasi-normal frequencies. Second, we point out the pitfalls in the analysis of local reflecting ‘walls’ near the horizon of rapidly rotating black holes. (paper)

  17. Sparse adaptive filters for echo cancellation

    CERN Document Server

    Paleologu, Constantin

    2011-01-01

    Adaptive filters with a large number of coefficients are usually involved in both network and acoustic echo cancellation. Consequently, it is important to improve the convergence rate and tracking of the conventional algorithms used for these applications. This can be achieved by exploiting the sparseness character of the echo paths. Identification of sparse impulse responses was addressed mainly in the last decade with the development of the so-called ``proportionate''-type algorithms. The goal of this book is to present the most important sparse adaptive filters developed for echo cancellati

  18. Screening for lung cancer: Does MRI have a role?

    International Nuclear Information System (INIS)

    Biederer, Juergen; Ohno, Yoshiharu; Hatabu, Hiroto; Schiebler, Mark L.; Beek, Edwin J.R. van; Vogel-Claussen, Jens; Kauczor, Hans-Ulrich

    2017-01-01

    Highlights: • From a technical point of view, the feasibility of using MRI for lung cancer screening is evident. • Experience with the clinical use of lung MRI is growing, standardized protocols are available. • If lung cancer screening becomes effective, there will be an opportunity for MRI as primary screening modality or adjunct to CT. • Validation of better patient outcomes (test effectiveness) for the use of MRI is still missing, therefore. • A simultaneous evaluation of MRI should be embedded into any future prospective lung cancer screening trials. - Abstract: While the inauguration of national low dose computed tomographic (LDCT) lung cancer screening programs has started in the USA, other countries remain undecided, awaiting the results of ongoing trials. The continuous technical development achieved by stronger gradients, parallel imaging and shorter echo time has made lung magnetic resonance imaging (MRI) an interesting alternative to CT. For the detection of solid lesions with lung MRI, experimental and clinical studies have shown a threshold size of 3–4 mm for nodules, with detection rates of 60–90% for lesions of 5–8 mm and close to 100% for lesions of 8 mm or larger. From experimental work, the sensitivity for infiltrative, non-solid lesions would be expected to be similarly high as that for solid lesions, but the published data for the MRI detection of lepidic growth type adenocarcinoma is sparse. Moreover, biological features such as a longer T2 time of lung cancer tissue, tissue compliance and a more rapid uptake of contrast material compared to granulomatous diseases, in principle should allow for the multi-parametric characterization of lung pathology. Experience with the clinical use of lung MRI is growing. There are now standardized protocols which are easy to implement on current scanner hardware configurations. The image quality has become more robust and currently ongoing studies will help to further contribute experience

  19. Screening for lung cancer: Does MRI have a role?

    Energy Technology Data Exchange (ETDEWEB)

    Biederer, Juergen, E-mail: Juergen.biederer@uni-heidelberg.de [Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung ResearchCenter (DZL), Im Neuenheimer Feld 430, 69120 Heidelberg (Germany); Radiologie Darmstadt, Gross-Gerau County Hospital, 64521 Gross-Gerau (Germany); Ohno, Yoshiharu [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe (Japan); Advanced Biomedical Imaging Research Centre, Kobe University Graduate School of Medicine, Kobe (Japan); Hatabu, Hiroto [Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (United States); Schiebler, Mark L. [Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, WI (United States); Beek, Edwin J.R. van [Clinical Research Imaging Centre, University of Edinburgh, Scotland (United Kingdom); Vogel-Claussen, Jens [Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover (Germany); Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover (Germany); Kauczor, Hans-Ulrich [Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung ResearchCenter (DZL), Im Neuenheimer Feld 430, 69120 Heidelberg (Germany)

    2017-01-15

    Highlights: • From a technical point of view, the feasibility of using MRI for lung cancer screening is evident. • Experience with the clinical use of lung MRI is growing, standardized protocols are available. • If lung cancer screening becomes effective, there will be an opportunity for MRI as primary screening modality or adjunct to CT. • Validation of better patient outcomes (test effectiveness) for the use of MRI is still missing, therefore. • A simultaneous evaluation of MRI should be embedded into any future prospective lung cancer screening trials. - Abstract: While the inauguration of national low dose computed tomographic (LDCT) lung cancer screening programs has started in the USA, other countries remain undecided, awaiting the results of ongoing trials. The continuous technical development achieved by stronger gradients, parallel imaging and shorter echo time has made lung magnetic resonance imaging (MRI) an interesting alternative to CT. For the detection of solid lesions with lung MRI, experimental and clinical studies have shown a threshold size of 3–4 mm for nodules, with detection rates of 60–90% for lesions of 5–8 mm and close to 100% for lesions of 8 mm or larger. From experimental work, the sensitivity for infiltrative, non-solid lesions would be expected to be similarly high as that for solid lesions, but the published data for the MRI detection of lepidic growth type adenocarcinoma is sparse. Moreover, biological features such as a longer T2 time of lung cancer tissue, tissue compliance and a more rapid uptake of contrast material compared to granulomatous diseases, in principle should allow for the multi-parametric characterization of lung pathology. Experience with the clinical use of lung MRI is growing. There are now standardized protocols which are easy to implement on current scanner hardware configurations. The image quality has become more robust and currently ongoing studies will help to further contribute experience

  20. Comparison of Diffusion MRI Acquisition Protocols for the In Vivo Characterization of the Mouse Spinal Cord: Variability Analysis and Application to an Amyotrophic Lateral Sclerosis Model.

    Science.gov (United States)

    Figini, Matteo; Scotti, Alessandro; Marcuzzo, Stefania; Bonanno, Silvia; Padelli, Francesco; Moreno-Manzano, Victoria; García-Verdugo, José Manuel; Bernasconi, Pia; Mantegazza, Renato; Bruzzone, Maria Grazia; Zucca, Ileana

    2016-01-01

    Diffusion-weighted Magnetic Resonance Imaging (dMRI) has relevant applications in the microstructural characterization of the spinal cord, especially in neurodegenerative diseases. Animal models have a pivotal role in the study of such diseases; however, in vivo spinal dMRI of small animals entails additional challenges that require a systematical investigation of acquisition parameters. The purpose of this study is to compare three acquisition protocols and identify the scanning parameters allowing a robust estimation of the main diffusion quantities and a good sensitivity to neurodegeneration in the mouse spinal cord. For all the protocols, the signal-to-noise and contrast-to noise ratios and the mean value and variability of Diffusion Tensor metrics were evaluated in healthy controls. For the estimation of fractional anisotropy less variability was provided by protocols with more diffusion directions, for the estimation of mean, axial and radial diffusivity by protocols with fewer diffusion directions and higher diffusion weighting. Intermediate features (12 directions, b = 1200 s/mm2) provided the overall minimum inter- and intra-subject variability in most cases. In order to test the diagnostic sensitivity of the protocols, 7 G93A-SOD1 mice (model of amyotrophic lateral sclerosis) at 10 and 17 weeks of age were scanned and the derived diffusion parameters compared with those estimated in age-matched healthy animals. The protocols with an intermediate or high number of diffusion directions provided the best differentiation between the two groups at week 17, whereas only few local significant differences were highlighted at week 10. According to our results, a dMRI protocol with an intermediate number of diffusion gradient directions and a relatively high diffusion weighting is optimal for spinal cord imaging. Further work is needed to confirm these results and for a finer tuning of acquisition parameters. Nevertheless, our findings could be important for the

  1. Characterizing the microstructural basis of "unidentified bright objects" in neurofibromatosis type 1: A combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis.

    Science.gov (United States)

    Billiet, Thibo; Mädler, Burkhard; D'Arco, Felice; Peeters, Ronald; Deprez, Sabine; Plasschaert, Ellen; Leemans, Alexander; Zhang, Hui; den Bergh, Bea Van; Vandenbulcke, Mathieu; Legius, Eric; Sunaert, Stefan; Emsell, Louise

    2014-01-01

    The histopathological basis of "unidentified bright objects" (UBOs) (hyperintense regions seen on T2-weighted magnetic resonance (MR) brain scans in neurofibromatosis-1 (NF1)) remains unclear. New in vivo MRI-based techniques (multi-exponential T2 relaxation (MET2) and diffusion MR imaging (dMRI)) provide measures relating to microstructural change. We combined these methods and present previously unreported data on in vivo UBO microstructure in NF1. 3-Tesla dMRI data were acquired on 17 NF1 patients, covering 30 white matter UBOs. Diffusion tensor, kurtosis and neurite orientation and dispersion density imaging parameters were calculated within UBO sites and in contralateral normal appearing white matter (cNAWM). Analysis of MET2 parameters was performed on 24 UBO-cNAWM pairs. No significant alterations in the myelin water fraction and intra- and extracellular (IE) water fraction were found. Mean T2 time of IE water was significantly higher in UBOs. UBOs furthermore showed increased axial, radial and mean diffusivity, and decreased fractional anisotropy, mean kurtosis and neurite density index compared to cNAWM. Neurite orientation dispersion and isotropic fluid fraction were unaltered. Our results suggest that demyelination and axonal degeneration are unlikely to be present in UBOs, which appear to be mainly caused by a shift towards a higher T2-value of the intra- and extracellular water pool. This may arise from altered microstructural compartmentalization, and an increase in 'extracellular-like', intracellular water, possibly due to intramyelinic edema. These findings confirm the added value of combining dMRI and MET2 to characterize the microstructural basis of T2 hyperintensities in vivo.

  2. Visual Perceptual Echo Reflects Learning of Regularities in Rapid Luminance Sequences.

    Science.gov (United States)

    Chang, Acer Y-C; Schwartzman, David J; VanRullen, Rufin; Kanai, Ryota; Seth, Anil K

    2017-08-30

    A novel neural signature of active visual processing has recently been described in the form of the "perceptual echo", in which the cross-correlation between a sequence of randomly fluctuating luminance values and occipital electrophysiological signals exhibits a long-lasting periodic (∼100 ms cycle) reverberation of the input stimulus (VanRullen and Macdonald, 2012). As yet, however, the mechanisms underlying the perceptual echo and its function remain unknown. Reasoning that natural visual signals often contain temporally predictable, though nonperiodic features, we hypothesized that the perceptual echo may reflect a periodic process associated with regularity learning. To test this hypothesis, we presented subjects with successive repetitions of a rapid nonperiodic luminance sequence, and examined the effects on the perceptual echo, finding that echo amplitude linearly increased with the number of presentations of a given luminance sequence. These data suggest that the perceptual echo reflects a neural signature of regularity learning.Furthermore, when a set of repeated sequences was followed by a sequence with inverted luminance polarities, the echo amplitude decreased to the same level evoked by a novel stimulus sequence. Crucially, when the original stimulus sequence was re-presented, the echo amplitude returned to a level consistent with the number of presentations of this sequence, indicating that the visual system retained sequence-specific information, for many seconds, even in the presence of intervening visual input. Altogether, our results reveal a previously undiscovered regularity learning mechanism within the human visual system, reflected by the perceptual echo. SIGNIFICANCE STATEMENT How the brain encodes and learns fast-changing but nonperiodic visual input remains unknown, even though such visual input characterizes natural scenes. We investigated whether the phenomenon of "perceptual echo" might index such learning. The perceptual echo is a

  3. Echoes in correlated neural systems

    International Nuclear Information System (INIS)

    Helias, M; Tetzlaff, T; Diesmann, M

    2013-01-01

    Correlations are employed in modern physics to explain microscopic and macroscopic phenomena, like the fractional quantum Hall effect and the Mott insulator state in high temperature superconductors and ultracold atoms. Simultaneously probed neurons in the intact brain reveal correlations between their activity, an important measure to study information processing in the brain that also influences the macroscopic signals of neural activity, like the electroencephalogram (EEG). Networks of spiking neurons differ from most physical systems: the interaction between elements is directed, time delayed, mediated by short pulses and each neuron receives events from thousands of neurons. Even the stationary state of the network cannot be described by equilibrium statistical mechanics. Here we develop a quantitative theory of pairwise correlations in finite-sized random networks of spiking neurons. We derive explicit analytic expressions for the population-averaged cross correlation functions. Our theory explains why the intuitive mean field description fails, how the echo of single action potentials causes an apparent lag of inhibition with respect to excitation and how the size of the network can be scaled while maintaining its dynamical state. Finally, we derive a new criterion for the emergence of collective oscillations from the spectrum of the time-evolution propagator. (paper)

  4. Gravitational wave echoes from macroscopic quantum gravity effects

    Energy Technology Data Exchange (ETDEWEB)

    Barceló, Carlos [Instituto de Astrofísica de Andalucía (IAA-CSIC),Glorieta de la Astronomía, 18008 Granada (Spain); Carballo-Rubio, Raúl [The Cosmology & Gravity Group and the Laboratory for Quantum Gravity & Strings,Department of Mathematics & Applied Mathematics, University of Cape Town,Private Bag, Rondebosch 7701 (South Africa); Garay, Luis J. [Departamento de Física Teórica II,Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia (IEM-CSIC),Serrano 121, 28006 Madrid (Spain)

    2017-05-10

    New theoretical approaches developed in the last years predict that macroscopic quantum gravity effects in black holes should lead to modifications of the gravitational wave signals expected in the framework of classical general relativity, with these modifications being characterized in certain scenarios by the existence of dampened repetitions of the primary signal. Here we use the fact that non-perturbative corrections to the near-horizon external geometry of black holes are necessary for these modifications to exist, in order to classify different proposals and paradigms with respect to this criterion and study in a neat and systematic way their phenomenology. Proposals that lead naturally to the existence of echoes in the late-time ringdown of gravitational wave signals from black hole mergers must share the replacement of black holes by horizonless configurations with a physical surface showing reflective properties in the relevant range of frequencies. On the other hand, proposals or paradigms that restrict quantum gravity effects on the external geometry to be perturbative, such as black hole complementarity or the closely related firewall proposal, do not display echoes. For the sake of completeness we exploit the interplay between the timescales associated with the formation of firewalls and the mechanism behind the existence of echoes in order to conclude that even unconventional distortions of the firewall concept (such as naked firewalls) do not lead to this phenomenon.

  5. Wind yield forecast with Echo State Networks; Windertragsprognose mit Echo State Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kobialka, Hans-Ulrich [Fraunhofer IAIS, Sankt Augustin (Germany)

    2012-07-01

    Statistical methods are able to create models of complex system dynamics which are difficult to capture analytically. This paper describes a wind energy prediction system based on a machine learning method, called Echo State Networks. Echo State Networks enable the training of large recurrent neural networks which are able to model and predict highly non-linear system dynamics. This paper gives a short description of Echo State Networks and the realization of the wind energy prediction system. (orig.)

  6. Hazardous Waste Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Resource Conservation and Recovery Act (RCRA).

  7. Air Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Clean Air Act (CAA).

  8. MEASUREMENT OF TRANSVERSE ECHOES IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; SATOGATA, T.; TOMAS, R.

    2005-01-01

    Beam echoes are a very sensitive method to measure diffusion, and longitudinal echo measurements were performed in a number of machines. In RHIC, for the first time, a transverse beam echo was observed after applying a dipole kick followed by a quadrupole .kick. After application of the dipole kick, the dipole moment decohered completely due to lattice nonlinearities. When a quadrupole kick is applied at time τ after the dipole kick, the beam re-cohered at time 2τ thus showing an echo response. We describe the experimental setup and measurement results. In the measurements the dipole and quadrupole kick amplitudes, amplitude dependent tune shift, and the time between dipole and quadrupole kick were varied. In addition, measurements were taken with gold bunches of different intensities. These should exhibit different transverse diffusion rates due to intra-beam scattering

  9. Water Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    The dashboards on the ECHO website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Clean Water Act (CWA).

  10. Stellar Echo Imaging of Exoplanets, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — All stars exhibit intensity fluctuations over several time scales, from nanoseconds to days; these intensity fluctuations echo off planetary bodies in the star...

  11. Stellar Echo Imaging of Exoplanets, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — All stars exhibit intensity fluctuations over several time scales, from nanoseconds to days; these intensity fluctuations echo off planetary bodies in the star...

  12. Time Delay Estimation Algoritms for Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Kirill Sakhnov

    2011-01-01

    Full Text Available The following case study describes how to eliminate echo in a VoIP network using delay estimation algorithms. It is known that echo with long transmission delays becomes more noticeable to users. Thus, time delay estimation, as a part of echo cancellation, is an important topic during transmission of voice signals over packetswitching telecommunication systems. An echo delay problem associated with IP-based transport networks is discussed in the following text. The paper introduces the comparative study of time delay estimation algorithm, used for estimation of the true time delay between two speech signals. Experimental results of MATLab simulations that describe the performance of several methods based on cross-correlation, normalized crosscorrelation and generalized cross-correlation are also presented in the paper.

  13. Enforcement and Compliance History Online (ECHO) Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide. Its features range from simple to advanced,...

  14. Indications for body MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dujardin, M. [Department of Radiology, Vrije Universiteit Brussel, BEFY, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: martine.dujardin@gmail.com; Vandenbroucke, F. [Department of Radiology, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: frederik.vandenbroucke@az.vub.ac.be; Boulet, C. [Department of Radiology, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: cedric.boulet@az.vub.ac.be; Op de Beeck, B. [Department of Radiology, UZA and Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: bart.op.de.beeck@uza.be; Mey, J. de [Department of Radiology, Vrije Universiteit Brussel, BEFY, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: johan.demey@az.vub.ac.be

    2008-02-15

    The lack of ionizing radiation use in MRI makes the high spatial resolution technique very appealing. Also, the easy access to multiplanar imaging and the fact that gadolinium-DTPA is well tolerated and not nephrotoxic makes MRI a robust alternative in the healthy as well as the renal compromised patient. Furthermore, MRI adds advanced possibility for tissue characterization and pathology detection and dynamic imaging can be performed. Specific contrast agents specific to the hepatobiliary or the reticuloendothelial system can help with additional information in problem cases. The role of MRI for different organs is discussed and a review of the literature is given. We concluded that MRI is considered a useful and non-invasive diagnostic tool for the detection of hepatic iron concentration, to correct misdiagnosis (pseudolesions) from US and CT in focal steatosis and to help with focal lesion detection and characterization, in the healthy and especially in the cirrhotic liver, where MRI is superior to CT. Moreover, MRCP is excellent for identifying the presence and the level of biliary obstruction in malignant invasion and is considered in the literature as a non-invasive screening tool for common bile duct stones, appropriately selecting candidates for preoperative ERCP and sparing others the need for an endoscopic procedure with its associated complications. MRI is the first choice modality for adrenal evaluation in contemporary medical imaging. It is a useful examination in renal as well as splenic pathology and best assesses loco-regional staging, i.e. arterial involvement in pancreatic cancer.

  15. Characterization of respiratory and cardiac motion from electro-anatomical mapping data for improved fusion of MRI to left ventricular electrograms.

    Directory of Open Access Journals (Sweden)

    Sébastien Roujol

    Full Text Available Accurate fusion of late gadolinium enhancement magnetic resonance imaging (MRI and electro-anatomical voltage mapping (EAM is required to evaluate the potential of MRI to identify the substrate of ventricular tachycardia. However, both datasets are not acquired at the same cardiac phase and EAM data is corrupted with respiratory motion limiting the accuracy of current rigid fusion techniques. Knowledge of cardiac and respiratory motion during EAM is thus required to enhance the fusion process. In this study, we propose a novel approach to characterize both cardiac and respiratory motion from EAM data using the temporal evolution of the 3D catheter location recorded from clinical EAM systems. Cardiac and respiratory motion components are extracted from the recorded catheter location using multi-band filters. Filters are calibrated for each EAM point using estimates of heart rate and respiratory rate. The method was first evaluated in numerical simulations using 3D models of cardiac and respiratory motions of the heart generated from real time MRI data acquired in 5 healthy subjects. An accuracy of 0.6-0.7 mm was found for both cardiac and respiratory motion estimates in numerical simulations. Cardiac and respiratory motions were then characterized in 27 patients who underwent LV mapping for treatment of ventricular tachycardia. Mean maximum amplitude of cardiac and respiratory motion was 10.2±2.7 mm (min = 5.5, max = 16.9 and 8.8±2.3 mm (min = 4.3, max = 14.8, respectively. 3D Cardiac and respiratory motions could be estimated from the recorded catheter location and the method does not rely on additional imaging modality such as X-ray fluoroscopy and can be used in conventional electrophysiology laboratory setting.

  16. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts.

    Science.gov (United States)

    Bonel, H; Frei, K A; Raio, L; Meyer-Wittkopf, M; Remonda, L; Wiest, R

    2008-04-01

    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 +/- 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 +/- 0.58 vs. 3.65 +/- 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 +/- 7.27 to 19.83 +/- 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement.

  17. Report Environmental Violations | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  18. Denuncie violaciones ambientales | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  19. Analyze Trends: State Hazardous Waste Dashboard | ECHO ...

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  20. DWDashboard_Year.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  1. summarytable.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  2. dashboard_3.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  3. ExampleDFR.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  4. monperload_1.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  5. monperload_2.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  6. Resources.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  7. Dischargers_Example.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  8. dashboard_1.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  9. dashboard_2.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  10. monperload_3.PNG | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  11. Hierarchy of Loading Calculations | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  12. Mobile Bay.pdf | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  13. Custom Search Help | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  14. Custom Search Results Help | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  15. Watershed Statistics Help | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  16. Water Pollution Search | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  17. Electric Dipole Echoes in Rydberg Atoms

    International Nuclear Information System (INIS)

    Yoshida, S.; Reinhold, C. O.; Burgdoerfer, J.; Zhao, W.; Mestayer, J. J.; Lancaster, J. C.; Dunning, F. B.

    2007-01-01

    We report the first observation of echoes in the electric dipole moment of an ensemble of Rydberg atoms precessing in an external electric field F. Rapid reversal of the field direction is shown to play a role similar to that of a π pulse in NMR in rephasing a dephased ensemble of electric dipoles resulting in the buildup of an echo. The mechanisms responsible for this are discussed with the aid of classical trajectory Monte Carlo simulations

  18. Technical Users Background Document | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  19. Time-resolved Femtosecond Photon Echo Probes Bimodal Solvent Dynamics

    NARCIS (Netherlands)

    Pshenichnikov, M.S; Duppen, K.; Wiersma, D. A.

    1995-01-01

    We report on time-resolved femtosecond photon echo experiments of a dye molecule in a polar solution. The photon echo is time resolved by mixing the echo with a femtosecond gate pulse in a nonlinear crystal. It is shown that the temporal profile of the photon echo allows separation of the

  20. MRI contrast enhancement using Magnetic Carbon Nanoparticles

    Science.gov (United States)

    Chaudhary, Rakesh P.; Kangasniemi, Kim; Takahashi, Masaya; Mohanty, Samarendra K.; Koymen, Ali R.; Department of Physics, University of Texas at Arlington Team; University of Texas Southwestern Medical Center Team

    2014-03-01

    In recent years, nanotechnology has become one of the most exciting forefront fields in cancer diagnosis and therapeutics such as drug delivery, thermal therapy and detection of cancer. Here, we report development of core (Fe)-shell (carbon) nanoparticles with enhanced magnetic properties for contrast enhancement in MRI imaging. These new classes of magnetic carbon nanoparticles (MCNPs) are synthesized using a bottom-up approach in various organic solvents, using the electric plasma discharge generated in the cavitation field of an ultrasonic horn. Gradient echo MRI images of well-dispersed MCNP-solutions (in tube) were acquired. For T2 measurements, a multi echo spin echo sequence was performed. From the slope of the 1/T2 versus concentration plot, the R2 value for different CMCNP-samples was measured. Since MCNPs were found to be extremely non-reactive, and highly absorbing in NIR regime, development of carbon-based MRI contrast enhancement will allow its simultaneous use in biomedical applications. We aim to localize the MCNPs in targeted tissue regions by external DC magnetic field, followed by MRI imaging and subsequent photothermal therapy.

  1. Characterization of cardiac flow in heart disease patients by computational fluid dynamics and 4D flow MRI

    Science.gov (United States)

    Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino

    2017-11-01

    In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.

  2. Preparation and characterization of PVPI-coated Fe3O4 nanoparticles as an MRI contrast agent

    International Nuclear Information System (INIS)

    Wang, Guangshuo; Chang, Ying; Wang, Ling; Wei, Zhiyong; Kang, Jianyun; Sang, Lin; Dong, Xufeng; Chen, Guangyi; Wang, Hong; Qi, Min

    2013-01-01

    Polyvinylpyrrolidone-iodine (PVPI)-coated Fe 3 O 4 nanoparticles were prepared by using inverse chemical co-precipitation method, in which the PVPI serves as a stabilizer and dispersant. The wide angle X-ray diffraction (WAXD) and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe 3 O 4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that the resulted Fe 3 O 4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. Fourier transform infrared spectroscopy (FTIR) results suggested that PVPI interacted with Fe 3 O 4 via its carbonyl groups. Results of superconducting quantum interference device (SQUID) indicated prepared Fe 3 O 4 nanoparticles exhibited superparamagnetic behavior and high saturation magnetization. T 2 -weighted MRI images of PVPI-coated Fe 3 O 4 nanoparticles showed that the magnetic resonance signal was enhanced significantly with increasing nanoparticles concentration in water at room temperature. These results indicated that the PVPI-coated Fe 3 O 4 nanoparticles had great potential for application in MRI as a T 2 contrast agent. - Highlights: • PVPI-coated Fe 3 O 4 nanoparticles were prepared using inverse co-precipitation method. • Resulted Fe 3 O 4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. • Prepared Fe 3 O 4 nanoparticles exhibited superparamagnetic behavior. • T 2 -weighted MRI images of PVPI-coated Fe 3 O 4 nanoparticles were obtained

  3. Spin echo SPI methods for quantitative analysis of fluids in porous media.

    Science.gov (United States)

    Li, Linqing; Han, Hui; Balcom, Bruce J

    2009-06-01

    Fluid density imaging is highly desirable in a wide variety of porous media measurements. The SPRITE class of MRI methods has proven to be robust and general in their ability to generate density images in porous media, however the short encoding times required, with correspondingly high magnetic field gradient strengths and filter widths, and low flip angle RF pulses, yield sub-optimal S/N images, especially at low static field strength. This paper explores two implementations of pure phase encode spin echo 1D imaging, with application to a proposed new petroleum reservoir core analysis measurement. In the first implementation of the pulse sequence, we modify the spin echo single point imaging (SE-SPI) technique to acquire the k-space origin data point, with a near zero evolution time, from the free induction decay (FID) following a 90 degrees excitation pulse. Subsequent k-space data points are acquired by separately phase encoding individual echoes in a multi-echo acquisition. T(2) attenuation of the echo train yields an image convolution which causes blurring. The T(2) blur effect is moderate for porous media with T(2) lifetime distributions longer than 5 ms. As a robust, high S/N, and fast 1D imaging method, this method will be highly complementary to SPRITE techniques for the quantitative analysis of fluid content in porous media. In the second implementation of the SE-SPI pulse sequence, modification of the basic measurement permits fast determination of spatially resolved T(2) distributions in porous media through separately phase encoding each echo in a multi-echo CPMG pulse train. An individual T(2) weighted image may be acquired from each echo. The echo time (TE) of each T(2) weighted image may be reduced to 500 micros or less. These profiles can be fit to extract a T(2) distribution from each pixel employing a variety of standard inverse Laplace transform methods. Fluid content 1D images are produced as an essential by product of determining the

  4. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    International Nuclear Information System (INIS)

    Amro, H; Chetty, I; Gordon, J; Wen, N

    2014-01-01

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in the phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation

  5. Clinical and MRI features of supratentorial gliomas with adult-onset epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Takahiro; Yamaura, Akira (Chiba Univ. (Japan). School of Medicine); Watanabe, Osamu

    1992-02-01

    Although some patients with supratentorial gliomas develop epilepsy in their clinical course, the details of adult-onset epilepsy with gliomas have not been fully evaluated. This paper reports on 15 cases of supratentorial glioma with the sole symptom of adult-onset epilepsy and characterizes their clinical and MRI features. The patients, 5 males and 10 females, developed the first epilepsy at the mean age of 37 years. Generalized seizure was encountered in all cases and focal seizure alone was never seen. Seizure was satisfactorily controlled with anticonvulsants in all except 2 cases. The tumor was located in the frontal lobe (9 cases) or temporal lobe (6 cases). Histologically, there were 12 astrocytomas, 2 glioblastomas, and 1 oligoastrocytoma. Of these, 12 were benign gliomas. Surprisingly, CT scan and MRI revealed tumors larger than predicted. The abnormal intensity region was delineated most prominently on T[sub 2]-weighted SE image and was broader on T[sub 2]-weighted spin echo image than on T[sub 1]-weighted spin echo and inversion recovery image. The authors conclude that gliomas presenting with epilepsy tend to be histologically benign, are predominantly seen in middle-aged women, and are located in the frontal and temporal lobes. Although a tumor may be large enough to be detected on CT scan or MRI, as in the present study, histological examination is needed to establish the diagnosis. Additionally, gliomas with equivocal abnormalities on CT and MRI do evolve despite further neurological deficits, so meticulous evaluation including stereotactic biopsy is the method of choice. Finally, T[sub 2]-weighted SE image in the coronal plane is advocated for patients with adult-onset epilepsy to achieve accurate diagnosis and to initiate early treatment. (author).

  6. Clinical and MRI features of supratentorial gliomas with adult-onset epilepsy

    International Nuclear Information System (INIS)

    Hashimoto, Takahiro; Yamaura, Akira; Watanabe, Osamu.

    1992-01-01

    Although some patients with supratentorial gliomas develop epilepsy in their clinical course, the details of adult-onset epilepsy with gliomas have not been fully evaluated. This paper reports on 15 cases of supratentorial glioma with the sole symptom of adult-onset epilepsy and characterizes their clinical and MRI features. The patients, 5 males and 10 females, developed the first epilepsy at the mean age of 37 years. Generalized seizure was encountered in all cases and focal seizure alone was never seen. Seizure was satisfactorily controlled with anticonvulsants in all except 2 cases. The tumor was located in the frontal lobe (9 cases) or temporal lobe (6 cases). Histologically, there were 12 astrocytomas, 2 glioblastomas, and 1 oligoastrocytoma. Of these, 12 were benign gliomas. Surprisingly, CT scan and MRI revealed tumors larger than predicted. The abnormal intensity region was delineated most prominently on T 2 -weighted SE image and was broader on T 2 -weighted spin echo image than on T 1 -weighted spin echo and inversion recovery image. The authors conclude that gliomas presenting with epilepsy tend to be histologically benign, are predominantly seen in middle-aged women, and are located in the frontal and temporal lobes. Although a tumor may be large enough to be detected on CT scan or MRI, as in the present study, histological examination is needed to establish the diagnosis. Additionally, gliomas with equivocal abnormalities on CT and MRI do evolve despite further neurological deficits, so meticulous evaluation including stereotactic biopsy is the method of choice. Finally, T 2 -weighted SE image in the coronal plane is advocated for patients with adult-onset epilepsy to achieve accurate diagnosis and to initiate early treatment. (author)

  7. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    Energy Technology Data Exchange (ETDEWEB)

    Amro, H; Chetty, I; Gordon, J; Wen, N [Henry Ford Health System, Detroit, MI (United States)

    2014-06-01

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in the phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation.

  8. Incidence and MRI characterization of the spectrum of posterolateral corner injuries occurring in association with ACL rupture

    Energy Technology Data Exchange (ETDEWEB)

    Frois Temponi, Eduardo [Hospital Madre Teresa, Belo Horizonte, Minas Gerais (Brazil); Honorio de Carvalho, Lucio Jr. [Hospital Madre Teresa, Belo Horizonte, Minas Gerais (Brazil); Universidade Federal de Minas Gerais, Departamento do Aparelho Locomotor, Faculdade de Medicina, Belo Horizonte, Minas Gerais (Brazil); Saithna, Adnan [Southport and Ormskirk Hospitals, Southport (United Kingdom); University of Liverpool, Department of Clinical Engineering, Liverpool (United Kingdom); Thaunat, Mathieu; Sonnery-Cottet, Bertrand [Centre Orthopedic Santy, FIFA Medical Center of Excellence, Ramsay-Generale de Sante, Hopital Prive Jean Mermoz, Lyon (France)

    2017-08-15

    To determine the incidence and MRI characteristics of the spectrum of posterolateral corner (PLC) injuries occurring in association with anterior cruciate ligament (ACL) rupture. We carried out a level IV, retrospective case series study. All patients clinically diagnosed with an ACL rupture between July 2015 and June 2016 who underwent MRI of the knee were included in the study. In addition to standard MRI knee reporting, emphasis was placed on identifying injury to the PLC and a description of involvement of these structures by two musculoskeletal radiologists. Association with PLC involvement was sought with concomitant injuries using correlation analysis and logistic regression. One hundred sixty-two patients with MRI following ACL rupture were evaluated. Thirty-two patients (19.7%) had an injury to at least one structure of the PLC, including the inferior popliteomeniscal fascicle (n = 28), arcuate ligament (n = 20), popliteus tendon (n = 20), superior popliteomeniscal fascicle (n = 18), lateral collateral ligament (n = 8), popliteofibular ligament (n = 7), biceps tendon (n = 4), iliotibial band (n = 3), and fabellofibular ligament (n = 1). Seventy-five percent of all patients with combined ACL and PLC injuries had bone contusions involving the lateral compartment of the knee. The presence of these contusions strongly correlated with superior popliteomeniscal fascicle lesions (p < 0.05). There was no correlation between injuries to other structures of the PLC and other intra-articular lesions. Missed injuries of the PLC lead to considerable morbidity. The relevance of this study is to highlight that these injuries occur more frequently than previously described and that an appropriate index of suspicion, clinical examination, and MRI are all required to reduce the risk of missed diagnoses. The results of this study support previous suggestions that the rate of concomitant PLC injury in the ACL-deficient knee is under-reported. The rate of combined injuries in

  9. Shoulder MRI after surgical treatment of instability

    Energy Technology Data Exchange (ETDEWEB)

    Vahlensieck, Martin [University of Bonn, Department of Radiology, Sigmund-Freud-Strasse 25, 53105 Bonn (Germany); Lang, Philipp [University of California San Francisco, Department of Radiology, 505 Pamassus Avenue, San Francisco, CA 94143 (United States); Wagner, Ulli [University of Bonn, Department of Orthopedic Surgery, Sigmund-Freud-Strasse 25, 53105 Bonn (Germany); Moeller, Frank [University of Bonn, Department of Orthopedic Surgery, Sigmund-Freud-Strasse 25, 53105 Bonn (Germany); Deimling, Urs van [University of Bonn, Department of Orthopedic Surgery, Sigmund-Freud-Strasse 25, 53105 Bonn (Germany); Genant, H K [University of California San Francisco, Department of Radiology, 505 Pamassus Avenue, San Francisco, CA 94143 (United States); Schild, Hans H [University of Bonn, Department of Radiology, Sigmund-Freud-Strasse 25, 53105 Bonn (Germany)

    1999-04-01

    Objective: To analyze magnetic resonance imaging (MRI) findings of the shoulder after an instability operation. Materials and methods: Physical examinations, radiographs and MRI of 10 patients after anterior glenoid bone block insertion for ventral instability were compared. MRI included T{sub 1}-weighted spin-echo (TR=600, TE=20 ms) and T{sub 2}*-weighted gradient-echo sequences (TE=600, TE=18, Flip=30 deg.) in the axial, oblique-coronal and oblique-sagittal planes. Results: No patient suffered from recurrent subluxation. We found fusion of the bone block with the anterior glenoid in seven cases, dislocation of the bone block without contact to the glenoid in one case, and no visible bone block in two cases. On MRI, the bone block showed either signal intensity equivalent to fatty bone marrow (n=4) or was devoid of signal consistent with cortical bone or bone sclerosis (n=4). In all patients, a low signal intensity mass, 2-4 cm in diameter, was visible next to the glenoid insertion site. Conclusion: Insertion of a bone block onto the anterior glenoid induces formation of scar tissue, increasing the stability of the shoulder joint. This scar is well visible on MRI and forms independently of the behavior of the bone block itself. MRI is ideally suited for evaluating postoperative shoulder joints after bone-grafting procedures.

  10. Shoulder MRI after surgical treatment of instability

    International Nuclear Information System (INIS)

    Vahlensieck, Martin; Lang, Philipp; Wagner, Ulli; Moeller, Frank; Deimling, Urs van; Genant, H.K.; Schild, Hans H.

    1999-01-01

    Objective: To analyze magnetic resonance imaging (MRI) findings of the shoulder after an instability operation. Materials and methods: Physical examinations, radiographs and MRI of 10 patients after anterior glenoid bone block insertion for ventral instability were compared. MRI included T 1 -weighted spin-echo (TR=600, TE=20 ms) and T 2 *-weighted gradient-echo sequences (TE=600, TE=18, Flip=30 deg.) in the axial, oblique-coronal and oblique-sagittal planes. Results: No patient suffered from recurrent subluxation. We found fusion of the bone block with the anterior glenoid in seven cases, dislocation of the bone block without contact to the glenoid in one case, and no visible bone block in two cases. On MRI, the bone block showed either signal intensity equivalent to fatty bone marrow (n=4) or was devoid of signal consistent with cortical bone or bone sclerosis (n=4). In all patients, a low signal intensity mass, 2-4 cm in diameter, was visible next to the glenoid insertion site. Conclusion: Insertion of a bone block onto the anterior glenoid induces formation of scar tissue, increasing the stability of the shoulder joint. This scar is well visible on MRI and forms independently of the behavior of the bone block itself. MRI is ideally suited for evaluating postoperative shoulder joints after bone-grafting procedures

  11. Chest MRI

    Science.gov (United States)

    ... resonance imaging - chest; NMR - chest; MRI of the thorax; Thoracic MRI Patient Instructions ... Gotway MB, Panse PM, Gruden JF, Elicker BM. Thoracic radiology. In: Broaddus VC, Mason RJ, Ernst JD, et ...

  12. Echoes from a Dying Star

    Science.gov (United States)

    Kohler, Susanna

    2017-06-01

    When a passing star is torn apart by a supermassive black hole, it emits a flare of X-ray, ultraviolet, and optical light. What can we learn from the infrared echo of a violent disruption like this one?Stellar DestructionOptical (black triangles) and infrared (blue circles and red squares) observations of F010042237. Day 0 marks the day the optical emission peaked. The infrared emission rises steadily through the end of the data. [Dou et al. 2017]Tidal disruption events occur when a star passes within the tidal radius of a supermassive black hole. After tidal forces pull the star apart, much of the stellar matter falls onto the black hole, radiating briefly in X-ray, ultraviolet and optical as it accretes. This signature rise and gradual fall of emission has allowed us to detect dozens of tidal disruption events thus far.One of the recently discovered candidate events is a little puzzling. Not only does the candidate in ultraluminous infrared galaxy F010042237 have an unusual host most disruptions occur in galaxies that are no longer star-forming, in contrast to this one but its optical light curve also shows an unusually long decay time.Now mid-infrared observations of this event have beenpresented by a team of scientists led by Liming Dou (Guangzhou University and Department of Education, Guangdong Province, China), revealing why this disruption is behaving unusually.Schematic of a convex dusty ring (red bows) that absorbs UV photons and re-emits in the infrared. It simultaneously scatters UV and optical photons into our line of sight. The dashed lines illustrate the delays at lags of 60 days, 1, 2, 3, 4, and 5 years. [Adapted from Dou et al. 2017]A Dusty Solution?The optical flare from F010042237s nucleus peaked in 2010, so Dou and collaborators obtained archival mid-infrared data from the WISE and NEOWISE missions from 2010 to 2016. The data show that the galaxy is quiescent in mid-infrared in 2010 but in data from three years later, the infrared emission has

  13. Retrospective comparison of gradient recalled echo R2* and spin-echo R2 magnetic resonance analysis methods for estimating liver iron content in children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Serai, Suraj D.; Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, MLC 5031, Cincinnati, OH (United States); Quinn, Charles T. [Cincinnati Children' s Hospital Medical Center, Division of Hematology, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Division of Biostatistics and Epidemiology, Cincinnati, OH (United States); Podberesky, Daniel J. [Nemours Children' s Health System Nemours Children' s Hospital, Department of Radiology, Orlando, FL (United States)

    2015-10-15

    Serial surveillance of liver iron concentration (LIC) provides guidance for chelation therapy in patients with iron overload. The diagnosis of iron overload traditionally relies on core liver biopsy, which is limited by invasiveness, sampling error, cost and general poor acceptance by pediatric patients and parents. Thus noninvasive diagnostic methods such as MRI are highly attractive for quantification of liver iron concentration. To compare two MRI-based methods for liver iron quantification in children. 64 studies on 48 children and young adults (age range 4-21 years) were examined by gradient recalled echo (GRE) R2* and spin-echo R2 MRI at 1.5T to evaluate liver iron concentration. Scatter plots and Bland-Altman difference plots were generated to display and assess the relationship between the methods. With the protocols used in this investigation, Bland-Altman agreement between the methods is best when LIC is <20 mg/g dry tissue. Scatter plots show that all values with LIC <20 mg/g dry tissue fall within the 95% prediction limits. Liver iron concentration as determined by the R2* and R2 MR methods is statistically comparable, with no statistical difference between these methods for LIC <20 mg/g. (orig.)

  14. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  15. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2011-02-15

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  16. MRI Characterizes the Progressive Course of AD and Predicts Conversion to Alzheimer’s Dementia 24 Months Before Probable Diagnosis

    Directory of Open Access Journals (Sweden)

    Christian Salvatore

    2018-05-01

    Full Text Available There is no disease-modifying treatment currently available for AD, one of the more impacting neurodegenerative diseases affecting more than 47.5 million people worldwide. The definition of new approaches for the design of proper clinical trials is highly demanded in order to achieve non-confounding results and assess more effective treatment. In this study, a cohort of 200 subjects was obtained from the Alzheimer’s Disease Neuroimaging Initiative. Subjects were followed-up for 24 months, and classified as AD (50, progressive-MCI to AD (50, stable-MCI (50, and cognitively normal (50. Structural T1-weighted MRI brain studies and neuropsychological measures of these subjects were used to train and optimize an artificial-intelligence classifier to distinguish mild-AD patients who need treatment (AD + pMCI from subjects who do not need treatment (sMCI + CN. The classifier was able to distinguish between the two groups 24 months before AD definite diagnosis using a combination of MRI brain studies and specific neuropsychological measures, with 85% accuracy, 83% sensitivity, and 87% specificity. The combined-approach model outperformed the classification using MRI data alone (72% classification accuracy, 69% sensitivity, and 75% specificity. The patterns of morphological abnormalities localized in the temporal pole and medial-temporal cortex might be considered as biomarkers of clinical progression and evolution. These regions can be already observed 24 months before AD definite diagnosis. The best neuropsychological predictors mainly included measures of functional abilities, memory and learning, working memory, language, visuoconstructional reasoning, and complex attention, with a particular focus on some of the sub-scores of the FAQ and AVLT tests.

  17. Normal range of hepatic fat fraction on dual- and triple-echo fat quantification MR in children.

    Science.gov (United States)

    Shin, Hyun Joo; Kim, Hyun Gi; Kim, Myung-Joon; Koh, Hong; Kim, Ha Yan; Roh, Yun Ho; Lee, Mi-Jung

    2015-01-01

    To evaluate hepatic fat fraction on dual- and triple-echo gradient-recalled echo MRI sequences in healthy children. We retrospectively reviewed the records of children in a medical check-up clinic from May 2012 to November 2013. We excluded children with abnormal laboratory findings or those who were overweight. Hepatic fat fraction was measured on dual- and triple-echo sequences using 3T MRI. We compared fat fractions using the Wilcoxon signed rank test and the Bland-Altman 95% limits of agreement. The correlation between fat fractions and clinical and laboratory findings was evaluated using Spearman's correlation test, and the cut-off values of fat fractions for diagnosing fatty liver were obtained from reference intervals. In 54 children (M:F = 26:28; 5-15 years; mean 9 years), the dual fat fraction (0.1-8.0%; median 1.6%) was not different from the triple fat fraction (0.4-6.5%; median 2.7%) (p = 0.010). The dual- and triple-echo fat fractions showed good agreement using a Bland-Altman plot (-0.6 ± 2.8%). Eight children (14.8%) on dual-echo sequences and s