WorldWideScience

Sample records for echo mri characterization

  1. Liver iron content determined by MRI. Spin-echo vs. gradient-echo

    Energy Technology Data Exchange (ETDEWEB)

    Juchems, M.S.; Wunderlich, A.P. [Universitaetskliniken Ulm (Germany). Klinik fuer Diagnostische und Interventionelle Radiologie; Cario, H. [Universitaetskliniken Ulm (Germany). Klinik fuer Kinder- und Jugendmedizin; Schmid, M. [Stadtspital Triemli, Zuerich (Switzerland). Medizinische Onkologie und Haematologie

    2012-05-15

    Purpose: Liver iron content (LIC) measurement plays a central role in the management of patients with transfusional iron overload. Calculating the LIC with data obtained from standardized MRI sequences represents an attractive alternative diagnostic possibility. The purpose of this study was to compare the LIC measurement obtained with gradient-echo (GRE) sequences to the mean liver proton transverse relaxation (R2) acquired with SE sequences. Materials and Methods: 68 patients with iron overload (median age: 24, range: 3 - 88) underwent 1.5 T MRI for liver iron content measurement. All patients received spin-echo (SE) and gradient-echo (GRE) sequences. Results: The two MRI methods revealed different liver iron content results although a significant correlation was found (r = 0.85, p < 0.001). Values evaluated using GRE sequences (median: 260 {mu}mol/g dry weight [d.w.], range: 6 - 732) were generally higher than those obtained by SE examinations (median: 161 {mu}mol /g d.w., range: 5 - 830). Conclusion: In conclusion, our study revealed different results for both MRI measurements, which could lead to different decisions concerning the management of chelation therapy in individual patients. (orig.)

  2. Comparison of multi-echo and single-echo gradient-recalled echo sequences for SPIO-enhanced Liver MRI at 3 T

    International Nuclear Information System (INIS)

    Choi, J.S.; Kim, M.-J.; Kim, J.H.; Choi, J.-Y.; Chung, Y.E.; Park, M.-S.; Kim, K.W.

    2010-01-01

    Aim: To assess the utility of a T2*-weighted, multi-echo data imaging combination sequenced on superparamagnetic iron oxide (SPIO)-enhanced liver magnetic resonance imaging (MRI) using a 3 T system. Materials and methods: Fifty patients underwent SPIO-enhanced MRI at 3 T using T2*-weighted, single-echo, gradient-recalled echo (GRE) sequences [fast imaging with steady precession; repetition time (TR)/echo time (TE), 126 ms/9 ms; flip angle, 30 o ] and multi-echo GRE (multi-echo data image combination) sequences (TR/TE, 186 ms/9 ms; flip angle, 30 o ). Three radiologists independently reviewed the images in a random order. The sensitivity and accuracy for the detection of focal hepatic lesions (a total of 76 lesions in 33 patients; 48 solid lesions, 28 non-solid lesions) were compared by analysing the area under the receiver operating characteristic curves. Image artefacts (flow artefacts, susceptibility artefacts, dielectric artefacts, and motion artefacts), lesion conspicuity, and overall image quality were evaluated according to a four-point scale: 1, poor; 2, fair; 3, good; 4, excellent. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the lesions were compared. Results: Image artefacts were more frequent with single-echo GRE (p < 0.05). The mean scale of image quality assessment for flow, susceptibility, dielectric, and motion artefacts were 2.76, 3.13, 3.42, and 2.89 with singe-echo, respectively, compared with 3.47, 3.43, 3.47, and 3.39, respectively, with multi-echo GRE. There was no significant difference in lesion conspicuity between single-echo (3.15) and multi-echo (3.30) GRE sequences. The overall image quality was significantly (p < 0.05) better with multi-echo (3.37) than with single-echo GRE (2.89). The mean SNR and CNR of the lesions were significantly (p < 0.05) higher on multi-echo (79 ± 23 and 128 ± 59, respectively) images than on single-echo (38 ± 11 and 102 ± 44, respectively) images. Lesion detection accuracy and

  3. Clinical characteristics in normal healthy adults with microbleeds on echo-planar gradient-echo T2*-weighted MRI

    International Nuclear Information System (INIS)

    Takahashi, Wakoh; Ide, Michiru; Ohnuki, Tomohide; Takagi, Shigeharu; Shinohara, Yukito

    2004-01-01

    The gradient-echo T 2 * -weighted sequence in magnetic resonance imaging is known to be useful for detecting microbleeds (MBs) in patients with intracranial hemorrhage or lacunar stroke. We investigated the characteristics of apparently healthy adults with MBs but without stroke, employing echo-planar gradient-echo T 2 * -weighted MRI. The subjects were recruited from among 3,537 participants who underwent brain check-ups at the HIMEDIC Imaging Center. Of the 3,537 participants, 3,296 (mean age, 55±11 years) without any history of cerebrovascular disease or apparent focal neurological manifestations were selected for the present study. MBs on echo-planar gradient-echo T 2 * -weighted MRI were observed in 74 (2.2%) of the 3,296 subjects. Of a total of 133 lesions found in these 74 persons, 31 were located in the basal ganglia or cortico-subcortical regions. Thirty were in the deep white matter, 19 in the thalamus, 16 in the cerebellum, and 6 in the brain stem. The subjects with MBs were significantly older than the subjects without MBs, and the mean values for their systolic and diastolic blood pressures were higher than those in the subjects without MBs. Asymptomatic cerebral infarction, periventricular hyperintensity, and deep and subcortical white matter hyperintensity on T 1 - and T 2 -weighted MRI were more frequent in the subjects with MBs, as compared with those without MBs. Asymptomatic cerebral infarction, periventricular hyperintensity, and deep and subcortical white matter hyperintensity on T 1 - and T 2 -weighted MRI were more frequent in the subjects with MBs of the basal ganglia or thalamus than in those with MBs in other regions. MBs on echo-planar gradient-echo T 2 * -weighted MRI were thus relatively rare in apparently healthy adults. However, MBs in the basal ganglia or thalamus are suggested to be closely related to intracerebral microangiopathy. Persons with MBs in such regions should therefore be carefully checked for cerebrovascular risk

  4. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging

    Directory of Open Access Journals (Sweden)

    Boujraf Said

    2009-01-01

    Full Text Available The choice of imaging parameters for functional MRI can have an impact on the accuracy of functional localization by affecting the image quality and the degree of blood oxygenation-dependent (BOLD contrast achieved. By improving sampling efficiency, parallel acquisition techniques such as sensitivity encoding (SENSE have been used to shorten readout trains in single-shot (SS echo planar imaging (EPI. This has been applied to susceptibility artifact reduction and improving spatial resolution. SENSE together with single-shot spin-echo (SS-SE imaging may also reduce off-resonance artifacts. The goal of this work was to investigate the BOLD response of a SENSE-adapted SE-EPI on a three Tesla scanner. Whole-brain fMRI studies of seven healthy right hand-dominant volunteers were carried out in a three Tesla scanner. fMRI was performed using an SS-SE EPI sequence with SENSE. The data was processed using statistical parametric mapping. Both, group and individual subject data analyses were performed. Individual average percentage and maximal percentage signal changes attributed to the BOLD effect in M1 were calculated for all the subjects as a function of echo time. Corresponding activation maps and the sizes of the activated clusters were also calculated. Our results show that susceptibility artifacts were reduced with the use of SENSE; and the acquired BOLD images were free of the typical quadrature artifacts of SS-EPI. Such measures are crucial at high field strengths. SS SE-EPI with SENSE offers further benefits in this regard and is more specific for oxygenation changes in the microvasculature bed. Functional brain activity can be investigated with the help of single-shot spin echo EPI using SENSE at high magnetic fields.

  5. Exact algebraization of the signal equation of spoiled gradient echo MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dathe, Henning [Department of Orthodontics, Biomechanics Group, University Medical Centre, Goettingen (Germany); Helms, Gunther, E-mail: ghelms@gwdg.d [MR-Research in Neurology and Psychiatry, University Medical Centre, Goettingen (Germany)

    2010-08-07

    The Ernst equation for Fourier transform nuclear magnetic resonance (MR) describes the spoiled steady-state signal created by periodic partial excitation. In MR imaging (MRI), it is commonly applied to spoiled gradient-echo acquisition in the steady state, created by a small flip angle {alpha} at a repetition time TR much shorter than the longitudinal relaxation time T{sub 1}. We describe two parameter transformations of {alpha} and TR/T{sub 1}, which render the Ernst equation as a low-order rational function. Computer algebra can be readily applied for analytically solving protocol optimization, as shown for the dual flip angle experiment. These transformations are based on the half-angle tangent substitution and its hyperbolic analogue. They are monotonic and approach identity for small {alpha} and small TR/T{sub 1} with a third-order error. Thus, the exact algebraization can be readily applied to fast gradient echo MRI to yield a rational approximation in {alpha} and TR/T{sub 1}. This reveals a fundamental relationship between the square of the flip angle and TR/T{sub 1} which characterizes the Ernst angle, constant degree of T{sub 1}-weighting and the influence of the local radio-frequency field.

  6. Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations

    Directory of Open Access Journals (Sweden)

    Adam Kettinger

    2016-12-01

    Full Text Available Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate how these advance echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1 simple arithmetic averaging, (2 BOLD sensitivity weighting, (3 temporal-signal-to-noise ratio weighting and (4 temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e. group-level t-values compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned.

  7. Inaudible functional MRI using a truly mute gradient echo sequence

    International Nuclear Information System (INIS)

    Marcar, V.L.; Girard, F.; Rinkel, Y.; Schneider, J.F.; Martin, E.

    2002-01-01

    We performed functional MRI experiments using a mute version of a gradient echo sequence on adult volunteers using either a simple visual stimulus (flicker goggles: 4 subjects) or an auditory stimulus (music: 4 subjects). Because the mute sequence delivers fewer images per unit time than a fast echo planar imaging (EPI) sequence, we explored our data using a parametric ANOVA test and a non-parametric Wilcoxon-Mann-Whitney test in addition to performing a cross-correlation analysis. All three methods were in close agreement regarding the location of the BOLD contrast signal change. We demonstrated that, using appropriate statistical analysis, functional MRI using an MR sequence that is acoustically inaudible to the subject is feasible. Furthermore compared with the ''silent'' event-related procedures involving an EPI protocol, our mGE protocol compares favourably with respect to experiment time and the BOLD signal. (orig.)

  8. Optimization image of magnetic resonance imaging (MRI) T2 fast spin echo (FSE) with variation echo train length (ETL) on the rupture tendon achilles case

    International Nuclear Information System (INIS)

    Muzamil, Akhmad; Firmansyah, Achmad Haries

    2017-01-01

    The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (p<0.05) of Tendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information. (paper)

  9. Inaudible functional MRI using a truly mute gradient echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Marcar, V.L. [University of Zurich, Department of Psychology, Neuropsychology, Treichlerstrasse 10, 8032 Zurich (Switzerland); Girard, F. [GE Medical Systems SA, 283, rue de la Miniere B.P. 34, 78533 Buc Cedex (France); Rinkel, Y.; Schneider, J.F.; Martin, E. [University Children' s Hospital, Neuroradiology and Magnetic Resonance, Department of Diagnostic Imaging, Steinwiesstrasse 75, 8032 Zurich (Switzerland)

    2002-11-01

    We performed functional MRI experiments using a mute version of a gradient echo sequence on adult volunteers using either a simple visual stimulus (flicker goggles: 4 subjects) or an auditory stimulus (music: 4 subjects). Because the mute sequence delivers fewer images per unit time than a fast echo planar imaging (EPI) sequence, we explored our data using a parametric ANOVA test and a non-parametric Wilcoxon-Mann-Whitney test in addition to performing a cross-correlation analysis. All three methods were in close agreement regarding the location of the BOLD contrast signal change. We demonstrated that, using appropriate statistical analysis, functional MRI using an MR sequence that is acoustically inaudible to the subject is feasible. Furthermore compared with the ''silent'' event-related procedures involving an EPI protocol, our mGE protocol compares favourably with respect to experiment time and the BOLD signal. (orig.)

  10. MRI of the breast with 2D spin-echo and gradient echo sequences in diagnostically difficult cases

    International Nuclear Information System (INIS)

    Allgayer, B.; Lukas, P.; Loos, W.; Kersting-Sommerhoff, B.

    1993-01-01

    One or both breasts of 296 patients with equivocal clinical or mammographical findings were examined with MRI. T 1 weighted spinecho (SE) and gradient echo (FFE) sequences were acquired before and after i.v. application of Gadolinium DTPA. 50 lesions with enhancement after Gd-DTPA were biopsied -26 carcinomas, 17 proliferating mastopathic tissues, 5 fibroadenomas and 1 abscess were found. Contrast enhanced MRI with 2D-SE and FFE sequences is an effective technqiue for evaluating suspicious breast lesions with high diagnostic acurracy. (orig.) [de

  11. Improved sensitivity and specificity for resting state and task fMRI with multiband multi-echo EPI compared to multi-echo EPI at 7T.

    NARCIS (Netherlands)

    Boyacioglu, R.; Schulz, J.; Koopmans, P.J.; Barth, M.; Norris, David Gordon

    2015-01-01

    A multiband multi-echo (MBME) sequence is implemented and compared to a matched standard multi-echo (ME) protocol to investigate the potential improvement in sensitivity and spatial specificity at 7 T for resting state and task fMRI. ME acquisition is attractive because BOLD sensitivity is less

  12. Imaging of the Achilles tendon in spondyloarthritis: a comparison of ultrasound and conventional, short and ultrashort echo time MRI with and without intravenous contrast

    International Nuclear Information System (INIS)

    Hodgson, R.J.; Emery, P.; Grainger, A.J.; O'Connor, P.J.; Evans, R.; Coates, L.; Marzo-Ortega, H.; Helliwell, P.; McGonagle, D.; Robson, M.D.

    2011-01-01

    To compare conventional MRI, ultrashort echo time MRI and ultrasound for assessing the extent of tendon abnormalities in spondyloarthritis. 25 patients with spondyloarthritis and Achilles symptoms were studied with MRI and ultrasound. MR images of the Achilles tendon were acquired using T1-weighted spin echo, gradient echo and ultrashort echo time (UTE) sequences with echo times (TE) between 0.07 and 16 ms, before and after intravenous contrast medium. Greyscale and power Doppler ultrasound were also performed. The craniocaudal extent of imaging abnormalities measured by a consultant musculoskeletal radiologist was compared between the different techniques. Abnormalities were most extensive on spoiled gradient echo images with TE=2 ms. Contrast enhancement after intravenous gadolinium was greatest on the UTE images (TE=0.07 ms). Fewer abnormalities were demonstrated using unenhanced UTE. Abnormalities were more extensive on MRI than ultrasound. Contrast enhancement was more extensive than power Doppler signal. 3D spoiled gradient echo images with an echo time of 2 ms demonstrate more extensive tendon abnormalities than the other techniques in spondyloarthritis. Abnormalities of vascularity are best demonstrated on enhanced ultrashort echo time images. (orig.)

  13. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI.

    Science.gov (United States)

    Kundu, Prantik; Inati, Souheil J; Evans, Jennifer W; Luh, Wen-Ming; Bandettini, Peter A

    2012-04-15

    A central challenge in the fMRI based study of functional connectivity is distinguishing neuronally related signal fluctuations from the effects of motion, physiology, and other nuisance sources. Conventional techniques for removing nuisance effects include modeling of noise time courses based on external measurements followed by temporal filtering. These techniques have limited effectiveness. Previous studies have shown using multi-echo fMRI that neuronally related fluctuations are Blood Oxygen Level Dependent (BOLD) signals that can be characterized in terms of changes in R(2)* and initial signal intensity (S(0)) based on the analysis of echo-time (TE) dependence. We hypothesized that if TE-dependence could be used to differentiate BOLD and non-BOLD signals, non-BOLD signal could be removed to denoise data without conventional noise modeling. To test this hypothesis, whole brain multi-echo data were acquired at 3 TEs and decomposed with Independent Components Analysis (ICA) after spatially concatenating data across space and TE. Components were analyzed for the degree to which their signal changes fit models for R(2)* and S(0) change, and summary scores were developed to characterize each component as BOLD-like or not BOLD-like. These scores clearly differentiated BOLD-like "functional network" components from non BOLD-like components related to motion, pulsatility, and other nuisance effects. Using non BOLD-like component time courses as noise regressors dramatically improved seed-based correlation mapping by reducing the effects of high and low frequency non-BOLD fluctuations. A comparison with seed-based correlation mapping using conventional noise regressors demonstrated the superiority of the proposed technique for both individual and group level seed-based connectivity analysis, especially in mapping subcortical-cortical connectivity. The differentiation of BOLD and non-BOLD components based on TE-dependence was highly robust, which allowed for the

  14. Rapid Gradient-Echo Imaging

    Science.gov (United States)

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  15. Cerebral hemodynamic changes measured by gradient-echo or spin-echo bolus tracking and its correlation to changes in ICA blood flow measured by phase-mapping MRI

    DEFF Research Database (Denmark)

    Marstrand, J.R.; Rostrup, Egill; Garde, Ellen

    2001-01-01

    Changes in cerebral blood flow (CBF) induced by Acetazolamide (ACZ) were measured using dynamic susceptibility contrast MRI (DSC-MRI) with both spin echo (SE) EPI and gradient echo (GE) EPI, and related to changes in internal carotid artery (ICA) flow measured by phase-mapping. Also examined...... increase in CBF and CBV in response to ACZ, while SE-EPI measured a significant increase in CBV and MTT. CBV and MTT change measured by SE-EPI was sensitive to previous bolus injections. There was a significant linear relation between change in CBF measured by GE-EPI and change in ICA flow. In conclusion......, GE-EPI under the present condition was superior to SE-EPI in monitoring cerebral vascular changes...

  16. Evaluation of turbo spin echo sequences for MRI of focal liver lesions at 0.5 T

    International Nuclear Information System (INIS)

    Kreft, B.; Layer, G.; Steudel, A.; Spiller, L.; Heuck, A.; Mueller, A.; Gieseke, J.; Reiser, M.F.

    1994-01-01

    To determine whether turbo spin echo (TSE) sequences can replace conventional T2-weighted spin echo (SE) sequences in MRI of the liver, 40 patients with focal liver lesions were imaged at 0.5 T. A T2-weighted SE sequence (TR/TE 1800/90 ms, number of signals averaged [NEX] = 2, scan time 7:16 min), a TSE sequence (TR/TE 1800/90 ms, NEX = 4, number of echos per excitation = 13, echo spacing = 12.9 ms, scan time = 4:16 min) and a T1-weighted SE sequence (TR/TE 350/15 ms, NEX = 2, scan time = 4:21 min) were obtained and image quality, lesion detectability and lesion differentiation were evaluated qualitatively by subjective assessment using scores and quantitatively by lesion-liver contrast-to-noise (CNR) and tumour/liver signal intensity (SI) ratios. The image quality of the TSE sequence was substantially better compared with the T2-weighted SE sequence due to a reduction in motion artefacts and better delineation of anatomical details. Of a total of 158 visible lesions the T1-weighted SE, TSE and T2-weighted SE sequences showed 91 %, 81 % and 65 % of the lesions, respectively. Thus the TSE sequence depicted 24 % (P < 0.001) more lesions than the T2-weighted SE sequence. In all types of pathology the lesion-liver CNR of the TSE sequence was significantly (P < 0.001) higher compared to the CNR of the T2-weighted SE sequence ( +55-65 %), indicating superior lesion conspicuity. Lesion characterization was equally good on the two T2-weighted sequences with no difference in the tumour/liver SI ratio. Using a criterion of tumour/liver SI ratio equal to or higher than 2, haemangiomas larger than 1 cm in diameter could be differentiated from other lesions with a sensitivity and specificity of 95 % and 96 %, respectively. Our results indicate that the TSE sequence is suitable for replacing the conventional T2-weighted SE sequence in MRI of focal liver lesions. (orig.)

  17. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rakesh, E-mail: rs05h@fsu.ed [Departments of Chemical Engineering and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States)

    2010-07-21

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  18. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    International Nuclear Information System (INIS)

    Sharma, Rakesh

    2010-01-01

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  19. Phosphorus-31 MRI of bones using quadratic echo line-narrowing

    Science.gov (United States)

    Frey, Merideth; Barrett, Sean; Insogna, Karl; Vanhouten, Joshua

    2012-02-01

    There is a great need to probe the internal composition of bone on the sub-0.1 mm length scale, both to study normal features and to look for signs of disease. Despite the obvious importance of the mineral fraction to the biomechanical properties of skeletal tissue, few non-destructive techniques are available to evaluate changes in its chemical structure and functional microarchitecture on the interior of bones. MRI would be an excellent candidate, but bone is a particularly challenging tissue to study given the relatively low water density and wider linewidths of its solid components. Recent fundamental research in quantum computing gave rise to a new NMR pulse sequence - the quadratic echo - that can be used to narrow the broad NMR spectrum of solids. This offers a new route to do high spatial resolution, 3D ^31P MRI of bone that complements conventional MRI and x-ray based techniques to study bone physiology and structure. We have used our pulse sequence to do 3D ^31P MRI of ex vivo bones with a spatial resolution of (sub-450 μm)^3, limited only by the specifications of a conventional 4 Tesla liquid-state MRI system. We will describe our plans to push this technique towards the factor of 1000 increase in spatial resolution imposed by fundamental limits.

  20. Reliability of the echoMRI infant system for water and fat measurements in newborns

    Science.gov (United States)

    The precision and accuracy of a quantitative magnetic resonance (EchoMRI Infants) system in newborns were determined. Canola oil and drinking water phantoms (increments of 10 g to 1.9 kg) were scanned four times. Instrument reproducibility was assessed from three scans (within 10 minutes) in 42 heal...

  1. Semicircular canal dehiscence: comparison of T2-weighted turbo spin-echo MRI and CT

    Energy Technology Data Exchange (ETDEWEB)

    Krombach, G.A.; Schmitz-Rode, T.; Haage, P.; Guenther, R.W. [Department of Diagnostic Radiology, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany); DiMartino, E. [Department of Otorhinolaryngology, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany); Prescher, A. [Department of Anatomy, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany); Kinzel, S. [Department of Experimental Veterinary Medicine, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany)

    2004-04-01

    We assessed the value of MRI for delineation of dehiscence of the superior or posterior semicircular canal, as compared with CT, the current standard study for this entity. We reviewed heavily T2-weighted fast spin-echo images and high-resolution CT of the temporal bones of 185 patients independently semicircular canal dehiscence and its extent. In 30 patients (19 men, 11 women) we identified dehiscence of the bone over the superior and/or posterior semicircular canal on MRI. In 27 of these cases CT also showed circumscribed bone defects. In one patient dehiscence of the superior semicircular canal was initially overlooked on MRI, but seen on CT. MRI imaging thus had a sensitivity of 96% and specificity of 98%. Knowledge of the appearances of this entity on MRI may contribute to early diagnosis in patients with vertigo due to semicircular canal dehiscence. (orig.)

  2. Semicircular canal dehiscence: comparison of T2-weighted turbo spin-echo MRI and CT

    International Nuclear Information System (INIS)

    Krombach, G.A.; Schmitz-Rode, T.; Haage, P.; Guenther, R.W.; DiMartino, E.; Prescher, A.; Kinzel, S.

    2004-01-01

    We assessed the value of MRI for delineation of dehiscence of the superior or posterior semicircular canal, as compared with CT, the current standard study for this entity. We reviewed heavily T2-weighted fast spin-echo images and high-resolution CT of the temporal bones of 185 patients independently semicircular canal dehiscence and its extent. In 30 patients (19 men, 11 women) we identified dehiscence of the bone over the superior and/or posterior semicircular canal on MRI. In 27 of these cases CT also showed circumscribed bone defects. In one patient dehiscence of the superior semicircular canal was initially overlooked on MRI, but seen on CT. MRI imaging thus had a sensitivity of 96% and specificity of 98%. Knowledge of the appearances of this entity on MRI may contribute to early diagnosis in patients with vertigo due to semicircular canal dehiscence. (orig.)

  3. Reference-free unwarping of single-shot spatiotemporally encoded MRI using asymmetric self-refocused echoes acquisition

    Science.gov (United States)

    Chen, Ying; Chen, Song; Zhong, Jianhui; Chen, Zhong

    2015-05-01

    This paper presents a phase evolution rewinding algorithm for correcting the geometric and intensity distortions in single-shot spatiotemporally encoded (SPEN) MRI with acquisition of asymmetric self-refocused echo trains. Using the field map calculated from the phase distribution of the source image, the off-resonance induced phase errors are successfully rewound through deconvolution. The alias-free partial Fourier transform reconstruction helps improve the signal-to-noise ratio of the field maps and the output images. The effectiveness of the proposed algorithm was validated through 7 T MRI experiments on a lemon, a water phantom, and in vivo rat head. SPEN imaging was evaluated using rapid acquisition by sequential excitation and refocusing (RASER) which produces uniform T2 weighting. The results indicate that the new technique can more robustly deal with the cases in which the images obtained with conventional single-shot spin-echo EPI are difficult to be restored due to serious field variations.

  4. Cerebral hemodynamic changes measured by gradient-echo or spin-echo bolus tracking and its correlation to changes in ICA blood flow measured by phase-mapping MRI

    DEFF Research Database (Denmark)

    Marstrand, J.R.; Rostrup, Egill; Garde, Ellen

    2001-01-01

    Changes in cerebral blood flow (CBF) induced by Acetazolamide (ACZ) were measured using dynamic susceptibility contrast MRI (DSC-MRI) with both spin echo (SE) EPI and gradient echo (GE) EPI, and related to changes in internal carotid artery (ICA) flow measured by phase-mapping. Also examined...... was the effect of repeated bolus injections. CBF, cerebral blood volume (CBV), and mean transit time (MTT) were calculated by singular value decomposition (SVD) and by deconvolution using an exponential function as kernel. The results showed no dependency on calculation method. GE-EPI measured a significant...... increase in CBF and CBV in response to ACZ, while SE-EPI measured a significant increase in CBV and MTT. CBV and MTT change measured by SE-EPI was sensitive to previous bolus injections. There was a significant linear relation between change in CBF measured by GE-EPI and change in ICA flow. In conclusion...

  5. Fully phase-encoded MRI near metallic implants using ultrashort echo times and broadband excitation.

    Science.gov (United States)

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Koch, Kevin M; Reeder, Scott B

    2018-04-01

    To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T 1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T 1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T 1 -weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 79:2156-2163, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. High temporal resolution functional MRI using parallel echo volumar imaging

    International Nuclear Information System (INIS)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F.; Le Roux, P.; Dehaine-Lambertz, G.

    2008-01-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  7. Differentiation between grade 3 and grade 4 articular cartilage defects of the knee: Fat-suppressed proton density-weighted versus fat-suppressed three-dimensional gradient-echo MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Yeon; Jee, Won-Hee; Kim, Sun Ki (Dept. of Radiology, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea)), e-mail: whjee@catholic.ac.kr; Koh, In-Jun (Dept. of Joint Reconstruction Center, Seoul National Univ. Bundang Hospital, Seoul (Korea)); Kim, Jung-Man (Dept. of Orthopedic Surgery, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea))

    2010-05-15

    Background: Fat-suppressed (FS) proton density (PD)-weighted magnetic resonance imaging (MRI) and FS three-dimensional (3D) gradient-echo imaging such as spoiled gradient-recalled (SPGR) sequence have been established as accurate methods for detecting articular cartilage defects. Purpose: To retrospectively compare the diagnostic efficacy between FS PD-weighted and FS 3D gradient-echo MRI for differentiating between grade 3 and grade 4 cartilage defects of the knee with arthroscopy as the standard of reference. Material and Methods: Twenty-one patients who had grade 3 or 4 cartilage defects in medial femoral condyle at arthroscopy and knee MRI were included in this study: grade 3, >50% cartilage defects; grade 4, full thickness cartilage defects exposed to the bone. Sagittal FS PD-weighted MR images and FS 3D gradient-echo images with 1.5 T MR images were independently graded for the cartilage abnormalities of medial femoral condyle by two musculoskeletal radiologists. Statistical analysis was performed by Fisher's exact test. Inter-observer agreement in grading of cartilage was assessed using ? coefficients. Results: Arthroscopy revealed grade 3 defects in 17 patients and grade 4 defects in 4 patients in medial femoral condyles. For FS 3D gradient-echo images grade 3 defects were graded as grade 3 (n=15) and grade 4 (n=2), and all grade 4 defects (n=4) were correctly graded. However, for FS PD-weighted MR images all grade 3 defects were misinterpreted as grade 1 (n=1) and grade 4 (n=16), whereas all grade 4 defects (n=4) were correctly graded. FS 3D gradient-echo MRI could differentiate grade 3 from grade 4 defects (P=0.003), whereas FS PD-weighted imaging could not (P=1.0). Inter-observer agreement was substantial (?=0.70) for grading of cartilage using FS PD-weighted imaging, whereas it was moderate (?=0.46) using FS 3D gradient-echo imaging. Conclusion: FS 3D gradient-echo MRI is more helpful for differentiating between grade 3 and grade 4 cartilage

  8. Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7 T

    NARCIS (Netherlands)

    Koopmans, P.J.; Boyacioglu, R.; Barth, M.; Norris, David Gordon

    2012-01-01

    This article demonstrates the application of spin-echo EPI for resting state fMRI at 7 T. A short repetition time of 1860 ms was made possible by the use of slice multiplexing which permitted whole brain coverage at high spatial resolution (84 slices of 1.6 mm thickness). Radiofrequency power

  9. A case of Marchiafava-Bignami disease: MRI findings on spin-echo and fluid attenuated inversion recovery (FLAIR) images

    International Nuclear Information System (INIS)

    Yamamoto, Takashi; Ashikaga, Ryuichiro; Araki, Yutaka; Nishimura, Yasumasa

    2000-01-01

    Marchiafava-Bignami disease (MBD) was diagnosed in a 56-year-old man. Spin-echo (SE) magnetic resonance imaging (MRI) at the acute phase showed normal signal areas in the central layer of the corpus callosum (CC), although the intensity of these areas revealed abnormal hyperintensity on fluid attenuated inversion recovery (FLAIR). On follow-up SE MRI at the late phase, the central layer of the CC showed fluid-like intensity. On FLAIR MRI, the lesions of the CC turned into hypointense cores surrounded by hyperintense rims indicating central necrosis and peripheral demyelination. Degenerative changes of the CC in MBD were clearly demonstrated by FLAIR MRI

  10. A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times

    DEFF Research Database (Denmark)

    Edmund, Jens Morgenthaler; Kjer, Hans Martin; Van Leemput, Koen

    2014-01-01

    including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT...... receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation...... significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI comparison. The mean dosimetric deviation for photons and protons compared to the CT was about 2% and highest in the gradient dose...

  11. Associations between Dietary Nutrient Intakes and Hepatic Lipid Contents in NAFLD Patients Quantified by 1H-MRS and Dual-Echo MRI

    Directory of Open Access Journals (Sweden)

    Yipeng Cheng

    2016-08-01

    Full Text Available Dietary habits are crucial in the progression of hepatic lipid accumulation and nonalcoholic fatty liver disease (NAFLD. However, there are limited studies using 1H-magnetic resonance spectroscopy (1H-MRS and dual-echo in-phase and out-phase magnetic resonance spectroscopy imaging (dual-echo MRI to assess the effects of dietary nutrient intakes on hepatic lipid contents. In the present study, we recruited 36 female adults (NAFLD:control = 19:17 to receive questionnaires and medical examinations, including dietary intakes, anthropometric and biochemical measurements, and 1H-MRS and dual-echo MRI examinations. NAFLD patients were found to consume diets higher in energy, protein, fat, saturated fatty acid (SFA, and polyunsaturated fatty acid (PUFA. Total energy intake was positively associated with hepatic fat fraction (HFF and intrahepatic lipid (IHL after adjustment for age and body-mass index (BMI (HFF: β = 0.24, p = 0.02; IHL: β = 0.38, p = 0.02. Total fat intake was positively associated with HFF and IHL after adjustment for age, BMI and total energy intake (HFF: β = 0.36, p = 0.03; IHL: β = 0.42, p = 0.01. SFA intake was positively associated with HFF and IHL after adjustments (HFF: β = 0.45, p = 0.003; IHL: β = 1.16, p = 0.03. In conclusion, hepatic fat content was associated with high energy, high fat and high SFA intakes, quantified by 1H-MRS and dual-echo MRI in our population. Our findings are useful to provide dietary targets to prevent the hepatic lipid accumulation and NAFLD.

  12. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI.

    Science.gov (United States)

    Leynes, Andrew P; Yang, Jaewon; Wiesinger, Florian; Kaushik, Sandeep S; Shanbhag, Dattesh D; Seo, Youngho; Hope, Thomas A; Larson, Peder E Z

    2018-05-01

    Accurate quantification of uptake on PET images depends on accurate attenuation correction in reconstruction. Current MR-based attenuation correction methods for body PET use a fat and water map derived from a 2-echo Dixon MRI sequence in which bone is neglected. Ultrashort-echo-time or zero-echo-time (ZTE) pulse sequences can capture bone information. We propose the use of patient-specific multiparametric MRI consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize pseudo-CT images with a deep learning model: we call this method ZTE and Dixon deep pseudo-CT (ZeDD CT). Methods: Twenty-six patients were scanned using an integrated 3-T time-of-flight PET/MRI system. Helical CT images of the patients were acquired separately. A deep convolutional neural network was trained to transform ZTE and Dixon MR images into pseudo-CT images. Ten patients were used for model training, and 16 patients were used for evaluation. Bone and soft-tissue lesions were identified, and the SUV max was measured. The root-mean-squared error (RMSE) was used to compare the MR-based attenuation correction with the ground-truth CT attenuation correction. Results: In total, 30 bone lesions and 60 soft-tissue lesions were evaluated. The RMSE in PET quantification was reduced by a factor of 4 for bone lesions (10.24% for Dixon PET and 2.68% for ZeDD PET) and by a factor of 1.5 for soft-tissue lesions (6.24% for Dixon PET and 4.07% for ZeDD PET). Conclusion: ZeDD CT produces natural-looking and quantitatively accurate pseudo-CT images and reduces error in pelvic PET/MRI attenuation correction compared with standard methods. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  13. Evaluation of renal function with dynamic MRI-T2-weighted gradient echo technique

    International Nuclear Information System (INIS)

    Kato, Katsuya

    1995-01-01

    To evaluate the usefulness of dynamic MRI of kidneys in healthy volunteers and patients with different 24-hour creatinine clearance (Ccr) levels, a dynamic study that employed the T2 weighted gradient echo technique (FLASH: TR/TE=34/25 msec, flip angle= 20 degrees) with single images during breathhold was performed on 10 healthy volunteers and 35 patients, all examined for the Ccr and suspected of having renal parenchymal disease after a phantom study. T1-weighted and dynamic MR imagings were obtained with a 1.5T imager. I analyzed the time-intensity curve of renal cortex and medulla, and defined a cortex decreased ratio (CDR) and medulla decreased ratio (MDR) in comparison with the Ccr. The cortico-medullary difference ratio (CMDR) of T1WI was also compared with the Ccr. The parameters of the T2 dynamic MRI study (CDR, MDR) better correlated with the Ccr than CMDR. Renal function can be quantitatively evaluated with the T2 dynamic MRI and there is a possibility that we can qualitatively evaluate the renal dysfunction and estimate its cause. (author)

  14. Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2 *-weighted magnetic resonance imaging at 7 T.

    Science.gov (United States)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W; Yu, Qiang; Yang, Qianqian; Vegh, Viktor

    2017-04-01

    To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain. Magn Reson Med 77:1485-1494, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Myocardial viability: comparison of free-breathing navigator-echo-gated three-dimensional inversion-recovery gradient-echo MR and standard multiple breath-hold two-dimensional inversion-recovery gradient-echo MR

    International Nuclear Information System (INIS)

    Kim, Jin Hee; Seo, Joon Beom; Do, Kyung Hyun; Yang, Dong Hyun; Lee, Soo Hyun; Ko, Sung Min; Heo, Jeong Nam; Lim, Tae Hwan

    2004-01-01

    To compare a free-breathing, navigator-echo-gated, three-dimensional, inversion-recovery, gradient-echo, MR pulse sequence (3D-MRI) with standard, multiple breath-hold, two-dimensional, inversion-recovery, gradient-echo MR (2D-MRI) for the evaluation of delayed hyperenhancement of nonviable myocardium in patients with chronic ischemic heart disease. Ten patients with chronic ischemic heart disease were enrolled in this study. MRI was performed on a 1.5-T system. 3D-MRI was obtained in the short axis plane at 10 minutes after the administration of Gd-DTPA (0.2 mmol/kg, 4 cc/sec). Prospective gating of the acquisition based on the navigator echo was applied. 2D-MRI was performed immediately after finishing 3D-MRI. The area of total and hyperenhanced myocardium measured on both image sets was compared with paired Student t-test and Bland-Altman method. By using a 60-segment model, the transmural extent and segment width of the hyperenhanced area were recorded by 3-scale grading method. The agreement between the two sequences was evaluated with kappa statistics. We also evaluated the agreement of hyperenhancement among the three portions (apical, middle and basal portion) of the left ventricle with kappa statistics. The two sequences showed good agreement for the measured area of total and hyperenhanced myocardium on paired t-test (ρ = 0.11 and ρ = 0.34, respectively). No systematic bias was shown on Bland-Altman analysis. Good agreement was found for the segmental width (Κ = 0.674) and transmural extent (Κ = 0.615) of hyperenhancement on the segmented analysis. However, the agreement of the transmural extent of hyperenhancement in the apical segments was relatively poor compared with that in the middle or basal portions. This study showed good agreement between 3D-MRI and 2D-MRI in evaluation of non-viable myocardium. Therefore, 3D-MRI may be useful in the assessment of myocardial viability in patients with dyspnea and children because it allows free

  16. Screening for skeletal metastases of the spine and pelvis: gradient echo opposed-phase MRI compared with bone scintigraphy

    International Nuclear Information System (INIS)

    Neumann, K.; Hosten, N.; Venz, S.

    1995-01-01

    Opposed-phase gradient echo (GRE) MRI at 0.5 T was compared with T1-weighted GRE MRI and bone scintigraphy regarding the detection of malignant bone marrow infiltrates of the spine and pelvis. Seventeen control patients and 41 patients with suspected skeletal metastases were studied with plain and gadolinium-enhanced MRI. In the control group only a vertebral haemangioma showed contrast enhancement, while all metastases (confirmed histologically or by follow-up) were enhancing. Opposed-phase surface coil MRI showed a significantly higher contrast-to-noise ratio of 56 metastases than T1-weighted images. In 28 patients body coil opposed-phase MRI detected more metastatic foci of the spine and pelvis than did bone scintigraphy (84 vs 56). No scintigraphically visualised lesion was missed by MRI. In conclusion, body coil gadolinium-enhanced opposed-phase GRE MRI may be applied as a screening method for skeletal metastases of the spine and pelvis at intermediate field strengths. (orig.)

  17. Screening for skeletal metastases of the spine and pelvis: gradient echo opposed-phase MRI compared with bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, K. [Zentralinstitut fuer Roentgendiagnostik, Universitaetsklinikum Essen, Gesamthochschule Essen (Germany); Hosten, N. [Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf Virchow, Freie Univ. Berlin (Germany); Venz, S. [Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf Virchow, Freie Univ. Berlin (Germany)

    1995-11-01

    Opposed-phase gradient echo (GRE) MRI at 0.5 T was compared with T1-weighted GRE MRI and bone scintigraphy regarding the detection of malignant bone marrow infiltrates of the spine and pelvis. Seventeen control patients and 41 patients with suspected skeletal metastases were studied with plain and gadolinium-enhanced MRI. In the control group only a vertebral haemangioma showed contrast enhancement, while all metastases (confirmed histologically or by follow-up) were enhancing. Opposed-phase surface coil MRI showed a significantly higher contrast-to-noise ratio of 56 metastases than T1-weighted images. In 28 patients body coil opposed-phase MRI detected more metastatic foci of the spine and pelvis than did bone scintigraphy (84 vs 56). No scintigraphically visualised lesion was missed by MRI. In conclusion, body coil gadolinium-enhanced opposed-phase GRE MRI may be applied as a screening method for skeletal metastases of the spine and pelvis at intermediate field strengths. (orig.)

  18. Size Distribution Imaging by Non-Uniform Oscillating-Gradient Spin Echo (NOGSE MRI.

    Directory of Open Access Journals (Sweden)

    Noam Shemesh

    Full Text Available Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems - ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE, can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE's ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions - where the ground truth can be determined from ancillary microscopy - corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE's potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development.

  19. MRI of the breast with 2D spin-echo and gradient echo sequences in diagnostically difficult cases. MRT der Mamma mit 2D-Spinecho- und Gradientenecho-Sequenzen in diagnostischen Problemfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Allgayer, B. (Technische Univ. Muenchen (Germany). Inst. fuer Roentgendiagnostik); Lukas, P. (Technische Univ. Muenchen (Germany). Inst. und Poliklinik fuer Strahlentherapie und Radiologische Onkologie); Loos, W. (Technische Univ. Muenchen (Germany). Frauenklinik und Poliklinik); Kersting-Sommerhoff, B. (Technische Univ. Muenchen (Germany). Inst. fuer Roentgendiagnostik)

    1993-05-01

    One or both breasts of 296 patients with equivocal clinical or mammographical findings were examined with MRI. T[sub 1] weighted spinecho (SE) and gradient echo (FFE) sequences were acquired before and after i.v. application of Gadolinium DTPA. 50 lesions with enhancement after Gd-DTPA were biopsied - 26 carcinomas, 17 proliferating mastopathic tissues, 5 fibroadenomas and 1 abscess were found. Contrast enhanced MRI with 2D-SE and FFE sequences is an effective technqiue for evaluating suspicious breast lesions with high diagnostic acurracy. (orig.)

  20. MRI in neuro-Behcet's syndrome: comparison of conventional spin-echo and FLAIR pulse sequences

    International Nuclear Information System (INIS)

    Jaeger, H.R.; Albrecht, T.; Curati-Alasonatti, W.L.; Williams, E.J.; Haskard, D.O.

    1999-01-01

    We compared the sensitivity of a fluid-attenuated inversion-recovery (FLAIR) sequence with that of a conventional dual-echo spin-echo (SE) sequence to brain lesions in 20 patients with Behcet's syndrome. They underwent 25 MRI examinations. The images were independently analysed for the number, type and anatomical location of lesions shown. There were 18 abnormal studies (13 initial and 5 follow-up). The FLAIR sequence detected significantly more lesions than the SE TE 80 (P < 0.05) and SE TE 20 (P < 0.01) sequences. It was particularly useful for demonstrating lesions in the juxtacortical white matter, which accounted for over half the lesions detected on the FLAIR images. Of patients presenting with nonspecific symptoms such as headache, seven had normal and five had abnormal studies. All patients presenting with focal neurological signs had abnormal imaging. We found supratentorial and, in particular, juxtacortical lesions to be more frequent than previously described. (orig.)

  1. Parameter Optimization for Quantitative Signal-Concentration Mapping Using Spoiled Gradient Echo MRI

    Directory of Open Access Journals (Sweden)

    Gasser Hathout

    2012-01-01

    Full Text Available Rationale and Objectives. Accurate signal to tracer concentration maps are critical to quantitative MRI. The purpose of this study was to evaluate and optimize spoiled gradient echo (SPGR MR sequences for the use of gadolinium (Gd-DTPA as a kinetic tracer. Methods. Water-gadolinium phantoms were constructed for a physiologic range of gadolinium concentrations. Observed and calculated SPGR signal to concentration curves were generated. Using a percentage error determination, optimal pulse parameters for signal to concentration mapping were obtained. Results. The accuracy of the SPGR equation is a function of the chosen MR pulse parameters, particularly the time to repetition (TR and the flip angle (FA. At all experimental values of TR, increasing FA decreases the ratio between observed and calculated signals. Conversely, for a constant FA, increasing TR increases this ratio. Using optimized pulse parameter sets, it is possible to achieve excellent accuracy (approximately 5% over a physiologic range of concentration tracer concentrations. Conclusion. Optimal pulse parameter sets exist and their use is essential for deriving accurate signal to concentration curves in quantitative MRI.

  2. Detection and quantification of regional cortical gray matter damage in multiple sclerosis utilizing gradient echo MRI

    Directory of Open Access Journals (Sweden)

    Jie Wen

    2015-01-01

    Full Text Available Cortical gray matter (GM damage is now widely recognized in multiple sclerosis (MS. The standard MRI does not reliably detect cortical GM lesions, although cortical volume loss can be measured. In this study, we demonstrate that the gradient echo MRI can reliably and quantitatively assess cortical GM damage in MS patients using standard clinical scanners. High resolution multi-gradient echo MRI was used for regional mapping of tissue-specific MRI signal transverse relaxation rate values (R2* in 10 each relapsing–remitting, primary-progressive and secondary-progressive MS subjects. A voxel spread function method was used to correct artifacts induced by background field gradients. R2* values from healthy controls (HCs of varying ages were obtained to establish baseline data and calculate ΔR2* values – age-adjusted differences between MS patients and HC. Thickness of cortical regions was also measured in all subjects. In cortical regions, ΔR2* values of MS patients were also adjusted for changes in cortical thickness. Symbol digit modalities (SDMT and paced auditory serial addition (PASAT neurocognitive tests, as well as Expanded Disability Status Score, 25-foot timed walk and nine-hole peg test results were also obtained on all MS subjects. We found that ΔR2* values were lower in multiple cortical GM and normal appearing white matter (NAWM regions in MS compared with HC. ΔR2* values of global cortical GM and several specific cortical regions showed significant (p < 0.05 correlations with SDMT and PASAT scores, and showed better correlations than volumetric measures of the same regions. Neurological tests not focused on cognition (Expanded Disability Status Score, 25-foot timed walk and nine-hole peg tests showed no correlation with cortical GM ΔR2* values. The technique presented here is robust and reproducible. It requires less than 10 min and can be implemented on any MRI scanner. Our results show that quantitative tissue-specific R2

  3. Differential diagnosis of extra-axial intracranial tumours by dynamic spin-echo MRI

    International Nuclear Information System (INIS)

    Joo, Y.G.; Korogi, Y.; Hirai, T.; Sakamoto, Y.; Sumi, M.; Takahashi, M.; Ushio, Y.

    1995-01-01

    Dynamic MRI was performed on 22 patients with extra-axial intracranial tumours. Serial images were obtained every 30 s for 3 min using a spin-echo sequence (TR 200, TE 15 ms) after rapid injection of Gd-DTPA, 0.1 mmol/kg body weight. The contrast medium enhancement ratio (CER) was correlated with the histology of the tumours. Meningiomas and extra-axial metastases showed a sharp rise, then a gradual decline. Although both had a definite early peak of CER, metastases showed a more rapid decline. Neuromas and extra-axial lymphoma showed a slow, steady increase with no peak within 180 s. This study indicates that the CER is helpful in the differentiation of extra-axial tumours. (orig.)

  4. Lesion discrimination in optic neuritis using high-resolution fat-suppressed fast spin-echo MRI

    International Nuclear Information System (INIS)

    Gass, A.; Moseley, I.F.; Barker, G.J.; Jones, S.; MacManus, D.; McDonald, W.I.; Miller, D.H.

    1996-01-01

    Fast spin-echo (FSE) is a new sequence with acquisition times currently down to one-sixteenth of those obtained with conventional spin-echo sequences, which allows high-resolution (512 x 512 matrix) images to be acquired in an acceptable time. We compared the higher resolution of FSE with the medium resolution of a short inversion-time inversion-recovery (STIR) sequence in depicting the optic nerves of healthy controls and patients with optic neuritis. Optic nerve MRI examinations were performed in 18 patients with optic neuritis and 10 normal controls. Two sequences were obtained coronally: fat-suppressed FSE (FSE TR 3250 ms/TEef 68 ms, echo-train length 16, 4 excitations, 24 cm rectangular field of view, 3 mm interleaved contiguous slices, in-plane resolution 0.5 x 0.5 mm) and STIR (TR 2000 ms/TE 50 ms/TI 175 ms, in-plane resolution 0.8 x 0.8 mm, slice thickness 5 mm). FSE demonstrated much more anatomical detail than STIR, e. g. distinction of optic nerve and sheath. Lesions were seen in 20 of 21 symptomatic nerves using FSE and in 18 of 21 using STIR. Nerve swelling or partial cross-sectional lesions of the optic nerve were each seen only on FSE in 3 cases. Fat-suppressed FSE imaging of the optic nerve improves anatomical definition and increases lesion detection in optic neuritis. (orig.). With 5 figs

  5. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    International Nuclear Information System (INIS)

    Jung, Jee Young; Yoon, Young Cheol; Jung, Jin Young; Choe, Bong-Keun

    2013-01-01

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  6. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jee Young [Dept. of Radiology, Chungang Univ. Hospital, School of Medicine, Chungang Univ. (Korea, Republic of); Yoon, Young Cheol [Dept. of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan Univ. (Korea, Republic of)], e-mail: ycyoon@skku.edu; Jung, Jin Young [Dept. of Radiology, Saint Paul' s Hospital, The Catholic Univ. (Korea, Republic of); Choe, Bong-Keun [Dept. of Preventive Medicine, School of Medicine, Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  7. Role of diffusion-weighted echo-planar MRI in distinguishing between brain abscess and tumour: a preliminary report

    International Nuclear Information System (INIS)

    Noguchi, K.; Watanabe, N.; Nagayoshi, T.; Kanazawa, T.; Toyoshima, S.; Shimizu, M.; Seto, H.

    1999-01-01

    Our purpose was to evaluate diffusion-weighted (DW) echo-planar MRI in differentiating between brain abscess and tumour. We examined two patients with surgically confirmed pyogenic brain abscess and 18 with metastatic brain tumours or high-grade glioma, using a 1.5 T system. The apparent diffusion coefficient (ADC) of each necrotic or solid contrast-enhancing lesion was measured with two different b values (20 and 1200 s/mm 2 ). All capsule-stage brain abscesses (4 lesions) and zones of cerebritis (2 lesions) were identified on high-b-value DWI as markedly high-signal areas of decreased ADC (range, 0.58-0.70 [(10-3 mm 2 /s; mean, 0.63)]). All cystic or necrotic portions of brain tumours (14 lesions) were identified on high-b-value DWI as low-signal areas of increased ADC (range, 2.20-3.20 [(10-3 mm 2 /s; mean, 2.70)]). Solid, contrast-enhancing portions of brain tumours (19 lesions) were identified on high-b-value DWI as high-signal areas of sightly decreased or increased ADC (range, 0.77-1.29 [(10-3 mm 2 /s; mean, 0.94)]). Our preliminary results indicate that DW echo-planar MRI be used for distinguishing between brain abscess and tumour. (orig.) (orig.)

  8. Propagation of error from parameter constraints in quantitative MRI: Example application of multiple spin echo T2 mapping.

    Science.gov (United States)

    Lankford, Christopher L; Does, Mark D

    2018-02-01

    Quantitative MRI may require correcting for nuisance parameters which can or must be constrained to independently measured or assumed values. The noise and/or bias in these constraints propagate to fitted parameters. For example, the case of refocusing pulse flip angle constraint in multiple spin echo T 2 mapping is explored. An analytical expression for the mean-squared error of a parameter of interest was derived as a function of the accuracy and precision of an independent estimate of a nuisance parameter. The expression was validated by simulations and then used to evaluate the effects of flip angle (θ) constraint on the accuracy and precision of T⁁2 for a variety of multi-echo T 2 mapping protocols. Constraining θ improved T⁁2 precision when the θ-map signal-to-noise ratio was greater than approximately one-half that of the first spin echo image. For many practical scenarios, constrained fitting was calculated to reduce not just the variance but the full mean-squared error of T⁁2, for bias in θ⁁≲6%. The analytical expression derived in this work can be applied to inform experimental design in quantitative MRI. The example application to T 2 mapping provided specific cases, depending on θ⁁ accuracy and precision, in which θ⁁ measurement and constraint would be beneficial to T⁁2 variance or mean-squared error. Magn Reson Med 79:673-682, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Comparison of the artifacts caused by metallic implants in breast MRI using dual-echo dixon versus conventional fat-suppression techniques.

    Science.gov (United States)

    Le, Yuan; Kipfer, Hal D; Majidi, Shadie S; Holz, Stephanie; Lin, Chen

    2014-09-01

    The purpose of this article is to evaluate and compare the artifacts caused by metal implants in breast MR images acquired with dual-echo Dixon and two conventional fat-suppression techniques. Two types of biopsy markers were embedded into a uniform fat-water emulsion. T1-weighted gradient-echo images were acquired on a clinical 3-T MRI scanner with three different fat-suppression techniques-conventional or quick fat saturation, spectrally selective adiabatic inversion recovery (SPAIR), and dual-echo Dixon-and the 3D volumes of artifacts were measured. Among the subjects of a clinical breast MRI study using the same scanner, five patients were found to have one or more metal implants. The artifacts in Dixon and SPAIR fat-suppressed images were evaluated by three radiologists, and the results were compared with those of the phantom study. In the phantom study, the artifacts appeared as interleaved bright and dark rings on SPAIR and quick-fat-saturation images, whereas they appeared as dark regions with a thin bright rim on Dixon images. The artifacts imaged with the Dixon technique had the smallest total volume. However, the reviewers found larger artifact diameters on patient images using the Dixon sequence because only the central region was recognized as an artifact on the SPAIR images. Metal implants introduce artifacts of different types and sizes, according to the different fat-suppression techniques used. The dual-echo Dixon technique produces a larger central void, allowing the implant to be easily identified, but presents a smaller overall artifact volume by obscuring less area in the image, according to a quantitative phantom study.

  10. Diagnostic accuracy of dual-echo (in- and opposed-phase) T1-weighted gradient recalled echo for detection and grading of hepatic iron using quantitative and visual assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schieda, Nicola; Ramanathan, Subramaniyan; Ryan, John; Khanna, Maneesh; Virmani, Vivek; Avruch, Leonard [The University of Ottawa, The Ottawa Hospital, Ottawa, Ontario (Canada)

    2014-07-15

    Detection and quantification of hepatic iron with dual-echo gradient recalled echo (GRE) has been proposed as a rapid alternative to other magnetic resonance imaging (MRI) techniques. Co-existing steatosis and T1 weighting are limitations. This study assesses the accuracy of routine dual-echo GRE. Between 2010 and 2013, 109 consecutive patients underwent multi-echo (ME) MRI and dual-echo GRE for quantification of hepatic iron. Liver iron concentration (LIC) was calculated from ME-MRI. Relative signal intensity (RSI) and fat signal fraction (FSF) were calculated from dual-echo GRE. Four radiologists subjectively evaluated dual-echo GRE (±subtraction). Diagnostic accuracy was compared between techniques and correlated with biopsy using Fisher's exact test, Spearman correlation and regression. The sensitivity of visual detection of iron ranged from 48 to 55 %. Subtraction did not increase sensitivity (p < 0.001). Inter-observer variability was substantial (κ = 0.72). The specificity of visual detection of iron approached 100 % with false-positive diagnoses observed using subtraction. LIC showed a higher correlation with histopathological iron grade (r = 0.94, p < 0.001) compared with RSI (r = 0.65, p = 0.02). Univariate regression showed an association between RSI and LIC (B = 0.98, p < 0.001, CI 0.73-1.23); however, the association was not significant with multi-variate regression including FSF (p = 0.28). Dual-echo GRE has low sensitivity for hepatic iron. Subtraction imaging can result in false-positive diagnoses. (orig.)

  11. Fast spin echo MRI techniques. Contrast characteristics and clinical potential

    International Nuclear Information System (INIS)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N.; Oshio, K.; Jolesz, F.; Pourcelot, L.; Einstein, S.

    1993-01-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode

  12. Inner ear malformations in patients with sensorineural heating loss: detection with gradient-echo (3DFT-CISS) MRI

    Energy Technology Data Exchange (ETDEWEB)

    Casselman, J.W. [Dept. of Radiology, A.Z. St.-Jan Brugge, Bruges (Belgium); Kuhweide, R. [Dept. of Otorhinolaryngology, A.Z. St.-Jan Brugge, Bruges (Belgium); Ampe, W. [Dept. of Otorhinolaryngology, A.Z. St.-Jan Brugge, Bruges (Belgium); D`Hont, G.D. [Dept. of Otorhinolaryngology, A.Z. St.-Jan Brugge, Bruges (Belgium); Offeciers, E.F. [ENT Dept., Sint-Augustinus Medical Inst., Univ. of Antwerp (Belgium); Faes, W.K. [Dept. of Radiology, A.Z. St.-Jan Brugge, Bruges (Belgium); Pattyn, G. [Dept. of Radiology, A.Z. St.-Jan Brugge, Bruges (Belgium)

    1996-04-01

    The sensitivity of different MRI sequences in the detection of inner ear malformations in patients presenting with sensorineural hearing loss (SNHL) and/or vertigo was evaluated. We studied 650 patients presenting with SNHL and/or vertigo, clinically not suspected of having inner ear malformations. The sensitivity of T1-weigted, Gd-enhanced T1-weighted and (when available) T2-weighted spin-echo images, and three-dimensional Fourier transformation-constructive interference in steady state (3DFT-CISS) gradient-echo images, to unexpected malformations was assessed. Inner ear malformations were found in 15 (2.3%) of these patients. Enlargement of the endolymphatic duct and sac was the most frequent malformation, found in 11 patients. The 3DFT-CISS images showed all lesions; the other sequences were less sensitive and the pathology was missed, partially or only retrospectively seen in 11 of the 15 patients. Therefore, in addition to the routine unenhanced and Gd-enhanced T1-weighted and T2-weighted images, thin gradient-echo (3DFT-CISS) images are necessary to detect all clinically unexpected inner ear malformations in patients presenting with vertigo and/or SNHL. (orig.)

  13. Inner ear malformations in patients with sensorineural heating loss: detection with gradient-echo (3DFT-CISS) MRI

    International Nuclear Information System (INIS)

    Casselman, J.W.; Kuhweide, R.; Ampe, W.; D'Hont, G.D.; Offeciers, E.F.; Faes, W.K.; Pattyn, G.

    1996-01-01

    The sensitivity of different MRI sequences in the detection of inner ear malformations in patients presenting with sensorineural hearing loss (SNHL) and/or vertigo was evaluated. We studied 650 patients presenting with SNHL and/or vertigo, clinically not suspected of having inner ear malformations. The sensitivity of T1-weigted, Gd-enhanced T1-weighted and (when available) T2-weighted spin-echo images, and three-dimensional Fourier transformation-constructive interference in steady state (3DFT-CISS) gradient-echo images, to unexpected malformations was assessed. Inner ear malformations were found in 15 (2.3%) of these patients. Enlargement of the endolymphatic duct and sac was the most frequent malformation, found in 11 patients. The 3DFT-CISS images showed all lesions; the other sequences were less sensitive and the pathology was missed, partially or only retrospectively seen in 11 of the 15 patients. Therefore, in addition to the routine unenhanced and Gd-enhanced T1-weighted and T2-weighted images, thin gradient-echo (3DFT-CISS) images are necessary to detect all clinically unexpected inner ear malformations in patients presenting with vertigo and/or SNHL. (orig.)

  14. Comparison between gadolinium-enhanced 2D T1-weighted gradient-echo and spin-echo sequences in the detection of active multiple sclerosis lesions on 3.0T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Aymerich, F.X. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, MR Unit. Department of Radiology (IDI), Barcelona (Spain); Universitat Politecnica de Catalunya - Barcelona Tech (UPC), Department of Automatic Control (ESAII), Barcelona (Spain); Auger, C.; Alcaide-Leon, P.; Pareto, D.; Huerga, E.; Corral, J.F.; Mitjana, R.; Rovira, A. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, MR Unit. Department of Radiology (IDI), Barcelona (Spain); Sastre-Garriga, J.; Montalban, X. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, Centre d' Esclerosi Multiple de Catalunya (Cemcat), Department of Neurology/Neuroimmunology, Barcelona (Spain)

    2017-04-15

    To compare the sensitivity of enhancing multiple sclerosis (MS) lesions in gadolinium-enhanced 2D T1-weighted gradient-echo (GRE) and spin-echo (SE) sequences, and to assess the influence of visual conspicuity and laterality on detection of these lesions. One hundred MS patients underwent 3.0T brain MRI including gadolinium-enhanced 2D T1-weighted GRE and SE sequences. The two sets of contrast-enhanced scans were evaluated in random fashion by three experienced readers. Lesion conspicuity was assessed by the image contrast ratio (CR) and contrast-to-noise ratio (CNR). The intracranial region was divided into four quadrants and the impact of lesion location on detection was assessed in each slice. Six hundred and seven gadolinium-enhancing MS lesions were identified. GRE images were more sensitive for lesion detection (0.828) than SE images (0.767). Lesions showed a higher CR in SE than in GRE images, whereas the CNR was higher in GRE than SE. Most misclassifications occurred in the right posterior quadrant. The gadolinium-enhanced 2D T1-weighted GRE sequence at 3.0T MRI enables detection of enhancing MS lesions with higher sensitivity and better lesion conspicuity than 2D T1-weighted SE. Hence, we propose the use of gadolinium-enhanced GRE sequences rather than SE sequences for routine scanning of MS patients at 3.0T. (orig.)

  15. MRI detection of hypointense brain lesions in patients with multiple sclerosis: T1 spin-echo vs. gradient-echo

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Sheena L.; Tauhid, Shahamat; Kim, Gloria; Chu, Renxin; Tummala, Subhash [Departments of Neurology, Brigham and Women' s Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA (United States); Hurwitz, Shelley [Departments of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Bakshi, Rohit, E-mail: rbakshi@bwh.harvard.edu [Departments of Neurology, Brigham and Women' s Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA (United States); Departments of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2015-08-15

    Highlights: • Compared T1SE and T1GE in detecting hypointense brain lesions in MS patients. • T1GE detected a higher cerebral lesion volume and number than T1SE. • T1SE correlated significantly with disability, while T1GE did not. • Hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. - Abstract: Objective: Compare T1 spin-echo (T1SE) and T1 gradient-echo (T1GE) sequences in detecting hypointense brain lesions in multiple sclerosis (MS). Background: Chronic hypointense lesions on T1SE MRI scans are a surrogate of severe demyelination and axonal loss in MS. The role of T1GE images in the detection of such lesions has not been clarified. Design/methods: In 45 patients with MS [Expanded Disability Status Scale (EDSS) score (mean ± SD) 3.5 ± 2.0; 37 relapsing-remitting (RR); 8 secondary progressive (SP)], cerebral T1SE, T1GE, and T2-weighted fluid-attenuated inversion-recovery (FLAIR) images were acquired on a 1.5 T MRI scanner. Images were re-sampled to axial 5 mm slices before directly comparing lesion detectability using Jim (v.7, Xinapse Systems). Statistical methods included Wilcoxon signed rank tests to compare sequences and Spearman correlations to test associations. Results: Considering the entire cohort, T1GE detected a higher lesion volume (5.90 ± 6.21 vs. 4.17 ± 4.84 ml, p < 0.0001) and higher lesion number (27.82 ± 20.66 vs. 25.20 ± 20.43, p < 0.05) than T1SE. Lesion volume differences persisted when considering RR and SP patients separately (both p < 0.01). A higher lesion number by T1GE was seen only in the RR group (p < 0.05). When comparing correlations between lesion volume and overall neurologic disability (EDSS score), T1SE correlated with EDSS (Spearman r = 0.29, p < 0.05) while T1GE (r = 0.23, p = 0.13) and FLAIR (r = 0.24, p = 0.12) did not. Conclusion: Our data suggest that hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. Based on these results, we hypothesize that T1GE

  16. MRI detection of hypointense brain lesions in patients with multiple sclerosis: T1 spin-echo vs. gradient-echo

    International Nuclear Information System (INIS)

    Dupuy, Sheena L.; Tauhid, Shahamat; Kim, Gloria; Chu, Renxin; Tummala, Subhash; Hurwitz, Shelley; Bakshi, Rohit

    2015-01-01

    Highlights: • Compared T1SE and T1GE in detecting hypointense brain lesions in MS patients. • T1GE detected a higher cerebral lesion volume and number than T1SE. • T1SE correlated significantly with disability, while T1GE did not. • Hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. - Abstract: Objective: Compare T1 spin-echo (T1SE) and T1 gradient-echo (T1GE) sequences in detecting hypointense brain lesions in multiple sclerosis (MS). Background: Chronic hypointense lesions on T1SE MRI scans are a surrogate of severe demyelination and axonal loss in MS. The role of T1GE images in the detection of such lesions has not been clarified. Design/methods: In 45 patients with MS [Expanded Disability Status Scale (EDSS) score (mean ± SD) 3.5 ± 2.0; 37 relapsing-remitting (RR); 8 secondary progressive (SP)], cerebral T1SE, T1GE, and T2-weighted fluid-attenuated inversion-recovery (FLAIR) images were acquired on a 1.5 T MRI scanner. Images were re-sampled to axial 5 mm slices before directly comparing lesion detectability using Jim (v.7, Xinapse Systems). Statistical methods included Wilcoxon signed rank tests to compare sequences and Spearman correlations to test associations. Results: Considering the entire cohort, T1GE detected a higher lesion volume (5.90 ± 6.21 vs. 4.17 ± 4.84 ml, p < 0.0001) and higher lesion number (27.82 ± 20.66 vs. 25.20 ± 20.43, p < 0.05) than T1SE. Lesion volume differences persisted when considering RR and SP patients separately (both p < 0.01). A higher lesion number by T1GE was seen only in the RR group (p < 0.05). When comparing correlations between lesion volume and overall neurologic disability (EDSS score), T1SE correlated with EDSS (Spearman r = 0.29, p < 0.05) while T1GE (r = 0.23, p = 0.13) and FLAIR (r = 0.24, p = 0.12) did not. Conclusion: Our data suggest that hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. Based on these results, we hypothesize that T1GE

  17. 3D Ultrashort TE MRI for Evaluation of Cartilaginous Endplate of Cervical Disk In Vivo: Feasibility and Correlation With Disk Degeneration in T2-Weighted Spin-Echo Sequence.

    Science.gov (United States)

    Kim, Yeo Ju; Cha, Jang Gyu; Shin, Yoon Sang; Chaudhari, Akshay S; Suh, Young Ju; Hwan Yoon, Seung; Gold, Garry E

    2018-05-01

    The purpose of this study was to evaluate the feasibility of 3D ultrashort TE (UTE) MRI in depicting the cartilaginous endplate (CEP) and its abnormalities and to investigate the association between CEP abnormalities and disk degeneration on T2-weighted spin-echo (SE) MR images in cervical disks in vivo. Eight healthy volunteers and 70 patients were examined using 3-T MRI with the 3D UTE cones trajectory technique (TR/TE, 16.1/0.032, 6.6). In the volunteer study, quantitative and qualitative assessments of CEP depiction were conducted for the 3D UTE and T2-weighted SE imaging. In the patient study, CEP abnormalities were analyzed. Intersequence agreement between the images obtained with the first-echo 3D UTE sequence and the images created by subtracting the second-echo from the first-echo 3D UTE sequence (subtracted 3D UTE) and the intraobserver and interobserver agreements for 3D UTE overall were also tested. The CEP abnormalities on the 3D UTE images correlated with the Miyazaki grading of the T2-weighted SE images. In the volunteer study, the CEP was well visualized on 3D UTE images but not on T2-weighted SE images (p evaluation of CEP abnormalities, intersequence agreements were substantial to almost perfect, intraobserver agreements were substantial to almost perfect, and interobserver agreements were moderate to substantial (p T2-weighted SE MRI.

  18. Simultaneous pH-sensitive and oxygen-sensitive MRI of human gliomas at 3 T using multi-echo amine proton chemical exchange saturation transfer spin-and-gradient echo echo-planar imaging (CEST-SAGE-EPI).

    Science.gov (United States)

    Harris, Robert J; Yao, Jingwen; Chakhoyan, Ararat; Raymond, Catalina; Leu, Kevin; Liau, Linda M; Nghiemphu, Phioanh L; Lai, Albert; Salamon, Noriko; Pope, Whitney B; Cloughesy, Timothy F; Ellingson, Benjamin M

    2018-04-06

    To introduce a new pH-sensitive and oxygen-sensitive MRI technique using amine proton CEST echo spin-and-gradient echo (SAGE) EPI (CEST-SAGE-EPI). pH-weighting was obtained using CEST estimations of magnetization transfer ratio asymmetry (MTR asym ) at 3 ppm, and oxygen-weighting was obtained using R2' measurements. Glutamine concentration, pH, and relaxation rates were varied in phantoms to validate simulations and estimate relaxation rates. The values of MTR asym and R2' in normal-appearing white matter, T 2 hyperintensity, contrast enhancement, and macroscopic necrosis were measured in 47 gliomas. Simulation and phantom results confirmed an increase in MTR asym with decreasing pH. The CEST-SAGE-EPI estimates of R 2 , R2*, and R2' varied linearly with gadolinium diethylenetriamine penta-acetic acid concentration (R 2  = 6.2 mM -1 ·sec -1 and R2* = 6.9 mM -1 ·sec -1 ). The CEST-SAGE-EPI and Carr-Purcell-Meiboom-Gill estimates of R 2 (R 2  = 0.9943) and multi-echo gradient-echo estimates of R2* (R 2  = 0.9727) were highly correlated. T 2 lesions had lower R2' and higher MTR asym compared with normal-appearing white matter, suggesting lower hypoxia and high acidity, whereas contrast-enhancement tumor regions had elevated R2' and MTR asym , indicating high hypoxia and acidity. The CEST-SAGE-EPI technique provides simultaneous pH-sensitive and oxygen-sensitive image contrasts for evaluation of the brain tumor microenvironment. Advantages include fast whole-brain acquisition, in-line B 0 correction, and simultaneous estimation of CEST effects, R 2 , R2*, and R2' at 3 T. © 2018 International Society for Magnetic Resonance in Medicine.

  19. Novel use of non-echo-planar diffusion weighted MRI in monitoring disease activity and treatment response in active Grave's orbitopathy: An initial observational cohort study.

    Science.gov (United States)

    Lingam, Ravi Kumar; Mundada, Pravin; Lee, Vickie

    2018-01-10

    To examine the novel use of non-echo-planar diffusion weighted MRI (DWI) in depicting activity and treatment response in active Grave's orbitopathy (GO) by assessing, with inter-observer agreement, for a correlation between its apparent diffusion coefficients (ADCs) and conventional Short tau Inversion Recovery (STIR) MRI signal-intensity ratios (SIRs). A total of 23 actively inflamed muscles and 30 muscle response episodes were analysed in patients with active GO who underwent medical treatment. The MRI orbit scans included STIR sequences and non-echo-planar DWI were evaluated. Two observers independently assessed the images qualitatively for the presence of activity in the extraocular muscles (EOMs) and recorded the STIR signal-intensity (SI), SIR (SI ratio of EOM/temporalis muscle), and ADC values of any actively inflamed muscle on the pre-treatment scans and their corresponding values on the subsequent post-treatment scans. Inter-observer agreement was examined. There was a significant positive correlation (0.57, p < 0.001) between ADC and both SIR and STIR SI of the actively inflamed EOM. There was also a significant positive correlation (0.75, p < 0.001) between SIR and ADC values depicting change in muscle activity associated with treatment response. There was good inter-observer agreement. Our preliminary results indicate that quantitative evaluation with non-echo-planar DWI ADC values correlates well with conventional STIR SIR in detecting active GO and monitoring its treatment response, with good inter-observer agreement.

  20. Characterization of D-maltose as a T2 -exchange contrast agent for dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Goldenberg, Joshua M; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2018-09-01

    We sought to investigate the potential of D-maltose, D-sorbitol, and D-mannitol as T 2 exchange magnetic resonance imaging (MRI) contrast agents. We also sought to compare the in vivo pharmacokinetics of D-maltose with D-glucose with dynamic contrast enhancement (DCE) MRI. T 1 and T 2 relaxation time constants of the saccharides were measured using eight pH values and nine concentrations. The effect of echo spacing in a multiecho acquisition sequence used for the T 2 measurement was evaluated for all samples. Finally, performances of D-maltose and D-glucose during T 2 -weighted DCE-MRI were compared in vivo. Estimated T 2 relaxivities (r 2 ) of D-glucose and D-maltose were highly and nonlinearly dependent on pH and echo spacing, reaching their maximum at pH = 7.0 (∼0.08 mM -1 s -1 ). The r 2 values of D-sorbitol and D-mannitol were estimated to be ∼0.02 mM -1 s -1 and were invariant to pH and echo spacing for pH ≤7.0. The change in T 2 in tumor and muscle tissues remained constant after administration of D-maltose, whereas the change in T 2 decreased in tumor and muscle after administration of D-glucose. Therefore, D-maltose has a longer time window for T 2 -weighted DCE-MRI in tumors. We have demonstrated that D-maltose can be used as a T 2 exchange MRI contrast agent. The larger, sustained T 2 -weighted contrast from D-maltose relative to D-glucose has practical advantages for tumor diagnoses during T 2 -weighted DCE-MRI. Magn Reson Med 80:1158-1164, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  1. The Usefulness of Readout-Segmented Echo-Planar Imaging (RESOLVE) for Bio-phantom Imaging Using 3-Tesla Clinical MRI.

    Science.gov (United States)

    Yoshimura, Yuuki; Kuroda, Masahiro; Sugiantoc, Irfan; Bamgbosec, Babatunde O; Miyahara, Kanae; Ohmura, Yuichi; Kurozumi, Akira; Matsushita, Toshi; Ohno, Seiichiro; Kanazawa, Susumu; Asaumi, Junichi

    2018-02-01

    Readout-segmented echo-planar imaging (RESOLVE) is a multi-shot echo-planar imaging (EPI) modality with k-space segmented in the readout direction. We investigated whether RESOLVE decreases the distortion and artifact in the phase direction and increases the signal-to-noise ratio (SNR) in phantoms image taken with 3-tesla (3T) MRI versus conventional EPI. We used a physiological saline phantom and subtraction mapping and observed that RESOLVE's SNR was higher than EPI's. Using RESOLVE, the combination of a special-purpose coil and a large-loop coil had a higher SNR compared to using only a head/neck coil. RESOLVE's image distortioas less than EPI's. We used a 120 mM polyethylene glycol phantom to examine the phase direction artifact.vThe range where the artifact appeared in the apparent diffusion coefficient (ADC) image was shorter with RESOLVE compared to EPI. We used RESOLVE to take images of a Jurkat cell bio-phantom: the cell-region ADC was 856×10-6mm2/sec and the surrounding physiological saline-region ADC was 2,951×10-6mm2/sec. The combination of RESOLVE and the 3T clinical MRI device reduced image distortion and improved SNR and the identification of accurate ADC values due to the phase direction artifact reduction. This combination is useful for obtaining accurate ADC values of bio-phantoms.

  2. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage

    International Nuclear Information System (INIS)

    Juras, Vladimir; Szomolanyi, Pavol; Bohndorf, Klaus; Kronnerwetter, Claudia; Hager, Benedikt; Zbyn, Stefan; Heule, Rahel; Bieri, Oliver; Trattnig, Siegfried

    2016-01-01

    To assess the clinical relevance of T 2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T 2 -mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T 2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T 2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T 2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B 1 and B 0 changes. (orig.)

  3. A diffusion model-free framework with echo time dependence for free-water elimination and brain tissue microstructure characterization.

    Science.gov (United States)

    Molina-Romero, Miguel; Gómez, Pedro A; Sperl, Jonathan I; Czisch, Michael; Sämann, Philipp G; Jones, Derek K; Menzel, Marion I; Menze, Bjoern H

    2018-03-23

    The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS). This framework yields proton density, relaxation times, volume fractions, and signal disentanglement, allowing for separation of the free-water component. Diffusion experiments repeated for several different echo times, contain entangled diffusion and relaxation compartmental information. These can be disentangled by BSS using a physically constrained nonnegative matrix factorization. Computer simulations, phantom studies, together with repeatability and reproducibility experiments demonstrated that BSS is capable of estimating proton density, compartmental volume fractions and transversal relaxations. In vivo results proved its potential to correct for free-water contamination and to estimate tissue parameters. Formulation of the diffusion-relaxation dependence as a BSS problem introduces a new framework for studying microstructure compartmentalization, and a novel tool for free-water elimination. © 2018 International Society for Magnetic Resonance in Medicine.

  4. Echo-Interleaved-Spiral MR Imaging

    International Nuclear Information System (INIS)

    Rosenthal, Shirrie; Azhari, Haim; Montag, Avram

    1998-01-01

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors)

  5. Mapping brain activity in gradient-echo functional MRI using principal component analysis

    Science.gov (United States)

    Khosla, Deepak; Singh, Manbir; Don, Manuel

    1997-05-01

    The detection of sites of brain activation in functional MRI has been a topic of immense research interest and many technique shave been proposed to this end. Recently, principal component analysis (PCA) has been applied to extract the activated regions and their time course of activation. This method is based on the assumption that the activation is orthogonal to other signal variations such as brain motion, physiological oscillations and other uncorrelated noises. A distinct advantage of this method is that it does not require any knowledge of the time course of the true stimulus paradigm. This technique is well suited to EPI image sequences where the sampling rate is high enough to capture the effects of physiological oscillations. In this work, we propose and apply tow methods that are based on PCA to conventional gradient-echo images and investigate their usefulness as tools to extract reliable information on brain activation. The first method is a conventional technique where a single image sequence with alternating on and off stages is subject to a principal component analysis. The second method is a PCA-based approach called the common spatial factor analysis technique (CSF). As the name suggests, this method relies on common spatial factors between the above fMRI image sequence and a background fMRI. We have applied these methods to identify active brain ares during visual stimulation and motor tasks. The results from these methods are compared to those obtained by using the standard cross-correlation technique. We found good agreement in the areas identified as active across all three techniques. The results suggest that PCA and CSF methods have good potential in detecting the true stimulus correlated changes in the presence of other interfering signals.

  6. Dual-echo, chemical shift gradient-echo magnetic resonance imaging to quantify hepatic steatosis: Implications for living liver donation.

    Science.gov (United States)

    Rinella, Mary E; McCarthy, Richard; Thakrar, Kiran; Finn, John Paul; Rao, Sambasiva M; Koffron, Alan J; Abecassis, Michael; Blei, Andres T

    2003-08-01

    In living liver donation, a fatty liver poses risks for both recipient and donor. Currently, liver biopsy is the standard for assessing the presence and extent of steatosis. The goals of this study were to correlate a steatosis index derived from magnetic resonance imaging (MRI) to the histologic grade on biopsy as well as to determine the topographic distribution of steatosis within the liver. We examined the ability of dual-echo, chemical shift gradient-echo MRI to predict the degree of steatosis on liver biopsy. A total of 22 subjects received both a liver biopsy and detailed MRI evaluation. These individuals included 15 potential living donors and 7 patients with nonalcoholic fatty liver disease. MRI steatosis index was then compared with histologic grade on liver biopsy. The topographic distribution of hepatic steatosis was determined from those subjects in whom MRI detected hepatic steatosis. The steatosis index had a positive correlation with grade of steatosis on liver biopsy (correlation coefficient, 0.84). There was no significant variation in the degree of steatosis among segments. A steatosis index of >0.2 had good positive and negative predictive value for the presence of significant steatosis (>15%) on biopsy. Our quantitative MRI protocol can predict the degree of hepatic steatosis when it is minimal to moderate, and may obviate the need for liver biopsy for the purpose of quantification of steatosis in living donors. Fat saturation added to the MRI protocol may further improve diagnostic accuracy. This technique may be applicable to the larger population with hepatic steatosis.

  7. Three-dimensional ultrashort echo time MRI and Short T2 images generated from subtraction for determination of tumor burden in lung cancer: Preclinical investigation in transgenic mice.

    Science.gov (United States)

    Müller, Andreas; Jagoda, Philippe; Fries, Peter; Gräber, Stefan; Bals, Robert; Buecker, Arno; Jungnickel, Christopher; Beisswenger, Christoph

    2018-02-01

    To investigate the potential of 3D ultrashort echo time MRI and short T 2 images generated by subtraction for determination of total tumor burden in lung cancer. As an animal model of spontaneously developing non-small cell lung cancer, the K-rasLA1 transgenic mouse was used. Three-dimensional MR imaging was performed with radial k-space acquisition and echo times of 20 µs and 1 ms. For investigation of the short T 2 component in the recorded signal, subtraction images were generated from these data sets and used for consensus identification of tumors. Next, manual segmentation was performed on all MR images by two independent investigators. MRI data were compared with the results from histologic investigations and among the investigators. Tumor number and total tumor burden from imaging experiments correlated strongly with the results of histologic investigations. Intra- and interuser comparison showed highest correlations between the individual measurements for ultra-short TE MRI. Three-dimensional MRI protocols facilitate accurate tumor identification in mice harboring lung tumors. Ultrashort TE MRI is the superior imaging strategy when investigating lung tumors of miscellaneous size with 3D MR imaging strategies. Magn Reson Med 79:1052-1060, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Juras, Vladimir; Szomolanyi, Pavol [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Institute of Measurement Science, Department of Imaging Methods, Bratislava (Slovakia); Bohndorf, Klaus; Kronnerwetter, Claudia; Hager, Benedikt; Zbyn, Stefan [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Heule, Rahel; Bieri, Oliver [University of Basel Hospital, Division of Radiological Physics, Department of Radiology, Basel (Switzerland); Trattnig, Siegfried [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna (Austria); Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna (Austria)

    2016-06-15

    To assess the clinical relevance of T{sub 2} relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T{sub 2}-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T{sub 2} mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T{sub 2} values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T{sub 2} values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B{sub 1} and B{sub 0} changes. (orig.)

  9. MRI in multiple sclerosis of the spinal cord: evaluation of fast short-tan inversion-recovery and spin-echo sequences

    International Nuclear Information System (INIS)

    Dietemann, J.L.; Thibaut-Menard, A.; Neugroschl, C.; Gillis, C.; Abu Eid, M.; Bogorin, A.; Warter, J.M.; Tranchant, C.

    2000-01-01

    We compared the sensitivity of T2-weighted spin-echo (FSE) and fast short-tau inversion-recovery (fSTIR) sequences in detection of multiple sclerosis of the spinal cord in 100 consecutive patients with clinically confirmed multiple sclerosis (MS); 86 patients underwent also brain MRI. In all, 310 focal lesions were detected on fSTIR and 212 on T2-weighted FSE, spinal cord lesions were seen better on fSTIR images, with a higher contrast between the lesion and the normal spinal cord. In 24 patients in whom cord plaques were shown with both sequences, the cranial study was normal or inconclusive. Assessment of spinal plaques can be particularly important when MRI of the brain is inconclusive, and in there situations fSTIR can be helpful. (orig.)

  10. Echo-Interleaved-Spiral MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Shirrie; Azhari, Haim [Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000 (Israel); Montag, Avram [Elscint Ltd., MRI division, Haifa (Israel)

    1999-12-31

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors) 4 refs., 3 figs.

  11. Influence of Free Radicals on the Intrinsic MRI Relaxation Properties.

    Science.gov (United States)

    Tain, Rong-Wen; Scotti, Alessandro M; Li, Weiguo; Zhou, Xiaohong Joe; Cai, Kejia

    2017-01-01

    Free radicals are critical contributors in various conditions including normal aging, Alzheimer's disease, cancer, and diabetes. Currently there is no non-invasive approach to image tissue free radicals based on endogenous contrast due to their extremely short lifetimes and low in vivo concentrations. In this study we aim at characterizing the influence of free radicals on the MRI relaxation properties. Phantoms containing free radicals were created by treating egg white with various H 2 O 2 concentrations and scanned on a 9.4 T MRI scanner at room temperature. T 1 and T 2 relaxation maps were generated from data acquired with an inversion recovery sequence with varied inversion times and a multi-echo spin echo sequence with varied echo times (TEs), respectively. Results demonstrated that free radicals express a strong shortening effect on T 1 , which was proportional to the H 2 O 2 concentration, and a relatively small reduction in T 2 (free radicals was estimated to be in the pM range that is within the physiological range of in vivo free radical expression. In conclusion, the free radicals show a strong paramagnetic effect that may be utilized as an endogenous MRI contrast for its non-invasive in vivo imaging.

  12. Accuracy of multiecho magnitude-based MRI (M-MRI) for estimation of hepatic proton density fat fraction (PDFF) in children.

    Science.gov (United States)

    Zand, Kevin A; Shah, Amol; Heba, Elhamy; Wolfson, Tanya; Hamilton, Gavin; Lam, Jessica; Chen, Joshua; Hooker, Jonathan C; Gamst, Anthony C; Middleton, Michael S; Schwimmer, Jeffrey B; Sirlin, Claude B

    2015-11-01

    To assess accuracy of magnitude-based magnetic resonance imaging (M-MRI) in children to estimate hepatic proton density fat fraction (PDFF) using two to six echoes, with magnetic resonance spectroscopy (MRS) -measured PDFF as a reference standard. This was an IRB-approved, HIPAA-compliant, single-center, cross-sectional, retrospective analysis of data collected prospectively between 2008 and 2013 in children with known or suspected nonalcoholic fatty liver disease (NAFLD). Two hundred eighty-six children (8-20 [mean 14.2 ± 2.5] years; 182 boys) underwent same-day MRS and M-MRI. Unenhanced two-dimensional axial spoiled gradient-recalled-echo images at six echo times were obtained at 3T after a single low-flip-angle (10°) excitation with ≥ 120-ms recovery time. Hepatic PDFF was estimated using the first two, three, four, five, and all six echoes. For each number of echoes, accuracy of M-MRI to estimate PDFF was assessed by linear regression with MRS-PDFF as reference standard. Accuracy metrics were regression intercept, slope, average bias, and R(2) . MRS-PDFF ranged from 0.2-40.4% (mean 13.1 ± 9.8%). Using three to six echoes, regression intercept, slope, and average bias were 0.46-0.96%, 0.99-1.01, and 0.57-0.89%, respectively. Using two echoes, these values were 2.98%, 0.97, and 2.72%, respectively. R(2) ranged 0.98-0.99 for all methods. Using three to six echoes, M-MRI has high accuracy for hepatic PDFF estimation in children. © 2015 Wiley Periodicals, Inc.

  13. Image correction during large and rapid B(0) variations in an open MRI system with permanent magnets using navigator echoes and phase compensation.

    Science.gov (United States)

    Li, Jianqi; Wang, Yi; Jiang, Yu; Xie, Haibin; Li, Gengying

    2009-09-01

    An open permanent magnet system with vertical B(0) field and without self-shielding can be quite susceptible to perturbations from external magnetic sources. B(0) variation in such a system located close to a subway station was measured to be greater than 0.7 microT by both MRI and a fluxgate magnetometer. This B(0) variation caused image artifacts. A navigator echo approach that monitored and compensated the view-to-view variation in magnetic resonance signal phase was developed to correct for image artifacts. Human brain imaging experiments using a multislice gradient-echo sequence demonstrated that the ghosting and blurring artifacts associated with B(0) variations were effectively removed using the navigator method.

  14. Hemodynamic analysis of bladder tumors using T1-dynamic contrast-enhanced fast spin-echo MRI

    International Nuclear Information System (INIS)

    Kanazawa, Yuki; Miyati, Tosiaki; Sato, Osamu

    2012-01-01

    Objectives: To evaluate the hemodynamics of bladder tumors, we developed a method to calculate change in R 1 value (ΔR 1 ) from T 1 -dynamic contrast-enhanced fast spin-echo magnetic resonance imaging (T 1 DCE-FSE-MRI). Materials and methods: On a 1.5-T MR system, T 1 DCE-FSE-MRI was performed. This study was applied to 12 patients with urinary bladder tumor, i.e. urothelial carcinoma. We compared ΔR 1 –time and ΔSI–time between a peak in the ΔR 1 –time and ΔSI–time curve occurred during the first pass within 60 s. Next, we assessed the slope of increase for 180 s after CA injection (Slope 0–180 ). Results: The mean slope of the first pass was significantly higher for bladder tumors on both the ΔR 1 –time and the ΔSI–time curve compared with normal bladder walls. Moreover, a significant difference was apparent between bladder tumors and normal bladder walls on the mean Slope 0–180 in the ΔR 1 -time curve. However, no significant difference in the mean Slope 0–180 was observed on the ΔSI-time curve between bladder tumors and normal bladder walls. Conclusion: T 1 DCE-FSE-MRI offers three advantages: quantitative analysis; high-quality (i.e., artifact-free) images; and high temporal resolution even for SE images. Use of ΔR 1 analysis with T 1 DCE-FSE-MRI allows more detailed information on the hemodynamics of bladder tumors to be obtained and assists in differentiation between bladder tumors and the normal bladder wall.

  15. Mixed model phase evolution for correction of magnetic field inhomogeneity effects in 3D quantitative gradient echo-based MRI

    DEFF Research Database (Denmark)

    Fatnassi, Chemseddine; Boucenna, Rachid; Zaidi, Habib

    2017-01-01

    PURPOSE: In 3D gradient echo magnetic resonance imaging (MRI), strong field gradients B0macro are visually observed at air/tissue interfaces. At low spatial resolution in particular, the respective field gradients lead to an apparent increase in intravoxel dephasing, and subsequently, to signal...... loss or inaccurate R2* estimates. If the strong field gradients are measured, their influence can be removed by postprocessing. METHODS: Conventional corrections usually assume a linear phase evolution with time. For high macroscopic gradient inhomogeneities near the edge of the brain...

  16. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging.

    Science.gov (United States)

    De Ciantis, Alessio; Barba, Carmen; Tassi, Laura; Cosottini, Mirco; Tosetti, Michela; Costagli, Mauro; Bramerio, Manuela; Bartolini, Emanuele; Biagi, Laura; Cossu, Massimo; Pelliccia, Veronica; Symms, Mark R; Guerrini, Renzo

    2016-03-01

    To assess the diagnostic yield of 7T magnetic resonance imaging (MRI) in detecting and characterizing structural lesions in patients with intractable focal epilepsy and unrevealing conventional (1.5 or 3T) MRI. We conducted an observational clinical imaging study on 21 patients (17 adults and 4 children) with intractable focal epilepsy, exhibiting clinical and electroencephalographic features consistent with a single seizure-onset zone (SOZ) and unrevealing conventional MRI. Patients were enrolled at two tertiary epilepsy surgery centers and imaged at 7T, including whole brain (three-dimensional [3D] T1 -weighted [T1W] fast-spoiled gradient echo (FSPGR), 3D susceptibility-weighted angiography [SWAN], 3D fluid-attenuated inversion recovery [FLAIR]) and targeted imaging (2D T2*-weighted dual-echo gradient-recalled echo [GRE] and 2D gray-white matter tissue border enhancement [TBE] fast spin echo inversion recovery [FSE-IR]). MRI studies at 1.5 or 3T deemed unrevealing at the referral center were reviewed by three experts in epilepsy imaging. Reviewers were provided information regarding the suspected localization of the SOZ. The same team subsequently reviewed 7T images. Agreement in imaging interpretation was reached through consensus-based discussions based on visual identification of structural abnormalities and their likely correlation with clinical and electrographic data. 7T MRI revealed structural lesions in 6 (29%) of 21 patients. The diagnostic gain in detection was obtained using GRE and FLAIR images. Four of the six patients with abnormal 7T underwent epilepsy surgery. Histopathology revealed focal cortical dysplasia (FCD) in all. In the remaining 15 patients (71%), 7T MRI remained unrevealing; 4 of the patients underwent epilepsy surgery and histopathologic evaluation revealed gliosis. 7T MRI improves detection of epileptogenic FCD that is not visible at conventional field strengths. A dedicated protocol including whole brain FLAIR and GRE images at 7T

  17. A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times

    Science.gov (United States)

    Edmund, Jens M.; Kjer, Hans M.; Van Leemput, Koen; Hansen, Rasmus H.; Andersen, Jon AL; Andreasen, Daniel

    2014-12-01

    Radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, so-called MRI-only RT, would remove the systematic registration error between MR and computed tomography (CT), and provide co-registered MRI for assessment of treatment response and adaptive RT. Electron densities, however, need to be assigned to the MRI images for dose calculation and patient setup based on digitally reconstructed radiographs (DRRs). Here, we investigate the geometric and dosimetric performance for a number of popular voxel-based methods to generate a so-called pseudo CT (pCT). Five patients receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation and (3) statistical regression. Each approach contained two methods. Approach 1 used bulk density assignment of MRI voxels into air, soft tissue and bone based on logical masks and the transverse relaxation time T2 of the bone. Approach 2 used similar bulk density assignments with Bayesian statistics including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT agreement with the pCT of each method was quantified and compared with the other methods geometrically and dosimetrically using both a number of reported metrics and introducing some novel metrics. The best geometrical agreement with CT was obtained with the statistical regression methods which performed significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI

  18. Preoperative local MRI-staging of patients with a suspected pancreatic mass.

    Science.gov (United States)

    Fischer, U; Vosshenrich, R; Horstmann, O; Becker, H; Salamat, B; Baum, F; Grabbe, E

    2002-02-01

    The aim of this study was to define the value of MRI of the pancreas for preoperative local staging of patients with a suspected pancreatic mass. Ninety-four patients (41 women, 53 men; age range 32-87 years) with a suspected pancreatic tumor underwent preoperative staging with MRI on a 1.5-T system. The MRI protocol included breath-hold MR cholangiopancreatography in turbo spin-echo technique, biphasic contrast-enhanced 3D MR angiography, and MRI of the upper abdomen with breath-hold T2-weighted half-Fourier acquired single-shot turbo spin-echo and T1-weighted fast-low-angle-shot (pre- and postcontrast) sequences. Data were collected prospectively and analyzed by two radiologists in agreement modality. Evaluation criteria were vascular involvement, resectability, and a characterization benign vs malignant. Results were compared to histopathology in 78 patients. Sixteen patients were followed-up. In 74 of 94 patients a solid tumor or an inflammation of the pancreas ( n=62) or the papilla ( n=12) was detected. In this group, MRI had a sensitivity of 98%, a specificity of 92%, and an accuracy of 96% in the characterization of malignant tumors. Regarding only the solid tumors, the positive predictive value of MRI was 87% with respect to resectability. Other pathologic findings included adenoma or inflammation of the duodenum ( n=5), carcinoma or benign stenosis of the choledochus duct ( n=7) and carcinoma of the gall bladder ( n=2). In 6 patients MRI did not depict any pathologic findings, and follow-up confirmed this interpretation. Magnetic resonance imaging allows a local preoperative staging in patients with suspected pancreatic tumor. Limitations, however, concern to the diagnostics of peritoneal and/or liver metastases.

  19. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France); Hasboun, D. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France)]|[Dept. of Neurology, Paris VI Univ. (France); Bazin, B.; Samson, S.; Baulac, M. [Dept. of Neurology, Paris VI Univ. (France)

    1999-07-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  20. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    International Nuclear Information System (INIS)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C.; Hasboun, D.; Bazin, B.; Samson, S.; Baulac, M.

    1999-01-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  1. Spontaneous cerebral microbleeds on gradient echo MR imaging in the stroke patients

    International Nuclear Information System (INIS)

    Kwak, Seong Ho; Song, Chang June; Kim, Dae Bong; Jeong, Geum Chae

    2003-01-01

    To investigate the spontaneous cerebral microbleeding occurring at gradient-echo MRI, and its relationship with associated stroke lesions and risk factors. Between September 2001 and December, 2002, 32 patients (21 men and 11 women; mean age 63 years) in whom cerebral microbleeding occurred at gradient-echo MRI were retrospectively investigated. Using a 1.5T MR imager, spin-echo T1-weighted, fast spin-echo T2-weighted, diffusion-weighted, and gradient-echo images were obtained. The number and location of microbleeds seen on gradient echo images, patients data, and associated stroke lesions such as intracerebral hemorrhage and lacunar and territorial infarction were assessed. Among the 32 patients, 563 microbleeds and between 1 and 66 (mean, 17.6) were noted at gradient-echo imaging. Microbleeding occurred in the cortical/subcortical area (n=216), the basal ganglia (n=173), thalamus (n=92), cerebellum (n=41), brainstem (n=36) and corpus callosum (n=1), and in 20 patients was bilateral. Patients had a history of hypertension (n=26), hypertriglycemia (n=12), heart disease (n=4), and diabetes mellitus (n=3). Stroke lesions were seen in 27 patients, intracerebral hemorrhage in ten, lacunar infarction in 24, and territorial infarction in four. The incidence and number of microbleeds was greater in older patients and in those with hypertension, hypertriglycemia, and stroke lesions such as intracerebral hemorrhage or lacunar infarction. The detection of microbleeding at gradient-echo imaging is helpful, since it predicts the possibility of cerebral hemorrhage in these patients

  2. Assessment of the characteristics of MRI coils in terms of RF non-homogeneity using routine spin echo sequences

    International Nuclear Information System (INIS)

    Oghabian, M. A.; Mehdipour, Sh.; RiahicAlam, N.; Rafie, B.; Ghanaati, H.

    2005-01-01

    One of the major causes of image non-uniformity in MRI is due to the existence of non-homogeneity in RF receive and transmit. This can be the most effective source of error in quantitative studies in MRI imaging. Part of this non-homogeneity demonstrates the characteristics of RF coil and part of it is due to the interaction of RF field with the material being imaged. In this study, RF field non-homogeneity of surface and volume coils is measured using an oil phantom. The method employed in this work is based on a routine Spin Echo based sequence as proposed by this group previously. Materials and Methods: For the determination of RF non-uniformity, a method based on Spin Echo sequence (8θ-180) was used as reported previously by the same author. In this method, several images were obtained from one slice using different flip angles while keeping all other imaging parameters constant. Then, signal intensity at a ROI from all of these images were measured and fitted to the MRI defined mathematical model. Since this mathematical model describes the relation between signal intensity and flip angle in a (8θ-180) Spin Echo sequence, it is possible to obtain the variation in receive and transmit sensitivity in terms of the variation of signal intensity from the actual expected values. Since surface coils are functioning as only receiver (RF transmission is done by Body coil), first the results of receive coil homogeneity is measured, then characteristic of transmit coil (for the body coil) is evaluated Results: The coefficient of variation (C.V.) found for T(r) value obtained from images using head coils was in the order of 0.6%. Since the head coil is functioning as both transmitter and receiver, any non-uniformity in either transmit or receive stage can lead to non-homogeneity in RF field. A part from the surface coils, the amount of non-homogeneity due to receive coil was less than that of the transmit coil. In the case of the surface coils the variation in receive

  3. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    International Nuclear Information System (INIS)

    Kretzschmar, M.; Hainc, N.; Studler, U.; Bieri, O.; Miska, M.; Wiewiorski, M.; Valderrabano, V.

    2015-01-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm 2 /ms) was significantly higher compared to normal cartilage (1.46 μm 2 /ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  4. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, M.; Hainc, N.; Studler, U. [University Hospital Basel, Department of Radiology, Basel (Switzerland); Bieri, O. [University Hospital Basel, Division of Radiological Physics, Basel (Switzerland); Miska, M. [University Hospital, Department of Orthopedics, Heidelberg (Germany); Wiewiorski, M.; Valderrabano, V. [University Hospital Basel, Department of Orthopedic Surgery, Basel (Switzerland)

    2015-04-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm{sup 2}/ms) was significantly higher compared to normal cartilage (1.46 μm{sup 2}/ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  5. WE-DE-206-04: MRI Pulse Sequences - Spin Echo, Gradient Echo, EPI, Non-Cartesia

    Energy Technology Data Exchange (ETDEWEB)

    Pooley, R. [Mayo Clinic (United States)

    2016-06-15

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner, and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.

  6. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage.

    Science.gov (United States)

    Juras, Vladimir; Bohndorf, Klaus; Heule, Rahel; Kronnerwetter, Claudia; Szomolanyi, Pavol; Hager, Benedikt; Bieri, Oliver; Zbyn, Stefan; Trattnig, Siegfried

    2016-06-01

    To assess the clinical relevance of T2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T2-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B1 and B0 changes. • 3D-TESS T 2 mapping provides clinically comparable results to CPMG in shorter scan-time. • Clinical and investigational studies may benefit from high temporal resolution of 3D-TESS. • 3D-TESS T 2 values are able to differentiate between healthy and damaged cartilage.

  7. Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI

    DEFF Research Database (Denmark)

    Nunes, Daniel; Cruz, Tomás L; Jespersen, Sune N

    2017-01-01

    available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time...... the quantitative results are compared against ground-truth histology, they seem to reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing......-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures – such as axons and extra-axonal spaces, which we here used in a simple model for the microstructure – and that, for axons parallel to the main magnetic field...

  8. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    International Nuclear Information System (INIS)

    Yoshino, Ayako

    1998-01-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds (ΔRT2) was calculated by the following equation: ΔRT2 = (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  9. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Ayako [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-07-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds ({Delta}RT2) was calculated by the following equation: {Delta}RT2 (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  10. A new technique for MR elastography of the supraspinatus muscle: A gradient-echo type multi-echo sequence.

    Science.gov (United States)

    Ito, Daiki; Numano, Tomokazu; Mizuhara, Kazuyuki; Takamoto, Koichi; Onishi, Takaaki; Nishijo, Hisao

    2016-10-01

    Magnetic resonance elastography (MRE) can measure tissue stiffness quantitatively and noninvasively. Supraspinatus muscle injury is a significant problem among throwing athletes. The purpose of this study was to develop an MRE technique for application to the supraspinatus muscle by using a conventional magnetic resonance imaging (MRI). MRE acquisitions were performed with a gradient-echo type multi-echo MR sequence at 100Hz pneumatic vibration. A custom-designed vibration pad was used as a pneumatic transducer in order to adapt to individual shoulder shapes. In a gradient-echo type multi-echo MR sequence, without motion encoding gradient (MEG) that synchronizes with vibrations, bipolar readout gradient lobes achieved a similar function to MEG (MEG-like effect). In other words, a dedicated MRE sequence (built-in MEG) is not always necessary for MRE. In this study, 7 healthy volunteers underwent MRE. We investigated the effects of direction of the MEG-like effect and selected imaging planes on the patterns of wave propagation (wave image). The results indicated that wave images showed clear wave propagation on a condition that the direction of the MEG-like effect was nearly perpendicular to the long axis of the supraspinatus muscle, and that the imaging plane was superior to the proximal supraspinatus muscle. This limited condition might be ascribed to specific features of fibers in the supraspinatus muscle and wave reflection from the boundaries of the supraspinous fossa. The mean stiffness of the supraspinatus muscle was 10.6±3.17kPa. Our results demonstrated that using MRE, our method can be applied to the supraspinatus muscle by using conventional MRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Preoperative local MRI-staging of patients with a suspected pancreatic mass

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U.; Vosshenrich, R.; Salamat, B.; Baum, F.; Grabbe, E. [Department of Radiology, Georg August University, Goettingen (Germany); Horstmann, O.; Becker, H. [Department of Surgery, Georg August University, Goettingen (Germany)

    2002-02-01

    The aim of this study was to define the value of MRI of the pancreas for preoperative local staging of patients with a suspected pancreatic mass. Ninety-four patients (41 women, 53 men; age range 32-87 years) with a suspected pancreatic tumor underwent preoperative staging with MRI on a 1.5-T system. The MRI protocol included breath-hold MR cholangiopancreatography in turbo spin-echo technique, biphasic contrast-enhanced 3D MR angiography, and MRI of the upper abdomen with breath-hold T2-weighted half-Fourier acquired single-shot turbo spin-echo and T1-weighted fast-low-angle-shot (pre- and postcontrast) sequences. Data were collected prospectively and analyzed by two radiologists in agreement modality. Evaluation criteria were vascular involvement, resectability, and a characterization benign vs malignant. Results were compared to histopathology in 78 patients. Sixteen patients were followed-up. In 74 of 94 patients a solid tumor or an inflammation of the pancreas (n=62) or the papilla (n=12) was detected. In this group, MRI had a sensitivity of 98%, a specificity of 92%, and an accuracy of 96% in the characterization of malignant tumors. Regarding only the solid tumors, the positive predictive value of MRI was 87% with respect to resectability. Other pathologic findings included adenoma or inflammation of the duodenum (n=5), carcinoma or benign stenosis of the choledochus duct (n=7) and carcinoma of the gall bladder (n=2). In 6 patients MRI did not depict any pathologic findings, and follow-up confirmed this interpretation. Magnetic resonance imaging allows a local preoperative staging in patients with suspected pancreatic tumor. Limitations, however, concern to the diagnostics of peritoneal and/or liver metastases. (orig.)

  12. Preoperative local MRI-staging of patients with a suspected pancreatic mass

    International Nuclear Information System (INIS)

    Fischer, U.; Vosshenrich, R.; Salamat, B.; Baum, F.; Grabbe, E.; Horstmann, O.; Becker, H.

    2002-01-01

    The aim of this study was to define the value of MRI of the pancreas for preoperative local staging of patients with a suspected pancreatic mass. Ninety-four patients (41 women, 53 men; age range 32-87 years) with a suspected pancreatic tumor underwent preoperative staging with MRI on a 1.5-T system. The MRI protocol included breath-hold MR cholangiopancreatography in turbo spin-echo technique, biphasic contrast-enhanced 3D MR angiography, and MRI of the upper abdomen with breath-hold T2-weighted half-Fourier acquired single-shot turbo spin-echo and T1-weighted fast-low-angle-shot (pre- and postcontrast) sequences. Data were collected prospectively and analyzed by two radiologists in agreement modality. Evaluation criteria were vascular involvement, resectability, and a characterization benign vs malignant. Results were compared to histopathology in 78 patients. Sixteen patients were followed-up. In 74 of 94 patients a solid tumor or an inflammation of the pancreas (n=62) or the papilla (n=12) was detected. In this group, MRI had a sensitivity of 98%, a specificity of 92%, and an accuracy of 96% in the characterization of malignant tumors. Regarding only the solid tumors, the positive predictive value of MRI was 87% with respect to resectability. Other pathologic findings included adenoma or inflammation of the duodenum (n=5), carcinoma or benign stenosis of the choledochus duct (n=7) and carcinoma of the gall bladder (n=2). In 6 patients MRI did not depict any pathologic findings, and follow-up confirmed this interpretation. Magnetic resonance imaging allows a local preoperative staging in patients with suspected pancreatic tumor. Limitations, however, concern to the diagnostics of peritoneal and/or liver metastases. (orig.)

  13. Evaluation of the chondromalacia patella using a microscopy coil: comparison of the two-dimensional fast spin echo techniques and the three-dimensional fast field echo techniques.

    Science.gov (United States)

    Kim, Hyun-joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung-Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast field echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FS-PD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p chondromalacia patella.

  14. Multi-site Study of Diffusion Metric Variability: Characterizing the Effects of Site, Vendor, Field Strength, and Echo Time using the Histogram Distance

    Science.gov (United States)

    Helmer, K. G.; Chou, M-C.; Preciado, R. I.; Gimi, B.; Rollins, N. K.; Song, A.; Turner, J.; Mori, S.

    2016-01-01

    MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables. PMID:27350723

  15. Multi-site Study of Diffusion Metric Variability: Characterizing the Effects of Site, Vendor, Field Strength, and Echo Time using the Histogram Distance.

    Science.gov (United States)

    Helmer, K G; Chou, M-C; Preciado, R I; Gimi, B; Rollins, N K; Song, A; Turner, J; Mori, S

    2016-02-27

    MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables.

  16. Can unenhanced multiparametric MRI substitute gadolinium-enhanced MRI in the characterization of vertebral marrow infiltrative lesions?

    Directory of Open Access Journals (Sweden)

    Dalia Z. Zidan

    2014-06-01

    Conclusion: Unenhanced-multiparametric MRI is compatible with gadolinium-enhanced MRI in reliable characterization of marrow infiltrative lesions. The routine MRI protocol of cancer patients should be altered to accommodate the evolving MRI technology and cost effectively substitute the need for a gadolinium enhanced scan.

  17. Ultrashort time-to-echo MRI of the cartilaginous endplate: technique and association with intervertebral disc degeneration

    International Nuclear Information System (INIS)

    Law, Travis; Anthony, Marina-Portia; Kim, Mina; Khong, Pek-Lan; Chan, Queenie; Samartzis, Dino

    2013-01-01

    The purpose of this study was to report the feasibility of the ultrashort time-to-echo (UTE) MRI technique to assess cartilaginous endplate (CEP) defects in humans in vivo and to assess their relationship with intervertebral disc (IVD) degeneration. Nine volunteer subjects (mean age=43.9 years; range=22–61 years) were recruited, representing 54 IVDs and 108 CEPs. The subjects underwent T2-weighted and UTE MRI to assess for the presence and severity of IVD degeneration, and for the presence of CEP defects, respectively, from T12 to S1. IVD degeneration was graded according to the Schneiderman et al. classification on T2-weighted MRI. CEP defects were defined on UTE MRI as discontinuity of high signal over four consecutive images and were independently assessed by two observers. Thirty-seven out of 108 (34.3%) CEPs had defects, which mainly occurred at T12/L1, L1/L2 and L4/L5 (P=0.008). Multivariate logistic regression revealed that lower body mass index (P=0.009) and younger (P=0.034) individuals had a decreased likelihood of having CEP defects. A statistically significant association was found to exist between the presence of CEP defects and IVD degeneration (P=0.036). A higher prevalence of degenerated IVDs with CEP defects was found at L4/5 and L5/S1, while degenerated IVDs with no CEP defects were found throughout the whole lumbar region. Mean IVD degeneration scores of the L4/5 and L5/S1 levels with CEP defects were higher in comparison with those with no CEP defects. Our study demonstrates the feasibility of using UTE MRI in humans in vivo to assess the integrity of the CEP. A statistically significant association was found to exist between the presence of CEP defects and IVD degeneration. In the lower lumbar region, more severe degeneration was found to occur in the IVDs with CEP defects than in those without defects.

  18. How can dolphins recognize fish according to their echoes? A statistical analysis of fish echoes.

    Directory of Open Access Journals (Sweden)

    Yossi Yovel

    Full Text Available Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders. In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification.

  19. MRI contrast enhancement using Magnetic Carbon Nanoparticles

    Science.gov (United States)

    Chaudhary, Rakesh P.; Kangasniemi, Kim; Takahashi, Masaya; Mohanty, Samarendra K.; Koymen, Ali R.; Department of Physics, University of Texas at Arlington Team; University of Texas Southwestern Medical Center Team

    2014-03-01

    In recent years, nanotechnology has become one of the most exciting forefront fields in cancer diagnosis and therapeutics such as drug delivery, thermal therapy and detection of cancer. Here, we report development of core (Fe)-shell (carbon) nanoparticles with enhanced magnetic properties for contrast enhancement in MRI imaging. These new classes of magnetic carbon nanoparticles (MCNPs) are synthesized using a bottom-up approach in various organic solvents, using the electric plasma discharge generated in the cavitation field of an ultrasonic horn. Gradient echo MRI images of well-dispersed MCNP-solutions (in tube) were acquired. For T2 measurements, a multi echo spin echo sequence was performed. From the slope of the 1/T2 versus concentration plot, the R2 value for different CMCNP-samples was measured. Since MCNPs were found to be extremely non-reactive, and highly absorbing in NIR regime, development of carbon-based MRI contrast enhancement will allow its simultaneous use in biomedical applications. We aim to localize the MCNPs in targeted tissue regions by external DC magnetic field, followed by MRI imaging and subsequent photothermal therapy.

  20. Quantification of neonatal lung parenchymal density via ultrashort echo time MRI with comparison to CT.

    Science.gov (United States)

    Higano, Nara S; Fleck, Robert J; Spielberg, David R; Walkup, Laura L; Hahn, Andrew D; Thomen, Robert P; Merhar, Stephanie L; Kingma, Paul S; Tkach, Jean A; Fain, Sean B; Woods, Jason C

    2017-10-01

    To demonstrate that ultrashort echo time (UTE) magnetic resonance imaging (MRI) can achieve computed tomography (CT)-like quantification of lung parenchyma in free-breathing, non-sedated neonates. Because infant CTs are used sparingly, parenchymal disease evaluation via UTE MRI has potential for translational impact. Two neonatal control cohorts without suspected pulmonary morbidities underwent either a research UTE MRI (n = 5; 1.5T) or a clinically-ordered CT (n = 9). Whole-lung means and anterior-posterior gradients of UTE-measured image intensity (arbitrary units, au, normalized to muscle) and CT-measured density (g/cm 3 ) were compared (Mann-Whitney U-test). Separately, a diseased neonatal cohort (n = 5) with various pulmonary morbidities underwent both UTE MRI and CT. UTE intensity and CT density were compared with Spearman correlations within ∼33 anatomically matched regions of interest (ROIs) in each diseased subject, spanning low- to high-density tissues. Radiological classifications were evaluated in all ROIs, with mean UTE intensities and CT densities compared in each classification. In control subjects, whole-lung UTE intensities (0.51 ± 0.04 au) were similar to CT densities (0.44 ± 0.09 g/cm 3 ) (P = 0.062), as were UTE (0.021 ± 0.020 au/cm) and CT (0.034 ± 0.024 [g/cm 3 ]/cm) anterior-posterior gradients (P = 0.351). In diseased subjects' ROIs, significant correlations were observed between UTE and CT (P ≤0.007 in each case). Relative differences between UTE and CT were small in all classifications (4-25%). These results demonstrate a strong association between UTE image intensity and CT density, both between whole-lung tissue in control patients and regional radiological pathologies in diseased patients. This indicates the potential for UTE MRI to longitudinally evaluate neonatal pulmonary disease and to provide visualization of pathologies similar to CT, without sedation/anesthesia or ionizing radiation

  1. A study of MRI gradient echo signals from discrete magnetic particles with considerations of several parameters in simulations.

    Science.gov (United States)

    Kokeny, Paul; Cheng, Yu-Chung N; Xie, He

    2018-05-01

    Modeling MRI signal behaviors in the presence of discrete magnetic particles is important, as magnetic particles appear in nanoparticle labeled cells, contrast agents, and other biological forms of iron. Currently, many models that take into account the discrete particle nature in a system have been used to predict magnitude signal decays in the form of R2* or R2' from one single voxel. Little work has been done for predicting phase signals. In addition, most calculations of phase signals rely on the assumption that a system containing discrete particles behaves as a continuous medium. In this work, numerical simulations are used to investigate MRI magnitude and phase signals from discrete particles, without diffusion effects. Factors such as particle size, number density, susceptibility, volume fraction, particle arrangements for their randomness, and field of view have been considered in simulations. The results are compared to either a ground truth model, theoretical work based on continuous mediums, or previous literature. Suitable parameters used to model particles in several voxels that lead to acceptable magnetic field distributions around particle surfaces and accurate MR signals are identified. The phase values as a function of echo time from a central voxel filled by particles can be significantly different from those of a continuous cubic medium. However, a completely random distribution of particles can lead to an R2' value which agrees with the prediction from the static dephasing theory. A sphere with a radius of at least 4 grid points used in simulations is found to be acceptable to generate MR signals equivalent from a larger sphere. Increasing number of particles with a fixed volume fraction in simulations reduces the resulting variance in the phase behavior, and converges to almost the same phase value for different particle numbers at each echo time. The variance of phase values is also reduced when increasing the number of particles in a fixed

  2. Diffusion-weighted echo-planar MRI of lacunar infarcts

    International Nuclear Information System (INIS)

    Noguchi, K.; Nagayoshi, T.; Watanabe, N.; Kanazawa, T.; Toyoshima, S.; Morijiri, M.; Shojaku, H.; Shimizu, M.; Seto, H.

    1998-01-01

    We studied 35 patients with lacunar infarcts, using diffusion-weighted echo-planar imaging (DW-EPI) at 1.5 T. The relative apparent diffusion coefficient ratio (ADCR) of each lesion was calculated and lesion conspicuity on DW-EPI was compared to that on images aquired with fast fluid-attenuated inversion recovery and T2-weighted fast spin-echo sequences. Acute small infarcts (within 3 days) were identified with DW-EPI as an area of decreased ADCR (range 0.33-0.87; mean 0.67) and high signal, subacute small infarcts (4-30 days) as a high-signal or isointense areas of decreased or nearly normal ADCR (0.54-0.98; 0.73), and chronic small infarcts (> 30 days) as low- or high-signal areas of nearly normal or increased ADCR (0.97-1.92; 1.32). In three patients, small infarcts of the brain stem in the hyperacute phase (within 6 h) were seen only with DW-EPI. In five patients, fresh small infarcts adjacent to multiple old infarcts could be distinguished only with DW-EPI. (orig.)

  3. High-resolution morphologic and ultrashort time-to-echo quantitative magnetic resonance imaging of the temporomandibular joint

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Won C.; Chang, Eric Y.; Biswas, Reni; Statum, Sheronda; Chung, Christine B. [Veterans Administration San Diego Healthcare System, Department of Radiology, San Diego, CA (United States); University of California, San Diego, School of Medicine, Department of Radiology, San Diego, CA (United States); Tafur, Monica; Du, Jiang; Healey, Robert [University of California, San Diego, School of Medicine, Department of Radiology, San Diego, CA (United States); Kwack, Kyu-Sung [Ajou University Medical Center, Department of Radiology, Wonchon-dong, Yeongtong-gu, Gyeonggi-do, Suwon (Korea, Republic of)

    2016-03-15

    To implement high-resolution morphologic and quantitative magnetic resonance imaging (MRI) of the temporomandibular joint (TMJ) using ultrashort time-to-echo (UTE) techniques in cadavers and volunteers. This study was approved by the institutional review board. TMJs of cadavers and volunteers were imaged on a 3-T MR system. High-resolution morphologic and quantitative sequences using conventional and UTE techniques were performed in cadaveric TMJs. Morphologic and UTE quantitative sequences were performed in asymptomatic and symptomatic volunteers. Morphologic evaluation demonstrated the TMJ structures in open- and closed-mouth position. UTE techniques facilitated the visualization of the disc and fibrocartilage. Quantitative UTE MRI was successfully performed ex vivo and in vivo, reflecting the degree of degeneration. There was a difference in the mean UTE T2* values between asymptomatic and symptomatic volunteers. MRI evaluation of the TMJ using UTE techniques allows characterization of the internal structure and quantification of the MR properties of the disc. Quantitative UTE MRI can be performed in vivo with short scan times. (orig.)

  4. Determination of left ventricular heart volume by fast MRI in breath-hold technique: how different are quantitative ventricular angiography, quantitative MRI, and visual echocardiography?; Linksventrikulaere Herzvoluminabestimmung mittels schneller MRT in Atemanhaltetechnik: Wie unterschiedlich sind quantitativer Herzkatheter, quantitativer MRT und visuelle Echokardiographie?

    Energy Technology Data Exchange (ETDEWEB)

    Rominger, M.B.; Bachmann, G.F. [Giessen Univ. (Germany). Diagnostische Radiologie; Kerckhoff-Klinik GmbH, Bad Nauheim (Germany). Projektgruppe Magnetresonanztomographie; Pabst, W. [Giessen Univ. (Germany). Inst. fuer Medizinische Informatik; Ricken, W.W. [Kerckhoff-Klinik GmbH, Bad Nauheim (Germany). Projektgruppe Magnetresonanztomographie; Dinkel, H.P.; Rau, W.S. [Giessen Univ. (Germany). Diagnostische Radiologie

    2000-01-01

    Goal: Comparison of fast MRI, echocardiography (Echo), and ventricular angiography (Cath) in the assessment of left ventricular global function. Methods: Fast MRI in short axis plane, biplane Cath, and 2D Echo were performed in 62 patients [35 coronary artery diseases, 16 acquired valvular diseases (VD), 9 dilated cardiomyopathies (DCM), 1 congenital heart disease and 1 heart transplantation]. Enddiastolic (EDV), endsystolic (ESV), stroke volumes (SV), cardiac output (CO), and ejection fraction (EF) were compared in MRI and Cath. EF was visually estimated in 2D Echo by an experienced observer. Results: In comparison to MRI, Cath overestimated EF by 8.4%, and Echo underestimated EF by 5.6%. The limits of agreement between MRI and Cath in EF were {+-}23.8%, between MRI and Echo {+-}18%, and between Echo and Cath {+-}19.4%. Significant differences were found between Cath and MRI in EDV, SV, and CO, but not for ESV. The best agreement in EF was found in the group with DCM, the worst in the group with VD. Conclusion: Important systemic and random errors were found in the comparison of MRI, Echo, and Cath. For therapy decision and follow-up, the methods should not be exchanged unscrupulously. (orig.) [German] Ziel: Methodenvergleich von schneller Magnetresonanztomographie (MRT), Echokardiographie (Echo) und Herzkatheter (HK) in der Bestimmung linksventrikulaerer globaler Funktionsparameter. Material und Methoden: Bei 62 Patienten (35 koronare Herzerkrankungen, 16 Herzklappenvitien (KV), 9 idiopathische dilatative Kardiomyopathien (DCM), 1 kongenitale Herzerkrankung und 1 Herzktransplantation) wurde ein Methodenvergleich zwischen schneller Cine MRT im Kurzachsenschnitt, biplanarem HK und 2D Echo durchgefuehrt. Verglichen wurden in MRT und HK linksventrikulaeres enddiastolisches (EDV) und endsystolisches Volumen (ESV), Schlagvolumen (SV), Herzzeitvolumen (HZV) und Ejektionsfraktion (EF). In der Echo wurde die EF visuell durch einen erfahrenen Untersucher bestimmt

  5. The Direct Detection and Characterization of M-dwarf Planets Using Light Echoes

    Science.gov (United States)

    Sparks, William B.; White, Richard L.; Lupu, Roxana E.; Ford, Holland C.

    2018-02-01

    Exoplanets orbiting M-dwarf stars are a prime target in the search for life in the universe. M-dwarf stars are active, with powerful flares that could adversely impact prospects for life, though there are counter-arguments. Here, we turn flaring to advantage and describe ways in which it can be used to enhance the detectability of planets, in the absence of transits or a coronagraph, significantly expanding the accessible discovery and characterization space. Flares produce brief bursts of intense luminosity, after which the star dims. Due to the light travel time between the star and planet, the planet receives the high-intensity pulse, which it re-emits through scattering (a light echo) or intrinsic emission when the star is much fainter, thereby increasing the planet’s detectability. The planet’s light-echo emission can potentially be discriminated from that of the host star by means of a time delay, Doppler shift, spatial shift, and polarization, each of which can improve the contrast of the planet to the star. Scattered light can reveal the albedo spectrum of the planet to within a size scale factor, and is likely to be polarized. Intrinsic emission mechanisms include fluorescent pumping of multiple molecular hydrogen and neutral oxygen lines by intense Lyα and Lyβ flare emission, recombination radiation of ionized and photodissociated species, and atmospheric processes such as terrestrial upper atmosphere airglow and near-infrared hydroxyl emission. We discuss the feasibility of detecting light echoes and find that light echo detection is possible under favorable circumstances.

  6. Evaluation of Sinus/Edge-Corrected Zero-Echo-Time-Based Attenuation Correction in Brain PET/MRI.

    Science.gov (United States)

    Yang, Jaewon; Wiesinger, Florian; Kaushik, Sandeep; Shanbhag, Dattesh; Hope, Thomas A; Larson, Peder E Z; Seo, Youngho

    2017-11-01

    In brain PET/MRI, the major challenge of zero-echo-time (ZTE)-based attenuation correction (ZTAC) is the misclassification of air/tissue/bone mixtures or their boundaries. Our study aimed to evaluate a sinus/edge-corrected (SEC) ZTAC (ZTAC SEC ), relative to an uncorrected (UC) ZTAC (ZTAC UC ) and a CT atlas-based attenuation correction (ATAC). Methods: Whole-body 18 F-FDG PET/MRI scans were obtained for 12 patients after PET/CT scans. Only data acquired at a bed station that included the head were used for this study. Using PET data from PET/MRI, we applied ZTAC UC , ZTAC SEC , ATAC, and reference CT-based attenuation correction (CTAC) to PET attenuation correction. For ZTAC UC , the bias-corrected and normalized ZTE was converted to pseudo-CT with air (-1,000 HU for ZTE 0.75), and bone (-2,000 × [ZTE - 1] + 42 HU for 0.2 ≤ ZTE ≤ 0.75). Afterward, in the pseudo-CT, sinus/edges were automatically estimated as a binary mask through morphologic processing and edge detection. In the binary mask, the overestimated values were rescaled below 42 HU for ZTAC SEC For ATAC, the atlas deformed to MR in-phase was segmented to air, inner air, soft tissue, and continuous bone. For the quantitative evaluation, PET mean uptake values were measured in twenty 1-mL volumes of interest distributed throughout brain tissues. The PET uptake was compared using a paired t test. An error histogram was used to show the distribution of voxel-based PET uptake differences. Results: Compared with CTAC, ZTAC SEC achieved the overall PET quantification accuracy (0.2% ± 2.4%, P = 0.23) similar to CTAC, in comparison with ZTAC UC (5.6% ± 3.5%, P PET quantification in brain PET/MRI, comparable to the accuracy achieved by CTAC, particularly in the cerebellum. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  7. Magnetic resonance imaging (MRI) of articular cartilage of the knee using ultrashort echo time (uTE) sequences with spiral acquisition

    International Nuclear Information System (INIS)

    Goto, Hajimu; Fujii, Masahiko; Iwama, Yuki; Aoyama, Nobukazu; Ohno, Yoshiharu; Sugimura, Kazuro

    2012-01-01

    The objective of this study was to evaluate the sensitivity of ultrashort echo time (uTE) sequence for visualisation of calcified deep layers of articular cartilage. MRI with a uTE sequence was performed on five healthy volunteers. Signals from the calcified deep layers of the articular knee cartilage were evaluated on uTE subtraction images and computed tomography images. The calcified deep layers of the articular cartilage changed from having a low to a high signal when imaged with a uTE sequence. The reported uTE sequence was effective in imaging the deep layers of the knee cartilage.

  8. Dose characterization of the new Bebig IsoSeed'' (registered) I25.S17 using polymer gel and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Pantelis, Evaggelos [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece)]. E-mail: vpantelis@phys.uoa.gr; Baltas, Dimos [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece): Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach, 63069 Offenbach (Germany); Georgiou, Evaggelos [Medical Physics Department, University of Athens, 75 Mikras Asias, 115 27 Athens (Greece); Karaiskos, Pantelis [Medical Physics Department, University of Athens, 75 Mikras Asias, 115 27 Athens (Greece): Medical Physics Department, Hygeia Hospital, Kiffisias Avenue and 4 Erythrou Stavrou, Marousi, 151 23 Athens (Greece); Lymperopoulou, Georgia [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece); Papagiannis, Panagiotis [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece); Sakelliou, Loukas [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece); Seimenis, Ioannis [Philips Hellas Medical Systems, 44 Kifissias Ave., Maroussi 151 25, Athens (Greece); Stilliaris, Efstathios [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece): Institute of Accelerating Systems and Applications (IASA), P.O. Box 17214, GR-10024, Athens (Greece)

    2006-12-20

    A new, molybdenum core, {sup 125}I interstitial brachytherapy seed is marketed by Bebig GmbH (IsoSeed'' (registered) I25.S17) and our group has performed its Dosimetric characterization using Monte Carlo (MC) simulation and Thermoluminescence dosimetry (TLD) as recommended by the AAPM TG-43U1 prior to the clinical implementation of new low-energy seeds. This work presents the results of a supplementary experimental dosimetry study performed using PABIG polymer gel and Magnetic Resonance Imaging (MRI). One new I25.S17 seed and a commercially available, gold core, Bebig IsoSeed'' (registered) I25.S06 {sup 125}I seed were positioned at two different locations in a vial filled with water equivalent, PABIG-polymer gel. The gel with the sources in place was MR scanned in 3D at various time intervals after seed placement using a time efficient, 3D, dual echo Turbo Spin Echo pulse sequence. The consensus dosimetry parameters published in the TG-43U1 for the I25.S06 seed were used to derive the gel response calibration curve for each scanning session. The calibration data were then used to provide dosimetry results for the new I25.S17 seed. Experimental results for the new seed in the form of dose distributions as well as dosimetric quantities in the prevalent TG-43 dosimetric formalism were found to be in close agreement with corresponding MC and TLD results. This finding suggests that the polymer gel-MRI method could at least play a supplementary role to TLD dosimetry in the dose characterization of low energy/low dose rate brachytherapy sources, especially in view of its potential for measurements with a fine spatial resolution down to short distances which are inhibitory to conventional experimental techniques.

  9. Comparative study between MRI and echocardiography in noncompaction of ventricular myocardium

    International Nuclear Information System (INIS)

    Sun Ziyan; Xia Liming; Wang Chengyuan; Rao Jingjing; Shenyu Weihui

    2007-01-01

    Objective: To investigate the MRI and echocardiography manifestations of noncompaction of ventricular myocardium(NVM) and assess the role of MR1 in the diagnosis of NVM by comparing it with echocardiography. Methods: Fourteen cases of NVM diagnosed by echocardiography were examined with MRI, including scanning of black-blood sequences, double inversion recovery fast spin echo (DIBFSE) and triple inversion recovery fast spin echo (TIRFSE), and white blood sequence: fast imaging employ steady state acquisition (FIESTA). Scanning plane includes short axis view, four-chamber view and long axis view. Results: Both MRI and echocardiography displayed involvement of left ventricles in thirteen cases and involvement of double ventricles in one case. Apexes of heart and the intermedius are commonly affected. MRI showed 54 segments and echocardiography showed 53 segments affected, and there is no significant difference between the capability of MRI and echocardiography (P=1,000). The affected myocardium consisted of two layers: subendocardial noncompacted myocardium and epicardial compacted myocardium, and the ratio measurement of N/C by MRI was 3.37±0.89 and it was 3.19±0.82 by echocardiography. Noncompacted myocardium was characterized by prominent and excessive myocardial trabeculations and deep intratrabecular recesses, in which the blood flow was communicated with the ventricle. One case was complicated with ventricular aneurysm, and coronary arteriography was performed with unremarkable findings. One case underwent heart transplantation because of progressive heart failure, Gross findings demonstrated prominent muscular' trabeculations with deep intratrabecular recesses, which coincided well with MRI findings. Conclusion: The MRI manifestation of NVM is characteristic, and MRI with multiple series and planes is helpful in the diagnose of NVM. Compared with echocardiography, MRI could display the pathological cardiac muscle more clearly, because of its high soft

  10. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  11. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2011-02-15

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  12. Partial volume effect in MRI

    International Nuclear Information System (INIS)

    Maeda, Munehiro; Yoshiya, Kazuhiko; Suzuki, Eiji

    1989-01-01

    According to the direction and the thickness of the imaging slice in tomography, the border between the tissues becomes unclear (partial volume effect). In the present MRI experiment, we examined border area between fat and water components using phantom in order to investigate the partial volume effect in MRI. In spin echo sequences, the intensity of the border area showed a linear relationship with composition of fat and water. Whereas, in inversion recovery and field echo sequences, we found the parameters to produce an extremely low intensity area at the border region between fat and water. This low intensity area was explained by cancellation of NMR signals from fat and water due to the difference in the direction of magnetic vectors. Clinically, partial volume effect can cause of mis-evaluation of walls, small nodules, tumor capsules and the tumor invasion in the use of inversion recovery and field echo sequences. (author)

  13. Fast spin echo MRI techniques. Contrast characteristics and clinical potential. Techniques d'IRM en fast spin echo. Caracteristiques de contraste et potentiels cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N. (Harvard Medical School, Boston, MA (United States)); Oshio, K.; Jolesz, F. (Keio Univ., Tokyo (Japan)); Pourcelot, L. (Hopital Bretonneau, 37 - Tours (France)); Einstein, S. (General Electric Medical System, Milwaukee, WI (United States))

    1993-03-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode.

  14. Diagnositc value of 3D-gradient echo dynamic contrast enhanced MRI in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ik; Chung, Soo Young; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Shim, Jeong Won [Hallym Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-10-01

    To assess the usefulness of 3D-gradient echo dynamic contrast enhanced MRI (3D-DMRI) in the diagnosis of breast cancer and to determine the most useful parameter for this diagnosis. Using a 1.0T MR unit, (Magnetom, Siemens, Erlaugen, Germany), 3D-DMRI (TR/TE=3D30/12) with Gd-DTPA was performed in 38 cases of breast cancer, 22 of fibroadenoma, and in three normal volunteers. We retrospectively evaluated the findings according to the speed on dynamic study and maximal amount of contrast enhancement during the delayed phase;we calculated the contrast index and morphology of the cancers and compared diagnostic accuracy among these three diagnostic parameters. On conventional spin-echo T1-and T2-weighted images, there was no significant difference of signal intensity between benign fibroadenoma and breast carcinoma. Rapid contrast enhancement (within one minute) was noted in 35 breast cancer lesions (92.1%), but relatively low and slow contrast enhancement (after five minutes) was noted in three such lesions (7.9%). Gradual contrast enhancement was noted in 21 lesions of fibroadenoma(95.5%), but a moderate degree of rapid contrast enhancement (from three to five minutes) was noted in the other case (7.9%). of On the delayed enhanced phase of 3D-DMRI, the maximal amount of contrast enhancement showed no significant difference between fibroadenoma and cancer. On 3D-DMRI, an irregular, spiculated border, with high contrast enhancement was noted in all cases of breast cancer, in particular, irregular thick peripheral contrast enhancement with central necrosis was noted 11cases(28.9%). For the diagnosis of breast cancer, 3D-DMRI is a useful technique. Among the diagnostic criteria of speed, maximal amount of contrast enhancement and morphology, morphologic change after contrast enhancement study was the most useful diagnostic parameter.=20.

  15. Diagnositc value of 3D-gradient echo dynamic contrast enhanced MRI in breast cancer

    International Nuclear Information System (INIS)

    Yang, Ik; Chung, Soo Young; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Shim, Jeong Won

    1997-01-01

    To assess the usefulness of 3D-gradient echo dynamic contrast enhanced MRI (3D-DMRI) in the diagnosis of breast cancer and to determine the most useful parameter for this diagnosis. Using a 1.0T MR unit, (Magnetom, Siemens, Erlaugen, Germany), 3D-DMRI (TR/TE=3D30/12) with Gd-DTPA was performed in 38 cases of breast cancer, 22 of fibroadenoma, and in three normal volunteers. We retrospectively evaluated the findings according to the speed on dynamic study and maximal amount of contrast enhancement during the delayed phase;we calculated the contrast index and morphology of the cancers and compared diagnostic accuracy among these three diagnostic parameters. On conventional spin-echo T1-and T2-weighted images, there was no significant difference of signal intensity between benign fibroadenoma and breast carcinoma. Rapid contrast enhancement (within one minute) was noted in 35 breast cancer lesions (92.1%), but relatively low and slow contrast enhancement (after five minutes) was noted in three such lesions (7.9%). Gradual contrast enhancement was noted in 21 lesions of fibroadenoma(95.5%), but a moderate degree of rapid contrast enhancement (from three to five minutes) was noted in the other case (7.9%). of On the delayed enhanced phase of 3D-DMRI, the maximal amount of contrast enhancement showed no significant difference between fibroadenoma and cancer. On 3D-DMRI, an irregular, spiculated border, with high contrast enhancement was noted in all cases of breast cancer, in particular, irregular thick peripheral contrast enhancement with central necrosis was noted 11cases(28.9%). For the diagnosis of breast cancer, 3D-DMRI is a useful technique. Among the diagnostic criteria of speed, maximal amount of contrast enhancement and morphology, morphologic change after contrast enhancement study was the most useful diagnostic parameter.=20

  16. Characterization of echoes: A Dyson-series representation of individual pulses

    Science.gov (United States)

    Correia, Miguel R.; Cardoso, Vitor

    2018-04-01

    The ability to detect and scrutinize gravitational waves from the merger and coalescence of compact binaries opens up the possibility to perform tests of fundamental physics. One such test concerns the dark nature of compact objects: are they really black holes? It was recently pointed out that the absence of horizons—while keeping the external geometry very close to that of General Relativity—would manifest itself in a series of echoes in gravitational wave signals. The observation of echoes by LIGO/Virgo or upcoming facilities would likely inform us on quantum gravity effects or unseen types of matter. Detection of such signals is in principle feasible with relatively simple tools but would benefit enormously from accurate templates. Here we analytically individualize each echo waveform and show that it can be written as a Dyson series, for arbitrary effective potential and boundary conditions. We further apply the formalism to explicitly determine the echoes of a simple toy model: the Dirac delta potential. Our results allow to read off a few known features of echoes and may find application in the modeling for data analysis.

  17. Analysis of the acoustic sound in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Tetsuro; Hara, Akira; Kusakari, Jun; Yoshioka, Hiroshi; Niitsu, Mamoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Ase, Yuji

    1999-04-01

    The noise level and power spectra of the acoustic sound exposed during the examination of Magnetic Resonance Imaging (MRI) using a MRI scanner (Philips Gyroscan 1.5 T) were measured at the position of the human auricle. The overall noise levels on T1-weighted images and T2-weighted images with Spin Echo were 105 dB and 98 dB, respectively. The overall noise level on T2-weighted images with Turbo Spin Echo was 110 dB. Fourier analysis revealed energy peaks ranging from 225 to 325 Hz and a steep high frequency cutoff for each pulse sequence. The MRI noise was not likely to cause permanent threshold shift. However, because of the inter-subject variation in susceptibility to acoustic trauma and to exclude the anxiety in patients, ear protectors were recommended for all patients during MRI testing. (author)

  18. Whole brain, high resolution multiband spin-echo EPI fMRI at 7 T: A comparison with gradient-echo EPI using a color-word Stroop task

    NARCIS (Netherlands)

    Boyacioglu, R.; Schulz, J.; Müller, N.C.J.; Koopmans, P.J.; Barth, M.; Norris, David Gordon

    2014-01-01

    A whole brain, multiband spin-echo (SE) echo planar imaging (EPI) sequence employing a high spatial (1.5 mm isotropic) and temporal (TR of 2 s) resolution was implemented at 7 T. Its overall performance (tSNR, sensitivity and CNR) was assessed and compared to a geometrically matched gradient-echo

  19. Value of cardiac MRI for evaluation of chronic Chagas disease cardiomyopathy

    International Nuclear Information System (INIS)

    Lee-Felker, S.A.; Thomas, M.; Felker, E.R.; Traina, M.; Salih, M.; Hernandez, S.; Bradfield, J.; Lee, M.; Meymandi, S.

    2016-01-01

    Aim: To determine whether cardiac magnetic resonance imaging (cMRI) is more sensitive than electrocardiogram (ECG) and echocardiogram (ECHO) for detecting myocardial involvement in a Latin American migrant population with untreated Chagas disease (CD) in the United States. Materials and methods: All untreated CD patients with ECG and ECHO examinations who underwent cMRI at Olive View-UCLA Medical Center from September 2010 to December 2013 (n=81) were analysed in three groups: Group 1, normal ECG and ECHO examinations (n=50); Group 2, abnormal ECG and normal ECHO examinations (n=10); and Group 3, abnormal ECHO examination (n=21). Frequencies of ECG, ECHO, and cMRI findings were compared across groups. Results: Seventy percent (57/81) of the study population was female, with a mean age of 47 years (range, 17–77 years). Twenty-six percent (21/81) had delayed myocardial enhancement (DME), which was most commonly inferolateral in location (27%, 32/117 segments) and transmural in pattern (56%, 65/117 segments). Eight percent (4/50), 30% (3/10), and 67% (14/21) of Groups 1–3, respectively, had DME. Of these individuals with DME, 50% (2/4), 67% (2/3), and 100% (14/14) of Groups 1–3, respectively, also had wall motion abnormality (WMA) on cMRI. In addition to the highest percentages of DME and WMA, Group 3 also had significantly higher mean myocardial mass (p<0.01), mean left ventricular end-diastolic (p<0.01) and end-systolic volumes (p<0.0005), and significantly lower mean left ventricular ejection fraction (p<0.001). Conclusion: cMRI may detect myocardial involvement in untreated CD that is otherwise unrecognised on ECG and ECHO. - Highlights: • Chagas disease (CD) is becoming more common outside Latin America, especially in the United States. • CD is often asymptomatic, with undetected myocardial involvement. • Cardiac magnetic resonance imaging may identify myocardial involvement prior to electrocardiogram and echocardiogram changes. • Early detection

  20. MRI of the cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, H.; Noebauer-Huhmann, I.-M.; Krestan, C.; Gahleitner, A.; Marlovits, S.; Trattnig, S. [Department of Osteology, Universitaetklinik fuer Radiodiagnostik, AKH-Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Sulzbacher, I. [Universitaetsklinik fuer Pathologie Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2002-11-01

    With the introduction of fat-suppressed gradient-echo and fast spin-echo (FSE) sequences in clinical routine MR visualization of the hyaline articular cartilage is routinely possible in the larger joints. While 3D gradient-echo with fat suppression allows exact depiction of the thickness and surface of cartilage, FSE outlines the normal and abnormal internal structures of the hyaline cartilage; therefore, both sequences seem to be necessary in a standard MRI protocol for cartilage visualization. In diagnostically ambiguous cases, in which important therapeutic decisions are required, direct MR arthrography is the established imaging standard as an add-on procedure. Despite the social impact and prevalence, until recent years there was a paucity of knowledge about the pathogenesis of cartilage damage. With the introduction of high-resolution MRI with powerful surface coils and fat-suppression techniques, visualization of the articular cartilage is now routinely possible in many joints. After a short summary of the anatomy and physiology of the hyaline cartilage, the different MR imaging methods are discussed and recommended standards are suggested. (orig.)

  1. Non-contrast 3D black blood MRI for abdominal aortic aneurysm surveillance: comparison with CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chengcheng; Leach, Joseph R.; Hope, Michael D. [University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Tian, Bing; Liu, Qi; Lu, Jianping; Chen, Luguang [Changhai Hospital, Department of Radiology, Shanghai (China); Saloner, David [University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Radiology Service, VA Medical Center, San Francisco, CA (United States)

    2017-05-15

    Management of abdominal aortic aneurysms (AAAs) is based on diameter. CT angiography (CTA) is commonly used, but requires radiation and iodinated contrast. Non-contrast MRI is an appealing alternative that may allow better characterization of intraluminal thrombus (ILT). This study aims to 1) validate non-contrast MRI for measuring AAA diameter, and 2) to assess ILT with CTA and MRI. 28 patients with AAAs (diameter 50.7 ± 12.3 mm) underwent CTA and non-contrast MRI. MRI was acquired at 3 T using 1) a conventional 3D gradient echo (GRE) sequence and 2) a 3D T{sub 1}-weighted black blood fast-spin-echo sequence. Two radiologists independently measured the AAA diameter. The ratio of signal of ILT and adjacent psoas muscle (ILT{sub r} = signal{sub ILT}/signal{sub Muscle}) was quantified. Strong agreement between CTA and non-contrast MRI was shown for AAA diameter (intra-class coefficient > 0.99). Both approaches had excellent inter-observer reproducibility (ICC > 0.99). ILT appeared homogenous on CTA, whereas MRI revealed compositional variations. Patients with AAAs ≥5.5 cm and <5.5 cm had a variety of distributions of old/fresh ILT types. Non-contrast 3D black blood MRI provides accurate and reproducible AAA diameter measurements as validated by CTA. It also provides unique information about ILT composition, which may be linked with elevated risk for disease progression. (orig.)

  2. Non-contrast 3D black blood MRI for abdominal aortic aneurysm surveillance: comparison with CT angiography

    International Nuclear Information System (INIS)

    Zhu, Chengcheng; Leach, Joseph R.; Hope, Michael D.; Tian, Bing; Liu, Qi; Lu, Jianping; Chen, Luguang; Saloner, David

    2017-01-01

    Management of abdominal aortic aneurysms (AAAs) is based on diameter. CT angiography (CTA) is commonly used, but requires radiation and iodinated contrast. Non-contrast MRI is an appealing alternative that may allow better characterization of intraluminal thrombus (ILT). This study aims to 1) validate non-contrast MRI for measuring AAA diameter, and 2) to assess ILT with CTA and MRI. 28 patients with AAAs (diameter 50.7 ± 12.3 mm) underwent CTA and non-contrast MRI. MRI was acquired at 3 T using 1) a conventional 3D gradient echo (GRE) sequence and 2) a 3D T_1-weighted black blood fast-spin-echo sequence. Two radiologists independently measured the AAA diameter. The ratio of signal of ILT and adjacent psoas muscle (ILT_r = signal_I_L_T/signal_M_u_s_c_l_e) was quantified. Strong agreement between CTA and non-contrast MRI was shown for AAA diameter (intra-class coefficient > 0.99). Both approaches had excellent inter-observer reproducibility (ICC > 0.99). ILT appeared homogenous on CTA, whereas MRI revealed compositional variations. Patients with AAAs ≥5.5 cm and <5.5 cm had a variety of distributions of old/fresh ILT types. Non-contrast 3D black blood MRI provides accurate and reproducible AAA diameter measurements as validated by CTA. It also provides unique information about ILT composition, which may be linked with elevated risk for disease progression. (orig.)

  3. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom.

    Science.gov (United States)

    Jiang, Yun; Ma, Dan; Keenan, Kathryn E; Stupic, Karl F; Gulani, Vikas; Griswold, Mark A

    2017-10-01

    The purpose of this study was to evaluate accuracy and repeatability of T 1 and T 2 estimates of a MR fingerprinting (MRF) method using the ISMRM/NIST MRI system phantom. The ISMRM/NIST MRI system phantom contains multiple compartments with standardized T 1 , T 2 , and proton density values. Conventional inversion-recovery spin echo and spin echo methods were used to characterize the T 1 and T 2 values in the phantom. The phantom was scanned using the MRF-FISP method over 34 consecutive days. The mean T 1 and T 2 values were compared with the values from the spin echo methods. The repeatability was characterized as the coefficient of variation of the measurements over 34 days. T 1 and T 2 values from MRF-FISP over 34 days showed a strong linear correlation with the measurements from the spin echo methods (R 2  = 0.999 for T 1 ; R 2  = 0.996 for T 2 ). The MRF estimates over the wide ranges of T 1 and T 2 values have less than 5% variation, except for the shortest T 2 relaxation times where the method still maintains less than 8% variation. MRF measurements of T 1 and T 2 are highly repeatable over time and across wide ranges of T 1 and T 2 values. Magn Reson Med 78:1452-1457, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Technical Assessment of Artifact Production from Neuro Endovascular Coil At 3 Tesla MRI: An In Vitro Study

    International Nuclear Information System (INIS)

    Kampaengtip, A.; Krisanachinda, A.; Singhara Na Ayudya, S.; Asavaphatiboon, S.

    2012-01-01

    Introduction: Magnetic resonance imaging (MRI) is an essential part of the diagnostic procedures in radiology. MRI 3 Tesla becomes more widespread due to high signal to noise ratio (SNR). The use of the neuro endovascular coil to overcome the neuro aneurysm can introduce the artifact in magnetic resonance imaging. Susceptibility artifacts and geometric distortions caused by magnetic field inhomogeneity- related signal loss is used to refer to an artifact in magnetic resonance images. It consists of a region of signal void with a surrounding area of an increased signal intensity that appears to be considerably larger than the actual size of the device causing the artifact. The objective of the study is to compare the size of the artifact on the MR image to the actual size of endovascular coils using a 3 Tesla magnetic resonance imaging system, in vitro study. Methods: The endovascular coils were made from detachable platinum and aneurysm models were constructed by using silicone tube. MRI 3 Tesla Philips Model Achieva with pulse sequence selections were: spin echo, fast spin echo, inversion recovery, fast gradient echo while additional parameters were echo time and turbo factor. Results: Improved visualization of perianeurysmal soft tissues is best accomplished by spin echo for fast spin echo sequences, even better suited to reduce metal artifact. Furthermore, shorter turbo factor and shorter effective TE in the latter sequences are beneficial for the same reason as sequences having shorter TE. Sequences with a shorter TE are preferred because of less time for dephasing and frequency shifting. Imaging at gradient echo series increases susceptibility artifacts. In this in vitro study, some of the major characteristics related to MRI imaging of coil packs have been defined. Discussion: Pulse sequence spin echo is the best sequence reducing the susceptibility artifact. Reducing the TE is the main factor in improving endovascular coil visualization on MRI images. The

  5. Fat-saturated, contrast-enhanced spin echo sequences in magnetic resonance tomographic diagnosis of peritoneal carcinosis

    International Nuclear Information System (INIS)

    Ricke, J.; Hosten, N.; Stroszczynski, C.; Amthauer, H.; Felix, R.; Sehouli, J.; Buchmann, E.; Rieger, J.

    1999-01-01

    Purpose: To evaluate contrast-enhanced, fat-saturated spin echo sequences for the detection of peritoneal carcinosis with MRI. Material and Methods: 61 patients, 35 with and 26 without peritoneal carcinosis, were examined with abdominal MRI. Fat-saturated, T 1 -weighted spin echo sequences were performed before and after administration of Gd-DTPA. In addition, 22 patients with peritoneal carcinosis were examined with contrast-enhanced abdominal CT. Results: 32 of 35 patients with peritoneal carcinosis demonstrated contrast enhancement of the visceral and 30 to 35 enhancement of the parietal peritoneum (91 and 86%, respectively). Wall thickening of the intestine or parietal peritoneum were noted in 21 and 20 of 35 patients (60 and 57%, respectively), ascites in 18 of 35 patients (51%). False positive contrast enhancement of the peritoneum was noted in 4 of 26 patients (15%). In the direct comparison of MRI and CT, 22 of 22 patients versus 7 of 22 patients showed contrast enhancement of the visceral peritoneum (100 and 32%, respectively). For other signs of peritoneal carcinosis (e.g., ascites, peritoneal seedings), no differences in diagnostic reliability were demonstrated. Conclusions: The use of fat-saturated, spin echo sequences facilitates the diagnosis of peritoneal carcinosis by artifact reduction and improved detection of peritoneal contrast enhancement. MRI with fat-saturated sequences was superior to CT. (orig.) [de

  6. TMJ disorders and pain: Assessment by contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Farina, Davide; Bodin, Christiane; Gandolfi, Silvia; De Gasperi, Werner; Borghesi, Andrea; Maroldi, Roberto

    2009-01-01

    Though magnetic resonance (MRI) is a widely accepted standard for the assessment of patients with temporomandibular joint (TMJ) disorders, efforts to correlate symptoms to MRI findings have often given controversial results. Aim of this study was to investigate the correlation between TMJ pain and findings of contrast-enhanced MRI. Thirty-eight consecutive patients with TMJ dysfunction syndrome (study group) were examined with MRI. Protocol included T2 turbo spin-echo sequence, T1 spin-echo sequence, and T2 gradient-echo (acquired with closed jaw, at intermediate and maximal opening). Post-contrast phase was obtained through a fat sat 3D T1 gradient-echo sequence (VIBE). Post-contrast findings in the study group were matched with those obtained in a control group of 33 patients submitted to MRI of the paranasal sinuses. Statistically significant difference was found between condylar medullary bone enhancement in painful TMJ, in painless TMJ and control group. In addition the average thickness of joint soft tissue enhancement in painful TMJ was superior to painless TMJ (p < 0.0001) and to control group. On multivariate logistic regression analysis, the odds ratio that a painful TMJ showed disk displacement, osteoarthrosis, effusion and JST enhancement were 3.05, 3.18, 1.2 and 11.36, respectively. Though not histologically proven, TMJ enhancement could reflect the presence of inflammation in painful joints. Furthermore, the administration of contrast could be of help for the assessment of patients with orofacial pain, particularly when clinical exploration is insufficient to ascribe the pain to TMJ.

  7. TMJ disorders and pain: Assessment by contrast-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Davide [Department of Radiology (School of Medicine), University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia (Italy); Bodin, Christiane [Division of Gnathology (School of Dentistry), University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia (Italy); Gandolfi, Silvia [Department of Radiology (School of Medicine), University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia (Italy); De Gasperi, Werner [Division of Gnathology (School of Dentistry), University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia (Italy); Borghesi, Andrea; Maroldi, Roberto [Department of Radiology (School of Medicine), University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia (Italy)

    2009-04-15

    Though magnetic resonance (MRI) is a widely accepted standard for the assessment of patients with temporomandibular joint (TMJ) disorders, efforts to correlate symptoms to MRI findings have often given controversial results. Aim of this study was to investigate the correlation between TMJ pain and findings of contrast-enhanced MRI. Thirty-eight consecutive patients with TMJ dysfunction syndrome (study group) were examined with MRI. Protocol included T2 turbo spin-echo sequence, T1 spin-echo sequence, and T2 gradient-echo (acquired with closed jaw, at intermediate and maximal opening). Post-contrast phase was obtained through a fat sat 3D T1 gradient-echo sequence (VIBE). Post-contrast findings in the study group were matched with those obtained in a control group of 33 patients submitted to MRI of the paranasal sinuses. Statistically significant difference was found between condylar medullary bone enhancement in painful TMJ, in painless TMJ and control group. In addition the average thickness of joint soft tissue enhancement in painful TMJ was superior to painless TMJ (p < 0.0001) and to control group. On multivariate logistic regression analysis, the odds ratio that a painful TMJ showed disk displacement, osteoarthrosis, effusion and JST enhancement were 3.05, 3.18, 1.2 and 11.36, respectively. Though not histologically proven, TMJ enhancement could reflect the presence of inflammation in painful joints. Furthermore, the administration of contrast could be of help for the assessment of patients with orofacial pain, particularly when clinical exploration is insufficient to ascribe the pain to TMJ.

  8. Cine MRI of dissecting aneurysm

    International Nuclear Information System (INIS)

    Takaki, Hajime

    1991-01-01

    Cine MRI was performed in 25 cases of aortic dissection and comparative study among cine MRI, spin-echo static MRI, contrast-enhanced CT and intravenous digital subtraction angiography (IVDSA) was made. Cine MRI accurately detected aortic dissection. It was most accurate among various diagnostic methods in demonstration of entry site of dissection. Take-off of renal artery and its relation to true and false channels was also accurately demonstrated by cine MRI. The above results suggest that cine MRI can be an important diagnostic modality with almost equal diagnostic quality to those of conventional angiography. However, further technical improvement to shorten the imaging time seems necessary to replace angiography. (author)

  9. Normal range of hepatic fat fraction on dual- and triple-echo fat quantification MR in children.

    Science.gov (United States)

    Shin, Hyun Joo; Kim, Hyun Gi; Kim, Myung-Joon; Koh, Hong; Kim, Ha Yan; Roh, Yun Ho; Lee, Mi-Jung

    2015-01-01

    To evaluate hepatic fat fraction on dual- and triple-echo gradient-recalled echo MRI sequences in healthy children. We retrospectively reviewed the records of children in a medical check-up clinic from May 2012 to November 2013. We excluded children with abnormal laboratory findings or those who were overweight. Hepatic fat fraction was measured on dual- and triple-echo sequences using 3T MRI. We compared fat fractions using the Wilcoxon signed rank test and the Bland-Altman 95% limits of agreement. The correlation between fat fractions and clinical and laboratory findings was evaluated using Spearman's correlation test, and the cut-off values of fat fractions for diagnosing fatty liver were obtained from reference intervals. In 54 children (M:F = 26:28; 5-15 years; mean 9 years), the dual fat fraction (0.1-8.0%; median 1.6%) was not different from the triple fat fraction (0.4-6.5%; median 2.7%) (p = 0.010). The dual- and triple-echo fat fractions showed good agreement using a Bland-Altman plot (-0.6 ± 2.8%). Eight children (14.8%) on dual-echo sequences and six (11.1%) on triple-echo sequences had greater than 5% fat fraction. From these children, six out of eight children on dual-echo sequences and four out of six children on triple-echo sequences had a 5-6% hepatic fat fraction. When using a cut-off value of a 6% fat fraction derived from a reference interval, only 3.7% of children were diagnosed with fatty liver. There was no significant correlation between clinical and laboratory findings with dual and triple-echo fat fractions. Dual fat fraction was not different from triple fat fraction. We suggest a cut-off value of a 6% fat fraction is more appropriate for diagnosing fatty liver on both dual- and triple-echo sequences in children.

  10. Contrast-enhanced dynamic MR imaging of parasellar tumor using fast spin-echo sequence

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Ohue, Shiro; Ichikawa, Haruhisa; Saito, Masahiro; Sadamoto, Kazuhiko; Sakaki, Saburo; Miki, Hitoshi.

    1995-01-01

    We have applied a new dynamic MRI technique that uses a fast spin-echo sequence to parasellar tumors. This sequence has less susceptible effect and better spatial resolution than a gradient echo sequence, providing faster images than a short spin-echo sequence does. Image was obtained in the coronal or sagittal plane using a 1.5T clinical MRI system, and then, dynamic MR images were acquired every 10 to 20 sec after administration of Gd-DTPA (0.1 mmol/kg). The subjects were 12 patients (5 microadenomas, 5 macroadenomas and 2 Rathke's cleft cysts) and 5 normal volunteers. As for volunteers, the cavernous sinus, pituitary stalk and posterior pituitary gland were contrasted on the first image, followed by visualization of the proximal portion adjacent to the junction of the infundibulum and the anterior pituitary gland, and finally by contrasting the distal portion of the anterior pituitary gland. There was a difference with respect to tumor contrast between microadenomas and macroadenomas. In the case of the macroadenomas, the tumor was contrasted at the same time as, or faster than the anterior pituitary gland, while with the microadenomas the tumor was enhanced later than the anterior pituitary gland. No enhancement with contrast medium was seen in Rathke's cleft cysts. In addition, it was possible to differentiate a recurrent tumor from a piece of muscle placed at surgery since the images obtained by the fast spin-echo sequence were clearer than those obtained by gradient echo sequence. (author)

  11. Inter- and intra-rater reliability of patellofemoral kinematic and contact area quantification by fast spin echo MRI and correlation with cartilage health by quantitative T1ρ MRI.

    Science.gov (United States)

    Lau, Brian C; Thuillier, Daniel U; Pedoia, Valentina; Chen, Ellison Y; Zhang, Zhihong; Feeley, Brian T; Souza, Richard B

    2016-01-01

    Patellar maltracking is a leading cause of patellofemoral pain syndrome (PFPS). The aim of this study was to determine the inter- and intra-rater reliability of a semi-automated program for magnetic resonance imaging (MRI) based patellofemoral kinematics. Sixteen subjects (10 with PFPS [mean age 32.3; SD 5.2; eight females] and six controls without PFPS 19 [mean age 28.6; SD 2.8; three females]) participated in the study. One set of T2-weighted, fat-saturated fast spin-echo (FSE) MRIs were acquired from each subject in full extension and 30° of knee flexion. MRI including axial T1ρ relaxation time mapping sequences was also performed on each knee. Following image acquisitions, regions of interest for kinematic MRI, and patellar and trochlear cartilage were segmented and quantified with in-house designed spline- based MATLAB semi-automated software. Intraclass Correlations Coefficients (ICC) of calculated kinematic parameters were good to excellent, ICC > 0.8 in patellar flexion, rotation, tilt, and translation (anterior -posterior, medial -lateral, and superior -inferior), and contact area translation. Only patellar tilt in the flexed position and motion from extended to flexed state was significantly different between PFPS and control patients (p=0.002 and p=0.006, respectively). No significant correlations were identified between patellofemoral kinematics and contact area with T1ρ relaxation times. A semi-automated, spline-based kinematic MRI technique for patellofemoral kinematic and contact area quantification is highly reproducible with the potential to help better understand the role of patellofemoral maltracking in PFPS and other knee disorders. Level IV. Published by Elsevier B.V.

  12. An analysis of the uncertainty and bias in DCE-MRI measurements using the spoiled gradient-recalled echo pulse sequence

    International Nuclear Information System (INIS)

    Subashi, Ergys; Choudhury, Kingshuk R.; Johnson, G. Allan

    2014-01-01

    Purpose: The pharmacokinetic parameters derived from dynamic contrast-enhanced (DCE) MRI have been used in more than 100 phase I trials and investigator led studies. A comparison of the absolute values of these quantities requires an estimation of their respective probability distribution function (PDF). The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. Methods: The variance in the SPGR signal intensity arises from quadrature detection and excitation flip angle inconsistency. The noise power was measured in 11 phantoms of contrast agent concentration in the range [0–1] mM (in steps of 0.1 mM) and in onein vivo acquisition of a tumor-bearing mouse. The distribution of the flip angle was determined in a uniform 10 mM CuSO 4 phantom using the spin echo double angle method. The PDF of a wide range of T1 values measured with the varying flip angle (VFA) technique was estimated through numerical simulations of the SPGR equation. The resultant uncertainty in contrast agent concentration was incorporated in the most common model of tracer exchange kinetics and the PDF of the derived pharmacokinetic parameters was studied numerically. Results: The VFA method is an unbiased technique for measuringT1 only in the absence of bias in excitation flip angle. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted uncertainty. The uncertainty in measuring K trans with SPGR pulse sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time (T1 0 ). The lowest achievable bias/uncertainty in estimating this parameter is approximately 20%–70% higher than the bias/uncertainty in the measurement of the pre-injection T1 map. The fractional volume parameters derived from the extended Tofts model were found to be

  13. Neonatal Pulmonary MRI of Bronchopulmonary Dysplasia Predicts Short-term Clinical Outcomes.

    Science.gov (United States)

    Higano, Nara S; Spielberg, David R; Fleck, Robert J; Schapiro, Andrew H; Walkup, Laura L; Hahn, Andrew D; Tkach, Jean A; Kingma, Paul S; Merhar, Stephanie L; Fain, Sean B; Woods, Jason C

    2018-05-23

    Bronchopulmonary dysplasia (BPD) is a serious neonatal pulmonary condition associated with premature birth, but the underlying parenchymal disease and trajectory are poorly characterized. The current NICHD/NHLBI definition of BPD severity is based on degree of prematurity and extent of oxygen requirement. However, no clear link exists between initial diagnosis and clinical outcomes. We hypothesized that magnetic resonance imaging (MRI) of structural parenchymal abnormalities will correlate with NICHD-defined BPD disease severity and predict short-term respiratory outcomes. Forty-two neonates (20 severe BPD, 6 moderate, 7 mild, 9 non-BPD controls; 40±3 weeks post-menstrual age) underwent quiet-breathing structural pulmonary MRI (ultrashort echo-time and gradient echo) in a NICU-sited, neonatal-sized 1.5T scanner, without sedation or respiratory support unless already clinically prescribed. Disease severity was scored independently by two radiologists. Mean scores were compared to clinical severity and short-term respiratory outcomes. Outcomes were predicted using univariate and multivariable models including clinical data and scores. MRI scores significantly correlated with severities and predicted respiratory support at NICU discharge (P<0.0001). In multivariable models, MRI scores were by far the strongest predictor of respiratory support duration over clinical data, including birth weight and gestational age. Notably, NICHD severity level was not predictive of discharge support. Quiet-breathing neonatal pulmonary MRI can independently assess structural abnormalities of BPD, describe disease severity, and predict short-term outcomes more accurately than any individual standard clinical measure. Importantly, this non-ionizing technique can be implemented to phenotype disease and has potential to serially assess efficacy of individualized therapies.

  14. High signal intensity of fat on fast spin echo imaging

    International Nuclear Information System (INIS)

    Ogura, Akio; Yamazaki, Masaru; Hongoh, Takaharu; Inoue, Hiroshi; Ishikuro, Akihiro

    2000-01-01

    The fast spin echo (FSE) technique of producing T 2 -weighted images in greatly reduced imaging times has recently been used for routine clinical study. FSE images show contrast that is very similar in most tissues to that of conventional SE images. However, fat shows a high signal intensity that is influenced by j-coupling and the magnetization transfer effect. The purpose of this study was to assess whether the higher signal intensity of fat is different among MRI systems and to examine the effects of j-coupling and magnetization transfer on the high signal intensity of fat on FSE. The contrast in signal intensity between fat and water was measured for various echo train lengths (ETL) with and without multislicing on FSE using a contrast phantom. Measurements were obtained with four different MRI systems. In addition, the effective T 2 values of fat were calculated for the above conditions. Results indicated that contrast for fat and water was reduced with increased ETL and by using multislicing and was different among the four MRI systems. The effective T 2 values of fat were extended for increased ETL and were not dependent on multislicing. They also differed among the four MRI systems. The extent of effective T 2 values was affected by j-coupling. In this study, it was indicated that the degree of the high signal intensity of fat on FSE differed for different MRI systems. In addition, the reasons for the high signal intensity of fat on FSE were related to the effects of j-coupling and magnetization transfer. (author)

  15. Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging

    Directory of Open Access Journals (Sweden)

    Fabio Baselice

    2014-01-01

    Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.

  16. Magnetic resonance imaging of the triangular fibrocartilage complex. Usefulness of the fat suppression MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Toshiyasu [Fujita Health Univ., Nagoya (Japan). Second Hospital; Yabe, Yutaka; Horiuchi, Yukio; Kikuchi, Yoshito; Makita, Satoo

    1996-08-01

    Advances in magnetic resonance imaging (MRI) now allow for the visualization of small structures, such as the triangular fibrocartilage complex (TFCC) of the wrist. Recent investigators suggested that MRI is useful in delineation of the TFCC itself and its abnormality, and supported that diagnostic value of MRI for the TFCC tears is almost equal to those of arthrography and arthroscopy. In contrast, there were several reports that representation of the TFCC in MRI was less worth than in arthrography. Further, it was reported that MRI was not useful because abnormal findings existed at normal volunteers` wrists. Recent development of the pulse sequence is remarkable, such as gradient echo, fast spin echo and fat suppression method. However, as the previous MR studies of the TFCC mainly using conventional spin echo pulse sequence, there were a few comparison of each pulse sequence and we do not know how each pulse sequence delineates the TFCC. Therefore, we studied MRI of the TFCC using several pulse sequence in normal volunteers, and compared MR slices of the TFCC with corresponding histological sections to evaluate shape detectability of MRI. (J.P.N.)

  17. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chandarana, Hersh; Block, Kai T.; Winfeld, Matthew J.; Lala, Shailee V.; Mazori, Daniel; Giuffrida, Emalyn; Babb, James S.; Milla, Sarah S. [New York University Langone Medical Center, Department of Radiology, New York, NY (United States)

    2014-02-15

    To compare the image quality of contrast-enhanced abdominopelvic 3D fat-suppressed T1-weighted gradient-echo imaging with radial and conventional Cartesian k-space acquisition schemes in paediatric patients. Seventy-three consecutive paediatric patients were imaged at 1.5 T with sequential contrast-enhanced T1-weighted Cartesian (VIBE) and radial gradient echo (GRE) acquisition schemes with matching parameters when possible. Cartesian VIBE was acquired as a breath-hold or as free breathing in patients who could not suspend respiration, followed by free-breathing radial GRE in all patients. Two paediatric radiologists blinded to the acquisition schemes evaluated multiple parameters of image quality on a five-point scale, with higher score indicating a more optimal examination. Lesion presence or absence, conspicuity and edge sharpness were also evaluated. Mixed-model analysis of variance was performed to compare radial GRE and Cartesian VIBE. Radial GRE had significantly (all P < 0.001) higher scores for overall image quality, hepatic edge sharpness, hepatic vessel clarity and respiratory motion robustness than Cartesian VIBE. More lesions were detected on radial GRE by both readers than on Cartesian VIBE, with significantly higher scores for lesion conspicuity and edge sharpness (all P < 0.001). Radial GRE has better image quality and lesion conspicuity than conventional Cartesian VIBE in paediatric patients undergoing contrast-enhanced abdominopelvic MRI. (orig.)

  18. BOLD contrast fMRI of whole rodent tumour during air or carbogen breathing using echo-planar imaging at 1.5 T

    International Nuclear Information System (INIS)

    Landuyt, W.; Bogaert, W. van den; Lambin, P.; Hermans, R.; Bosmans, H.; Sunaert, S.; Beatse, E.; Farina, D.; Meijerink, M.; Zhang, H.; Marchal, G.

    2001-01-01

    The aim of this study was to evaluate the feasibility of functional MR imaging (fMRI) at 1.5 T, exploiting blood oxygenation level-dependent (BOLD) contrast, for detecting changes in whole-tumour oxygenation induced by carbogen (5% CO 2 +95% O 2 ) inhalation of the host. Adult WAG/Rij rats with rhabdomyosarcomas growing subcutaneously in the lower flank were imaged when tumours reached sizes between 1 and 11 cm 3 (n=12). Air and carbogen were alternatively supplied at 2 l/min using a snout mask. Imaging was done on a 1.5-T MR scanner using a T2*-weighted gradient-echo, echo-planar imaging (GE-EPI) sequence. Analysis of the whole-tumour EPI images was based on statistical parametric maps. Voxels with and without signal intensity changes (SIC) were recorded. Significance thresholds were set at p<0.05, corrected for multiple comparisons. In continuous air breathing condition, 3 of 12 tumours showed significant negative SIC and 1 tumour had a clear-cut positive SIC. The remaining tumours showed very little or no change. When switching to carbogen breathing, the SIC were significantly positive in 10 of 12 tumours. Negative SIC were present in 4 tumours, of which three were simultaneously characterised by positive SIC. The overall analysis indicated that 6 of the 12 tumours could be considered as strong positive responders to carbogen. Our research demonstrates the applicability of fMRI GE-EPI at 1.5 T to study whole-tumour oxygenation non-invasively. The observed negative SIC during air condition may reflect the presence of transient hypoxia during these measurements. Selection of tumours on the basis of their individual response to carbogen is possible, indicating a role of such non-invasive measurements for using tailor-made treatments. (orig.)

  19. Placenta accreta: MRI antenatal diagnosis and surgical correlation.

    Science.gov (United States)

    Ha, T P; Li, K C

    1998-01-01

    We describe a case of a placenta previa accreta that was diagnosed antenatally by MRI with subsequent surgical confirmation. We show the advantages of ultrafast MRI single shot (SS) fast spin echo (FSE) techniques for accurate diagnosis with minimal scan time and fetal motion artifacts.

  20. Magnetic resonance imaging of the sacroiliac joints in patients with suspected spondyloarthritis. Comparison of turbo spin-echo and gradient-echo sequences for the detection of structural alterations

    International Nuclear Information System (INIS)

    Dornia, C.; Hoffstetter, P.; Asklepios Klinikum, Bad Abbach; Fleck, M.; Asklepios Klinikum, Bad Abbach; Hartung, W.; Niessen, C.; Stroszczynski, C.

    2015-01-01

    Magnetic resonance imaging (MRI) is the method of choice for the evaluation of spondyloarthritis (SpA). According to the guidelines of the Assessment of Spondyloarthritis International Society (ASAS) and Outcome Measures in Rheumatology (OMERACT), MRI findings in SpA of the spine and the sacroiliac joints (SIJ) are classified as inflammatory and structural alterations. Modern gradient-echo sequences (GRE) are recommended for optimized detection of structural alterations of the SIJ. We assess the benefit of GRE in the detection of structural alterations of the SIJ in comparison to conventional turbo spin-echo sequences (TSE). Retrospective study of 114 patients who received MRI of the SIJ for the evaluation of SpA. Structural alterations of the SIJ were assessed by two blinded readers separately for T1 TSE and T2 * GRE. The findings were classified according to a previously published chronicity score separately for both sides and sequences. Interobserver reliability was calculated with Cohen's Kappa, and the significance of findings was assessed with the Wilcoxon test. P-values * GRE showed a high interobserver reliability in the detection of structural alterations in patients with SpA. However, T2 * GRE detected significantly more structural alterations than T1 TSE and should be an integral part of a modern MRI protocol for the diagnostic workup of patients with suspected SpA.

  1. MRI in head trauma

    International Nuclear Information System (INIS)

    Hong, Jin Kyo

    1986-01-01

    In the diagnosis of head injury, Magnetic Resonance Imaging (MRI), like CT, is an effective method of distinguishing between intracerebral and extracerebral lesions. In our experience of MRI, early hematomas are almost isointense by Saturation Recovery (SR) method, so these must be performed with Spin Echo (SE) method for better visualization of hematomas. Isodense subdural hematomas, which is a diagnostic dilemma on CT images, are clearly seen on MRI. Delayed hematomas or residual parenchymal lesions are better demonstrated on MRI than on CT. Direct cornal, sagittal images and multiplanar facility of MRI provides excellent visualization of the the location and shape of extracerebral collection of hematoma. For the screening of head traumas, SE method is a technique of choice because of its excellent sensitivity within limited time.

  2. MRI in head trauma

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Kyo [Shin Wha Hospital, Seoul (Korea, Republic of)

    1986-02-15

    In the diagnosis of head injury, Magnetic Resonance Imaging (MRI), like CT, is an effective method of distinguishing between intracerebral and extracerebral lesions. In our experience of MRI, early hematomas are almost isointense by Saturation Recovery (SR) method, so these must be performed with Spin Echo (SE) method for better visualization of hematomas. Isodense subdural hematomas, which is a diagnostic dilemma on CT images, are clearly seen on MRI. Delayed hematomas or residual parenchymal lesions are better demonstrated on MRI than on CT. Direct cornal, sagittal images and multiplanar facility of MRI provides excellent visualization of the the location and shape of extracerebral collection of hematoma. For the screening of head traumas, SE method is a technique of choice because of its excellent sensitivity within limited time.

  3. Quantification of liver iron concentration with magnetic resonance imaging by combining T1-, T2-weighted spin echo sequences and a gradient echo sequence

    NARCIS (Netherlands)

    Kreeftenberg, HG; Mooyaart, EL; Sluiter, WJ; Kreeftenberg, HG; Huizenga, Reint

    Background: The aim of the study was to quantify hepatic iron by MRI for practical use. Methods: In twenty-three patients with various degrees of iron overload, measurements were carried out with a 1.5 Tesla MR unit. A combination of pulse sequences (T1, T2 and gradient echo) enabled us to quantify

  4. An MRI system for imaging neonates in the NICU: initial feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tkach, Jean A.; Loew, Wolfgang; Pratt, Ron G.; Daniels, Barret R.; Giaquinto, Randy O.; Winter, Patrick M.; Li, Yu; Dumoulin, Charles L. [Cincinnati Children' s Hospital Medical Center, Imaging Research Center, Department of Radiology, Cincinnati, OH (United States); Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Hillman, Noah H.; Jobe, Alan H.; Kallapur, Suhas G.; Merhar, Stephanie L.; Ikegami, Machiko; Whitsett, Jeffrey A. [Perinatal Institute, Cincinnati Children' s Hospital Medical Center, Division of Neonatology and Pulmonary Biology, Cincinnati, OH (United States); Kline-Fath, Beth M. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2012-11-15

    Transporting premature infants from a neonatal intensive care unit (NICU) to a radiology department for MRI has medical risks and logistical challenges. To develop a small 1.5-T MRI system for neonatal imaging that can be easily installed in the NICU and to evaluate its performance using a sheep model of human prematurity. A 1.5-T MRI system designed for orthopedic use was adapted for neonatal imaging. The system was used for MRI examinations of the brain, chest and abdomen in 12 premature lambs during the first hours of life. Spin-echo, fast spin-echo and gradient-echo MR images were evaluated by two pediatric radiologists. All animals remained physiologically stable throughout the imaging sessions. Animals were imaged at two or three time points. Seven brain MRI examinations were performed in seven different animals, 23 chest examinations in 12 animals and 19 abdominal examinations in 11 animals. At each anatomical location, high-quality images demonstrating good spatial resolution, signal-to-noise ratio and tissue contrast were routinely obtained within 30 min using standard clinical protocols. Our preliminary experience demonstrates the feasibility and potential of the neonatal MRI system to provide state-of-the-art MRI capabilities within the NICU. Advantages include overall reduced cost and site demands, lower acoustic noise, improved ease of access and reduced medical risk to the neonate. (orig.)

  5. An MRI system for imaging neonates in the NICU: initial feasibility study

    International Nuclear Information System (INIS)

    Tkach, Jean A.; Loew, Wolfgang; Pratt, Ron G.; Daniels, Barret R.; Giaquinto, Randy O.; Winter, Patrick M.; Li, Yu; Dumoulin, Charles L.; Hillman, Noah H.; Jobe, Alan H.; Kallapur, Suhas G.; Merhar, Stephanie L.; Ikegami, Machiko; Whitsett, Jeffrey A.; Kline-Fath, Beth M.

    2012-01-01

    Transporting premature infants from a neonatal intensive care unit (NICU) to a radiology department for MRI has medical risks and logistical challenges. To develop a small 1.5-T MRI system for neonatal imaging that can be easily installed in the NICU and to evaluate its performance using a sheep model of human prematurity. A 1.5-T MRI system designed for orthopedic use was adapted for neonatal imaging. The system was used for MRI examinations of the brain, chest and abdomen in 12 premature lambs during the first hours of life. Spin-echo, fast spin-echo and gradient-echo MR images were evaluated by two pediatric radiologists. All animals remained physiologically stable throughout the imaging sessions. Animals were imaged at two or three time points. Seven brain MRI examinations were performed in seven different animals, 23 chest examinations in 12 animals and 19 abdominal examinations in 11 animals. At each anatomical location, high-quality images demonstrating good spatial resolution, signal-to-noise ratio and tissue contrast were routinely obtained within 30 min using standard clinical protocols. Our preliminary experience demonstrates the feasibility and potential of the neonatal MRI system to provide state-of-the-art MRI capabilities within the NICU. Advantages include overall reduced cost and site demands, lower acoustic noise, improved ease of access and reduced medical risk to the neonate. (orig.)

  6. An MRI system for imaging neonates in the NICU: initial feasibility study.

    Science.gov (United States)

    Tkach, Jean A; Hillman, Noah H; Jobe, Alan H; Loew, Wolfgang; Pratt, Ron G; Daniels, Barret R; Kallapur, Suhas G; Kline-Fath, Beth M; Merhar, Stephanie L; Giaquinto, Randy O; Winter, Patrick M; Li, Yu; Ikegami, Machiko; Whitsett, Jeffrey A; Dumoulin, Charles L

    2012-11-01

    Transporting premature infants from a neonatal intensive care unit (NICU) to a radiology department for MRI has medical risks and logistical challenges. To develop a small 1.5-T MRI system for neonatal imaging that can be easily installed in the NICU and to evaluate its performance using a sheep model of human prematurity. A 1.5-T MRI system designed for orthopedic use was adapted for neonatal imaging. The system was used for MRI examinations of the brain, chest and abdomen in 12 premature lambs during the first hours of life. Spin-echo, fast spin-echo and gradient-echo MR images were evaluated by two pediatric radiologists. All animals remained physiologically stable throughout the imaging sessions. Animals were imaged at two or three time points. Seven brain MRI examinations were performed in seven different animals, 23 chest examinations in 12 animals and 19 abdominal examinations in 11 animals. At each anatomical location, high-quality images demonstrating good spatial resolution, signal-to-noise ratio and tissue contrast were routinely obtained within 30 min using standard clinical protocols. Our preliminary experience demonstrates the feasibility and potential of the neonatal MRI system to provide state-of-the-art MRI capabilities within the NICU. Advantages include overall reduced cost and site demands, lower acoustic noise, improved ease of access and reduced medical risk to the neonate.

  7. MRI of islet cell tumors of the pancreas

    International Nuclear Information System (INIS)

    Ohtomo, Kuni; Itai, Yuji; Yoshikawa, Koki; Kokubo, Taka; Yashiro, Naofumi; Iio, Masahiro; Atomi, Yu

    1986-01-01

    Magnetic resonance imaging (MRI) was performed in five patients with islet cell tumors of the pancreas, using 0.35 T and 1.5 T superconductive magnets. MRI identified tumors in 3 patients. The tumors seen in the 3 patients appeared as areas of higher signal intensity than the liver on spin-echo (SE) images with repetition time of 1,600 msec/echo time of 35 or 70 msec, and as areas of similar or lower intensity on SE 400/35 or 70 images. The tumor imaged by SE techniques with 1,600/35 msec, 400/35 msec, and 1,600/35 or 70 msec in one patient was manifested by prolongation of T1 and T2, as compared with the liver. Tumors in the remaining two patients, which were not detected on MRI, were 15 mm or smaller. MRI remains to be improved in the visualization of small lesions. (Namekawa, K.)

  8. Reproducibility of MRI-Determined Proton Density Fat Fraction Across Two Different MR Scanner Platforms

    Science.gov (United States)

    Kang, Geraldine H.; Cruite, Irene; Shiehmorteza, Masoud; Wolfson, Tanya; Gamst, Anthony C.; Hamilton, Gavin; Bydder, Mark; Middleton, Michael S.; Sirlin, Claude B.

    2016-01-01

    Purpose To evaluate magnetic resonance imaging (MRI)-determined proton density fat fraction (PDFF) reproducibility across two MR scanner platforms and, using MR spectroscopy (MRS)-determined PDFF as reference standard, to confirm MRI-determined PDFF estimation accuracy. Materials and Methods This prospective, cross-sectional, crossover, observational pilot study was approved by an Institutional Review Board. Twenty-one subjects gave written informed consent and underwent liver MRI and MRS at both 1.5T (Siemens Symphony scanner) and 3T (GE Signa Excite HD scanner). MRI-determined PDFF was estimated using an axial 2D spoiled gradient-recalled echo sequence with low flip-angle to minimize T1 bias and six echo-times to permit correction of T2* and fat-water signal interference effects. MRS-determined PDFF was estimated using a stimulated-echo acquisition mode sequence with long repetition time to minimize T1 bias and five echo times to permit T2 correction. Interscanner reproducibility of MRI determined PDFF was assessed by correlation analysis; accuracy was assessed separately at each field strength by linear regression analysis using MRS-determined PDFF as reference standard. Results 1.5T and 3T MRI-determined PDFF estimates were highly correlated (r = 0.992). MRI-determined PDFF estimates were accurate at both 1.5T (regression slope/intercept = 0.958/−0.48) and 3T (slope/intercept = 1.020/0.925) against the MRS-determined PDFF reference. Conclusion MRI-determined PDFF estimation is reproducible and, using MRS-determined PDFF as reference standard, accurate across two MR scanner platforms at 1.5T and 3T. PMID:21769986

  9. Optimization of DSC MRI Echo Times for CBV Measurements Using Error Analysis in a Pilot Study of High-Grade Gliomas.

    Science.gov (United States)

    Bell, L C; Does, M D; Stokes, A M; Baxter, L C; Schmainda, K M; Dueck, A C; Quarles, C C

    2017-09-01

    The optimal TE must be calculated to minimize the variance in CBV measurements made with DSC MR imaging. Simulations can be used to determine the influence of the TE on CBV, but they may not adequately recapitulate the in vivo heterogeneity of precontrast T2*, contrast agent kinetics, and the biophysical basis of contrast agent-induced T2* changes. The purpose of this study was to combine quantitative multiecho DSC MRI T2* time curves with error analysis in order to compute the optimal TE for a traditional single-echo acquisition. Eleven subjects with high-grade gliomas were scanned at 3T with a dual-echo DSC MR imaging sequence to quantify contrast agent-induced T2* changes in this retrospective study. Optimized TEs were calculated with propagation of error analysis for high-grade glial tumors, normal-appearing white matter, and arterial input function estimation. The optimal TE is a weighted average of the T2* values that occur as a contrast agent bolus transverses a voxel. The mean optimal TEs were 30.0 ± 7.4 ms for high-grade glial tumors, 36.3 ± 4.6 ms for normal-appearing white matter, and 11.8 ± 1.4 ms for arterial input function estimation (repeated-measures ANOVA, P optimal TE values for high-grade gliomas, and mean values of all 3 ROIs were statistically significant. The optimal TE for the arterial input function estimation is much shorter; this finding implies that quantitative DSC MR imaging acquisitions would benefit from multiecho acquisitions. In the case of a single-echo acquisition, the optimal TE prescribed should be 30-35 ms (without a preload) and 20-30 ms (with a standard full-dose preload). © 2017 by American Journal of Neuroradiology.

  10. Retrospective comparison of gradient recalled echo R2* and spin-echo R2 magnetic resonance analysis methods for estimating liver iron content in children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Serai, Suraj D.; Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, MLC 5031, Cincinnati, OH (United States); Quinn, Charles T. [Cincinnati Children' s Hospital Medical Center, Division of Hematology, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Division of Biostatistics and Epidemiology, Cincinnati, OH (United States); Podberesky, Daniel J. [Nemours Children' s Health System Nemours Children' s Hospital, Department of Radiology, Orlando, FL (United States)

    2015-10-15

    Serial surveillance of liver iron concentration (LIC) provides guidance for chelation therapy in patients with iron overload. The diagnosis of iron overload traditionally relies on core liver biopsy, which is limited by invasiveness, sampling error, cost and general poor acceptance by pediatric patients and parents. Thus noninvasive diagnostic methods such as MRI are highly attractive for quantification of liver iron concentration. To compare two MRI-based methods for liver iron quantification in children. 64 studies on 48 children and young adults (age range 4-21 years) were examined by gradient recalled echo (GRE) R2* and spin-echo R2 MRI at 1.5T to evaluate liver iron concentration. Scatter plots and Bland-Altman difference plots were generated to display and assess the relationship between the methods. With the protocols used in this investigation, Bland-Altman agreement between the methods is best when LIC is <20 mg/g dry tissue. Scatter plots show that all values with LIC <20 mg/g dry tissue fall within the 95% prediction limits. Liver iron concentration as determined by the R2* and R2 MR methods is statistically comparable, with no statistical difference between these methods for LIC <20 mg/g. (orig.)

  11. Placental baseline conditions modulate the hyperoxic BOLD-MRI response.

    Science.gov (United States)

    Sinding, Marianne; Peters, David A; Poulsen, Sofie S; Frøkjær, Jens B; Christiansen, Ole B; Petersen, Astrid; Uldbjerg, Niels; Sørensen, Anne

    2018-01-01

    Human pregnancies complicated by placental dysfunction may be characterized by a high hyperoxic Blood oxygen level-dependent (BOLD) MRI response. The pathophysiology behind this phenomenon remains to be established. The aim of this study was to evaluate whether it is associated with altered placental baseline conditions, including a lower oxygenation and altered tissue morphology, as estimated by the placental transverse relaxation time (T2*). We included 49 normal pregnancies (controls) and 13 pregnancies complicated by placental dysfunction (cases), defined by a birth weight baseline BOLD)/baseline BOLD) from a dynamic single-echo gradient-recalled echo (GRE) MRI sequence and the absolute ΔT2* (hyperoxic T2*- baseline T2*) from breath-hold multi-echo GRE sequences. In the control group, the relative ΔBOLD response increased during gestation from 5% in gestational week 20 to 20% in week 40. In the case group, the relative ΔBOLD response was significantly higher (mean Z-score 4.94; 95% CI 2.41, 7.47). The absolute ΔT2*, however, did not differ between controls and cases (p = 0.37), whereas the baseline T2* was lower among cases (mean Z-score -3.13; 95% CI -3.94, -2.32). Furthermore, we demonstrated a strong negative linear correlation between the Log 10 ΔBOLD response and the baseline T2* (r = -0.88, p baseline conditions, as the absolute increase in placental oxygenation (ΔT2*) does not differ between groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. MRI and intraocular tamponade media

    Energy Technology Data Exchange (ETDEWEB)

    Manfre, I. (Dept. of Neuroradiology, Inst. of Neurosurgery, Univ. of Catania (Italy)); Fabbri, G. (Dept. of Neuroradiology, Inst. of Neurosurgery, Univ. of Catania (Italy)); Avitabile, T. (Inst. of Ophthalmology, Univ. of Catania (Italy)); Biondi, P. (Inst. of Ophthalmology, Univ. of Catania (Italy)); Reibaldi, A. (Inst. of Ophthalmology, Univ. of Catania (Italy)); Pero, G. (Dept. of Neuroradiology, Inst. of Neurosurgery, Univ. of Catania (Italy))

    1993-05-01

    Thirteen patients who underwent surgery for retinal detachment and injection of intraocular tamponade media (silicone oil, flurosilicone oil, or perfluoro-carbon liquid) underwent magnetic resonance imaging (MRI), using spin-echo T1- and T2-weighted images. The ophthalmic tamponade media showed different signal intensity, according to their chemical structure. Unlike ophthalmoscopy or ultrasonography, MRI showed no oil-related artefact, making possible recognition of recurrent retinal detachment. (orig.)

  13. MRI and intraocular tamponade media

    International Nuclear Information System (INIS)

    Manfre, I.; Fabbri, G.; Avitabile, T.; Biondi, P.; Reibaldi, A.; Pero, G.

    1993-01-01

    Thirteen patients who underwent surgery for retinal detachment and injection of intraocular tamponade media (silicone oil, flurosilicone oil, or perfluoro-carbon liquid) underwent magnetic resonance imaging (MRI), using spin-echo T1- and T2-weighted images. The ophthalmic tamponade media showed different signal intensity, according to their chemical structure. Unlike ophthalmoscopy or ultrasonography, MRI showed no oil-related artefact, making possible recognition of recurrent retinal detachment. (orig.)

  14. Hypocaeruloplasminaemia with heteroallelic caeruloplasmin gene mutation: MRI of the brain

    International Nuclear Information System (INIS)

    Daimon, M.; Moriai, S.; Susa, S.; Yamatani, K.; Kato, T.; Hosoya, T.

    1999-01-01

    We present two patients with hypocaeruloplasminaemia and a heteroallelic caeruloplasmin gene mutation (HypoCPGM). These patients had diabetes mellitus and tremor of the hands, respectively. T2-weighted fast spin-echo MRI showed mildly reduced intensity of the putamen, much more marked on echo-planar imaging. (orig.) (orig.)

  15. Iterative Decomposition of Water and Fat with Echo Asymmetric and Least—Squares Estimation (IDEAL (Reeder et al. 2005 Automated Spine Survey Iterative Scan Technique (ASSIST (Weiss et al. 2006

    Directory of Open Access Journals (Sweden)

    Kenneth L. Weiss

    2008-01-01

    Full Text Available Background and Purpose: Multi-parametric MRI of the entire spine is technologist-dependent, time consuming, and often limited by inhomogeneous fat suppression. We tested a technique to provide rapid automated total spine MRI screening with improved tissue contrast through optimized fat-water separation.Methods: The entire spine was auto-imaged in two contiguous 35 cm field of view (FOV sagittal stations, utilizing out-of-phase fast gradient echo (FGRE and T1 and/or T2 weighted fast spin echo (FSE IDEAL (Iterative Decomposition of Water and Fat with Echo Asymmetric and Least-squares Estimation sequences. 18 subjects were studied, one twice at 3.0T (pre and post contrast and one at both 1.5 T and 3.0T for a total of 20 spine examinations (8 at 1.5 T and 12 at 3.0T. Images were independently evaluated by two neuroradiologists and run through Automated Spine Survey Iterative Scan Technique (ASSIST analysis software for automated vertebral numbering.Results: In all 20 total spine studies, neuroradiologist and computer ASSIST labeling were concordant. In all cases, IDEAL provided uniform fat and water separation throughout the entire 70 cm FOV imaged. Two subjects demonstrated breast metastases and one had a large presumptive schwannoma. 14 subjects demonstrated degenerative disc disease with associated Modic Type I or II changes at one or more levels. FGRE ASSIST afforded subminute submillimeter in-plane resolution of the entire spine with high contrast between discs and vertebrae at both 1.5 and 3.0T. Marrow signal abnormalities could be particularly well characterized with IDEAL derived images and parametric maps.Conclusion: IDEAL ASSIST is a promising MRI technique affording a rapid automated high resolution, high contrast survey of the entire spine with optimized tissue characterization.

  16. MRI-induced retrocalcaneal bursitis

    NARCIS (Netherlands)

    Tol, J. L.; van Dijk, C. N.; Maas, M.

    1999-01-01

    This case report describes a patient with acute retrocalcaneal bursitis, which developed after MRI examination of the ankle. The sagittal T2*-weighted gradient echo sequence revealed an extensive susceptibility artifact in the area surrounding the Achilles tendon near its insertion at the os calcis.

  17. Comparative diagnostic performance of multidetector computed tomography and MRI for characterization of pancreatic cystic lesions

    International Nuclear Information System (INIS)

    Moon, Sung Min; Shin, Sang Soo; Park, Jin Gyoon; Jeong, Yong Yeon

    2015-01-01

    To compare the diagnostic performance of multidetector computed tomography (MDCT) and magnetic resonance imaging (MRI) in characterization of pancreatic cystic lesions. We conducted a retrospective study on 34 patients with histopathologically proven cystic pancreatic lesions who underwent both preoperative MDCT and MRI. CT and MRI were independently evaluated for differentiating mucinous vs. non-mucinous lesions, differentiating aggressive vs. non-aggressive lesion, analyzing morphological features, and evaluating specific leading diagnoses. Sensitivity, specificity, and accuracy were determined. Competency assessment of lesional morphology analysis was performed using the kappa values of the 2 tests. The sensitivity, specificity, and accuracy of MRI for differentiating mucinous vs. non-mucinous lesions were higher than CT (p = 0.03). For differentiating aggressiveness, the sensitivity of MRI was better than CT, but the specificity of CT was better than MRI. In evaluation of morphologic features, MRI showed better performance in characterization of septa and wall. Otherwise, the 2 modalities showed similarly good performance. MRI was better than CT in determining a specific diagnosis (58.8% vs. 47.2%, respectively). CT and MRI are reasonable diagnostic methods for characterization of pancreatic cystic lesions. However, MRI enables more confident assessment than CT in differentiating mucinous vs. non-mucinous lesions and characterization of the septa and wall

  18. Importance of T2*-weighted gradient-echo MRI for diagnosis of cortical vein thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Fellner, Franz A. [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria) and Zentrales Radiologie Institut, Allgemeines Krankenhaus der Stadt Linz, Krankenhausstr. 9, 4020 Linz (Austria)]. E-mail: franz.fellner@akh.linz.at; Fellner, Claudia [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria); Aichner, Franz T. [Abteilung fuer Neurologie, Landes-Nervenklinik Wagner-Jauregg, Linz (Austria); Moelzer, Guenther [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria)

    2005-11-01

    We examined six patients with isolated venous thrombosis (n = 2), or venous thrombosis combined with sinus thrombosis (n = 4) (CVT). The clinical symptoms were non-specific (acute cephalea, paresis, epileptic seizure, progressive speech disorder). All examinations were performed on a 1.5 T system (Magnetom Symphony, Siemens, Erlangen, Germany), maximum gradient field strength 30 mT/m, minimal gradient rise time 450 {mu}s, according to the following protocol: Transverse T2-weighted turbo spin-echo (TSE), fluid attenuated inversion recovery (FLAIR), T1-weighted spin-echo (SE), before and after administration of contrast medium, T2*-weighted conventional gradient-echo (GRE), T2*-weighted spin-echo echo planar imaging (SE EPI), both without and with diffusion weighting as well as two-dimensional (2D) venous time-of-flight (TOF) MRA. The venous thromboses were best detectable in the T2*-weighted conventional GRE sequence in all patients. In two patients, the CVT was discernible only in this sequence. The sinus thrombosis was well discernible only in the T2*-weighted GRE sequence in only one case; in the remaining cases it was detectable only with difficulty. For these cases, other sequences such as SE, diffusion-weighted, or 2D-TOF-MRA sequence were superior. The T2*-weighted conventional GRE sequence was superior to the T2*-weighted SE EPI sequence in all patients. To sum up, it can be concluded, that T2*-weighted conventional GRE sequences are possibly the best method of detection of acute cortical vein thromboses. Therefore, it seems to be of benefit to integrate a T2*-weighted conventional GRE sequence into the MR-protocol for the diagnosis of isolated cortical vein thrombosis.

  19. Importance of T2*-weighted gradient-echo MRI for diagnosis of cortical vein thrombosis

    International Nuclear Information System (INIS)

    Fellner, Franz A.; Fellner, Claudia; Aichner, Franz T.; Moelzer, Guenther

    2005-01-01

    We examined six patients with isolated venous thrombosis (n = 2), or venous thrombosis combined with sinus thrombosis (n = 4) (CVT). The clinical symptoms were non-specific (acute cephalea, paresis, epileptic seizure, progressive speech disorder). All examinations were performed on a 1.5 T system (Magnetom Symphony, Siemens, Erlangen, Germany), maximum gradient field strength 30 mT/m, minimal gradient rise time 450 μs, according to the following protocol: Transverse T2-weighted turbo spin-echo (TSE), fluid attenuated inversion recovery (FLAIR), T1-weighted spin-echo (SE), before and after administration of contrast medium, T2*-weighted conventional gradient-echo (GRE), T2*-weighted spin-echo echo planar imaging (SE EPI), both without and with diffusion weighting as well as two-dimensional (2D) venous time-of-flight (TOF) MRA. The venous thromboses were best detectable in the T2*-weighted conventional GRE sequence in all patients. In two patients, the CVT was discernible only in this sequence. The sinus thrombosis was well discernible only in the T2*-weighted GRE sequence in only one case; in the remaining cases it was detectable only with difficulty. For these cases, other sequences such as SE, diffusion-weighted, or 2D-TOF-MRA sequence were superior. The T2*-weighted conventional GRE sequence was superior to the T2*-weighted SE EPI sequence in all patients. To sum up, it can be concluded, that T2*-weighted conventional GRE sequences are possibly the best method of detection of acute cortical vein thromboses. Therefore, it seems to be of benefit to integrate a T2*-weighted conventional GRE sequence into the MR-protocol for the diagnosis of isolated cortical vein thrombosis

  20. Dynamic MRI of the liver with parallel acquisition technique. Characterization of focal liver lesions and analysis of the hepatic vasculature in a single MRI session

    International Nuclear Information System (INIS)

    Heilmaier, C.; Sutter, R.; Lutz, A.M.; Willmann, J.K.; Seifert, B.

    2008-01-01

    Purpose: to retrospectively evaluate the performance of breath-hold contrast-enhanced 3D dynamic parallel gradient echo MRI (pMRT) for the characterization of focal liver lesions (standard of reference: histology) and for the analysis of hepatic vasculature (standard of reference: contrast-enhanced 64-detector row computed tomography; MSCT) in a single MRI session. Materials and method: two blinded readers independently analyzed preoperative pMRT data sets (1.5T-MRT) of 45 patients (23 men, 22 women; 28 - 77 years, average age, 48 years) with a total of 68 focal liver lesions with regard to image quality of hepatic arteries, portal and hepatic veins, presence of variant anatomy of the hepatic vasculature, as well as presence of portal vein thrombosis and hemodynamically significant arterial stenosis. In addition, both readers were asked to identify and characterize focal liver lesions. Imaging parameters of pMRT were: TR/TE/matrix/slice thickness/acquisition time: 3.1 ms/1.4 ms/384 x 224/4 mm/15 - 17 s. MSCT was performed with a pitch of 1.2, an effective slice thickness of 1 mm and a matrix of 512 x 512. Results: based on histology, the 68 liver lesions were found to be 42 hepatocellular carcinomas (HCC), 20 metastases, 3 cholangiocellular carcinomas (CCC) as well as 1 dysplastic nodule, 1 focal nodular hyperplasia (FNH) and 1 atypical hemangioma. Overall, the diagnostic accuracy was high for both readers (91 - 100%) in the characterization of these focal liver lesions with an excellent interobserver agreement (κ-values of 0.89 [metastases], 0.97 [HCC] and 1 [CCC]). On average, the image quality of all vessels under consideration was rated good or excellent in 89% (reader 1) and 90% (reader 2). Anatomical variants of the hepatic arteries, hepatic veins and portal vein as well as thrombosis of the portal vein were reliably detected by pMRT. Significant arterial stenosis was found with a sensitivity between 86% and 100% and an excellent interobserver agreement (κ

  1. Ex vivo quantitative multiparametric MRI mapping of human meniscus degeneration

    International Nuclear Information System (INIS)

    Nebelung, Sven; Kuhl, Christiane; Truhn, Daniel; Tingart, Markus; Jahr, Holger; Pufe, Thomas

    2016-01-01

    To evaluate the diagnostic performance of T1, T1ρ, T2, T2*, and UTE-T2* (ultrashort-echo time-enhanced T2*) mapping in the refined graduation of human meniscus degeneration with histology serving as standard-of-reference. This IRB-approved intra-individual comparative ex vivo study was performed on 24 lateral meniscus body samples obtained from 24 patients undergoing total knee replacement. Samples were assessed on a 3.0-T MRI scanner using inversion-recovery (T1), spin-lock multi-gradient-echo (T1ρ), multi-spin-echo (T2) and multi-gradient-echo (T2* and UTE-T2*) sequences to determine relaxation times of quantitative MRI (qMRI) parameters. Relaxation times were calculated on the respective maps, averaged to the entire meniscus and to its zones. Histologically, samples were analyzed on a four-point score according to Williams (0-III). QMRI results and Williams (sub)scores were correlated using Spearman's ρ, while Williams grade-dependent differences were assessed using Kruskal-Wallis and Dunn's tests. Sensitivities and specificities in the detection of intact (Williams grade [WG]-0) and severely degenerate meniscus (WG-II-III) were calculated. Except for T2*, significant increases in qMRI parameters with increasing Williams grades were observed. T1, T1ρ, T2, and UTE-T2* exhibited high sensitivity and variable specificity rates. Significant marked-to-strong correlations were observed for these parameters with each other, with histological WGs and the subscores tissue integrity and cellularity. QMRI mapping holds promise in the objective evaluation of human meniscus. Although sufficient discriminatory power of T1, T1ρ, T2, and UTE-T2* was only demonstrated for the histological extremes, these data may aid in the future MRI-based parameterization and quantification of human meniscus degeneration. (orig.)

  2. Ex vivo quantitative multiparametric MRI mapping of human meniscus degeneration.

    Science.gov (United States)

    Nebelung, Sven; Tingart, Markus; Pufe, Thomas; Kuhl, Christiane; Jahr, Holger; Truhn, Daniel

    2016-12-01

    To evaluate the diagnostic performance of T1, T1ρ, T2, T2*, and UTE-T2* (ultrashort-echo time-enhanced T2*) mapping in the refined graduation of human meniscus degeneration with histology serving as standard-of-reference. This IRB-approved intra-individual comparative ex vivo study was performed on 24 lateral meniscus body samples obtained from 24 patients undergoing total knee replacement. Samples were assessed on a 3.0-T MRI scanner using inversion-recovery (T1), spin-lock multi-gradient-echo (T1ρ), multi-spin-echo (T2) and multi-gradient-echo (T2* and UTE-T2*) sequences to determine relaxation times of quantitative MRI (qMRI) parameters. Relaxation times were calculated on the respective maps, averaged to the entire meniscus and to its zones. Histologically, samples were analyzed on a four-point score according to Williams (0-III). QMRI results and Williams (sub)scores were correlated using Spearman's ρ, while Williams grade-dependent differences were assessed using Kruskal-Wallis and Dunn's tests. Sensitivities and specificities in the detection of intact (Williams grade [WG]-0) and severely degenerate meniscus (WG-II-III) were calculated. Except for T2*, significant increases in qMRI parameters with increasing Williams grades were observed. T1, T1ρ, T2, and UTE-T2* exhibited high sensitivity and variable specificity rates. Significant marked-to-strong correlations were observed for these parameters with each other, with histological WGs and the subscores tissue integrity and cellularity. QMRI mapping holds promise in the objective evaluation of human meniscus. Although sufficient discriminatory power of T1, T1ρ, T2, and UTE-T2* was only demonstrated for the histological extremes, these data may aid in the future MRI-based parameterization and quantification of human meniscus degeneration.

  3. Ex vivo quantitative multiparametric MRI mapping of human meniscus degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Nebelung, Sven; Kuhl, Christiane; Truhn, Daniel [Aachen University Hospital, Department of Diagnostic and Interventional Radiology, Aachen (Germany); Tingart, Markus; Jahr, Holger [Aachen University Hospital, Department of Orthopaedics, Aachen (Germany); Pufe, Thomas [RWTH Aachen University, Institute of Anatomy and Cell Biology, Aachen (Germany)

    2016-12-15

    To evaluate the diagnostic performance of T1, T1ρ, T2, T2*, and UTE-T2* (ultrashort-echo time-enhanced T2*) mapping in the refined graduation of human meniscus degeneration with histology serving as standard-of-reference. This IRB-approved intra-individual comparative ex vivo study was performed on 24 lateral meniscus body samples obtained from 24 patients undergoing total knee replacement. Samples were assessed on a 3.0-T MRI scanner using inversion-recovery (T1), spin-lock multi-gradient-echo (T1ρ), multi-spin-echo (T2) and multi-gradient-echo (T2* and UTE-T2*) sequences to determine relaxation times of quantitative MRI (qMRI) parameters. Relaxation times were calculated on the respective maps, averaged to the entire meniscus and to its zones. Histologically, samples were analyzed on a four-point score according to Williams (0-III). QMRI results and Williams (sub)scores were correlated using Spearman's ρ, while Williams grade-dependent differences were assessed using Kruskal-Wallis and Dunn's tests. Sensitivities and specificities in the detection of intact (Williams grade [WG]-0) and severely degenerate meniscus (WG-II-III) were calculated. Except for T2*, significant increases in qMRI parameters with increasing Williams grades were observed. T1, T1ρ, T2, and UTE-T2* exhibited high sensitivity and variable specificity rates. Significant marked-to-strong correlations were observed for these parameters with each other, with histological WGs and the subscores tissue integrity and cellularity. QMRI mapping holds promise in the objective evaluation of human meniscus. Although sufficient discriminatory power of T1, T1ρ, T2, and UTE-T2* was only demonstrated for the histological extremes, these data may aid in the future MRI-based parameterization and quantification of human meniscus degeneration. (orig.)

  4. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts

    International Nuclear Information System (INIS)

    Bonel, H.; Frei, K.A.; Raio, L.; Meyer-Wittkopf, M.; Remonda, L.; Wiest, R.

    2008-01-01

    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 ± 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 ± 0.58 vs. 3.65 ± 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 ± 7.27 to 19.83 ± 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement. (orig.)

  5. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts.

    Science.gov (United States)

    Bonel, H; Frei, K A; Raio, L; Meyer-Wittkopf, M; Remonda, L; Wiest, R

    2008-04-01

    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 +/- 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 +/- 0.58 vs. 3.65 +/- 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 +/- 7.27 to 19.83 +/- 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement.

  6. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Bonel, H. [University Hospital Berne-Inselspital, Freiburgstrasse, Institute of Diagnostic, Interventional and Pediatric Radiology, Bern (Switzerland); Frei, K.A.; Raio, L.; Meyer-Wittkopf, M. [University of Berne, Women' s' Hospital, Bern (Switzerland); Remonda, L.; Wiest, R. [University of Berne, Institute of Diagnostic and Interventional Neuroradiology (DIN), Inselspital, Bern (Switzerland)

    2008-04-15

    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 {+-} 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 {+-} 0.58 vs. 3.65 {+-} 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 {+-} 7.27 to 19.83 {+-} 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement. (orig.)

  7. Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multi-echo 3-D stack-of-radial MRI technique.

    Science.gov (United States)

    Armstrong, Tess; Ly, Karrie V; Murthy, Smruthi; Ghahremani, Shahnaz; Kim, Grace Hyun J; Calkins, Kara L; Wu, Holden H

    2018-05-04

    In adults, noninvasive chemical shift encoded Cartesian magnetic resonance imaging (MRI) and single-voxel magnetic resonance (MR) spectroscopy (SVS) accurately quantify hepatic steatosis but require breath-holding. In children, especially young and sick children, breath-holding is often limited or not feasible. Sedation can facilitate breath-holding but is highly undesirable. For these reasons, there is a need to develop free-breathing MRI technology that accurately quantifies steatosis in all children. This study aimed to compare non-sedated free-breathing multi-echo 3-D stack-of-radial (radial) MRI versus standard breath-holding MRI and SVS techniques in a group of children for fat quantification with respect to image quality, accuracy and repeatability. Healthy children (n=10, median age [±interquartile range]: 10.9 [±3.3] years) and overweight children with nonalcoholic fatty liver disease (NAFLD) (n=9, median age: 15.2 [±3.2] years) were imaged at 3 Tesla using free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS. Acquisitions were performed twice to assess repeatability (within-subject mean difference, MD within ). Images and hepatic proton-density fat fraction (PDFF) maps were scored for image quality. Free-breathing and breath-holding PDFF were compared using linear regression (correlation coefficient, r and concordance correlation coefficient, ρ c ) and Bland-Altman analysis (mean difference). Phepatic PDFF measurements and improved image quality, compared to standard breath-holding MR techniques.

  8. Effect of pulse sequence parameter selection on signal strength in positive-contrast MRI markers for MRI-based prostate postimplant assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Tze Yee [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas at Houston Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Kudchadker, Rajat J., E-mail: rkudchad@mdanderson.org; Wang, Jihong; Ibbott, Geoffrey S. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Stafford, R. Jason [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); MacLellan, Christopher [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas at Houston Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Rao, Arvind [Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Frank, Steven J. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)

    2016-07-15

    Purpose: For postimplant dosimetric assessment, computed tomography (CT) is commonly used to identify prostate brachytherapy seeds, at the expense of accurate anatomical contouring. Magnetic resonance imaging (MRI) is superior to CT for anatomical delineation, but identification of the negative-contrast seeds is challenging. Positive-contrast MRI markers were proposed to replace spacers to assist seed localization on MRI images. Visualization of these markers under varying scan parameters was investigated. Methods: To simulate a clinical scenario, a prostate phantom was implanted with 66 markers and 86 seeds, and imaged on a 3.0T MRI scanner using a 3D fast radiofrequency-spoiled gradient recalled echo acquisition with various combinations of scan parameters. Scan parameters, including flip angle, number of excitations, bandwidth, field-of-view, slice thickness, and encoding steps were systematically varied to study their effects on signal, noise, scan time, image resolution, and artifacts. Results: The effects of pulse sequence parameter selection on the marker signal strength and image noise were characterized. The authors also examined the tradeoff between signal-to-noise ratio, scan time, and image artifacts, such as the wraparound artifact, susceptibility artifact, chemical shift artifact, and partial volume averaging artifact. Given reasonable scan time and managable artifacts, the authors recommended scan parameter combinations that can provide robust visualization of the MRI markers. Conclusions: The recommended MRI pulse sequence protocol allows for consistent visualization of the markers to assist seed localization, potentially enabling MRI-only prostate postimplant dosimetry.

  9. Shoulder MRI after surgical treatment of instability

    Energy Technology Data Exchange (ETDEWEB)

    Vahlensieck, Martin [University of Bonn, Department of Radiology, Sigmund-Freud-Strasse 25, 53105 Bonn (Germany); Lang, Philipp [University of California San Francisco, Department of Radiology, 505 Pamassus Avenue, San Francisco, CA 94143 (United States); Wagner, Ulli [University of Bonn, Department of Orthopedic Surgery, Sigmund-Freud-Strasse 25, 53105 Bonn (Germany); Moeller, Frank [University of Bonn, Department of Orthopedic Surgery, Sigmund-Freud-Strasse 25, 53105 Bonn (Germany); Deimling, Urs van [University of Bonn, Department of Orthopedic Surgery, Sigmund-Freud-Strasse 25, 53105 Bonn (Germany); Genant, H K [University of California San Francisco, Department of Radiology, 505 Pamassus Avenue, San Francisco, CA 94143 (United States); Schild, Hans H [University of Bonn, Department of Radiology, Sigmund-Freud-Strasse 25, 53105 Bonn (Germany)

    1999-04-01

    Objective: To analyze magnetic resonance imaging (MRI) findings of the shoulder after an instability operation. Materials and methods: Physical examinations, radiographs and MRI of 10 patients after anterior glenoid bone block insertion for ventral instability were compared. MRI included T{sub 1}-weighted spin-echo (TR=600, TE=20 ms) and T{sub 2}*-weighted gradient-echo sequences (TE=600, TE=18, Flip=30 deg.) in the axial, oblique-coronal and oblique-sagittal planes. Results: No patient suffered from recurrent subluxation. We found fusion of the bone block with the anterior glenoid in seven cases, dislocation of the bone block without contact to the glenoid in one case, and no visible bone block in two cases. On MRI, the bone block showed either signal intensity equivalent to fatty bone marrow (n=4) or was devoid of signal consistent with cortical bone or bone sclerosis (n=4). In all patients, a low signal intensity mass, 2-4 cm in diameter, was visible next to the glenoid insertion site. Conclusion: Insertion of a bone block onto the anterior glenoid induces formation of scar tissue, increasing the stability of the shoulder joint. This scar is well visible on MRI and forms independently of the behavior of the bone block itself. MRI is ideally suited for evaluating postoperative shoulder joints after bone-grafting procedures.

  10. Shoulder MRI after surgical treatment of instability

    International Nuclear Information System (INIS)

    Vahlensieck, Martin; Lang, Philipp; Wagner, Ulli; Moeller, Frank; Deimling, Urs van; Genant, H.K.; Schild, Hans H.

    1999-01-01

    Objective: To analyze magnetic resonance imaging (MRI) findings of the shoulder after an instability operation. Materials and methods: Physical examinations, radiographs and MRI of 10 patients after anterior glenoid bone block insertion for ventral instability were compared. MRI included T 1 -weighted spin-echo (TR=600, TE=20 ms) and T 2 *-weighted gradient-echo sequences (TE=600, TE=18, Flip=30 deg.) in the axial, oblique-coronal and oblique-sagittal planes. Results: No patient suffered from recurrent subluxation. We found fusion of the bone block with the anterior glenoid in seven cases, dislocation of the bone block without contact to the glenoid in one case, and no visible bone block in two cases. On MRI, the bone block showed either signal intensity equivalent to fatty bone marrow (n=4) or was devoid of signal consistent with cortical bone or bone sclerosis (n=4). In all patients, a low signal intensity mass, 2-4 cm in diameter, was visible next to the glenoid insertion site. Conclusion: Insertion of a bone block onto the anterior glenoid induces formation of scar tissue, increasing the stability of the shoulder joint. This scar is well visible on MRI and forms independently of the behavior of the bone block itself. MRI is ideally suited for evaluating postoperative shoulder joints after bone-grafting procedures

  11. The evaluation of fat saturation fast spin-echo T2W1 for patients with acute spinal trauma

    International Nuclear Information System (INIS)

    Kim, Sung Gyu; Lee, Chang Jun; Lee, Myung Joon; Kang, Ik Won; Yoo, Jeong Hyun

    2002-01-01

    To determine the usefulness of fat saturation fast spin-echo T2W1 for patients with mild acute trauma of the spine. Between July 1998 and June 2002, 36 patients with acute spinal trauma underwent MRI within four months of injury. One, whose clinal symptoms indicated neurological paralysis, was excluded form our study. A superconductive 1.0-T MRI scanner was used, and conventional T1W1, T2W1, and additional fat-saturation fast spin-echo T2W1 were performed. Two radiologists compared conventional T2-weighted sagittal imaging and fat-saturation T2-weighted sagittal imaging in terms of the extension of increased high signal intensities in soft tissue and vertebral bodies, bone marrow signal change, disk herniation, and signal change of the disk. The detection rate of focal high signal intensities in soft tissue and bone marrow was significantly higher at fat-saturation fast spin-echo T2W1 than at conventional T2W1. Fat-saturation fast spin-echo T2W1 is useful for the evaluation of patients with mild acute spinal trauma without neurological impairment

  12. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    International Nuclear Information System (INIS)

    Ma, J; Son, J; Arun, B; Hazle, J; Hwang, K; Madewell, J; Yang, W; Dogan, B; Wang, K; Bayram, E

    2016-01-01

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a single acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the

  13. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J; Son, J; Arun, B; Hazle, J; Hwang, K; Madewell, J; Yang, W; Dogan, B [UT MD Anderson Cancer Center, Houston, TX (United States); Wang, K; Bayram, E [GE Healthcare Technologies, Waukesha, Wisconsin (United States)

    2016-06-15

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a single acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the

  14. Correction of inhomogeneous RF field using multiple SPGR signals for high-field spin-echo MRI

    International Nuclear Information System (INIS)

    Ishimori, Yoshiyuki; Monma, Masahiko; Yamada, Kazuhiro; Kimura, Hirohiko; Uematsu, Hidemasa; Fujiwara, Yasuhiro; Yamaguchi, Isao

    2007-01-01

    The purpose of this study was to propose a simple and useful method for correcting nonuniformity of high-field (3 Tesla) T 1 -weighted spin-echo (SE) images based on a B1 field map estimated from gradient recalled echo (GRE) signals. The method of this study was to estimate B1 inhomogeneity, spoiled gradient recalled echo (SPGR) images were collected using a fixed repetition time of 70 ms, flip angles of 45 and 90 degrees, and echo times of 4.8 and 10.4 ms. Selection of flip angles was based on the observation that the relative intensity changes in SPGR signals were very similar among different tissues at larger flip angles than the Ernst angle. Accordingly, spatial irregularity that was observed on a signal ratio map of the SPGR images acquired with these 2 flip angles was ascribed to inhomogeneity of the B1 field. Dual echo time was used to eliminate T 2 * effects. The ratio map that was acquired was scaled to provide an intensity correction map for SE images. Both phantom and volunteer studies were performed using a 3T magnetic resonance scanner to validate the method. In the phantom study, the uniformity of the T 1 -weighted SE image improved by 23%. Images of human heads also showed practically sufficient improvement in the image uniformity. The present method improves the image uniformity of high-field T 1 -weighted SE images. (author)

  15. Magentic resonance imaging and characterization of normal and abnormal intracranial cerebrospinal fluid (CSF) spaces: Initial observations

    International Nuclear Information System (INIS)

    Brant-Zawadzki, M.; Kelly, W.; Kjos, B.; Newton, T.H.; Norman, D.; Dillon, W.; Sobel, D.

    1985-01-01

    A retrospective review of twenty-five normal MRI brain studies performed with the spin-echo technique focused special attention on the ventricular and extraventricular cerebrospinal fluid (CSF) and revealed unique signal intensity characteristics in the two locations. In addition, MRI studies of ten patients with abnormal extraaxial fluid collections either missed with CT or indistinguishable from CSF on CT images were also analyzed. MRI is more sensitive when compared to CT in evaluating the composition of CSF. Unique signal intensity characterizes the two major CSF compartments and presumably reflects their known but subtle difference in protein concentration (10-15 mg%). Normal variant or abnormal developmental fluid collections can be better characterized with MRI than with CT. These preliminary observations are offered in view of their implications for patient management and suggest further investigation. (orig.)

  16. Comparative study of image quality between axial T2-weighted BLADE and turbo spin-echo MRI of the upper abdomen on 3.0 T.

    Science.gov (United States)

    Zhang, Lin; Tian, ChunMei; Wang, PeiYuan; Chen, Liang; Mao, XiJin; Wang, ShanShan; Wang, Xu; Dong, JingMin; Wang, Bin

    2015-09-01

    To compare image quality of turbo spin-echo (TSE) with BLADE [which is also named periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER)] on magnetic resonance imaging (MRI) for upper abdomen. This study involved the retrospective evaluation of 103 patients (63 males, 40 females; age range 19-76 years; median age 53.8 years) who underwent 3.0 T MRI with both conventional TSE T2-weighted imaging (T2WI) and BLADE TSE T2WI. Two radiologists assessed respiratory motion, gastrointestinal peristalsis, and vascular pulsation artifacts, as well as the sharpness of the liver and pancreas edges. Scores for all magnetic resonance (MR) images were recorded. Wilcoxon's rank test was used to compare hierarchical data. Cohen's kappa coefficient was adopted to analyze interobserver consistency. Compared to TSE T2WI, BLADE TSE T2WI reduced all of the examined motion artifacts and increased the sharpness of the liver and pancreas edges (all P image quality.

  17. Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis.

    Science.gov (United States)

    Kühn, Jens-Peter; Hernando, Diego; Mensel, Birger; Krüger, Paul C; Ittermann, Till; Mayerle, Julia; Hosten, Norbert; Reeder, Scott B

    2014-06-01

    To compare the accuracy of liver fat quantification using a three-echo chemical shift-encoded magnetic resonance imaging (MRI) technique without and with correction for confounders with spectroscopy (MRS) as the reference standard. Fifty patients (23 women, mean age 56.6 ± 13.2 years) with fatty liver disease were enrolled. Patients underwent T2-corrected single-voxel MRS and a three-echo chemical shift-encoded gradient echo (GRE) sequence at 3.0T. MRI fat fraction (FF) was calculated without and with T2* and T1 correction and multispectral modeling of fat and compared with MRS-FF using linear regression. The spectroscopic range of liver fat was 0.11%-38.7%. Excellent correlation between MRS-FF and MRI-FF was observed when using T2* correction (R(2)  = 0.96). With use of T2* correction alone, the slope was significantly different from 1 (1.16 ± 0.03, P fat were addressed, the results showed equivalence between fat quantification using MRI and MRS (slope: 1.02 ± 0.03, P = 0.528; intercept: 0.26% ± 0.46%, P = 0.572). Complex three-echo chemical shift-encoded MRI is equivalent to MRS for quantifying liver fat, but only with correction for T2* decay and T1 recovery and use of spectral modeling of fat. This is necessary because T2* decay, T1 recovery, and multispectral complexity of fat are processes which may otherwise bias the measurements. Copyright © 2013 Wiley Periodicals, Inc.

  18. Magnetic field mapping around metal implants using an asymmetric spin-echo sequence

    Czech Academy of Sciences Publication Activity Database

    Bartušek, Karel; Dokoupil, Zdeněk; Gescheidtová, E.

    2006-01-01

    Roč. 17, č. 12 (2006), s. 3293-3300 ISSN 0957-0233 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : nuclear magnetic resonance * spin echo * MRI * B0 mapping * dental material Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 1.228, year: 2006

  19. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI

    Energy Technology Data Exchange (ETDEWEB)

    Maramraju, Sri Harsha; Ravindranath, Bosky; Vaska, Paul; Schlyer, David J [Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY (United States); Smith, S David; Schulz, Daniela [Medical Department, Brookhaven National Laboratory, Upton, NY (United States); Junnarkar, Sachin S; Rescia, Sergio [Instrumentation Division, Brookhaven National Laboratory, Upton, NY (United States); Stoll, Sean; Purschke, Martin L; Woody, Craig L [Physics Department, Brookhaven National Laboratory, Upton, NY (United States); Southekal, Sudeepti [Brigham and Women' s Hospital, Boston, MA (United States); Pratte, Jean-Francois, E-mail: schlyer@bnl.gov [Universite de Sherbrooke, Sherbrooke, Quebec (Canada)

    2011-04-21

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 x 8 array of lutetium oxyorthosilicate crystals (2.22 x 2.22 x 5 mm{sup 3}) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [{sup 11}C]raclopride and 2-deoxy-2-[{sup 18}F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  20. MRI characterization of brown adipose tissue in obese and normal-weight children

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jie; Rigsby, Cynthia K.; Shore, Richard M. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, 225 E. Chicago Ave., Box 9, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Schoeneman, Samantha E. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, 225 E. Chicago Ave., Box 9, Chicago, IL (United States); Zhang, Huiyuan [John H. Stroger, Jr. Hospital of Cook County, Collaborative Research Unit, Chicago, IL (United States); Kwon, Soyang [Ann and Robert H. Lurie Children' s Hospital of Chicago, Stanley Manne Children' s Research Institute, Chicago, IL (United States); Northwestern University, Department of Pediatrics, Feinberg School of Medicine, Chicago, IL (United States); Josefson, Jami L. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Division of Endocrinology, Chicago, IL (United States); Northwestern University, Department of Pediatrics, Feinberg School of Medicine, Chicago, IL (United States)

    2015-10-15

    Brown adipose tissue (BAT) is identified in mammals as an adaptive thermogenic organ for modulation of energy expenditure and heat generation. Human BAT may be primarily composed of brown-in-white (BRITE) adipocytes and stimulation of BRITE may serve as a potential target for obesity interventions. Current imaging studies of BAT detection and characterization have been mainly limited to PET/CT. MRI is an emerging application for BAT characterization in healthy children. To exploit Dixon and diffusion-weighted MRI methods to characterize cervical-supraclavicular BAT/BRITE properties in normal-weight and obese children while accounting for pubertal status. Twenty-eight healthy children (9-15 years old) with a normal or obese body mass index participated. MRI exams were performed to characterize supraclavicular adipose tissues by measuring tissue fat percentage, T2*, tissue water mobility, and microvasculature properties. We used multivariate linear regression models to compare tissue properties between normal-weight and obese groups while accounting for pubertal status. MRI measurements of BAT/BRITE tissues in obese children showed higher fat percentage (P < 0.0001), higher T2* (P < 0.0001), and lower diffusion coefficient (P = 0.015) compared with normal-weight children. Pubertal status was a significant covariate for the T2* measurement, with higher T2* (P = 0.0087) in pubertal children compared to prepubertal children. Perfusion measurements varied by pubertal status. Compared to normal-weight children, obese prepubertal children had lower perfusion fraction (P = 0.003) and pseudo-perfusion coefficient (P = 0.048); however, obese pubertal children had higher perfusion fraction (P = 0.02) and pseudo-perfusion coefficient (P = 0.028). This study utilized chemical-shift Dixon MRI and diffusion-weighted MRI methods to characterize supraclavicular BAT/BRITE tissue properties. The multi-parametric evaluation revealed evidence of morphological differences in brown

  1. MRI characterization of brown adipose tissue in obese and normal-weight children

    International Nuclear Information System (INIS)

    Deng, Jie; Rigsby, Cynthia K.; Shore, Richard M.; Schoeneman, Samantha E.; Zhang, Huiyuan; Kwon, Soyang; Josefson, Jami L.

    2015-01-01

    Brown adipose tissue (BAT) is identified in mammals as an adaptive thermogenic organ for modulation of energy expenditure and heat generation. Human BAT may be primarily composed of brown-in-white (BRITE) adipocytes and stimulation of BRITE may serve as a potential target for obesity interventions. Current imaging studies of BAT detection and characterization have been mainly limited to PET/CT. MRI is an emerging application for BAT characterization in healthy children. To exploit Dixon and diffusion-weighted MRI methods to characterize cervical-supraclavicular BAT/BRITE properties in normal-weight and obese children while accounting for pubertal status. Twenty-eight healthy children (9-15 years old) with a normal or obese body mass index participated. MRI exams were performed to characterize supraclavicular adipose tissues by measuring tissue fat percentage, T2*, tissue water mobility, and microvasculature properties. We used multivariate linear regression models to compare tissue properties between normal-weight and obese groups while accounting for pubertal status. MRI measurements of BAT/BRITE tissues in obese children showed higher fat percentage (P < 0.0001), higher T2* (P < 0.0001), and lower diffusion coefficient (P = 0.015) compared with normal-weight children. Pubertal status was a significant covariate for the T2* measurement, with higher T2* (P = 0.0087) in pubertal children compared to prepubertal children. Perfusion measurements varied by pubertal status. Compared to normal-weight children, obese prepubertal children had lower perfusion fraction (P = 0.003) and pseudo-perfusion coefficient (P = 0.048); however, obese pubertal children had higher perfusion fraction (P = 0.02) and pseudo-perfusion coefficient (P = 0.028). This study utilized chemical-shift Dixon MRI and diffusion-weighted MRI methods to characterize supraclavicular BAT/BRITE tissue properties. The multi-parametric evaluation revealed evidence of morphological differences in brown

  2. The time window of MRI of murine atherosclerotic plaques after administration of CB2 receptor targeted micelles: inter-scan variability and relation between plaque signal intensity increase and gadolinium content of inversion recovery prepared versus non-prepared fast spin echo

    NARCIS (Netherlands)

    te Boekhorst, B. C. M.; Bovens, S. M.; van de Kolk, C. W. A.; Cramer, M. J. M.; Doevendans, P. A. F. M.; ten Hove, M.; van der Weerd, L.; Poelmann, R.; Strijkers, G. J.; Pasterkamp, G.; van Echteld, C. J. A.

    2010-01-01

    Single fast spin echo scans covering limited time frames are mostly used for contrast-enhanced MRI of atherosclerotic plaque biomarkers. Knowledge on inter-scan variability of the normalized enhancement ratio of plaque (NER(plaque)) and relation between NER(plaque) and gadolinium content for

  3. Validity of gradient-echo three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: A histologically controlled study

    Energy Technology Data Exchange (ETDEWEB)

    Zilkens, Christoph, E-mail: christoph.zilkens@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Miese, Falk, E-mail: falk.miese@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstraße 5, D-40225 Dusseldorf (Germany); Herten, Monika, E-mail: Moherten@web.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Kurzidem, Sabine, E-mail: sabine.kurzidem@uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Jäger, Marcus [Univ Essen, Medical Faculty, Department of Orthopaedic Surgery, D-45147 Essen (Germany); König, Dietmar, E-mail: Dietmarpierre.koenig@lvr.de [LVR Clinic for Orthopedic Surgery, D-41749 Viersen (Germany); Antoch, Gerald, E-mail: antoch@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstraße 5, D-40225 Dusseldorf (Germany); Krauspe, Rüdiger, E-mail: krauspe@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Bittersohl, Bernd, E-mail: bernd.bittersohl@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany)

    2013-02-15

    Objective: To validate gradient-echo three-dimensional (3D) delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) by means of histological analyses in the assessment of hip joint cartilage. Materials and methods: Twenty-one femoral head specimens collected from 21 patients (7 males, 14 females, mean age: 60.9 ± 9.6 years; range: 37.6–77.3 years), who underwent total hip replacement for symptomatic hip joint osteoarthritis, underwent MRI and histological assessment. A region of 2 cm{sup 2} at the weight-bearing area was marked with four pins to enable multi-planar MRI reformatting to be matched with histological sections. MRI was performed at 3 T with a 3D double-echo steady-state (DESS) sequence for morphological cartilage assessment and 3D Volumetric Interpolated Breathhold Examination (VIBE) for T1{sub Gd} mapping. Histological sections were evaluated according to the Mankin score system. Total Mankin score, grade of toluidine staining (sensitive for glycosaminoglycan content) and a modified Mankin score classification system with four sub-groups of cartilage damage were correlated with MRI data. Results: Spearman's rho correlation analyses revealed a statistically significant correlation between T1{sub Gd} mapping and histological analyses in all categories including total Mankin score (r = −0.658, p-value ≤ 0.001), toluidine staining (r = −0.802, p-value < 0.001) and modified Mankin score (r = −0.716, p-value < 0.001). The correlation between morphological MRI and histological cartilage assessment was statistically significant but inferior to the biochemical cartilage MRI (r-values ranging from −0.411 to 0.525, p-values < 0.001). Conclusions: Gradient-echo dGEMRIC is reliable while offering the unique features of high image resolution and 3D biochemically sensitive MRI for the assessment of early cartilage degeneration.

  4. Clinical and MRI features of supratentorial gliomas with adult-onset epilepsy

    International Nuclear Information System (INIS)

    Hashimoto, Takahiro; Yamaura, Akira; Watanabe, Osamu.

    1992-01-01

    Although some patients with supratentorial gliomas develop epilepsy in their clinical course, the details of adult-onset epilepsy with gliomas have not been fully evaluated. This paper reports on 15 cases of supratentorial glioma with the sole symptom of adult-onset epilepsy and characterizes their clinical and MRI features. The patients, 5 males and 10 females, developed the first epilepsy at the mean age of 37 years. Generalized seizure was encountered in all cases and focal seizure alone was never seen. Seizure was satisfactorily controlled with anticonvulsants in all except 2 cases. The tumor was located in the frontal lobe (9 cases) or temporal lobe (6 cases). Histologically, there were 12 astrocytomas, 2 glioblastomas, and 1 oligoastrocytoma. Of these, 12 were benign gliomas. Surprisingly, CT scan and MRI revealed tumors larger than predicted. The abnormal intensity region was delineated most prominently on T 2 -weighted SE image and was broader on T 2 -weighted spin echo image than on T 1 -weighted spin echo and inversion recovery image. The authors conclude that gliomas presenting with epilepsy tend to be histologically benign, are predominantly seen in middle-aged women, and are located in the frontal and temporal lobes. Although a tumor may be large enough to be detected on CT scan or MRI, as in the present study, histological examination is needed to establish the diagnosis. Additionally, gliomas with equivocal abnormalities on CT and MRI do evolve despite further neurological deficits, so meticulous evaluation including stereotactic biopsy is the method of choice. Finally, T 2 -weighted SE image in the coronal plane is advocated for patients with adult-onset epilepsy to achieve accurate diagnosis and to initiate early treatment. (author)

  5. Prediction of low birth weight: the placental T2* estimated by MRI versus the uterine artery pulsatility index

    DEFF Research Database (Denmark)

    Sinding, Marianne Munk; Peters, David Alberg; Frøkjær, Jens Brøndum

    (MRI) variable T2* reflects the placental oxygenation and thereby placental function. Therefore, we aimed to evaluate the performance of placental T2* in the prediction of low birth weight using the uterine artery (UtA) pulsatility index (PI) as gold standard. Methods: The study population......CONTROL ID: 2516296 ABSTRACT FINAL ID: P22.05 TITLE: Prediction of low birth weight: the placental T2* estimated by MRI versus the uterine artery pulsatility index AUTHORS (FIRST NAME, LAST NAME): Marianne Sinding1, David Peters2, Jens B. Frøkjær3, 4, Ole B. Christiansen1, 4, Astrid Petersen5...... had an EFW T2* was measured by MRI at 1.5T. A gradient recalled echo MRI sequence with readout at 16 echo times was used, and the placental T2* value was obtained by fitting the signal intensity as a function of the echo times...

  6. gr-MRI: A software package for magnetic resonance imaging using software defined radios

    Science.gov (United States)

    Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.

    2016-09-01

    The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.

  7. Longitudinal diffusion MRI for treatment response assessment: Preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system.

    Science.gov (United States)

    Yang, Yingli; Cao, Minsong; Sheng, Ke; Gao, Yu; Chen, Allen; Kamrava, Mitch; Lee, Percy; Agazaryan, Nzhde; Lamb, James; Thomas, David; Low, Daniel; Hu, Peng

    2016-03-01

    To demonstrate the preliminary feasibility of a longitudinal diffusion magnetic resonance imaging (MRI) strategy for assessing patient response to radiotherapy at 0.35 T using an MRI-guided radiotherapy system (ViewRay). Six patients (three head and neck cancer, three sarcoma) who underwent fractionated radiotherapy were enrolled in this study. A 2D multislice spin echo single-shot echo planar imaging diffusion pulse sequence was implemented on the ViewRay system and tested in phantom studies. The same pulse sequence was used to acquire longitudinal diffusion data (every 2-5 fractions) on the six patients throughout the entire course of radiotherapy. The reproducibility of the apparent diffusion coefficient (ADC) measurements was assessed using reference regions and the temporal variations of the tumor ADC values were evaluated. In diffusion phantom studies, the ADC values measured on the ViewRay system matched well with reference ADC values with ViewRay MRI. Larger patient cohort studies are warranted to correlate the longitudinal diffusion measurements to patient outcomes. Such an approach may enable response-guided adaptive radiotherapy.

  8. The evaluation of fat saturation fast spin-echo T2WI for patients with acute spinal trauma

    International Nuclear Information System (INIS)

    Kim, Sung Gyu; Lee, Chang Jun; Lee, Myung Joon; Kang, Ik Won; Yoo, Jeong Hyun

    2002-01-01

    To determine the usefulness of fat saturation fast spin-echo T2WI for patients with mild acute trauma of the spine. Between July 1998 and June 2002, 36 patients with acute spinal trauma underwent MRI within four months of injury. One, whose clinal symptoms indicated neurological paralysis, was excluded form our study. A superconductive 1.0-T MRI scanner was used, and conventional T1W1, T2W1, and additional fat-saturation fast spin-echo T2W1 were performed. Two radiologists compared conventional T2-weighted sagittal imaging and fat-saturation T2-weighted sagittal imaging in terms of the extension of increased high signal intensities in soft tissue and vertebral bodies, bone marrow signal change, disk herniation, and signal change of the disk. The detection rate of focal high signal intensities in soft tissue and bone marrow was significantly higher at fat-saturation fast spin-echo T2W1 is useful the evaluation of patients with mild acute spinal trauma without neurological impairment

  9. Echo Particle Image Velocimetry for Estimation of Carotid Artery Wall Shear Stress: Repeatability, Reproducibility and Comparison with Phase-Contrast Magnetic Resonance Imaging.

    Science.gov (United States)

    Gurung, Arati; Gates, Phillip E; Mazzaro, Luciano; Fulford, Jonathan; Zhang, Fuxing; Barker, Alex J; Hertzberg, Jean; Aizawa, Kunihiko; Strain, William D; Elyas, Salim; Shore, Angela C; Shandas, Robin

    2017-08-01

    Measurement of hemodynamic wall shear stress (WSS) is important in investigating the role of WSS in the initiation and progression of atherosclerosis. Echo particle image velocimetry (echo PIV) is a novel ultrasound-based technique for measuring WSS in vivo that has previously been validated in vitro using the standard optical PIV technique. We evaluated the repeatability and reproducibility of echo PIV for measuring WSS in the human common carotid artery. We measured WSS in 28 healthy participants (18 males and 10 females, mean age: 56 ± 12 y). Echo PIV was highly repeatable, with an intra-observer variability of 1.0 ± 0.1 dyn/cm 2 for peak systolic (maximum), 0.9 dyn/cm 2 for mean and 0.5 dyn/cm 2 for end-diastolic (minimum) WSS measurements. Likewise, echo PIV was reproducible, with a low inter-observer variability (max: 2.0 ± 0.2 dyn/cm 2 , mean: 1.3 ± 0.1 dyn/cm 2 , end-diastolic: 0.7 dyn/cm 2 ) and more variable inter-scan (test-retest) variability (max: 7.1 ± 2.3 dyn/cm 2 , mean: 2.9 ± 0.4 dyn/cm 2 , min: 1.5 ± 0.1 dyn/cm 2 ). We compared echo PIV with the reference method, phase-contrast magnetic resonance imaging (PC-MRI); echo PIV-based WSS measurements agreed qualitatively with PC-MRI measurements (r = 0.89, p PIV vs. PC-MRI): WSS at peak systole: 21 ± 7.0 dyn/cm 2 vs. 15 ± 5.0 dyn/cm 2 ; time-averaged WSS: 8.9 ± 3.0 dyn/cm 2 vs. 7.1 ± 3.0 dyn/cm 2 (p  0.05). For the first time, we report that echo PIV can measure WSS with good repeatability and reproducibility in adult humans with a broad age range. Echo PIV is feasible in humans and offers an easy-to-use, ultrasound-based, quantitative technique for measuring WSS in vivo in humans with good repeatability and reproducibility. Copyright © 2017. Published by Elsevier Inc.

  10. MRI of the cervical spine with 3D gradient echo sequence at 3 T: initial experience

    International Nuclear Information System (INIS)

    Xiao, L.; Siu, C.W.J.; Yeung, K.; Leung, A.; Yuen, M.K.; Wong, Y.C.

    2015-01-01

    Aim: The aim of this study was to compare three-dimensional (3D) high resolution T2*-weighted gradient echo (3D FFE) magnetic resonance (MR) sequence with conventional 2D T2-weighted turbo spin echo (TSE) MR sequence for imaging of the cervical spine, especially to assess the detectability of the internal anatomy of the cervical spinal cord, i.e. to distinguish the grey and white matter. Methods: Fifteen volunteers were examined at 3.0T MR unit. Signal-to-noise (SNR), contrast-to-noise (CNR) and image homogeneity were evaluated. In the visual analysis, the visibility of anatomical structures of the cervical spine and artifacts were assessed. The nonparametric method of paired sample t-test was adopted to evaluate the differences between the sequences. Results: The 3D FFE sequence provided better results for CNR, cerebrospinal fluid (CSF) versus white matter, grey matter, disk and bone. Moreover, it yielded good results for the CNR grey matter versus white matter. The butterfly-shaped “H” is clearly displayed in the 3D FFE sequence. The statistical analysis revealed the statistically significant difference between the 2D TSE and 3D FFE sequences for the contrast of CSF versus spinal cord (both grey matter and white matter). Conclusion: The 3D FFE sequence in MR imaging of the cervical spinal cord is superior in delineation of spinal cord anatomical structures compared to 2D TSE sequence. -- Highlights: •We investigate the potential of 3D FFE sequence to distinguish the grey-white of the cervical spinal cord at 3T MRI system. •We optimized The 3D FFE sequence was optimized to increase the grey-white contrast. •Utilizing medium TE for T2W and the shortest TR for reduction of susceptibility related artifacts and motion artefacts. •This technique may increase the confidence in the diagnosis of disease with the improved delineation of cord anatomy

  11. Detection of hyperacute parenchymal hemorrhage of the brain using echo-planar T2{sup *}-weighted and diffusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Wiesmann, M. [Dept. of Radiology, Medizinische Universitaet zu Luebeck (Germany); Mayer, T.E.; Yousry, I.; Brueckmann, H. [Dept. of Neuroradiology, Klinikum Grosshadern, Ludwig-Maximilians-Universitaet, Muenchen (Germany); Hamann, G.F. [Dept. of Neurology, Klinikum Grosshadern, Ludwig-Maximilians-Universitaet, Muenchen (Germany)

    2001-05-01

    We investigated the usefulness of echo-planar imaging (EPI) as well as T2{sup *}-weighted and diffusion-weighted MRI (DWI) to identify hyperacute hemorrhage (within 24 h after ictus) in the brain. Seven patients were examined 3.5 to 24 h after onset of symptoms using a whole-body 1.5-T MR system. Two diffusion-weighted sequences were run to obtain isotropic and anisotropic diffusion images. Apparent diffusion coefficients (ADC) were calculated from the isotropic diffusion images. All DWI images as well as the T2*-weighted EPI images showed the hematomas as either discrete, deeply hypointense homogeneous lesions, or as lesions of mixed signal intensity containing hypointense areas. We conclude that even in the early phase after hemorrhage, sufficient amounts of paramagnetic deoxyhemoglobin are present in intracerebral hemorrhages to cause hypointensity on EPI T2{sup *}-weighted and DWI images; thus, use of ultrafast EPI allows identification of intracerebral hemorrhage. (orig.)

  12. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    Energy Technology Data Exchange (ETDEWEB)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Department of Radiology, Zurich (Switzerland); Espinosa, Norman [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Orthopedic Surgery, Zurich (Switzerland)

    2017-08-15

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  13. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    International Nuclear Information System (INIS)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja; Espinosa, Norman

    2017-01-01

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  14. Non-destructive analysis of sensory traits of dry-cured loins by MRI-computer vision techniques and data mining.

    Science.gov (United States)

    Caballero, Daniel; Antequera, Teresa; Caro, Andrés; Ávila, María Del Mar; G Rodríguez, Pablo; Perez-Palacios, Trinidad

    2017-07-01

    Magnetic resonance imaging (MRI) combined with computer vision techniques have been proposed as an alternative or complementary technique to determine the quality parameters of food in a non-destructive way. The aim of this work was to analyze the sensory attributes of dry-cured loins using this technique. For that, different MRI acquisition sequences (spin echo, gradient echo and turbo 3D), algorithms for MRI analysis (GLCM, NGLDM, GLRLM and GLCM-NGLDM-GLRLM) and predictive data mining techniques (multiple linear regression and isotonic regression) were tested. The correlation coefficient (R) and mean absolute error (MAE) were used to validate the prediction results. The combination of spin echo, GLCM and isotonic regression produced the most accurate results. In addition, the MRI data from dry-cured loins seems to be more suitable than the data from fresh loins. The application of predictive data mining techniques on computational texture features from the MRI data of loins enables the determination of the sensory traits of dry-cured loins in a non-destructive way. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Fetal MRI: An approach to practice: A review

    OpenAIRE

    Saleem, Sahar N.

    2013-01-01

    MRI has been increasingly used for detailed visualization of the fetus in utero as well as pregnancy structures. Yet, the familiarity of radiologists and clinicians with fetal MRI is still limited. This article provides a practical approach to fetal MR imaging. Fetal MRI is an interactive scanning of the moving fetus owed to the use of fast sequences. Single-shot fast spin-echo (SSFSE) T2-weighted imaging is a standard sequence. T1-weighted sequences are primarily used to demonstrate fat, cal...

  16. Independence of echo-threshold and echo-delay in the barn owl.

    Directory of Open Access Journals (Sweden)

    Brian S Nelson

    Full Text Available Despite their prevalence in nature, echoes are not perceived as events separate from the sounds arriving directly from an active source, until the echo's delay is long. We measured the head-saccades of barn owls and the responses of neurons in their auditory space-maps while presenting a long duration noise-burst and a simulated echo. Under this paradigm, there were two possible stimulus segments that could potentially signal the location of the echo. One was at the onset of the echo; the other, after the offset of the direct (leading sound, when only the echo was present. By lengthening the echo's duration, independently of its delay, spikes and saccades were evoked by the source of the echo even at delays that normally evoked saccades to only the direct source. An echo's location thus appears to be signaled by the neural response evoked after the offset of the direct sound.

  17. The contribution of MRI to the diagnosis of diffuse meningeal lesions

    International Nuclear Information System (INIS)

    Kreuzberg, B.; Kastner, J.; Ferda, J.

    2004-01-01

    We analysed MRI findings in patients in whom a diffuse abnormality of the meninges was revealed by MRI. We looked at T1 and T2-weighted spin-echo or fast spin-echo images and contrast-enhanced T1-weighted images. There were 15 patients with abnormalities on MRI, clinically suspected in ten. Four had meningoencephalitis, one meningeal and subcortical sarcoidosis nodules, four meningeal malignancies - one disseminated oligodendroglioma, one with meningeal infiltration around an adenocarcinoma, three meningeal infiltration by a haematological malignancy, and one a chronic subdural haematoma without a history of injury. We excluded patients with primary meningeal tumours and typical injury-related meningeal bleeding. The relatively small number of patients is due to both the infrequency of diffuse meningeal disease and to the low frequency of suspected meningeal pathology as an indication for MRI. The latter's diagnostic contribution is greatest in infectious disease and neoplastic infiltration, and less obvious in haematological malignancies. Contrast-enhanced T1-weighted images are most useful. (orig.)

  18. Prediction of pork quality parameters by applying fractals and data mining on MRI

    DEFF Research Database (Denmark)

    Caballero, Daniel; Pérez-Palacios, Trinidad; Caro, Andrés

    2017-01-01

    This work firstly investigates the use of MRI, fractal algorithms and data mining techniques to determine pork quality parameters non-destructively. The main objective was to evaluate the capability of fractal algorithms (Classical Fractal algorithm, CFA; Fractal Texture Algorithm, FTA and One...... Point Fractal Texture Algorithm, OPFTA) to analyse MRI in order to predict quality parameters of loin. In addition, the effect of the sequence acquisition of MRI (Gradient echo, GE; Spin echo, SE and Turbo 3D, T3D) and the predictive technique of data mining (Isotonic regression, IR and Multiple linear...... regression, MLR) were analysed. Both fractal algorithm, FTA and OPFTA are appropriate to analyse MRI of loins. The sequence acquisition, the fractal algorithm and the data mining technique seems to influence on the prediction results. For most physico-chemical parameters, prediction equations with moderate...

  19. The clinical potential of ultra-high-speed echo-planar imaging

    International Nuclear Information System (INIS)

    Worthington, B.S.; Firth, J.L.; Morris, G.K.; Johnson, I.R.; Coxon, R.; Blamire, A.M.; Gibbs, P.; Mansfield, P.

    1990-01-01

    Ultra-high-speed echo-planar imaging (EPI) allows acquisition of a complete two-dimensional image in 64 to 128 ms devoid of movement artefact and without sacrifice of contrast due to relaxation time effects. In conventional whole-body MRI, however, obtrusive movement artefact and extended imaging time, resulting from the need to apply multiple sequences to facilitate lesion detection and pathological characterization, remain limitations. Reduced total examination time increases patient tolerance and throughput; furthermore optimization of contrast to achieve maximal conspicuity of particular features in liver or brain pathology is achieved simply and interactively by real time adjustment of the imaging parameters. The method provides the opportunity to study in real time dynamic events such as flow phenomena in the vascular and cerebrospinal fluid compartments of the brain as well as the kinetics of administered contrast agents. EPI is the only means of capturing the irregular motion of aperiodic cardiac events and bowel peristalsis. (author)

  20. Can cardiovascular MRI be used to more definitively characterize cardiac masses initially identified using echocardiography?

    Science.gov (United States)

    Rathi, Vikas K; Czajka, Anna T; Thompson, Diane V; Doyle, Mark; Tewatia, Tarun; Yamrozik, June; Williams, Ronald B; Biederman, Robert W W

    2018-05-01

    In diagnosing cardiac and paracardiac masses, cardiac MRI (CMR) has gained acceptance as the gold standard. CMR has been observed to be superior to echocardiography in characterizing soft-tissue structures and, specifically, in classifying cardiac masses. The aim of our study was to evaluate the association between mortality and cardiac or paracardiac masses initially identified by echocardiography (ECHO) and confirmed by CMR. Between January 2002 and August 2007, a total of 158 patients underwent both ECHO and CMR for the evaluation of cardiac masses that were equivocal or undefined by ECHO. The primary study endpoints were 5-year all-cause mortality and 5-year cardiac mortality. Causes of death as of April 1, 2015 were obtained from medical records or the National Death Index. Patients were analyzed according to mass type determined by CMR using the Kruskal-Wallis test, Kaplan-Meier curves, and the log-rank test. Over a mean duration of follow-up of 10.4 ± 2.9 years (range: 0.01-12 years) post-CMR, the overall all-cause mortality rate was 25.9% (41/158). Median age at death was 76 years and there were 21 females (51.2%). Mortality rates in the different classifications of cardiac masses by CMR were as follows: 20% (1/5) in patients with a Nondiagnostic CMR; 20% (1/5) in Other Diagnoses; 17.9% (7/39) in No Masses (includes Normal Anatomical Variants); 16.7% (3/18) in Benign Masses; 23.8% (15/63) in Fat; 50% (5/10) in Thrombus; and 61.5% (8/13) in Malignant Mass. The mean survival time in patients with No Mass (n = 39) was not significantly longer than patients with any type of cardiac mass (n = 114) (P = .16). No significant difference was found in age at death between patients when grouped by CMR classification (P = .40). However, among CMR-confirmed masses, there were some significant differences by mass classification type (P = .006). During the follow-up period, 26% (41/158) of patients died and 22% (9/41) of the deaths were cardiovascular

  1. Self-calibrated multiple-echo acquisition with radial trajectories using the conjugate gradient method (SMART-CG).

    Science.gov (United States)

    Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F

    2011-04-01

    To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast three-dimensional MRI data acquisition. Copyright © 2011 Wiley-Liss, Inc.

  2. Grading of cerebral gilomas: correlation with perfusion MRI, spectroscopic MRI and histopathology

    International Nuclear Information System (INIS)

    Law, M.; Cha, S.; Knopp, E.A.; Johnson, G.; Litt, A.W.

    2002-01-01

    Full text: The aim of this study was to determine the correlation between perfusion MRI (pMRI), spectroscopic MRI (sMRI) and histopathologic grading of primary glial neoplasms. Echo-planar pMRI has already been shown to be a robust physiological tool in preoperatively predicting tumor grade and guiding stereotactic biopsy (1). Thirty-four patients with a primary glial neoplasm underwent conventional MR imaging, T2*-weighted echo planar pMRI and sMRI. Four rCBV measurements were obtained from the colour maps of each lesion to determine the maximum rCBV. Spectroscopic MRI utilizing 2D chemical shift imaging at a TE of 135 provided multi-voxel spectroscopic data in sixteen of these patients. The maximum Cho/NAA, Cho/Cr, and minimum NAA/Cr ratios were obtained as well as documenting the presence of lactate and lipids. This was compared with the histopathological grading (including staining with H and E, GFAP, vimentin and MIB1, proliferative index) obtained from volumetric resection or stereotactic biopsy. The maximum rCBV in high grade tumors (n=26) ranged from 1.34 to 5.15, with a mean of 3.00 ± 1.21 (SD), and in the low grade tumors (n=8) ranged from 1.47 to 2.49, with a mean of 1.81 ± 1.21 (SD).This difference was statistically significant (p<0.001; Student t test). Maximum values for Cho/NAA, Cho/Cr and minimum NAA/Cr values were 3.24 ± 3.26, 2.49 ± 1.17 and 1.02 ± 0.34, respectively in the high grade (n = 11), and 1.3 ± 0.39, 1.58 ± 0.45 and 0.89 ± 0.37 respectively in the low-grade tumors (n = 5). A statistically significant difference was found for the Cho/Cr ratio (p<0.05) between the high grade and low grade groups. Relative CBV measurements and spectroscopic metabolic ratios are complementary and correlate with histopathology (2,3). These tools provide powerful physiological and metabolic information for preoperative prediction of tumor grade and will guide pre and post operative planning and management. Copyright (2002) Blackwell Science Pty Ltd

  3. Spatiotemporal alignment of in utero BOLD-MRI series.

    Science.gov (United States)

    Turk, Esra Abaci; Luo, Jie; Gagoski, Borjan; Pascau, Javier; Bibbo, Carolina; Robinson, Julian N; Grant, P Ellen; Adalsteinsson, Elfar; Golland, Polina; Malpica, Norberto

    2017-08-01

    To present a method for spatiotemporal alignment of in-utero magnetic resonance imaging (MRI) time series acquired during maternal hyperoxia for enabling improved quantitative tracking of blood oxygen level-dependent (BOLD) signal changes that characterize oxygen transport through the placenta to fetal organs. The proposed pipeline for spatiotemporal alignment of images acquired with a single-shot gradient echo echo-planar imaging includes 1) signal nonuniformity correction, 2) intravolume motion correction based on nonrigid registration, 3) correction of motion and nonrigid deformations across volumes, and 4) detection of the outlier volumes to be discarded from subsequent analysis. BOLD MRI time series collected from 10 pregnant women during 3T scans were analyzed using this pipeline. To assess pipeline performance, signal fluctuations between consecutive timepoints were examined. In addition, volume overlap and distance between manual region of interest (ROI) delineations in a subset of frames and the delineations obtained through propagation of the ROIs from the reference frame were used to quantify alignment accuracy. A previously demonstrated rigid registration approach was used for comparison. The proposed pipeline improved anatomical alignment of placenta and fetal organs over the state-of-the-art rigid motion correction methods. In particular, unexpected temporal signal fluctuations during the first normoxia period were significantly decreased (P quantitative studies of placental function by improving spatiotemporal alignment across placenta and fetal organs. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:403-412. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Echo

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Dustin Yewell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-25

    This document is a white paper marketing proposal for Echo™ is a data analysis platform designed for efficient, robust, and scalable creation and execution of complex workflows. Echo’s analysis management system refers to the ability to track, understand, and reproduce workflows used for arriving at results and decisions. Echo improves on traditional scripted data analysis in MATLAB, Python, R, and other languages to allow analysts to make better use of their time. Additionally, the Echo platform provides a powerful data management and curation solution allowing analysts to quickly find, access, and consume datasets. After two years of development and a first release in early 2016, Echo is now available for use with many data types in a wide range of application domains. Echo provides tools that allow users to focus on data analysis and decisions with confidence that results are reported accurately.

  5. Cranial x-ray CT and MRI in congenital muscular dystrophy

    International Nuclear Information System (INIS)

    Horikawa, Hirosei; Konishi, Toshihiko; Konagaya, Masaaki; Mano, Yukio; Takayanagi, Tetsuya

    1988-01-01

    The involvements of central nervous system in those cases of congenital muscular dystrophy (CMD), especially in Fukuyama type CMD, have been observed both radiologically and pathologically. The recent development of MRI made it easier to detect fine structural changes in brain matter than the X-ray CT. Then, we tried to evaluate the central nervous system abnormalities of six cases of CMD by both X-ray CT and MRI. In one case, X-ray CT revealed diffuse hypodensity of cerebral white matter, and MRI showed high intensity on long spin-echo image and low intensity on inversion-recovery image. In another case, X-ray CT showed no abnormal findings, but long spin-echo image revealed two high intensity spots in cerebral white matter. In other four cases, brain atrophy was demonstrated by X-ray CT and/or MRI, one case of these patients had bilateral congenital arachnoid cysts in the middle cranial fossa and hypogenesis of temporal lobes. Although we could not demonstrate polymicrogyria and agyria in all cases by MRI, white matter changes and structural changes were revealed more clearly than X-ray CT. The combination of X-ray CT and MRI seems to make a noteworthy contribution to estimate the central nervous system abnormalities in CMD. (author)

  6. Acquisition and analysis strategies in functional MRI at high fields

    International Nuclear Information System (INIS)

    Windischberger, C.

    2001-08-01

    Functional magnetic resonance imaging represents a non-invasive technique to examine neuronal activity in the brain. It applies radio waves to excite nuclear spins, using the emitted signal during relaxation for image generation. Signal modulations from local blood flow and oxygenation level changes caused by neuronal activity are the basis for calculating functional brain maps with high spatial resolution. The present work discusses concepts for improving the spatial and temporal resolution, as well as sophisticated analysis approaches. Besides an exhaustive description of image reconstruction algorithms, computational simulations on echo-shifting in echo-planar imaging are presented and effects on spatial resolution are quantified. The results demonstrate that echo-shifting causes only minimal resolution losses for high signal-to-noise data, but leads to severe resolution degradation (up to 30 %) in images with low signal-to-noise ratios. After an overview of the mechanisms that cause fMRI signal changes subsequent to neuronal activity, explorative analysis algorithms like Fuzzy Cluster Analysis, as well as parametric approaches are described and discussed. In the context of fMRI artifacts, effects of respiratory motion are examined. For the first time, well-defined breathing patterns are used to quantify the influences on fMRI signal intensity. Also, the variability of fMRI activation in a mental rotation paradigm are investigated, using single-trial analysis. Such, intra-subject activation consistency was determined successfully. Finally, in a second study on mental rotation explorative data analysis was applied to retrieve neuro-functional hypotheses. (author)

  7. Clinical and MRI features of supratentorial gliomas with adult-onset epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Takahiro; Yamaura, Akira (Chiba Univ. (Japan). School of Medicine); Watanabe, Osamu

    1992-02-01

    Although some patients with supratentorial gliomas develop epilepsy in their clinical course, the details of adult-onset epilepsy with gliomas have not been fully evaluated. This paper reports on 15 cases of supratentorial glioma with the sole symptom of adult-onset epilepsy and characterizes their clinical and MRI features. The patients, 5 males and 10 females, developed the first epilepsy at the mean age of 37 years. Generalized seizure was encountered in all cases and focal seizure alone was never seen. Seizure was satisfactorily controlled with anticonvulsants in all except 2 cases. The tumor was located in the frontal lobe (9 cases) or temporal lobe (6 cases). Histologically, there were 12 astrocytomas, 2 glioblastomas, and 1 oligoastrocytoma. Of these, 12 were benign gliomas. Surprisingly, CT scan and MRI revealed tumors larger than predicted. The abnormal intensity region was delineated most prominently on T[sub 2]-weighted SE image and was broader on T[sub 2]-weighted spin echo image than on T[sub 1]-weighted spin echo and inversion recovery image. The authors conclude that gliomas presenting with epilepsy tend to be histologically benign, are predominantly seen in middle-aged women, and are located in the frontal and temporal lobes. Although a tumor may be large enough to be detected on CT scan or MRI, as in the present study, histological examination is needed to establish the diagnosis. Additionally, gliomas with equivocal abnormalities on CT and MRI do evolve despite further neurological deficits, so meticulous evaluation including stereotactic biopsy is the method of choice. Finally, T[sub 2]-weighted SE image in the coronal plane is advocated for patients with adult-onset epilepsy to achieve accurate diagnosis and to initiate early treatment. (author).

  8. Fully refocused multi-shot spatiotemporally encoded MRI: robust imaging in the presence of metallic implants.

    Science.gov (United States)

    Ben-Eliezer, Noam; Solomon, Eddy; Harel, Elad; Nevo, Nava; Frydman, Lucio

    2012-12-01

    An approach has been recently introduced for acquiring arbitrary 2D NMR spectra or images in a single scan, based on the use of frequency-swept RF pulses for the sequential excitation and acquisition of the spins response. This spatiotemporal-encoding (SPEN) approach enables a unique, voxel-by-voxel refocusing of all frequency shifts in the sample, for all instants throughout the data acquisition. The present study investigates the use of this full-refocusing aspect of SPEN-based imaging in the multi-shot MRI of objects, subject to sizable field inhomogeneities that complicate conventional imaging approaches. 2D MRI experiments were performed at 7 T on phantoms and on mice in vivo, focusing on imaging in proximity to metallic objects. Fully refocused SPEN-based spin echo imaging sequences were implemented, using both Cartesian and back-projection trajectories, and compared with k-space encoded spin echo imaging schemes collected on identical samples under equal bandwidths and acquisition timing conditions. In all cases assayed, the fully refocused spatiotemporally encoded experiments evidenced a ca. 50 % reduction in signal dephasing in the proximity of the metal, as compared to analogous results stemming from the k-space encoded spin echo counterparts. The results in this study suggest that SPEN-based acquisition schemes carry the potential to overcome strong field inhomogeneities, of the kind that currently preclude high-field, high-resolution tissue characterizations in the neighborhood of metallic implants.

  9. Volumetric fat-water separated T2-weighted MRI

    International Nuclear Information System (INIS)

    Vasanawala, Shreyas S.; Sonik, Arvind; Madhuranthakam, Ananth J.; Venkatesan, Ramesh; Lai, Peng; Brau, Anja C.S.

    2011-01-01

    Pediatric body MRI exams often cover multiple body parts, making the development of broadly applicable protocols and obtaining uniform fat suppression a challenge. Volumetric T2 imaging with Dixon-type fat-water separation might address this challenge, but it is a lengthy process. We develop and evaluate a faster two-echo approach to volumetric T2 imaging with fat-water separation. A volumetric spin-echo sequence was modified to include a second shifted echo so two image sets are acquired. A region-growing reconstruction approach was developed to decompose separate water and fat images. Twenty-six children were recruited with IRB approval and informed consent. Fat-suppression quality was graded by two pediatric radiologists and compared against conventional fat-suppressed fast spin-echo T2-W images. Additionally, the value of in- and opposed-phase images was evaluated. Fat suppression on volumetric images had high quality in 96% of cases (95% confidence interval of 80-100%) and were preferred over or considered equivalent to conventional two-dimensional fat-suppressed FSE T2 imaging in 96% of cases (95% confidence interval of 78-100%). In- and opposed-phase images had definite value in 12% of cases. Volumetric fat-water separated T2-weighted MRI is feasible and is likely to yield improved fat suppression over conventional fat-suppressed T2-weighted imaging. (orig.)

  10. Magnetic resonance imaging of lumbar spine. Comparison of multiple spin echo and low flip angle gradient echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Takamichi; Fujita, Norihiko; Harada, Koushi; Kozuka, Takahiro (Osaka Univ. (Japan). Faculty of Medicine)

    1989-07-01

    Sixteen patients including 13 cases with disk herniation and 3 cases with spondylosis of lumbar spine were examined on a resistive MRI system operating at 0.1 T. All lesions were studied with both multiple spin echo (MSE) and low flip angle gradient echo (LF) techniques to evaluate which technique is more effective in detecting the disk degeneration and the indentation on subarachnoid space. MSE images were obtained with repetition time (TR) of 1100-1500 ms or cardiac gating, an echo time (TE) of 30, 60, 90, 120, 150, and 180 ms symmetrical 6 echoes, and total acquisition time of more than 281 sec. LF images were obtained with TR of 500, 250, and 100 ms, TE of 18 ms, a flip angle of 30 degree, and total acquisition time of 128 sec. Eleven lesions of spinal disk degeneration and 12 of indentation on subarachnoid space were detected with LF. On the other hand, 26 lesions of spinal disk degeneration and 38 of indentation on subarachnoid space were detected with MSE. Although the parameters of LF employed in this study were relatively effective to emphasize T2{sup *}-based contrast, the ability of LF in detection of spinal disk degeneration and indentation on subarachnoid space is less than that of MSE. Signal contrast to noise ratios for normal disk and degenerative disk, epidural-fat and disk herniated material, CSF and disk herniated material, and epidural-fat and CSF were less than 4 with LF, but more than 4 with MSE. This difference of contrast to noise ratio between MSE and LF was one of the main causes of the difference of the detection rate of spinal disk degeneration and indentation on subarachnoid space. (author).

  11. Usefulness of MRI-assisted metabolic volumetric parameters provided by simultaneous {sup 18}F-fluorocholine PET/MRI for primary prostate cancer characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-il [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Cheon, Gi Jeong [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Radiological Science Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Nuclear Medicine, 101 Daehak-ro, Chongno-gu, Seoul (Korea, Republic of); Paeng, Jin Chul [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Cho, Jeong Yeon [Seoul National University College of Medicine, Radiological Science Research Institute, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Chongno-gu, Seoul (Korea, Republic of); Kwak, Cheol [Seoul National University Hospital, Department of Urology, Seoul (Korea, Republic of); Kang, Keon Wook; Chung, June-Key [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Radiological Science Research Institute, Seoul (Korea, Republic of); Kim, Euishin Edmund [Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); University of California, Department of Radiological Sciences, Irvine, CA (United States); Lee, Dong Soo [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of)

    2015-07-15

    The aim of this study was to determine the usefulness of MRI-assisted positron emission tomography (PET) parameters provided by simultaneous {sup 18}F-fluorocholine (FCH) PET/MRI for characterization of primary prostate cancer. Thirty patients with localized prostate cancer (mean age 69.4 ± 6.7 years) confirmed by biopsy were prospectively enrolled for simultaneous PET/MRI imaging. The patients underwent {sup 18}F-FCH PET/MRI 1 week before undergoing total prostatectomy. Multiple parameters of diffusion-weighted MRI [minimum and mean apparent diffusion coefficient (ADC{sub min} and ADC{sub mean})], metabolic PET [maximum and mean standardized uptake value (SUV{sub max} and SUV{sub mean})], and metabolic volumetric PET [metabolic tumor volume (MTV) and uptake volume product (UVP)] were compared with laboratory, pathologic, and immunohistochemical (IHC) features of the prostate cancer specimen. PET parameters were divided into two categories as follows: volume of interest (VOI) of prostate by SUV cutoff 2.5 (SUV{sub max}, SUV{sub mean}, MTV{sub SUV}, and UVP{sub SUV}) and MRI-assisted VOI of prostate cancer (SUV{sub maxMRI}, SUV{sub meanMRI}, MTV{sub MRI}, and UVP{sub MRI}). The rates of prostate cancer-positive cases identified by MRI alone, {sup 18}F-FCH PET alone, and {sup 18}F-FCH PET/MRI were 83.3, 80.0, and 93.3 %, respectively. Among the multiple PET/MRI parameters, MTV{sub MRI} showed fair correlation with serum prostate-specific antigen (PSA; r = 0.442, p = 0.014) and highest correlation with tumor volume (r = 0.953, p < 0.001). UVP{sub MRI} showed highest correlation with serum PSA (r = 0.531, p = 0.003), good correlation with tumor volume (r = 0.908, p < 0.001), and it was significantly associated with Gleason score (p = 0.041). High MTV{sub MRI} and UVP{sub MRI} values were significant for perineural invasion, lymphatic invasion, extracapsular extension, seminal vesicle invasion, and positive B-cell lymphoma 2 (Bcl-2) expression (all p < 0

  12. Mono-Exponential Fitting in T2-Relaxometry: Relevance of Offset and First Echo.

    Directory of Open Access Journals (Sweden)

    David Milford

    Full Text Available T2 relaxometry has become an important tool in quantitative MRI. Little focus has been put on the effect of the refocusing flip angle upon the offset parameter, which was introduced to account for a signal floor due to noise or to long T2 components. The aim of this study was to show that B1 imperfections contribute significantly to the offset. We further introduce a simple method to reduce the systematic error in T2 by discarding the first echo and using the offset fitting approach.Signal curves of T2 relaxometry were simulated based on extended phase graph theory and evaluated for 4 different methods (inclusion and exclusion of the first echo, while fitting with and without the offset. We further performed T2 relaxometry in a phantom at 9.4T magnetic resonance imaging scanner and used the same methods for post-processing as in the extended phase graph simulated data. Single spin echo sequences were used to determine the correct T2 time.The simulation data showed that the systematic error in T2 and the offset depends on the refocusing pulse, the echo spacing and the echo train length. The systematic error could be reduced by discarding the first echo. Further reduction of the systematic T2 error was reached by using the offset as fitting parameter. The phantom experiments confirmed these findings.The fitted offset parameter in T2 relaxometry is influenced by imperfect refocusing pulses. Using the offset as a fitting parameter and discarding the first echo is a fast and easy method to minimize the error in T2, particularly for low to intermediate echo train length.

  13. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity.

    Science.gov (United States)

    Cohen, Alexander D; Nencka, Andrew S; Lebel, R Marc; Wang, Yang

    2017-01-01

    A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI.

  14. Prognostic value of gradient echo T2* sequences for brain MR imaging in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Bruine, Francisca T. de; Berg-Huysmans, Annette A. van den; Buchem, Mark A. van; Grond, Jeroen van der [Leiden University Medical Center, Department of Radiology, PO Box 9600, Leiden (Netherlands); Steggerda, Sylke J.; Leijser, Lara M.; Rijken, Monique [Leiden University Medical Center, Department of Pediatrics, subdivision of Neonatology, Leiden (Netherlands); Wezel-Meijler, Gerda van [Leiden University Medical Center, Department of Pediatrics, subdivision of Neonatology, Leiden (Netherlands); Isala Hospital, Department of Neonatology, Zwolle (Netherlands)

    2014-03-15

    Gradient echo T2*-W sequences are more sensitive than T2-W spin-echo sequences for detecting hemorrhages in the brain. The aim of this study is to correlate presence of hemosiderin deposits in the brain of very preterm infants (gestational age <32 weeks) detected by T2*-W gradient echo MRI to white matter injury and neurodevelopmental outcome at 2 years. In 101 preterm infants, presence and location of hemosiderin were assessed on T2*-W gradient echo MRI performed around term-equivalent age (range: 40-60 weeks). White matter injury was defined as the presence of >6 non-hemorrhagic punctate white matter lesions (PWML), cysts and/or ventricular dilatation. Six infants with post-hemorrhagic ventricular dilatation detected by US in the neonatal period were excluded. Infants were seen for follow-up at 2 years. Univariate and regression analysis assessed the relation between presence and location of hemosiderin, white matter injury and neurodevelopmental outcome. In 38/95 (40%) of the infants, hemosiderin was detected. Twenty percent (19/95) of the infants were lost to follow-up. There was a correlation between hemosiderin in the ventricular wall with >6 PWML (P < 0.001) and cysts (P < 0.001) at term-equivalent age, and with a lower psychomotor development index (PDI) (P=0.02) at 2 years. After correcting for known confounders (gestational age, gender, intrauterine growth retardation and white matter injury), the correlation with PDI was no longer significant. The clinical importance of detecting small hemosiderin deposits is limited as there is no independent association with neurodevelopmental outcome. (orig.)

  15. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tryggestad, E. [Mayo Clinic (United States)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  16. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    International Nuclear Information System (INIS)

    Tryggestad, E.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  17. Predictive value of PWI for blood supply and T1-spin echo MRI for consistency of pituitary adenoma

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zengyi; He, Wenqiang; Zhao, Yao; Zhang, Qilin; Li, Shiqi; Wang, Yongfei [Fudan University, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Shanghai (China); Shanghai Pituitary Tumor Center, Shanghai (China); Yuan, Jie; Wu, Yue; Yao, Zhenwei [Fudan University, Department of Radiology, Huashan Hospital, Shanghai Medical College, Shanghai (China); Chen, Hong [Fudan University, Department of Neuropathology, Huashan Hospital, Shanghai Medical College, Shanghai (China)

    2016-01-15

    It is a common view that consistency and blood supply of pituitary adenoma (PA) can influence the surgical effect. The aim of this study was to determine whether MRI signal intensity (SI) was correlated to the consistency or blood supply of pituitary macroadenoma. Forty eight pituitary macroadenoma patients were underwent preoperative MRI, including precontrast and contrast-enhanced (CE) T1-spin echo (T1-SE) imaging, CE-sampling perfection with application-optimized contrasts by using different flip angle evolutions (SPACE) imaging, and perfusion-weighted imaging (PWI). The tumor consistency and blood supply were determined by neurosurgeons. The expression of collagen IV and MIB-1 was detected with immunohistology. The correlation of the relative SI (rSI) values (tumor to normal frontal white matter SI) and PWI data to the tumor consistency, blood supply, and the expression level of collagen IV and MIB-1 was statistically studied by Kruskal-Wallis rank test (K-W test). A significant correlation was observed between the tumor consistency and the rSI on precontrast T1-SE imaging (P = 0.004) but not on CE T1-SE and CE SPACE imaging. The expression of collagen IV was also significantly associated with rSI on T1-SE imaging (P = 0.010). The blood supply was correlated with the relative CBV (rCBV) (P = 0.030). In addition, the expression of MIB-1 was correlated with rSI of CE T1-SE imaging (P = 0.007). Our results suggest that T1-SE imaging may be a simple and useful method for predicting consistency of PA. CBV value can provide helpful information for assessing the blood supply of pituitary macroadenoma. (orig.)

  18. MRI of the lumbar spine: comparison of 3D isotropic turbo spin-echo SPACE sequence versus conventional 2D sequences at 3.0 T.

    Science.gov (United States)

    Lee, Sungwon; Jee, Won-Hee; Jung, Joon-Yong; Lee, So-Yeon; Ryu, Kyeung-Sik; Ha, Kee-Yong

    2015-02-01

    Three-dimensional (3D) fast spin-echo sequence with variable flip-angle refocusing pulse allows retrospective alignments of magnetic resonance imaging (MRI) in any desired plane. To compare isotropic 3D T2-weighted (T2W) turbo spin-echo sequence (TSE-SPACE) with standard two-dimensional (2D) T2W TSE imaging for evaluating lumbar spine pathology at 3.0 T MRI. Forty-two patients who had spine surgery for disk herniation and had 3.0 T spine MRI were included in this study. In addition to standard 2D T2W TSE imaging, sagittal 3D T2W TSE-SPACE was obtained to produce multiplanar (MPR) images. Each set of MR images from 3D T2W TSE and 2D TSE-SPACE were independently scored for the degree of lumbar neural foraminal stenosis, central spinal stenosis, and nerve compression by two reviewers. These scores were compared with operative findings and the sensitivities were evaluated by McNemar test. Inter-observer agreements and the correlation with symptoms laterality were assessed with kappa statistics. The 3D T2W TSE and 2D TSE-SPACE had similar sensitivity in detecting foraminal stenosis (78.9% versus 78.9% in 32 foramen levels), spinal stenosis (100% versus 100% in 42 spinal levels), and nerve compression (92.9% versus 81.8% in 59 spinal nerves). The inter-observer agreements (κ = 0.849 vs. 0.451 for foraminal stenosis, κ = 0.809 vs. 0.503 for spinal stenosis, and κ = 0.681 vs. 0.429 for nerve compression) and symptoms correlation (κ = 0.449 vs. κ = 0.242) were better in 3D TSE-SPACE compared to 2D TSE. 3D TSE-SPACE with oblique coronal MPR images demonstrated better inter-observer agreements compared to 3D TSE-SPACE without oblique coronal MPR images (κ = 0.930 vs. κ = 0.681). Isotropic 3D T2W TSE-SPACE at 3.0 T was comparable to 2D T2W TSE for detecting foraminal stenosis, central spinal stenosis, and nerve compression with better inter-observer agreements and symptom correlation. © The Foundation Acta Radiologica 2014 Reprints and

  19. Congenital bronchobiliary fistula: MRI appearance

    International Nuclear Information System (INIS)

    Hourigan, Jon S.; Carr, Michael G.; Burton, Edward M.; Ledbetter, Joel C.

    2004-01-01

    Congenital bronchobiliary fistula (CBBF) is a rare anomaly. Twenty-three cases have been reported since the anomaly was first described in 1952. Most of these cases were diagnosed by bronchoscopy, cholangiography, or hepatobiliary nuclear imaging. Our case of a newborn with bilious emesis with CBBF was depicted by T1-weighted gradient-echo MRI sequences. (orig.)

  20. Semiquantitative assessment of focal cartilage damage at 3 T MRI: A comparative study of dual echo at steady state (DESS) and intermediate-weighted (IW) fat suppressed fast spin echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Roemer, Frank W., E-mail: froemer@bu.edu [Quantitative Imaging Center (QIC), Department of Radiology, Boston University Medical Center, Boston, MA (United States); Department of Radiology, Klinikum Augsburg, Augsburg (Germany); Kwoh, C. Kent [Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine (United States); VA Pittsburgh Healthcare System (United States); Hannon, Michael J. [Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine (United States); Crema, Michel D. [Quantitative Imaging Center (QIC), Department of Radiology, Boston University Medical Center, Boston, MA (United States); Moore, Carolyn E. [Department of Nutrition and Food Sciences, Texas Woman' s University (United States); Jakicic, John M. [Department of Health and Physical Activity, University of Pittsburgh (United States); Green, Stephanie M. [Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine (United States); Guermazi, Ali [Quantitative Imaging Center (QIC), Department of Radiology, Boston University Medical Center, Boston, MA (United States)

    2011-11-15

    Purpose: The aim of the study was to compare semiquantitative assessment of focal cartilage damage using the dual echo at steady state (DESS)- and intermediate-weighted (IW) fat suppressed (fs) sequences at 3 T MRI. Methods: Included were 201 subjects aged 35-65 with frequent knee pain. MRI was performed with the same sequence protocol as in the Osteoarthritis Initiative (OAI): sagittal IW fs, triplanar DESS and coronal IW sequences. Cartilage status was scored according to the WORMS system using all five sequences. A total of 243 focal defects were detected. In an additional consensus reading, the lesions were evaluated side-by-side using only the sagittal DESS and IW fs sequences. Lesion conspicuity was graded from 0 to 3, intrachondral signal changes adjacent to the defect were recorded and the sequence that depicted the lesion with larger diameter was noted. Wilcoxon signed-rank tests, controlled for clustering by person, were used to examine differences between the sequences. Results: 37 (17.5%) of the scorable lesions were located in the medial tibio-femoral (TF), 48 (22.7%) in the lateral TF and 126 (59.7%) in the patello-femoral compartment. 82.5% were superficial and 17.5% full-thickness defects. Conspicuity was superior for the IW sequence (p < 0.001). The DESS sequence showed more associated intrachondral signal changes (p < 0.001). In 103 (48.8%) cases, the IW fs sequence depicted the lesions as being larger (p < 0.001). Conclusions: The IW fs sequence detected more and larger focal cartilage defects than the DESS. More intrachondral signal changes were observed with the DESS.

  1. Image artifacts in concurrent transcranial magnetic stimulation (TMS) and fMRI caused by leakage currents: modeling and compensation.

    Science.gov (United States)

    Weiskopf, Nikolaus; Josephs, Oliver; Ruff, Christian C; Blankenburg, Felix; Featherstone, Eric; Thomas, Anthony; Bestmann, Sven; Driver, Jon; Deichmann, Ralf

    2009-05-01

    To characterize and eliminate a new type of image artifact in concurrent transcranial magnetic stimulation and functional MRI (TMS-fMRI) caused by small leakage currents originating from the high-voltage capacitors in the TMS stimulator system. The artifacts in echo-planar images (EPI) caused by leakage currents were characterized and quantified in numerical simulations and phantom studies with different phantom-coil geometries. A relay-diode combination was devised and inserted in the TMS circuit that shorts the leakage current. Its effectiveness for artifact reduction was assessed in a phantom scan resembling a realistic TMS-fMRI experiment. The leakage-current-induced signal changes exhibited a multipolar spatial pattern and the maxima exceeded 1% at realistic coil-cortex distances. The relay-diode combination effectively reduced the artifact to a negligible level. The leakage-current artifacts potentially obscure effects of interest or lead to false-positives. Since the artifact depends on the experimental setup and design (eg, amplitude of the leakage current, coil orientation, paradigm, EPI parameters), we recommend its assessment for each experiment. The relay-diode combination can eliminate the artifacts if necessary.

  2. Rapid ex vivo imaging of PAIII prostate to bone tumor with SWIFT-MRI.

    Science.gov (United States)

    Luhach, Ihor; Idiyatullin, Djaudat; Lynch, Conor C; Corum, Curt; Martinez, Gary V; Garwood, Michael; Gillies, Robert J

    2014-09-01

    The limiting factor for MRI of skeletal/mineralized tissue is fast transverse relaxation. A recent advancement in MRI technology, SWIFT (Sweep Imaging with Fourier Transform), is emerging as a new approach to overcome this difficulty. Among other techniques like UTE, ZTE, and WASPI, the application of SWIFT technology has the strong potential to impact preclinical and clinical imaging, particularly in the context of primary or metastatic bone cancers because it has the added advantage of imaging water in mineralized tissues of bone allowing MRI images to be obtained of tissues previously visible only with modalities such as computed tomography (CT). The goal of the current study is to examine the feasibility of SWIFT for the assessment of the prostate cancer induced changes in bone formation (osteogenesis) and destruction (osteolysis) in ex vivo specimens. A luciferase expressing prostate cancer cell line (PAIII) or saline control was inoculated directly into the tibia of 6-week-old immunocompromised male mice. Tumor growth was assessed weekly for 3 weeks before euthanasia and dissection of the tumor bearing and sham tibias. The ex vivo mouse tibia specimens were imaged with a 9.4 Tesla (T) and 7T MRI systems. SWIFT images are compared with traditional gradient-echo and spin-echo MRI images as well as CT and histological sections. SWIFT images with nominal resolution of 78 μm are obtained with the tumor and different bone structures identified. Prostate cancer induced changes in the bone microstructure are visible in SWIFT images, which is supported by spin-echo, high resolution CT and histological analysis. SWIFT MRI is capable of high-quality high-resolution ex vivo imaging of bone tumor and surrounding bone and soft tissues. Furthermore, SWIFT MRI shows promise for in vivo bone tumor imaging, with the added benefits of nonexposure to ionizing radiation, quietness, and speed. Copyright © 2013 Wiley Periodicals, Inc.

  3. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    Science.gov (United States)

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  4. Assessment of MRI Issues at 3 Tesla for a New Metallic Tissue Marker

    Science.gov (United States)

    Cronenweth, Charlotte M.; Shellock, Frank G.

    2015-01-01

    Purpose. To assess the MRI issues at 3 Tesla for a metallic tissue marker used to localize removal areas of tissue abnormalities. Materials and Methods. A newly designed, metallic tissue marker (Achieve Marker, CareFusion, Vernon Hills, IL) used to mark biopsy sites, particularly in breasts, was assessed for MRI issues which included standardized tests to determine magnetic field interactions (i.e., translational attraction and torque), MRI-related heating, and artifacts at 3 Tesla. Temperature changes were determined for the marker using a gelled-saline-filled phantom. MRI was performed at a relatively high specific absorption rate (whole body averaged SAR, 2.9-W/kg). MRI artifacts were evaluated using T1-weighted, spin echo and gradient echo pulse sequences. Results. The marker displayed minimal magnetic field interactions (2-degree deflection angle and no torque). MRI-related heating was only 0.1°C above background heating (i.e., the heating without the tissue marker present). Artifacts seen as localized signal loss were relatively small in relation to the size and shape of the marker. Conclusions. Based on the findings, the new metallic tissue marker is acceptable or “MR Conditional” (using current labeling terminology) for a patient undergoing an MRI procedure at 3 Tesla or less. PMID:26266051

  5. ECHO Gov Login | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  6. Aural localization of silent objects by active human biosonar: neural representations of virtual echo-acoustic space.

    Science.gov (United States)

    Wallmeier, Ludwig; Kish, Daniel; Wiegrebe, Lutz; Flanagin, Virginia L

    2015-03-01

    Some blind humans have developed the remarkable ability to detect and localize objects through the auditory analysis of self-generated tongue clicks. These echolocation experts show a corresponding increase in 'visual' cortex activity when listening to echo-acoustic sounds. Echolocation in real-life settings involves multiple reflections as well as active sound production, neither of which has been systematically addressed. We developed a virtualization technique that allows participants to actively perform such biosonar tasks in virtual echo-acoustic space during magnetic resonance imaging (MRI). Tongue clicks, emitted in the MRI scanner, are picked up by a microphone, convolved in real time with the binaural impulse responses of a virtual space, and presented via headphones as virtual echoes. In this manner, we investigated the brain activity during active echo-acoustic localization tasks. Our data show that, in blind echolocation experts, activations in the calcarine cortex are dramatically enhanced when a single reflector is introduced into otherwise anechoic virtual space. A pattern-classification analysis revealed that, in the blind, calcarine cortex activation patterns could discriminate left-side from right-side reflectors. This was found in both blind experts, but the effect was significant for only one of them. In sighted controls, 'visual' cortex activations were insignificant, but activation patterns in the planum temporale were sufficient to discriminate left-side from right-side reflectors. Our data suggest that blind and echolocation-trained, sighted subjects may recruit different neural substrates for the same active-echolocation task. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. [Role of MRI for detection and characterization of pulmonary nodules].

    Science.gov (United States)

    Sommer, G; Koenigkam-Santos, M; Biederer, J; Puderbach, M

    2014-05-01

    Due to physical and technical limitations, magnetic resonance imaging (MRI) has hitherto played only a minor role in image-based diagnostics of the lungs. However, as a consequence of important methodological developments during recent years, MRI has developed into a technically mature and clinically well-proven method for specific pulmonary questions. The purpose of this article is to provide an overview on the currently available sequences and techniques for assessment of pulmonary nodules and analyzes the clinical significance according to the current literature. The main focus is on the detection of lung metastases, the detection of primary pulmonary malignancies in high-risk individuals and the differentiation between pulmonary nodules of benign and malignant character. The MRI technique has a sensitivity of approximately 80 % for detection of malignant pulmonary nodules compared to the reference standard low-dose computed tomography (CT) and is thus somewhat inferior to CT. Advantages of MRI on the other hand are a higher specificity in differentiating malignant and benign pulmonary nodules and the absence of ionizing radiation exposure. A systematic use of MRI as a primary tool for detection and characterization of pulmonary nodules is currently not recommended due to insufficient data. The diagnostic potential of MRI for early detection and staging of malignant pulmonary diseases, however, seems promising. Therefore, further evaluation of MRI as a secondary imaging modality in clinical trials is highly warranted.

  8. Ultrashort Echo Time Magnetic Resonance Imaging of the Lung Using a High-Relaxivity T1 Blood-Pool Contrast Agent

    Directory of Open Access Journals (Sweden)

    Joris Tchouala Nofiele

    2014-10-01

    Full Text Available The lung remains one of the most challenging organs to image using magnetic resonance imaging (MRI due to intrinsic rapid signal decay. However, unlike conventional modalities such as computed tomography, MRI does not involve radiation and can provide functional and morphologic information on a regional basis. Here we demonstrate proof of concept for a new MRI approach to achieve substantial gains in a signal to noise ratio (SNR in the lung parenchyma: contrast-enhanced ultrashort echo time (UTE imaging following intravenous injection of a high-relaxivity blood-pool manganese porphyrin T1 contrast agent. The new contrast agent increased relative enhancement of the lung parenchyma by over 10-fold compared to gadolinium diethylene triamine pentaacetic acid (Gd-DTPA, and the use of UTE boosted the SNR by a factor of 4 over conventional T1-weighted gradient echo acquisitions. The new agent also maintains steady enhancement over at least 60 minutes, thus providing a long time window for obtaining high-resolution, high-quality images and the ability to measure a number of physiologic parameters.

  9. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria.

    Science.gov (United States)

    Miller, G Wilson; Eames, Matthew; Snell, John; Aubry, Jean-François

    2015-05-01

    Transcranial magnetic resonance-guided focused ultrasound (TcMRgFUS) brain treatment systems compensate for skull-induced beam aberrations by adjusting the phase and amplitude of individual ultrasound transducer elements. These corrections are currently calculated based on a preacquired computed tomography (CT) scan of the patient's head. The purpose of the work presented here is to demonstrate the feasibility of using ultrashort echo-time magnetic resonance imaging (UTE MRI) instead of CT to calculate and apply aberration corrections on a clinical TcMRgFUS system. Phantom experiments were performed in three ex-vivo human skulls filled with tissue-mimicking hydrogel. Each skull phantom was imaged with both CT and UTE MRI. The MR images were then segmented into "skull" and "not-skull" pixels using a computationally efficient, threshold-based algorithm, and the resulting 3D binary skull map was converted into a series of 2D virtual CT images. Each skull was mounted in the head transducer of a clinical TcMRgFUS system (ExAblate Neuro, Insightec, Israel), and transcranial sonications were performed using a power setting of approximately 750 acoustic watts at several different target locations within the electronic steering range of the transducer. Each target location was sonicated three times: once using aberration corrections calculated from the actual CT scan, once using corrections calculated from the MRI-derived virtual CT scan, and once without applying any aberration correction. MR thermometry was performed in conjunction with each 10-s sonication, and the highest single-pixel temperature rise and surrounding-pixel mean were recorded for each sonication. The measured temperature rises were ∼ 45% larger for aberration-corrected sonications than for noncorrected sonications. This improvement was highly significant (p skull-induced ultrasound aberration corrections. Their results suggest that UTE MRI could be used instead of CT to implement such corrections on

  10. Comparison of third-order plasma wave echoes with ballistic second-order plasma wave echoes

    International Nuclear Information System (INIS)

    Leppert, H.D.; Schuelter, H.; Wiesemann, K.

    1982-01-01

    The apparent dispersion of third-order plasma wave echoes observed in a high frequency plasma is compared with that of simultaneously observed ballistic second-order echoes. Amplitude and wavelength of third-order echoes are found to be always smaller than those of second-order echoes, however, the dispersion curves of both types of echoes are very similar. These observations are in qualitative agreement with calculations of special ballistic third-order echoes. The ballistic nature of the observed third-order echoes may, therefore, be concluded from these measurements. (author)

  11. Utility of echo-planar gradient-echo T2*-weighted MR images in patients with primary intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Yokoe, Toshio; Yoshida, Tazuka; Kobayashi, Nozomu; Nakamura, Yukihiro; Kubota, Kazuyuki

    2005-01-01

    Magnetic resonance imaging (MRI) has the potential to reveal residues of intracerabral hemorrhage (ICH) throughout life because of the high sensitivity for iron-containing compounds. Gradient-echo T2 * -weighted MR imaging (T2 * MRI) requiring short times for complete acquisition is known to detect small areas of signal loss without surrounding edema representing microbleeds (MBs). MBs in the basal ganglia including the thalami are suggested to be closely related to intracerebral atherosclerotic microangiopathy. We looked for more than 3 MBs in basal ganglia or thalamus of patients with and without episodes of previous ICH. Twelve patients with previous hemorrhagic stroke and 82 without were studied. Multiple MBs in those regions were significantly more frequent in patients with recurrent ICH. In addition, a 76-year-old woman with a history of hypertension was transferred to our hospital for treatment of head injury. She had multiple incidental old basal ganglionic and thalamic MBs. The patient had an asymptomatic primary ICH on computed tomography (CT) 3 months later. In conclusion, MR evidence of multiple MBs in the basal ganglia and thalamus might identify patients at a risk for new and recurrent ICH. Therefore, patients with multiple MBs in those regions should be treated for cerebrovascular risk factors, especially hypertension. Our results appear to confirm the utility of T2 * MRI in hemorrhagic stroke. (author)

  12. MRI of orbital hydroxyapatite implants

    International Nuclear Information System (INIS)

    Flanders, A.E.; De Potter P.; Rao, V.M.; Tom, B.M.; Shields, C.L.; Shields, J.A.

    1996-01-01

    Our aim was to use MRI for the postsurgical assessment of a new form of integrated orbital implant composed of a porous calcium phosphate hydroxyapatite substrate. We studied ten patients 24-74 years of age who underwent enucleation and implantation of a hydroxyapatite ball; 5-13 months after surgery, each patient was examined by spin-echo MRI, with fat suppression and gadolinium enhancement. Fibrovascular ingrowth was demonstrated in all ten patients as areas of enhancement at the periphery of the hydroxyapatite sphere that extended to the center to a variable degree. The radiologist should aware of the MRI appearances of the coralline hydroxyapatite orbital implant since it is now widely used following enucleation. MRI is a useful means to determine successful incorporation of the substrate into the orbital tissues. The normal pattern of contrast enhancement should not be mistaken for recurrent tumor or infection. (orig.)

  13. ECHO virus

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that can lead ...

  14. Diffusion-weighted MRI of maple syrup urine disease encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Cavalleri, F.; Mavilla, L. [Servizio di Neuroradiologia, Azienda Ospedaliera Policlinico, Modena (Italy); Berardi, A.; Ferrari, F. [Servizio di Neonatologia, Azienda Ospedaliera Policlinico, Modena (Italy); Burlina, A.B. [Dipartimento di Pediatria, Azienda Ospedaliera, Universita di Padova, Padua (Italy)

    2002-06-01

    We report the case of a newborn child with maple syrup urine disease (MSUD), diagnosed at 10 days of life. Diffusion-weighted echoplanar MRI showed marked hyperintensity of the cerebellar white matter, the brainstem, the cerebral peduncles, the thalami, the dorsal limb of the internal capsule and the centrum semiovale, while conventional dual-echo sequence evidenced only a weak diffuse T2 hyperintensity in the cerebellar white matter and in the dorsal brainstem. The apparent diffusion coefficient (ADC) of these regions was markedly (>80%) decreased. Therefore, in agreement with current hypotheses on MSUD pathogenesis, MSUD oedema proves to be a cytotoxic oedema. Diffusion-weighted MRI may be a valuable tool, more sensitive than conventional spin-echo techniques, to assess the extent and progression of cytotoxicity in MSUD, as well as the effectiveness of the therapeutic interventions. (orig.)

  15. Diffusion-weighted MRI of maple syrup urine disease encephalopathy

    International Nuclear Information System (INIS)

    Cavalleri, F.; Mavilla, L.; Berardi, A.; Ferrari, F.; Burlina, A.B.

    2002-01-01

    We report the case of a newborn child with maple syrup urine disease (MSUD), diagnosed at 10 days of life. Diffusion-weighted echoplanar MRI showed marked hyperintensity of the cerebellar white matter, the brainstem, the cerebral peduncles, the thalami, the dorsal limb of the internal capsule and the centrum semiovale, while conventional dual-echo sequence evidenced only a weak diffuse T2 hyperintensity in the cerebellar white matter and in the dorsal brainstem. The apparent diffusion coefficient (ADC) of these regions was markedly (>80%) decreased. Therefore, in agreement with current hypotheses on MSUD pathogenesis, MSUD oedema proves to be a cytotoxic oedema. Diffusion-weighted MRI may be a valuable tool, more sensitive than conventional spin-echo techniques, to assess the extent and progression of cytotoxicity in MSUD, as well as the effectiveness of the therapeutic interventions. (orig.)

  16. Characterization of trehalose aqueous solutions by neutron spin echo

    CERN Document Server

    Branca, C; Magazù, S; Maisano, G; Mangione, A; Pappas, C; Triolo, A

    2002-01-01

    The present work reports neutron spin-echo (NSE) results on aqueous mixtures of trehalose, a naturally occurring disaccharide of glucose, which shows an extraordinary bioprotective effectiveness against dehydration and freezing. The aim of the work is to furnish new results on the dynamics of the trehalose/water system on the nano- and picosecond scales. (orig.)

  17. Characterization of trehalose aqueous solutions by neutron spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Faraone, A.; Magazu' , S.; Maisano, G.; Mangione, A. [Dipartimento di Fisica and INFM, Universita di Messina, PO Box 55, 98166 Messina (Italy); Pappas, C.; Triolo, A. [Hahn-Meitner-Institut, BENSC (NI), Glienicker Strasse, 14109 Berlin (Germany)

    2002-07-01

    The present work reports neutron spin-echo (NSE) results on aqueous mixtures of trehalose, a naturally occurring disaccharide of glucose, which shows an extraordinary bioprotective effectiveness against dehydration and freezing. The aim of the work is to furnish new results on the dynamics of the trehalose/water system on the nano- and picosecond scales. (orig.)

  18. Fast triple-spin-echo Dixon (FTSED) sequence for water and fat imaging

    Czech Academy of Sciences Publication Activity Database

    Kořínek, Radim; Bartušek, Karel; Starčuk jr., Zenon

    2017-01-01

    Roč. 37, APR (2017), s. 164-170 ISSN 0730-725X R&D Projects: GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : fast triple-spin-echo Dixon * sequence * MRI * fat fraction * water-fat * ultra-high field * 9.4 T * FTSED Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 2.225, year: 2016

  19. MRI patterns of Nissen fundoplication: normal appearance and mechanisms of failure

    Energy Technology Data Exchange (ETDEWEB)

    Kulinna-Cosentini, Christiane; Ba-Ssalamah, Ahmed [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Schima, Wolfgang [Krankenhaus der Barmherzigen Schwestern Wien und Sankt Josef Krankenhaus, Department of Radiology, Krankenhaus Goettlicher Heiland, Vienna (Austria); Cosentini, Enrico P. [Medical University of Vienna, Department of Surgery, Vienna (Austria)

    2014-09-15

    The purpose of the study was to assess the role of MR fluoroscopy in the evaluation of post-surgical conditions of Nissen fundoplication due to gastro-oesophageal reflux disease (GERD). A total of 29 patients (21 patients with recurrent/persistent symptoms and eight asymptomatic patients as the control group) underwent MRI of the oesophagus and gastro-oesophageal junction (GEJ) at 1.5 T. Bolus transit of a buttermilk-spiked gadolinium mixture was evaluated with T2-weighted half-Fourier acquisition single-shot turbo spin-echo (HASTE) and dynamic gradient echo sequences (B-FFE) in three planes. The results of MRI were compared with intraoperative findings, or, if the patients were treated conservatively, with endoscopy, manometry, pH-metry and barium swallow. MRI was able to determine the position of fundoplication wrap in 27/29 cases (93 % overall accuracy) and to correctly identify 4/6 malpositions (67 %), as well as all four wrap disruptions. All five stenoses in the GEJ were identified and could be confirmed intraoperatively or during dilatation. MRI correctly visualized three cases with motility disorders, which were manometrically confirmed as secondary achalasia. Three patients showed signs of recurrent reflux without anatomical failure. MRI is a promising diagnostic method to evaluate morphologic integrity of Nissen fundoplication and functional disorders after surgery. (orig.)

  20. Fast spin-echo imaging

    International Nuclear Information System (INIS)

    Mackey, K.; Zoarski, G.; Bentson, J.R.; Lufkin, R.B.; Melki, P.; Jolesz, F.

    1991-01-01

    This paper reports on a partial radio-frequency (RF) echo-planar pulse sequence called contiguous slice fast spin echo (CSFSE) which is undergoing clinical trials for spine MR imaging. In this variation of rapid acquisition relaxation enhanced (RARE) spin-echo imaging, rapid 180 degrees RF pulse generated refocused echoes, producing T2-weighted images in about one-third the time of conventional double-echo technique. Forty patients with suspected pathology of the spine were imaged with conventional double-echo and closely matched CSFSE techniques on a GE Signa 1.5-T Advantage system. Cases were reviewed by two board-certified neuroradiologists. In all cases the CSFSE images were of equal or superior quality compared with those obtained with the conventional double-echo technique. Pathologic processes that were imaged consisted of inflammatory, neoplastic, posttraumatic, and degenerative conditions

  1. MRI-induced retrocalcaneal bursitis

    International Nuclear Information System (INIS)

    Tol, J.L.; Dijk, C.N. van; Maas, M.

    1999-01-01

    This case report describes a patient with acute retrocalcaneal bursitis, which developed after MRI examination of the ankle. The sagittal T2*-weighted gradient echo sequence revealed an extensive susceptibility artifact in the area surrounding the Achilles tendon near its insertion at the os calcis. This artifact was caused by postsurgical metallic particles. We postulate that these particles were mechanically stimulated by the magnetic field and induced the inflammatory response. (orig.)

  2. MRI-induced retrocalcaneal bursitis

    Energy Technology Data Exchange (ETDEWEB)

    Tol, J.L.; Dijk, C.N. van [Dept. of Orthopaedic Surgery, University of Amsterdam (Netherlands); Maas, M. [Dept. of Radiology, University of Amsterdam (Netherlands)

    1999-10-01

    This case report describes a patient with acute retrocalcaneal bursitis, which developed after MRI examination of the ankle. The sagittal T2*-weighted gradient echo sequence revealed an extensive susceptibility artifact in the area surrounding the Achilles tendon near its insertion at the os calcis. This artifact was caused by postsurgical metallic particles. We postulate that these particles were mechanically stimulated by the magnetic field and induced the inflammatory response. (orig.)

  3. Comparison between modified Dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Kukuk, Guido M.; Block, Wolfgang; Willinek, Winfried A.; Schild, Hans H.; Traeber, Frank [University of Bonn, Department of Radiology, Bonn (Germany); Hittatiya, Kanishka; Fischer, Hans-Peter [University of Bonn, Department of Pathology, Bonn (Germany); Sprinkart, Alois M. [University of Bonn, Department of Radiology, Bonn (Germany); Ruhr-University, Institute of Medical Engineering, Bochum (Germany); Eggers, Holger [Philips Research Europe, Hamburg (Germany); Gieseke, Juergen [University of Bonn, Department of Radiology, Bonn (Germany); Philips Healthcare, Best (Netherlands); Moeller, Philipp; Spengler, Ulrich; Trebicka, Jonel [University of Bonn, Department of Internal Medicine I, Bonn (Germany)

    2015-10-15

    To compare systematically quantitative MRI, MR spectroscopy (MRS), and different histological methods for liver fat quantification in order to identify possible incongruities. Fifty-nine consecutive patients with liver disorders were examined on a 3 T MRI system. Quantitative MRI was performed using a dual- and a six-echo variant of the modified Dixon (mDixon) sequence, calculating proton density fat fraction (PDFF) maps, in addition to single-voxel MRS. Histological fat quantification included estimation of the percentage of hepatocytes containing fat vesicles as well as semi-automatic quantification (qHisto) using tissue quantification software. In 33 of 59 patients, the hepatic fat fraction was >5 % as determined by MRS (maximum 45 %, mean 17 %). Dual-echo mDixon yielded systematically lower PDFF values than six-echo mDixon (mean difference 1.0 %; P < 0.001). Six-echo mDixon correlated excellently with MRS, qHisto, and the estimated percentage of hepatocytes containing fat vesicles (R = 0.984, 0.967, 0.941, respectively, all P < 0.001). Mean values obtained by the estimated percentage of hepatocytes containing fat were higher by a factor of 2.5 in comparison to qHisto. Six-echo mDixon and MRS showed the best agreement with values obtained by qHisto. Six-echo mDixon, MRS, and qHisto provide the most robust and congruent results and are therefore most appropriate for reliable quantification of liver fat. (orig.)

  4. Modern MRI tools for the characterization of acute demyelinating lesions: value of chemical shift and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Kueker, W.; Mehnert, F.; Mader, I.; Naegele, T.; Ruff, J.; Gaertner, S.

    2004-01-01

    Acute demyelinating lesions occur in various inflammatory disorders of the CNS. Apart from multiple sclerosis, most cases can be attributed to an overshooting immunological response to infectious agents called acute disseminated encephalomyelitis (ADEM). ADEM, which is mostly characterized by a monophasic course, has a multiphasic variant (MDEM). The early application of corticosteroids has been shown to be beneficial for the outcome; thus, an early diagnosis is highly desirable. Furthermore, the differential diagnosis ruling out neoplastic disorders may be difficult using conventional MRI alone. The potential diagnostic value of advanced MR techniques such as chemical shift imaging (CSI) and diffusion-weighted imaging (DWI) was investigated in a patient with MDEM, who had a new lesion in continuity with the initial disease manifestation. CSI was performed at 1.5 T with a long echo time of 135 ms for the evaluation of N-acetyl-aspartate (NAA) and choline (Cho) and with short TE of 30 ms for macromolecules (mm) and myo-Inositol (mI). DWI was performed using a single-shot isotropic EPI sequence. Whereas acute and chronic areas of demyelination were neither distinguishable on T2- nor on contrast-enhanced T1-weigted images, CSI and DWI revealed different metabolite concentrations and diffusion characteristics within the composite lesion, clearly separating acute from chronic areas of demyelination. In conclusion, the addition of CSI and DWI may add to the diagnostic power of MRI in the setting of demyelinating disorders by identifying areas of acute and chronic demyelination, even in the absence of contrast enhancement. (orig.)

  5. Hepatic fat quantification: a prospective comparison of magnetic resonance spectroscopy and analysis methods for chemical-shift gradient echo magnetic resonance imaging with histologic assessment as the reference standard.

    Science.gov (United States)

    Kang, Bo-Kyeong; Yu, Eun Sil; Lee, Seung Soo; Lee, Youngjoo; Kim, Namkug; Sirlin, Claude B; Cho, Eun Yoon; Yeom, Suk Keu; Byun, Jae Ho; Park, Seong Ho; Lee, Moon-Gyu

    2012-06-01

    The aims of this study were to assess the confounding effects of hepatic iron deposition, inflammation, and fibrosis on hepatic steatosis (HS) evaluation by magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) and to assess the accuracies of MRI and MRS for HS evaluation, using histology as the reference standard. In this institutional review board-approved prospective study, 56 patients gave informed consents and underwent chemical-shift MRI and MRS of the liver on a 1.5-T magnetic resonance scanner. To estimate MRI fat fraction (FF), 4 analysis methods were used (dual-echo, triple-echo, multiecho, and multi-interference), and MRS FF was calculated with T2 correction. Degrees of HS, iron deposition, inflammation, and fibrosis were analyzed in liver resection (n = 37) and biopsy (n = 19) specimens. The confounding effects of histology on fat quantification were assessed by multiple linear regression analysis. Using the histologic degree of HS as the reference standard, the accuracies of each method in estimating HS and diagnosing an HS of 5% or greater were determined by linear regression and receiver operating characteristic analyses. Iron deposition significantly confounded estimations of FF by the dual-echo (P hepatic fat, with coexisting histologic abnormalities having no confounding effects.

  6. Robust water fat separated dual-echo MRI by phase-sensitive reconstruction.

    Science.gov (United States)

    Romu, Thobias; Dahlström, Nils; Leinhard, Olof Dahlqvist; Borga, Magnus

    2017-09-01

    The purpose of this work was to develop and evaluate a robust water-fat separation method for T1-weighted symmetric two-point Dixon data. A method for water-fat separation by phase unwrapping of the opposite-phase images by phase-sensitive reconstruction (PSR) is introduced. PSR consists of three steps; (1), identification of clusters of tissue voxels; (2), unwrapping of the phase in each cluster by solving Poisson's equation; and (3), finding the correct sign of each unwrapped opposite-phase cluster, so that the water-fat images are assigned the correct identities. Robustness was evaluated by counting the number of water-fat swap artifacts in a total of 733 image volumes. The method was also compared to commercial software. In the water-fat separated image volumes, the PSR method failed to unwrap the phase of one cluster and misclassified 10. One swap was observed in areas affected by motion and was constricted to the affected area. Twenty swaps were observed surrounding susceptibility artifacts, none of which spread outside the artifact affected regions. The PSR method had fewer swaps when compared to commercial software. The PSR method can robustly produce water-fat separated whole-body images based on symmetric two-echo spoiled gradient echo images, under both ideal conditions and in the presence of common artifacts. Magn Reson Med 78:1208-1216, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. 3D printed phantoms mimicking cortical bone for the assessment of ultrashort echo time magnetic resonance imaging.

    Science.gov (United States)

    Rai, Robba; Manton, David; Jameson, Michael G; Josan, Sonal; Barton, Michael B; Holloway, Lois C; Liney, Gary P

    2018-02-01

    Human cortical bone has a rapid T2∗ decay, and it can be visualized using ultrashort echo time (UTE) techniques in magnetic resonance imaging (MRI). These sequences operate at the limits of gradient and transmit-receive signal performance. Development of multicompartment anthropomorphic phantoms that can mimic human cortical bone can assist with quality assurance and optimization of UTE sequences. The aims of this study were to (a) characterize the MRI signal properties of a photopolymer resin that can be 3D printed, (b) develop multicompartment phantoms based on the resin, and (c) demonstrate the feasibility of using these phantoms to mimic human anatomy in the assessment of UTE sequences. A photopolymer resin (Prismlab China Ltd, Shanghai, China) was imaged on a 3 Tesla MRI system (Siemens Skyra) to characterize its MRI properties with emphasis on T2∗ signal and longevity. Two anthropomorphic phantoms, using the 3D printed resin to simulate skeletal anatomy, were developed and imaged using UTE sequences. A skull phantom was developed and used to assess the feasibility of using the resin to develop a complex model with realistic morphological human characteristics. A tibia model was also developed to assess the suitability of the resin at mimicking a simple multicompartment anatomical model and imaged using a three-dimensional UTE sequence (PETRA). Image quality measurements of signal-to-noise ratio (SNR) and contrast factor were calculated and these were compared to in vivo values. The T2∗ and T 1 (mean ± standard deviation) of the photopolymer resin was found to be 411 ± 19 μs and 74.39 ± 13.88 ms, respectively, and demonstrated no statistically significant change during 4 months of monitoring. The resin had a similar T2∗ decay to human cortical bone; however, had lower T 1 properties. The bone water concentration of the resin was 59% relative to an external water reference phantom, and this was higher than in vivo values reported for human cortical

  8. MRI findings of radiation encephalopathy of brain stem after radiotherapy for nasopharyngeal cancer

    International Nuclear Information System (INIS)

    Liang Changhong; Li Guoye; Huang Biao; Huang Meiping; Zheng Junhui; Tan Shaoheng; Zeng Qiongxin

    1998-01-01

    Purpose: To study MRI findings and clinical manifestation of radiation encephalopathy (RE) of brain stem. Methods: MRI findings and clinical symptoms in 51 patients with RE of brain stem after radiotherapy for nasopharyngeal cancer were reviewed. Results: Clinical symptoms included number weakness or paralysis in the limbs and symptoms of damaged cranial nerves. All lesions appeared hypo- or iso-intense on spin echo(SE) T 1 -weighted images and inhomogeneous and mixed hyper- and iso-intense on Turbo spin echo (TSE) T 2 -weighted images. The lesions were located in mesencephalon, pons, medulla, basilar part of pons, basilar part of pons and medulla oblongata in 2,7,3,9 and 30 patients respectively. The enhancement patterns included irregular rings in 39 patients, spotty in 3 and no enhancement in 9 patients. Mass effect was minimal in all patients. On follow-up MRI, the lesions disappeared in 4 patients, did not change in size and shape in 8 patients and enlarged in 2 patients. Conclusion: MRI could demonstrate the characteristic findings of RE of brain stem. MRI findings sometimes are not consistent with the clinical symptoms

  9. Evaluation of malignant and benign renal lesions using diffusion-weighted MRI with multiple b values

    International Nuclear Information System (INIS)

    Erbay, Gurcan; Koc, Zafer; Karadeli, Elif; Kuzgunbay, Baris; Goren, M. Resit; Bal, Nebil

    2012-01-01

    Background: Limited data are available regarding the use of diffusion-weighted (DW) magnetic resonance imaging (MRI) with multiple b values for characterization of renal lesions. Purpose: To demonstrate and compare the diagnostic performance of DW-MRI with multiple b values for renal lesion characterization. Material and Methods: Sixty-three lesions (36 malignant, 27 benign) in 60 consecutive patients (48 men, 12 women; age 60 ± 12.5 years) with solid/cystic renal lesion diagnosed after MRI were included prospectively. Single-shot echo-planar DW abdominal MRI (1.5T) was obtained using seven b values with eight apparent diffusion coefficient (ADC) maps. Contrast-to-noise ratios (CNRs), signal intensities, lesion ADCs, and lesion/normal parenchyma ADC ratios were analyzed. Receiver-operating characteristic analysis was performed. Results: The mean signal intensities of malignant lesions (at b0, 50, and 200 s/mm 2 ) were significantly lower than those of benign lesions (P 2 . ADC with all b values could better distinguish between benign and malignant lesions. A 1.35 x 10 -3 mm 2 /s threshold ADC value permitted this distinction with 85.2% sensitivity and 65.6% specificity. The lesion/normal parenchyma ADC ratio was more effective than the lesion ADC. Conclusion: In addition to the ADC value, the signal intensity curve on DW images using multiple b values could be helpful for differentiation of malignant and benign renal lesions

  10. Effectiveness of dynamic MRI for diagnosing pericicatricial minimal residual breast cancer following excisional biopsy

    International Nuclear Information System (INIS)

    Kawashima, Hiroko; Tawara, Mari; Suzuki, Masayuki; Matsui, Osamu; Kadoya, Masumi

    2001-01-01

    The purpose of this study was to investigate the effectiveness of dynamic MRI for diagnosing pericicatricial minimal residual breast cancer following excisional biopsy. Twenty-six patients who underwent excisional biopsy of a tumor or calcified lesion of the breast underwent gadolinium-enhanced dynamic MRI by the fat-saturated 2D fast spoiled gradient echo (SPGR) sequence (group 1), 24 patients by the spectral IR enhanced 3D fast gradient echo (Efgre3d) sequence (group 2). Pericicatricial residual cancer was confirmed histologically in 29 of the 50 patients. The overall sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of MRI for residual cancer diagnosis was 66, 81, 72, 83 and 63%. A nodular, thick and discontinuous enhanced rim around the scar is indicative of a residual tumor. However, false-positive findings due to granulation or proliferative fibrocystic change remain limitations

  11. Effectiveness of dynamic MRI for diagnosing pericicatricial minimal residual breast cancer following excisional biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Hiroko E-mail: hirokok@med.kanazawa-u.ac.jp; Tawara, Mari; Suzuki, Masayuki; Matsui, Osamu; Kadoya, Masumi

    2001-10-01

    The purpose of this study was to investigate the effectiveness of dynamic MRI for diagnosing pericicatricial minimal residual breast cancer following excisional biopsy. Twenty-six patients who underwent excisional biopsy of a tumor or calcified lesion of the breast underwent gadolinium-enhanced dynamic MRI by the fat-saturated 2D fast spoiled gradient echo (SPGR) sequence (group 1), 24 patients by the spectral IR enhanced 3D fast gradient echo (Efgre3d) sequence (group 2). Pericicatricial residual cancer was confirmed histologically in 29 of the 50 patients. The overall sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of MRI for residual cancer diagnosis was 66, 81, 72, 83 and 63%. A nodular, thick and discontinuous enhanced rim around the scar is indicative of a residual tumor. However, false-positive findings due to granulation or proliferative fibrocystic change remain limitations.

  12. Model-based characterization of the transpulmonary circulation by DCE-MRI

    NARCIS (Netherlands)

    Saporito, S.; Herold, I.H.F.; Houthuizen, P.; den Boer, J.; Van Den Bosch, H.; Korsten, H.; van Assen, H.C.; Mischi, M.

    2016-01-01

    Objective measures to assess pulmonary circulation status would improve heart failure patient care. We propose a method for the characterization of the transpulmonary circulation by DCE-MRI. Parametric deconvolution was performed between contrast agent fifirst passage time-enhancement curves derived

  13. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    Energy Technology Data Exchange (ETDEWEB)

    Amro, H; Chetty, I; Gordon, J; Wen, N [Henry Ford Health System, Detroit, MI (United States)

    2014-06-01

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in the phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation.

  14. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    International Nuclear Information System (INIS)

    Amro, H; Chetty, I; Gordon, J; Wen, N

    2014-01-01

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in the phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation

  15. MUSIC. a fast T2* - sensitive MRI technique with enhanced volume coverage

    International Nuclear Information System (INIS)

    Loenneker, Thomas; Hennig, Juergen

    1994-01-01

    A fast imaging method based on gradient-recalled echoes and echo time inter-leaved multi-slice excitation is presented. This method maintains the sensitivity of T 2 * by using a long echo time of at least 35 milliseconds. Bipolar gradients are used to shift the gradient echoes in order to ensure constant TE for each slab and prevent ghost-artefacts within the images caused by spin- or stimulated echoes. This method enhances the total imaging time of a conventional multi-slice gradient echo technique, while maintaining the high volume coverage. Thus, stimulated human cortical activation maps can be detected on standard clinical MR instruments at several planes within measuring times of a few seconds. The efficiency of the technique is demonstrated in the detection of temporary changes in T 2 * in functional MRI experiments of the human visual cortex at a magnetic field strength of 2 tesla. (author). 18 refs., 6 figs

  16. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology.

    Directory of Open Access Journals (Sweden)

    Justin Y Kwan

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disorder characterized by cortical and spinal motor neuron dysfunction. Routine magnetic resonance imaging (MRI studies have previously shown hypointense signal in the motor cortex on T(2-weighted images in some ALS patients, however, the cause of this finding is unknown. To investigate the utility of this MR signal change as a marker of cortical motor neuron degeneration, signal abnormalities on 3T and 7T MR images of the brain were compared, and pathology was obtained in two ALS patients to determine the origin of the motor cortex hypointensity. Nineteen patients with clinically probable or definite ALS by El Escorial criteria and 19 healthy controls underwent 3T MRI. A 7T MRI scan was carried out on five ALS patients who had motor cortex hypointensity on the 3T FLAIR sequence and on three healthy controls. Postmortem 7T MRI of the brain was performed in one ALS patient and histological studies of the brains and spinal cords were obtained post-mortem in two patients. The motor cortex hypointensity on 3T FLAIR images was present in greater frequency in ALS patients. Increased hypointensity correlated with greater severity of upper motor neuron impairment. Analysis of 7T T(2(*-weighted gradient echo imaging localized the signal alteration to the deeper layers of the motor cortex in both ALS patients. Pathological studies showed increased iron accumulation in microglial cells in areas corresponding to the location of the signal changes on the 3T and 7T MRI of the motor cortex. These findings indicate that the motor cortex hypointensity on 3T MRI FLAIR images in ALS is due to increased iron accumulation by microglia.

  17. Efficacy of T2*-Weighted Gradient-Echo MRI in Early Diagnosis of Cerebral Venous Thrombosis with Unilateral Thalamic Lesion

    Directory of Open Access Journals (Sweden)

    Shingo Mitaki

    2013-01-01

    Full Text Available Cerebral venous thrombosis (CVT is an uncommon cause of stroke with diverse etiologies and varied clinical presentations. Because of variability in clinical presentation and neuroimaging, CVT remains a diagnostic challenge. Recently, some studies have highlighted the value of T2*-weighted gradient-echo MRI (T2*WI in the diagnosis of CVT. We report the case of a 79-year-old woman with CVT due to a hypercoagulable state associated with cancer. On the initial T2-weighted image (T2WI, there was a diffuse high-intensity lesion in the right thalamus, extending into the posterior limb of the internal capsule and midbrain. T2*WI showed diminished signal and enlargement of the right basilar vein and the vein of Galen. Even though there is a wide range of differential diagnoses in unilateral thalamic lesions, and a single thalamus lesion is a rare entity of CVT, based on T2*WI findings we could make an early diagnosis and perform treatment. Our case report suggests that T2*WI could detect thrombosed veins and be a useful method of early diagnosis in CVT.

  18. Hippocampal Microbleed on a Post-Mortem T2*-Weighted Gradient-Echo 7.0-Tesla Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    J. De Reuck

    2011-09-01

    Full Text Available The present post-mortem study of a brain from an Alzheimer patient showed on a T2*-weighted gradient-echo 7.0-T MRI of a coronal brain section a hyposignal in the hippocampus, suggesting a microbleed. On the corresponding histological examination, only iron deposits around the granular cellular layer and in blood vessel walls of the hippocampus were observed without evidence of a bleeding. This case report illustrates that the detection of microbleeds on MRI has to be interpreted with caution.

  19. Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer

    Science.gov (United States)

    Wetterling, Friedrich; Corteville, Dominique M.; Kalayciyan, Raffi; Rennings, Andreas; Konstandin, Simon; Nagel, Armin M.; Stark, Helmut; Schad, Lothar R.

    2012-07-01

    Sodium magnetic resonance imaging (23Na MRI) is a non-invasive technique which allows spatial resolution of the tissue sodium concentration (TSC) in the human body. TSC measurements could potentially serve to monitor early treatment success of chemotherapy on patients who suffer from whole body metastases. Yet, the acquisition of whole body sodium (23Na) images has been hampered so far by the lack of large resonators and the extremely low signal-to-noise ratio (SNR) achieved with existing resonator systems. In this study, a 23Na resonator was constructed for whole body 23Na MRI at 3T comprising of a 16-leg, asymmetrical birdcage structure with 34 cm height, 47.5 cm width and 50 cm length. The resonator was driven in quadrature mode and could be used either as a transceiver resonator or, since active decoupling was included, as a transmit-only resonator in conjunction with a receive-only (RO) surface resonator. The relative B1-field profile was simulated and measured on phantoms, and 3D whole body 23Na MRI data of a healthy male volunteer were acquired in five segments with a nominal isotropic resolution of (6 × 6 × 6) mm3 and a 10 min acquisition time per scan. The measured SNR values in the 23Na-MR images varied from 9 ± 2 in calf muscle, 15 ± 2 in brain tissue, 23 ± 2 in the prostate and up to 42 ± 5 in the vertebral discs. Arms, legs, knees and hands could also be resolved with applied resonator and short time-to-echo (TE) (0.5 ms) radial sequence. Up to fivefold SNR improvement was achieved through combining the birdcage with local RO surface coil. In conclusion, 23Na MRI of the entire human body provides sub-cm spatial resolution, which allows resolution of all major human body parts with a scan time of less than 60 min.

  20. Grating stimulated echo

    International Nuclear Information System (INIS)

    Dubetsky, B.; Berman, P.R.; Sleator, T.

    1992-01-01

    A theory of a grating simulated echo (GTE) is developed. The GSE involves the sequential excitation of atoms by two counterpropagating traveling waves, a standing wave, and a third traveling wave. It is shown that the echo signal is very sensitive to small changes in atomic velocity, much more sensitive than the normal stimulated echo. Use of the GSE as a collisional probe or accelerometer is discussed

  1. Evaluation of 2-point, 3-point, and 6-point Dixon magnetic resonance imaging with flexible echo timing for muscle fat quantification.

    Science.gov (United States)

    Grimm, Alexandra; Meyer, Heiko; Nickel, Marcel D; Nittka, Mathias; Raithel, Esther; Chaudry, Oliver; Friedberger, Andreas; Uder, Michael; Kemmler, Wolfgang; Quick, Harald H; Engelke, Klaus

    2018-06-01

    The purpose of this study is to evaluate and compare 2-point (2pt), 3-point (3pt), and 6-point (6pt) Dixon magnetic resonance imaging (MRI) sequences with flexible echo times (TE) to measure proton density fat fraction (PDFF) within muscles. Two subject groups were recruited (G1: 23 young and healthy men, 31 ± 6 years; G2: 50 elderly men, sarcopenic, 77 ± 5 years). A 3-T MRI system was used to perform Dixon imaging on the left thigh. PDFF was measured with six Dixon prototype sequences: 2pt, 3pt, and 6pt sequences once with optimal TEs (in- and opposed-phase echo times), lower resolution, and higher bandwidth (optTE sequences) and once with higher image resolution (highRes sequences) and shortest possible TE, respectively. Intra-fascia PDFF content was determined. To evaluate the comparability among the sequences, Bland-Altman analysis was performed. The highRes 6pt Dixon sequences served as reference as a high correlation of this sequence to magnetic resonance spectroscopy has been shown before. The PDFF difference between the highRes 6pt Dixon sequence and the optTE 6pt, both 3pt, and the optTE 2pt was low (between 2.2% and 4.4%), however, not to the highRes 2pt Dixon sequence (33%). For the optTE sequences, difference decreased with the number of echoes used. In conclusion, for Dixon sequences with more than two echoes, the fat fraction measurement was reliable with arbitrary echo times, while for 2pt Dixon sequences, it was reliable with dedicated in- and opposed-phase echo timing. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Geometrically undistorted MRI in the presence of field inhomogeneities using compressed sensing accelerated broadband 3D phase encoded turbo spin-echo imaging

    International Nuclear Information System (INIS)

    Van Gorp, Jetse S; Bakker, Chris J G; Bouwman, Job G; Zijlstra, Frank; Seevinck, Peter R; Smink, Jouke

    2015-01-01

    In this study, we explore the potential of compressed sensing (CS) accelerated broadband 3D phase-encoded turbo spin-echo (3D-PE-TSE) for the purpose of geometrically undistorted imaging in the presence of field inhomogeneities. To achieve this goal 3D-PE-SE and 3D-PE-TSE sequences with broadband rf pulses and dedicated undersampling patterns were implemented on a clinical scanner. Additionally, a 3D multi-spectral spin-echo (ms3D-SE) sequence was implemented for reference purposes. First, we demonstrated the influence of susceptibility induced off-resonance effects on the spatial encoding of broadband 3D-SE, ms3D-SE, 3D-PE-SE and 3D-PE-TSE using a grid phantom containing a titanium implant (Δχ = 182 ppm) with x-ray CT as a gold standard. These experiments showed that the spatial encoding of 3D-PE-(T)SE was unaffected by susceptibility induced off-resonance effects, which caused geometrical distortions and/or signal hyper-intensities in broadband 3D-SE and, to a lesser extent, in ms3D-SE frequency encoded methods. Additionally, an SNR analysis was performed and the temporally resolved signal of 3D-PE-(T)SE sequences was exploited to retrospectively decrease the acquisition bandwidth and obtain field offset maps. The feasibility of CS acceleration was studied retrospectively and prospectively for the 3D-PE-SE sequence using an existing CS algorithm adapted for the reconstruction of 3D data with undersampling in all three phase encoded dimensions. CS was combined with turbo-acceleration by variable density undersampling and spherical stepwise T 2 weighting by randomly sorting consecutive echoes in predefined spherical k-space layers. The CS-TSE combination resulted in an overall acceleration factor of 60, decreasing the original 3D-PE-SE scan time from 7 h to 7 min. Finally, CS accelerated 3D-PE-TSE in vivo images of a titanium screw were obtained within 10 min using a micro-coil demonstrating the feasibility of geometrically undistorted MRI near severe

  3. Spin-Echo Small-Angle Neutron Scattering Development

    NARCIS (Netherlands)

    Uca, O.

    2003-01-01

    Spin-Echo Small-Angle Neutron Scattering (SESANS) instrument is a novel SANS technique which enables one to characterize distances from a few nanometers up to the micron range. The most striking difference between normal SANS and SESANS is that in SESANS one gets information in real space, whereas

  4. MRI profiles of menisci of the knee

    International Nuclear Information System (INIS)

    Kitano, Kimizo; Akahori, Osamu; Suwa, Shinichi

    1992-01-01

    The rate of correct diagnosis of disorders of menisci is considered to exceed 95% by arthrography and arthroscopy, but these examinations are both invasive and effective only for evaluation of changes on the surface of meniscus. Diagnosis of injury of the posterior horn of the lateral meniscus is difficult by athrography, and that of injury of the posterior horn of the medial meniscus is difficult by arthroscopy. MRI is a non-invasive examination that allows the diagnosis of changes of the surface and the inside of the meniscus. This study reviewed 44 cases in which MRI findings could be confirmed by arthroscopy or at operating among 114 patients who underwent MRI to rule out the possibility of meniscus injury during the period between August 1988 and June 1991. The total number of patients who underwent MRI during this period was 6,983. The apparatus used was a 1.5-Tesla superconductive MR system, and evaluation was based mainly on the control T1-weighted image obtained by the spin-echo mode and sagittal image double-echo sequence. Characteristics of MRI were described as follows. Four cases of injury of the medial meniscus are (1) typical bucket-handle injury; (2) horizontal tear visible by arthroscopy; (3) horizontal tear difficult to observe by arthroscopy; (4) horizontal tear after partial meniscectomy under arthroscopy. Four cases of injury of the lateral meniscus are (1) multiple tear and artifact of foreign body of needle-fragment; (2) longitudinal tear; (3) multiple injury of discoid meniscus; (4) locking of discoid meniscus. MRI was considered to be advantageous over arthrography or arthroscopy in injury of medial meniscus (especially horizonal tear extending to the lower surface on the tibial side), meniscus ganglion, injury of the posterior horn of the lateral meniscus, and discoid menisci of children. From the findings in these 44 cases, MRI is considered to provide important information for the diagnosis of injury of menisci. (author)

  5. Histological correlation of 7 T multi-parametric MRI performed in ex-vivo Achilles tendon

    Energy Technology Data Exchange (ETDEWEB)

    Juras, Vladimir [Center of Excellence for High Field MR, Department of Radiology, Medical University of Vienna Waehringer Guertel 18-20, A-1090, Vienna (Austria); Institute of Measurement Science, Department of Imaging Methods, Dubravska cesta 9, 84104, Bratislava (Slovakia); Apprich, Sebastian; Pressl, Christina; Zbyn, Stefan [Center of Excellence for High Field MR, Department of Radiology, Medical University of Vienna Waehringer Guertel 18-20, A-1090, Vienna (Austria); Szomolanyi, Pavol [Center of Excellence for High Field MR, Department of Radiology, Medical University of Vienna Waehringer Guertel 18-20, A-1090, Vienna (Austria); Institute of Measurement Science, Department of Imaging Methods, Dubravska cesta 9, 84104, Bratislava (Slovakia); Domayer, Stephan; Hofstaetter, Jochen G. [Department of Orthopedic Surgery, Vienna General Hospital, Medical University of Vienna, A-1090 Vienna (Austria); Trattnig, Siegfried, E-mail: siegfried.trattnig@meduniwien.ac.at [Center of Excellence for High Field MR, Department of Radiology, Medical University of Vienna Waehringer Guertel 18-20, A-1090, Vienna (Austria)

    2013-05-15

    Introduction: The goal of this in vitro validation study was to investigate the feasibility of biochemical MRI techniques, such as sodium imaging, T{sub 2} mapping, fast imaging with steady state precession (FISP), and reversed FISP (PSIF), as potential markers for collagen, glycosaminoglycan and water content in the Achilles tendon. Materials and methods: Five fresh cadaver ankles acquired from a local anatomy department were used in the study. To acquire a sodium signal from the Achilles tendon, a 3D-gradient-echo sequence, optimized for sodium imaging, was used with TE = 7.71 ms and TR = 17 ms. The T{sub 2} relaxation times were obtained using a multi-echo, spin-echo technique with a repetition time (TR) of 1200 ms and six echo times. A 3D, partially balanced, steady-state gradient echo pulse sequence was used to acquire FISP and PSIF images, with TR/TE = 6.96/2.46 ms. MRI parameters were correlated with each other, as well as with histologically assessed glycosaminoglycan and water content in cadaver Achilles tendons. Results: The highest relevant Pearson correlation coefficient was found between sodium SNR and glycosaminoglycan content (r = 0.71, p = 0.007). Relatively high correlation was found between the PSIF signal and T{sub 2} values (r = 0.51, p = 0.036), and between the FISP signal and T{sub 2} values (r = 0.56, p = 0.047). Other correlations were found to be below the moderate level. Conclusion: This study demonstrated the feasibility of progressive biochemical MRI methods for the imaging of the AT. A GAG-specific, contrast-free method (sodium imaging), as well as collagen- and water-sensitive methods (T{sub 2} mapping, FISP, PSIF), may be used in fast-relaxing tissues, such as tendons, in reasonable scan times.

  6. Histological correlation of 7 T multi-parametric MRI performed in ex-vivo Achilles tendon

    International Nuclear Information System (INIS)

    Juras, Vladimir; Apprich, Sebastian; Pressl, Christina; Zbyn, Stefan; Szomolanyi, Pavol; Domayer, Stephan; Hofstaetter, Jochen G.; Trattnig, Siegfried

    2013-01-01

    Introduction: The goal of this in vitro validation study was to investigate the feasibility of biochemical MRI techniques, such as sodium imaging, T 2 mapping, fast imaging with steady state precession (FISP), and reversed FISP (PSIF), as potential markers for collagen, glycosaminoglycan and water content in the Achilles tendon. Materials and methods: Five fresh cadaver ankles acquired from a local anatomy department were used in the study. To acquire a sodium signal from the Achilles tendon, a 3D-gradient-echo sequence, optimized for sodium imaging, was used with TE = 7.71 ms and TR = 17 ms. The T 2 relaxation times were obtained using a multi-echo, spin-echo technique with a repetition time (TR) of 1200 ms and six echo times. A 3D, partially balanced, steady-state gradient echo pulse sequence was used to acquire FISP and PSIF images, with TR/TE = 6.96/2.46 ms. MRI parameters were correlated with each other, as well as with histologically assessed glycosaminoglycan and water content in cadaver Achilles tendons. Results: The highest relevant Pearson correlation coefficient was found between sodium SNR and glycosaminoglycan content (r = 0.71, p = 0.007). Relatively high correlation was found between the PSIF signal and T 2 values (r = 0.51, p = 0.036), and between the FISP signal and T 2 values (r = 0.56, p = 0.047). Other correlations were found to be below the moderate level. Conclusion: This study demonstrated the feasibility of progressive biochemical MRI methods for the imaging of the AT. A GAG-specific, contrast-free method (sodium imaging), as well as collagen- and water-sensitive methods (T 2 mapping, FISP, PSIF), may be used in fast-relaxing tissues, such as tendons, in reasonable scan times

  7. Comparison of spin echo T1-weighted sequences versus fast spin-echo proton density-weighted sequences for evaluation of meniscal tears at 1.5 T

    International Nuclear Information System (INIS)

    Wolff, Andrew B.; Pesce, Lorenzo L.; Wu, Jim S.; Smart, L.R.; Medvecky, Michael J.; Haims, Andrew H.

    2009-01-01

    At our institution, fast spin-echo (FSE) proton density (PD) imaging is used to evaluate articular cartilage, while conventional spin-echo (CSE) T1-weighted sequences have been traditionally used to characterize meniscal pathology. We sought to determine if FSE PD-weighted sequences are equivalent to CSE T1-weighted sequences in the detection of meniscal tears, obviating the need to perform both sequences. We retrospectively reviewed the records of knee arthroscopies performed by two arthroscopy-focused surgeons from an academic medical center over a 2-year period. The preoperative MRI images were interpreted independently by two fellowship-trained musculoskeletal radiologists who graded the sagittal CSE T1 and FSE PD sequences at different sittings with grades 1-5, where 1 = normal meniscus, 2 = probable normal meniscus, 3 indeterminate, 4 = probable torn meniscus, and 5 = torn meniscus. Each meniscus was divided into an anterior and posterior half, and these halves were graded separately. Operative findings provided the gold standard. Receiver operating characteristic (ROC) analysis was performed to compare the two sequences. There were 131 tears in 504 meniscal halves. Using ROC analysis, the reader 1 area under curve for FSE PD was significantly better than CSE T1 (0.939 vs. 0.902, >95% confidence). For reader 2, the difference met good criteria for statistical non-inferiority but not superiority (0.913 for FSE PD and 0.908 for CSE T1; >95% non-inferiority for difference at most of -0.027). FSE PD-weighted sequences, using our institutional protocol, are not inferior to CSE T1-weighted sequences for the detection of meniscal tears and may be superior. (orig.)

  8. Chondrocalcinosis of the hyaline cartilage of the knee: MRI manifestations

    International Nuclear Information System (INIS)

    Beltran, J.; Marty-Delfaut, E.; Bencardino, J.; Rosenberg, Z.S.; Steiner, G.; Aparisi, F.; Padron, M.

    1998-01-01

    Purpose. To determine the ability of MRI to detect the presence of crystals of calcium pyrophosphate in the articular cartilage of the knee. Design and patients. The MR studies of 12 knees (11 cases) were reviewed retrospectively and correlated with r[iographs (12 cases) and the findings at arthroscopy (2 cases) and surgery (1 case). A total of 72 articular surfaces were evaluated. R[iographic, surgical or arthroscopic demonstration of chondrocalcinosis was used as the gold standard. [ditionally, two fragments of the knee of a patient who underwent total knee replacement and demonstrated extensive chondrocalcinosis were studied with r[iography and MRI using spin-echo T1-, T2- and proton-density-weighted images as well as two- and three-dimensional fat saturation (2D and 3D Fat Sat) gr[ient recalled echo (GRE) and STIR sequences. Results. MRI revealed multiple hypointense foci within the articular cartilage in 34 articular surfaces, better shown on 2D and 3D GRE sequences. R[iographs showed 12 articular surfaces with chondrocalcinosis. In three cases with arthroscopic or surgical correlation, MRI demonstrated more diffuse involvement of the articular cartilage than did the r[iographs. The 3D Fat Sat GRE sequences were the best for demonstrating articular calcification in vitro. In no case was meniscal calcification identified with MRI. Hyperintense halos around some of the calcifications were seen on the MR images. Conclusion. MRI can depict articular cartilage calcification as hypointense foci using GRE techniques. Differential diagnosis includes loose bodies, post-surgical changes, marginal osteophytes and hemosiderin deposition. (orig.)

  9. Chondrocalcinosis of the hyaline cartilage of the knee: MRI manifestations

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J.; Marty-Delfaut, E.; Bencardino, J.; Rosenberg, Z.S. [Department of Radiology, Hospital for Joint Diseases, New York, NY (United States); Steiner, G. [Department of Pathology, Hospital for Joint Diseases, New York, NY (United States); Aparisi, F. [Department of Radiology, Residencia Sanitaria ``La Fe``, Valencia (Spain); Padron, M. [Clinica San Camilo, Madrid (Spain)

    1998-07-01

    Purpose. To determine the ability of MRI to detect the presence of crystals of calcium pyrophosphate in the articular cartilage of the knee. Design and patients. The MR studies of 12 knees (11 cases) were reviewed retrospectively and correlated with radiographs (12 cases) and the findings at arthroscopy (2 cases) and surgery (1 case). A total of 72 articular surfaces were evaluated. Radiographic, surgical or arthroscopic demonstration of chondrocalcinosis was used as the gold standard. Additionally, two fragments of the knee of a patient who underwent total knee replacement and demonstrated extensive chondrocalcinosis were studied with radiography and MRI using spin-echo T1-, T2- and proton-density-weighted images as well as two- and three-dimensional fat saturation (2D and 3D Fat Sat) gradient recalled echo (GRE) and STIR sequences. Results. MRI revealed multiple hypointense foci within the articular cartilage in 34 articular surfaces, better shown on 2D and 3D GRE sequences. Radiographs showed 12 articular surfaces with chondrocalcinosis. In three cases with arthroscopic or surgical correlation, MRI demonstrated more diffuse involvement of the articular cartilage than did the radiographs. The 3D Fat Sat GRE sequences were the best for demonstrating articular calcification in vitro. In no case was meniscal calcification identified with MRI. Hyperintense halos around some of the calcifications were seen on the MR images. Conclusion. MRI can depict articular cartilage calcification as hypointense foci using GRE techniques. Differential diagnosis includes loose bodies, post-surgical changes, marginal osteophytes and hemosiderin deposition. (orig.) With 4 figs., 14 refs.

  10. Differential diagnosis of pituitary adenomas and Rathke's cleft cysts by diffusion-weighted MRI using single-shot fast spin echo technique

    International Nuclear Information System (INIS)

    Abe, Takumi; Izumiyama, Hitoshi; Fukuda, Ataru; Tanioka, Daisuke; Kunii, Norihiko; Komatsu, Daisuke; Fujita, Shogo; Ukisu, Ryutaro; Moritani, Toshio

    2002-01-01

    The purpose of the present study was to prospectively evaluate the diagnostic ability of diffusion-weighted magnetic resonance imaging (DWI) using single-shot fast spin echo (SSFSE) technique to discriminate pituitary adenomas from Rathke's cleft cysts. DWIs were obtained from 40 patients with pathologically proven pituitary macroadenomas and 15 patients with proven Rathke's cleft cysts. Pituitary adenomas were divided into 27 cases with solid components alone, five with non-hemorrhagic large cysts, and eight with intratumoral hemorrhage. On SSFSE DWI, solid components of pituitary adenomas revealed iso or slightly increased intensity and intratumoral hemorrhage showed higher intensity than normal brain parenchyma, whereas Rathke's cleft cysts and intratumoral cysts demonstrated very low intensity. SSFSE DWI did not display the susceptibility artifacts that are seen close to the skull base and sinonasal cavities on echo planar diffusion imaging. On the basis of our preliminary findings, DWI may enable us to differentiate pituitary adenomas with only solid components and hemorrhagic pituitary adenomas appearing hyperintense on T1-weighted images from Rathke's cleft cysts without administration of gadolinium-DTPA. SSFSE DWI appears to be a useful technique for characterizing pituitary diseases without the susceptibility artifacts. Our study is the first report to demonstrate the identification of pituitary disorders on SSFSE DWI. (author)

  11. MRI of cerebral ischaemia in rats with occlusion of the middle cerebral artery

    International Nuclear Information System (INIS)

    Thuomas, K.AA.; Kotwica, Z.; Bergstroem, K.; Bolander, H.; Hillered, L.; Olsson, Y.; Ponten, U.; Persson, L.

    1991-01-01

    The development of ischaemic brain oedema caused by middle cerebral artery (MCA) occlusion was studied by serial magnetic resonance imaging (MRI) in rats. Multiple spin echo sequences were used with TR = 1500 ms and TE = 30-240 ms (8 echos). Substraction images were obtained by subtracting the last three echos from the first echo. Fourteen rats were studied 3, 6, and 12 h and 1, 1.5, 3, 4, 6, and 8 days after MCA occlusion, and 2 of them also 3 and 6 weeks later. Two T2 components could be separated, a fast one representing bound water and a slow one representing free bulk water. MR showed T2 prolongation even on the first examination, and the highest values were observed 24 h after occlusion. The subsequent examinations showed a slow reduction in oedema. MR studies 3 and 6 weeks after occlusion revealed an area of very long T2, which correlated well with infarction shown by histology. The substraction images demonstrated both the infarct location and the oedematous changes in the surrounding uninfarcted tissue. MRI imaging employing T2 components and subtraction images appears to be a valuable method for observing the time course of the development and resolution of oedema in cerebral infarction. (orig.)

  12. Evaluation of a multiple spin- and gradient-echo (SAGE) EPI acquisition with SENSE acceleration: applications for perfusion imaging in and outside the brain.

    Science.gov (United States)

    Skinner, Jack T; Robison, Ryan K; Elder, Christopher P; Newton, Allen T; Damon, Bruce M; Quarles, C Chad

    2014-12-01

    Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2(*)) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2(*) in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2(*) in white (WM) (rR2=[0.55-0.79], rR2*=[0.47-0.71]) and gray (GM) matter (rR2=[0.26-0.59], rR2*=[0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters K(trans) and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2', a parameter that has been shown to correlate

  13. Qualification test of a MPPC-based PET module for future MRI-PET scanners

    Science.gov (United States)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Funamoto, H.; Tsujikawa, T.; Yamamoto, S.

    2014-11-01

    We have developed a high-resolution, compact Positron Emission Tomography (PET) module for future use in MRI-PET scanners. The module consists of large-area, 4×4 ch MPPC arrays (Hamamatsu S11827-3344MG) optically coupled with Ce:LYSO scintillators fabricated into 12×12 matrices of 1×1 mm2 pixels. At this stage, a pair of module and coincidence circuits was assembled into an experimental prototype gantry arranged in a ring of 90 mm in diameter to form the MPPC-based PET system. The PET detector ring was then positioned around the RF coil of the 4.7 T MRI system. We took an image of a point 22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure interference between the MPPC-based PET and the MRI. We only found a slight degradation in the spatial resolution of the PET image from 1.63 to 1.70 mm (FWHM; x-direction), or 1.48-1.55 mm (FWHM; y-direction) when operating with the MRI, while the signal-to-noise ratio (SNR) of the MRI image was only degraded by 5%. These results encouraged us to develop a more advanced version of the MRI-PET gantry with eight MPPC-based PET modules, whose detailed design and first qualification test are also presented in this paper.

  14. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla

    DEFF Research Database (Denmark)

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore

    2017-01-01

    ) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. MATERIALS AND METHODS: The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors...

  15. A compact 3 T all HTS cryogen-free MRI system

    Science.gov (United States)

    Parkinson, B. J.; Bouloukakis, K.; Slade, R. A.

    2017-12-01

    We have designed and built a passively shielded, cryogen-free 3 T 160 mm bore bismuth strontium calcium copper oxide HTS magnet with shielded gradient coils suitable for use in small animal imaging applications. The magnet is cooled to approximately 16 K using a two-stage cryocooler and is operated at 200 A. The magnet has been passively shimmed so as to achieve ±10 parts per million (ppm) homogeneity over a 60 mm diameter imaging volume. We have demonstrated that B 0 temporal stability is fit-for-purpose despite the magnet operating in the driven mode. The system has produced good quality spin-echo and gradient echo images. This compact HTS-MRI system is emerging as a true alternative to conventional low temperature superconductor based cryogen-free MRI systems, with much more efficient cryogenics since it operates entirely from a single phase alternating current electrical supply.

  16. Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data

    OpenAIRE

    Renvall, Ville; Witzel, Thomas; Wald, Lawrence L.; Polimeni, Jonathan R.

    2016-01-01

    Echo planar imaging (EPI) is the method of choice for the majority of functional magnetic resonance imaging (fMRI), yet EPI is prone to geometric distortions and thus misaligns with conventional anatomical reference data. The poor geometric correspondence between functional and anatomical data can lead to severe misplacements and corruption of detected activation patterns. However, recent advances in imaging technology have provided EPI data with increasing quality and resolution. Here we pre...

  17. Anteroinferior tears of the glenoid labrum: fat-suppressed fast spin-echo T2 versus gradient-recalled echo MR images

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); De Smet, A A [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); Norris, M A [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); Orwin, J F [Department of Orthopedic Surgery, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States)

    1997-05-01

    Objective. To compare fat-suppressed fast spin-echo (FSE) T2-weighted images with gradient-recalled echo (GRE) T2*-weighted images in the evaluation of anteroinferior labral tears. Design. MR images were retrospectively reviewed by two radiologists masked to the history and arthroscopic findings. They separately interpreted the anteroinferior labrum as torn or intact, first on one pulse sequence and then, 4 weeks later, on the other sequence. The MR interpretations were correlated with the arthroscopic findings. Patients. Nine patients with anteroinferior labral tears, and nine similarly-aged patients with normal, labra were studied. Results and conclusions. Observer 1 had a sensitivity of 0.56 on the GRE images and 0.67 on the FSE images (P>0.5), with a specificity of 1.0 for both sequences. Observer 2 had a sensitivity of 0.78 and a specificity of 0.89 for both sequences. In this small study there is no significant difference between GRE and fat-suppressed FSE images in their ability to diagnose anteroinferior labral tears. When evaluating the labrum with conventional MRI, axial fat-suppressed FSE T2-weighted images can be used in place of GRE images without a loss of accuracy. (orig.). With 3 figs., 1 tab.

  18. Three-dimensional brain mapping using fMRI

    International Nuclear Information System (INIS)

    Fukunaga, Masaki; Tanaka, Chuzo; Umeda, Masahiro; Ebisu, Toshihiko; Aoki, Ichio; Higuchi, Toshihiro; Naruse, Shoji.

    1997-01-01

    Functional mapping of the activated brain, the location and extent of the activated area were determined, during motor tasks and sensory stimulation using fMRI superimposed on 3D anatomical MRI. Twelve volunteers were studied. The fMR images were acquired using a 2D gradient echo echo planar imaging sequence. The 3D anatomical MR images of the whole brain were acquired using a conventional 3D gradient echo sequence. Motor tasks were sequential opposition of fingers, clenching a hand and elbow flexion. Somatosensory stimulation were administered by scrubbing the palm and sole with a washing sponge. Visual stimulation consisted of full visual field stimulation. Data were analyzed by the cross-correlation method. Transversal fMR images and anatomical images were reconstructed using both volume-, surface-rendering methods, and reconstructed for coronal and sagittal sections. Activated areas were expressed using the three primary colors. Motor tasks activated the contralateral primary motor area (M1), the primary somatosensory area (S1) and the supplementary motor area (SMA). Somatosensory tasks activated the contralateral S1, M1 and secondary sensory area (S2). Activated areas during full visual field stimulation was observed in the bilateral occipital lobe, including both the primary cortex. Three-dimensional brain mapping allowed visualization of the anatomical location and extent of the activated brain during both motor task and sensory stimulation. Using this method we could obtain a functional map similar to the Penfield's schema. (author)

  19. CT and MRI characteristica of tumours of the temporal bone and the cerebello-pontine angle

    International Nuclear Information System (INIS)

    Imhof, H.; Henk, C.B.; Dirisamer, A.; Czerny, C.; Gstoettner, W.

    2003-01-01

    Tumours lesions of the temporal bone and of the cerebello-pontine angle are rare.This tumours can be separated into benign and malignant lesions. In this paper the CT and MRI characteristica of tumours of the temporal bone and the cerebello-pontane angle will be demonstrated. High resolution CT (HRCT) as usually performed in the axial plane are using a high resolution bone window level setting, coronal planes are the reconstructed from the axial data set or will be obtained directly. With the MRI FLAIR sequence in the axial plane the whole brain will be scanned either to depict or exclude a tumour invasion into the brain. After this,T2-weighted fast spin echo sequences or fatsuppressed inversion recovery sequences in high resolution technique in the axial plane will be obtained from the temporal bone and axial T1-weighted spinecho sequences before and after the intravenous application of contrast material will be obtained of this region. Finally T1-weighted spinecho sequences in high resolution technique with fatsuppression after the intravenous application of contrast material will be performed in the coronal plane. HRCT and MRI are both used to depict the most exact tumorous borders. HRCT excellently depicts the osseous changes for example exostosis of the external auditory canal, while also with HRCT osseous changes maybe characterized into more benign or malignant types. MRI has a very high soft tissue contrast and may therefore either characterize vascular space-occupying lesions for example glomus jugulare tumours or may differentiate between more benign or malignant lesions. In conclusion HRCT and MRI of the temporal bone are excellent methods to depict and mostly characterize tumour lesions and can help to differentiate between benign and malignant lesion. These imaging methods shall be used complementary and may have a great impact for the therapeutic planning. (orig.) [de

  20. ECHO-UseFY17.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  1. Help Content for ECHO Reports | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  2. Measuring the mutual effects between a CZT detector and MRI for the development of a simultaneous MBI/MRI insert

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Ashley [McMaster University (Canada); Farncombe, Troy [Hamilton Health Sciences (Canada); Noseworthy, Michael [McMaster University (Canada)

    2015-05-18

    While mammography is the gold standard for breast cancer screening, it suffers from poor sensitivity in women with dense breast tissue. Both breast MRI and molecular breast imaging (MBI) have been used as secondary imaging techniques. However, breast MRI suffers from low specificity and low sensitivity in MBI. A CZT based detector system has been developed with the goal of simultaneous MBI/MRI imaging to address the shortcomings of each modality. The performance of each modality needs to be addressed separately and together. The CZT system is comprised of four Redlen CZT modules tiled in a 2x2 array. Each module consists of 256 pixels and feature a builtin on-board ASIC and FPGA. A custom digital readout circuit board was designed to interface the four modules with a microcontroller to a PC. MR images were acquired with a 3T GE Discovery MR750 and Hologic breast coils. A gradient echo imaging sequence was used for all image acquisitions. A tissue mimicking phantom with a plastic grid insert (1 cm spacing) was used to evaluate geometric accuracy with the CZT detectors in the MRI bore. The average distance between the grid markers was 1Å 0.2cm indicating negligible geometric distortion. Field maps were generated with a uniform phantom to quantify the effect on magnetic field homogeneity. Early results indicate a significant distortion (~10ppm) in the magnetic field closest to the coil. Further analysis of the MR images will determine the extent of image quality degradation. A flood map of Tc-99m was acquired to evaluate and implement an energy correction map and a uniformity map. In the absence of a magnetic field, the mean energy resolution at 140keV was 6.3%. After fully characterizing the uniformity, geometric accuracy and sensitivity, the same metrics will be evaluated in the MRI bore.

  3. MRI of bone marrow: opposed-phase gradient-echo sequences with long repetition time

    International Nuclear Information System (INIS)

    Seiderer, M.; Staebler, A.; Wagner, H.

    1999-01-01

    Signal intensity for opposed-phase gradient-echo (GE) sequences of tissues composed of fat- and water-equivalent cells such as red bone marrow is extremely sensitive to variation of the ratio of both cell populations (fat-to-water ratio Q F/W ). Because most bone marrow pathology results in variation of Q F/W , GE sequences are characterized by high-contrast imaging of pathology. The aim of this study was to evaluate the influence of TR, TE, FA, Q F/W and histology on signal intensity. Signal intensity of opposed-phase GE sequences as a function of TR, TE, FA, and Q F/W was measured for a fat-water phantom and cadaver specimens of normal bone marrow (red and yellow) and pathological bone marrow (tumors). All specimens were correlated to histology. Opposed-phase GE imaging of red bone marrow pathology results in low-signal-intensity imaging of intact red bone marrow and high-signal-intensity positive contrast imaging of pathology associated with a change in Q F/W . In first-order approximation the signal intensity of pathology is linearly correlated to the change in Q F/W . Opposed-phase GE imaging is a sensitive imaging technique for red bone marrow pathology. Relative contrast of red bone marrow pathology is similar to fat-suppressed imaging techniques. Acquisition time is identical to T1-weighted SE sequences. (orig.)

  4. Comparison of 3D turbo spin-echo SPACE sequences with conventional 2D MRI sequences to assess the shoulder joint

    Energy Technology Data Exchange (ETDEWEB)

    Kloth, Jost Karsten, E-mail: jost.kloth@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany); Winterstein, Marianne, E-mail: marianne.winterstein@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany); Akbar, Michael, E-mail: michael.akbar@med.uni-heidelberg.de [Orthopedic and Trauma Surgery, University Hospital Heidelberg, Schlierbacher Landstraße 200a, D-69118 Heidelberg (Germany); Meyer, Esther, E-mail: esther.meyer@siemens.com [Siemens Healthcare, Erlangen (Germany); Paul, Dominik, E-mail: dominik.paul@siemens.com [Siemens Healthcare, Erlangen (Germany); Kauczor, Haus-Ulrich, E-mail: hans-ulrich.kauczor@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany); Weber, Marc-André, E-mail: marcandre.weber@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany)

    2014-10-15

    Highlights: • 3D SPACE and conventional 2D TSE MRI for assessment of the shoulder joint were compared. • Concordance for most pathologys was substantial to almost perfect. • Examination time could be reduced up to 8 min (27%). • Regarding rotator cuff injuries an additional sagittal T2w TSE sequence in 3D protocol is recommended. - Abstract: Purpose: To determine the accuracy and reliability of three-dimensional (3D) T1- and proton density (PD)-weighted turbo spin-echo (TSE) sampling perfection with application-optimized contrasts using different flip-angle evolution (SPACE) compared with conventional 2D sequences in assessment of the shoulder-joint. Materials and methods: Ninety-three subjects were examined on a 3-T MRI system with both conventional 2D-TSE sequences in T1-, T2- and PD-weighting and 3D SPACE sequences in T1- and PD-weighting. All examinations were assessed independently by two reviewers for common pathologies of the shoulder-joint. Agreement between 2D- and 3D-sequences and inter-observer-agreement was evaluated using kappa-statistics. Results: Using conventional 2D TSE sequences as standard of reference, sensitivity, specificity, and accuracy values of 3D SPACE were 81.8%, 95.1%, and 93.5% for injuries of the supraspinatus-tendon (SSP), 81.3%, 93.5%, and 91.4% for the cartilage layer and 82.4%, 98.5%, and 97.5% for the long biceps tendon. Concordance between 2D and 3D was almost perfect for tendinopathies of the SSP (κ = 0.85), osteoarthritis (κ = 1), luxation of the biceps tendon (κ = 1) and adjacent bone marrow (κ = 0.92). Inter-observer-agreement was generally higher for conventional 2D TSE sequences (κ, 0.23–1.0), when compared to 3D SPACE sequences (κ, −0.33 to 1.0) except for disorders of the long biceps tendon and supraspinatus tendon rupture. Conclusion: Because of substantial and almost perfect concordance with conventional 2D TSE sequences for common shoulder pathologies, MRI examination-time can be reduced by nearly 40

  5. Turbo-Proton Echo Planar Spectroscopic Imaging (t-PEPSI) MR technique in the detection of diffuse axonal damage in brain injury. Comparison with Gradient-Recalled Echo (GRE) sequence.

    Science.gov (United States)

    Giugni, E; Sabatini, U; Hagberg, G E; Formisano, R; Castriota-Scanderbeg, A

    2005-01-01

    Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury, and is frequently accompanied by tissue tear haemorrhage. The T2*-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of haemorrhage. This study was undertaken to determine whether turbo-PEPSI, an extremely fast multi-echo-planar-imaging sequence, can be used as an alternative to the GRE sequence for detection of DAI. Nineteen patients (mean age 24,5 year) with severe traumatic brain injury (TBI), occurred at least 3 months earlier, underwent a brain MRI study on a 1.5-Tesla scanner. A qualitative evaluation of the turbo-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and turbo-PEPSI images, and divided according to their anatomic location into lobar and/or deep brain. There was no significant difference between GRE and turbo-PEPSI sequences in the total number of DAI lesions detected (283 vs 225 lesions, respectively). The GRE sequence identified a greater number of hypointense lesions in the temporal lobe compared to the t-PEPSI sequence (72 vs 35, pPEPSI than for the GRE sequence (pPEPSI sequence can be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.

  6. 3D isotropic T2-weighted fast spin echo (VISTA) versus 2D T2-weighted fast spin echo in evaluation of the calcaneofibular ligament in the oblique coronal plane.

    Science.gov (United States)

    Park, H J; Lee, S Y; Choi, Y J; Hong, H P; Park, S J; Park, J H; Kim, E

    2017-02-01

    To investigate whether the image quality of three-dimensional (3D) volume isotropic fast spin echo acquisition (VISTA) magnetic resonance imaging (MRI) of the calcaneofibular ligament (CFL) view is comparable to that of 2D fast spin echo T2-weighted images (2D T2 FSE) for the evaluation of the CFL, and whether 3D VISTA can replace 2D T2 FSE for the evaluation of CFL injuries. This retrospective study included 76 patients who underwent ankle MRI with CFL views of both 2D T2 FSE MRI and 3D VISTA. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of both techniques were measured. The anatomical identification score and diagnostic performances were evaluated by two readers independently. The diagnostic performances of 3D VISTA and 2D T2 FSE were analysed by sensitivity, specificity, and accuracy for diagnosing CFL injury with reference standards of surgically or clinically confirmed diagnoses. Surgical correlation was performed in 29% of the patients, and clinical examination was used in those who did not have surgery (71%). The SNRs and CNRs of 3D VISTA were significantly higher than those of 2D T2 FSE. The anatomical identification scores on 3D VISTA were inferior to those on 2D T2 FSE, and the differences were statistically significant (pT2 FSE for the anatomical evaluation of CFL, 3D VISTA has a diagnostic performance comparable to that of 2D T2 FSE for the diagnosis of CFL injuries. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  7. Characterization and optimization of the visualization performance of continuous flow overhauser DNP hyperpolarized water MRI: Inversion recovery approach.

    Science.gov (United States)

    Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria

    2016-03-01

    Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.

  8. Rotary spin echoes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, I. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Centre d' Etudes Nucleaires de Saclay, BP2, Gif-sur-Yvette (France)

    1959-07-01

    Torrey has observed the free precession of nuclear spins around an r-f field H{sub 1}, fixed in a frame rotating at the Larmor frequency ω{sub 0} = γH{sub 0} around a large d-c magnetic field H{sub 0}. He showed that for an H{sub 1}, much larger than inhomogeneity of H{sub 0}, the latter has a negligible effect on the decay of the spin magnetization which is mainly due to the inhomogeneity of H{sub 1}. We report here on a method of overcoming the inhomogeneity of H{sub 1}, by production of echoes in the rotating frame ('rotary echoes'). These echoes are obtained by a 180 deg. phase shift at t = τ on the r-f field so that H{sub 1}, is suddenly reversed, producing a re-focussing of the magnetization vectors at the time t = 2 τ. The rotary echoes so obtained are very similar to the usual spin-echoes with, however some specific features that make them particularly suitable for the measurement of long relaxation times. Reprint of a paper published in Physical Review Letters, vol. 2, no. 7, Apr 1959, p. 301-302.

  9. Rotary spin echoes

    International Nuclear Information System (INIS)

    Solomon, I.

    1959-01-01

    Torrey has observed the free precession of nuclear spins around an r-f field H 1 , fixed in a frame rotating at the Larmor frequency ω 0 = γH 0 around a large d-c magnetic field H 0 . He showed that for an H 1 , much larger than inhomogeneity of H 0 , the latter has a negligible effect on the decay of the spin magnetization which is mainly due to the inhomogeneity of H 1 . We report here on a method of overcoming the inhomogeneity of H 1 , by production of echoes in the rotating frame ('rotary echoes'). These echoes are obtained by a 180 deg. phase shift at t = τ on the r-f field so that H 1 , is suddenly reversed, producing a re-focussing of the magnetization vectors at the time t = 2 τ. The rotary echoes so obtained are very similar to the usual spin-echoes with, however some specific features that make them particularly suitable for the measurement of long relaxation times. Reprint of a paper published in Physical Review Letters, vol. 2, no. 7, Apr 1959, p. 301-302

  10. Inter- and intra-rater reliability of patellofemoral kinematic and contact area quantification by fast spin echo MRI and correlation with cartilage health by quantitative T1ρ MRI☆

    Science.gov (United States)

    Lau, Brian C.; Thuillier, Daniel U.; Pedoia, Valentina; Chen, Ellison Y.; Zhang, Zhihong; Feeley, Brian T.; Souza, Richard B.

    2016-01-01

    Background Patellar maltracking is a leading cause of patellofemoral pain syndrome (PFPS). The aim of this study was to determine the inter- and intra-rater reliability of a semi-automated program for magnetic resonance imaging (MRI) based patellofemoral kinematics. Methods Sixteen subjects (10 with PFPS [mean age 32.3; SD 5.2; eight females] and six controls without PFPS 19 [mean age 28.6; SD 2.8; three females]) participated in the study. One set of T2-weighted, fat-saturated fast spin-echo (FSE) MRIs were acquired from each subject in full extension and 30° of knee flexion. MRI including axial T1ρ relaxation time mapping sequences was also performed on each knee. Following image acquisitions, regions of interest for kinematic MRI, and patellar and trochlear cartilage were segmented and quantified with in-house designed spline- based MATLAB semi-automated software. Results Intraclass Correlations Coefficients (ICC) of calculated kinematic parameters were good to excellent, ICC > 0.8 in patellar flexion, rotation, tilt, and translation (anterior -posterior, medial -lateral, and superior -inferior), and contact area translation. Only patellar tilt in the flexed position and motion from extended to flexed state was significantly different between PFPS and control patients (p = 0.002 and p = 0.006, respectively). No significant correlations were identified between patellofemoral kinematics and contact area with T1ρ relaxation times. Conclusions A semi-automated, spline-based kinematic MRI technique for patellofemoral kinematic and contact area quantification is highly reproducible with the potential to help better understand the role of patellofemoral maltracking in PFPS and other knee disorders. PMID:26746045

  11. Signal to noise comparison of metabolic imaging methods on a clinical 3T MRI

    DEFF Research Database (Denmark)

    Müller, C. A.; Hansen, Rie Beck; Skinner, J. G.

    MRI with hyperpolarized tracers has enabled new diagnostic applications, e.g. metabolic imaging in cancer research. However, the acquisition of the transient, hyperpolarized signal with spatial and frequency resolution requires dedicated imaging methods. Here, we compare three promising candidate...... for 2D MR spectroscopic imaging (MRSI): (i) multi-echo balanced steady-state free precession (me-bSSFP), 1,2 (ii) echo planar spectroscopic imaging (EPSI) sequence and (iii) phase-encoded, pulseacquisition chemical-shift imaging (CSI)...

  12. Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation

    International Nuclear Information System (INIS)

    Park, Ik Keun; Park, Un Su; Ahn, Hyung Keun; Kwun, Sook In; Byeon, Jai Won

    2000-01-01

    Recently, advanced signal analysis which is called 'time-frequency analysis' has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and new sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch

  13. Dedifferentiated chondrosarcoma: use of MRI to guide needle biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Saifuddin, A. E-mail: asaifuddin@aol.com; Mann, B.S.; Mahroof, S.; Pringle, J.A.S.; Briggs, T.W.R.; Cannon, S.R

    2004-03-01

    AIM: To describe the use of MRI to identify and biopsy areas of dedifferentiation in patients with a suspected diagnosis of dedifferentiated chondrosarcoma. MATERIALS AND METHODS: Low-grade chondrosarcoma is characterized at magnetic resonance imaging (MRI) as having a lobulate, hyperintense appearance on T2-weighted spin-echo sequences. T2-weighted MR images were assessed in 15 patients with a final pathological diagnosis of dedifferentiated chondrosarcoma for regions of atypical reduced signal intensity. Information regarding the site of ultrasound or computed tomography (CT)-guided biopsy was available in 10 cases. RESULTS: Nine patients were male and six female with a mean age of 60 years (range 25-77 years). The sites involved were the distal femur (n=4), pelvis (n=3), proximal femur (n=4), femoral diaphysis (n=1), proximal humerus (n=2) and proximal tibia (n=1). The dedifferentiated component consisted of osteosarcoma (n=5), malignant fibrous histiocytoma (n=6), spindle cell sarcoma (n=1), leiomyosarcoma (n=1) and pleomorphic sarcoma (n=1). In 14 of the 15 cases, areas of lower signal intensity lacking in lobulation were identified. In nine of the 10 cases, biopsy site included such areas and yielded high-grade sarcoma. CONCLUSIONS: Dedifferentiation within chondrosarcoma may be identified on T2-weighted MRI as areas of reduced signal intensity. These areas should be the preferred site of biopsy.

  14. The application of MRI in gluteal muscle contracture

    International Nuclear Information System (INIS)

    Zhao Tao; You Yuhua; Sun Jing; Cheng Kebin; Liu Wei; Qu Hui

    2003-01-01

    Objective: To evaluate the MRI findings and its diagnostic value in gluteal muscle contracture (GMC). Methods: Eleven clinic or operation confirmed GMC patients were examined by plain X-ray and MRI. Conventional T 1 WI and T 2 WI MR imaging were performed and FFE-T 2 WI (fast field echo-T 2 WI) was also scanned. CT scan was conducted in 5 cases. Results: 11 GMC patients were all diagnosed by MRI. Conventional T 1 WI and T 2 WI could only show the atrophy of gluteal muscles, while FFE-T 2 WI could directly show the fibrous band of gluteal muscle and its fascia, and the fibrous band appeared as low signal intensity on FFE-T 2 WI sequence. Conclusions: MRI is the efficient modality in imaging the fibrous band for GMC patients, and FFE-T 2 WI is the most valuable sequence. MRI is very helpful in the diagnosis and treatment of GMC

  15. TU-EF-BRA-03: Free Induction Decay (without the Decay) and Spin-Echo Imaging

    International Nuclear Information System (INIS)

    Price, R.

    2015-01-01

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common

  16. TU-EF-BRA-03: Free Induction Decay (without the Decay) and Spin-Echo Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Price, R. [Vanderbilt Medical Center (United States)

    2015-06-15

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common

  17. Usefulness and limitation of functional MRI with echo planar imaging using clinical MR apparatus

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Zenke, Kiichiro; Saito, Masahiro; Sadamoto, Kazuhiko; Ohue, Shiro; Sakaki, Saburo; Kumon, Yoshiaki; Kabasawa, Hiroyuki; Nagasawa, Kiyoshi

    1998-01-01

    We studied blood oxygen level-dependent (BOLD) functional MRI (fMRI) with EPI sequence in 21 normal volunteers and 8 presurgical clinical patients using a 1.5 T clinical MRI apparatus. To optimize the imaging parameters, we compared the fMRI images obtained by GFE-EPI and by SE-EPI in normal volunteers while each squeezed a sponge ball. We identified the motor cortex in 85.7% of normal volunteers by GFE-EPI in contrast to only 28.6% by SE-EPI. In addition, our clinical MR apparatus, using optimized parameters, maximally provides 15 slices per 5 seconds. In patients with brain tumor close to the sensorimotor cortex, we attempted to identify the motor cortex preoperatively by this procedure and found a significant increase of signal intensity in the motor cortex in 5 of 8 patients. In conclusion, fMRI using EPI may be useful for identifying the motor cortex preoperatively. However, further development of the apparatus is needed to obtain better temporal and spatial resolution for clinical applications. (author)

  18. Prediction of prostate cancer extracapsular extension with high spatial resolution dynamic contrast-enhanced 3-T MRI

    International Nuclear Information System (INIS)

    Bloch, B.N.; Genega, Elizabeth M.; Costa, Daniel N.; Pedrosa, Ivan; Rofsky, Neil M.; Smith, Martin P.; Kressel, Herbert Y.; Ngo, Long; Sanda, Martin G.; DeWolf, William C.

    2012-01-01

    To assess the value of dynamic contrast-enhanced (DCE) combined with T2-weighted (T2W) endorectal coil (ERC) magnetic resonance imaging (MRI) at 3 T for determining extracapsular extension (ECE) of prostate cancer. In this IRB-approved study, ERC 3-T MRI of the prostate was performed in 108 patients before radical prostatectomy. T2W fast spin-echo and DCE 3D gradient echo images were acquired. The interpretations of readers with varied experience were analysed. MRI-based staging results were compared with radical prostatectomy histology. Descriptive statistics were generated for prediction of ECE and staging accuracies were determined by the area under the receiver-operating characteristic curve. The overall sensitivity, specificity, positive predictive value and negative predictive value for ECE were 75 %, 92 %, 79 % and 91 %, respectively. Diagnostic accuracy for staging was 86 %, 80 % and 91 % for all readers, experienced and less experienced readers, respectively. ERC 3-T MRI of the prostate combining DCE and T2W imaging is an accurate pretherapeutic staging tool for assessment of ECE in clinical practice across varying levels of reader experience. (orig.)

  19. Left atrial dysfunction in type 2 diabetes mellitus: insights from cardiac MRI

    Energy Technology Data Exchange (ETDEWEB)

    Graca, Bruno; Donato, Paulo; Caseiro-Alves, Filipe [University of Coimbra, Faculty of Medicine, Coimbra (Portugal); Coimbra' s Hospital Centre and University, Medical Imaging Department, Coimbra (Portugal); Joao Ferreira, Maria [University of Coimbra, Faculty of Medicine, Coimbra (Portugal); Coimbra' s Hospital Centre and University, Cardiology Department, Coimbra (Portugal); Gomes, Leonor [University of Coimbra, Faculty of Medicine, Coimbra (Portugal); Coimbra' s Hospital Centre and University, Endocrinology Department, Coimbra (Portugal); Castelo-Branco, Miguel [University of Coimbra, Faculty of Medicine, Coimbra (Portugal)

    2014-11-15

    The left atrium (LA) modulates left ventricular filling through reservoir, conduit and booster pump functions. Only limited data exist on LA involvement in type 2 diabetes mellitus (DM2). This study sought to assess LA function in asymptomatic DM2 with cardiac MRI. We hypothesized that cardiac MRI can detect LA dysfunction in asymptomatic DM2. Forty-five patients with asymptomatic DM2 and 24 normoglycaemic controls were studied. MRI cine imaging was performed to measure LA maximal and minimal volumes. A flow-sensitive phase-contrast gradient-echo sequence was used for flow measurements perpendicular to the orifice of the mitral valve, to quantify active LA stroke volume. LA total, passive and active emptying volumes and fractions were calculated. LA reservoir function, namely LA total ejection fraction, was significantly greater in controls compared to patients with DM2 (62.2 ± 5.2 vs 57.0 ± 7.6 %, P = 0.004). LA passive ejection fraction was also greater in the controls (26.2 ± 9.5 vs 16.1 ± 11.0 %, P < 0.001). Regarding parameters of LA booster pump function, LA active ejection fraction was not significantly different between groups. DM2 was demonstrated to be an independent determinant of LA function. Cardiac MRI enables the detection of LA dysfunction in asymptomatic DM2, characterized by a reduction in LA reservoir and conduit functions. (orig.)

  20. Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study.

    Science.gov (United States)

    Hussain, Shahid M; De Becker, Jan; Hop, Wim C J; Dwarkasing, Soendersing; Wielopolski, Piotr A

    2005-03-01

    To optimize and assess the feasibility of a single-shot black-blood T2-weighted spin-echo echo-planar imaging (SSBB-EPI) sequence for MRI of the liver using sensitivity encoding (SENSE), and compare the results with those obtained with a T2-weighted turbo spin-echo (TSE) sequence. Six volunteers and 16 patients were scanned at 1.5T (Philips Intera). In the volunteer study, we optimized the SSBB-EPI sequence by interactively changing the parameters (i.e., the resolution, echo time (TE), diffusion weighting with low b-values, and polarity of the phase-encoding gradient) with regard to distortion, suppression of the blood signal, and sensitivity to motion. The influence of each change was assessed. The optimized SSBB-EPI sequence was applied in patients (N = 16). A number of items, including the overall image quality (on a scale of 1-5), were used for graded evaluation. In addition, the signal-to-noise ratio (SNR) of the liver was calculated. Statistical analysis was carried out with the use of Wilcoxon's signed rank test for comparison of the SSBB-EPI and TSE sequences, with P = 0.05 considered the limit for significance. The SSBB-EPI sequence was improved by the following steps: 1) less frequency points than phase-encoding steps, 2) a b-factor of 20, and 3) a reversed polarity of the phase-encoding gradient. In patients, the mean overall image quality score for the optimized SSBB-EPI (3.5 (range: 1-4)) and TSE (3.6 (range: 3-4)), and the SNR of the liver on SSBB-EPI (mean +/- SD = 7.6 +/- 4.0) and TSE (8.9 +/- 4.6) were not significantly different (P > .05). Optimized SSBB-EPI with SENSE proved to be feasible in patients, and the overall image quality and SNR of the liver were comparable to those achieved with the standard respiratory-triggered T2-weighted TSE sequence. (c) 2005 Wiley-Liss, Inc.

  1. A comparison of non-contrast and contrast-enhanced MRI in the initial stage of Legg-Calve-Perthes disease

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Harry K.W. [Texas Scottish Rite Hospital for Children, Center of Excellence in Hip Disorders, Dallas, TX (United States); University of Texas Southwestern, Department of Orthopedic Surgery, Dallas, TX (United States); Kaste, Sue [St. Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States); St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States); University of Tennessee School of Health Sciences, Department of Radiology, Memphis, TN (United States); Dempsey, Molly; Wilkes, David [Texas Scottish Rite Hospital for Children, Department of Radiology, Dallas, TX (United States)

    2013-09-15

    A prognostic indicator of outcome for Legg-Calve-Perthes disease (LCP) is needed to guide treatment decisions during the initial stage of the disease (stage 1), before deformity occurs. Radiographic prognosticators are applicable only after fragmentation (stage II). We investigated pre- and postcontrast MRI in depicting stage I femoral head involvement. Thirty children with stage I LCP underwent non-contrast coronal T1 fast spin-echo (FSE) and corresponding postcontrast fat-suppressed T1-weighted fast spin-echo (FSE) sequences to quantify the extent of femoral head involvement. Three pediatric radiologists and one pediatric orthopedic surgeon independently measured central head involvement. Interobserver reliability of percent head involvement using non-contrasted MR images had intraclass correlation coefficient (ICC) of 0.72. Postcontrast MRI improved interobserver reliability (ICC 0.82). Qualitatively, the area of involvement was more clearly visible on contrast-enhanced MRI. A comparison of results obtained by each observer using the two MRI techniques showed no correlation. ICC ranged from -0.08 to 0.03 for each observer. Generally, greater head involvement was depicted by contrast compared with non-contrast MRI (Pearson r = -0.37, P = 0.04). Pre- and postcontrast MRI assess two different components of stage I LCP. However, contrast-enhanced MRI more clearly depicts the area of involvement. (orig.)

  2. Little Leaguer's shoulder (proximal humeral epiphysiolysis): MRI findings in four boys

    International Nuclear Information System (INIS)

    Obembe, Olufolajimi O.; Gaskin, Cree M.; Anderson, Mark W.; Taffoni, Matthew J.

    2007-01-01

    Shoulder pain is a common problem among adolescent athletes. A possible cause of such pain that can be diagnosed on MRI is a stress injury to the proximal humerus known as Little Leaguer's shoulder (proximal humeral epiphysiolysis). Our objective was to describe the MRI appearance of Little Leaguer's shoulder. Four patients (all boys; age range 11-15 years; median 13 years) with clinical, plain radiographic, and MR imaging findings of Little Leaguer's shoulder were studied retrospectively. MRI demonstrated focal physeal widening in all four boys with extension of physeal signal intensity into the metaphysis on T1-weighted and gradient echo coronal and sagittal sequences. T2-weighted sequences were of limited use in demonstrating the physeal widening, which is critical to the diagnosis. Abnormal high T2-signal intensity was seen in the metaphysis adjacent to the focal physeal widening in all the boys. Focal extension of normal physeal T1-weighted and gradient echo signal intensity into the adjacent metaphysis is a sign of stress injury in the proximal humeral physis (Little Leaguer's shoulder). Children should suspend the offending sport to allow healing. (orig.)

  3. MRI of neuronal migration disorders

    International Nuclear Information System (INIS)

    Engelbrecht, V.

    1996-01-01

    Twenty-one MRI examinations of the brain were performed in 19 children with neuronal migration disorders. Multiplanar oriented spin-echo sequences were on a scanner with 1.5 T. In 8 children we performed an additional turbo-inversion recovery (TIR) sequence. Results of sonography or CT from five children were compared with MRI scans. Using the actual nomenclature, we found the following migration disorders: Lissencephaly (n=6), cobblestone lissencephaly with Walker-Warbung syndrome (WWS) (n=2), polymicrogyria and schizencephaly (n=2), focal heterotopia (n=5), diffuse heterotopie (n=2) and hemimegalencephaly (n=2). MRI was superior to CT and sonography in all children. Except for the two boys with WWS, the TIR sequence was the best to demonstrate the changes in migration disorder because of the high contrast between gray and white matter. We demonstrate the characteristic features of the different migration disorders and compare them with the existing literature. (orig.) [de

  4. Wind yield forecast with Echo State Networks; Windertragsprognose mit Echo State Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kobialka, Hans-Ulrich [Fraunhofer IAIS, Sankt Augustin (Germany)

    2012-07-01

    Statistical methods are able to create models of complex system dynamics which are difficult to capture analytically. This paper describes a wind energy prediction system based on a machine learning method, called Echo State Networks. Echo State Networks enable the training of large recurrent neural networks which are able to model and predict highly non-linear system dynamics. This paper gives a short description of Echo State Networks and the realization of the wind energy prediction system. (orig.)

  5. MRI in degenerative diseases of the cervical spine

    International Nuclear Information System (INIS)

    Schubeus, P.; Sander, B.; Hosten, N.; Mayer, H.M.; Weber, U.; Felix, R.

    1994-01-01

    MRI has grown increasingly important in recent years in diagnosis of degenerative diseases of the cervical spine, due to improvements of method that have made it a valuable diagnostic tool. The following contribution gives a brief introduction to the pathophysiology of degenerative changes in the cervical vertebral column and to the indications for MRI, describing within the framework of imaging the present state of MR examination technique. The ranking of the various gradient echo sequences, of the 3D methods and of the administration of contrast media in cervical myelopathy and radiaculopathy is discussed. (orig.) [de

  6. Legg-Perthes-Calve disease: staging by MRI using gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Ducou le Pointe, H. (Dept. of Pediatric Radiology, Hopital d' Enfants Armand-Trousseau, 75 - Paris (France)); Haddad, S. (Dept. of Pediatric Radiology, Hopital d' Enfants Armand-Trousseau, 75 - Paris (France)); Silberman, B. (Dept. of Pediatric Radiology, Hopital d' Enfants Armand-Trousseau, 75 - Paris (France)); Filipe, G. (Dept. of Orthopedic Surgery, Hopital d' Enfants Armand-Trousseau, 75 - Paris (France)); Monroc, M. (Dept. of Pediatric Radiology, Hopital d' Enfants Armand-Trousseau, 75 - Paris (France)); Montagne, J.P. (Dept. of Pediatric Radiology, Hopital d' Enfants Armand-Trousseau, 75 - Paris (France))

    1994-04-01

    Twenty-one patients (26 hips) with typical signs of Legg-Perthes-Calve (LPC) disease on plain radiographs were explored by MRI. Patients were imaged with a 0.5 T MR unit. Gadolinium-enhanced spinecho MR images were obtained after nonenhanced T1-weighted (spin-echo) and T2[sup *]-weighted (gradient-echo) images. Four different areas were identified in the femoral epiphysis (necrosis, regenerative, cartilaginous and normal fatty bone tissue). The histological evolution of LPC is well described by Catterall and others. Comparing their descriptions with out MR findings, we suggest classification ofLPC into five phases: necrosis: regeneration, reconstruction, reossification and sequelae. (orig.)

  7. Flow velocity change in the cortical vein during motor activation and its effect on functional brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kazuhiro [Kyoto Prefectural Univ. of Medicine (Japan)

    1998-06-01

    On the brain functional magnetic resonance imaging (fMRI) using the gradient-recalled echo technique with clinical MR scanner, the activated areas nearly correspond with the cortical veins. This suggests that the fMRI signal mainly originates from the cortical veins. In this study, we analyzed the flow velocity in the cortical vein quantitatively during brain activation and resting status using 2 dimensional time-of-flight cine MR venography (2D-TOF-cine-MRV) and 2 dimensional phase contrast MRV (2D-PC-MRV) techniques, and demonstrated that the flow velocity increased in the cortical vein corresponding to the activated area during activation status. The increase of flow velocity was calculated to be about 20%. The reason for the increased flow velocity is probably due to the increased regional cerebral blood flow and volume in the activated area. We should be careful to analyze the data of the fMRI because the flow velocity affects the fMRI signal such as the inflow effect and the oblique flow effect. When using the gradient echo method, the effect of the flow velocity is one of the important factors of the fMRI signal. (author)

  8. Toward brain correlates of natural behavior: fMRI during violent video games.

    Science.gov (United States)

    Mathiak, Klaus; Weber, René

    2006-12-01

    Modern video games represent highly advanced virtual reality simulations and often contain virtual violence. In a significant amount of young males, playing video games is a quotidian activity, making it an almost natural behavior. Recordings of brain activation with functional magnetic resonance imaging (fMRI) during gameplay may reflect neuronal correlates of real-life behavior. We recorded 13 experienced gamers (18-26 years; average 14 hrs/week playing) while playing a violent first-person shooter game (a violent computer game played in self-perspective) by means of distortion and dephasing reduced fMRI (3 T; single-shot triple-echo echo-planar imaging [EPI]). Content analysis of the video and sound with 100 ms time resolution achieved relevant behavioral variables. These variables explained significant signal variance across large distributed networks. Occurrence of violent scenes revealed significant neuronal correlates in an event-related design. Activation of dorsal and deactivation of rostral anterior cingulate and amygdala characterized the mid-frontal pattern related to virtual violence. Statistics and effect sizes can be considered large at these areas. Optimized imaging strategies allowed for single-subject and for single-trial analysis with good image quality at basal brain structures. We propose that virtual environments can be used to study neuronal processes involved in semi-naturalistic behavior as determined by content analysis. Importantly, the activation pattern reflects brain-environment interactions rather than stimulus responses as observed in classical experimental designs. We relate our findings to the general discussion on social effects of playing first-person shooter games. (c) 2006 Wiley-Liss, Inc.

  9. Happy birthday Echo!

    CERN Document Server

    Staff Association

    2010-01-01

    You are reading the number hundred and one (no. 101) edition of our bulletin Echo. Just over four years ago, on 27th March 2006, the first untitled edition was published (Fig. 1 on the left). The title Echo appeared on the second edition on 10th April 2006 (Fig. 1 in the centre). Today (see Fig. 1 on the right), the layout is slightly different, but the structure of each edition has remained more or less the same: an editorial informing you of the important issues, followed by articles on club life, cultural activities (exhibitions and conferences), information from GAC-EPA, and special offers for our members.     Fig. 1 : Nos. 1, 2 and 100 of our twice-monthly publication Echo Echo was created in March 2006 when, much to our regret, CERN official communication and that of your representatives were separated. November 2009 saw a return to normal practice, and since then the CERN st...

  10. EchoBASE: an integrated post-genomic database for Escherichia coli.

    Science.gov (United States)

    Misra, Raju V; Horler, Richard S P; Reindl, Wolfgang; Goryanin, Igor I; Thomas, Gavin H

    2005-01-01

    EchoBASE (http://www.ecoli-york.org) is a relational database designed to contain and manipulate information from post-genomic experiments using the model bacterium Escherichia coli K-12. Its aim is to collate information from a wide range of sources to provide clues to the functions of the approximately 1500 gene products that have no confirmed cellular function. The database is built on an enhanced annotation of the updated genome sequence of strain MG1655 and the association of experimental data with the E.coli genes and their products. Experiments that can be held within EchoBASE include proteomics studies, microarray data, protein-protein interaction data, structural data and bioinformatics studies. EchoBASE also contains annotated information on 'orphan' enzyme activities from this microbe to aid characterization of the proteins that catalyse these elusive biochemical reactions.

  11. Image Artifacts in Concurrent Transcranial Magnetic Stimulation (TMS) and fMRI Caused by Leakage Currents: Modeling and Compensation

    Science.gov (United States)

    Weiskopf, Nikolaus; Josephs, Oliver; Ruff, Christian C; Blankenburg, Felix; Featherstone, Eric; Thomas, Anthony; Bestmann, Sven; Driver, Jon; Deichmann, Ralf

    2009-01-01

    Purpose To characterize and eliminate a new type of image artifact in concurrent transcranial magnetic stimulation and functional MRI (TMS-fMRI) caused by small leakage currents originating from the high-voltage capacitors in the TMS stimulator system. Materials and Methods The artifacts in echo-planar images (EPI) caused by leakage currents were characterized and quantified in numerical simulations and phantom studies with different phantom-coil geometries. A relay-diode combination was devised and inserted in the TMS circuit that shorts the leakage current. Its effectiveness for artifact reduction was assessed in a phantom scan resembling a realistic TMS-fMRI experiment. Results The leakage-current-induced signal changes exhibited a multipolar spatial pattern and the maxima exceeded 1% at realistic coil-cortex distances. The relay-diode combination effectively reduced the artifact to a negligible level. Conclusion The leakage-current artifacts potentially obscure effects of interest or lead to false-positives. Since the artifact depends on the experimental setup and design (eg, amplitude of the leakage current, coil orientation, paradigm, EPI parameters), we recommend its assessment for each experiment. The relay-diode combination can eliminate the artifacts if necessary. J. Magn. Reson. Imaging 2009;29:1211–1217. © 2009 Wiley-Liss, Inc. PMID:19388099

  12. Spin echo SPI methods for quantitative analysis of fluids in porous media.

    Science.gov (United States)

    Li, Linqing; Han, Hui; Balcom, Bruce J

    2009-06-01

    Fluid density imaging is highly desirable in a wide variety of porous media measurements. The SPRITE class of MRI methods has proven to be robust and general in their ability to generate density images in porous media, however the short encoding times required, with correspondingly high magnetic field gradient strengths and filter widths, and low flip angle RF pulses, yield sub-optimal S/N images, especially at low static field strength. This paper explores two implementations of pure phase encode spin echo 1D imaging, with application to a proposed new petroleum reservoir core analysis measurement. In the first implementation of the pulse sequence, we modify the spin echo single point imaging (SE-SPI) technique to acquire the k-space origin data point, with a near zero evolution time, from the free induction decay (FID) following a 90 degrees excitation pulse. Subsequent k-space data points are acquired by separately phase encoding individual echoes in a multi-echo acquisition. T(2) attenuation of the echo train yields an image convolution which causes blurring. The T(2) blur effect is moderate for porous media with T(2) lifetime distributions longer than 5 ms. As a robust, high S/N, and fast 1D imaging method, this method will be highly complementary to SPRITE techniques for the quantitative analysis of fluid content in porous media. In the second implementation of the SE-SPI pulse sequence, modification of the basic measurement permits fast determination of spatially resolved T(2) distributions in porous media through separately phase encoding each echo in a multi-echo CPMG pulse train. An individual T(2) weighted image may be acquired from each echo. The echo time (TE) of each T(2) weighted image may be reduced to 500 micros or less. These profiles can be fit to extract a T(2) distribution from each pixel employing a variety of standard inverse Laplace transform methods. Fluid content 1D images are produced as an essential by product of determining the

  13. MRI findings and hematoma contents of chronic subdural hematomas

    Energy Technology Data Exchange (ETDEWEB)

    Keyaki, Atsushi; Makita, Yasumasa; Nabeshima, Sachio; Tei, Taikyoku; Lee, Young-Eun; Higashi, Toshio; Matsubayashi, Keiko; Miki, Yukio; Matsuo, Michimasa (Tenri Hospital, Nara (Japan))

    1991-02-01

    Twenty-six cases of chronic subdural hematomas (CSDHs) were studied with reference to magnetic resonance image (MRI) findings and the biochemical analysis of the hematoma contents. There were 5 cases of bilateral CSDH. An apparent history of head trauma was obtained in 13 cases. All cases were evaluated preoperatively with both computed tomography (CT) and MRI. MRI was studied with both T{sub 1}-weighted (spin echo, TR/TE 600/15) imaging (T{sub 1}WI) and T{sub 2}-weighted (spin echo, TR/TE 3,000/90) imaging (T{sub 2}WI). A biochemical analysis of the hematoma contents was assayed with regard to hematocrit (HT), the total protein (TP), methemoglobin (Met-Hb), the total cholesterol (Tchol), triglyceride (TG), fibrin and fibrinogen degradation products (FDP), Fe, and osmolarity (Osm). The CT findings were divided into four groups: 5 cases of low-density, 7 cases of isodensity, 13 cases of high-density, and 5 cases of mixed-density hematomas. The MRI findings were also divided as 18 cases of high-, 4 cases of iso-, and 2 cases of low-signal-intensity hematomas on T{sub 1}WI. On T{sub 2}WI, 18 cases were high-, 4 cases were iso-, and 2 cases were low-signal-intensity hematomas. Twelve cases were high-signal-intensity hematomas on both T{sub 1}WI and T{sub 2}WI. In comparison with the CT and MRI findings, hematomas of low and isodensity on CT showed high signal intensities on T{sub 1}WI except in one case. The high-density hematomas on CT showed a variable signal intensity on MRI. The Ht value showed no apparent correlation with the MRI findings; however, increased values of TP in hematomas tended to show higher signal intensities on T{sub 1}WI. The most apparent correlation was seen between the Met-Hb ratio and T{sub 1}WI MRI. All hematomas containing >10% Met-Hb showed high signal intensities on T{sub 1}WI. The CT, the MRI, and the results of the biochemic analysis of hematoma contents were presented in 3 cases. (J.P.N.).

  14. MRI findings, patterns of disease distribution, and muscle fat fraction calculation in five patients with Charcot-Marie-Tooth type 2 F disease

    Energy Technology Data Exchange (ETDEWEB)

    Gaeta, Michele; Mileto, Achille; Minutoli, Fabio; Settineri, Nicola; Donato, Rocco; Ascenti, Giorgio; Blandino, Alfredo [Policlinico ' ' G. Martino' ' , Dipartimento di Scienze Radiologiche, Messina (Italy); Mazzeo, Anna; Di Leo, Rita [Policlinico ' ' G. Martino' ' , Dipartimento di Neuroscienze, Scienze Psichiatriche ed Anestesiologiche, Messina (Italy)

    2012-05-15

    To describe the magnetic resonance imaging (MRI) pattern of muscle involvement and disease progression in five patients with late-onset Charcot-Marie-Tooth (CMT) disease type 2 F, due to a previously unknown mutation. Five patients (three males, two females) underwent MRI of the lower limbs to define the pattern of muscle involvement and evaluate the muscle fat fraction (MFF) of residual thigh muscle with gradient-echo (GRE) dual-echo dual-flip angle technique. Evaluation of fatty infiltration both by visual inspection and MFF calculation was performed. A proximal-to-distal gradient of muscle involvement was depicted in male patients with extensive muscle wasting of lower legs, less severe impairment of distal thigh muscles, and sparing of proximal thigh muscles. A peculiar phenotype finding was that no or only slight muscle abnormalities could be found in the two female patients. We described the pattern of muscle involvement and disease progression in a family with CMT disease type 2 F. GRE dual-echo dual-flip angle MRI technique is a valuable technique to obtain a rapid quantification of MFF. (orig.)

  15. Analysis of MRI in chronic alcoholics with brain atrophy

    International Nuclear Information System (INIS)

    Park, Jin Sook; Kim, Myung Soon; Whang, Kum

    1997-01-01

    To quantitatively evaluate by MRI brain atrophy and abnormal parenchymal signal intensity on T2-weighted spin echo image in alcoholics. MRI of 24 alcoholic patients were retrospectively evaluated to measure brain atrophy (cerebral sulcal width, bifrontal horn distance, third ventricular width, fourth ventricular width, ambient cistern width, cerebellopontine angle cistern width, number of cerebellar sulci, and number of vermian sulci) and abnormal high signal lesions of brain parenchyma on T2-weighted spin echo image, and were compared with age matched controls (n=29). The alcoholics and controls were divided into two age groups, younger (30-49 years) and older (50-72 years), and statistical analysis was then performed. Axial and sagittal T1- and T2-weighted spin echo images were obtained using a 0.5 Tesla superconductive system. Statistical significant parameters in the supratentorial region were cerebral sulcal width, distance between lateral ends of frontal horns of both lateral ventricles, and third ventricular width (p < 0.05), and in the infratentorial region were fourth ventricular width, ambient cistern width, cerebellopontine angle cistern width, number of cerebellar sulci, and number of vermian sulci (p < 0.05). In the younger age group, statistical significant parameters were cerebral sulcal width, third ventricular width, ambient cistern width, cerebellopontine angle cistern width, number of cerebellar sulci, and number of vermian sulci (p < 0.05) and in the older group were cerebral sulcal width, bifrontal horn distance, third ventricular width, fourth ventricular width, number of cerebellar sulci, and number of vermian sulci (p < 0.05). Abnormal high signal intensity on T2-weighted spin echo images were seen in 46% of alcoholics (11/24) and in 13% of controls (3/29). High signal lesions in the older group were statistically significant (p < 0.05). Atrophic brain changes and periventricular high signal foci on T2-weighted spin echo image are

  16. The facial nerve in the temporal bone as visualised via thin-layer paratransversal and sagittal MR tomographic images by means of T1 spin-echo and FLASH sequences

    International Nuclear Information System (INIS)

    Mueller-Lisse, U.; Jaeger, L.J.E.; Bruegel, F.J.; Grevers, G.; Reiser, M.F.

    1995-01-01

    It is difficult to effect visualization and delineation of the facial nerve and its neighbouring structures in the temporal bone with conventional MRI examination protocols. We tested temporal bone MRI with 2 mm slices and compared T 1 -weighted FLASH (T R =400 ms, T E =10 ms, 90 flip angle) and spin-echo (T R =540 ms, T E =15 ms) sequences. 5 volunteers and 14 patients were examined with the head coil of a 1.0 T whole body MRI scanner (Impact, Siemens, Erlangen) with para-transversal images orientated parallel to the inferior outline of the clivus and sagittal images orientated along the brainstem. The facial nerve and its neighbouring structures could be reliably visualized and differentiated along its entire course. The FLASH sequence was superior to the spin-echo sequence. 8 of 11 patients with peripheral facial nerve palsy showed contrast enhancement. In two patients, local swelling of the affected facial nerve was evident. (orig./MG) [de

  17. Characterization of tumor vasculature in mouse brain by USPIO contrast-enhanced MRI.

    NARCIS (Netherlands)

    Gambarota, G.; Leenders, W.P.J.

    2011-01-01

    Detailed characterization of the tumor vasculature provides a better understanding of the complex mechanisms associated with tumor development and is especially important to evaluate responses to current therapies which target the tumor vasculature. Magnetic resonance imaging (MRI) studies of tumors

  18. Functional Proton MRI in Emphysematous Rats.

    Science.gov (United States)

    Bianchi, Andrea; Tibiletti, Marta; Kjørstad, Åsmund; Birk, Gerald; Schad, Lothar R; Stierstorfer, Birgit; Stiller, Detlef; Rasche, Volker

    2015-12-01

    To demonstrate the feasibility of proton magnetic resonance imaging (MRI) ventilation-related maps in rodents for the evaluation of lung function in the presence of pancreatic porcine elastase (PPE)-induced emphysema. Twelve rats were equally divided into 3 groups: group 1 (no administration of PPE); group 2 (PPE selectively only in the left lung); and group 3 (PPE administered in both lungs). Magnetic resonance imaging (MRI) and computed tomographic (CT) data were acquired at baseline, at 2 weeks and 4 weeks after administration, after which the animals were euthanized. The MRI protocol comprised a golden angle 2-dimensional ultrashort echo time MRI sequence [echo time, 0.343 millisecond (ms); repetition time, 120 ms; 12 slides with thickness, 1 mm; acquisition time, 30 minutes], from which inspiration and expiration images were reconstructed after the extraction of a self-gating signal. Inspiration images were registered to images at expiration, and expansion maps were created by calculating the specific difference in signal intensity. The lungs were segmented, and the mean specific expansion (MSE) calculated as an established surrogate for fractional ventilation. Computed tomographic data provided lung density (peak of the Hounsfield unit histogram, HU_P), whereas histology provided the mean linear intercept for each lung. Two weeks after administration, the control group had a mean MSE in both lungs corresponding to 96% of the baseline. Group 2 had 85% of the baseline, and group 3 had 57%. Considering the PPE-treated lungs alone, a significant reduction in MSE of 27% at 2 weeks and 40% at 4 weeks was found with respect to nontreated lungs. Significant correlations between HU_P and MSE were found at all time points (baseline: r = 0.606, P = 0.0017; 2 weeks: r = 0.837, P ≤ 0.0001; 4 weeks: r = 0.765, P Mean linear intercept values significantly correlated both with MRI MSE (r = -0.770, P The calculated ventilation-related maps showed a reduction of function in

  19. Free-breathing pediatric chest MRI: Performance of self-navigated golden-angle ordered conical ultrashort echo time acquisition.

    Science.gov (United States)

    Zucker, Evan J; Cheng, Joseph Y; Haldipur, Anshul; Carl, Michael; Vasanawala, Shreyas S

    2018-01-01

    To assess the feasibility and performance of conical k-space trajectory free-breathing ultrashort echo time (UTE) chest magnetic resonance imaging (MRI) versus four-dimensional (4D) flow and effects of 50% data subsampling and soft-gated motion correction. Thirty-two consecutive children who underwent both 4D flow and UTE ferumoxytol-enhanced chest MR (mean age: 5.4 years, range: 6 days to 15.7 years) in one 3T exam were recruited. From UTE k-space data, three image sets were reconstructed: 1) one with all data, 2) one using the first 50% of data, and 3) a final set with soft-gating motion correction, leveraging the signal magnitude immediately after each excitation. Two radiologists in blinded fashion independently scored image quality of anatomical landmarks on a 5-point scale. Ratings were compared using Wilcoxon rank-sum, Wilcoxon signed-ranks, and Kruskal-Wallis tests. Interobserver agreement was assessed with the intraclass correlation coefficient (ICC). For fully sampled UTE, mean scores for all structures were ≥4 (good-excellent). Full UTE surpassed 4D flow for lungs and airways (P 93% scans for all techniques (P = 0.27). Interobserver agreement was excellent for combined scores (ICC = 0.83). High-quality free-breathing conical UTE chest MR is feasible, surpassing 4D flow for lungs and airways, with equivalent PA visualization. Data subsampling only mildly degraded images, favoring lesser scan times. Soft-gating motion correction overall did not improve image quality. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:200-209. © 2017 International Society for Magnetic Resonance in Medicine.

  20. MRI before and after external beam intensity-modulated radiotherapy of patients with prostate cancer: The feasibility of monitoring of radiation-induced tissue changes using a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence

    International Nuclear Information System (INIS)

    Franiel, Tobias; Luedemann, Lutz; Taupitz, Matthias; Boehmer, Dirk; Beyersdorff, Dirk

    2009-01-01

    Purpose: To identify and quantify suitable pharmacokinetic MRI parameters for monitoring tissue changes after external beam intensity-modulated radiotherapy of prostate cancer. Material and methods: Six patients with biopsy-proven prostate cancer (initial PSA, 6.0-81.4 ng/ml) underwent MRI at 1.5 T using a combined endorectal/body phased-array coil and a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence (T1/T2*w; 1.65 s temporal resolution). MRI was performed before and immediately after radiotherapy, at 3 months and at 1 year. Perfusion, blood volume, mean transit time, delay, dispersion, interstitial volume, and extraction coefficient were calculated in prostate cancer and normal prostate for all four time points using a sequential 3-compartment model. Results: Prostate cancer and normal prostate tissue showed a statistically significant decrease in perfusion (p = 0.006, p = 0.001) and increase in extraction coefficient (p = 0.004, p 3 min, p = 0.028) and a smaller extraction coefficient (0.42 vs. 0.64, p = 0.028). Conclusions: Two pharmacokinetic parameters, perfusion and extraction coefficient, appear to be suitable candidates for monitoring the response to percutaneous intensity-modulated radiotherapy of prostate cancer.

  1. Functional imaging of murine hearts using accelerated self-gated UTE cine MRI

    NARCIS (Netherlands)

    Motaal, Abdallah G.; Noorman, Nils; de Graaf, Wolter L.; Hoerr, Verena; Florack, Luc M. J.; Nicolay, Klaas; Strijkers, Gustav J.

    2015-01-01

    We introduce a fast protocol for ultra-short echo time (UTE) Cine magnetic resonance imaging (MRI) of the beating murine heart. The sequence involves a self-gated UTE with golden-angle radial acquisition and compressed sensing reconstruction. The self-gated acquisition is performed asynchronously

  2. Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour acute hypoxia?

    International Nuclear Information System (INIS)

    Baudelet, Christine; Ansiaux, Reginald; Jordan, Benedicte F; Havaux, Xavier; Macq, Benoit; Gallez, Bernard

    2004-01-01

    T2*-weighted gradient-echo magnetic resonance imaging (T2*-weighted GRE MRI) was used to investigate spontaneous fluctuations in tumour vasculature non-invasively. FSa fibrosarcomas, implanted intramuscularly (i.m.) in the legs of mice, were imaged at 4.7 T, over a 30 min or 1 h sampling period. On a voxel-by-voxel basis, time courses of signal intensity were analysed using a power spectrum density (PSD) analysis to isolate voxels for which signal changes did not originate from Gaussian white noise or linear drift. Under baseline conditions, the tumours exhibited spontaneous signal fluctuations showing spatial and temporal heterogeneity over the tumour. Statistically significant fluctuations occurred at frequencies ranging from 1 cycle/3 min to 1 cycle/h. The fluctuations were independent of the scanner instabilities. Two categories of signal fluctuations were reported: (i) true fluctuations (TFV), i.e., sequential signal increase and decrease, and (ii) profound drop in signal intensity with no apparent signal recovery (SDV). No temporal correlation between tumour and contralateral muscle fluctuations was observed. Furthermore, treatments aimed at decreasing perfusion-limited hypoxia, such as carbogen combined with nicotinamide and flunarizine, decreased the incidence of tumour T2*-weighted GRE fluctuations. We also tracked dynamic changes in T2* using multiple GRE imaging. Fluctuations of T2* were observed; however, fluctuation maps using PSD analysis could not be generated reliably. An echo-time dependency of the signal fluctuations was observed, which is typical to physiological noise. Finally, at the end of T2*-weighted GRE MRI acquisition, a dynamic contrast-enhanced MRI was performed to characterize the microenvironment in which tumour signal fluctuations occurred in terms of vessel functionality, vascularity and microvascular permeability. Our data showed that TFV were predominantly located in regions with functional vessels, whereas SDV occurred in regions

  3. Involvement of corpus callosum in amyotrophic lateral sclerosis shown by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Zandijcke, M. van [Dept. of Neurology, Bruges (Belgium); Casselman, J. [Dept. of Medical Imaging, Bruges (Belgium)

    1995-05-01

    Abnormal high signal in the corticospinal tracts on MRI has been described in amyotrophic lateral sclerosis. We report a case with further high signal in fibres of the corpus callosum on proton density and T2-weighted spin-echo images, closely matching findings of earlier pathological reports. (orig.)

  4. Involvement of corpus callosum in amyotrophic lateral sclerosis shown by MRI

    International Nuclear Information System (INIS)

    Zandijcke, M. van; Casselman, J.

    1995-01-01

    Abnormal high signal in the corticospinal tracts on MRI has been described in amyotrophic lateral sclerosis. We report a case with further high signal in fibres of the corpus callosum on proton density and T2-weighted spin-echo images, closely matching findings of earlier pathological reports. (orig.)

  5. Preliminary experience with fetal MRI for evaluation of intracranial abnormalities

    International Nuclear Information System (INIS)

    Penev, L.; Georgieva-Kosarova, G.

    2015-01-01

    Full text: Modern MRI technologies allow the preparation of a multi-planar images as well as images showing the movement of the fetus for less than 1 sec. the methodology is particularly useful as a rendering intracranial lesions (at ventriculomegaly, lesions in the posterior cranial fossa, corpus callosum abnormalities, myelination, migration and sulcation) and in the body lesions of the fetus (diaphragmatic hernia, congenital cystic abnormalities, renal cystic lesions spinal anomalies) and the abdomen of the mother. We set a goal to prove the usefulness of MRI research in prenatal diagnosis of congenital malformations of the central nervous system. For a period of 24 months in City Clinic Hospital Sofia were studied 12 pregnant women and 13 fetuses in which there was doubt about intracranial fetal malformations. All studies were conducted as a supplementary diagnostic technique after ultrasound in the third trimester of pregnancy when the fetus is large enough and organogenesis is completed. MRI is held superconductive 3.0t magnet using single-shot fast-spin echo and half-Fourier acquisition turbo spin echo (HASTE) with a duration of under one minute scan, MRI study therefore does not require preparation of the mother. Does not require use of contrast. None reported harm to the fetus and the mother. Although ultrasound due to its low price and its wide accessibility as well as of its non-invasiveness and low time in some cases results were insufficient to determine condition and course of pregnancy. We believe that the MRI examination in the case of ambiguous results of the ultrasound has an important role to refine abnormalities prenatal and postnatal treatment planning

  6. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    International Nuclear Information System (INIS)

    Deli, Martin; Fritz, Jan; Mateiescu, Serban; Busch, Martin; Carrino, John A.; Becker, Jan; Garmer, Marietta; Grönemeyer, Dietrich

    2013-01-01

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 with gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 ± 9 min in the gadolinium-enhanced saline solution group and 22 ± 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.

  7. TU-H-206-03: Characterizing B1 Inhomogeneities in DCE MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gach, H [Washington University in St. Louis, St. Louis, MO (United States); Mason, N [University of Pittsburgh, Pittsburgh, PA (United States)

    2016-06-15

    Purpose: Dynamic Contrast Enhanced (DCE) MRI is a valuable technique for measuring perfusion and permeability characteristics of tumors. Exogenous contrast concentrations are calculated based on changes in T{sub 1} measured using fast 3D gradient echo (FLASH) sequences. However, the slab selective pulses used in 3D MRI may result in B{sub 1} inhomogeneities across the volume of interest that can lead to errors in T{sub 1} and thus the estimated gadolinium concentration. We compared three FLASH DCE sequences (GRE, TWIST, and VIBE) to determine their signal homogeneity across slices and the accuracy in calculating T{sub 1} using acquisitions with variable flip angles. Methods: The sequences were tested at 3 T on a Siemens mMR (VB20P) using a doped water phantom 3.75 g/L NiSO{sub 4} - 6H{sub 2}O + 5 g/L NaCl (T{sub 1} = 104 ms) and a 2% agar, 0.67% NaCl phantom (T{sub 1}= 1.71 s). 2D EPI B{sub 1} maps and inversion recovery T{sub 1}maps were acquired for ground truth. 3D MRI was acquired at different flip angles to generate a T{sub 1} map. Regions of interest were drawn to measure signal inside the phantoms as a function of slice position. The T{sub 1} for each slice ROI was fit to the FLASH steady-state model of magnetization. Results: Based on the data, GRE gave the most uniform signal homogeneity and T{sub 1} values in the middle slices of the 3D volume. The 3D VIBE sequence had the largest region of signal inhomogeneity compared to the 3D GRE and TWIST sequences. VIBE’s B{sub 1} inhomogeneity is inconsistent at low flip angles. However, VIBE resulted in more slices with T{sub 1} values similar to the ground truth. Conclusion: The central 1/3 of the slices yielded signals that result in T{sub 1} fits consistent with the ground truth. However, the remaining slices required some form of B{sub 1} inhomogeneity correction for quantitative DCE analysis. The research was supported in part by NIH NCI Grant R01CA159471.

  8. TU-H-206-03: Characterizing B1 Inhomogeneities in DCE MRI

    International Nuclear Information System (INIS)

    Gach, H; Mason, N

    2016-01-01

    Purpose: Dynamic Contrast Enhanced (DCE) MRI is a valuable technique for measuring perfusion and permeability characteristics of tumors. Exogenous contrast concentrations are calculated based on changes in T 1 measured using fast 3D gradient echo (FLASH) sequences. However, the slab selective pulses used in 3D MRI may result in B 1 inhomogeneities across the volume of interest that can lead to errors in T 1 and thus the estimated gadolinium concentration. We compared three FLASH DCE sequences (GRE, TWIST, and VIBE) to determine their signal homogeneity across slices and the accuracy in calculating T 1 using acquisitions with variable flip angles. Methods: The sequences were tested at 3 T on a Siemens mMR (VB20P) using a doped water phantom 3.75 g/L NiSO 4 - 6H 2 O + 5 g/L NaCl (T 1 = 104 ms) and a 2% agar, 0.67% NaCl phantom (T 1 = 1.71 s). 2D EPI B 1 maps and inversion recovery T 1 maps were acquired for ground truth. 3D MRI was acquired at different flip angles to generate a T 1 map. Regions of interest were drawn to measure signal inside the phantoms as a function of slice position. The T 1 for each slice ROI was fit to the FLASH steady-state model of magnetization. Results: Based on the data, GRE gave the most uniform signal homogeneity and T 1 values in the middle slices of the 3D volume. The 3D VIBE sequence had the largest region of signal inhomogeneity compared to the 3D GRE and TWIST sequences. VIBE’s B 1 inhomogeneity is inconsistent at low flip angles. However, VIBE resulted in more slices with T 1 values similar to the ground truth. Conclusion: The central 1/3 of the slices yielded signals that result in T 1 fits consistent with the ground truth. However, the remaining slices required some form of B 1 inhomogeneity correction for quantitative DCE analysis. The research was supported in part by NIH NCI Grant R01CA159471.

  9. Music-based magnetic resonance fingerprinting to improve patient comfort during MRI examinations.

    Science.gov (United States)

    Ma, Dan; Pierre, Eric Y; Jiang, Yun; Schluchter, Mark D; Setsompop, Kawin; Gulani, Vikas; Griswold, Mark A

    2016-06-01

    Unpleasant acoustic noise is a drawback of almost every MRI scan. Instead of reducing acoustic noise to improve patient comfort, we propose a technique for mitigating the noise problem by producing musical sounds directly from the switching magnetic fields while simultaneously quantifying multiple important tissue properties. MP3 music files were converted to arbitrary encoding gradients, which were then used with varying flip angles and repetition times in a two- and three-dimensional magnetic resonance fingerprinting (MRF) examination. This new acquisition method, named MRF-Music, was used to quantify T1 , T2 , and proton density maps simultaneously while providing pleasing sounds to the patients. MRF-Music scans improved patient comfort significantly during MRI examinations. The T1 and T2 values measured from phantom are in good agreement with those from the standard spin echo measurements. T1 and T2 values from the brain scan are also close to previously reported values. MRF-Music sequence provides significant improvement in patient comfort compared with the MRF scan and other fast imaging techniques such as echo planar imaging and turbo spin echo scans. It is also a fast and accurate quantitative method that quantifies multiple relaxation parameters simultaneously. Magn Reson Med 75:2303-2314, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. High-resolution MRI of the labyrinth. Optimization of scan parameters with 3D-FSE

    International Nuclear Information System (INIS)

    Sakata, Motomichi; Harada, Kuniaki; Shirase, Ryuji; Kumagai, Akiko; Ogasawara, Masashi

    2005-01-01

    The aim of our study was to optimize the parameters of high-resolution MRI of the labyrinth with a 3D fast spin-echo (3D-FSE) sequence. We investigated repetition time (TR), echo time (TE), Matrix, field of view (FOV), and coil selection in terms of CNR (contrast-to-noise ratio) and SNR (signal-to-noise ratio) by comparing axial images and/or three-dimensional images. The optimal 3D-FSE sequence parameters were as follows: 1.5 Tesla MR unit (Signa LX, GE Medical Systems), 3D-FSE sequence, dual 3-inch surface coil, acquisition time=12.08 min, TR=5000 msec, TE=300 msec, 3 number of excitations (NEX), FOV=12 cm, matrix=256 x 256, slice thickness=0.5 mm/0.0 sp, echo train=64, bandwidth=±31.5 kHz. High-resolution MRI of the labyrinth using the optimized 3D-FSE sequence parameters permits visualization of important anatomic details (such as scala tympani and scala vestibuli), making it possible to determine inner ear anomalies and the patency of cochlear turns. To obtain excellent heavily T2-weighted axial and three-dimensional images in the labyrinth, high CNR, SNR, and spatial resolution are significant factors at the present time. Furthermore, it is important not only to optimize the scan parameters of 3D-FSE but also to select an appropriate coil for high-resolution MRI of the labyrinth. (author)

  11. Visual Perceptual Echo Reflects Learning of Regularities in Rapid Luminance Sequences.

    Science.gov (United States)

    Chang, Acer Y-C; Schwartzman, David J; VanRullen, Rufin; Kanai, Ryota; Seth, Anil K

    2017-08-30

    A novel neural signature of active visual processing has recently been described in the form of the "perceptual echo", in which the cross-correlation between a sequence of randomly fluctuating luminance values and occipital electrophysiological signals exhibits a long-lasting periodic (∼100 ms cycle) reverberation of the input stimulus (VanRullen and Macdonald, 2012). As yet, however, the mechanisms underlying the perceptual echo and its function remain unknown. Reasoning that natural visual signals often contain temporally predictable, though nonperiodic features, we hypothesized that the perceptual echo may reflect a periodic process associated with regularity learning. To test this hypothesis, we presented subjects with successive repetitions of a rapid nonperiodic luminance sequence, and examined the effects on the perceptual echo, finding that echo amplitude linearly increased with the number of presentations of a given luminance sequence. These data suggest that the perceptual echo reflects a neural signature of regularity learning.Furthermore, when a set of repeated sequences was followed by a sequence with inverted luminance polarities, the echo amplitude decreased to the same level evoked by a novel stimulus sequence. Crucially, when the original stimulus sequence was re-presented, the echo amplitude returned to a level consistent with the number of presentations of this sequence, indicating that the visual system retained sequence-specific information, for many seconds, even in the presence of intervening visual input. Altogether, our results reveal a previously undiscovered regularity learning mechanism within the human visual system, reflected by the perceptual echo. SIGNIFICANCE STATEMENT How the brain encodes and learns fast-changing but nonperiodic visual input remains unknown, even though such visual input characterizes natural scenes. We investigated whether the phenomenon of "perceptual echo" might index such learning. The perceptual echo is a

  12. SU-D-207A-04: Use of Gradient Echo Plural Contrast Imaging (GEPCI) in MR-Guided Radiation Therapy: A Feasibility Study Targeting Brain Treatment

    International Nuclear Information System (INIS)

    Cai, B; Rao, Y; Tsien, C; Huang, J; Green, O; Mutic, S; Gach, H; Wen, J; Yablonskiy, D

    2016-01-01

    Purpose: To implement the Gradient Echo Plural Contrast Imaging(GEPCI) technique in MRI-simulation for radiation therapy and assess the feasibility of using GEPCI images with advanced inhomogeneity correction in MRI-guided radiotherapy for brain treatment. Methods: An optimized multigradient-echo GRE sequence (TR=50ms;TE1=4ms;delta-TE=4ms;flip angle=300,11 Echoes) was developed to generate both structural (T1w and T2*w) and functional MRIs (field and susceptibility maps) from a single acquisition. One healthy subject (Subject1) and one post-surgical brain cancer patient (Subject2) were scanned on a Philips Ingenia 1.5T MRI used for radiation therapy simulation. Another healthy subject (Subject3) was scanned on a 0.35T MRI-guided radiotherapy (MR-IGRT) system (ViewRay). A voxel spread function (VSF) was used to correct the B0 inhomogeneities caused by surgical cavities and edema for Subject2. GEPCI images and standard radiotherapy planning MRIs for this patient were compared focusing the delineation of radiotherapy target region. Results: GEPCI brain images were successfully derived from all three subjects with scan times of <7 minutes. The images derived for Subjects1&2 demonstrated that GEPCI can be applied and combined into radiotherapy MRI simulation. Despite low field, T1-weighted and R2* images were successfully reconstructed for Subject3 and were satisfactory for contour and target delineation. The R2* distribution of grey matter (center=12,FWHM=4.5) and white matter (center=14.6, FWHM=2) demonstrated the feasibility for tissue segmentation and quantification. The voxel spread function(VSF) corrected surgical site related inhomogeneities for Subject2. R2* and quantitative susceptibility map(QSM) images for Subject2 can be used to quantitatively assess the brain structure response to radiation over the treatment course. Conclusion: We implemented the GEPCI technique in MRI-simulation and in MR-IGRT system for radiation therapy. The images demonstrated that it

  13. Brain activation studies with PET and functional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, Yoshiharu [Fukui Medical Univ., Matsuoka (Japan). Biomedical Imaging Research Center; Sadato, Norihiro [Okazaki National Research Inst., Aichi (Japan). National Inst. for Physiological Sciences

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H{sub 2}{sup 15}O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H{sub 2}{sup 15}O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  14. Brain activation studies with PET and functional MRI

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Sadato, Norihiro

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H 2 15 O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H 2 15 O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  15. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners.

    Science.gov (United States)

    Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian

    2014-01-01

    We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this "Atlas-T1w-DUTE" approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the "silver standard"; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally.

  16. Utilizing the ECHO Model in the Veterans Health Affairs System: Guidelines for Setup, Operations and Preliminary Findings

    Directory of Open Access Journals (Sweden)

    Herschel Knapp

    2015-06-01

    Full Text Available Background: In 2011, the Veterans Health Administration (VHA consulted with the Project ECHO (Extension for Community Healthcare Outcomes team at the University of New Mexico, Albuquerque, to reproduce their successful model within the VHA. Methods: The VHA launched SCAN-ECHO (Specialty Care Access Network-Extension for Community Healthcare Outcomes, a multisite videoconferencing system to conduct live clinical consultations between specialists at a VHA Medical Center (hospital and primary care providers stationed at satellite VHA CBOCs (Community-Based Outpatient Clinic. Results: Analysis of the first three years rendered a mean attendee satisfaction of 89.53% and a consultation satisfaction score of 88.10%. About half of the SCAN-ECHO consultations resulted in patients receiving their treatment from their local primary care providers; the remaining half were referred to the VHA Medical Center when the treatment involved equipment or services not available at the CBOCs (e.g., MRI, surgery. Conclusion: This paper details the setup, operation logistics and preliminary findings, suggesting that SCAN-ECHO is a viable model for providing quality specialty clinical consultation service, prompter access to care, reduced commutes and continuing education. Additionally, the use of a secured Internet-based videoconferencing system that supports connectivity to multiple (mobile devices could expand the utilization of this service.

  17. Early signs of degenerative arthritis of the hip by MRI. Fruehe Zeichen der Hueftgelenkarthrose in der MRT

    Energy Technology Data Exchange (ETDEWEB)

    Bongartz, G.; Mueller-Miny, H.; Peters, P.E. (Muenster Univ. (Germany, F.R.). Inst. fuer Klinische Radiologie)

    1989-10-01

    The hips of 8 young volunteers were investigated with high resolution MRI. The purpose of this study was to establish an imaging protocol to visualize hyaline cartilage, synovial fluid, and subchondral bone with optimized contrast. Spin Echo (SE) and Gradient Echo (GE) sequences were compared. FISP with a flip angle of 70{sup 0} was superior to the other techniques. The same sequences were applied on 45 volunteers aged 65-93 years. Early signs of degenerative arthritis of the hip were demonstrated as thinning, variable signal intensities within the cartilage layer, and cartilage loss. MRI of the hip may be a useful tool for the detection of early degenerative cartilage damage which cannot be documented with conventional X-rays. (orig.).

  18. Cyclosporine-related reversible posterior leukoencephalopathy: MRI

    International Nuclear Information System (INIS)

    Jarosz, J.M.; Howlett, D.C.; Cox, T.C.S.; Bingham, J.B.

    1997-01-01

    Three patients aged 48, 11 and 40 years, two of whom were recent recipients of renal transplants and one of a bone marrow transplant, developed seizures, with cortical blindness in two cases. All were immunosuppressed with cyclosporine and were hypertensive at the onset of symptoms. MRI showed predominantly posterior signal changes in all three cases. The abnormalities were more conspicuous on fast FLAIR images than on conventional T2-weighted spin-echo images. (orig.). With 4 figs

  19. Detection of renal arteries with fast spin-echo magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tello, R.; Mitchell, P.J.; Witte, D.J.; Thomson, K.R. [University of Melbourne, Parkville, VIC (Australia). Department of Radiology

    1998-08-01

    With the increasing use of non-invasive imaging with MR and volumetric CT to evaluate renal arteries, the ability to accurately detect the number and state of native renal arteries becomes critical if conventional angiography is to be supplanted in these settings. The present study evaluated the utility of a fast spin-echo (FSE) T2-weighted sequence to detect the number and course of renal arteries and their ostia compared to conventional angiography. Ten patients underwent conventional catheter angiography either for renal artery stenosis evaluation or as potential renal donors. Each patient then had an MR study of the renal arteries and kidneys with FSE MR (TR = 4000 ms, TE = 102 ms, eight- echo train length, 5-mm-thick interleaved 128 phase encodes, superior and inferior saturation pulses, number of excitations (NEX) = 4, on a 1.5-T superconducting magnet). Images were reviewed by two `blinded` radiologists and renal arteries were counted and their ostia were evaluated. Results were compared with angiography and inter- and intra-observer statistics were calculated. All 10 patients underwent MR successfully, nine for renal artery stenosis (RAS) evaluation and one was a renal donor. A total of 24 renal arteries were imaged in 19 kidneys. Fast spin-echo MR is 95% accurate (95%CI: 88-100%) in detection of renal arteries, with no statistical difference between FSE MR and catheter angiography (McNemar P = 0.0). Inter- and intra-observer statistics demonstrate good-to-excellent agreement in renal artery detection (kappa: 0.63-0.90). In one case of RAS evaluation an incidental adrenal mass was detected as the aetiology of the patient`s hypertension. Fast spin-echo MR can be a useful adjunct as part of the imaging for renal arteries with MRI. Copyright (1998) Blackwell Science Pty Ltd 16 refs., 1 fig.

  20. Detection of renal arteries with fast spin-echo magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tello, R.; Mitchell, P.J.; Witte, D.J.; Thomson, K.R.

    1998-01-01

    With the increasing use of non-invasive imaging with MR and volumetric CT to evaluate renal arteries, the ability to accurately detect the number and state of native renal arteries becomes critical if conventional angiography is to be supplanted in these settings. The present study evaluated the utility of a fast spin-echo (FSE) T2-weighted sequence to detect the number and course of renal arteries and their ostia compared to conventional angiography. Ten patients underwent conventional catheter angiography either for renal artery stenosis evaluation or as potential renal donors. Each patient then had an MR study of the renal arteries and kidneys with FSE MR (TR = 4000 ms, TE = 102 ms, eight- echo train length, 5-mm-thick interleaved 128 phase encodes, superior and inferior saturation pulses, number of excitations (NEX) = 4, on a 1.5-T superconducting magnet. Images were reviewed by two 'blinded' radiologists and renal arteries were counted and their ostia were evaluated. Results were compared with angiography and inter- and intra-observer statistics were calculated. All 10 patients underwent MR successfully, nine for renal artery stenosis (RAS) evaluation and one was a renal donor. A total of 24 renal arteries were imaged in 19 kidneys. Fast spin-echo MR is 95% accurate (95%CI: 88-100%) in detection of renal arteries, with no statistical difference between FSE MR and catheter angiography (McNemar P = 0.0). Inter- and intra-observer statistics demonstrate good-to-excellent agreement in renal artery detection (kappa: 0.63-0.90). In one case of RAS evaluation an incidental adrenal mass was detected as the aetiology of the patient's hypertension. Fast spin-echo MR can be a useful adjunct as part of the imaging for renal arteries with MRI. Copyright (1998) Blackwell Science Pty Ltd

  1. MRI findings of central nervous system granulocytic sarcoma (chloroma)

    International Nuclear Information System (INIS)

    Lee, Chang Man; Kim, Myung Soon; Kim, Ik Soo; Cho, Kwan Soo

    1997-01-01

    To characterize MRI findings of central nervous system (CNS) granulocytic sarcoma (chloroma) and to analyse the points which differentiate it from other CNS tumors. We evaluated MRI in six patients with CNS granulocytic sarcoma proven by surgery or bone marrow biopsy (intracranical, one case and spine five cases). A 0.5T superconductive MR machine was used for diagnosis and, axial, coronal and sagittal T1- and T2-weighted spin echo images and Gd-DTPA enhanced T1-weighted images were obtained. We retrospectively analized the location, signal intensity, margin, contrast enhancement and homogeneity, and bony change around the tumor. MRI findings of CNS granulocytic sarcomas were as follows : one tumor was seen to be an extra-axial mass in the posterior fossa of the brain, four were epidural, and one was an epidural and presacral masses in the spine;tumor magins were lobulated and three were smooth. On T1-weighted images, all tumors were of isoignal intensity;on T2-weighted images, four were of isosignal intersity and two were of high signal intensity. Contrast enhancement was inhomogeneous in five of six cases. Bony change around the tumor was seen in two cases. On T1-weighted images, CNS granulocytic sarcomas (chloromas) were of isosignal intensity, relative to brain parenchyma or spinal cord;on T2-weighted images, they were of iso or high signal intensity, with relative contrast enhancement. These points could be useful in differentiating them from other CNS tumors

  2. Three-dimensional MRI of the glenoid labrum

    International Nuclear Information System (INIS)

    Loehr, S.P.; Pope, T.L. Jr.; Martin, D.F.; Link, K.M.; Monu, J.U.V.; Hunter, M.; Reboussin, D.

    1995-01-01

    The objective of this study was to assess the accuracy of three-dimensional (3D) magnetic resonance imaging (MRI) reformation in the evaluation of tears of the glenoid labrum complex (GLC). Fifty-five shoulders were evaluated by MRI using standard spin-echo sequences. Gradient-refocused-echo axial projections were used to assess the GLC on the two-dimensional (2D) studies. Three-dimensional Fourier transform multiplanar gradient-recalled imaging with a resolution of 0.7 mm was also performed in all patients. Independent analyses of the anterior and posterior labra were performed in a blinded manner for both the 2D and 3D studies by three experienced musculoskeletal radiologists. Observations of the imaging studies were compared with the videoarthroscopic findings. The appearance of the GLC was rated on a scale of 0 to 4 (0-2=normal, 3, 4=abnormal or torn). The diagnostic confidence was averaged from the three reader's scores. Anterior labral tears were effectively detected with sensitivities of 89% and 96% and specificities of 96% and 100% (P<0.0001) for the 2D and 3D studies, respectively. For posterior labral tears, the sensitivity and specificity of the 2D method were 47% and 98%, respectively. The sensitivity and specificity of the 3D volume sequence were 53% and 98%, respectively. The lower sensitivity of both imaging methods for detecting posterior labral tears may be influenced by the smaller number (n=5) of arthroscopically confirmed cases in our study and reflects the difficulty of visualizing the posteroinferior borders of the GLC with present MRI techniques. (orig.)

  3. Multi-site study of diffusion metric variability: effects of site, vendor, field strength, and echo time on regions-of-interest and histogram-bin analyses.

    Science.gov (United States)

    Helmer, K G; Chou, M-C; Preciado, R I; Gimi, B; Rollins, N K; Song, A; Turner, J; Mori, S

    2016-02-27

    It is now common for magnetic-resonance-imaging (MRI) based multi-site trials to include diffusion-weighted imaging (DWI) as part of the protocol. It is also common for these sites to possess MR scanners of different manufacturers, different software and hardware, and different software licenses. These differences mean that scanners may not be able to acquire data with the same number of gradient amplitude values and number of available gradient directions. Variability can also occur in achievable b-values and minimum echo times. The challenge of a multi-site study then, is to create a common protocol by understanding and then minimizing the effects of scanner variability and identifying reliable and accurate diffusion metrics. This study describes the effect of site, scanner vendor, field strength, and TE on two diffusion metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA) using two common analyses (region-of-interest and mean-bin value of whole brain histograms). The goal of the study was to identify sources of variability in diffusion-sensitized imaging and their influence on commonly reported metrics. The results demonstrate that the site, vendor, field strength, and echo time all contribute to variability in FA and MD, though to different extent. We conclude that characterization of the variability of DTI metrics due to site, vendor, field strength, and echo time is a worthwhile step in the construction of multi-center trials.

  4. Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain.

    Science.gov (United States)

    Lin, Fa-Hsuan; Tsai, Shang-Yueh; Otazo, Ricardo; Caprihan, Arvind; Wald, Lawrence L; Belliveau, John W; Posse, Stefan

    2007-02-01

    Magnetic resonance spectroscopic imaging (MRSI) provides spatially resolved metabolite information that is invaluable for both neuroscience studies and clinical applications. However, lengthy data acquisition times, which are a result of time-consuming phase encoding, represent a major challenge for MRSI. Fast MRSI pulse sequences that use echo-planar readout gradients, such as proton echo-planar spectroscopic imaging (PEPSI), are capable of fast spectral-spatial encoding and thus enable acceleration of image acquisition times. Combining PEPSI with recent advances in parallel MRI utilizing RF coil arrays can further accelerate MRSI data acquisition. Here we investigate the feasibility of ultrafast spectroscopic imaging at high field (3T and 4T) by combining PEPSI with sensitivity-encoded (SENSE) MRI using eight-channel head coil arrays. We show that the acquisition of single-average SENSE-PEPSI data at a short TE (15 ms) can be accelerated to 32 s or less, depending on the field strength, to obtain metabolic images of choline (Cho), creatine (Cre), N-acetyl-aspartate (NAA), and J-coupled metabolites (e.g., glutamate (Glu) and inositol (Ino)) with acceptable spectral quality and localization. The experimentally measured reductions in signal-to-noise ratio (SNR) and Cramer-Rao lower bounds (CRLBs) of metabolite resonances were well explained by both the g-factor and reduced measurement times. Thus, this technology is a promising means of reducing the scan times of 3D acquisitions and time-resolved 2D measurements. Copyright (c) 2007 Wiley-Liss, Inc.

  5. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    International Nuclear Information System (INIS)

    Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-01-01

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  6. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jin Ho; Choi, Yong, E-mail: ychoi.image@gmail.com; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun [Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742 (Korea, Republic of); Oh, Chang Hyun; Park, Hyun-wook [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Kyung Min; Kim, Jong Guk [Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul 139-709 (Korea, Republic of)

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  7. Classification of radar echoes using fractal geometry

    International Nuclear Information System (INIS)

    Azzaz, Nafissa; Haddad, Boualem

    2017-01-01

    Highlights: • Implementation of two concepts of fractal geometry to classify two types of meteorological radar echoes. • A new approach, called a multi-scale fractal dimension is used for classification between fixed echoes and rain echoes. • An Automatic identification system of meteorological radar echoes was proposed using fractal geometry. - Abstract: This paper deals with the discrimination between the precipitation echoes and the ground echoes in meteorological radar images using fractal geometry. This study aims to improve the measurement of precipitations by weather radars. For this, we considered three radar sites: Bordeaux (France), Dakar (Senegal) and Me lbourne (USA). We showed that the fractal dimension based on contourlet and the fractal lacunarity are pertinent to discriminate between ground and precipitation echoes. We also demonstrated that the ground echoes have a multifractal structure but the precipitations are more homogeneous than ground echoes whatever the prevailing climate. Thereby, we developed an automatic classification system of radar using a graphic interface. This interface, based on the fractal geometry makes possible the identification of radar echoes type in real time. This system can be inserted in weather radar for the improvement of precipitation estimations.

  8. MRI of the hand and wrist joint of climbers. Imaging of lesions and overstrain injury

    International Nuclear Information System (INIS)

    Heuck, A.; Hochholzer, T.; Keinath, C.

    1992-01-01

    The hands and wrists of 20 top-level rock climbers with sports injuries and overstress abnormalities were compared with the hands and wrists of 10 normal volunteers. They were all studied with MR imaging at 1.5 T. The imaging protocol included spin-echo and gradient-echo sequences with 1- to 5-mm-thick contiguous slices in the axial, coronal and/or sagittal planes, depending on the location and nature of the suspected injury. Typical hand and wrist lesions depicted with MRI in climbers consisted of annular ligament tears, lesions of the flexor tendons, tenosynovitis, ganglion cysts, joint effusion and functional carpal tunnel syndrome. The MRI findings on these abnormalities were compared to normal findings and those with ultrasound and plain films. In addition, hypertrophic changes in the muscles, tendons, ligaments, and bones of top-level rock climbers were assessed morphometrically. MRI proved to be the superior imaging modality in the diagnosis of sports injuries and overstress abnormalities of the hand the wrist in rock-climbing athletes. (orig.) [de

  9. Bathymetry and acoustic echo character lower continental rise study area, E-N2

    International Nuclear Information System (INIS)

    Laine, E.P.; Friedrich, N.E.

    1985-01-01

    A bathymetric map of area E-N2 was constructed using navigational and bathymetric data supplied by the Defense Mapping Agency and navigational and bathymetric data obtained during Endeavor cruises. E-N2 contains two dominant echo-types: an area of submarine canyons, and an area of levee deposits and debris flow deposits. The canyon system is complex, characterized by many channels and inter-channel levee deposits. The second echo province, characterized by levee and debris flow deposits, is a region suitable for the proposed operations (low-level radioactive waste disposal). Given a favorable analysis of data collected on cruise EN-084, attention will be focused at shallower depths to determine slope stability and other seabed conditions. 4 figures

  10. Gaussian-approximation formalism for evaluating decay of NMR spin echoes

    International Nuclear Information System (INIS)

    Recchia, C.H.; Gorny, K.; Pennington, C.H.

    1996-01-01

    We present a formalism for evaluating the amplitude of the NMR spin echo and stimulated echo as a function of pulse spacings, for situations in which the nuclear spins experience an effective longitudinal magnetic field h z (t) resulting from an arbitrary number of independent sources, each characterized by its own arbitrary time correlation function. The distribution of accumulated phase angles for the ensemble of nuclear spins at the time of the echo is approximated as a Gaussian. The development of the formalism is motivated by the need to understand the transverse relaxation of 89 Y in YBa 2 Cu 3 O 7 , in which the 89 Y experiences 63,65 Cu dipolar fields which fluctuate due to 63,65 Cu T 1 processes. The formalism is applied successfully to this example, and to the case of nuclei diffusing in a spatially varying magnetic field. Then we examine a situation in which the approximation fails emdash the classic problem of chemical exchange in dimethylformamide, where the methyl protons experience a chemical shift which fluctuates between two discrete values. In this case the Gaussian approximation yields a monotonic decay of the echo amplitude with increasing pulse spacing, while the exact solution yields distinct open-quote open-quote beats close-quote close-quote in the echo height, which we confirm experimentally. In light of this final example the limits of validity of the approximation are discussed. copyright 1996 The American Physical Society

  11. Secretin-stimulated MRI characterization of pancreatic morphology and function in patients with chronic pancreatitis.

    Science.gov (United States)

    Madzak, Adnan; Olesen, Søren Schou; Haldorsen, Ingfrid Salvesen; Drewes, Asbjørn Mohr; Frøkjær, Jens Brøndum

    Chronic pancreatitis (CP) is characterized by abnormal pancreatic morphology and impaired endocrine and exocrine function. However, little is known about the relationship between pancreatic morphology and function, and also the association with the etiology and clinical manifestations of CP. The aim was to explore pancreatic morphology and function with advanced MRI in patients with CP and healthy controls (HC) METHODS: Eighty-two patients with CP and 22 HC were enrolled in the study. Morphological imaging parameters included pancreatic main duct diameter, gland volume, fat signal fraction and apparent diffusion coefficient (ADC) values. Functional secretin-stimulated MRI (s-MRI) parameters included pancreatic secretion (bowel fluid volume) and changes in pancreatic ADC value before and after secretin stimulation. Patients were classified according to the modified Cambridge and M-ANNHEIM classification system and fecal elastase was collected. All imaging parameters differentiated CP patients from HC; however, correlations between morphological and functional parameters in CP were weak. Patients with alcoholic and non-alcoholic etiology had comparable s-MRI findings. Fecal elastase was positively correlated to pancreatic gland volume (r = 0.68, P = 0.0016) and negatively correlated to Cambridge classification (r = -0.35, P pancreatic gland volume was significantly decreased in the severe stages of CP (P = 0.001). S-MRI provides detailed information about pancreatic morphology and function and represents a promising non-invasive imaging method to characterize pancreatic pathophysiology and may enable monitoring of disease progression in patients with CP. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  12. MRI diagnosis of posterior fossa tumors

    International Nuclear Information System (INIS)

    Yamashita, Yasuyuki; Takahashi, Mutsumasa; Sakamoto, Yuuji; Kojima, Ryutarou; Bussaka, Hiromasa; Korogi, Yukunori

    1988-01-01

    Magnetic resonance images (MRI) of 58 patients with posterior fossa tumors were compared with computed tomography (CT). Spin echo (SE) technique and inversion recovery (IR) technique were obtained using 0.22 tesla resistive magnetic resonance unit. MRI was superior to CT in detecting the lesions and showing internal archtecture, hemorrhage, edema of the tumor and displacement of the normal brain. CT was superior to MRI in demonstrating calcification. MRI and CT were comparable in detecting erosions of the skull base, while MRI was superior to CT in showing erosions of the clivus. Most tumors showed hypointensity on T1 weighted images and hyperintensity on T2 weighted images. Meningioma showed equal or almost equal intensity to cerebral gray matter on both SE images. The boundary of intra-axial tumors was unclear in many cases without contrast enhancement using Gd-DTPA, while most extra-axial tumors showed clear margin surrounded by a thin band (rim). In 81.8 % of acoustic neurinomas, signal void rims were demonstrated on both SE images, and they were considered to be vessels around the tumor. The rims of meningioma, on the other hand, were hypointense on T1 weighted images and hyperintense on T2 weighted images. They were considered to be cerebrospinal fluid or capsule around the tumor. It has been concluded that MRI is the most important technique for diagnosis of posterior fossa tumors. (author)

  13. MRI of the liver with the new contrast medium Gd-BOPTA

    International Nuclear Information System (INIS)

    Vogl, T.J.; Pegios, W.; Balzer, J.; Lissner, J.; Pirovano, G.

    1992-01-01

    A phase 1 study on 8 normals has been carried out to determine the effectiveness and safety during MRI of a new hepatobiliary contrast medium Gd-BOPTA for causing enhancement of the upper abdominal organs. Gradient echo sequences (flash), T 1 and T 2 -weighted spin echo sequences and turbo-flash sequences were used. The contrast medium was given as a single infusion in various concentrations (0.005, 0.05, 0.1 and 0.2 mmol/kg body weight). Optimal contrast of liver parenchyma was obtained with a dose of 0.05-0.1 mmol/kg body weight, resulting in contrast increase of 149.1% during gradient echo sequences and 107.8% during T 1 spin echo sequences. In general, the increased contrast lasted for about two hours. Because of the biliary and renal excretion there was an enormous increase in signal intensity of the bile ducts and a significant increase in the kidneys and ureters. The results of the first in-vivo-trial of Gd-BOPTA encourages the performance of further clinical studies of this new hepatobiliary contrast medium. (orig.) [de

  14. Short echo time, fast gradient-echo imaging

    International Nuclear Information System (INIS)

    Haacke, E.M.; Lenz, G.W.

    1987-01-01

    Present fast-gradient-echoes schemes can acquire volume data rapidly and are flexible in T1 or T1/T2 contrast behavior. However, sequences used to date employ echo time (TE) values of about 15 ms +- 5 and, because of in vivo field inhomogeneities (short T2), they suffer badly from signal loss near sinuses and tissue boundaries. The authors implemented sequences with TE = 4-6 ms and found significant improvement in image quality, especially at high fields. Examples with long TEs vs. short TEs are given in the knee, spine, head, and orbits. Further advantages include (1) faster repetition times (15 ms), (2) higher-quality spin-density or T1-weighted images, and (3) reduction of blood motion artifacts

  15. Importance of MRI in the diagnosis and treatment of rhabdomyolysis

    International Nuclear Information System (INIS)

    Moratalla, Monica Ballesta; Braun, Petra; Fornas, Guillermina Montoliu

    2008-01-01

    Background: Rhabdomyolysis is a common disorder resulting from a large variety of causes. We describe the MRI features and their importance for diagnosis and treatment. Patients and methods: Between 2003 and 2006, four male patients (age range: 25-33 years) with rhabdomyolysis were studied via 1.5 T MRI (GE, Siemens). In all the patients, T1- and T2-weighted sequences with and without fat suppression, short tau inversion recovery (STIR) and gradient-echo sequences were obtained in axial, coronal and sagittal planes. In one patient, contrast material was given. Results: Two patients presented rhabdomyolysis due to drug abuse, one due to intense exercise and the last one due to long unconsciousness with compression of the paravertebral musculature. Two patients had acute kidney failure. The affected muscles showed an increased signal intensity on T2-weighted and STIR sequences and decreased on T1-weighted sequences. In one patient, intramuscular hemorrhage was observed on T1-weighted and gradient-echo sequences. In the patient with kidney failure, a globular swelling of the kidney with alteration of the corticomedullary differentiation on T2-weighted sequences with fat saturation and hypointensity of the renal medulla on T1-weighted contrast enhanced images was found. Discussion: Immediate recognition of rhabdomyolysis is important to prevent late complications. MRI is the method of choice to evaluate the distribution and extension of the affected muscles, especially when fasciotomy is considered for treatment. Even though the MRI findings are non-specific, the sensitivity in the detection of muscle involvement is higher than CT or US

  16. Importance of MRI in the diagnosis and treatment of rhabdomyolysis

    Energy Technology Data Exchange (ETDEWEB)

    Moratalla, Monica Ballesta [Department of Radiology, La Fe Hospital, Avenida Campanar, 21, 46009 Valencia (Spain)], E-mail: monica_ballesta@hotmail.com; Braun, Petra; Fornas, Guillermina Montoliu [Department of Radiology, La Fe Hospital, Avenida Campanar, 21, 46009 Valencia (Spain)

    2008-02-15

    Background: Rhabdomyolysis is a common disorder resulting from a large variety of causes. We describe the MRI features and their importance for diagnosis and treatment. Patients and methods: Between 2003 and 2006, four male patients (age range: 25-33 years) with rhabdomyolysis were studied via 1.5 T MRI (GE, Siemens). In all the patients, T1- and T2-weighted sequences with and without fat suppression, short tau inversion recovery (STIR) and gradient-echo sequences were obtained in axial, coronal and sagittal planes. In one patient, contrast material was given. Results: Two patients presented rhabdomyolysis due to drug abuse, one due to intense exercise and the last one due to long unconsciousness with compression of the paravertebral musculature. Two patients had acute kidney failure. The affected muscles showed an increased signal intensity on T2-weighted and STIR sequences and decreased on T1-weighted sequences. In one patient, intramuscular hemorrhage was observed on T1-weighted and gradient-echo sequences. In the patient with kidney failure, a globular swelling of the kidney with alteration of the corticomedullary differentiation on T2-weighted sequences with fat saturation and hypointensity of the renal medulla on T1-weighted contrast enhanced images was found. Discussion: Immediate recognition of rhabdomyolysis is important to prevent late complications. MRI is the method of choice to evaluate the distribution and extension of the affected muscles, especially when fasciotomy is considered for treatment. Even though the MRI findings are non-specific, the sensitivity in the detection of muscle involvement is higher than CT or US.

  17. Longitudinal collective echoes in coasting particle beams

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Khateeb

    2003-01-01

    Full Text Available Longitudinal ballistic and collective beam echoes with diffusion effects are investigated theoretically. In the presence of the space-charge impedance, the collective echo amplitude is obtained as a closed form expression. In contrast to the ballistic case, the collective echo amplitude consists of one maximum at time t_{echo}. The echo amplitude grows up and damps down with a rate proportional to the Landau damping rate of space-charge waves. The effect of weak diffusion is found to modify the ballistic and the collective echo amplitudes in the same manner. This effect of diffusion was confirmed using a “noiseless,” grid-based simulation code. As a first application the amount of numerical diffusion in our simulation code was determined using the echo effect.

  18. A 3D T1-weighted gradient-echo sequence for routine use in 3D radiosurgical treatment planning of brain metastases: first clinical results

    International Nuclear Information System (INIS)

    Hawighorst, H.; Schad, L.R.; Gademann, G.; Knopp, M.V.; Wenz, F.; Kaick, G. van

    1995-01-01

    The authors report on a 3D sequence for MRI of the brain and its application in radiosurgical treatment planning of 35 brain metastases. The measuring sequence, called magnetization - prepared rapid gradient echo (MPRAGE), was compared with 2D T1-weighted spin-echo (SE) sequences following intravenous contrast-medium application in 19 patients with brain metastases. The average diameter of all lesions was similar in both sequences, with 16.8 and 17.0 mm for SE and MPRAGE, respectively. Target point definition was equal in 29 metastases, and in 6 cases superior on MPRAGE, due to better gray-white matter contrast and increased contrast enhancement. In cases of bleeding metastases there was improved depiction of internal structures in 3D MRI. Postprocessing of 3D MPRAGE data created multiplanar reconstruction along any chosen plane with isotropic spatial resolution, which helped to improve radiosurgical isodose distribution in 4 cases when compared to 2D SE. However, sensitivity of 3D MPRAGE to detect small lesions (< 3 mm) was decreased in one patient with more than 50 metastases. We conclude that 3D gradient-echo (GE) imaging might be of great value for radiosurgical treatment planning, but does not replace 2D SE with its current parameters. (orig.)

  19. T2 black lesions on routine knee MRI: differential considerations

    International Nuclear Information System (INIS)

    Wadhwa, Vibhor; Cho, Gina; Moore, Daniel; Pezeshk, Parham; Coyner, Katherine; Chhabra, Avneesh

    2016-01-01

    The majority of abnormal findings or lesions on T2-weighted fast spin-echo (FSE) magnetic resonance imaging (MRI) are hyperintense due to increased perfusion or fluid content, such as infections, tumours or synovitis. Hypointense lesions on T2-weighted images (both fat-suppressed and non-fat-suppressed) are less common and can sometimes be overlooked. Such lesions have limited differential diagnostic possibilities, and include vacuum phenomenon, loose body, tenosynovial giant cell tumour, rheumatoid arthritis, haemochromatosis, gout, amyloid, chondrocalcinosis, hydroxyapetite deposition disease, lipoma arborescens, arthrofibrosis and iatrogenic lesions. These lesions often show characteristic appearances and predilections in the knee. In this article, the authors describe the MRI features of hypointense T2 lesions on routine knee MRI and outline a systematic diagnostic approach towards their evaluation. (orig.)

  20. Hibernoma: MRI features in eight consecutive cases

    International Nuclear Information System (INIS)

    Lee, J.C.; Gupta, A.; Saifuddin, A.; Flanagan, A.; Skinner, J.A.; Briggs, T.W.R.; Cannon, S.R.

    2006-01-01

    Aim: To describe the preoperative magnetic resonance imaging findings of eight histologically-proven cases of hibernoma. Materials and methods: The site, size, and signal characteristics of eight consecutive hibernomas were retrospectively assessed on T1-weighted spin-echo and short T1 inversion recovery (STIR)/fat-saturated T2-weighted fast spin echo magnetic resonance images. Four patients also had gadolinium-enhanced fat-saturated T1-weighted spin echo imaging. Patient age and sex, and duration of symptoms were recorded. Results: Three female and five male patients with an average age 36 years (range 16-53 years) were included. Seven lesions occurred in the thigh, four in the anterior compartment and three in the posterior compartment. One lesion occurred superficial to the scapula. All cases demonstrated common magnetic resonance imaging findings of a well-defined, heterogeneous mass, slightly or clearly hypo-intense to subcutaneous fat on T1-weighted spin-echo images, with prominent thin low signal bands throughout the tumour. The lesions failed to fully suppress on STIR or fat-saturated T2-weighted images. Only one of the four contrast-enhanced studies demonstrated increased vascularity in the tumour. Conclusion: The MRI findings of a lesion that is diffusely slightly hypointense to surrounding subcutaneous fat, should prompt the operator to consider hibernoma in the differential diagnosis

  1. Functional imaging of murine hearts using accelerated self-gated UTE cine MRI.

    Science.gov (United States)

    Motaal, Abdallah G; Noorman, Nils; de Graaf, Wolter L; Hoerr, Verena; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2015-01-01

    We introduce a fast protocol for ultra-short echo time (UTE) Cine magnetic resonance imaging (MRI) of the beating murine heart. The sequence involves a self-gated UTE with golden-angle radial acquisition and compressed sensing reconstruction. The self-gated acquisition is performed asynchronously with the heartbeat, resulting in a randomly undersampled kt-space that facilitates compressed sensing reconstruction. The sequence was tested in 4 healthy rats and 4 rats with chronic myocardial infarction, approximately 2 months after surgery. As a control, a non-accelerated self-gated multi-slice FLASH sequence with an echo time (TE) of 2.76 ms, 4.5 signal averages, a matrix of 192 × 192, and an acquisition time of 2 min 34 s per slice was used to obtain Cine MRI with 15 frames per heartbeat. Non-accelerated UTE MRI was performed with TE = 0.29 ms, a reconstruction matrix of 192 × 192, and an acquisition time of 3 min 47 s per slice for 3.5 averages. Accelerated imaging with 2×, 4× and 5× undersampled kt-space data was performed with 1 min, 30 and 15 s acquisitions, respectively. UTE Cine images up to 5× undersampled kt-space data could be successfully reconstructed using a compressed sensing algorithm. In contrast to the FLASH Cine images, flow artifacts in the UTE images were nearly absent due to the short echo time, simplifying segmentation of the left ventricular (LV) lumen. LV functional parameters derived from the control and the accelerated Cine movies were statistically identical.

  2. Spatial Distortion in MRI-Guided Stereotactic Procedures: Evaluation in 1.5-, 3- and 7-Tesla MRI Scanners.

    Science.gov (United States)

    Neumann, Jan-Oliver; Giese, Henrik; Biller, Armin; Nagel, Armin M; Kiening, Karl

    2015-01-01

    Magnetic resonance imaging (MRI) is replacing computed tomography (CT) as the main imaging modality for stereotactic transformations. MRI is prone to spatial distortion artifacts, which can lead to inaccuracy in stereotactic procedures. Modern MRI systems provide distortion correction algorithms that may ameliorate this problem. This study investigates the different options of distortion correction using standard 1.5-, 3- and 7-tesla MRI scanners. A phantom was mounted on a stereotactic frame. One CT scan and three MRI scans were performed. At all three field strengths, two 3-dimensional sequences, volumetric interpolated breath-hold examination (VIBE) and magnetization-prepared rapid acquisition with gradient echo, were acquired, and automatic distortion correction was performed. Global stereotactic transformation of all 13 datasets was performed and two stereotactic planning workflows (MRI only vs. CT/MR image fusion) were subsequently analysed. Distortion correction on the 1.5- and 3-tesla scanners caused a considerable reduction in positional error. The effect was more pronounced when using the VIBE sequences. By using co-registration (CT/MR image fusion), even a lower positional error could be obtained. In ultra-high-field (7 T) MR imaging, distortion correction introduced even higher errors. However, the accuracy of non-corrected 7-tesla sequences was comparable to CT/MR image fusion 3-tesla imaging. MRI distortion correction algorithms can reduce positional errors by up to 60%. For stereotactic applications of utmost precision, we recommend a co-registration to an additional CT dataset. © 2015 S. Karger AG, Basel.

  3. Simultaneous EEG–fMRI: evaluating the effect of the cabling configuration on the gradient artefact

    International Nuclear Information System (INIS)

    Chowdhury, M E H; Mullinger, Karen J; Bowtell, Richard

    2015-01-01

    EEG recordings made in combined EEG–fMRI studies are corrupted by gradient artefacts (GAs) resulting from the interaction of the EEG system with the time-varying magnetic field gradients used in MRI. The dominant contribution to the GA arises from interaction with the leads of the EEG cap and the human head, but artefacts are also produced in the cables used to connect the EEG cap to the amplifier. The aim of this study is to measure the effects of the connecting cable configuration on the characteristics of the GA. We measured the GA produced on two different cable configurations (a ribbon cable and a cable consisting of wires that are twisted together to form a cylindrical bundle) by gradient pulses applied on three orthogonal axes and also characterized the effect of each cable configuration on the GA generated by a multi-slice echo planar imaging sequence, as employed in typical EEG–fMRI studies. The results demonstrate that the cabling that connects the EEG cap to the amplifier can make a significant contribution to the GA recorded during EEG–fMRI studies. In particular, we demonstrate that the GA generated by a ribbon cable is larger than that produced using a twisted cable arrangement and that changes in the GA resulting from variation in the cable position are also greater for the ribbon cable. (note)

  4. Simultaneous EEG-fMRI: evaluating the effect of the cabling configuration on the gradient artefact

    Science.gov (United States)

    Chowdhury, M. E. H.; Mullinger, Karen J.; Bowtell, Richard

    2015-06-01

    EEG recordings made in combined EEG-fMRI studies are corrupted by gradient artefacts (GAs) resulting from the interaction of the EEG system with the time-varying magnetic field gradients used in MRI. The dominant contribution to the GA arises from interaction with the leads of the EEG cap and the human head, but artefacts are also produced in the cables used to connect the EEG cap to the amplifier. The aim of this study is to measure the effects of the connecting cable configuration on the characteristics of the GA. We measured the GA produced on two different cable configurations (a ribbon cable and a cable consisting of wires that are twisted together to form a cylindrical bundle) by gradient pulses applied on three orthogonal axes and also characterized the effect of each cable configuration on the GA generated by a multi-slice echo planar imaging sequence, as employed in typical EEG-fMRI studies. The results demonstrate that the cabling that connects the EEG cap to the amplifier can make a significant contribution to the GA recorded during EEG-fMRI studies. In particular, we demonstrate that the GA generated by a ribbon cable is larger than that produced using a twisted cable arrangement and that changes in the GA resulting from variation in the cable position are also greater for the ribbon cable.

  5. Differential diagnosis of pituitary adenomas and Rathke's cleft cysts by diffusion-weighted MRI using single-shot fast spin echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Takumi; Izumiyama, Hitoshi; Fukuda, Ataru; Tanioka, Daisuke; Kunii, Norihiko; Komatsu, Daisuke; Fujita, Shogo; Ukisu, Ryutaro; Moritani, Toshio [Showa Univ., Tokyo (Japan). School of Medicine

    2002-09-01

    The purpose of the present study was to prospectively evaluate the diagnostic ability of diffusion-weighted magnetic resonance imaging (DWI) using single-shot fast spin echo (SSFSE) technique to discriminate pituitary adenomas from Rathke's cleft cysts. DWIs were obtained from 40 patients with pathologically proven pituitary macroadenomas and 15 patients with proven Rathke's cleft cysts. Pituitary adenomas were divided into 27 cases with solid components alone, five with non-hemorrhagic large cysts, and eight with intratumoral hemorrhage. On SSFSE DWI, solid components of pituitary adenomas revealed iso or slightly increased intensity and intratumoral hemorrhage showed higher intensity than normal brain parenchyma, whereas Rathke's cleft cysts and intratumoral cysts demonstrated very low intensity. SSFSE DWI did not display the susceptibility artifacts that are seen close to the skull base and sinonasal cavities on echo planar diffusion imaging. On the basis of our preliminary findings, DWI may enable us to differentiate pituitary adenomas with only solid components and hemorrhagic pituitary adenomas appearing hyperintense on T1-weighted images from Rathke's cleft cysts without administration of gadolinium-DTPA. SSFSE DWI appears to be a useful technique for characterizing pituitary diseases without the susceptibility artifacts. Our study is the first report to demonstrate the identification of pituitary disorders on SSFSE DWI. (author)

  6. Dynamic contrast-enhanced MRI in patients with luminal Crohn's disease

    International Nuclear Information System (INIS)

    Ziech, M.L.W.; Lavini, C.; Caan, M.W.A.; Nio, C.Y.; Stokkers, P.C.F.; Bipat, S.; Ponsioen, C.Y.; Nederveen, A.J.; Stoker, J.

    2012-01-01

    Objectives: To prospectively assess dynamic contrast-enhanced (DCE-)MRI as compared to conventional sequences in patients with luminal Crohn's disease. Methods: Patients with Crohn's disease undergoing MRI and ileocolonoscopy within 1 month had DCE-MRI (3T) during intravenous contrast injection of gadobutrol, single shot fast spin echo sequence and 3D T1-weighted spoiled gradient echo sequence, a dynamic coronal 3D T1-weighted fast spoiled gradient were performed before and after gadobutrol. Maximum enhancement (ME) and initial slope of increase (ISI) were calculated for four colon segments (ascending colon + coecum, transverse colon, descending colon + sigmoid, rectum) and (neo)terminal ileum. C-reactive protein (CRP), Crohn's disease activity index (CDAI), per patient and per segment Crohn's disease endoscopic index of severity (CDEIS) and disease duration were determined. Mean values of the (DCE-)MRI parameters in each segment from each patient were compared between four disease activity groups (normal mucosa, non-ulcerative lesions, mild ulcerative and severe ulcerative disease) with Mann–Whitney test with Bonferroni adjustment. Spearman correlation coefficients were calculated for continuous variables. Results: Thirty-three patients were included (mean age 37 years; 23 females, median CDEIS 4.4). ME and ISI correlated weakly with segmental CDEIS (r = 0.485 and r = 0.206) and ME per patient correlated moderately with CDEIS (r = 0.551). ME was significantly higher in segments with mild (0.378) or severe (0.388) ulcerative disease compared to normal mucosa (0.304) (p < 0.001). No ulcerations were identified at conventional sequences. ME correlated with disease duration in diseased segments (r = 0.492), not with CDAI and CRP. Conclusions: DCE-MRI can be used as a method for detecting Crohn's disease ulcerative lesions.

  7. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    International Nuclear Information System (INIS)

    Chiriac, L.B.; Trandafir, D.L.; Turcu, R.V.F.; Todea, M.; Simon, S.

    2016-01-01

    Highlights: • Dysprosium containing silica microparticles obtained by freeze and spray drying. • Higher structural units interconnection achieved in freeze vs. spray dried samples. • Dy occurance on the outermost layer of the microparticles evidenced by XPS. • Enhanced MRI contrast observed for freeze dried samples with 5% mol Dy_2O_3. - Abstract: The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, "2"9Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T_1 and RARE-T_2 protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T_2-weighted MRI contrast properties.

  8. A rabbit model of atherosclerosis at carotid artery: MRI visualization and histopathological characterization

    International Nuclear Information System (INIS)

    Ma, Zhan-Long; Teng, Gao-Jun; Chen, Jun; Zhang, Hong-Ying; Cao, Ai-Hong; Ni, Yicheng

    2008-01-01

    To induce a rabbit model of atherosclerosis at carotid artery, to visualize the lesion evolution with magnetic resonance imaging (MRI), and to characterize the lesion types by histopathology. Atherosclerosis at the right common carotid artery (RCCA) was induced in 23 rabbits by high-lipid diet following balloon catheter injury to the endothelium. The rabbits were examined in vivo with a 1.5-T MRI and randomly divided into three groups of 6 weeks (n=6), 12 weeks (n=8) and 15 weeks (n=9) for postmortem histopathology. The lesions on both MRI and histology were categorized according to the American Heart Association (AHA) classifications of atherosclerosis. Type I and type II of atherosclerotic changes were detected at week 6, i.e., nearly normal signal intensity (SI) of the injured RCCA wall without stenosis on MRI, but with subendothelial inflammatory infiltration and proliferation of smooth muscle cells on histopathology. At week 12, 75.0% and 62.5% of type III changes were encountered on MRI and histopathology respectively with thicker injured RCCA wall of increased SI on T 1 -weighted and proton density (PD)-weighted MRI and microscopically a higher degree of plaque formation. At week 15, carotid atherosclerosis became more advanced, i.e., type IV and type V in 55.6% and 22.2% of the lesions with MRI and 55.6% and 33.3% of the lesions with histopathology, respectively. Statistical analysis revealed a significant agreement (p<0.05) between the MRI and histological findings for lesion classification (r=0.96). A rabbit model of carotid artery atherosclerosis has been successfully induced and noninvasively visualized. The atherosclerotic plaque formation evolved from type I to type V with time, which could be monitored with 1.5-T MRI and confirmed with histomorphology. This experimental setting can be applied in preclinical research on atherosclerosis. (orig.)

  9. Quantitative analysis of pulmonary perfusion using time-resolved parallel 3D MRI - initial results

    International Nuclear Information System (INIS)

    Fink, C.; Buhmann, R.; Plathow, C.; Puderbach, M.; Kauczor, H.U.; Risse, F.; Ley, S.; Meyer, F.J.

    2004-01-01

    Purpose: to assess the use of time-resolved parallel 3D MRI for a quantitative analysis of pulmonary perfusion in patients with cardiopulmonary disease. Materials and methods: eight patients with pulmonary embolism or pulmonary hypertension were examined with a time-resolved 3D gradient echo pulse sequence with parallel imaging techniques (FLASH 3D, TE/TR: 0.8/1.9 ms; flip angle: 40 ; GRAPPA). A quantitative perfusion analysis based on indicator dilution theory was performed using a dedicated software. Results: patients with pulmonary embolism or chronic thromboembolic pulmonary hypertension revealed characteristic wedge-shaped perfusion defects at perfusion MRI. They were characterized by a decreased pulmonary blood flow (PBF) and pulmonary blood volume (PBV) and increased mean transit time (MTT). Patients with primary pulmonary hypertension or eisenmenger syndrome showed a more homogeneous perfusion pattern. The mean MTT of all patients was 3.3 - 4.7 s. The mean PBF and PBV showed a broader interindividual variation (PBF: 104-322 ml/100 ml/min; PBV: 8 - 21 ml/100 ml). Conclusion: time-resolved parallel 3D MRI allows at least a semi-quantitative assessment of lung perfusion. Future studies will have to assess the clinical value of this quantitative information for the diagnosis and management of cardiopulmonary disease. (orig.) [de

  10. Assessment of the narrow cervical spinal canal: a prospective comparison of MRI, myelography and CT-myelography

    International Nuclear Information System (INIS)

    Reul, J.; Gievers, B.; Weis, J.; Thron, A.

    1995-01-01

    This study was designed to compare the accuracy of magnetic resonance imaging (MRI), myelography and computed tomography in the assessment of degenerative cervical spinal stenosis. We prospectively examined a total of 75 spinal segments in 18 patients with suspected cervical spinal canal stenosis, using sagittal spin-echo and axial gradient-echo sequences generated by a 1.5 Tesla imager, conventional myelography, and computed tomography with intrathecal contrast medium (CT-myelography). The degree of stenosis was often overestimated using MRI. This error was most prominent in cases of severe stenosis but was significant with minor to moderate stenosis. In these cases, the clinical consequences of such an overestimation can be serious, because treatment is misdirected. The error is probably caused by pulsation of the cerebrospinal fluid and truncation artefact (Gibbs phenomenon). MRI at 1.5 Tesla is thus frequently inadequate for diagnostic assessment of degenerative cervical spinal stenosis. Myelography and myelographic CT are still useful for decisions on operative treatment, especially in cases of moderate stenosis. This may, however, not apply to imagers operating at 0.5 Tesla as below. (orig.)

  11. Bone marrow MRI in patients with myelodysplastic syndromes

    International Nuclear Information System (INIS)

    Chen Zhao; Guo You; Wang Renfa; Zou Mingli; Liu Wenli; Xia Liming; Wang Chengyuan

    2004-01-01

    Objective: To observe the MR imaging of bone marrow in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), and to reveal the rule of bone marrow infiltration and the role of MRI in diagnosing and predicting the prognosis of myelodysplastic syndromes. Methods: Thirty patients received MRI after the diagnosis based on clinic and FAB subtype study, including 16 with MDS and 14 with AML. MR image was obtained by T 1 -weighted spin echo and shot time inversion recovery in pelvis and femur. The examining results of morphology and blood routine were collected at the same time. 30 age-matched volunteers were selected as controls. Results: The MRI appearance was classified into their patterns based on scope of focus. MRI patterns from grade 1 to grade 3 was observed in patients with MDS. All patients with AML distributed in grade 2 to grade 3. The distribution of patterns had no significant difference between MDS and AML (P>0.05). The marrow ratio had significant difference among MDS, AML, and controls (P<0.05). The MRI grade was consistent with the clinic diagnostic indexes. Conclusion: MRI can provide a better understanding of the difference between MDS and AML. MRI can estimate the extent of disease in the marrow as a whole. MRI of bone marrow can provide imaging basis in diagnosis and predicting the prognosis for patients with MDS

  12. Analysis of blowout fractures using cine mode MRI

    International Nuclear Information System (INIS)

    Kawahara, Masaaki; Shiihara, Kumiko; Kimura, Hisashi; Fukai, Sakuko; Tabuchi, Akio; Kojo, Tuyoshi

    1995-01-01

    By observing conventional CT and MRI images, it is difficult to distinguish extension failure from adhesion, bone fracture or damage to the extraocular muscle, any one of which may be the direct cause of the eye movement disturbance accompanying blowout fracture. We therefore carried out dynamic analysis of eye movement disturbance using a cine mode MRI. We put seven fixation points in the gantry of the MRI and filmed eye movement disturbances by the gradient echo method, using a surface coil and holding the vision on each fixation point. We also video recorded the CRT monitor of the MRI to obtain dynamic MRI images. The subjects comprised 5 cases (7-23 years old). In 4 cases, we started orthoptic treatment, saccadic eye movement training, convergence training and fusional amplitude training after surgery, with only orthoptic treatment in the 5 th case. In all cases, fusion area improvement was recognized during training. In 2 cases examined by cine mode MRI before and after surgery, we observed improved eye movement after training, the effectiveness of which was thereby proven. Also, using cine mode MRI we were able to determine the character of incarcerated tissue and the cause of eye movement disturbance. We conclude that it blowout fracture, cine mode MRI may be useful in selecting treatment and observing its effectiveness. (author)

  13. MRI of the optic nerve in benign intracranial hypertension

    International Nuclear Information System (INIS)

    Gass, A.; Barker, G.J.; Riordan-Eva, P.; MacManus, D.; Sanders, M.; Tofts, P.S.; McDonald, W.I.; Moseley, I.F.; Miller, D.H.

    1996-01-01

    We investigated the MRI appearance of the optic nerve and its cerebrospinal-fluid-containing sheath in 17 patients with benign intracranial hypertension (BIH) and 15 normal controls. Using phased-array local coils, 3-mm coronal T2-weighted fat-suppressed fast spin-echo images were obtained with an in-plane resolution of < 0.39 mm. The optic nerve and its sheath were clearly differentiated. An enlarged, elongated subarachnoid space around the optic nerve was demonstrated in patients with BIH. High-resolution MRI of the optic nerve offers additional information which may be of value for diagnosis and in planning and monitoring treatment. (orig.). With 5 figs

  14. The evaluation of MRI protocols for the quantification of adiposity in the obese

    International Nuclear Information System (INIS)

    Tagami, Hirotaka; Taki, Tomomi; Ueoro, Kouichi

    1998-01-01

    Obesity is a recognized risk factor for the development of diseases such as atherosclerosis, diabetes mellitus and hypertension. The individual risk of the obesity can not be evaluated merely by the body weight or body mass index. The fat distribution is a key to evaluate it. So far, the MRI protocols in the literature tested for the evaluation of the fat distribution were spin-echo and inversion-recovery images. We tested both protocols and couldn't get good images basically due to motion artifacts. Therefore, the field-echo (FE) protocol, a rapid scan protocol, was evaluated. The transverse fat distributions at umbilical level of 8 male obese volunteers were examined with MRI FE protocol and X-ray computed tomography (CT). The excellent images were obtained with FE protocol and correlation with CT images was also satisfactory. The FE protocols for the evaluation of the fat distribution is of use and reasonable tool for the clinical usage. (author)

  15. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Tatsuya J. [Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Nofiele, Joris; Yuan, Qing [Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Madhuranthakam, Ananth J.; Pedrosa, Ivan; Chopra, Rajiv [Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Sawant, Amit, E-mail: amit.sawant@utsouthwestern.edu [Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 (United States)

    2016-06-15

    Purpose: Sparse-sampling and reconstruction techniques represent an attractive strategy to achieve faster image acquisition speeds, while maintaining adequate spatial resolution and signal-to-noise ratio in rapid magnetic resonance imaging (MRI). The authors investigate the use of one such sequence, broad-use linear acquisition speed-up technique (k-t BLAST) in monitoring tumor motion for thoracic and abdominal radiotherapy and examine the potential trade-off between increased sparsification (to increase imaging speed) and the potential loss of “true” information due to greater reliance on a priori information. Methods: Lung tumor motion trajectories in the superior–inferior direction, previously recorded from ten lung cancer patients, were replayed using a motion phantom module driven by an MRI-compatible motion platform. Eppendorf test tubes filled with water which serve as fiducial markers were placed in the phantom. The modeled rigid and deformable motions were collected in a coronal image slice using balanced fast field echo in conjunction with k-t BLAST. Root mean square (RMS) error was used as a metric of spatial accuracy as measured trajectories were compared to input data. The loss of spatial information was characterized for progressively increasing acceleration factor from 1 to 16; the resultant sampling frequency was increased approximately from 2.5 to 19 Hz when the principal direction of the motion was set along frequency encoding direction. In addition to the phantom study, respiration-induced tumor motions were captured from two patients (kidney tumor and lung tumor) at 13 Hz over 49 s to demonstrate the impact of high speed motion monitoring over multiple breathing cycles. For each subject, the authors compared the tumor centroid trajectory as well as the deformable motion during free breathing. Results: In the rigid and deformable phantom studies, the RMS error of target tracking at the acquisition speed of 19 Hz was approximately 0.3–0

  16. Sensitivity of MRI in detecting alveolar infiltrates. Experimental studies

    International Nuclear Information System (INIS)

    Biederer, J.; Busse, I.; Grimm, J.; Reuter, M.; Heller, M.; Muhle, C.; Freitag, S.

    2002-01-01

    Purpose: An experimental study using porcine lung explants and a dedicated chest phantom to evaluate the signal intensity of artificial alveolar infiltrates with T 1 - and T 2 -weighted MRI sequences. Material and Methods: 10 porcine lung explants were intubated, transferred into the cavity of a MRI-compatible chest phantom and inflated by continuous evacuation of the artificial pleural space. All lungs were examined with MRI at 1.5 T before and after intra-tracheal instillation of either 100 or 200 ml gelatine-stabilised liquid to simulate alveolar infiltrates. MR-examination comprised gradient echo (2D- and 3D-GRE) and fast spin echo sequences (T 2 -TSE and T 2 -HASTE). The signal intensity of lung parenchyma was evaluated at representative cross sections using a standardised scheme. Control studies were acquired with helical CT. Results: The instilled liquid caused patchy confluent alveolar infiltrates resembling the findings in patients with pneumonia or ARDS. CT revealed typical ground-glass opacities. Before the application of the liquid, only T 2 -HASTE and T 2 -TSE displayed lung parenchyma signals with a signal/noise ratio of 3.62 and 1.39, respectively. After application of the liquid, both T 2 -weighted sequences showed clearly visible infiltrates with an increase in signal intensity of approx. 30% at 100 ml (p 2 -weighted sequences detects artificial alveolar infiltrates with high signal intensity and may be a highly sensitive tool to detect pneumonia in patients. (orig.) [de

  17. Theory of single-photon echo (SP-echo) and the possibility of its experimental study in the gamma-region

    International Nuclear Information System (INIS)

    Moiseev, S.A.

    1997-01-01

    The single-photon echo (SP-echo) effect is predicted to appear in the case of three-level medium excitation by means of a single photon propagating to the medium along two optical paths with a mutual time delay surpassing the temporal duration of the photon wave packet. The quantum electrodynamical theory describing this interaction is presented and the S-matrix of the field is shown for infinite time (t=∞). Using the S-matrix approach, physical properties of the scattering field are studied. Hence, it is shown that the field has an echo signal at the ω 32 0 carrier frequency. It has been shown that the echo signal exists only in the field amplitude while being absent in its intensity behaviour. Thus, SP-echo is an interference effect and is not influenced by the energy irradiation. The problems of SP-echo detection in the gamma-region (where special generation difficulties appear) are discussed. The influence of the additional detection of theω 21 0 frequency field on the echo signal has been shown. A special case is the EPR-paradox which can appear within the echo phenomenon

  18. Theory of single-photon echo (SP-echo) and the possibility of its experimental study in the gamma-region

    Energy Technology Data Exchange (ETDEWEB)

    Moiseev, S.A

    1997-05-15

    The single-photon echo (SP-echo) effect is predicted to appear in the case of three-level medium excitation by means of a single photon propagating to the medium along two optical paths with a mutual time delay surpassing the temporal duration of the photon wave packet. The quantum electrodynamical theory describing this interaction is presented and the S-matrix of the field is shown for infinite time (t={infinity}). Using the S-matrix approach, physical properties of the scattering field are studied. Hence, it is shown that the field has an echo signal at the {omega}{sub 32}{sup 0} carrier frequency. It has been shown that the echo signal exists only in the field amplitude while being absent in its intensity behaviour. Thus, SP-echo is an interference effect and is not influenced by the energy irradiation. The problems of SP-echo detection in the gamma-region (where special generation difficulties appear) are discussed. The influence of the additional detection of the{omega}{sub 21}{sup 0} frequency field on the echo signal has been shown. A special case is the EPR-paradox which can appear within the echo phenomenon.

  19. A radar-echo model for Mars

    International Nuclear Information System (INIS)

    Thompson, T.W.; Moore, H.J.

    1990-01-01

    Researchers developed a radar-echo model for Mars based on 12.6 cm continuous wave radio transmissions backscattered from the planet. The model broadly matches the variations in depolarized and polarized total radar cross sections with longitude observed by Goldstone in 1986 along 7 degrees S. and yields echo spectra that are generally similiar to the observed spectra. Radar map units in the model include an extensive cratered uplands unit with weak depolarized echo cross sections, average thermal inertias, moderate normal refelectivities, and moderate rms slopes; the volcanic units of Tharsis, Elysium, and Amazonis regions with strong depolarized echo cross sections, low thermal inertia, low normal reflectivities, and large rms slopes; and the northern planes units with moderate to strong depolarized echo cross sections, moderate to very high thermal inertias, moderate to large normal reflectivities, and moderate rms slopes. The relevance of the model to the interpretation of radar echoes from Mars is discussed

  20. The acoustics of the echo cornet

    Science.gov (United States)

    Pyle, Robert W., Jr.; Klaus, Sabine K.

    2002-11-01

    The echo cornet was an instrument produced by a number of makers in several countries from about the middle of the nineteenth to the early twentieth centuries. It consists of an ordinary three-valve cornet to which a fourth valve has been added, downstream of the three normal valves. The extra valve diverts the airstream from the normal bell to an ''echo'' bell that gives a muted tone quality. Although the air column through the echo bell is typically 15 cm longer than the path through the normal bell, there is no appreciable change of playing pitch when the echo bell is in use. Acoustic input impedance and impulse response measurements and consideration of the standing-wave pattern within the echo bell show how this can be so. Acoustically, the echo bell is more closely related to hand-stopping on the French horn than to the mutes commonly used on the trumpet and cornet.

  1. Can high frequency ultrasound and MRI diagnose malignant atheromatous plaque in vitro?

    International Nuclear Information System (INIS)

    Yoshida, Shigeo; Nieminen, M.S.; Paananen, T.; Kahri, A.

    1995-01-01

    It remains a vital clinical issue how to diagnose malignant atheromatous plaques consisting of ulcerative plaque and hemorrhagic plaque, which are potential risks for thrombosis and the arterial spasm. This study proposes further investigations to develop methods in order to detect this type of lesions by echocardiography. In this study, we tested high frequency (7.5 MHz) US and 1.0 T MRI (Tl weighted SE, STIR; short time inversion recovery sequence, and Tl weighted fat suppression technique) for their precision in the diagnosis of atheromatous plaque as malignant or benign in postmortem human aorta. Ten hemorrhagic plaques were imaged as heterogeneous echo-pattern in the shoulder of plaques covered with high-echo capsule with US; however, these findings were also obtained from 2 of 16 non-hemorrhagic plaques. With TlSE, hemorrhagic plaques were revealed as mixed areas of reduced intensity and high intensity which were differentiated from fatty deposition with Tl weighted fat suppression technique. Ulcerative plaques were revealed as concave shaped plaques and diagnosed correctly with both methods. US was superior to MRI from the viewpoints of examination time and measuring wall thickness. US indicated intimal plus medial thickness of hemorrhagic plaque and non-hemorrhagic plaque at 4.3+1.1 mm and 3.0+1.0 mm (p<0.05) respectively. MRI was vulnerable to artifacts and its image was poorer in quality due to its lower resolution: however, probably because of its superior ability to distinguish fatty deposition from hemorrhage, MRI ultimately enabled more accurate diagnosis than US, as long as its image was fairly clear. The overall accuracies were 80% with US and 85.7% with MRI as confirmed by histological tests. From these results, the careful analysis of the two images obtained from US and MRI enables clinical diagnosis of malignant atheromatous plaques. (author)

  2. Depiction and characterization of liver lesions in whole body [18F]-FDG PET/MRI

    International Nuclear Information System (INIS)

    Beiderwellen, Karsten; Gomez, Benedikt; Buchbender, Christian; Hartung, Verena; Poeppel, Thorsten D.; Nensa, Felix; Kuehl, Hilmar; Bockisch, Andreas; Lauenstein, Thomas C.

    2013-01-01

    Objectives: To assess the value of PET/MRI with [ 18 F]-FDG using a whole body protocol for the depiction and characterization of liver lesions in comparison to PET/CT. Methods: 70 patients (31 women, 39 men) with solid tumors underwent [ 18 F]-FDG PET/CT and followed by an additional PET/MRI using an integrated scanner. Two readers rated the datasets (PET/CT; PET/MRI) regarding conspicuity of hepatic lesions (4-point ordinal scale) and diagnostic confidence (5-point ordinal scale). Median scores for lesion conspicuity and diagnostic confidence were compared using Wilcoxon's rank sum test. Prior examinations, histopathology and clinical follow-up (116 ± 54 days) served as standard of reference. Results: 36 of 70 (51%) patients showed liver lesions. Using PET/CT and PET/MRI all patients with liver metastases could correctly be identified. A total of 97 lesions were found (malignant n = 26; benign n = 71). For lesion conspicuity significantly higher scores were obtained for PET/MRI in comparison to PET/CT (p < 0.001). Significantly better performance for diagnostic confidence was observed in PET/MRI, both for malignant as for benign lesions (p < 0.001). Conclusions: PET/MRI, even in the setting of a whole body approach, provides higher lesion conspicuity and diagnostic confidence compared to PET/CT and may therefore evolve as an attractive alternative in oncologic imaging

  3. Combined 18F-Fluciclovine PET/MRI Shows Potential for Detection and Characterization of High-Risk Prostate Cancer.

    Science.gov (United States)

    Elschot, Mattijs; Selnæs, Kirsten M; Sandsmark, Elise; Krüger-Stokke, Brage; Størkersen, Øystein; Giskeødegård, Guro F; Tessem, May-Britt; Moestue, Siver A; Bertilsson, Helena; Bathen, Tone F

    2018-05-01

    The objective of this study was to investigate whether quantitative imaging features derived from combined 18 F-fluciclovine PET/multiparametric MRI show potential for detection and characterization of primary prostate cancer. Methods: Twenty-eight patients diagnosed with high-risk prostate cancer underwent simultaneous 18 F-fluciclovine PET/MRI before radical prostatectomy. Volumes of interest (VOIs) for prostate tumors, benign prostatic hyperplasia (BPH) nodules, prostatitis, and healthy tissue were delineated on T2-weighted images, using histology as a reference. Tumor VOIs were marked as high-grade (≥Gleason grade group 3) or not. MRI and PET features were extracted on the voxel and VOI levels. Partial least-squared discriminant analysis (PLS-DA) with double leave-one-patient-out cross-validation was performed to distinguish tumors from benign tissue (BPH, prostatitis, or healthy tissue) and high-grade tumors from other tissue (low-grade tumors or benign tissue). The performance levels of PET, MRI, and combined PET/MRI features were compared using the area under the receiver-operating-characteristic curve (AUC). Results: Voxel and VOI features were extracted from 40 tumor VOIs (26 high-grade), 36 BPH VOIs, 6 prostatitis VOIs, and 37 healthy-tissue VOIs. PET/MRI performed better than MRI and PET alone for distinguishing tumors from benign tissue (AUCs of 87%, 81%, and 83%, respectively, at the voxel level and 96%, 93%, and 93%, respectively, at the VOI level) and high-grade tumors from other tissue (AUCs of 85%, 79%, and 81%, respectively, at the voxel level and 93%, 93%, and 91%, respectively, at the VOI level). T2-weighted MRI, diffusion-weighted MRI, and PET features were the most important for classification. Conclusion: Combined 18 F-fluciclovine PET/multiparametric MRI shows potential for improving detection and characterization of high-risk prostate cancer, in comparison to MRI and PET alone. © 2018 by the Society of Nuclear Medicine and Molecular

  4. MRI of degenerative bone marrow lesions in experimental osteoarthritis of canine knee joints

    Energy Technology Data Exchange (ETDEWEB)

    Nolte-Ernsting, C.C.A. [Department of Diagnostic Radiology, University of Technology, Aachen, Pauwelsstrasse 30, D-52057 Aachen (Germany); Adam, G. [Department of Diagnostic Radiology, University of Technology, Aachen, Pauwelsstrasse 30, D-52057 Aachen (Germany); Buehne, M. [Department of Diagnostic Radiology, University of Technology, Aachen, Pauwelsstrasse 30, D-52057 Aachen (Germany); Prescher, A. [Department of Anatomy, University of Technology, Aachen (Germany); Guenther, R.W. [Department of Diagnostic Radiology, University of Technology, Aachen, Pauwelsstrasse 30, D-52057 Aachen (Germany)

    1996-07-01

    Objective. The objective of this study was to determine the value of MRI in the detection of degenerative bone marrow abnormalities in an animal osteoarthritis model. Design. In 10 dogs with experimentally induced unilateral osteoarthritis of the knee, MRI was performed using two-dimensional spin-echo (2D-SE) and three-dimensional gradient-echo (3D-GE) imaging. Contrast enhanced T1-weighted 2D-SE sequences were also obtained after injection of gadolinium-DTPA. The results were compared with the gross and histopathologic findings and with radiography. Results. Histopathologic specimens revealed 21 osteosclerotic lesions and 5 intraosseous cysts. On 2D-SE images, 24 of 26 lesions were detected, while 21 of 26 lesions were identified on 2D-GE sequences. Radiography, including conventional tomography, demonstrated 9 of 26 lesions. Regardless of the sequence weighting, all osteosclerotic lesions appeared hypointense on MRI. Signal loss in bone sclerosis resulted primarily from the reduction of intact fat marrow, the increased bone density being of secondary importance. Quantitative signal analysis allowed approximate estimation of the grade of sclerosis. On postcontrast images, sclerotic bone remained hypointense, although significant but non-specific enhancement relative to the normal fat marrow was observed. The extent of contrast enhancement did not correlate with the grade of osteosclerosis. All five cysts were readily diagnosed by MRI. Cysts displayed either central or marginal contrast enhancement within their cavities. Conclusions. MRI provides a sensitive method for the diagnosis of osteoarthritic bone abnormalities, allowing their differentiation from most non-degenerative subarticular lesions. (orig.). With 1 tab.

  5. Comparison of Superparamagnetic Iron Oxide Labeling Efficiency between Poly-L-Lysine and Protamine Sulfate for Human Mesenchymal Stem Cells: Quantitative Analysis Using Multi-Echo T2 Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Suh, Ji Yeon; Lee, Jeong Hyun; Lee, Chang Kyung; Shin, Ji Hoon; Choi, Choong Gon; Kim, Jeong Kon

    2013-01-01

    To quantify in vitro labeling efficiency of protamine sulfate (PS) and poly-L-lysine (PLL) for labeling of human mesenchymal stem cells (hMSCs) with superparamagnetic iron oxide (SPIO) using multi-echo T2 magnetic resonance (MR) imaging at 4.7 T. The hMSCs were incubated with SPIO-PS or SPIO-PLL complexes. Their effects on the cell metabolism and differentiation capability were evaluated, respectively. The decrease of iron concentrations in the labeled cells were assessed immediately, and at 4 d after labeling using multi-echo T2 MR imaging at 4.7 T. The results were compared with those of Prussian blue colorimetry. The hMSCs were labeled more efficiently by SPIO-PLL than SPIO-PS without any significant effect on cell metabolism and differentiation capabilities. It was feasible to quantify the iron concentrations in SPIO-agarose-phantoms and in agarose mixture with the labeled cells from T2 maps obtained from multi-echo T2 MRI. However, the iron concentration of the labeled cells was significantly higher by T2-maps than the results of Prussian blue colorimetry. The hMSCs can be effectively labeled with SPIO-PLL complexes more than with SPIO-PS without significant change in cell metabolism and differentiation. In vitro quantification of the iron concentrations of the labeled is feasible from multi-echo T2 MRI, but needs further investigation.

  6. Comparison of Superparamagnetic Iron Oxide Labeling Efficiency between Poly-L-Lysine and Protamine Sulfate for Human Mesenchymal Stem Cells: Quantitative Analysis Using Multi-Echo T2 Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Ji Yeon; Lee, Jeong Hyun; Lee, Chang Kyung; Shin, Ji Hoon; Choi, Choong Gon; Kim, Jeong Kon [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2013-02-15

    To quantify in vitro labeling efficiency of protamine sulfate (PS) and poly-L-lysine (PLL) for labeling of human mesenchymal stem cells (hMSCs) with superparamagnetic iron oxide (SPIO) using multi-echo T2 magnetic resonance (MR) imaging at 4.7 T. The hMSCs were incubated with SPIO-PS or SPIO-PLL complexes. Their effects on the cell metabolism and differentiation capability were evaluated, respectively. The decrease of iron concentrations in the labeled cells were assessed immediately, and at 4 d after labeling using multi-echo T2 MR imaging at 4.7 T. The results were compared with those of Prussian blue colorimetry. The hMSCs were labeled more efficiently by SPIO-PLL than SPIO-PS without any significant effect on cell metabolism and differentiation capabilities. It was feasible to quantify the iron concentrations in SPIO-agarose-phantoms and in agarose mixture with the labeled cells from T2 maps obtained from multi-echo T2 MRI. However, the iron concentration of the labeled cells was significantly higher by T2-maps than the results of Prussian blue colorimetry. The hMSCs can be effectively labeled with SPIO-PLL complexes more than with SPIO-PS without significant change in cell metabolism and differentiation. In vitro quantification of the iron concentrations of the labeled is feasible from multi-echo T2 MRI, but needs further investigation.

  7. MRI of the shoulder

    Energy Technology Data Exchange (ETDEWEB)

    Vahlensieck, M.

    2000-02-01

    Shoulder imaging is one of the major applications in musculoskeletal MRI. In order to analyze the images it is important to keep informed about anatomical and pathological findings and publications. In this article MRI technique, anatomy and pathology is reviewed. Technical considerations about MR sequences and examination strategy are only shortly discussed with emphasis on turbo spin echo and short T1 inversion recovery imaging. Basic anatomy as well as recent findings, including macroscopic aspects of the supraspinatus fat pad, composition of the supraspinatus muscle belly, and variability of the glenohumeral ligaments or coracoid ligament, are presented. Basic pathological conditions are described in detail, e. g. instability particularly problems in differentiating the various subtypes of labral pathology. Rotator cuff diseases are elucidated with emphasis on some rarer entities such as subscapularis calcifying tendinitis, coracoid impingement, chronic bursitis producing the double-line sign, prominent coraco-acromial ligament and the impingement due to an inflamed os acromiale. (orig.)

  8. MRI of the shoulder

    International Nuclear Information System (INIS)

    Vahlensieck, M.

    2000-01-01

    Shoulder imaging is one of the major applications in musculoskeletal MRI. In order to analyze the images it is important to keep informed about anatomical and pathological findings and publications. In this article MRI technique, anatomy and pathology is reviewed. Technical considerations about MR sequences and examination strategy are only shortly discussed with emphasis on turbo spin echo and short T1 inversion recovery imaging. Basic anatomy as well as recent findings, including macroscopic aspects of the supraspinatus fat pad, composition of the supraspinatus muscle belly, and variability of the glenohumeral ligaments or coracoid ligament, are presented. Basic pathological conditions are described in detail, e. g. instability particularly problems in differentiating the various subtypes of labral pathology. Rotator cuff diseases are elucidated with emphasis on some rarer entities such as subscapularis calcifying tendinitis, coracoid impingement, chronic bursitis producing the double-line sign, prominent coraco-acromial ligament and the impingement due to an inflamed os acromiale. (orig.)

  9. Dual contrast enhanced magnetic resonance imaging of the liver with superparamagnetic iron oxide followed by gadolinium for lesion detection and characterization

    International Nuclear Information System (INIS)

    Kubaska, Samantha; Sahani, Dushyant V.; Saini, Sanjay; Hahn, Peter F.; Halpern, Elkan

    2001-01-01

    AIM: Iron oxide contrast agents are useful for lesion detection, and extracellular gadolinium chelates are advocated for lesion characterization. We undertook a study to determine if dual contrast enhanced liver imaging with sequential use of ferumoxides particles and gadolinium (Gd)-DTPA can be performed in the same imaging protocol. MATERIALS AND METHODS: Sixteen patients underwent dual contrast magnetic resonance imaging (MRI) of the liver for evaluation of known/suspected focal lesions which included, metastases (n = 5), hepatocellular carcinoma (HCC;n = 3), cholangiocharcinoma(n = 1) and focal nodular hyperplasia (FNH;n = 3). Pre- and post-iron oxide T1-weighted gradient recalled echo (GRE) and T2-weighted fast spin echo (FSE) sequences were obtained, followed by post-Gd-DTPA (0.1 mmol/kg) multi-phase dynamic T1-weighted out-of-phase GRE imaging. Images were analysed in a blinded fashion by three experts using a three-point scoring system for lesion conspicuity on pre- and post-iron oxide T1 images as well as for reader's confidence in characterizing liver lesions on post Gd-DTPA T1 images. RESULTS: No statistically significant difference in lesion conspicuity was observed on pre- and post-iron oxide T1-GRE images in this small study cohort. The presence of iron oxide did not appreciably diminish image quality of post-gadolinium sequences and did not prevent characterization of liver lesions. CONCLUSION: Our results suggest that characterization of focal liver lesion with Gd-enhanced liver MRI is still possible following iron oxide enhanced imaging. Kubaska, S. et al. (2001)

  10. WE-B-BRD-00: MRI for Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The use of MRI in radiation therapy is rapidly increasing. Applications vary from the MRI simulator, to the MRI fused with CT, and to the integrated MRI+RT system. Compared with the standard MRI QA, a broader scope of QA features has to be defined in order to maximize the benefits of using MRI in radiation therapy. These QA features include geometric fidelity, image registration, motion management, cross-system alignment, and hardware interference. Advanced MRI techniques require a specific type of QA, as they are being widely used in radiation therapy planning, dose calculations, post-implant dosimetry, and prognoses. A vigorous and adaptive QA program is crucial to defining the responsibility of the entire radiation therapy group and detecting deviations from the performance of high-quality treatment. As a drastic departure from CT simulation, MRI simulation requires changes in the work flow of treatment planning and image guidance. MRI guided radiotherapy platforms are being developed and commercialized to take the advantage of the advance in knowledge, technology and clinical experience. This symposium will from an educational perspective discuss the scope and specific issues related to MRI guided radiotherapy. Learning Objectives: Understand the difference between a standard and a radiotherapy-specific MRI QA program. Understand the effects of MRI artifacts (geometric distortion and motion) on radiotherapy. Understand advanced MRI techniques (ultrashort echo, fast MRI including dynamic MRI and 4DMRI, diffusion, perfusion, and MRS) and related QA. Understand the methods to prepare MRI for treatment planning (electron density assignment, multimodality image registration, segmentation and motion management). Current status of MRI guided treatment platforms. Dr. Jihong Wang has a research grant with Elekta-MRL project. Dr. Ke Sheng receives research grants from Varian Medical systems.

  11. Single-shot T2 mapping using overlapping-echo detachment planar imaging and a deep convolutional neural network.

    Science.gov (United States)

    Cai, Congbo; Wang, Chao; Zeng, Yiqing; Cai, Shuhui; Liang, Dong; Wu, Yawen; Chen, Zhong; Ding, Xinghao; Zhong, Jianhui

    2018-04-24

    An end-to-end deep convolutional neural network (CNN) based on deep residual network (ResNet) was proposed to efficiently reconstruct reliable T 2 mapping from single-shot overlapping-echo detachment (OLED) planar imaging. The training dataset was obtained from simulations that were carried out on SPROM (Simulation with PRoduct Operator Matrix) software developed by our group. The relationship between the original OLED image containing two echo signals and the corresponding T 2 mapping was learned by ResNet training. After the ResNet was trained, it was applied to reconstruct the T 2 mapping from simulation and in vivo human brain data. Although the ResNet was trained entirely on simulated data, the trained network was generalized well to real human brain data. The results from simulation and in vivo human brain experiments show that the proposed method significantly outperforms the echo-detachment-based method. Reliable T 2 mapping with higher accuracy is achieved within 30 ms after the network has been trained, while the echo-detachment-based OLED reconstruction method took approximately 2 min. The proposed method will facilitate real-time dynamic and quantitative MR imaging via OLED sequence, and deep convolutional neural network has the potential to reconstruct maps from complex MRI sequences efficiently. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Short-scan-time multi-slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging.

    Science.gov (United States)

    Callot, Virginie; Duhamel, Guillaume; Cozzone, Patrick J; Kober, Frank

    2008-10-01

    Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images

  13. Let's go out of the breast: prevalence of extra-mammary findings and their characterization on breast MRI.

    Science.gov (United States)

    Moschetta, Marco; Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe

    2014-06-01

    The aim of this study is to assess the prevalence, the site and the nature of extra-mammary findings on breast magnetic resonance imaging (MRI) and to determine its accuracy in the characterization of the discovered lesions. A retrospective review of 308 female patients (mean age 50 ± 20) who underwent breast MRI with 1.5T device was performed. 125 out of 308 (40.5%) had a positive personal history of breast cancer (pre-operative n=80; follow-up n=45), while the remaining 183 without history of breast cancer (high familiar risk for breast cancer n=80; dense breast n=103). All incidental findings were characterized by means of additional imaging (US; Bone scintigraphy-MRI; CT-PET-CT). 59 incidental findings were found in 53/308 (17%) examined patients. 9/59 incidental findings (15%) were confirmed to be malignant while the remaining 50/59 (84%) benign. The most common site was the liver (33/59; 55.8%), followed by the lung (6/59; 10.1%), bone (6/59; 10.1%), diaphragm (6/59; 10.1%) spleen (3/59; 5%), kidney (2/59; 3.4%), gall bladder (1/5; 1.5%), ascending aorta (1/59; 1.5%), thyroid (1/59; 1.5%). The incidence of malignant incidental findings resulted to be higher in the group of patients with personal breast cancer (36%) than in the other one (8%). By comparing MRI findings with the additional definitive imaging tools, breast MRI allowed a correct diagnosis in 58/59 cases with a diagnostic accuracy value of 98%. Incidental extramammary findings on breast MRI are common. Benign lesions represent the most frequent findings, however malignant ones need to be searched especially in patients with personal history of breast cancer because they could influence the clinical patient management. Breast MRI can characterize incidental findings with high accuracy value. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Comparative studies of brain activation with MEG and functional MRI

    International Nuclear Information System (INIS)

    George, J.S.; Aine, C.J.; Sanders, J.A.; Lewine, J.D.; Caprihan, A.

    1993-01-01

    The past two years have witnessed the emergence of MRI as a functional imaging methodology. Initial demonstrations involved the injection of a paramagnetic contrast agent and required ultrafast echo planar imaging capability to adequately resolve the passage of the injected bolus. By measuring the local reduction in image intensity due to magnetic susceptibility, it was possible to calculate blood volume, which changes as a function of neural activation. Later developments have exploited endogenous contrast mechanisms to monitor changes in blood volume or in venous blood oxygen content. Recently, we and others have demonstrated that it is possible to make such measurements in a clinical imager, suggesting that the large installed base of such machines might be utilized for functional imaging. Although it is likely that functional MRI (fMRI) will subsume some of the clinical and basic neuroscience applications now touted for MEG, it is also clear that these techniques offer different largely complementary, capabilities. At the very least, it is useful to compare and cross-validate the activation maps produced by these techniques. Such studies will be valuable as a check on results of neuromagnetic distributed current reconstructions and will allow better characterization of the relationship between neurophysiological activation and associated hemodynamic changes. A more exciting prospect is the development of analyses that combine information from the two modalities to produce a better description of underlying neural activity than is possible with either technique in isolation. In this paper we describe some results from initial comparative studies and outline several techniques that can be used to treat MEG and fMRI data within a unified computational framework

  15. Evaluation of pneumonia in children: comparison of MRI with fast imaging sequences at 1.5T with chest radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Yikilmaz, Ali; Koc, Ali; Coskun, Abdulhakim (Dept. of Radiology, Erciyes Medical School, Kayseri (Turkey)); Ozturk, Mustafa K (Dept. of Pediatric Infectious Diseases, Erciyes Medical School, Kayseri (Turkey)); Mulkern, Robert V; Lee, Edward Y (Dept. of Radiology and Dept. of Medicine, Pulmonary Div., Children' s Hospital Boston and Harvard Medical School, Boston (United States)), email: Edward.lee@childrens.harvard.edu

    2011-10-15

    Background Although there has been a study aimed at magnetic resonance imaging (MRI) evaluation of pneumonia in children at a low magnetic field (0.2T), there is no study which assessed the efficacy of MRI, particularly with fast imaging sequences at 1.5T, for evaluating pneumonia in children. Purpose To investigate the efficacy of chest MRI with fast imaging sequences at 1.5T for evaluating pneumonia in children by comparing MRI findings with those of chest radiographs. Material and Methods This was an Institutional Review Board-approved, HIPPA-compliant prospective study of 40 consecutive pediatric patients (24 boys, 16 girls; mean age 7.3 years +- 6.6 years) with pneumonia, who underwent PA and lateral chest radiographs followed by MRI within 24 h. All MRI studies were obtained in axial and coronal planes with two different fast imaging sequences: T1-weighted FFE (Fast Field Echo) (TR/TE: 83/4.6) and T2-weighted B-FFE M2D (Balanced Fast Field Echo Multiple 2D Dimensional) (TR/TE: 3.2/1.6). Two experienced pediatric radiologists reviewed each chest radiograph and MRI for the presence of consolidation, necrosis/abscess, bronchiectasis, and pleural effusion. Chest radiograph and MRI findings were compared with Kappa statistics. Results All consolidation, lung necrosis/abscess, bronchiectasis, and pleural effusion detected with chest radiographs were also detected with MRI. There was statistically substantial agreement between chest radiographs and MRI in detecting consolidation (k = 0.78) and bronchiectasis (k = 0.72) in children with pneumonia. The agreement between chest radiographs and MRI was moderate for detecting necrosis/abscess (k = 0.49) and fair for detecting pleural effusion (k = 0.30). Conclusion MRI with fast imaging sequences is comparable to chest radiographs for evaluating underlying pulmonary consolidation, bronchiectasis, necrosis/abscess, and pleural effusion often associated with pneumonia in children

  16. The usefulness of magnetic resonance imaging (MRI) in cervical carcinoma assessment - a preliminary report

    International Nuclear Information System (INIS)

    Tacikowska, M.; Grzesiakowska, U.; Tacikowski, T.; Sobiczewski, P.

    2002-01-01

    The aim of diagnostic imaging is not so much the detection of cervical carcinoma, but the evaluation of its stage. In view of this the aim of this study included: 1) comparison of MR results with the results of histological examinations after operations with reference to the dimensions of cervical carcinoma; 2) assessment of the sensitivity and specificity of MRl in the evaluation of parametrium infiltration; 3) analysis of the sensitivity and specificity of MRI in the evaluation of infiltration of the vagina and uterus; 4) assessment of the usefulness of this method in the detection of metastases to lymph nodes.The material consisted of pelvic MRI, obtained with 2T Elscint unit in 15 patients with cervical carcinoma, aged 37 to 73 years. All patients underwent surgical treatment within 30 days after MR. During the MR examination the following sequences were performed: SE (spin echo) T1 (longitudinal relaxation time) in axial projection before administration of gadolinium (Gd-DTPA); SE T1 in axial, frontal and sagittal projections after contrast injection and FSE (fast spin echo) T2 (transversal relaxation time) in axial, frontal and sagittal projections.1) in the assessment of cervical carcinoma dimensions MRI results are highly concordant with the results of postoperative histological examination (p = 0. 9389); 2) in the assessment of parametrium infiltration sensitivity and specificity of MRI are 75% and 100%, respectively; 3) in the assessment of the infiltration of the vagina and uterine corpus the sensitivity and specificity of MRI imaging were respectively 100% and 85%; 100% and 100%; 4) in the detection of lymph node metastases MRI sensitivity was 67% and its specificity 100%. In patients with cervical carcinoma MRI is a valuable method for the assessment of tumour dimensions, parametrium infiltration, infiltration of the vagina and uterine corpus.(author)

  17. Non-invasive MRI detection of individual pellets in the human stomach.

    Science.gov (United States)

    Knörgen, Manfred; Spielmann, Rolf Peter; Abdalla, Ahmed; Metz, Hendrik; Mäder, Karsten

    2010-01-01

    MRI is a powerful and non-invasive method to follow the fate of oral drug delivery systems in humans. Until now, most MRI studies focused on monolithic dosage forms (tablets and capsules). Small-sized multi-particulate drug delivery systems are very difficult to detect due to the poor differentiation between the delivery system and the food. A new approach was developed to overcome the described difficulties and permit the selective imaging of small multi-particulate dosage forms within the stomach. We took advantage of the different sensitivities to susceptibility artefacts of T(2)-weighted spin-echo sequences and T(2)-weighted gradient echo pulse sequences. Using a combination of both methods within a breath hold followed by a specific mathematical image analysis involving co-registration, motion correction, voxel-by-voxel comparison of the maps from different pulse sequences and graphic 2D-/3D-presentation, we were able to obtain pictures with a high sensitivity due to susceptibility effects caused by a 1% magnetite load. By means of the new imaging sequence, single pellets as small as 1mm can be detected with high selectivity within surrounding heterogeneous food in the human stomach. The developed method greatly expands the use of MRI to study the fate of oral multi-particulate drug delivery systems and their food dependency in men. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Experimental separation of a frequency spin echo signal

    International Nuclear Information System (INIS)

    Bun'kov, Yu.M.; Dmitriev, V.V.

    1981-01-01

    To study systems with bound nuclear-electron precession CsMnF 2 antiferromagnetic light-plane monocrystal was investigated. Crystal orientation was carried out by roentgenoscopy. Measurements were performed at helium temperatures in the 500-700 MHz frequency range. A NMR pulsed spectrometer with generators of both resonance and doubled frequency was used to produce an echo signal (to study by the parametric echo method). It was shown that the theory of the formation of a frequency modulated echo (FM echo) did not fully describe the properties of the echo signals in systems with dynamic frequency shift (DFS). An intense spin echo signal, which formation was apparently connected with other nonlinear properties of the systems with nuclear-electron precession, was observed. The spin echo signal in magnetics with DFS, which properties correspond to notions of the frequency mechanism of echo formation, was experimentally separated. As a result of the investigations it had been possible to settle contradictions between the theory of FM echo formation and the experimental results for the last 9 years. It turned out that the mechanism of FM echo formation in the magnetics with bound nuclear-electron precession was effective only at large delay times between the pulses. In the range of small delays the FM echo is ''jammed'' by a gigantic echo signal of a nature different from that of the traditional FM signal. The constant of gigantic echo intensity drop at increasing delay between the pulses weakly depends on spin-spin relaxation time [ru

  19. Effect of Task-Correlated Physiological Fluctuations and Motion in 2D and 3D Echo-Planar Imaging in a Higher Cognitive Level fMRI Paradigm.

    Science.gov (United States)

    Ladstein, Jarle; Evensmoen, Hallvard R; Håberg, Asta K; Kristoffersen, Anders; Goa, Pål E

    2016-01-01

    To compare 2D and 3D echo-planar imaging (EPI) in a higher cognitive level fMRI paradigm. In particular, to study the link between the presence of task-correlated physiological fluctuations and motion and the fMRI contrast estimates from either 2D EPI or 3D EPI datasets, with and without adding nuisance regressors to the model. A signal model in the presence of partly task-correlated fluctuations is derived, and predictions for contrast estimates with and without nuisance regressors are made. Thirty-one healthy volunteers were scanned using 2D EPI and 3D EPI during a virtual environmental learning paradigm. In a subgroup of 7 subjects, heart rate and respiration were logged, and the correlation with the paradigm was evaluated. FMRI analysis was performed using models with and without nuisance regressors. Differences in the mean contrast estimates were investigated by analysis-of-variance using Subject, Sequence, Day, and Run as factors. The distributions of group level contrast estimates were compared. Partially task-correlated fluctuations in respiration, heart rate and motion were observed. Statistically significant differences were found in the mean contrast estimates between the 2D EPI and 3D EPI when using a model without nuisance regressors. The inclusion of nuisance regressors for cardiorespiratory effects and motion reduced the difference to a statistically non-significant level. Furthermore, the contrast estimate values shifted more when including nuisance regressors for 3D EPI compared to 2D EPI. The results are consistent with 3D EPI having a higher sensitivity to fluctuations compared to 2D EPI. In the presence partially task-correlated physiological fluctuations or motion, proper correction is necessary to get expectation correct contrast estimates when using 3D EPI. As such task-correlated physiological fluctuations or motion is difficult to avoid in paradigms exploring higher cognitive functions, 2D EPI seems to be the preferred choice for higher

  20. MRI in predication of early hemorrhagic transformation after acute stroke

    International Nuclear Information System (INIS)

    Guo Gang; Wu Renhua; Mikulis, D.J.

    2007-01-01

    Objective: To investigate the relationship among early parenchymal enhancement, post- gadolinium (Gd) hyperintense middle cerebral artery (HMCA), and subsequent hemorrhagic transformation (HT) in patients with hyperacute ischemic stroke. Methods: Twenty-four consecutive patients with ischemic stroke who underwent MRI within 6 h [(4.3±1.4) h] of symptom onset were retrospectively reviewed. All of these patients underwent at least one follow-up MRI or non-enhanced CT study at 2 to 7 days. Post-Gd T 1 WI were analyzed for parenchymal enhancement and hyperintense MCA. Gradient echo MRI and CT were used for assessment of HT. Results: Ten patients developed HT on follow-up imaging (hemorrhagic group). Early parenchymal enhancement was found in 6 patients with HT (P 1 WI after Gd-DTPA administration are independent predictors of subsequent HT. (authors)

  1. Single-shot echo-planar imaging of multiple sclerosis: effects of varying echo time

    International Nuclear Information System (INIS)

    Wolansky, L.J.; Chong, S.; Liu, W.C.; Kang, E.; Simpson, S.W.; Karimi, S.; Akbari, H.

    1999-01-01

    Our aim was to determine the relative merits of short and long echo times (TE) with single-shot echo-planar imaging for imaging cerebral lesions such as multiple sclerosis. We examined seven patients with clinically definite multiple sclerosis were imaged at 1.5 T. Patients were scanned with spin-echo, single-shot echo-planar imaging, using TEs of 45, 75, 105, and 135 ms. Region of interest (ROI) measurements were performed on 36 lesions at or above the level of the corona radiata. The mean image contrast (IC) was highest (231.1) for a TE of 45 ms, followed by 75 ms (218.9), 105 ms (217.9), and 135 ms (191.6). When mean contrast-to-noise ratios (C/N) were compared, the value was again highest (29.7) for TE 45 ms, followed by 75 ms (28.9), 105 ms (28.5), and 135 ms (26.3). In a lesion-by-lesion comparison, TE 45 ms had the highest IC and C/N in the largest number of cases (50 % and 47.2 %, respectively). IC and C/N for TE 45 ms were superior to those of 75 ms in 64 % and 58 %, respectively. These results support the use of relatively short TEs for single-shot echo-planar imaging in the setting of cerebral lesions such as multiple sclerosis. (orig.) (orig.)

  2. Wavelet-LMS algorithm-based echo cancellers

    Science.gov (United States)

    Seetharaman, Lalith K.; Rao, Sathyanarayana S.

    2002-12-01

    This paper presents Echo Cancellers based on the Wavelet-LMS Algorithm. The performance of the Least Mean Square Algorithm in Wavelet transform domain is observed and its application in Echo cancellation is analyzed. The Widrow-Hoff Least Mean Square Algorithm is most widely used algorithm for Adaptive filters that function as Echo Cancellers. The present day communication signals are widely non-stationary in nature and some errors crop up when Least Mean Square Algorithm is used for the Echo Cancellers handling such signals. The analysis of non-stationary signals often involves a compromise between how well transitions or discontinuities can be located. The multi-scale or multi-resolution of signal analysis, which is the essence of wavelet transform, makes Wavelets popular in non-stationary signal analysis. In this paper, we present a Wavelet-LMS algorithm wherein the wavelet coefficients of a signal are modified adaptively using the Least Mean Square Algorithm and then reconstructed to give an Echo-free signal. The Echo Canceller based on this Algorithm is found to have a better convergence and a comparatively lesser MSE (Mean Square error).

  3. Evaluation of various somatosensory stimulations for functional MRI

    International Nuclear Information System (INIS)

    Hara, Kazushi; Nakasato, Nobukazu; Mizoi, Kazuo; Yoshimoto, Takashi; Shimizu, Hiroaki.

    1997-01-01

    The aim of this functional magnetic resonance imaging (fMRI) study was to test detectability of activated area using various somatosensory stimulations. The following stimulations were performed in normal volunteers: regular or irregular electrical median nerve stimulation (n=5, each), tactile stimulation to the palm and fingers (n=8), pain stimulation to the index finger (n=5) or to the palm and fingers (n=5). fMRI was acquired with a spoiled gradient echo sequence at 1.5 T. Detectability of activated area was the highest when the pain stimulation was applied to the palm and fingers (80%). A successful rate for the tactile stimulation was 25%, and the other stimulations failed to demonstrate any activation. When successful, the highest signal activation on fMRI was seen on a sulcus, which presumably arose from a vein. The sulcus was defined as the central sulcus by somatosensory evoked field using a median nerve stimulation. Our study indicates that the pain stimulation to the palm and fingers may be a choice for the sensory fMRI. (author)

  4. Functional localization in the human brain: Gradient-echo, spin-echo, and arterial spin-labeling fMRI compared with neuronavigated TMS.

    NARCIS (Netherlands)

    Diekhoff, S.; Uludag, K.; Sparing, R.; Tittgemeyer, M.; von Cramon, D.Y.; Grefkes, C.

    2010-01-01

    A spatial mismatch of up to 14 mm between optimal transcranial magnetic stimulation (TMS) site and functional magnetic resonance imaging (fMRI) signal has consistently been reported for the primary motor cortex. The underlying cause might be the effect of magnetic susceptibility around large

  5. Functional imaging of parotid glands: Diffusion-weighted echo-planar MRI before and after stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Habermann, C.R.; Cramer, M.C.; Gossrau, P.; Adam, G. [University Hospital Hamburg-Eppendorf (Germany). Department of Diagnostic and Interventional Radiology; Graessner, J. [Siemens AG, Hamburg (Germany). Medical Solutions; Reitmeier, F.; Jaehne, M. [University Hospital Hamburg-Eppendorf (Germany). Department of Oto-, Rhino-, Laryngology; Fiehler, J. [University Hospital Hamburg-Eppendorf (Germany). Department of Neuroradiology; Schoder, V. [University Hospital Hamburg-Eppendorf (Germany). Institute for Medical Biometry and Epidemiology

    2004-10-01

    Purpose: To investigate the feasibility of diffusion-weighted (DW) echo-planar imaging (EPI) for measuring different functional conditions of the parotid gland and to compare different measurement approaches. Materials and Methods: Parotid glands of 27 healthy volunteers were examined with a DW EPI sequence (TR 1,500 msec, TE 77 msec, field-of-view 250 x 250 mm, pixel size 2.10 x 1.95 mm, section thickness 5 mm) before and after oral stimulation with commercially available lemon juice. The b factors used were 0, 500, and 1,000 sec/mm{sup 2}. Apparent diffusion coefficient (ADC) maps were digitally transferred to MRIcro (Chris Rorden, University of Nottingham, Great Britain) and evaluated with a manually placed circular region of interest (ROI) containing 100-200 pixel. Additional ROIs including the entire parotid gland were placed on either side. The results of both measurements were compared, using the Student's t test based on the median ADC values for each person. A two-tailed p-value of less than.05 was determined to indicate statistical significance. To compare both measurement approaches, the Pearson's correlation coefficient (r) was calculated. Results: Diffusion-weighted echo-planar MR imaging successfully visualized the parotid gland of all volunteers. In a first step, the median ADC value per person was computed. Using ROIs of 100-200 pixels, the mean was calculated to be 1.08 x 10{sup -3} mm{sup 2}/sec{+-}0.12 x 10{sup -3} mm{sup 2}/sec for both parotid glands prior to simulation. After stimulation, the mean ADC was measured at 1.15 x 10{sup -3} mm{sup 2}/sec{+-}0.11 x 10{sup -3} mm{sup 2}/sec for both parotid glands. Evaluating the entire parotid gland, the ADC was 1.12 x 10{sup -3} mm{sup 2}/sec{+-}0.08 x 10{sup -3} mm{sup 2}/sec prior to simulation, whereas the ADC increased to 1.18 x 10{sup -3} mm{sup 2}/sec{+-}0.09 x 10{sup -3} mm{sup 2}/sec after simulation with lemon juice. For both types of measurements, the increase in ADC after

  6. Non-invasive quantification of hepatic steatosis in living, related liver donors using dual-echo Dixon imaging and single-voxel proton spectroscopy

    International Nuclear Information System (INIS)

    Krishan, S.; Jain, D.; Bathina, Y.; Kale, A.; Saraf, N.; Saigal, S.; Choudhary, N.; Baijal, S.S.; Soin, A.

    2016-01-01

    Aim: To evaluate the diagnostic implications of hepatic fat fraction calculated using dual-echo Dixon imaging and "1H magnetic resonance spectroscopy (MRS) to detect hepatic steatosis in potential liver donors using histopathology as the reference standard. Materials and methods: One hundred and forty-five potential liver donors were included in the study. Magnetic resonance imaging (MRI) was performed using a 1.5 T system using a three-dimensional dual-echo MRI sequence with automated reconstruction of in-phase (IP), out-of-phase (OP), fat-signal-only, and water-signal-only images. Hepatic fat fraction was calculated by drawing 15 regions of interest on the IP, OP, fat-only, and water-only images. Single-voxel MRS was performed at echo times (TEs) of 30 ms in the right and left lobes of liver. Liver fat fraction was calculated from water and fat peaks. One hundred and forty-five biopsies were prospectively evaluated for steatosis by a pathologist using traditional determination of the cell-count fraction. MRI and pathology values of steatosis were correlated using Pearson's correlation coefficient. The sensitivity and specificity of each of these methods was calculated using histopathology as the reference standard. Reproducibility was assessed in 40 patients who had repeat scanning within 4–40 days. Measurement error was calculated from the coefficient of variation (CoV) with histopathologically proven <5% fat (n=112). Results: The Bland–Altman limits of agreement with 95% confidence intervals (CI) was –2.9 to 5.3%. The intraclass correlation coefficient (ICC) for interobserver variability and reproducibility was 0.94 (95% CI: 0.91–0.97), 0.92 (95% CI: 0.91–0.97). The CoV was 7.6% (95% CI: 3.4–11.85). The area under the receiver operating characteristic (ROC) curve (AUC) for Dixon imaging 0.89 (95% CI: 0.87–0.91), for MRS 0.88 (95% CI: 0.86–0.90). The sensitivity for detecting <5% fat was 84% and specificity was 90%. Conclusion: Combination of

  7. Assessment of diagnosing metastatic bone tumor on T2*-weighted images. Comparison between turbo spin echo (TSE) method and gradient echo (GE) method

    International Nuclear Information System (INIS)

    Hayashi, Takahiko; Sugiyama, Akira; Katayama, Motoyuki

    1996-01-01

    We examined the usefulness of T2 * weighted gradient field echo images for diagnosis for metastatic bone tumors in comparison with T2 weighted turbo spin echo (fast spin echo) images. In T2 * weighted gradient field echo sequence to obtain maximum contrast-to-noise ratio (CNR), we experimentally manipulated flip angle (FA) (5deg-90deg), repetition time (TR) (400, 700 msec), and echo time (TE) (10-50 msec). The best CNR was 16.4 in fast low angle shot (FLASH) (TE: 24 msec, TR: 700 msec, FA: 40deg). Magnetic resonance imaging was carried out in 28 patients with metastatic bone tumors. In addition to conventional T1 weighted spin echo images, T2 weighted turbo spin echo (fast spin echo images) and T2 * weighted gradient field echo images were obtained. T2 * weighted gradient field echo images were superior to T2 weighted turbo spin echo (fast spin echo) images in delineating the tumors, adjacent fat tissues, and bone marrow. (author)

  8. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, L.B.; Trandafir, D.L. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Turcu, R.V.F. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Todea, M. [Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania)

    2016-11-01

    Highlights: • Dysprosium containing silica microparticles obtained by freeze and spray drying. • Higher structural units interconnection achieved in freeze vs. spray dried samples. • Dy occurance on the outermost layer of the microparticles evidenced by XPS. • Enhanced MRI contrast observed for freeze dried samples with 5% mol Dy{sub 2}O{sub 3}. - Abstract: The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, {sup 29}Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T{sub 1} and RARE-T{sub 2} protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T{sub 2}-weighted MRI contrast properties.

  9. Functional MRI of the cervical spine after distortion injury; MR-Funktionsdiagnostik der Halswirbelsaeule nach Schleudertrauma

    Energy Technology Data Exchange (ETDEWEB)

    Schnarkowski, P. [Muenchen Univ. (Germany). Inst. fuer Radiologische Diagnostik; Weidenmaier, W. [Muenchen Univ. (Germany). Inst. fuer Radiologische Diagnostik; Heuck, A. [Muenchen Univ. (Germany). Inst. fuer Radiologische Diagnostik; Reiser, M.F. [Muenchen Univ. (Germany). Inst. fuer Radiologische Diagnostik

    1995-04-01

    50 patients with a history of distortion injury of the cervical spine were examined with static and functional MRI. Functional MRI consisted of different patient`s positions from maximal extension to maximal flexion (30 , 0 , 25 , 40 , 50 ). T{sub 2}*-weighted gradient echo sequences were performed in a sagittal view for the different positions. Ligamentous instabilities and disc protrusions were seen only in functional MRI in 17 patients. These findings correlated with the neurological symptoms. Two patients were treated by operative fusion because of these findings. (orig.) [Deutsch] Bei 50 Patienten mit einem Schleudertrauma der Halswirbelsaeule wurden zu den statischen Magnetresonanztomogrammen der Halswirbelsaeule MR-Funktionsaufnahmen durchgefuehrt. Diese Funktionsaufnahmen erfolgten in 5 verschiedenen Flexionsgraden von maximaler Reklination bis zur maximalen Inklination (30 , 0 , 25 , 40 , 50 ). T{sub 2}*-gewichtete Gradienten-Echo-Sequenzen in sagittaler Schnittfuehrung wurden fuer jeden Flexionsgrad angefertigt. Bandinstabilitaeten und Bandscheibenvorwoelbungen konnten bei 17 Patienten nur in bestimmten Flexionsgraden erfasst werden. Diese 17 Patienten zeigten eine umschriebene neurologische Symptomatik, die von ihrer Lokalisation mit den in der MR-Funktionsdiagnostik erhobenen Befunden korrelierten. Zwei Patienten wurden aufgrund diese Befunde mit einer operativen Fusion therapiert. (orig.)

  10. Clinical studies of cerebral arteriosclerosis in diabetic subjects. Analysis with brain MRI study

    International Nuclear Information System (INIS)

    Ohashi, Makoto; Tanahashi, Hideo; Nomura, Makoto; Yamada, Yoshio; Abe, Hiroshi.

    1994-01-01

    In order to investigate the clinical characteristics of cerebral arteriosclerosis in diabetic subjects, brain MRI studies were conducted in diabetic patients and healthy subjects. The subjects were 93 diabetic patients without symptoms and signs of cerebral infarction (49 males and 44 females) with a mean age of 59 years and 73 healthy subjects (43 males and 30 females) with a mean age of 57 years. The MRI studies were performed on a General Electric 1.5-T signa system. The spin-echo technique (T2-weighted image) was used with a pulse repetition time (TR) of 2,500 msec and echo time (TE) of 80 msec. The quantitative evaluation of cerebral infarction was assessed using personal computer and image-scanner. By MRI, the incidence of cerebral infarction in diabetic patients was significantly higher than that in healthy subjects (30.1% vs. 13.7%, respectively, p<0.05). The mean age of the diabetic patients with cerebral infarctions was higher than that of those without cerebral infarctions. Hypertension and diabetic nephropathy were present more frequently in the subjects with cerebral infarctions. These data suggest that it is important to delay the onset and slow the progression of cerebral infarction in diabetic patients by strict blood glucose control and management of blood pressure. (author)

  11. MRI Visualization of Staphyloccocus aureus-Induced Infective Endocarditis in Mice

    Science.gov (United States)

    Ring, Janine; Hoerr, Verena; Tuchscherr, Lorena; Kuhlmann, Michael T.; Löffler, Bettina; Faber, Cornelius

    2014-01-01

    Infective endocarditis (IE) is a severe and often fatal disease, lacking a fast and reliable diagnostic procedure. The purpose of this study was to establish a mouse model of Staphylococcus aureus-induced IE and to develop a MRI technology to characterize and diagnose IE. To establish the mouse model of hematogenous IE, aortic valve damage was induced by placing a permanent catheter into right carotid artery. 24 h after surgery, mice were injected intravenously with either iron particle-labeled or unlabeled S. aureus (strain 6850). To distinguish the effect of IE from mere tissue injury or recruited macrophages, subgroups of mice received sham surgery prior to infection (n = 17), received surgery without infection (n = 8), or obtained additionally injection of free iron particles to label macrophages (n = 17). Cardiac MRI was performed 48 h after surgery using a self-gated ultra-short echo time (UTE) sequence (TR/TE, 5/0.31 ms; in-plane/slice, 0.125/1 mm; duration, 12∶08 min) to obtain high-resolution, artifact-free cinematographic images of the valves. After MRI, valves were either homogenized and plated on blood agar plates for determination of bacterial titers, or sectioned and stained for histology. In the animal model, both severity of the disease and mortality increased with bacterial numbers. Infection with 105 S. aureus bacteria reliably caused endocarditis with vegetations on the valves. Cinematographic UTE MRI visualised the aortic valve over the cardiac cycle and allowed for detection of bacterial vegetations, while mere tissue trauma or labeled macrophages were not detected. Iron labeling of S. aureus was not required for detection. MRI results were consistent with histology and microbial assessment. These data showed that S. aureus-induced IE in mice can be detected by MRI. The established mouse model allows for investigation of the pathophysiology of IE, testing of novel drugs and may serve for the development of a clinical diagnostic

  12. Usefulness of fluid attenuated inversion recovery(FLAIR) image in mesial temporal sclerosis : comparison with turbo spin-echo T2-weighted image

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seok Hyun; Chang, Seung Kuk; Eun, Choong Ki [Pusan Paik Hospital, Inje Univ. College of Medicine, Kimhae (Korea, Republic of)

    1999-12-01

    To determine the usefulness of fluid attenuated inversion recovery(FLAIR) imaging for the in detection of high signal intensity of hippocampus or amygdala in mesial temporal sclerosis (MTS), compared with that of turbo spin-echo T2-weighted imaging. Two neuroradiologists independently analyzed randomly mixed MR images of 20 lesions of 17 patients in whom MTS had been diagnosed, and ten normal controls. All subjects underwent both who performed both FLAIR and turbo spin-echo T2-weighted imaging, in a blind fashion. In order to determine hippocampal morphology, oblique coronal images perpendicular to the long axis of the hippocampus were obtained. The detection rate of high signal intensity in hippocampus or amygdala, the radiologists' preferred imaging sequence, and intersubject consistency of detection were evaluated. Signal intensity in hippocampus or amygdala was considered high if substantially higher than signal intensity in the cortex of adjacent temporo-parietal lobe. In all normal controls, FLAIR and spin-echo T2-weighted images showed normal signal intensity in hippocampus or amygdala. In MTS, the mean detection rate of high signal intensity in hippocampus or amygdala, as seen on FLAIR images was 93%, compared with 43% on spin-echo T2-weighted images. In all cases in which signal intensity on FLAIR images was normal, signal intensity on spin-echo T2-weighted images was also normal. The radiologists preferred the contrast properties of FLAIR to those of spin-echo T2-weighted images. In the diagnosis of MTS using MRI, FLAIR images are more useful for the detection of high signal intensity of hippocampus or amygdala than are spin-echo T2-weighted images. In the diagnosis of MTS, FLAIR imaging is therefore a suitable alternative to spin-echo T2-weighted imaging.

  13. Usefulness of fluid attenuated inversion recovery(FLAIR) image in mesial temporal sclerosis : comparison with turbo spin-echo T2-weighted image

    International Nuclear Information System (INIS)

    Son, Seok Hyun; Chang, Seung Kuk; Eun, Choong Ki

    1999-01-01

    To determine the usefulness of fluid attenuated inversion recovery(FLAIR) imaging for the in detection of high signal intensity of hippocampus or amygdala in mesial temporal sclerosis (MTS), compared with that of turbo spin-echo T2-weighted imaging. Two neuroradiologists independently analyzed randomly mixed MR images of 20 lesions of 17 patients in whom MTS had been diagnosed, and ten normal controls. All subjects underwent both who performed both FLAIR and turbo spin-echo T2-weighted imaging, in a blind fashion. In order to determine hippocampal morphology, oblique coronal images perpendicular to the long axis of the hippocampus were obtained. The detection rate of high signal intensity in hippocampus or amygdala, the radiologists' preferred imaging sequence, and intersubject consistency of detection were evaluated. Signal intensity in hippocampus or amygdala was considered high if substantially higher than signal intensity in the cortex of adjacent temporo-parietal lobe. In all normal controls, FLAIR and spin-echo T2-weighted images showed normal signal intensity in hippocampus or amygdala. In MTS, the mean detection rate of high signal intensity in hippocampus or amygdala, as seen on FLAIR images was 93%, compared with 43% on spin-echo T2-weighted images. In all cases in which signal intensity on FLAIR images was normal, signal intensity on spin-echo T2-weighted images was also normal. The radiologists preferred the contrast properties of FLAIR to those of spin-echo T2-weighted images. In the diagnosis of MTS using MRI, FLAIR images are more useful for the detection of high signal intensity of hippocampus or amygdala than are spin-echo T2-weighted images. In the diagnosis of MTS, FLAIR imaging is therefore a suitable alternative to spin-echo T2-weighted imaging

  14. Value of multiparametric prostate MRI of the peripheral zone

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, Anja M.; Michaely, Henrik J.; Schoenberg, Stefan O.; Dinter, Dietmar J. [University Medical Center Mannheim, Mannheim (Germany). Dept. of Clinical Radiology and Nuclear Medicine; Lemke, Andreas [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Breitinger, Lutz [Privatpraxis fuer Urologie Dr. med. Lutz Breitinger, Mannheim (Germany); Wenz, Frederik [University Medical Center Mannheim, Mannheim (Germany). Dept. of Radiation Oncology; Marx, Alexander [University Hospital Mannheim, Mannheim (Germany). Dept. of Pathology

    2011-07-01

    Rationale and Objectives: MRI of the prostate offers the possibility to localize and stage prostate cancer and may improve detection of disease. Currently, T2-weighted images and spectroscopy are the most commonly used MRI techniques. To assess the value of prostate MRI and its different modalities in the process of diagnosis, the currently available MRI techniques were compared. Materials and Methods: 16 patients were examined on a 1.5 T MR system. All patients underwent the same MR protocol using an endorectal coil: T2-weighted triplanar turbo-spin-echo (TSE), axial echo-planar diffusion-weighted imaging (DWI), 3D chemical-shift imaging MR spectroscopy (MRS) and axial dynamic-contrast-enhanced TurboFLASH (DCE). Parametric maps of the choline+creatine/citrate ratio (CC-CR), apparent diffusion coefficient (ADC) and plasma flow/mean transit time (PF/MTT) were calculated. Additionally, average time for reading and scanning were evaluated. As reference, biopsy results were used. Results: Sensitivity/specificity were 50.0-85.7%/44.4-72.2% for the T2 weighted images, 78.6-100.0%/38.9-55.6% for the ADC maps, 71.4-85.7%/44.4-55.6% for the PF/MTT maps and 64.3-78.6%/50.0-77.8% for the CC-CR. Average scan and reading time were 8:46/1:54 min for T2, 1:28/3:17 min for DWI, 8:41/2:12 min for DCE and 11:36/3:47 for spectroscopy. Conclusion: We found no significant differences in accuracy between the modalities. We observed DWI to be advantageous in examination and reading compared to DCE and MRS, therefore it might be the preferred modality when a shortened protocol is needed. (orig.)

  15. fMRI of the motor speech center using EPI

    International Nuclear Information System (INIS)

    Yu, In Kyu; Chang, Kee Hyun; Song, In Chan; Kim, Hong Dae; Seong, Su Ok; Jang, Hyun Jung; Han, Moon Hee; Lee, Sang Kun

    1998-01-01

    The purpose of this study is to evaluate the feasibility of functional MR imaging (fMRI) using the echo planar imaging (EPI) technique to map the motor speech center and to provide the basic data for motor speech fMRI during internal word generations. This study involved ten young, healthy, right-handed volunteers (M:F=8:2; age: 21-27); a 1.5T whole body scanner with multislice EPI was used. Brain activation was mapped using gradient echo single shot EPI (TR/TE of 3000/40, slice numbers 6, slice thicknesses mm, no interslice gap, matrix numbers 128 x 128, and FOV 30 x 30). The paradigm consisted of a series of alternating rest and activation tasks, repeated eight times. During the rest task, each of ten Korean nouns composed of two to four syllables was shown continuously every 3 seconds. The subjects were required to see the words but not to generate speech, whereas during the activation task, they were asked to internally generate as many words as possible from each of ten non-concrete one-syllabled Korean letters shown on the screen every 3 seconds. During an eight-minute period, a total of 960 axial images were acquired in each subject. Data were analyzed using the Z-score (p<0.05), and following color processing, the activated signals were overlapped on T1-weighted images. The location of the activated area, mean activated signal intensity were evaluated. The results of this study indicate that in most subjects, fMRI using EPI can effectively map the motor speech center. The data obtained may be useful for the clinical application of fMRI. (author). 34 refs., 3 tabs., 5 figs

  16. Analysis of dysarthria in amyotrophic lateral sclerosis; MRI of the tongue and formant analysis of vowels

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Sakae; Arasaki, Keisuke (Hitachi General Hospital, Ibaraki (Japan)); Nagata, Hiroshi; Shouji, Shinichi

    1994-03-01

    To evaluate dysarthria in patients with ALS, we used MRI (gradient rephasing echo method) and compared it with the computed acoustic analysis. Five ALS male patients of progressive bulbar palsy type and five normal males were asked to phonate the five Japanese vowels, /a/[center dot]/i/[center dot]/u/[center dot]/e/[center dot]/o/. MRI of the sagittal tongue and vocal tract was obtained by the gradient rephasing echo method (0.2 Tesla, TR: 30 ms, TE: 10 ms, FA: 25degC, Hitachi). We could clearly visualized the change of tongue shape and the narrow site of the vocal tract for each vowel phonation. In normal subjects, the tongue shape and the narrow site of the vocal tract were distinguishable between each vowel, but unclear in ALS. Acoustic analysis showed that the first formant frequency of /i/[center dot]/u/ in ALS was higher than normal and the second formant frequency of /i/[center dot]/e/ in ALS was significantly lower than normal. The discrepancy from the normal first, second and third formant frequency for each vowel of ALS was most seen in /i/[center dot]/ e/. It was speculated that /i/ and /e/ were the most disturbed vowels in ALS. The first and second formant frequency of vowel depends on the tongue shape and the width of the oral cavity. Therefore the results of the acoustic analysis in ALS indicated poor movement of tongue in /i/[center dot]/u/[center dot]/e/ and were compatible with the findings of the sagittal tongue MRI. The sagittal view of the tongue in the gradient rephasing echo MRI and the acoustic analysis are useful in evaluating dysarthria in ALS. (author).

  17. Contrast-enhanced Magnetic Resonance Imaging of Pelvic Bone Metastases at 3.0 T: Comparison Between 3-dimensional T1-weighted CAIPIRINHA-VIBE Sequence and 2-dimensional T1-weighted Turbo Spin-Echo Sequence.

    Science.gov (United States)

    Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee

    2018-06-12

    This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.

  18. Reducing task-based fMRI scanning time using simultaneous multislice echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Mate [Hungarian Academy of Sciences, Brain Imaging Centre, Research Centre for Natural Sciences, Budapest (Hungary); Janos Szentagothai PhD School, MR Research Centre, Budapest (Hungary); National Institute of Clinical Neuroscience, Department of Neuroradiology, Budapest (Hungary); Hermann, Petra; Vidnyanszky, Zoltan; Gal, Viktor [Hungarian Academy of Sciences, Brain Imaging Centre, Research Centre for Natural Sciences, Budapest (Hungary)

    2018-03-15

    To maintain alertness and to remain motionless during scanning represent a substantial challenge for patients/subjects involved in both clinical and research functional magnetic resonance imaging (fMRI) examinations. Therefore, availability and application of new data acquisition protocols allowing the shortening of scan time without compromising the data quality and statistical power are of major importance. Higher order category-selective visual cortical areas were identified individually, and rapid event-related fMRI design was used to compare three different sampling rates (TR = 2000, 1000, and 410 ms, using state-of-the-art simultaneous multislice imaging) and four different scanning lengths to match the statistical power of the traditional scanning methods to high sampling-rate design. The results revealed that ∝ 4 min of the scan time with 1 Hz (TR = 1000 ms) sampling rate and ∝ 2 min scanning at ∝ 2.5 Hz (TR = 410 ms) sampling rate provide similar localization sensitivity and selectivity to that obtained with 11-min session at conventional, 0.5 Hz (TR = 2000 ms) sampling rate. Our findings suggest that task-based fMRI examination of clinical population prone to distress such as presurgical mapping experiments might substantially benefit from the reduced (20-40%) scanning time that can be achieved by the application of simultaneous multislice sequences. (orig.)

  19. Comparison of a fast 5-min knee MRI protocol with a standard knee MRI protocol. A multi-institutional multi-reader study

    Energy Technology Data Exchange (ETDEWEB)

    FitzGerald Alaia, Erin; Beltran, Luis S.; Garwood, Elisabeth; Burke, Christopher J.; Gyftopoulos, Soterios [NYU Langone Medical Center, Department of Radiology, Musculoskeletal Division, New York, NY (United States); Benedick, Alex [Case Western Reserve University, School of Medicine, Cleveland, OH (United States); Obuchowski, Nancy A. [Cleveland Clinic, Department of Quantitative Health Sciences, Cleveland, OH (United States); Polster, Joshua M.; Schils, Jean; Subhas, Naveen [Cleveland Clinic, Department of Radiology, Musculoskeletal Division, Cleveland, OH (United States); Chang, I. Yuan Joseph [Texas Scottish Rite Hospital for Children, Dallas, TX (United States)

    2018-01-15

    To compare diagnostic performance of a 5-min knee MRI protocol to that of a standard knee MRI. One hundred 3 T (100 patients, mean 38.8 years) and 50 1.5 T (46 patients, mean 46.4 years) MRIs, consisting of 5 fast, 2D multi-planar fast-spin-echo (FSE) sequences and five standard multiplanar FSE sequences, from two academic centers (1/2015-1/2016), were retrospectively reviewed by four musculoskeletal radiologists. Agreement between fast and standard (interprotocol agreement) and between standard (intraprotocol agreement) readings for meniscal, ligamentous, chondral, and bone pathology was compared for interchangeability. Frequency of major findings, sensitivity, and specificity was also tested for each protocol. Interprotocol agreement using fast MRI was similar to intraprotocol agreement with standard MRI (83.0-99.5%), with no excess disagreement (≤ 1.2; 95% CI, -4.2 to 3.8%), across all structures. Frequency of major findings (1.1-22.4% across structures) on fast and standard MRI was not significantly different (p ≥ 0.215), except more ACL tears on fast MRI (p = 0.021) and more cartilage defects on standard MRI (p < 0.001). Sensitivities (59-100%) and specificities (73-99%) of fast and standard MRI were not significantly different for meniscal and ligament tears (95% CI for difference, -0.08-0.08). For cartilage defects, fast MRI was slightly less sensitive (95% CI for difference, -0.125 to -0.01) but slightly more specific (95% CI for difference, 0.01-0.5) than standard MRI. A fast 5-min MRI protocol is interchangeable with and has similar accuracy to a standard knee MRI for evaluating internal derangement of the knee. (orig.)

  20. Comparison of a fast 5-min knee MRI protocol with a standard knee MRI protocol. A multi-institutional multi-reader study

    International Nuclear Information System (INIS)

    FitzGerald Alaia, Erin; Beltran, Luis S.; Garwood, Elisabeth; Burke, Christopher J.; Gyftopoulos, Soterios; Benedick, Alex; Obuchowski, Nancy A.; Polster, Joshua M.; Schils, Jean; Subhas, Naveen; Chang, I. Yuan Joseph

    2018-01-01

    To compare diagnostic performance of a 5-min knee MRI protocol to that of a standard knee MRI. One hundred 3 T (100 patients, mean 38.8 years) and 50 1.5 T (46 patients, mean 46.4 years) MRIs, consisting of 5 fast, 2D multi-planar fast-spin-echo (FSE) sequences and five standard multiplanar FSE sequences, from two academic centers (1/2015-1/2016), were retrospectively reviewed by four musculoskeletal radiologists. Agreement between fast and standard (interprotocol agreement) and between standard (intraprotocol agreement) readings for meniscal, ligamentous, chondral, and bone pathology was compared for interchangeability. Frequency of major findings, sensitivity, and specificity was also tested for each protocol. Interprotocol agreement using fast MRI was similar to intraprotocol agreement with standard MRI (83.0-99.5%), with no excess disagreement (≤ 1.2; 95% CI, -4.2 to 3.8%), across all structures. Frequency of major findings (1.1-22.4% across structures) on fast and standard MRI was not significantly different (p ≥ 0.215), except more ACL tears on fast MRI (p = 0.021) and more cartilage defects on standard MRI (p < 0.001). Sensitivities (59-100%) and specificities (73-99%) of fast and standard MRI were not significantly different for meniscal and ligament tears (95% CI for difference, -0.08-0.08). For cartilage defects, fast MRI was slightly less sensitive (95% CI for difference, -0.125 to -0.01) but slightly more specific (95% CI for difference, 0.01-0.5) than standard MRI. A fast 5-min MRI protocol is interchangeable with and has similar accuracy to a standard knee MRI for evaluating internal derangement of the knee. (orig.)

  1. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, M.; Abe, K.; Yanagihara, T.; Sakoda, S. [Dept. of Neurology D4, Osaka Univ. Graduate School of Medicine, Suita City, Osaka (Japan); Tanaka, H.; Hirabuki, N.; Nakamura, H.; Fujita, N. [Dept. of Radiology, Osaka Univ. Graduate School of Medicine, Suita City, Osaka (Japan)

    2003-03-01

    Somatotopic representation in the cerebral cortex of somatosensory stimulation has been widely reported, but that in the cerebellum has not. We investigated the latter in the human cerebellum by functional MRI (fMRI). Using a 1.5 tesla imager, we obtained multislice blood oxygen level-dependent fMRI with single-shot gradient-echo echoplanar imaging in seven right-handed volunteers during electrical stimulation of the left index finger and big toe. In the anterior and posterior cerebellum, activated pixels for the index finger were separate from those for the toe. This suggests that somatosensory stimulation of different parts of the body may involve distinct areas of in the cerebellum as well as the cerebral cortex. (orig.)

  2. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum

    International Nuclear Information System (INIS)

    Takanashi, M.; Abe, K.; Yanagihara, T.; Sakoda, S.; Tanaka, H.; Hirabuki, N.; Nakamura, H.; Fujita, N.

    2003-01-01

    Somatotopic representation in the cerebral cortex of somatosensory stimulation has been widely reported, but that in the cerebellum has not. We investigated the latter in the human cerebellum by functional MRI (fMRI). Using a 1.5 tesla imager, we obtained multislice blood oxygen level-dependent fMRI with single-shot gradient-echo echoplanar imaging in seven right-handed volunteers during electrical stimulation of the left index finger and big toe. In the anterior and posterior cerebellum, activated pixels for the index finger were separate from those for the toe. This suggests that somatosensory stimulation of different parts of the body may involve distinct areas of in the cerebellum as well as the cerebral cortex. (orig.)

  3. Synthesis and characterization of Gadolinium-Lectin conjugates as selective blood-vessel contrast agents for magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Pashkunova-Martic, I.

    2004-11-01

    Molecular imaging without use of ionizing radiation has recently been developed for both magnetic resonance and ultrasound imaging (MRI, US) and is expected to play a major future role in diagnosis and monitoring of tumours. In MRI, targeted nanoparticle contrast media (CM) with high relaxivities are required in order to obtain adequate signal-to-noise ratios, due to the low number of target sites. The size, charge and chemical constitution of the targeted nanoparticle CM are expected to influence nanoparticle interactions with cells and tissue elements significantly, and hence the targeting, the accumulation and dwell time at the targeted site, and the type and rate of clearance of the nanoparticles. The work reported here aims to characterise and optimise these parameters in mouse and human models, using nanoparticles targeted to a major carbohydrate determinant of the endothelial cell surface which is present in all blood vessels. Specific binding to the endothelium was demonstrated in both living and chemically fixed human vessels and in mice. Long-standing spin-echo and FLASH-3D images were obtained in the vasculature of living mice, in strong contrast to the rapid renal clearance of gadolinium-DTPA chelates which are widely used in the clinic. Nanoparticle size was found to be a major determinant of the biological response, and our data indicate that an optimal nanoparticle size lies between 50-100 nm diameter. We expect that hyperpermeable vessels present in tumours will permit targeting of optimised nanoparticles to the tumour cells, permitting MRI monitoring of the tumour. (author)

  4. Diffusion MRI findings in phenylketonuria

    International Nuclear Information System (INIS)

    Sener, R.N.

    2003-01-01

    Two patients with phenylketonuria were studied who were under dietary control since infancy, and who were mentally normal. Diffusion MRI was obtained using a spin-echo, echo-planar sequence with a gradient strength of 30 mT/m at 1.5 T. A trace sequence (TR=5700 ms, and TE=139 ms) was used, acquired in 22 s. Heavily diffusion-weighted (b=1000 mm 2 /s) images, and the apparent diffusion coefficient (ADC) values from automatically generated ADC maps were studied. There were two different patterns in these two patients, restricted and increased diffusion patterns. Restricted diffusion pattern consisted of high-signal on b=1000 s/mm 2 images with low ADC values ranging from 0.46 to 0.57 x 10 -3 mm 2 /s. Increased diffusion pattern consisted of normal b=1000 s/mm 2 images with high ADC values ranging from 1.37 to 1.63 x 10 -3 mm 2 /s. It is likely that these values reflected presence of two different histopathological changes in phenylketonuria or reflected different stages of the same disease. (orig.)

  5. Cerebral microbleeds, cognitive impairment, and MRI in patients with diabetes mellitus.

    Science.gov (United States)

    Zhou, Hong; Yang, Juan; Xie, Peihan; Dong, Yulan; You, Yong; Liu, Jincai

    2017-07-01

    Cerebral microbleeds (CMBs), a typical imaging manifestation marker of sporadic cerebral small vessel disease, play a critical role in vascular cognitive impairment, which is often accompanied by diabetes mellitus (DM). Hence, CMBs may, in part, be responsible for the occurrence and development of cognitive impairment in patients with diabetes. Novel magnetic resonance imaging (MRI) sequences, such as susceptibility-weighted imaging and T2*-weighted gradient-echo, have the capability of noninvasively revealing CMBs in the brain. Moreover, a correlation between CMBs and cognitive impairment in patients with diabetes has been suggested in applications of functional MRI (fMRI). Since pathological changes in the brain occur prior to observable decline in cognitive function, neuroimaging may help predict the progression of cognitive impairment in diabetic patients. In this article, we review the detection of CMBs using MRI in diabetic patients exhibiting cognitive impairment. Future studies should emphasize the development and establishment of a novel MRI protocol, including fMRI, for diabetic patients with cognitive impairment to detect CMBs. A reliable MRI protocol would also be helpful in understanding the pathological mechanisms of cognitive impairment in this important patient population. Copyright © 2017. Published by Elsevier B.V.

  6. Comparison of neuroendocrine tumor detection and characterization using DOTATOC-PET in correlation with contrast enhanced CT and delayed contrast enhanced MRI

    International Nuclear Information System (INIS)

    Giesel, F.L.; Kratochwil, C.; Mehndiratta, A.; Wulfert, S.; Moltz, J.H.; Zechmann, C.M.; Kauczor, H.U.; Haberkorn, U.; Ley, S.

    2012-01-01

    Purpose: We evaluated the rate of successful characterization of gastroenteropancreatic neuroendocrine tumors (NETs) present with an increased somatostatin receptor, comparing CE-CT with CE-MRI, each in correlation with DOTATOC-PET. Methods and materials: 8 patients with GEP-NET were imaged using CE-MRI (Gd-EOB-DTPA), CE-CT (Imeron 400) and DOTATOC-PET. Contrast-enhancement of normal liver-tissue and metastasis was quantified with ROI-technique. Tumor delineation was assessed with visual-score in blind-read-analysis by two experienced radiologists. Results: Out of 40 liver metastases in patients with NETs, all were detected by CE-MRI and the lesion extent could be adequately assessed, whereas CT failed to detect 20% of all metastases. The blind-read-score of CT in arterial and portal phase was median −0.65 and −1.4, respectively, and 2.7 for delayed-MRI. The quantitative ROI-analysis presented an improved contrast-enhancement-ratio with a median of 1.2, 1.6 and 3.3 for CE-CT arterial, portal-phase and delayed-MRI respectively. Conclusion: Late CE-MRI was superior to CE-CT in providing additionally morphologic characterization and exact lesion extension of hepatic metastases from neuroendocrine tumor detected with DOTATOC-PET. Therefore, late enhanced Gd-EOB-DTPA-MRI seems to be the adequate imaging modality for combination with DOTATOC-PET to provide complementary (macroscopic and molecular) tumor characterization in hepatic metastasized NETs

  7. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Rusu, Mirabela, E-mail: mirabela.rusu@gmail.com; Wang, Haibo; Madabhushi, Anant [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Golden, Thea; Gow, Andrew [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-08-15

    Purpose: Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors’ framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. Methods: The authors’ image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. Results: The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology—MRI fusion, in the context of an initial use case involving characterization of chronic

  8. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model

    International Nuclear Information System (INIS)

    Rusu, Mirabela; Wang, Haibo; Madabhushi, Anant; Golden, Thea; Gow, Andrew

    2015-01-01

    Purpose: Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors’ framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. Methods: The authors’ image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. Results: The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology—MRI fusion, in the context of an initial use case involving characterization of chronic

  9. Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration

    OpenAIRE

    Benneker, Lorin M.; Heini, Paul F.; Anderson, Suzanne E.; Alini, Mauro; Ito, Keita

    2004-01-01

    Degenerative disc disease (DDD) is a common finding in MRI scans and X-rays. However, their correlation to morphological and biochemical changes is not well established. In this study, radiological and MRI parameters of DDD were assessed and compared with morphological and biochemical findings of disc degeneration. Thirty-nine human lumbar discs (L1–S1), age 19–86 years, were harvested from eight cadavers. Within 48 h postmortem, MRIs in various spin-echo sequences and biplanar radiographs of...

  10. Let's go out of the breast: Prevalence of extra-mammary findings and their characterization on breast MRI

    International Nuclear Information System (INIS)

    Moschetta, Marco; Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe

    2014-01-01

    Purpose: The aim of this study is to assess the prevalence, the site and the nature of extra-mammary findings on breast magnetic resonance imaging (MRI) and to determine its accuracy in the characterization of the discovered lesions. Materials and methods: A retrospective review of 308 female patients (mean age 50 ± 20) who underwent breast MRI with 1.5 T device was performed. 125 out of 308 (40.5%) had a positive personal history of breast cancer (pre-operative n = 80; follow-up n = 45), while the remaining 183 without history of breast cancer (high familiar risk for breast cancer n = 80; dense breast n = 103). All incidental findings were characterized by means of additional imaging (US; Bone scintigraphy-MRI; CT-PET-CT). Results: 59 incidental findings were found in 53/308 (17%) examined patients. 9/59 incidental findings (15%) were confirmed to be malignant while the remaining 50/59 (84%) benign. The most common site was the liver (33/59; 55.8%), followed by the lung (6/59; 10.1%), bone (6/59; 10.1%), diaphragm (6/59; 10.1%) spleen (3/59; 5%), kidney (2/59; 3.4%), gall bladder (1/5; 1.5%), ascending aorta (1/59; 1.5%), thyroid (1/59; 1.5%). The incidence of malignant incidental findings resulted to be higher in the group of patients with personal breast cancer (36%) than in the other one (8%). By comparing MRI findings with the additional definitive imaging tools, breast MRI allowed a correct diagnosis in 58/59 cases with a diagnostic accuracy value of 98%. Conclusion: Incidental extramammary findings on breast MRI are common. Benign lesions represent the most frequent findings, however malignant ones need to be searched especially in patients with personal history of breast cancer because they could influence the clinical patient management. Breast MRI can characterize incidental findings with high accuracy value

  11. Let's go out of the breast: Prevalence of extra-mammary findings and their characterization on breast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Moschetta, Marco, E-mail: marco.moschetta@gmail.com; Telegrafo, Michele, E-mail: mikitele@hotmail.it; Rella, Leonarda, E-mail: lea.rella@gmail.com; Stabile Ianora, Amato Antonio, E-mail: a.stabile@radiologia.uniba.it; Angelelli, Giuseppe, E-mail: g.angellelli@radiologia.uniba.it

    2014-06-15

    Purpose: The aim of this study is to assess the prevalence, the site and the nature of extra-mammary findings on breast magnetic resonance imaging (MRI) and to determine its accuracy in the characterization of the discovered lesions. Materials and methods: A retrospective review of 308 female patients (mean age 50 ± 20) who underwent breast MRI with 1.5 T device was performed. 125 out of 308 (40.5%) had a positive personal history of breast cancer (pre-operative n = 80; follow-up n = 45), while the remaining 183 without history of breast cancer (high familiar risk for breast cancer n = 80; dense breast n = 103). All incidental findings were characterized by means of additional imaging (US; Bone scintigraphy-MRI; CT-PET-CT). Results: 59 incidental findings were found in 53/308 (17%) examined patients. 9/59 incidental findings (15%) were confirmed to be malignant while the remaining 50/59 (84%) benign. The most common site was the liver (33/59; 55.8%), followed by the lung (6/59; 10.1%), bone (6/59; 10.1%), diaphragm (6/59; 10.1%) spleen (3/59; 5%), kidney (2/59; 3.4%), gall bladder (1/5; 1.5%), ascending aorta (1/59; 1.5%), thyroid (1/59; 1.5%). The incidence of malignant incidental findings resulted to be higher in the group of patients with personal breast cancer (36%) than in the other one (8%). By comparing MRI findings with the additional definitive imaging tools, breast MRI allowed a correct diagnosis in 58/59 cases with a diagnostic accuracy value of 98%. Conclusion: Incidental extramammary findings on breast MRI are common. Benign lesions represent the most frequent findings, however malignant ones need to be searched especially in patients with personal history of breast cancer because they could influence the clinical patient management. Breast MRI can characterize incidental findings with high accuracy value.

  12. Extension and origin of parasellar meningiomas. Evaluation on MRI

    International Nuclear Information System (INIS)

    Hara, Yoshie; Nakamura, Mitsugu; Asada, Masahiro; Tamaki, Norihiko

    1997-01-01

    We evaluated MRI of forty patients who had histologically confirmed meningiomas around the sella turcica. Coronal section of the spin-echo/fast spin-echo T 1 weighted imaging (with and without GD-DTPA enhancement) were mainly investigated. We precisely examined two points; the location of the bulk of tumor mass, the anatomical relationship between the tumor and the anterior clinoid process, superior orbital fissure, optic nerve, and the internal carotid artery (ICA). Based on MRI findings, we recognized five different tumor origins. Meningiomas originating lateral to the anterior clinoid process never extended medially into the cavernous sinus or the sella turcica, while tumors originating medial to the anterior clinoid process did not migrate laterally beyond the process. Tumors originating from the cavernous sinus tended to invade though the dura into the superior orbital fissure and involved the anterior clinoid process. Based upon the tumor origin and their extension investigated as revealed by MRI, we speculated that the anterior clinoid process and the tough dural folds attached to it (the anterior and posterior petroclinoid ligaments, and the interclinoid ligament) played important roles as barriers against the extension of meningiomas. These dural folds may be the unique part of the dura that most resists invasion of meningiomas from extracavernous regions. Meningiomas originated from the inferomedial surface of the anterior clinoid process may have been misdiagnosed as tuberculum sellae meningiomas; however, the close anatomical relation of the tumor origin and the distal carotid suggests their potential to directly invade the internal carotid artery. (K.H.)

  13. Electric Dipole Echoes and Noise-Induced Coherence

    International Nuclear Information System (INIS)

    Mestayer, J.J.; Zhao, W.; Lancaster, J.C.; Dunning, F.B.; Yoshida, S.; Reinhold, Carlos O.; Burgdorfer, J.

    2007-01-01

    The generation of echoes in the electric dipole moment of a Rydberg wavepacket precessing in an external electric field by reversal of the field is described. When the wavepacket experiences reversible dephasing, large echoes are observed pointing to strong refocusing of the wavepacket. The presence of irreversible dephasing leads to a reduction in the size of the echoes. The effect of irreversible dynamics on echoes is investigated using artificially synthesized noise. Methods to determine the decoherence rate are discussed

  14. Beam echoes in the presence of coupling

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Axel [Case Western Reserve U.

    2017-10-03

    Transverse beam echoes could provide a new technique of measuring diusion characteristics orders of magnitude faster than the current methods; however, their interaction with many accelerator parameters is poorly understood. Using a program written in C, we explored the relationship between coupling and echo strength. We found that echoes could be generated in both dimensions, even with a dipole kick in only one dimension. We found that the echo eects are not destroyed even when there is strong coupling, falling o only at extremely high coupling values. We found that at intermediate values of skew quadrupole strength, the decoherence time of the beam is greatly increased, causing a destruction of the echo eects. We found that this is caused by a narrowing of the tune width of the particles. Results from this study will help to provide recommendations to IOTA (Integrable Optics Test Accelerator) for their upcoming echo experiment.

  15. Depiction and characterization of liver lesions in whole body [{sup 18}F]-FDG PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Beiderwellen, Karsten, E-mail: karsten.beiderwellen@uk-essen.de [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany); Gomez, Benedikt, E-mail: Benedikt.gomez@uk-essen.de [Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany); Buchbender, Christian, E-mail: Christian.buchbender@med.uni-duesseldorf.de [Department of Diagnostic and Interventional Radiology, University of Dusseldorf, 40225 Dusseldorf (Germany); Hartung, Verena, E-mail: Verena.hartung@uk-essen.de [Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany); Poeppel, Thorsten D., E-mail: Thorsten.Poeppel@uk-essen.de [Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany); Nensa, Felix, E-mail: felix.nensa@gmail.com [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany); Kuehl, Hilmar, E-mail: Hilmar.Kuehl@uk-essen.de [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany); Bockisch, Andreas, E-mail: Andreas.bockisch@uk-essen.de [Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany); Lauenstein, Thomas C., E-mail: Thomas.Lauenstein@uk-essen.de [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen (Germany)

    2013-11-01

    Objectives: To assess the value of PET/MRI with [{sup 18}F]-FDG using a whole body protocol for the depiction and characterization of liver lesions in comparison to PET/CT. Methods: 70 patients (31 women, 39 men) with solid tumors underwent [{sup 18}F]-FDG PET/CT and followed by an additional PET/MRI using an integrated scanner. Two readers rated the datasets (PET/CT; PET/MRI) regarding conspicuity of hepatic lesions (4-point ordinal scale) and diagnostic confidence (5-point ordinal scale). Median scores for lesion conspicuity and diagnostic confidence were compared using Wilcoxon's rank sum test. Prior examinations, histopathology and clinical follow-up (116 ± 54 days) served as standard of reference. Results: 36 of 70 (51%) patients showed liver lesions. Using PET/CT and PET/MRI all patients with liver metastases could correctly be identified. A total of 97 lesions were found (malignant n = 26; benign n = 71). For lesion conspicuity significantly higher scores were obtained for PET/MRI in comparison to PET/CT (p < 0.001). Significantly better performance for diagnostic confidence was observed in PET/MRI, both for malignant as for benign lesions (p < 0.001). Conclusions: PET/MRI, even in the setting of a whole body approach, provides higher lesion conspicuity and diagnostic confidence compared to PET/CT and may therefore evolve as an attractive alternative in oncologic imaging.

  16. Long T2 suppression in native lung 3-D imaging using k-space reordered inversion recovery dual-echo ultrashort echo time MRI.

    Science.gov (United States)

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-08-01

    Long T2 species can interfere with visualization of short T2 tissue imaging. For example, visualization of lung parenchyma can be hindered by breathing artifacts primarily from fat in the chest wall. The purpose of this work was to design and evaluate a scheme for long T2 species suppression in lung parenchyma imaging using 3-D inversion recovery double-echo ultrashort echo time imaging with a k-space reordering scheme for artifact suppression. A hyperbolic secant (HS) pulse was evaluated for different tissues (T1/T2). Bloch simulations were performed with the inversion pulse followed by segmented UTE acquisition. Point spread function (PSF) was simulated for a standard interleaved acquisition order and a modulo 2 forward-reverse acquisition order. Phantom and in vivo images (eight volunteers) were acquired with both acquisition orders. Contrast to noise ratio (CNR) was evaluated in in vivo images prior to and after introduction of the long T2 suppression scheme. The PSF as well as phantom and in vivo images demonstrated reduction in artifacts arising from k-space modulation after using the reordering scheme. CNR measured between lung and fat and lung and muscle increased from -114 and -148.5 to +12.5 and 2.8 after use of the IR-DUTE sequence. Paired t test between the CNRs obtained from UTE and IR-DUTE showed significant positive change (p lung-fat CNR and p = 0.03 for lung-muscle CNR). Full 3-D lung parenchyma imaging with improved positive contrast between lung and other long T2 tissue types can be achieved robustly in a clinically feasible time using IR-DUTE with image subtraction when segmented radial acquisition with k-space reordering is employed.

  17. Radiographer led supplementary anterior cruciate ligament MRI sequences: Technical report

    International Nuclear Information System (INIS)

    Richards, Paula J.; McCall, Iain; Kraus, Alexandra; Jones, Mary; Walley, Gayle; Gibson, Kathryn; Maffulli, Nicola

    2012-01-01

    Aims: To compare different supplementary MRI sequences of the ACL to arthroscopy and determine the diagnostic performance of each sequence. To ascertain whether radiographers could identify patients requiring supplementary MRI sequences of anterior cruciate ligament (ACL) tears, without a supervising radiologist. Methods: The study had ethical approval and two hundred and thirty one consecutive prospective MRI patients with mechanical knee symptoms (77 females, 154 males, of mean age 43.5, range 18–82 years) gave written informed consent. They then had a knee arthroscopy within seven days of the MRI. This was a pragmatic study to see if the six general MRI radiographers, each with over four years experience, could evaluate the ACL on routine orthogonal sequences (sagittal T1, Gradient Echo T2, Coronal STIR and axial fat suppressed dual echo). If they identified no ACL, then two 3D volume sequences (Dual Echo Steady State and Fast Low Angle Shot) and 2D limited sagittal oblique T1 sequences were also performed. Patients requiring extra sequences, missed by the radiographers, were recalled. The MRI sequences were independently evaluated in a blinded fashion by two consultant radiologists and a specialist radiology registrar and compared to the subsequent knee arthroscopy, as the gold standard, to determine the diagnostic performance statistics. Results: The cohort was on the knee arthroscopy weighting list and comprised 205 patients with chronic, 20 acute and 6 acute on chronic mechanical knee symptoms. There were no posterior cruciate, medial, or lateral collateral ligament tears at arthroscopy, used as the gold standard. The arthroscopy was normal and the radiographers correctly did not scan the extra sequence in 140 patients (72%) who then had normal arthroscopies. The radiographers did perform additional ACL sequences in 63 patients (27%). Of these, 10 patients had a partial and 12 complete ACL tears. Only two patients (0.9%) were recalled for additional

  18. Improved abdominal MRI in non-breath-holding children using a radial k-space sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hyuk; Choi, Young Hun; Cheon, Jung Eun; Lee, So Mi; Cho, Hyun Hae; Kim, Woo Sun; Kim, In One [Seoul National University Children' s Hospital, Department of Radiology, Seoul (Korea, Republic of); Shin, Su Mi [SMG-SNU Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of)

    2015-06-15

    Radial k-space sampling techniques have been shown to reduce motion artifacts in adult abdominal MRI. To compare a T2-weighted radial k-space sampling MRI pulse sequence (BLADE) with standard respiratory-triggered T2-weighted turbo spin echo (TSE) in pediatric abdominal imaging. Axial BLADE and respiratory-triggered turbo spin echo sequences were performed without fat suppression in 32 abdominal MR examinations in children. We retrospectively assessed overall image quality, the presence of respiratory, peristaltic and radial artifact, and lesion conspicuity. We evaluated signal uniformity of each sequence. BLADE showed improved overall image quality (3.35 ± 0.85 vs. 2.59 ± 0.59, P < 0.001), reduced respiratory motion artifact (0.51 ± 0.56 vs. 1.89 ± 0.68, P < 0.001), and improved lesion conspicuity (3.54 ± 0.88 vs. 2.92 ± 0.77, P = 0.006) compared to respiratory triggering turbo spin-echo (TSE) sequences. The bowel motion artifact scores were similar for both sequences (1.65 ± 0.77 vs. 1.79 ± 0.74, P = 0.691). BLADE introduced a radial artifact that was not observed on the respiratory triggering-TSE images (1.10 ± 0.85 vs. 0, P < 0.001). BLADE was associated with diminished signal variation compared with respiratory triggering-TSE in the liver, spleen and air (P < 0.001). The radial k-space sampling technique improved the quality and reduced respiratory motion artifacts in young children compared with conventional respiratory-triggered turbo spin-echo sequences. (orig.)

  19. Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla.

    Science.gov (United States)

    Juchem, Christoph; Umesh Rudrapatna, S; Nixon, Terence W; de Graaf, Robin A

    2015-01-15

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity

  20. Dynamic Multi-Coil Technique (DYNAMITE) Shimming for Echo-Planar Imaging of the Human Brain at 7 Tesla

    Science.gov (United States)

    Juchem, Christoph; Rudrapatna, S. Umesh; Nixon, Terence W.; de Graaf, Robin A.

    2014-01-01

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (Juchem et al., J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13 Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8 mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3 mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large

  1. Magnetic resonance imaging of the sacroiliac joints in patients with suspected spondyloarthritis. Comparison of turbo spin-echo and gradient-echo sequences for the detection of structural alterations; MRT-Bildgebung der Sakroiliakalgelenke bei Verdacht auf Spondyloarthritis. Vergleich von Turbospinecho- und Gradientenechosequenzen zum Nachweis struktureller Veraenderungen

    Energy Technology Data Exchange (ETDEWEB)

    Dornia, C.; Hoffstetter, P. [Universitaetsklinikum Regensburg (Germany). Inst. fuer Roentgendiagnostik; Asklepios Klinikum, Bad Abbach (Germany). Inst. fuer Roentgendiagnostik; Fleck, M. [Universitaetsklinikum Regensburg (Germany). Klinik fuer Innere Medizin I; Asklepios Klinikum, Bad Abbach (Germany). Klinik fuer Rheumatologie und Klinische Immunologie; Hartung, W. [Asklepios Klinikum, Bad Abbach (Germany). Klinik fuer Rheumatologie und Klinische Immunologie; Niessen, C.; Stroszczynski, C. [Universitaetsklinikum Regensburg (Germany). Inst. fuer Roentgendiagnostik

    2015-02-15

    Magnetic resonance imaging (MRI) is the method of choice for the evaluation of spondyloarthritis (SpA). According to the guidelines of the Assessment of Spondyloarthritis International Society (ASAS) and Outcome Measures in Rheumatology (OMERACT), MRI findings in SpA of the spine and the sacroiliac joints (SIJ) are classified as inflammatory and structural alterations. Modern gradient-echo sequences (GRE) are recommended for optimized detection of structural alterations of the SIJ. We assess the benefit of GRE in the detection of structural alterations of the SIJ in comparison to conventional turbo spin-echo sequences (TSE). Retrospective study of 114 patients who received MRI of the SIJ for the evaluation of SpA. Structural alterations of the SIJ were assessed by two blinded readers separately for T1 TSE and T2{sup *} GRE. The findings were classified according to a previously published chronicity score separately for both sides and sequences. Interobserver reliability was calculated with Cohen's Kappa, and the significance of findings was assessed with the Wilcoxon test. P-values < 0.05 were required for statistical significance. 68 of 114 (60%) patients showed SpA-typical findings of the SIJ. The average chronicity score for GRE (score 3.3) was significantly higher than for TSE (score 2.6), p=0.001. The Kappa-values for the interobserver reliability were 0.86-0.90 without any statistically significant differences between both sides and sequences. Both T1 TSE and T2{sup *} GRE showed a high interobserver reliability in the detection of structural alterations in patients with SpA. However, T2{sup *} GRE detected significantly more structural alterations than T1 TSE and should be an integral part of a modern MRI protocol for the diagnostic workup of patients with suspected SpA.

  2. Accuracy of MRI findings in chronic lateral ankle ligament injury: Comparison with surgical findings

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.-J. [Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Department of Radiology, Kangwon National University, School of Medicine, Chuncheon (Korea, Republic of); Cha, S.-D. [Department of Orthopedic Surgery, Myongji Hospital, Kwandong University, College of Medicine, Koyang (Korea, Republic of); Kim, S.S. [Department of Radiology, Kangwon National University, School of Medicine, Chuncheon (Korea, Republic of); Rho, M.-H., E-mail: parkhiji@kangwon.ac.kr [Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kwag, H.-J. [Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Park, N.-H. [Department of Radiology, Myongji Hospital, Kwandong University, College of Medicine, Koyang (Korea, Republic of); Lee, S.-Y. [Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2012-04-15

    Aim: To evaluate the accuracy of magnetic resonance imaging (MRI) findings in chronic lateral ankle ligament injury in comparison with that of surgical findings. Materials and methods: Forty-eight cases (25 men, 23 women, mean age 36 years) of clinically suspected chronic ankle ligament injury underwent MRI studies and surgery. Sagittal, coronal, and axial, T1-weighted, spin-echo, proton density and T2-weighted, fast spin-echo images with fat saturation were obtained in all patients. MRI examinations were read in consensus by two fellowship-trained academic musculoskeletal radiologists who evaluated the lateral ankle ligaments, including the anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) without clinical information. The results of the MRI studies were then compared with the surgical findings. Results: The MRI findings of ATFL injury showed a sensitivity of detection of complete tears of 75% and specificity of 86%. The sensitivity of detection of partial tears was 75% and the specificity was 78%. The sensitivity of detection of sprains was 44% and the specificity was 88%. Regarding the MRI findings of CFL injury, the sensitivity of detection of complete tears was 50% and the specificity was 98%. The sensitivity of detection of partial tear was 83% and the specificity was 93%. The sensitivity of detection of sprains was 100% and the specificity was 90%. Regarding the ATFL, the accuracies of detection were 88, 58, 77, and 85% for no injury, sprain, partial tear, and complete tear, respectively, and for the CFL the accuracies of detection were 90, 90, 92, and 96% for no injury, sprain, partial tear, and complete tear, respectively. Conclusions: The diagnosis of a complete tear of the ATFL on MRI is more sensitive than the diagnosis of a complete tear of the CFL. MRI findings of CFL injury are diagnostically specific but are not sensitive. However, only normal findings and complete tears were statistically significant between ATFL and CFL (p

  3. Accuracy of MRI findings in chronic lateral ankle ligament injury: Comparison with surgical findings

    International Nuclear Information System (INIS)

    Park, H.-J.; Cha, S.-D.; Kim, S.S.; Rho, M.-H.; Kwag, H.-J.; Park, N.-H.; Lee, S.-Y.

    2012-01-01

    Aim: To evaluate the accuracy of magnetic resonance imaging (MRI) findings in chronic lateral ankle ligament injury in comparison with that of surgical findings. Materials and methods: Forty-eight cases (25 men, 23 women, mean age 36 years) of clinically suspected chronic ankle ligament injury underwent MRI studies and surgery. Sagittal, coronal, and axial, T1-weighted, spin-echo, proton density and T2-weighted, fast spin-echo images with fat saturation were obtained in all patients. MRI examinations were read in consensus by two fellowship-trained academic musculoskeletal radiologists who evaluated the lateral ankle ligaments, including the anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) without clinical information. The results of the MRI studies were then compared with the surgical findings. Results: The MRI findings of ATFL injury showed a sensitivity of detection of complete tears of 75% and specificity of 86%. The sensitivity of detection of partial tears was 75% and the specificity was 78%. The sensitivity of detection of sprains was 44% and the specificity was 88%. Regarding the MRI findings of CFL injury, the sensitivity of detection of complete tears was 50% and the specificity was 98%. The sensitivity of detection of partial tear was 83% and the specificity was 93%. The sensitivity of detection of sprains was 100% and the specificity was 90%. Regarding the ATFL, the accuracies of detection were 88, 58, 77, and 85% for no injury, sprain, partial tear, and complete tear, respectively, and for the CFL the accuracies of detection were 90, 90, 92, and 96% for no injury, sprain, partial tear, and complete tear, respectively. Conclusions: The diagnosis of a complete tear of the ATFL on MRI is more sensitive than the diagnosis of a complete tear of the CFL. MRI findings of CFL injury are diagnostically specific but are not sensitive. However, only normal findings and complete tears were statistically significant between ATFL and CFL (p

  4. Gravitational wave echoes from macroscopic quantum gravity effects

    Energy Technology Data Exchange (ETDEWEB)

    Barceló, Carlos [Instituto de Astrofísica de Andalucía (IAA-CSIC),Glorieta de la Astronomía, 18008 Granada (Spain); Carballo-Rubio, Raúl [The Cosmology & Gravity Group and the Laboratory for Quantum Gravity & Strings,Department of Mathematics & Applied Mathematics, University of Cape Town,Private Bag, Rondebosch 7701 (South Africa); Garay, Luis J. [Departamento de Física Teórica II,Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia (IEM-CSIC),Serrano 121, 28006 Madrid (Spain)

    2017-05-10

    New theoretical approaches developed in the last years predict that macroscopic quantum gravity effects in black holes should lead to modifications of the gravitational wave signals expected in the framework of classical general relativity, with these modifications being characterized in certain scenarios by the existence of dampened repetitions of the primary signal. Here we use the fact that non-perturbative corrections to the near-horizon external geometry of black holes are necessary for these modifications to exist, in order to classify different proposals and paradigms with respect to this criterion and study in a neat and systematic way their phenomenology. Proposals that lead naturally to the existence of echoes in the late-time ringdown of gravitational wave signals from black hole mergers must share the replacement of black holes by horizonless configurations with a physical surface showing reflective properties in the relevant range of frequencies. On the other hand, proposals or paradigms that restrict quantum gravity effects on the external geometry to be perturbative, such as black hole complementarity or the closely related firewall proposal, do not display echoes. For the sake of completeness we exploit the interplay between the timescales associated with the formation of firewalls and the mechanism behind the existence of echoes in order to conclude that even unconventional distortions of the firewall concept (such as naked firewalls) do not lead to this phenomenon.

  5. Tolosa-Hunt syndrome: MRI appearances

    International Nuclear Information System (INIS)

    Jain, R.; Sawhney, S.; Koul, R. L.; Chand, P.

    2008-01-01

    Full text: A review of MRI findings in seven patients with Tolosa-Hunt syndrome was carried out. Seven patients presented with unilateral painful ophthalmoplegia. Magnetic resonance imaging studies were carried out to evaluate the cavernous sinuses and orbits. Coronal fast spin-echo T 2 -weighted images and fat-saturated T 1 -weighted coronal and transverse images with and without contrast enhancement were obtained for the cavernous sinuses and orbits. All patients showed focal-enhancing masses expanding the ipsilateral cavernous sinus. In one patient the mass was extending to the orbital apex and intraorbital. All patients recovered on corticosteroid therapy and resolution of the masses was documented on follow-up MRI studies in five patients. One patient had a relapse of symptoms after discontinuing therapy. Magnetic resonance imaging studies of the cavernous sinus and orbital apex show high sensitivity for the detection and follow up of inflammatory mass lesions in Tolosa-Hunt syndrome. Magnetic resonance imaging should be the initial screening study in these patients.

  6. Dynamic contrast-enhanced MRI in patients with luminal Crohn's disease

    Energy Technology Data Exchange (ETDEWEB)

    Ziech, M.L.W., E-mail: m.l.ziech@amc.uva.nl [Academic Medical Center, Department of Radiology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Lavini, C., E-mail: c.lavini@amc.uva.nl [Academic Medical Center, Department of Radiology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Caan, M.W.A., E-mail: m.w.a.caan@amc.uva.nl [Academic Medical Center, Department of Radiology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Nio, C.Y., E-mail: C.Y.Nio@amc.uva.nl [Academic Medical Center, Department of Radiology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Stokkers, P.C.F., E-mail: p.stokkers@slaz.nl [Academic Medical Center, Department of Gastroenterology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Sint Lucas Andreas Ziekenhuis, Department of Gastroenterology, Jan Tooropstraat 164, 1061 AE, Amsterdam (Netherlands); Bipat, S., E-mail: S.Bipat@amc.uva.nl [Academic Medical Center, Department of Radiology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Ponsioen, C.Y., E-mail: c.y.ponsioen@amc.uva.nl [Academic Medical Center, Department of Gastroenterology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Nederveen, A.J., E-mail: a.j.nederveen@amc.uva.nl [Academic Medical Center, Department of Radiology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Stoker, J., E-mail: j.stoker@amc.uva.nl [Academic Medical Center, Department of Radiology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands)

    2012-11-15

    Objectives: To prospectively assess dynamic contrast-enhanced (DCE-)MRI as compared to conventional sequences in patients with luminal Crohn's disease. Methods: Patients with Crohn's disease undergoing MRI and ileocolonoscopy within 1 month had DCE-MRI (3T) during intravenous contrast injection of gadobutrol, single shot fast spin echo sequence and 3D T1-weighted spoiled gradient echo sequence, a dynamic coronal 3D T1-weighted fast spoiled gradient were performed before and after gadobutrol. Maximum enhancement (ME) and initial slope of increase (ISI) were calculated for four colon segments (ascending colon + coecum, transverse colon, descending colon + sigmoid, rectum) and (neo)terminal ileum. C-reactive protein (CRP), Crohn's disease activity index (CDAI), per patient and per segment Crohn's disease endoscopic index of severity (CDEIS) and disease duration were determined. Mean values of the (DCE-)MRI parameters in each segment from each patient were compared between four disease activity groups (normal mucosa, non-ulcerative lesions, mild ulcerative and severe ulcerative disease) with Mann-Whitney test with Bonferroni adjustment. Spearman correlation coefficients were calculated for continuous variables. Results: Thirty-three patients were included (mean age 37 years; 23 females, median CDEIS 4.4). ME and ISI correlated weakly with segmental CDEIS (r = 0.485 and r = 0.206) and ME per patient correlated moderately with CDEIS (r = 0.551). ME was significantly higher in segments with mild (0.378) or severe (0.388) ulcerative disease compared to normal mucosa (0.304) (p < 0.001). No ulcerations were identified at conventional sequences. ME correlated with disease duration in diseased segments (r = 0.492), not with CDAI and CRP. Conclusions: DCE-MRI can be used as a method for detecting Crohn's disease ulcerative lesions.

  7. Functional imaging of submandibular glands: diffusion-weighted echo-planar MRI before and after stimulation

    International Nuclear Information System (INIS)

    Arndt, C.; Cramer, M.C.; Weiss, F.; Kaul, M.G.; Adam, G.; Habermann, C.R.; Graessner, J.; Petersen, K.; Reitmeier, F.; Jaehne, M.

    2006-01-01

    Purpose: To investigate the feasibility of diffusion-weighted (DWI) echo-planar imaging (EPI) to depict the submandibular glands and to measure different functional conditions. Materials and Methods: Twenty-seven healthy volunteers were examined. Diffusion weighted sequence was performed prior to stimulation. Exactly 30 seconds after a commercially available lemon juice was given orally, the diffusion weighted sequence was repeated. All examinations were performed by using a 1.5-T superconducting system with a 30 mT/m maximum gradient capability and maximum slew rate of 125 mT/m/sec (Magnetom Symphony, Siemens, Erlangen, Germany). The lower part of the circularly polarized (CP) head coil and a standard two-element CP neck array coil were used. The flexibility of the neck array coil allowed positioning the N1 element (upper part of the coil) right next to the submandibular gland. The axial diffusion-weighted EPI (echo planar imaging) sequence was performed using a matrix of 119 x 128, a field of view of 250 x 250 mm (pixel size 2.1 x 1.95 mm), a section thickness of 5 mm with an interslice gap of 1 mm. The b factors used were 0 sec/mm 2 , 500 sec/mm 2 and 1000 sec/mm 2 . Apparent diffusion coefficient (ADC) maps were digitally transferred to MRIcro (Chris Rorden, University of Nottingham, Great Britain). After detecting the submandibular glands a region of interest (ROI) was placed manually exactly within the boarder of both submandibular glands, excluding the external carotid artery on ADC maps. These procedures were performed on all ADC slices the submandibular glands could be differentiated in before and after oral stimulation. For statistical comparison of results, a student's t-test was performed with an overall two-tailed significance level of p=0.05. Results: The visualization of the submandibular glands using the diffusion-weighted EPI sequence was possible in all of the 27 volunteers. Prior to oral stimulation an ADC of 1.31 x 10 -3 mm 2 /sec (95% CI, 1

  8. Congenital diseases of the thoracic aorta. Role of MRI and MRA

    International Nuclear Information System (INIS)

    Russo, Vincenzo; Renzulli, Matteo; Palombara, Cesare la; Fattori, Rossella

    2006-01-01

    Aortic malformations may be associated with other congenital heart abnormalities or may present independently, as incidental findings in asymptomatic patients. For more than 30 years, conventional imaging techniques for detection and assessment of congenital anomalies of the aorta have been chest X-ray, echocardiography and angiography. In recent times, considerable interest in congenital aortic diseases has been shown, due to technical progresses of noninvasive imaging modalities. Among them, magnetic resonance imaging (MRI) almost certainly offers the greatest advantages, especially in young patients in which a radiation exposure must be avoided as much as possible. MRI provides an excellent visualization of vascular structures with a wide field of view, well suited for evaluation of the thoracic aorta malformations. With the implementation of magnetic resonance angiography (MRA) it is also possible to depict any relationship with supra-aortic or mediastinal vessels. Phase contrast technique allows identification of the hemodynamic significance of the aortic alteration. Some technical considerations, which include fast spin-echo, gradient-echo and, especially, MRA techniques with phase-contrast and contrast enhanced methods, are discussed and applied in the evaluation of congenital thoracic aorta diseases. (orig.)

  9. MRI in patients with portal hypertension (preoperative and postoperative studies). The first 15 cases

    Energy Technology Data Exchange (ETDEWEB)

    Pozzato, A; Cattoni, F; Baldini, U and others

    1987-01-01

    Fifteen patients with portal hypertension were examined by magnetic resonance imaging (MRI) using spin-echo sequences. Sagittal and transaxial images were obtained in all cases. Ten subjects have been evaluated after portosystemic shunt operations (6 portocaval and 4 splenorenal shunts); 5 patients were studied by MRI before shunt placements. Angiographic correlation was obtained in 15 cases. In each of the preoperative examinations, MRI accurately depicted inferior vena cava, portal vein and splenic vein. Shunt patency was documented in 10/10 postoperative studies: portacaval shunts patency was better determined in the transaxial plane while splenorenal shunts were better demonstrted in the sagittal plane. Thus, MRI seems to be an accurate and noninvasive method for detecting portosystemic shunt patency without the use of intravenous contrast media and without patient exposure to radiation.

  10. Traumatic and compressive pathology of the peripheral nerves: value of the MRI; Patologia traumatica y compresiva de los nervios perifericos: valor de la RM

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, M. L.; Romero, J.; Hernandez, L.; Miguel, E. de [Hospital General Universitario Gregorio Maranon. Madrid (Spain)

    2000-07-01

    Evaluate the usefulness of the magnetic resonance (MRI) in the diagnosis of traumatic and compressive pathology of the peripheral nerves and analyze the etiology of the lesions and their severity. 25 MRI in patients with compressive and traumatic lesions of the peripheral nerves are analyzed. They were studied with MRI (1,5T) using T1 weighted spin-echo (SE), T2 gradient echo (GE) and STIR sequences. The morphological and nerve signal alterations make it possible to locate the lesion site and to assess the course of the lesion with successive studies. In our series, the most frequent cause of compressive pathology is fibrosis. Brachial plexus root avulsion is the most frequent finding in traumatic lesions. The MTI capacity for multiplanar study and its high resolution make it possible for us to detect small lesions in the peripheral nerves and to plan the best treatment. (Author) 17 refs.

  11. Cine-MRI swallowing evaluation after tongue reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Hartl, Dana M. [Department of Otolaryngology-Head and Neck Surgery, Institute Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France)], E-mail: dmhartl@aol.com; Kolb, Frederic; Bretagne, Evelyne [Department of Otolaryngology-Head and Neck Surgery, Institute Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France); Bidault, Francois; Sigal, Robert [Department of Radiology, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France)

    2010-01-15

    Objective: To determine the feasibility of cine-MRI for non-invasive swallowing evaluation after surgery for lingual carcinoma with reconstruction using microvascular free flaps. Methods: Ten patients with stage IV carcinoma of the mobile tongue and/or tongue base treated by surgical resection and reconstruction with a free flap were evaluated after an average of 4.3 years (range: 1.5-11 years), using cine-MRI in 'single-shot fast spin echo' (SSFSE) mode. Fiberoptic laryngoscopy of swallowing was performed before MRI to detect aspiration. The tolerance and ability to complete the exam were noted. The mobilities of the oral and pharyngeal structures visualized were evaluated as normal, reduced or increased. Results: Cine-MRI was well tolerated in all cases; 'dry' swallow was performed for the 2 patients with clinical aspiration. Tongue base-pharyngeal wall contact was observed in 5 cases. An increased anterior tongue recoil, increased mandibular recoil, increased posterior oropharyngeal wall advancement and an increased laryngeal elevation were observed in 4 cases. One case of a passive 'slide' mechanism was observed. Conclusions: Cine-MRI is a safe, non-invasive technique for the evaluation of the mobility of oral and oropharyngeal structures after free-flap reconstruction of the tongue. For selected cases, it may be complementary to clinical examination for evaluation of dysphagia after surgery and free-flap reconstruction. Further technical advances will be necessary before cine-MRI can replace videofluoroscopy, however.

  12. Cine-MRI swallowing evaluation after tongue reconstruction

    International Nuclear Information System (INIS)

    Hartl, Dana M.; Kolb, Frederic; Bretagne, Evelyne; Bidault, Francois; Sigal, Robert

    2010-01-01

    Objective: To determine the feasibility of cine-MRI for non-invasive swallowing evaluation after surgery for lingual carcinoma with reconstruction using microvascular free flaps. Methods: Ten patients with stage IV carcinoma of the mobile tongue and/or tongue base treated by surgical resection and reconstruction with a free flap were evaluated after an average of 4.3 years (range: 1.5-11 years), using cine-MRI in 'single-shot fast spin echo' (SSFSE) mode. Fiberoptic laryngoscopy of swallowing was performed before MRI to detect aspiration. The tolerance and ability to complete the exam were noted. The mobilities of the oral and pharyngeal structures visualized were evaluated as normal, reduced or increased. Results: Cine-MRI was well tolerated in all cases; 'dry' swallow was performed for the 2 patients with clinical aspiration. Tongue base-pharyngeal wall contact was observed in 5 cases. An increased anterior tongue recoil, increased mandibular recoil, increased posterior oropharyngeal wall advancement and an increased laryngeal elevation were observed in 4 cases. One case of a passive 'slide' mechanism was observed. Conclusions: Cine-MRI is a safe, non-invasive technique for the evaluation of the mobility of oral and oropharyngeal structures after free-flap reconstruction of the tongue. For selected cases, it may be complementary to clinical examination for evaluation of dysphagia after surgery and free-flap reconstruction. Further technical advances will be necessary before cine-MRI can replace videofluoroscopy, however.

  13. Characterization of the murine orthotopic adamantinomatous craniopharyngioma PDX model by MRI in correlation with histology.

    Science.gov (United States)

    Hölsken, Annett; Schwarz, Marc; Gillmann, Clarissa; Pfister, Christina; Uder, Michael; Doerfler, Arnd; Buchfelder, Michael; Schlaffer, Sven; Fahlbusch, Rudolf; Buslei, Rolf; Bäuerle, Tobias

    2018-01-01

    Adamantinomatous craniopharyngiomas (ACP) as benign sellar brain tumors are challenging to treat. In order to develop robust in vivo drug testing methodology, the murine orthotopic craniopharyngioma model (PDX) was characterized by magnetic resonance imaging (MRI) and histology in xenografts from three patients (ACP1-3). In ACP PDX, multiparametric MRI was conducted to assess morphologic characteristics such as contrast-enhancing tumor volume (CETV) as well as functional parameters from dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI) including area-under-the-curve (AUC), peak enhancement (PE), time-to-peak (TTP) and apparent diffusion coefficient (ADC). These MRI parameters evaluated in 27 ACP PDX were correlated to histological features and percentage of vital tumor cell content. Qualitative analysis of MRI and histology from PDX revealed a similar phenotype as seen in patients, although the MRI appearance in mice resulted in a more solid tumor growth than in humans. CETV were significantly higher in ACP2 xenografts relative to ACP1 and ACP3 which correspond to respective average vitality of 41%, <10% and 26% determined histologically. Importantly, CETV prove tumor growth of ACP2 PDX as it significantly increases in longitudinal follow-up of 110 days. Furthermore, xenografts from ACP2 revealed a significantly higher AUC, PE and TTP in comparison to ACP3, and significantly increased ADC relative to ACP1 and ACP3 respectively. Overall, DCE-MRI and DWI can be used to distinguish vital from non-vital grafts, when using a cut off value of 15% for vital tumor cell content. MRI enables the assessment of craniopharyngioma PDX vitality in vivo as validated histologically.

  14. MRI to assess chemoprevention in transgenic adenocarcinoma of mouse prostate (TRAMP)

    International Nuclear Information System (INIS)

    Arbab, Ali S; Shankar, Adarsh; Varma, Nadimpalli RS; Deeb, Dorrah; Gao, Xiaohua; Iskander, ASM; Janic, Branislava; Ali, Meser M; Gautam, Subhash C

    2011-01-01

    The current method to determine the efficacy of chemoprevention in TRAMP mouse model of carcinoma of prostate (CaP) is by extracting and weighing the prostate at different time points or by immunohistochemistry analysis. Non-invasive determination of volumes of prostate glands and seminal vesicles before, during and after treatment would be valuable in investigating the efficacy of newer chemopreventive agents in CaP. The purpose of this study was to determine whether in vivo magnetic resonance imaging (MRI) using a 3 tesla clinical MRI system can be used to follow the effect of chemoprevention in TRAMP model of mouse CaP. Mice were randomized into control and treated groups. The animals in treated group received 10 µmol/kg of CDDO, 5 days a week for 20 weeks. Animals underwent in vivo MRI of prostate gland and seminal vesicles by a clinical 3 Tesla MRI system just before (at 5 weeks), during and at the end of treatment, at 25 weeks. T1-weighted and fat saturation (FATSAT) multiecho fast spin echo T2- weighted images (T2WI) were acquired. Volume of the prostate glands and seminal vesicles was determined from MR images. T2 signal intensity changes in the seminal vesicles were determined by subtracting higher echo time (TE) from lower TE T2WI. Following treatments all animals were sacrificed, prostate and seminal vesicles collected, and the tissues prepared for histological staining. All data were expressed as mean ± 1 standard deviation. Two-way or multivariate analysis of variance followed by post-hoc test was applied to determine the significant differences. A p-value of <0.05 was considered significant. Histological analysis indicated tumor in 100% of control mice, whereas 10% of the treated mice showed tumor in prostate gland. Both MRI and measured prostate weights showed higher volume/weight in control mouse group. MRI showed significantly higher volume of seminal vesicles in control animals and T2 signal intensity changes in seminal vesicles of control mice

  15. X-ray echoes from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dermer, C.D.; Hurley, K.C.; Hartmann, D.H.

    1991-01-01

    The identification of an echo of reflected radiation in time histories of gamma-ray burst spectra can provide important information about the existence of binary companions or accretion disks in gamma-ray burst systems. Because of the nature of Compton scattering, the spectrum of the echo will be attenuated at gamma-ray energies compared with the spectrum of the primary burst emission. The expected temporal and spectral signatures of the echo and a search for such echoes are described, and implications for gamma-ray burst models are discussed. 35 refs

  16. Object analysis of bone marrow MR imaging using double echo STIR sequence in hematological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Hitomi [Saitama Medical School, Moroyama (Japan)

    1995-07-01

    The bone marrow of 84 patients with hematological disorders was investigated using short inversion time inversion recovery sequence (STIR) on an 1.5 Tesla superconducting MRI system. Double echo times of 20 and 100 msec were applied to research the signal characteristics of the lesion and carry out quantitative analysis of the receiver operating characteristic curve (ROC). The hematological diseases included 19 cases of myelodysplastic syndrome (MDS), 18 of multiple myeloma (MM), 18 of chronic myelocytic leukemia (CML), 9 of aplastic anemia (AA), 8 of acute myelocytic leukemia (AML), 3 of chronic lymphocytic leukemia (CLL), 3 of myelofibrosis, and 3 others. Using STIR with double echo times, bone marrow showed high signal intensity (SI) on short TE and low SI on long TE in MDS and CML; high SI on short and long TE in myelofibrosis and CLL; high SI on short TE and high to moderately high SI on long TE in MM; and low SI on short and long TE in AA. Quantitative analysis of 33 patients showed high sensitivity and specificity in AA (81% and 94%, respectively) and moderate sensitivity and high specificity in MM (61%, 88%). CML and MDS were similar with low sensitivities (40%, 41%) and high specificities (80%, 78%). Differential diagnosis between CML and MDS was difficult using STIR with the double echo time method. (author).

  17. TU-AB-BRA-07: Distortion-Free 3D Diffusion MRI On An MRI-Guided Radiotherapy System for Longitudinal Tumor Response Assessment

    International Nuclear Information System (INIS)

    Gao, Y; Yang, Y; Rangwala, N; Cao, M; Low, D; Hu, P

    2016-01-01

    Purpose: To develop a reliable, 3D distortion-free diffusion MRI technique for longitudinal tumor response assessment and MRI-guided adaptive radiotherapy(RT). Methods: A diffusion prepared 3D turbo spin echo readout (DP-TSE) sequence was developed and compared with the conventional diffusion-weighted single-shot echo-planar-imaging (DW-ssEPI) sequence in a commercially available diffusion phantom, and one head-and-neck and one brain cancer patient on an MRI-guided RT system (ViewRay). In phantom study, the geometric fidelity was quantified as the ratio between the left-right (RL) and anterior-posterior (AP) dimension. Ten slices were measured on DP-TSE, DW-ssEPI and standard TSE images where the later was used as the geometric reference. ADC accuracy was verified at both 0°C (reference ADC available) and room temperature with a range of diffusivity between 0.35 and 2.0*10"−"3mm"2/s. The ADC reproducibility was assessed based on 8 room-temperature measurements on 6 different days. In the pilot single-slice in-vivo study, CT images were used as the geometric reference, and ADC maps from both diffusion sequences were compared. Results: Distortion and susceptive-related artifact were severe in DW-ssEPI, with significantly lower RL/AP ratio (0.9579±0.0163) than DP-TSE (0.9990±0.0031) and TSE (0.9995±0.0031). ADCs from the two diffusion sequences both matched well with the vendor-provided values at 0°C; however DW-ssEPI fails to provide accurate ADC for high diffusivity vials at room temperature due to high noise level (10 times higher than DP-TSE). The DP-TSE sequence had excellent ADC reproducibility with <4% ADC variation among 8 separate measurements. In patient study, DP-TSE exhibited substantially improved geometric reliability. ROI analysis in ADC maps generated from DP-TSE and DW-ssEPI showed <5% difference where high b-value images were excluded from the latter approach due to excessive noise level. Conclusion: A diffusion MRI sequence with excellent

  18. TU-AB-BRA-07: Distortion-Free 3D Diffusion MRI On An MRI-Guided Radiotherapy System for Longitudinal Tumor Response Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Y; Yang, Y; Rangwala, N; Cao, M; Low, D; Hu, P [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To develop a reliable, 3D distortion-free diffusion MRI technique for longitudinal tumor response assessment and MRI-guided adaptive radiotherapy(RT). Methods: A diffusion prepared 3D turbo spin echo readout (DP-TSE) sequence was developed and compared with the conventional diffusion-weighted single-shot echo-planar-imaging (DW-ssEPI) sequence in a commercially available diffusion phantom, and one head-and-neck and one brain cancer patient on an MRI-guided RT system (ViewRay). In phantom study, the geometric fidelity was quantified as the ratio between the left-right (RL) and anterior-posterior (AP) dimension. Ten slices were measured on DP-TSE, DW-ssEPI and standard TSE images where the later was used as the geometric reference. ADC accuracy was verified at both 0°C (reference ADC available) and room temperature with a range of diffusivity between 0.35 and 2.0*10{sup −3}mm{sup 2}/s. The ADC reproducibility was assessed based on 8 room-temperature measurements on 6 different days. In the pilot single-slice in-vivo study, CT images were used as the geometric reference, and ADC maps from both diffusion sequences were compared. Results: Distortion and susceptive-related artifact were severe in DW-ssEPI, with significantly lower RL/AP ratio (0.9579±0.0163) than DP-TSE (0.9990±0.0031) and TSE (0.9995±0.0031). ADCs from the two diffusion sequences both matched well with the vendor-provided values at 0°C; however DW-ssEPI fails to provide accurate ADC for high diffusivity vials at room temperature due to high noise level (10 times higher than DP-TSE). The DP-TSE sequence had excellent ADC reproducibility with <4% ADC variation among 8 separate measurements. In patient study, DP-TSE exhibited substantially improved geometric reliability. ROI analysis in ADC maps generated from DP-TSE and DW-ssEPI showed <5% difference where high b-value images were excluded from the latter approach due to excessive noise level. Conclusion: A diffusion MRI sequence with

  19. Cartilage destruction in small joints by rheumatoid arthritis: assessment of fat-suppressed three-dimensional gradient-echo MR pulse sequences in vitro

    International Nuclear Information System (INIS)

    Uhl, M.; Allmann, K.H.; Hauer, M.P.; Langer, M.; Ihling, C.; Conca, W.

    1998-01-01

    Purpose. To assess the accuracy of different MR sequences for the detection of articular cartilage abnormalities in rheumatoid arthritis. Design and patients. Ten metacarpophalangeal joints and 10 metatarsophalangeal joints (specimens from arthritis patients undergoing ablative joint surgery) were examined with a fat-suppressed (FS) 3D FLASH, a FS 3D FISP, a FS 2D fast spin-echo T2-weighted, and a 2D FS spin-echo T1-weighted sequence. Each cartilage lesion and each cortical lesion was graded from 0 to 4 (modified Outerbridge staging system). Subsequently, the results of each sequence were compared with the macroscopic findings and statistically tested against each other. Results. The study shows that 3D gradient-echo sequences with fat suppression were best for imaging and grading of cartilage lesions in arthritis of the small joints of the hands and feet. Using 3D techniques, all grade 2, grade 3, and grade 4 lesions of cartilage or cortical bone were detected. Conclusion. FS 3D gradient-echo techniques were best for the detection and grading of hyaline cartilage and subchondral bone lesions in rheumatoid arthritis. MRI has a great potential as an objective method of evaluating cartilage damage and bone erosions in rheumatoid arthritis. (orig.)

  20. Cartilage destruction in small joints by rheumatoid arthritis: assessment of fat-suppressed three-dimensional gradient-echo MR pulse sequences in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, M.; Allmann, K.H.; Hauer, M.P.; Langer, M. [Department of Diagnostic Radiology, University Hospital Freiburg (Germany); Ihling, C. [Department of Pathology, University Hospital Freiburg, Freiburg (Germany); Conca, W. [Department of Rheumatology, University Hospital Freiburg (Germany)

    1998-12-01

    Purpose. To assess the accuracy of different MR sequences for the detection of articular cartilage abnormalities in rheumatoid arthritis. Design and patients. Ten metacarpophalangeal joints and 10 metatarsophalangeal joints (specimens from arthritis patients undergoing ablative joint surgery) were examined with a fat-suppressed (FS) 3D FLASH, a FS 3D FISP, a FS 2D fast spin-echo T2-weighted, and a 2D FS spin-echo T1-weighted sequence. Each cartilage lesion and each cortical lesion was graded from 0 to 4 (modified Outerbridge staging system). Subsequently, the results of each sequence were compared with the macroscopic findings and statistically tested against each other. Results. The study shows that 3D gradient-echo sequences with fat suppression were best for imaging and grading of cartilage lesions in arthritis of the small joints of the hands and feet. Using 3D techniques, all grade 2, grade 3, and grade 4 lesions of cartilage or cortical bone were detected. Conclusion. FS 3D gradient-echo techniques were best for the detection and grading of hyaline cartilage and subchondral bone lesions in rheumatoid arthritis. MRI has a great potential as an objective method of evaluating cartilage damage and bone erosions in rheumatoid arthritis. (orig.) With 5 figs., 19 refs.

  1. Evaluation of left ventricular volume by MRI using modified Simpson's rule method

    International Nuclear Information System (INIS)

    Okamura, Masahiro; Kondo, Takeshi; Anno, Naoko

    1990-01-01

    The conventional contrast left ventriculogrpahy (LVG) has been the gold standard for estimating left ventricular volume (LVV), but it is an invasive technique, and volume overload must be caused by contrast medium. the true left ventricular (LV) long axis may not be obtained by LVG in routine right anterior oblique (RAO) projection. MRI, on the other hand, is noninvasive, does not require contrast medium, and permits to obtain the true LV long axis sections. Thus, MRI seems the ideal technique for estimating LVV. To estimate LVV, we have developed the on-line programs for calculating LVV by single-plane (SMS) or biplane modified Simpson's rule method (BMS), and have applied these programs to the water in the bottle with the elliptic short axis plane, normal volunteer and patients with various heart diseases. In the water phantom, the water volume calculated by the BMS was more accurate than the SMS. In nine normal volunteers, multiple LV short axis sections in each end-systole and end-diastole were obtained by ECG-gated spin echo MRI, LVV as standard was calculated by true Simpson's rule method (TS) on these images. Then both vertical and horizontal LV long axis sections were also obtained by ECG-gated field echo (FE) rephasing cine MRI, LVV was calculated by the BMS or SMS on these images. The BMS or SMS significantly correlated (r=0.974, r=0.927, 0.947) with TS for estimating LVV, respectively. In 20 patients with various heart diseases, both vertical and horizontal LV long axis sections were obtained by FE cine MRI. LVV (r=0.907 and r=0.901) and EF (r=0.822 and r=0.938) calculated by the SMS on the vertical or horizontal LV long axis sections significantly correlated with the conventional RAO-LVG, respectively. In conclusion, the MRI using our on-line programs would be clinically useful for estimating LVV and EF. (author)

  2. Dynamic MRI for the differentiation of inflammatory joint lesions

    International Nuclear Information System (INIS)

    Koenig, H.; Wolf, K.J.; Sieper, J.

    1990-01-01

    Eighteen patients with inflammatory lesions of the knee joints (ten with rheumatoid arthritis, eight with undiagnosed lesions) and two normal subjects were examined by MRI. In addition to spin-echo measurements, the signals from normal and pathological tissues were evaluated quantitatively by dynamic flash sequences following the injection of gadolinium DTPA. The latter method was able to distinguish active pannus from other proliferative synovial changes; the degree of activity could be related to synovial histology and relevant clinical features in eight patients. Areas of flat articular and subchondral pannus could be identified by the enhanced signal following the administration of gadolinium DTPA. Dynamic MRI is able to provide important information for the early diagnosis and follow-up of patients with rheumatoid arthritis. (orig.) [de

  3. Hemodynamic and metabolic characterization of orthotopic rat prostate carcinomas using dynamic MRI and proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Kiessling, F.; Lichy, M.; Kauczor, H.U.; Schlemmer, H.P.; Grobholz, R.; Heilmann, M.; Meding, J.; Huber, P.E.; Peschke, P.

    2003-01-01

    The aim of this study was the noninvasive characterization of prostate carcinoma orthotopically implanted in rats using Gd-DTPA-assisted dynamic MRI (dMRI) and proton magnetic resonance spectroscopy ( 1 H-MRS). After surgical exposure of the prostate, Dunning R3327 orthotopic prostate carcinoma was induced by injecting cells of the MAT-LyLu subline. Six rats were examined 5 and 14 days after tumor induction with dMRI and 1 H-MRS at 1.5 T. Six tumor-free rats served as controls. Using an open two-compartment model, the parameters A (amplitude) and k ep (exchange rate constants) were calculated from the signal time curves of the dMRI. The relative signal intensities (Cho/Cr) of the resonances of choline (Cho) and the creatine-phosphocreatine complex (Cr) were computed from the MR spectra. Already after 5 days, the tumors in the prostate could be clearly identified based on the decrease in signal intensity to T2w and increase of A and k ep . High Cho/Cr levels and resonances of two lipid fractions (Lip 1 at 0.8-1.5 ppm and Lip 2 at 2.0-2.2 ppm) were observed by MRS in the highly necrotic tumors. The orthotopic rat prostate carcinoma model resembles human prostate carcinoma in regard to MR morphology, dMRI, and 1 H-MRS. The noninvasive characterization of perfusion and metabolism makes a comparative examination of different treatment modalities possible. (orig.) [de

  4. MRI of the popliteofibular ligament: isotropic 3D WE-DESS versus coronal oblique fat-suppressed T2W MRI

    International Nuclear Information System (INIS)

    Rajeswaran, G.; Lee, J.C.; Healy, J.C.

    2007-01-01

    The objective was to compare isotropic 3D water excitation double-echo steady state (WE-DESS) MRI with coronal oblique fat-suppressed T2-weighted (FS T2W) images in the identification of the popliteofibular ligament (PFL). A prospective analysis of 122 consecutive knee MRIs was performed in patients referred for knee pain from the orthopaedic clinic. In addition to the standard knee sequences, isotropic WE-DESS volume acquisition through the whole knee and coronal oblique FS T2W fast spin echo sequences through the posterolateral corner were obtained. The presence of the popliteus and biceps femoris tendons, lateral collateral and PFL was documented. Anterior cruciate ligament injury was present in 33 cases and these were excluded from the study because of the risk of associated PFL injury, leaving a total of 89 cases. Of the 42 patients in whom arthroscopic evaluation was subsequently obtained, none were found to have an injury to the PFL. The lateral collateral ligament, biceps femoris and popliteus tendon were identified in all cases on all sequences. The PFL was seen in 81 (91.0%; 95% CI 85.1-97.0%) patients using the WE-DESS sequence and 63 (70.8%; 95% CI 61.3-80.2%) patients using the coronal oblique FS T2W sequence, a statistically significant difference (p < 0.00005). Isotropic 3D WE-DESS MRI significantly enhances our ability to identify the popliteofibular ligament compared with coronal oblique fat-suppressed T2-weighted images. (orig.)

  5. Hemophilic arthropathy of the knee joint: static and dynamic Gd-DTPA - enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Naegele, M. [Dept. of Radiology, Univ. Bonn (Germany); Bruening, R. [Dept. of Radiology, Univ. Muenchen (Germany); Kunze, V. [Dept. of Radiology, Univ. Bonn (Germany); Eickhoff, H. [Dept. of Orthopedic Surgery, Troisdorf (Germany); Koch, W. [Dept. of Orthopedic Surgery, Troisdorf (Germany); Reiser, M. [Dept. of Radiology, Univ. Muenchen (Germany)

    1995-12-31

    A total of 17 patients with hemophilic arthropathy of the knee joint were studied with static and dynamic MRI before and after an IV bolus injection of Gadolinium-DTPA (Gd-DTPA; 0.1 mmol/kg body weight). The T1-weighted spin-echo (SE) and gradient-echo (fast-field echo [FFE]) sequences were applied. The FFE sequences of eight consecutive scans carried out over a time interval of 160 s were used in order to determine the time to signal intensity (SI) curves of the synovial proliferations surrounding soft tissue, bone marrow, and joint effusion. After the administration of a contrast agent, synovial proliferations exhibited an increase on FFE and SE images of 47.7% (SD {+-} 14.3%) and 37.4% (SD {+-} 11.2%), respectively, whereas muscle and fatty tissue, tendons, bone marrow, and joint effusion revealed only a minor increase in SI. The gradient of SI (ratio SI/time) of pannus was 39.6%/min (SD {+-} 7.7%/min) and differed significantly (P < 0.001) from that of bone marrow, fatty tissue, muscle tissue, tendons, and joint effusion (P < 0.05). In contrast to synovial proliferations in rheumatoid arthritis, no differentiation between various pannus vascularities based on the degree of enhancement was possible. The Gd-DTPA-enhanced MRI studies delineate and quantify the synovial proliferations in hemophilic arthropathy. Dynamic studies in hemophilic arthropathy do not provide qualitative assessment of the inflammatory process. (orig.)

  6. Hemophilic arthropathy of the knee joint: static and dynamic Gd-DTPA -enhanced MRI

    International Nuclear Information System (INIS)

    Naegele, M.; Bruening, R.; Kunze, V.; Eickhoff, H.; Koch, W.; Reiser, M.

    1995-01-01

    A total of 17 patients with hemophilic arthropathy of the knee joint were studied with static and dynamic MRI before and after an IV bolus injection of Gadolinium-DTPA (Gd-DTPA; 0.1 mmol/kg body weight). The T1-weighted spin-echo (SE) and gradient-echo (fast-field echo [FFE]) sequences were applied. The FFE sequences of eight consecutive scans carried out over a time interval of 160 s were used in order to determine the time to signal intensity (SI) curves of the synovial proliferations surrounding soft tissue, bone marrow, and joint effusion. After the administration of a contrast agent, synovial proliferations exhibited an increase on FFE and SE images of 47.7% (SD ± 14.3%) and 37.4% (SD ± 11.2%), respectively, whereas muscle and fatty tissue, tendons, bone marrow, and joint effusion revealed only a minor increase in SI. The gradient of SI (ratio SI/time) of pannus was 39.6%/min (SD ± 7.7%/min) and differed significantly (P < 0.001) from that of bone marrow, fatty tissue, muscle tissue, tendons, and joint effusion (P < 0.05). In contrast to synovial proliferations in rheumatoid arthritis, no differentiation between various pannus vascularities based on the degree of enhancement was possible. The Gd-DTPA-enhanced MRI studies delineate and quantify the synovial proliferations in hemophilic arthropathy. Dynamic studies in hemophilic arthropathy do not provide qualitative assessment of the inflammatory process. (orig.)

  7. MRI T2 Mapping of the Knee Articular Cartilage Using Different Acquisition Sequences and Calculation Methods at 1.5 Tesla.

    Science.gov (United States)

    Mars, Mokhtar; Bouaziz, Mouna; Tbini, Zeineb; Ladeb, Fethi; Gharbi, Souha

    2018-06-12

    This study aims to determine how Magnetic Resonance Imaging (MRI) acquisition techniques and calculation methods affect T2 values of knee cartilage at 1.5 Tesla and to identify sequences that can be used for high-resolution T2 mapping in short scanning times. This study was performed on phantom and twenty-nine patients who underwent MRI of the knee joint at 1.5 Tesla. The protocol includes T2 mapping sequences based on Single Echo Spin Echo (SESE), Multi-Echo Spin Echo (MESE), Fast Spin Echo (FSE) and Turbo Gradient Spin Echo (TGSE). The T2 relaxation times were quantified and evaluated using three calculation methods (MapIt, Syngo Offline and monoexponential fit). Signal to Noise Ratios (SNR) were measured in all sequences. All statistical analyses were performed using the t-test. The average T2 values in phantom were 41.7 ± 13.8 ms for SESE, 43.2 ± 14.4 ms for MESE, 42.4 ± 14.1 ms for FSE and 44 ± 14.5 ms for TGSE. In the patient study, the mean differences were 6.5 ± 8.2 ms, 7.8 ± 7.6 ms and 8.4 ± 14.2 ms for MESE, FSE and TGSE compared to SESE respectively; these statistical results were not significantly different (p > 0.05). The comparison between the three calculation methods showed no significant difference (p > 0.05). t-Test showed no significant difference between SNR values for all sequences. T2 values depend not only on the sequence type but also on the calculation method. None of the sequences revealed significant differences compared to the SESE reference sequence. TGSE with its short scanning time can be used for high-resolution T2 mapping. ©2018The Author(s). Published by S. Karger AG, Basel.

  8. T2{sup *} mapping from multi-echo dixon sequence on gadoxetic acid-enhanced magnetic resonance imaging for the hepatic fat quantification: Can it be used for hepatic function assessment?

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyun Suk; Lee, Jeong Min; Yoon, Jeong Hee; Kang, Hyo Jin; Lee, Sang Min; Yang, Hyun Kyung; Han, Joon Koo [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-08-01

    To evaluate the diagnostic value of T2{sup *} mapping using 3D multi-echo Dixon gradient echo acquisition on gadoxetic acid-enhanced liver magnetic resonance imaging (MRI) as a tool to evaluate hepatic function. This retrospective study was approved by the IRB and the requirement of informed consent was waived. 242 patients who underwent liver MRIs, including 3D multi-echo Dixon fast gradient-recalled echo (GRE) sequence at 3T, before and after administration of gadoxetic acid, were included. Based on clinico-laboratory manifestation, the patients were classified as having normal liver function (NLF, n = 50), mild liver damage (MLD, n = 143), or severe liver damage (SLD, n = 30). The 3D multi-echo Dixon GRE sequence was obtained before, and 10 minutes after, gadoxetic acid administration. Pre- and post-contrast T2{sup *} values, as well as T2{sup *} reduction rates, were measured from T2{sup *} maps, and compared among the three groups. There was a significant difference in T2{sup *} reduction rates between the NLF and SLD groups (−0.2 ± 4.9% vs. 5.0 ± 6.9%, p = 0.002), and between the MLD and SLD groups (3.2 ± 6.0% vs. 5.0 ± 6.9%, p = 0.003). However, there was no significant difference in both the pre- and post-contrast T2{sup *} values among different liver function groups (p = 0.735 and 0.131, respectively). A receiver operating characteristic (ROC) curve analysis showed that the area under the ROC curve for using T2{sup *} reduction rates to differentiate the SLD group from the NLF group was 0.74 (95% confidence interval: 0.63–0.83). Incorporation of T2{sup *} mapping using 3D multi-echo Dixon GRE sequence in gadoxetic acid-enhanced liver MRI protocol may provide supplemental information for liver function deterioration in patients with SLD.

  9. Fast susceptibility-weighted imaging with three-dimensional short-axis propeller (SAP)-echo-planar imaging.

    Science.gov (United States)

    Holdsworth, Samantha J; Yeom, Kristen W; Moseley, Michael E; Skare, S

    2015-05-01

    Susceptibility-weighted imaging (SWI) in neuroimaging can be challenging due to long scan times of three-dimensional (3D) gradient recalled echo (GRE), while faster techniques such as 3D interleaved echo-planar imaging (iEPI) are prone to motion artifacts. Here we outline and implement a 3D short-axis propeller echo-planar imaging (SAP-EPI) trajectory as a faster, motion-correctable approach for SWI. Experiments were conducted on a 3T MRI system. The 3D SAP-EPI, 3D iEPI, and 3D GRE SWI scans were acquired on two volunteers. Controlled motion experiments were conducted to test the motion-correction capability of 3D SAP-EPI. The 3D SAP-EPI SWI data were acquired on two pediatric patients as a potential alternative to 2D GRE used clinically. The 3D GRE images had a better target resolution (0.47 × 0.94 × 2 mm, scan time = 5 min), iEPI and SAP-EPI images (resolution = 0.94 × 0.94 × 2 mm) were acquired in a faster scan time (1:52 min) with twice the brain coverage. SAP-EPI showed motion-correction capability and some immunity to undersampling from rejected data. While 3D SAP-EPI suffers from some geometric distortion, its short scan time and motion-correction capability suggest that SAP-EPI may be a useful alternative to GRE and iEPI for use in SWI, particularly in uncooperative patients. © 2014 Wiley Periodicals, Inc.

  10. Synthesis and characterization of superparamagnetic iron oxide nanoparticles as calcium-responsive MRI contrast agents

    International Nuclear Information System (INIS)

    Xu, Pengfei; Shen, Zhiwei; Zhang, Baolin; Wang, Jun; Wu, Renhua

    2016-01-01

    Highlights: • SPIONs were conjugated with EGTA by EDC/sulfo-NHS method. • The presence of Ca"2"+ induced the aggregation of EGTA-SPIONs. • The aggregation of EGTA-SPIONs increased the T2 relaxation time. • EGTA-SPIONs can be used for the calcium imaging with MRI. - Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) as T2 contrast agents have great potential to sense calcium ion (Ca"2"+) using magnetic resonance imaging (MRI). Here we prepared calcium-responsive SPIONs for MRI, formed by combining poly(ethylene glycol) (PEG) and polyethylenimine (PEI) coated iron oxide nanoparticle (PEI/PEG-SPIONs) contrast agents with the straightforward calcium-sensing compound EGTA (ethylene glycol tetraacetic acid). EGTA was conjugated onto PEI/PEG-SPIONs using EDC/sulfo-NHS method. EGTA-SPIONs were characterized using TEM, XPS, DSL, TGA and SQUIID. DSL results show that the SPIONs aggregate in the presence of Ca"2"+. MRI analyses indicate that the water proton T2 relaxation rates in HEPES suspensions of the EGTA-SPIONs significantly increase with the calcium concentration because the SPIONs aggregate in the presence of Ca"2"+. The T2 values decreased 25% when Ca"2"+ concentration decreased from 1.2 to 0.8 mM. The aggregation of EGTA-SPIONs could be reversed by EDTA. EGTA-SPIONs have potential as smart contrast agents for Ca"2"+-sensitive MRI.

  11. Synthesis and characterization of superparamagnetic iron oxide nanoparticles as calcium-responsive MRI contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Pengfei [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, School of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004 (China); Shen, Zhiwei [Second Affiliated Hospital of Shantou University Medical College, Dong Xia North Road, Shantou 515041,China (China); Zhang, Baolin, E-mail: baolinzhang@ymail.com [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, School of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004 (China); Wang, Jun [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, School of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004 (China); Wu, Renhua, E-mail: rhwu@stu.edu.cn [Second Affiliated Hospital of Shantou University Medical College, Dong Xia North Road, Shantou 515041,China (China)

    2016-12-15

    Highlights: • SPIONs were conjugated with EGTA by EDC/sulfo-NHS method. • The presence of Ca{sup 2+} induced the aggregation of EGTA-SPIONs. • The aggregation of EGTA-SPIONs increased the T2 relaxation time. • EGTA-SPIONs can be used for the calcium imaging with MRI. - Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) as T2 contrast agents have great potential to sense calcium ion (Ca{sup 2+}) using magnetic resonance imaging (MRI). Here we prepared calcium-responsive SPIONs for MRI, formed by combining poly(ethylene glycol) (PEG) and polyethylenimine (PEI) coated iron oxide nanoparticle (PEI/PEG-SPIONs) contrast agents with the straightforward calcium-sensing compound EGTA (ethylene glycol tetraacetic acid). EGTA was conjugated onto PEI/PEG-SPIONs using EDC/sulfo-NHS method. EGTA-SPIONs were characterized using TEM, XPS, DSL, TGA and SQUIID. DSL results show that the SPIONs aggregate in the presence of Ca{sup 2+}. MRI analyses indicate that the water proton T2 relaxation rates in HEPES suspensions of the EGTA-SPIONs significantly increase with the calcium concentration because the SPIONs aggregate in the presence of Ca{sup 2+}. The T2 values decreased 25% when Ca{sup 2+} concentration decreased from 1.2 to 0.8 mM. The aggregation of EGTA-SPIONs could be reversed by EDTA. EGTA-SPIONs have potential as smart contrast agents for Ca{sup 2+}-sensitive MRI.

  12. Feasibility of three-dimensional ultrashort echo time magnetic resonance imaging at 1.5 T for the diagnosis of skull fractures

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao; Zhong, Yu-min; Zhang, Hong; Lin, Yi; Zhu, Ming [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Shanghai Children' s Medical Center, Shanghai (China); Nie, Quan-min; Guo, Lie-mei; Yang, Xi [Shanghai Jiao Tong University School of Medicine, Department of Neurosurgery Ren Ji Hospital, Shanghai (China); Chen, Wei-bo; Dai, Yong-ming [Philips Healthcare, Shanghai (China); Xu, Jian-rong [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ren Ji Hospital, Shanghai (China)

    2016-01-15

    To investigate the feasibility of ultrashort echo time (UTE) magnetic resonance imaging (MRI) for the diagnosis of skull fractures. The skull fracture models of ten Bama pigs and 364 patients with craniocerebral trauma were subjected to computed tomography (CT), UTE and conventional MRI sequences. The accuracy of UTE imaging in skull fracture diagnosis was analysed using receiver operating characteristic (ROC) curve analysis, McNemar's test and Kappa values. Differences among CT, UTE imaging and anatomical measurement (AM) values for linear fractures (LFs) and depressed fractures (DFs) were compared using one-way ANOVA and a paired-samples t-test. UTE imaging clearly demonstrated skull structures and fractures. The accuracy, validity and reliability of UTE MRI were excellent, with no significant differences between expert readings (P > 0.05; Kappa, 0.899). The values obtained for 42 LFs and 13 DFs in the ten specimens were not significantly different among CT, UTE MRI and AMs, while those obtained for 55 LFs and ten DFs in 44 patients were not significantly different between CT and UTE MRI (P > 0.05). UTE MRI sequences are feasible for the evaluation of skull structures and fractures, with no radiation exposure, particularly for paediatric and pregnant patients. (orig.)

  13. Optimized workflow and imaging protocols for whole-body oncologic PET/MRI.

    Science.gov (United States)

    Ishii, Shirou; Hara, Takamitsu; Nanbu, Takeyuki; Suenaga, Hiroki; Sugawara, Shigeyasu; Kuroiwa, Daichi; Sekino, Hirofumi; Miyajima, Masayuki; Kubo, Hitoshi; Oriuchi, Noboru; Ito, Hiroshi

    2016-11-01

    Although PET/MRI has the advantages of a simultaneous acquisition of PET and MRI, high soft-tissue contrast of the MRI images, and reduction of radiation exposure, its low profitability and long acquisition time are significant problems in clinical settings. Thus, MRI protocols that meet oncological purposes need to be used in order to reduce examination time while securing detectability. Currently, half-Fourier acquisition single-shot turbo spin echo and 3D-T1 volumetric interpolated breath-hold examination may be the most commonly used sequences for whole-body imaging due to their shorter acquisition time and higher diagnostic accuracy. Although there have been several reports that adding diffusion weighted image (DWI) to PET/MRI protocol has had no effect on tumor detection to date, in cases of liver, kidney, bladder, and prostate cancer, the use of DWI may be beneficial in detecting lesions. Another possible option is to scan each region with different MRI sequences instead of scanning the whole body using one sequence continuously. We herein report a workflow and imaging protocols for whole-body oncologic PET/MRI using an integrated system in the clinical routine, designed for the detection, for example by cancer screening, of metastatic lesions, in order to help future users optimize their workflow and imaging protocols.

  14. SU-E-J-224: Using UTE and T1 Weighted Spin Echo Pulse Sequences for MR-Only Treatment Planning; Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H; Fatemi, A [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Sahgal, A [University of Toronto, Toronto, ON (Canada)

    2015-06-15

    Purpose: Investigating a new approach in MRI based treatment planning using the combination of (Ultrashort Echo Time) UTE and T1 weighted spin echo pulse sequences to delineate air, bone and water (soft tissues) in generating pseudo CT images comparable with CT. Methods: A gel phantom containing chicken bones, ping pang balls filled with distilled water and air bubbles, was made. It scanned with MRI using UTE and 2D T1W SE pulse sequences with (in plane resolution= 0.53mm, slice thickness= 2 mm) and CT with (in plane resolution= 0.5 mm and slice thickness= 0.75mm) as a ground truth for geometrical accuracy. The UTE and T1W SE images were registered with CT using mutual information registration algorithm provided by Philips Pinnacle treatment planning system. The phantom boundaries were detected using Canny edge detection algorithm for CT, and MR images. The bone, air bubbles and water in ping pong balls were segmented from CT images using threshold 300HU, - 950HU and 0HU, respectively. These tissue inserts were automatically segmented from combined UTE and T1W SE images using edge detection and relative intensity histograms of the phantom. The obtained segmentations of air, bone and water inserts were evaluated with those obtained from CT. Results: Bone and air can be clearly differentiated in UTE images comparable to CT. Combining UTE and T1W SE images successfully segmented the air, bone and water. The maximum segmentation differences from combine MRI images (UTE and T1W SE) and CT are within 1.3 mm, 1.1mm for bone, air, respectively. The geometric distortion of UTE sequence is small less than 1 pixel (0.53 mm) of MR image resolution. Conclusion: Our approach indicates that MRI can be used solely for treatment planning and its quality is comparable with CT.

  15. Comparison of quantitative regional ventilation-weighted fourier decomposition MRI with dynamic fluorinated gas washout MRI and lung function testing in COPD patients.

    Science.gov (United States)

    Kaireit, Till F; Gutberlet, Marcel; Voskrebenzev, Andreas; Freise, Julia; Welte, Tobias; Hohlfeld, Jens M; Wacker, Frank; Vogel-Claussen, Jens

    2018-06-01

    Ventilation-weighted Fourier decomposition-MRI (FD-MRI) has matured as a reliable technique for quantitative measures of regional lung ventilation in recent years, but has yet not been validated in COPD patients. To compare regional fractional lung ventilation obtained by ventilation-weighted FD-MRI with dynamic fluorinated gas washout MRI ( 19 F-MRI) and lung function test parameters. Prospective study. Twenty-seven patients with chronic obstructive pulmonary disease (COPD, median age 61 [54-67] years) were included. For FD-MRI and for 19 F-MRI a spoiled gradient echo sequence was used at 1.5T. FD-MRI coronal slices were acquired in free breathing. Dynamic 19 F-MRI was performed after inhalation of 25-30 L of a mixture of 79% fluorinated gas (C 3 F 8 ) and 21% oxygen via a closed face mask tubing using a dedicated coil tuned to 59.9 MHz. 19 F washout times in numbers of breaths ( 19 F-n breaths ) as well as fractional ventilation maps for both methods (FD-FV, 19 F-FV) were calculated. Slices were matched using a landmark driven algorithm, and only corresponding slices with an overlap of >90% were coregistered for evaluation. The obtained parameters were correlated with each other using Spearman's correlation coefficient (r). FD-FV strongly correlated with 19 F-n breaths on a global (r = -0.72, P Fourier decomposition-MRI is a promising noninvasive, radiation-free tool for quantification of regional ventilation in COPD patients. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1534-1541. © 2017 International Society for Magnetic Resonance in Medicine.

  16. [3D FSPGR (fast spoiled gradient echo) magnetic resonance imaging in the diagnosis of focal cortical dysplasia in children].

    Science.gov (United States)

    Alikhanov, A A; Sinitsyn, V E; Perepelova, E M; Mukhin, K Iu; Demushkina, A A; Omarova, M O; Piliia, S V

    2001-01-01

    Small dysplastic lesions of the cerebral cortex are often missed by conventional MRI methods. The identification of subtle structural abnormalities by traditional multiplanar rectilinear slices is often limited by the complex convolutional pattern of the brain. We used a method of FSPGR (fast spoiled gradient-echo) of three-dimensional MRI data that improves the anatomical display of the sulcal structure of the hemispheric convexities. It also reduces the asymmetric sampling of gray-white matter that may lead to false-positive results. We present 5 from 12 patients with dysplastic cortical lesions in whom conventional two-dimensional and three-dimensional MRI with multiplanar reformatting was initially considered normal. Subsequent studies using 3D FSPGR identified various types of focal cortical dysplasia in all. These results indicate that an increase in the detection of subtle focal dysplastic lesions may be accomplished when one improves the anatomical display of the brain sulcal structure by performing 3D FSPGR.

  17. Generation of a Four-Class Attenuation Map for MRI-Based Attenuation Correction of PET Data in the Head Area Using a Novel Combination of STE/Dixon-MRI and FCM Clustering.

    Science.gov (United States)

    Khateri, Parisa; Saligheh Rad, Hamidreza; Jafari, Amir Homayoun; Fathi Kazerooni, Anahita; Akbarzadeh, Afshin; Shojae Moghadam, Mohsen; Aryan, Arvin; Ghafarian, Pardis; Ay, Mohammad Reza

    2015-12-01

    The aim of this study is to generate a four-class magnetic resonance imaging (MRI)-based attenuation map (μ-map) for attenuation correction of positron emission tomography (PET) data of the head area using a novel combination of short echo time (STE)/Dixon-MRI and a dedicated image segmentation method. MR images of the head area were acquired using STE and two-point Dixon sequences. μ-maps were derived from MRI images based on a fuzzy C-means (FCM) clustering method along with morphologic operations. Quantitative assessment was performed to evaluate generated MRI-based μ-maps compared to X-ray computed tomography (CT)-based μ-maps. The voxel-by-voxel comparison of MR-based and CT-based segmentation results yielded an average of more than 95 % for accuracy and specificity in the cortical bone, soft tissue, and air region. MRI-based μ-maps show a high correlation with those derived from CT scans (R (2) > 0.95). Results indicate that STE/Dixon-MRI data in combination with FCM-based segmentation yields precise MR-based μ-maps for PET attenuation correction in hybrid PET/MRI systems.

  18. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study.

    Science.gov (United States)

    Laader, Anja; Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E; Lauenstein, Thomas C; Forsting, Michael; Quick, Harald H; Nassenstein, Kai; Umutlu, Lale

    2017-01-01

    The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for

  19. MRI for chronic inflammatory bowel disease

    International Nuclear Information System (INIS)

    Hansmann, H.J.; Hess, T.; Hahmann, M.; Erb, G.; Richter, G.M.; Duex, M.; Elsing, C.

    2001-01-01

    Chronic inflammatory bowel disease is diagnosed and monitored by the combination of colonoscopy and small bowel enteroklysis. Magnetic resonance imaging has become the gold standard for the imaging of perirectal and pelvic fistulas. With the advent of ultrafast MRI small and large bowel imaging has become highly attractive and is being advocated more and more in the diagnostic work up of inflammatory bowel disease. Imaging protocols include fast T 1 -weighted gradient echo and T 2 -weighted TSE sequences and oral or rectal bowel distension. Furthermore, dedicated imaging protocols are based on breath-hold imaging under pharmacological bowel paralysis and gastrointestinal MR contrast agents (Hydro-MRI). High diagnostic accuracy can be achieved in Crohn's disease with special reference to the pattern of disease, depth of inflammation, mesenteric reaction, sinus tract depiction and formation of abscess. In ulcerative colitis, the mucosa-related inflammation causes significantly less bowel wall thickening compared to Crohn's disease. Therefore with MRI, the extent of inflammatory changes is always underestimated compared to colonoscopy. According to our experience in more than 200 patients as well as the results in other centers, Hydro-MRI possesses the potential to replace enteroklysis in the diagnosis of chronic inflammatory bowel disease and most of the follow-up colonoscopies in Crohn's disease. Further technical improvements in 3D imaging will allow interactive postprocessing of the MR data. (orig.) [de

  20. FLAIR imaging in the follow-up of low-grade gliomas: time to dispense with the dual-echo?

    Energy Technology Data Exchange (ETDEWEB)

    Bynevelt, M.; Britton, J.; Seymour, H.; MacSweeney, E.; Sandhu, K. [Atkinson Morley' s Hospital, London (United Kingdom). Dept. of Neuroradiology; Thomas, N. [Dept. of Neurosurgery, Atkinson Morley' s Hospital, London (United Kingdom)

    2001-02-01

    Fluid-attenuated inversion-recovery (FLAIR) imaging has established its utility in neuroimaging. We propose this imaging sequence as a replacement for proton density (PD) and T2-weighted spin-echo sequences in the follow-up of low-grade glioma. 26 MRI examinations of 18 patients with such tumours were reviewed by three neuroradiologists and a neurosurgeon. FLAIR was found to be superior for appreciation of the lesion (91 % of studies) and for demonstration of its margin (92 %). FLAIR was also better at showing different tumour components, particularly in regions difficult to demonstrate in some planes, such as the vertex in axial imaging. The sequence also defines the postoperative cavity, shows the least amount of susceptibility effect associated with surgical clips, and demonstrates local spread (to white matter tracts, subependymal and capsular) more distinctly. We conclude that FLAIR can replace PD and T2-weighted spin-echo imaging in radiological follow-up of low-grade glioma. (orig.)

  1. Updates in MRI characterization of the thymus in myasthenic patients.

    Science.gov (United States)

    Popa, G A; Preda, E M; Scheau, C; Vilciu, C; Lupescu, I G

    2012-06-12

    To evaluate the imaging appearance of the thymus in the myasthenic patients by using chemical shift magnetic resonance imaging, and, to correlate the chemical shift ratio (CSR) with pathologic findings after surgical excision. In the past year, a total of 11 myasthenic patients (4 males, 7 females; age range of 26-65 years), have been investigated by MRI centered at the thymic lodge. Our protocol included a Dual-Echo technique, T1-weighted In-phase/Opposed-phase MR images in all patients. A chemical shift ratio (CSR) was calculated by comparing the signal intensity of the thymus gland with that of the chest wall muscle for quantitative analysis. For this purpose, we have used standard region-of-interest electronic cursors at a slice level of the maximum axial surface of the thymus. We have identified two patients groups: a thymic hyperplasia group and a thymic tumoral group. With the decrease in the signal intensity of the thymus gland at chemical shift, the MR imaging was evident only in the hyperplasia group. The mean CSR in the hyperplasia group was considerably lower than that in the tumor group, 0,4964 ± 0,1841, compared with 1,0398 ± 0,0244. The difference in CSR between the hyperplasia and tumor groups was statistically significant (P=0,0028). MR imaging using T1-weighted In-phase/Opposed-phase images could be a useful diagnostic tool in the preoperative assessment of the thymic lodge and may help differentiate thymic hyperplasia from tumors of the thymus gland.

  2. Control study of MRI and histopathology in early atherosclerotic plaque of rabbits

    International Nuclear Information System (INIS)

    Song Qiong; Xia Liming; Wang Chengyuan; Hu Junwu; Feng Dingyi; Zou Mingli

    2006-01-01

    Objective: To explore the diagnostic value of MRI in the early atherosclerosis. Materials and Methods: Atherosclerosis was induced in 20 New Zealand White male rabbits with high cholesterol diet. Rabbits underwent serial MRI at 9 and 18 weeks after high cholesterol diet. Axial T 1 and fat-suppressed PDWI spin echo images of the abdominal aorta were obtained above and below the right renal arteries. The signal intensity and morphologic features of plaque in the various phases after high cholesterol diet in MRI were analyzed and compared with those of histopathology. Results: Plaque could be observed in all animals on MRI at 9 weeks after high cholesterol diet, and mild enhancement of the plaque could be noted on enhanced imaging. Imaging effect was the best at T 1 sequence. Plaque size increased gradually at 18 weeks. Plaque and vessel wall were all enrichment. In histopathology, foam cells, collagen and matrix fiber component can be seen in the various phases. Conclusion: The conventional MRI technique can be used to assess the formation and development of the early atherosclerosis dynamically and histologically. (authors)

  3. MEASUREMENT OF TRANSVERSE ECHOES IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; SATOGATA, T.; TOMAS, R.

    2005-01-01

    Beam echoes are a very sensitive method to measure diffusion, and longitudinal echo measurements were performed in a number of machines. In RHIC, for the first time, a transverse beam echo was observed after applying a dipole kick followed by a quadrupole .kick. After application of the dipole kick, the dipole moment decohered completely due to lattice nonlinearities. When a quadrupole kick is applied at time τ after the dipole kick, the beam re-cohered at time 2τ thus showing an echo response. We describe the experimental setup and measurement results. In the measurements the dipole and quadrupole kick amplitudes, amplitude dependent tune shift, and the time between dipole and quadrupole kick were varied. In addition, measurements were taken with gold bunches of different intensities. These should exhibit different transverse diffusion rates due to intra-beam scattering

  4. Time-resolved Femtosecond Photon Echo Probes Bimodal Solvent Dynamics

    NARCIS (Netherlands)

    Pshenichnikov, M.S; Duppen, K.; Wiersma, D. A.

    1995-01-01

    We report on time-resolved femtosecond photon echo experiments of a dye molecule in a polar solution. The photon echo is time resolved by mixing the echo with a femtosecond gate pulse in a nonlinear crystal. It is shown that the temporal profile of the photon echo allows separation of the

  5. Gravitational wave sources: reflections and echoes

    Science.gov (United States)

    Price, Richard H.; Khanna, Gaurav

    2017-11-01

    The recent detection of gravitational waves has generated interest in alternatives to the black hole interpretation of sources. A subset of such alternatives involves a prediction of gravitational wave ‘echoes’. We consider two aspects of possible echoes: first, general features of echoes coming from spacetime reflecting conditions. We find that the detailed nature of such echoes does not bear any clear relationship to quasi-normal frequencies. Second, we point out the pitfalls in the analysis of local reflecting ‘walls’ near the horizon of rapidly rotating black holes.

  6. Gravitational wave sources: reflections and echoes

    International Nuclear Information System (INIS)

    Price, Richard H; Khanna, Gaurav

    2017-01-01

    The recent detection of gravitational waves has generated interest in alternatives to the black hole interpretation of sources. A subset of such alternatives involves a prediction of gravitational wave ‘echoes’. We consider two aspects of possible echoes: first, general features of echoes coming from spacetime reflecting conditions. We find that the detailed nature of such echoes does not bear any clear relationship to quasi-normal frequencies. Second, we point out the pitfalls in the analysis of local reflecting ‘walls’ near the horizon of rapidly rotating black holes. (paper)

  7. Sparse adaptive filters for echo cancellation

    CERN Document Server

    Paleologu, Constantin

    2011-01-01

    Adaptive filters with a large number of coefficients are usually involved in both network and acoustic echo cancellation. Consequently, it is important to improve the convergence rate and tracking of the conventional algorithms used for these applications. This can be achieved by exploiting the sparseness character of the echo paths. Identification of sparse impulse responses was addressed mainly in the last decade with the development of the so-called ``proportionate''-type algorithms. The goal of this book is to present the most important sparse adaptive filters developed for echo cancellati

  8. Evaluation of cardiac function using multi-shot echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tadashi; Tanitame, Nobuko; Hata, Ryoichiro; Hirai, Nobuhiko; Ikeda, Midori; Ono, Chiaki; Fukuoka, Haruhito; Ito, Katsuhide [Hiroshima Univ. (Japan). School of Medicine

    1998-01-01

    In this study, we performed multi-shot echo planar imaging (8 shot, TR/TE/FL=55 ms/18 ms/60 degrees) and k-space segmented fast gradient echo sequence (8 views per segment, TR/TE/FL=9.9 ms/1.8 ms/30 degrees) to assess cardiac function in healthy volunteers. Transaxial sections of the entire heart were obtained with both sequences in ECG triggered, breath hold, and with a 256 x 128 matrix. Resulting temporal resolution was 55 ms for echo planar imaging, and 71 ms for k-space segmented fast gradient echo sequence, respectively. Ventricular volume and ejection fraction of both ventricles and left ventricular mass obtained with multi-shot echo planar imaging were assessed in comparison with k-space segmented fast gradient echo sequence. Measurements of left ventricular volume, ejection fraction and mass obtained with multi-shot echo planar imaging demonstrated close correlation with those obtained with k-space segmented fast gradient echo sequence. Right ventricular volumes obtained with echo planar imaging were significantly higher than those obtained with k-space segmented fast gradient echo sequence. This tendency is considered to be due to differing contrast between right ventricular myocardium and fat tissue observed with echo planar imaging relative to that observed with fast gradient echo sequence, because fat suppression is always performed in echo planar images. Multi-shot echo planar imaging can be a reliable tool for measurement of cardiac functional parameters, although wall motion analysis of the left ventricle requires higher temporal resolution and a short axial section. (K.H.)

  9. SU-F-BRF-10: Deformable MRI to CT Validation Employing Same Day Planning MRI for Surrogate Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Padgett, K; Stoyanova, R; Johnson, P; Dogan, N; Pollack, A [University of Miami School of Medicine, Miami, FL (United States); Piper, J; Javorek, A [MIM Software, Inc., Beachwood, OH (United States)

    2014-06-15

    Purpose: To compare rigid and deformable registrations of the prostate in the multi-modality setting (diagnostic-MRI to planning-CT) by utilizing a planning-MRI as a surrogate. The surrogate allows for the direct quantitative analysis which can be difficult in the multi-modality domain where intensity mapping differs. Methods: For ten subjects, T2 fast-spin-echo images were acquired at two different time points, the first several weeks prior to planning (diagnostic-MRI) and the second on the same day in which the planning CT was collected (planning-MRI). Significant effort in patient positioning and bowel/bladder preparation was undertaken to minimize distortion of the prostate in all datasets. The diagnostic-MRI was deformed to the planning-CT utilizing a commercially available deformable registration algorithm synthesized from local registrations. The deformed MRI was then rigidly aligned to the planning MRI which was used as the surrogate for the planning-CT. Agreement between the two MRI datasets was scored using intensity based metrics including Pearson correlation and normalized mutual information, NMI. A local analysis was performed by looking only within the prostate, proximal seminal vesicles, penile bulb and combined areas. A similar method was used to assess a rigid registration between the diagnostic-MRI and planning-CT. Results: Utilizing the NMI, the deformable registrations were superior to the rigid registrations in 9 of 10 cases demonstrating a 15.94% improvement (p-value < 0.001) within the combined area. The Pearson correlation showed similar results with the deformable registration superior in the same number of cases and demonstrating a 6.97% improvement (p-value <0.011). Conclusion: Validating deformable multi-modality registrations using spatial intensity based metrics is difficult due to the inherent differences in intensity mapping. This population provides an ideal testing ground for MRI to CT deformable registrations by obviating the need

  10. Mock ECHO: A Simulation-Based Medical Education Method.

    Science.gov (United States)

    Fowler, Rebecca C; Katzman, Joanna G; Comerci, George D; Shelley, Brian M; Duhigg, Daniel; Olivas, Cynthia; Arnold, Thomas; Kalishman, Summers; Monnette, Rebecca; Arora, Sanjeev

    2018-04-16

    This study was designed to develop a deeper understanding of the learning and social processes that take place during the simulation-based medical education for practicing providers as part of the Project ECHO® model, known as Mock ECHO training. The ECHO model is utilized to expand access to care of common and complex diseases by supporting the education of primary care providers with an interprofessional team of specialists via videoconferencing networks. Mock ECHO trainings are conducted through a train the trainer model targeted at leaders replicating the ECHO model at their organizations. Trainers conduct simulated teleECHO clinics while participants gain skills to improve communication and self-efficacy. Three focus groups, conducted between May 2015 and January 2016 with a total of 26 participants, were deductively analyzed to identify common themes related to simulation-based medical education and interdisciplinary education. Principal themes generated from the analysis included (a) the role of empathy in community development, (b) the value of training tools as guides for learning, (c) Mock ECHO design components to optimize learning, (d) the role of interdisciplinary education to build community and improve care delivery, (e) improving care integration through collaboration, and (f) development of soft skills to facilitate learning. Mock ECHO trainings offer clinicians the freedom to learn in a noncritical environment while emphasizing real-time multidirectional feedback and encouraging knowledge and skill transfer. The success of the ECHO model depends on training interprofessional healthcare providers in behaviors needed to lead a teleECHO clinic and to collaborate in the educational process. While building a community of practice, Mock ECHO provides a safe opportunity for a diverse group of clinician experts to practice learned skills and receive feedback from coparticipants and facilitators.

  11. Diffusion MRI findings in phenylketonuria

    Energy Technology Data Exchange (ETDEWEB)

    Sener, R.N. [Dept. of Radiology, Ege Univ. Hospital, Izmir (Turkey)

    2003-12-01

    Two patients with phenylketonuria were studied who were under dietary control since infancy, and who were mentally normal. Diffusion MRI was obtained using a spin-echo, echo-planar sequence with a gradient strength of 30 mT/m at 1.5 T. A trace sequence (TR=5700 ms, and TE=139 ms) was used, acquired in 22 s. Heavily diffusion-weighted (b=1000 mm{sup 2}/s) images, and the apparent diffusion coefficient (ADC) values from automatically generated ADC maps were studied. There were two different patterns in these two patients, restricted and increased diffusion patterns. Restricted diffusion pattern consisted of high-signal on b=1000 s/mm{sup 2} images with low ADC values ranging from 0.46 to 0.57 x 10{sup -3} mm{sup 2}/s. Increased diffusion pattern consisted of normal b=1000 s/mm{sup 2} images with high ADC values ranging from 1.37 to 1.63 x 10{sup -3} mm{sup 2}/s. It is likely that these values reflected presence of two different histopathological changes in phenylketonuria or reflected different stages of the same disease. (orig.)

  12. Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo sequence: improvement of the image quality of oxygen-enhanced MRI

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Higashino, Takanori; Kawamitsu, Hideaki; Watanabe, Hirokazu; Takenaka, Daisuke; Cauteren, Marc van; Sugimura, Kazuro

    2004-01-01

    Purpose: The purpose of the study presented here was to determine the improvement in image quality of oxygen-enhanced magnetic resonance (MR) subtraction imaging obtained with a centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence compared with that obtained with a conventional sequentially reordered inversion recovery single-shot HASTE (s-IR-HASTE) sequence for pulmonary imaging. Materials and methods: Oxygen-enhanced MR imaging using a 1.5 T whole body scanner was performed on 12 healthy, non-smoking volunteers. Oxygen-enhanced MR images were obtained with the coronal two-dimensional (2D) c-IR-HASTE sequence and 2D s-IR-HASTE sequence combined with respiratory triggering. For a 256x256 matrix, 132 phase-encoding steps were acquired including four steps for phase correction. Inter-echo spacing for each sequence was 4.0 ms. The effective echo time (TE) for c-IR-HASTE was 4.0 ms, and 16 ms for s-IR-HASTE. The inversion time (TI) was 900 ms. To determine the improvement in oxygen-enhanced MR subtraction imaging by c-IR-HASTE, CNRs of subtraction image, overall image quality, and image degradation of the c-IR-HASTE and s-IR-HASTE techniques were statistically compared. Results: CNR, overall image quality, and image degradation of c-IR-HASTE images showed significant improvement compared to those s-IR-HASTE images (P<0.05). Conclusion: Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence enhanced the signal from the lung and improved the image quality of oxygen-enhanced MR subtraction imaging

  13. MRI of acute cerebral infarction: a comparison of FLAIR and T2-weighted fast spin-echo imaging

    International Nuclear Information System (INIS)

    Noguchi, K.; Ogawa, T.; Inugami, A.; Fujita, H.; Hatazawa, J.; Shimosegawa, E.; Okudera, T.; Uemura, K.; Seto, H.

    1997-01-01

    Fluid-attenuated inversion-recovery (FLAIR) sequences have been reported to provide high sensitivity to a wide range of central nervous system diseases. To our knowledge, however, FLAIR sequences have not been used to study patients with acute cerebral infarcts. We evaluated the usefulness of FLAIR sequences in this context. FLAIR sequences were acquired on a 0.5 T superconducting unit within 8 h of the onset in 19 patients (aged 26-80 years) with a total of 23 ischaemic lesions. The images were reviewed retrospectively by three neuroradiologists, and the FLAIR images were compared with T2-weighted fast spin-echo images. All but one of the ischaemic lesions involving grey matter was clearly demonstrated on FLAIR images as increased signal intensity in cortical or central grey matter. FLAIR images were particularly useful for detecting the hyperacute cortical infarcts within 3 h of onset, which were not readily detected on the spin-echo images. In 9 of 11 patients with complete proximal occlusion, the distal portion of the cerebral artery was visible as an area of high signal intensity on FLAIR images. (orig.). With 4 figs., 1 tab

  14. Sci-Thur PM - Colourful Interactions: Highlights 04: A Fast Quantitative MRI Acquisition and Processing Pipeline for Radiation Treatment Planning and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jutras, Jean-David [Dept. of Oncology, University of Alberta (Canada); De Zanche, Nicola [Dept. of Oncology, University of Alberta. Dept. of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada)

    2016-08-15

    MRI-only Radiation Treatment Planning (RTP) is becoming increasingly popular because of a simplified work-flow, and less inconvenience to the patient who avoids multiple scans. The advantages of MRI-based RTP over traditional CT-based RTP lie in its superior soft-tissue contrast, and absence of ionizing radiation dose. The lack of electron-density information in MRI can be addressed by automatic tissue classification. To distinguish bone from air, which both appear dark in MRI, an ultra-short echo time (UTE) pulse sequence may be used. Quantitative MRI parametric maps can provide improved tissue segmentation/classification and better sensitivity in monitoring disease progression and treatment outcome than standard weighted images. Superior tumor contrast can be achieved on pure T{sub 1} images compared to conventional T{sub 1}-weighted images acquired in the same scan duration and voxel resolution. In this study, we have developed a robust and fast quantitative MRI acquisition and post-processing work-flow that integrates these latest advances into the MRI-based RTP of brain lesions. Using 3D multi-echo FLASH images at two different optimized flip angles (both acquired in under 9 min, and 1mm isotropic resolution), parametric maps of T{sub 1}, proton-density (M{sub 0}), and T{sub 2}{sup *} are obtained with high contrast-to-noise ratio, and negligible geometrical distortions, water-fat shifts and susceptibility effects. An additional 3D UTE MRI dataset is acquired (in under 4 min) and post-processed to classify tissues for dose simulation. The pipeline was tested on four healthy volunteers and a clinical trial on brain cancer patients is underway.

  15. MR imaging of articular cartilage : comparison of magnetization transfer contrast and fat-suppression in multiplanar and 3D gradient-echo, spin-echo, turbo spin-echo techniques

    International Nuclear Information System (INIS)

    Lee, Young Joon; Joo, Eun Young; Eun, Choong Ki

    1999-01-01

    The purpose of this study was to evaluate the effects of magnetization transfer contrast(MTC) and fat-suppression(FS) in variable spin-echo and gradient-echo sequences for articular cartilage imaging and to determine the optimal pulse sequences. Using variable 7-pulse sequences, the knees of 15 pigs were imaged Axial images were obtained using proton density and T2-weighted spin-echo (PDWSE and T2WSE), turbo spin-echo (TSE), multiplanar gradient-echo (MPGR), and 3D steady-state gradient-echo (3DGRE) sequences, and the same pulse sequences were then repeated using MTC. Also T1-weighted spin-echo(T1WSE) and 3D spoiled gradient-echo(3DSPGR) images of knees were also acquired, and the procedure was repeated using FS. For each knee, a total of 14 axial images were acquired, and using a 6-band scoring system, the visibility of and the visibilities of the the articular cartilage was analyzed. The visual effect of MTC and FS was scored using a 4-band scale. For each image, the signal intensities of articular cartilage, subchondral bone, muscles, and saline were measured, and signal-to-noise ratios(SNR) and contrast-to-noise ratios(CNR) were also calculated. Visibility of the cartilage was best when 3DSPGR and T1WSE sequences were used. MTC imaging increased the negative contrast between cartilage and saline, but FS imaging provided more positive contrast. CNR between cartilage and saline was highest when using TSE with FS(-351.1±15.3), though CNR between cartilage and bone then fell to -14.7±10.8. In MTC imaging using MPGR showed the greatest increase of negative contrast between cartilage and saline(CNR change=-74.7); the next highest was when 3DGRE was used(CNR change=-34.3). CNR between cartilage and bone was highest with MPGR(161.9±17.7), but with MTC, the greatest CNR decrease(-81.8) was observed. The greatest CNR increase between cartilage and bone was noted in T1WSE with FS. In all scans, FS provided a cartilage-only positive contrast image, though the absolute

  16. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging.

    Science.gov (United States)

    Murphy, B J

    2001-06-01

    To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee.

  17. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging

    International Nuclear Information System (INIS)

    Murphy, B.J.

    2001-01-01

    Objective. To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee.Design and patients. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed.Results. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%.Conclusion. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee. (orig.)

  18. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B.J. [Dept. of Radiology, Univ. of Miami School of Medicine, FL (United States)

    2001-06-01

    Objective. To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee.Design and patients. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed.Results. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%.Conclusion. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee. (orig.)

  19. Peripheral nerve MRI: precision and reproducibility of T2*-derived measurements at 3.0-T. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tagliafico, Alberto [University of Genoa, Institute of Anatomy, Department of Experimental Medicine, Genoa (Italy); Bignotti, Bianca; Martinoli, Carlo [University of Genoa, Radiology Department, Genoa, Genova (Italy); Tagliafico, Giulio [CNR-IMATI, Consiglio Nazionale delle Ricerche, Istituto di Matematica Applicata e Tecnologie Informatiche, Genova (Italy)

    2015-05-01

    To prospectively evaluate the precision and reproducibility of T2*-derived measurements of the peripheral nerves. The study was approved by the local ethics committee and written informed consent was obtained. Bilateral upper and lower limb MRI examination was performed in 40 healthy subjects on a 3.0-T scanner. MRI protocol included T1-turbo spin-echo, T2-turbo spin-echo with fat suppression, and multiecho gradient recalled echo. Measurements of T2* times on T2* maps at different anatomical levels were performed. Three authors measured independently and in different sessions at baseline and after 4 weeks. Non-parametric tests and Bland-Altman statistics were used. Minimum and maximum percentage variability were 10 % and 19 % for T2* (84-91 % of reproducibility). Maximum values of minimum detectable differences between limbs was 16 % (with 95 % CI: 2-37). Intra- and inter-observer agreement of the three radiologists for T2* was considered good. Evaluating the combined influence of the observer and of the repeated measurements the reproducibility was 87-98 %. T2* measurement of the peripheral nerves is precise and reproducible. The healthy contralateral side can be used as an internal control. Variations in T2* values up to 16 % have to be considered. (orig.)

  20. Occupational exposure measurements of static and pulsed gradient magnetic fields in the vicinity of MRI scanners

    Energy Technology Data Exchange (ETDEWEB)

    Kaennaelae, Sami; Toivo, Tim; Jokela, Kari [STUK-Radiation and Nuclear Safety Authority, PO Box 14, 00881 Helsinki (Finland); Alanko, Tommi [Finnish Institute of Occupational Health, New Technologies and Risks, Topeliuksenkatu 41a A, 00250 Helsinki (Finland)], E-mail: sami.kannala@stuk.fi

    2009-04-07

    Recent advances in magnetic resonance imaging (MRI) have increased occupational exposure to magnetic fields. In this study, we examined the assessment of occupational exposure to gradient magnetic fields and time-varying magnetic fields generated by motion in non-homogeneous static magnetic fields of MRI scanners. These magnetic field components can be measured simultaneously with an induction coil setup that detects the time rate of change of magnetic flux density (dB/dt). The setup developed was used to measure the field components around two MRI units (1 T open and 3 T conventional). The measured values can be compared with dB/dt reference levels derived from magnetic flux density reference levels given by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The measured motion-induced dB/dt values were above the dB/dt reference levels for both MRI units. The measured values for the gradient fields (echo planar imaging (EPI) and fast field echo (FFE) sequences) also exceeded the dB/dt reference levels in positions where the medical staff may have access during interventional procedures. The highest motion-induced dB/dt values were 0.7 T s{sup -1} for the 1 T scanner and 3 T s{sup -1} for the 3 T scanner when only the static field was present. Even higher values (6.5 T s{sup -1}) were measured for simultaneous exposure to motion-induced and gradient fields in the vicinity of the 3 T scanner.