WorldWideScience

Sample records for echo fse imaging

  1. Optimization image of magnetic resonance imaging (MRI) T2 fast spin echo (FSE) with variation echo train length (ETL) on the rupture tendon achilles case

    International Nuclear Information System (INIS)

    Muzamil, Akhmad; Firmansyah, Achmad Haries

    2017-01-01

    The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (p<0.05) of Tendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information. (paper)

  2. Performance of PROPELLER relative to standard FSE T2-weighted imaging in pediatric brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Vertinsky, A.T. [Vancouver General Hospital, Department of Radiology, Vancouver (Canada); University of British Columbia, Department of Radiology, Vancouver (Canada); Rubesova, Erika; Bammer, Sabine; White, Allan; Barnes, Patrick D. [Stanford University Medical Center, Lucile Salter Packard Children' s Hospital, Palo Alto, CA (United States); Krasnokutsky, Michael V. [Madigan Army Medical Center, Department of Radiology, Tacoma, WA (United States); Uniformed Services University of Health Sciences, Department of Radiology, Bethesda, MD (United States); Rosenberg, Jarrett; Bammer, Roland [Lucas Center, Stanford University, Department of Radiology, Palo Alto, CA (United States)

    2009-10-15

    T2-weighted fast spin-echo imaging (T2-W FSE) is frequently degraded by motion in pediatric patients. MR imaging with periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) employs alternate sampling of k-space to achieve motion reduction. To compare T2-W PROPELLER FSE (T2-W PROP) with conventional T2-W FSE for: (1) image quality; (2) presence of artefacts; and (3) ability to detect lesions. Ninety-five pediatric patients undergoing brain MRI (1.5 T) were evaluated with T2-W FSE and T2-W PROP. Three independent radiologists rated T2-W FSE and T2-W PROP, assessing image quality, presence of artefacts, and diagnostic confidence. Chi-square analysis and Wilcoxon signed rank test were used to assess the radiologists' responses. Compared with T2-W FSE, T2-W PROP demonstrated better image quality and reduced motion artefacts, with the greatest benefit in children younger than 6 months. Although detection rates were comparable for the two sequences, blood products were more conspicuous on T2-W FSE. Diagnostic confidence was higher using T2-W PROP in children younger than 6 months. Average inter-rater agreement was 87%. T2-W PROP showed reduced motion artefacts and improved diagnostic confidence in children younger than 6 months. Thus, use of T2-W PROP rather than T2-W FSE should be considered in routine imaging of this age group, with caution required in identifying blood products. (orig.)

  3. Performance of PROPELLER relative to standard FSE T2-weighted imaging in pediatric brain MRI

    International Nuclear Information System (INIS)

    Vertinsky, A.T.; Rubesova, Erika; Bammer, Sabine; White, Allan; Barnes, Patrick D.; Krasnokutsky, Michael V.; Rosenberg, Jarrett; Bammer, Roland

    2009-01-01

    T2-weighted fast spin-echo imaging (T2-W FSE) is frequently degraded by motion in pediatric patients. MR imaging with periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) employs alternate sampling of k-space to achieve motion reduction. To compare T2-W PROPELLER FSE (T2-W PROP) with conventional T2-W FSE for: (1) image quality; (2) presence of artefacts; and (3) ability to detect lesions. Ninety-five pediatric patients undergoing brain MRI (1.5 T) were evaluated with T2-W FSE and T2-W PROP. Three independent radiologists rated T2-W FSE and T2-W PROP, assessing image quality, presence of artefacts, and diagnostic confidence. Chi-square analysis and Wilcoxon signed rank test were used to assess the radiologists' responses. Compared with T2-W FSE, T2-W PROP demonstrated better image quality and reduced motion artefacts, with the greatest benefit in children younger than 6 months. Although detection rates were comparable for the two sequences, blood products were more conspicuous on T2-W FSE. Diagnostic confidence was higher using T2-W PROP in children younger than 6 months. Average inter-rater agreement was 87%. T2-W PROP showed reduced motion artefacts and improved diagnostic confidence in children younger than 6 months. Thus, use of T2-W PROP rather than T2-W FSE should be considered in routine imaging of this age group, with caution required in identifying blood products. (orig.)

  4. Usefulness of IDEAL T2-weighted FSE and SPGR imaging in reducing metallic artifacts in the postoperative ankles with metallic hardware

    International Nuclear Information System (INIS)

    Lee, Jung Bin; Cha, Jang Gyu; Lee, Min Hee; Lee, Eun Hye; Lee, Young Koo; Jeon, Chan Hong

    2013-01-01

    The aim of this work is to prospectively compare the effectiveness of iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL), T2-weighted fast spin-echo (FSE), and spoiled gradient-echo (SPGR) MR imaging to frequency selective fat suppression (FSFS) protocols for minimizing metallic artifacts in postoperative ankles with metallic hardware. The T2-weighted and SPGR imaging with IDEAL and FSFS were performed on 21 ankles of 21 patients with metallic hardware. Two musculoskeletal radiologists independently analyzed techniques for visualization of ankle ligaments and articular cartilage, uniformity of fat saturation, and relative size of the metallic artifacts. A paired t test was used for statistical comparisons of MR images between IDEAL and FSFS groups. IDEAL T2-weighted FSE and SPGR images enabled significantly improved visualization of articular cartilage (p < 0.05), the size of metallic artifact (p < 0.05), and the uniformity of fat saturation (p < 0.05). However, no significant improvement was found in the visibility of ligaments. IDEAL T2-weighted FSE and SPGR imaging effectively reduces the degree of tissue-obscuring artifacts produced by fixation hardware in ankle joints and improves image quality compared to FSFS T2-weighted FSE and SPGR imaging. However, visibility of ligaments was not improved using IDEAL imaging. (orig.)

  5. Imaging of the brain using the fast-spin-echo and gradient-spin-echo techniques

    International Nuclear Information System (INIS)

    Umek, W.; Ba-Ssalamah, A.; Prokesch, R.; Mallek, R.; Heimberger, K.; Hittmair, K.

    1998-01-01

    The aim of our study was to compare gradient-spin-echo (GRASE) to fast-spin-echo (FSE) sequences for fast T2-weighted MR imaging of the brain. Thirty-one patients with high-signal-intensity lesions on T2-weighted images were examined on a 1.5-T MR system. The FSE and GRASE sequences with identical sequence parameters were obtained and compared side by side. Image assessment criteria included lesion conspicuity, contrast between different types of normal tissue, and image artifacts. In addition, signal-to-noise, contrast-to-noise, and contrast ratios and were determined. The FSE technique demonstrated more lesions than GRASE and with generally better conspicuity. Smaller lesions in particular were better demonstrated on FSE because of lower image noise and slightly weaker image artifacts. Gray-white differentiation was better on FSE. Ferritin and hemosiderin depositions appeared darker on GRASE, which resulted in better contrast. Fatty tissue was less bright on GRASE. With current standard hardware equipment, the FSE technique seems preferable to GRASE for fast T2-weighted routine MR imaging of the brain. For the assessment of hemosiderin or ferritin depositions, GRASE might be considered. (orig.)

  6. Evaluation of FSE and FSPGR MRI imaging methods for planning cranial stereotactic irradiation of a metastatic brain tumor

    International Nuclear Information System (INIS)

    Terada, Masaki; Tanoi, Chiharu

    2003-01-01

    Cranial stereotactic irradiation (STI) of a metastatic brain tumor (BT) was planned by fusing CT images with MRI images using the landmark method of the X-Knife System. The MRI images revealed the BT, the critical optic nerve and brain stem of structures and the eyeball and blood vessels that are landmarks. It was important to improve visibility of the BT with sufficient contrast. Therefore, comparison examinations were performed using the two dimensions fast spin echo (2DFSE), the two dimensions fast spoiled gradient echo (2DFSPGR), and the three dimensions fast spoiled gradient echo (3DFSPGR) methods of T1-weighted imaging with Gd-DTPA contrast. Critical structures and the internal structures of the landmark method were suitable for planning STI when the results of three or more points were combined in visual evaluations. However, the 2DFSE method could showed three or more points. The BT also be visually evaluated using three or less points by the FSPGR method, but had reduced visibility. From detailed contents, the fall of visual evaluation by the small thin and solid BT of the diameter of a BT was characteristic. In the whole signal noise ratio (SNR), the 3DFSPGR method is excellent in images analysis, and the 2DFSE method was excellent in contrast noise ratio (CNR) of a BT. The cystic BT accompanied by dropsy was images with clear and good depiction in all scan parameter. However, the FSPGR method was the boundary not clear in the small solid BT, the FSE method was able to recognize the maximum of the diameter of BT most, and depiction was good. Artifacts of blood flow and motion of the FSE method is a fault. However, the FSE method had the highest useful depiction ability of all BT in the STI plan. (author)

  7. High signal intensity of fat on fast spin echo imaging

    International Nuclear Information System (INIS)

    Ogura, Akio; Yamazaki, Masaru; Hongoh, Takaharu; Inoue, Hiroshi; Ishikuro, Akihiro

    2000-01-01

    The fast spin echo (FSE) technique of producing T 2 -weighted images in greatly reduced imaging times has recently been used for routine clinical study. FSE images show contrast that is very similar in most tissues to that of conventional SE images. However, fat shows a high signal intensity that is influenced by j-coupling and the magnetization transfer effect. The purpose of this study was to assess whether the higher signal intensity of fat is different among MRI systems and to examine the effects of j-coupling and magnetization transfer on the high signal intensity of fat on FSE. The contrast in signal intensity between fat and water was measured for various echo train lengths (ETL) with and without multislicing on FSE using a contrast phantom. Measurements were obtained with four different MRI systems. In addition, the effective T 2 values of fat were calculated for the above conditions. Results indicated that contrast for fat and water was reduced with increased ETL and by using multislicing and was different among the four MRI systems. The effective T 2 values of fat were extended for increased ETL and were not dependent on multislicing. They also differed among the four MRI systems. The extent of effective T 2 values was affected by j-coupling. In this study, it was indicated that the degree of the high signal intensity of fat on FSE differed for different MRI systems. In addition, the reasons for the high signal intensity of fat on FSE were related to the effects of j-coupling and magnetization transfer. (author)

  8. Evaluation with fat-suppression fast spin-echo T2-weighted images for bone and soft tissue disorders

    International Nuclear Information System (INIS)

    Kakitsubata, Yousuke; Watanabe, Katsushi; Kakitsubata, Sachiko; Shimizu, Tokiyoshi.

    1997-01-01

    One hundred and sixty-four magnetic resonance (MR) studies of bone or soft tissue disorders were evaluated with T2-weighted fast spin echo (FSE) imaging and T2-weighted fat-suppressed FSE (FS-FSE) imaging. Fifty-two patients with bone contusion of the knee were also evaluated with conventional T2-weighted SE imaging and T2-weighted FS-FSE imaging. In 50 of 71 patients (70.4%), areas of high signal intensity in bone marrow were more clearly demonstrated on T2-weighted FS-FSE images than on T2-weighted FSE image. Edema or inflammation of soft tissues were also clearly revealed on T2-weighted FS-FSE images. In 27 of 32 patients (84%), bone contusions were more apparently shown on T2-weighted FS-FSE images than on conventional T2-weighted SE image. T2-weighted FS-FSE imaging is a sensitive method of evaluating the long T2 lesions of bone or soft tissue disorders. (author)

  9. Fast spin-echo imaging

    International Nuclear Information System (INIS)

    Mackey, K.; Zoarski, G.; Bentson, J.R.; Lufkin, R.B.; Melki, P.; Jolesz, F.

    1991-01-01

    This paper reports on a partial radio-frequency (RF) echo-planar pulse sequence called contiguous slice fast spin echo (CSFSE) which is undergoing clinical trials for spine MR imaging. In this variation of rapid acquisition relaxation enhanced (RARE) spin-echo imaging, rapid 180 degrees RF pulse generated refocused echoes, producing T2-weighted images in about one-third the time of conventional double-echo technique. Forty patients with suspected pathology of the spine were imaged with conventional double-echo and closely matched CSFSE techniques on a GE Signa 1.5-T Advantage system. Cases were reviewed by two board-certified neuroradiologists. In all cases the CSFSE images were of equal or superior quality compared with those obtained with the conventional double-echo technique. Pathologic processes that were imaged consisted of inflammatory, neoplastic, posttraumatic, and degenerative conditions

  10. Preoperative 3D FSE T1-Weighted MR Plaque Imaging for Severely Stenotic Cervical ICA: Accuracy of Predicting Emboli during Carotid Endarterectomy

    Directory of Open Access Journals (Sweden)

    Yasushi Ogasawara

    2016-10-01

    Full Text Available The aim of the present study was to determine whether preoperative three-dimensional (3D fast spin-echo (FSE T1-weighted magnetic resonance (MR plaque imaging for severely stenotic cervical carotid arteries could accurately predict the development of artery-to-artery emboli during exposure of the carotid arteries in carotid endarterectomy (CEA. Seventy-five patients underwent preoperative MR plaque imaging and CEA under transcranial Doppler ultrasonography of the ipsilateral middle cerebral artery. On reformatted axial MR image slices showing the maximum plaque occupation rate (POR and maximum plaque intensity for each patient, the contrast ratio (CR was calculated by dividing the internal carotid artery plaque signal intensity by the sternocleidomastoid muscle signal intensity. For all patients, the area under the receiver operating characteristic curve (AUC—used to discriminate between the presence and absence of microembolic signals—was significantly greater for the CR on the axial image with maximum plaque intensity (CRmax intensity (0.941 than for that with the maximum POR (0.885 (p < 0.05. For 32 patients in whom both the maximum POR and the maximum plaque density were identified, the AUCs for the CR were 1.000. Preoperative 3D FSE T1-weighted MR plaque imaging accurately predicts the development of artery-to-artery emboli during exposure of the carotid arteries in CEA.

  11. Application of three-dimensional fast spin-echo T2-weighted image in lesions of the inner ear

    International Nuclear Information System (INIS)

    Xian Junfang; Wang Zhenchang; Yan Fei; Niu Yantao; Zhu Ye; Wang Yan; Tian Qichang; Lan Baosen

    1999-01-01

    Objective: To investigate the advantage of three-dimensional fast spin-echo T 2 -weighted image (3D FSE T 2 WI) in depicting normal structures and lesions of the inner ear. Methods: 3D FSE T 2 WI and 2D FSE T 2 WI were performed in 10 healthy volunteers and 20 cases with inner ear diseases. Advantages and disadvantages of the two techniques were compared. CT was performed in 6 cases with enlarged endo-lymphatic sac and 1 cases of Mondini malformation. Results: 3D FSE T 2 WI enabled visualization of detailed anatomic structures. Enlarged endo-lymphatic sacs were clearly revealed in 9 cases on 16 sides by 3D FSE T 2 WI, while only a part but not the whole of the enlarged endo-lymphatic sac could be shown on 2D FSE T 2 WI. In 6 cases, 3D FSE T 2 WI displayed enlarged endo-lymphatic sac on 11 sides and normal on 1 side; however, CT revealed enlarged vestibular aqueduct on all 12 sides. One case with small acoustic neuroma (only 4 mm in diameter) was clearly demonstrated on 3D FSE T 2 WI but not well shown on 2D FSE T 2 WI. One case with cochlear Mondini malformation associated with dysplasia of vestibule and semicircular canals was displayed more clearly on 3D FSE T 2 WI than on 2D FSE T 2 WI. Conclusions: 3D FSE T 2 WI can clearly display normal structures and lesions of the inner ear

  12. Comparison of single-shot fast spin-echo sequence and T2-weighted fast spin-echo sequence in MR imaging of the brain

    International Nuclear Information System (INIS)

    Cha, Sung Ho; Seo, Jeong Jin; Jeong, Gwang Woo; Kim, Jae Kyu; Kim, Yun Hyeon; Jeong, Yong Yeon; Kang, Heoung Keun; Oh, Hee Yeon; Yoon, Jong Hoon

    1998-01-01

    The purpose of this study was to evaluate the usefulness of the single-shot fast spinecho (SS-FSE) sequence in comparison with the T2-weighted fast spin-echo (T2-FSE) sequence in brain MR imaging. In 41 patients aged 15-75 years with intracranial lesion, both SS-FSE and T2-FES images were obtained using a 1.5-T MR system. Lesions included cerebral ischemia or infarcts (n=3D23), tumors (n=3D10), hemorrhages (n=3D3), inflammatory diseases (n=3D2), arachnoid cysts(n=3D2), and vascular disease (n=3D1), and the MR images were retrospectively evaluated. To calculate contrast-to-noise ratio (CNR), percentage contrast, and signal-to-noise ratio (SNR)-and thus make a quantitative comparison-the mean signal intensities of lesions, normal brain tissue, and noise out-side the patient were measured. For qualitative comparison, the visibility, margin, and extent of the lesions were rated using a five-grade system, and the degree of MR artifacts was also evaluated. Wilcoxon's signed ranks test was used for statistical analysis. The mean CNR of lesions was significantly higher on SS-FSE (31.3) than on T2-FSE images (27.5) (p=3D0.0131). Mean percentage contrast was also higher on SS-FSE (159.0) than on T2-FSE images (108.5) (p=3D0.0222), but mean SNR was higher on T2-FSE (80.3) than on SS-FSE images (53.5) (p=3D0.0000). No significant differences in lesion visibility were observed between the two imaging sequences, though margin and extent of the lesion were worse on SS-FSE images. For MR artifacts, no significant differences were demonstrated. For the evaluation of most intracranial lesions, MR imaging using the SS-FSE sequence appears to be slightly inferior to the T2-FSE sequence, but may be useful where patients are ill or uncooperative, or where children require sedation.=20

  13. 3D-imaging of the knee with an optimized 3D-FSE-sequence and a 15-channel knee-coil

    Energy Technology Data Exchange (ETDEWEB)

    Notohamiprodjo, Mike, E-mail: mike.notohamiprodjo@med.uni-muenchen.de [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Department of Radiology, Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging New York University, 660 First Avenue, 4th Floor, New York, NY 10016 (United States); Horng, Annie; Kuschel, Bernhard [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Paul, Dominik [Siemens Healthcare, Erlangen, Henkestr. 127, 91054 Erlangen (Germany); Li, Guobin [Siemens Mindit Magnetic Resonance Ltd., Shenzhen, Guang Dong (China); Raya, Jose G. [Department of Radiology, Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging New York University, 660 First Avenue, 4th Floor, New York, NY 10016 (United States); Reiser, Maximilian F. [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Glaser, Christian [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Department of Radiology, Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging New York University, 660 First Avenue, 4th Floor, New York, NY 10016 (United States)

    2012-11-15

    Objectives: To evaluate the clinical usefulness of an optimized 3D-Fast-Spin-Echo-sequence (3D-SPACE) in combination with a 15-channel knee-coil for 3D-imaging of the knee at 3 T. Methods: 15 volunteers and 50 consecutive patients were examined at 3 T with fat-saturated moderately T2-weighted 3D-SPACE (Voxel-size (VS): 0.6 mm Multiplication-Sign 0.5 mm Multiplication-Sign 0.5 mm/acquisition-time (AT) 10:44 min) using a 15-channel knee-coil. Flip angle optimization and radial k-space reordering were applied. Signal- and contrast-to-noise-ratios (SNR, CNR) were compared to non-optimized 3D-SPACE (8-channel knee-coil) and conventional 2D-FSE (VS: 0.4 mm Multiplication-Sign 0.4 mm Multiplication-Sign 3 mm/total AT: 12 min). Two radiologists independently rated depiction of internal knee structures and assessed detection and depiction of cartilage and meniscus abnormalities compared to conventional 2D-FSE-sequences. Sensitivity and specificity were calculated for a subgroup with arthroscopy as reference standard. Statistical analysis was performed with paired t-tests, confidence intervals and weighted-{kappa}-coefficients. Results: SNR and CNR particularly of fluid/cartilage of optimized 3D-SPACE were significantly higher (p < 0.05) than of the non-optimized 3D-sequence and conventional 2D-sequence. Blurring and image inhomogeneity were reduced in the optimized sequence. The thin slice-thickness was beneficial for depiction of problematical anatomical structures such as meniscal roots. 3D-SPACE showed significantly higher diagnostic confidence (p < 0.05) for diagnosis of cartilage lesions of the femoral trochlea. Overall sensitivity and specificity of 3D-SPACE and 2D-FSE for cartilage lesions was 82.3%/80.2% and 79.4%/84.2% and 100%/86.4% and 92.3%/81.8% for meniscus lesions. Conclusions: Optimized 3D-SPACE provides significantly higher signal and contrast compared to conventional 2D-FSE, particularly for fluid and cartilage, leading to improved diagnostic confidence

  14. Diagnostic equivalence of conventional and fast spin echo magnetic resonance imaging of the anterior cruciate ligament of the knee

    International Nuclear Information System (INIS)

    Munk, P.L.; Hilborn, M.D.; Vellet, A.D.; University of Calgary, Calgary, Alberta,; Romano, C.C.; University of Calgary, Calgary, Alberta,

    1997-01-01

    Many techniques and pulse sequences have been devised for the assessment of the anterior cruciate ligament. The present study compares fast spin echo (FSE) imaging to conventional spin echo imaging at a field strength of 1.5 T in an effort to determine if these sequences are diagnostically equivalent. Where available, arthroscopy was also done. A total of 52 patients were imaged using both FSE and conventional spin echo sequences. Eight volunteers were used as controls. Arthroscopy was performed on 10 patients. The anterior cruciate ligament was assessed in a blinded fashion by three radiologists. The Kappa statistic was then used to determine the percentage agreement between FSE and conventional spin echo imaging. Fast spin echo sequencing demonstrated a sensitivity of 100%, a specificity of 94.8% and an accuracy of 96.3% when compared to arthroscopy. Conventional spin echo imaging and arthroscopy had a sensitivity of 100%, specificity of 84.6% and an accuracy of 88.9%. The remaining 34 patients who did not undergo arthroscopy were followed clinically because clinical and imaging findings were not suggestive of ACL tears. These demonstrated 72% agreement between FSE and conventional spin echo imaging using the Kappa statistic, with regards to calling ACL normal or having only a low-grade partial tear. Fast spin echo imaging produces images of the anterior cruciate ligament that have similar diagnostic accuracy to conventional spin echo images (P<0.05) within a much shorter scan time. These results however, require further validation in a larger group, preferably with arthroscopic correlation. (author)

  15. Fast spin echo MRI techniques. Contrast characteristics and clinical potential

    International Nuclear Information System (INIS)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N.; Oshio, K.; Jolesz, F.; Pourcelot, L.; Einstein, S.

    1993-01-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode

  16. Anteroinferior tears of the glenoid labrum: fat-suppressed fast spin-echo T2 versus gradient-recalled echo MR images

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); De Smet, A A [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); Norris, M A [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); Orwin, J F [Department of Orthopedic Surgery, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States)

    1997-05-01

    Objective. To compare fat-suppressed fast spin-echo (FSE) T2-weighted images with gradient-recalled echo (GRE) T2*-weighted images in the evaluation of anteroinferior labral tears. Design. MR images were retrospectively reviewed by two radiologists masked to the history and arthroscopic findings. They separately interpreted the anteroinferior labrum as torn or intact, first on one pulse sequence and then, 4 weeks later, on the other sequence. The MR interpretations were correlated with the arthroscopic findings. Patients. Nine patients with anteroinferior labral tears, and nine similarly-aged patients with normal, labra were studied. Results and conclusions. Observer 1 had a sensitivity of 0.56 on the GRE images and 0.67 on the FSE images (P>0.5), with a specificity of 1.0 for both sequences. Observer 2 had a sensitivity of 0.78 and a specificity of 0.89 for both sequences. In this small study there is no significant difference between GRE and fat-suppressed FSE images in their ability to diagnose anteroinferior labral tears. When evaluating the labrum with conventional MRI, axial fat-suppressed FSE T2-weighted images can be used in place of GRE images without a loss of accuracy. (orig.). With 3 figs., 1 tab.

  17. Can T1 w/T2 w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1 w/T2 w ratios, GRASE-based T1 w/T2 w ratios and multi-echo GRASE-based myelin water fractions.

    Science.gov (United States)

    Uddin, Md Nasir; Figley, Teresa D; Marrie, Ruth Ann; Figley, Chase R

    2018-03-01

    Given the growing popularity of T 1 -weighted/T 2 -weighted (T 1 w/T 2 w) ratio measurements, the objective of the current study was to evaluate the concordance between T 1 w/T 2 w ratios obtained using conventional fast spin echo (FSE) versus combined gradient and spin echo (GRASE) sequences for T 2 w image acquisition, and to compare the resulting T 1 w/T 2 w ratios with histologically validated myelin water fraction (MWF) measurements in several subcortical brain structures. In order to compare these measurements across a relatively wide range of myelin concentrations, whole-brain T 1 w magnetization prepared rapid acquisition gradient echo (MPRAGE), T 2 w FSE and three-dimensional multi-echo GRASE data were acquired from 10 participants with multiple sclerosis at 3 T. Then, after high-dimensional, non-linear warping, region of interest (ROI) analyses were performed to compare T 1 w/T 2 w ratios and MWF estimates (across participants and brain regions) in 11 bilateral white matter (WM) and four bilateral subcortical grey matter (SGM) structures extracted from the JHU_MNI_SS 'Eve' atlas. Although the GRASE sequence systematically underestimated T 1 w/T 2 w values compared to the FSE sequence (revealed by Bland-Altman and mountain plots), linear regressions across participants and ROIs revealed consistently high correlations between the two methods (r 2 = 0.62 for all ROIs, r 2 = 0.62 for WM structures and r 2 = 0.73 for SGM structures). However, correlations between either FSE-based or GRASE-based T 1 w/T 2 w ratios and MWFs were extremely low in WM structures (FSE-based, r 2 = 0.000020; GRASE-based, r 2 = 0.0014), low across all ROIs (FSE-based, r 2 = 0.053; GRASE-based, r 2 = 0.029) and moderate in SGM structures (FSE-based, r 2 = 0.20; GRASE-based, r 2 = 0.17). Overall, our findings indicated a high degree of correlation (but not equivalence) between FSE-based and GRASE-based T 1 w/T 2 w ratios, and low correlations between T 1 w/T 2 w ratios and MWFs. This

  18. Rapid Gradient-Echo Imaging

    Science.gov (United States)

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  19. Fast spin echo MRI techniques. Contrast characteristics and clinical potential. Techniques d'IRM en fast spin echo. Caracteristiques de contraste et potentiels cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N. (Harvard Medical School, Boston, MA (United States)); Oshio, K.; Jolesz, F. (Keio Univ., Tokyo (Japan)); Pourcelot, L. (Hopital Bretonneau, 37 - Tours (France)); Einstein, S. (General Electric Medical System, Milwaukee, WI (United States))

    1993-03-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode.

  20. High-resolution MRI of the labyrinth. Optimization of scan parameters with 3D-FSE

    International Nuclear Information System (INIS)

    Sakata, Motomichi; Harada, Kuniaki; Shirase, Ryuji; Kumagai, Akiko; Ogasawara, Masashi

    2005-01-01

    The aim of our study was to optimize the parameters of high-resolution MRI of the labyrinth with a 3D fast spin-echo (3D-FSE) sequence. We investigated repetition time (TR), echo time (TE), Matrix, field of view (FOV), and coil selection in terms of CNR (contrast-to-noise ratio) and SNR (signal-to-noise ratio) by comparing axial images and/or three-dimensional images. The optimal 3D-FSE sequence parameters were as follows: 1.5 Tesla MR unit (Signa LX, GE Medical Systems), 3D-FSE sequence, dual 3-inch surface coil, acquisition time=12.08 min, TR=5000 msec, TE=300 msec, 3 number of excitations (NEX), FOV=12 cm, matrix=256 x 256, slice thickness=0.5 mm/0.0 sp, echo train=64, bandwidth=±31.5 kHz. High-resolution MRI of the labyrinth using the optimized 3D-FSE sequence parameters permits visualization of important anatomic details (such as scala tympani and scala vestibuli), making it possible to determine inner ear anomalies and the patency of cochlear turns. To obtain excellent heavily T2-weighted axial and three-dimensional images in the labyrinth, high CNR, SNR, and spatial resolution are significant factors at the present time. Furthermore, it is important not only to optimize the scan parameters of 3D-FSE but also to select an appropriate coil for high-resolution MRI of the labyrinth. (author)

  1. A comparison between fast and conventional spin-echo in the detection of multiple sclerosis lesions

    International Nuclear Information System (INIS)

    Thorpe, J.W.; Halpin, S.F.; MacManus, D.G.; Barker, G.J.; Kendall, B.E.; Miller, D.H.

    1994-01-01

    Long repetition time (TR) spin-echo (SE) with T 2 - or proton density weighting is the sequence of choice to detect the brain lesions of multiple sclerosis (MS). Fast spin-echo (FSE) permits the generation of T 2 -weighted images with similar contrast to SE but in a fraction of the time. We compared the sensitivity of FSE and SE in the detection of the brain lesions of MS. Six patients with clinically definite MS underwent brain imaging with both dual echo (long TR, long and short echo time (TE) SE and dual echo FSE. The SE and FSE images were first reviewed independently and then compared. A total of 404 lesions was detected on SE and 398 on FSE. Slightly more periventricular lesions were detected using SE than FSE (145 vs 127), whereas more posterior cranial fossa lesions were detected by FSE (77 vs 57). With both SE and FSE the short TE images revealed more lesions than the long echo. These results suggest that FSE could replace SE as the long TR sequence of choice in the investigation of MS. (orig.)

  2. 3D FSE Cube and VIPR-aTR 3.0 Tesla magnetic resonance imaging predicts canine cranial cruciate ligament structural properties.

    Science.gov (United States)

    Racette, Molly; Al saleh, Habib; Waller, Kenneth R; Bleedorn, Jason A; McCabe, Ronald P; Vanderby, Ray; Markel, Mark D; Brounts, Sabrina H; Block, Walter F; Muir, Peter

    2016-03-01

    Estimation of cranial cruciate ligament (CrCL) structural properties in client-owned dogs with incipient cruciate rupture would be advantageous. The objective of this study was to determine whether magnetic resonance imaging (MRI) measurement of normal CrCL volume in an ex-vivo canine model predicts structural properties. Stifles from eight dogs underwent 3.0 Tesla 3D MRI. CrCL volume and normalized median grayscale values were determined using 3D Fast Spin Echo (FSE) Cube and Vastly under-sampled Isotropic PRojection (VIPR)-alternative repetition time (aTR) sequences. Stifles were then mechanically tested. After joint laxity testing, CrCL structural properties were determined, including displacement at yield, yield load, load to failure, and stiffness. Yield load and load to failure (R(2)=0.56, P 0.57, P <0.005). In conclusion, 3D MRI offers a predictive method for estimating canine CrCL structural properties. 3D MRI may be useful for monitoring CrCL properties in clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Detection of renal arteries with fast spin-echo magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tello, R.; Mitchell, P.J.; Witte, D.J.; Thomson, K.R. [University of Melbourne, Parkville, VIC (Australia). Department of Radiology

    1998-08-01

    With the increasing use of non-invasive imaging with MR and volumetric CT to evaluate renal arteries, the ability to accurately detect the number and state of native renal arteries becomes critical if conventional angiography is to be supplanted in these settings. The present study evaluated the utility of a fast spin-echo (FSE) T2-weighted sequence to detect the number and course of renal arteries and their ostia compared to conventional angiography. Ten patients underwent conventional catheter angiography either for renal artery stenosis evaluation or as potential renal donors. Each patient then had an MR study of the renal arteries and kidneys with FSE MR (TR = 4000 ms, TE = 102 ms, eight- echo train length, 5-mm-thick interleaved 128 phase encodes, superior and inferior saturation pulses, number of excitations (NEX) = 4, on a 1.5-T superconducting magnet). Images were reviewed by two `blinded` radiologists and renal arteries were counted and their ostia were evaluated. Results were compared with angiography and inter- and intra-observer statistics were calculated. All 10 patients underwent MR successfully, nine for renal artery stenosis (RAS) evaluation and one was a renal donor. A total of 24 renal arteries were imaged in 19 kidneys. Fast spin-echo MR is 95% accurate (95%CI: 88-100%) in detection of renal arteries, with no statistical difference between FSE MR and catheter angiography (McNemar P = 0.0). Inter- and intra-observer statistics demonstrate good-to-excellent agreement in renal artery detection (kappa: 0.63-0.90). In one case of RAS evaluation an incidental adrenal mass was detected as the aetiology of the patient`s hypertension. Fast spin-echo MR can be a useful adjunct as part of the imaging for renal arteries with MRI. Copyright (1998) Blackwell Science Pty Ltd 16 refs., 1 fig.

  4. Detection of renal arteries with fast spin-echo magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tello, R.; Mitchell, P.J.; Witte, D.J.; Thomson, K.R.

    1998-01-01

    With the increasing use of non-invasive imaging with MR and volumetric CT to evaluate renal arteries, the ability to accurately detect the number and state of native renal arteries becomes critical if conventional angiography is to be supplanted in these settings. The present study evaluated the utility of a fast spin-echo (FSE) T2-weighted sequence to detect the number and course of renal arteries and their ostia compared to conventional angiography. Ten patients underwent conventional catheter angiography either for renal artery stenosis evaluation or as potential renal donors. Each patient then had an MR study of the renal arteries and kidneys with FSE MR (TR = 4000 ms, TE = 102 ms, eight- echo train length, 5-mm-thick interleaved 128 phase encodes, superior and inferior saturation pulses, number of excitations (NEX) = 4, on a 1.5-T superconducting magnet. Images were reviewed by two 'blinded' radiologists and renal arteries were counted and their ostia were evaluated. Results were compared with angiography and inter- and intra-observer statistics were calculated. All 10 patients underwent MR successfully, nine for renal artery stenosis (RAS) evaluation and one was a renal donor. A total of 24 renal arteries were imaged in 19 kidneys. Fast spin-echo MR is 95% accurate (95%CI: 88-100%) in detection of renal arteries, with no statistical difference between FSE MR and catheter angiography (McNemar P = 0.0). Inter- and intra-observer statistics demonstrate good-to-excellent agreement in renal artery detection (kappa: 0.63-0.90). In one case of RAS evaluation an incidental adrenal mass was detected as the aetiology of the patient's hypertension. Fast spin-echo MR can be a useful adjunct as part of the imaging for renal arteries with MRI. Copyright (1998) Blackwell Science Pty Ltd

  5. Analysis of MR imaging with FSE and DESS for the diagnosis of meniscal tears in 316 patients

    International Nuclear Information System (INIS)

    Lee, Jae Gue; Ryu, Kyung Nam; Hong, Hyun Pyo

    1999-01-01

    To evaluate the accuracy of a magnetic resonance(MR) imaging strategy that primarily uses fast spin-echo(SE) sequences for the diagnosis of meniscal tears. The original clinical interpretations of MR images in 316 patients who underwent imaging for suspected internal derangement of a knee joint were correlated with results from subsequent arthroscopy (mean interval:48.9 days). In all patients, MR examinations included double-echo fast SE T2-weighted sagittal and coronal imaging and double-echo steady state (DESS) sequence sagittal imaging. In 199 patients fat-suppressed conventional SE T1-weighted sagittal imaging was used. In cases in which interpretation was erroneous, imaging findings and arthroscopy reports were reviewed. For ISO confirmed tears of the medial meniscus, sensitivity, specificity, and accuracy were 94%, 93%, and 94%, respectively, while respective values for 147 confirmed tears of the lateral meniscus were 85%, 97%, and 91%. These values are within the ranges recently reported for imaging strategies relying predominantly on conventional SE sequences. Of the 12 false-positive tears of the medial meniscus, five menisci showed a high signal contacting the surface on only one image and seven, that in all cases were located in the periphery of the posterior horn, showed such signal on more than one image. Of the six false-positive tears of the lateral meniscus, three menisci showed a high signal contacting the surface on only one image. Of the nine false-negative tears of the medial meniscus, eight menisci showed an abnormal signal that did not demonstrate definitive contact with the surface. Of the 22 false-negative tears of the lateral meniscus, 18 menisci showed this same type of signal. Fast SE imaging of the knee can be an alternative to conventional SE imaging for the detection of meniscal tears. Most errors in our series were due to either an abnormal signal that failed to show definitive contact with the surface, a high signal which contacted

  6. Short echo time, fast gradient-echo imaging

    International Nuclear Information System (INIS)

    Haacke, E.M.; Lenz, G.W.

    1987-01-01

    Present fast-gradient-echoes schemes can acquire volume data rapidly and are flexible in T1 or T1/T2 contrast behavior. However, sequences used to date employ echo time (TE) values of about 15 ms +- 5 and, because of in vivo field inhomogeneities (short T2), they suffer badly from signal loss near sinuses and tissue boundaries. The authors implemented sequences with TE = 4-6 ms and found significant improvement in image quality, especially at high fields. Examples with long TEs vs. short TEs are given in the knee, spine, head, and orbits. Further advantages include (1) faster repetition times (15 ms), (2) higher-quality spin-density or T1-weighted images, and (3) reduction of blood motion artifacts

  7. Evaluation of chondromalacia of the patella with axial inversion recovery-fast spin-echo imaging.

    Science.gov (United States)

    Lee, S H; Suh, J S; Cho, J; Kim, S J; Kim, S J

    2001-03-01

    The purpose of our study was to assess the accuracy of inversion recovery-fast spin-echo (IR-FSE) imaging for the evaluation of chondromalacia of the patella. Eighty-six patients were included, they underwent magnetic resonance (MR) examination and subsequent knee arthroscopy. Medial and lateral facets of the patella were evaluated separately. Axial images were obtained by using IR-FSE (TR/TE/TI = 3000/25/150 msec; echo train length, 8; 4-mm thickness; 12-cm field of view; 512 x 256 matrix; two, number of excitations) with a 1.5-T MR machine. MR interpretation of chondromalacia was made on the basis of the arthroscopic grading system. Of a total of 172 facets graded, arthroscopy revealed chondromalacia in 14 facets with various grades (G0, 158; G1, 1; G2, 3; G3, 6; G4, 4). Sensitivity, specificity, and accuracy in the chondromalacia grades were 57.1%, 93.0%, and 90.1%, respectively. There was one false-negative case (G4) and 11 false-positive cases (G1, eight; G2, two; G3, one). Sensitivity and specificity corrected by one grade difference were improved to 85.7% and 98.1%, respectively. When cartilage changes were grouped into early (corresponding to grade 1 and 2) and advanced (grade 3 and 4) diseases, sensitivity and specificity of the early and advanced diseases were 75% and 94% and 80% and 99%, respectively. IR-FSE imaging of the knee revealed high specificity but low sensitivity for the evaluation of chondromalacia of the patella.

  8. High-resolution T2-weighted MR imaging of the inner ear using a long echo-train-length 3D fast spin-echo sequence

    International Nuclear Information System (INIS)

    Naganawa, S.; Yamakawa, K.; Fukatsu, H.; Ishigaki, T.; Nakashima, T.; Sugimoto, H.; Aoki, I.; Miyazaki, M.; Takai, H.

    1996-01-01

    The purpose of this study was to assess the value of a long echo-train-length 3D fast spin-echo (3D-FSE) sequence in visualizing the inner ear structures. Ten normal ears and 50 patient ears were imaged on a 1.5T MR unit using a head coil. Axial high-resolution T2-weighted images of the inner ear and the internal auditory canal (IAC) were obtained in 15 min. In normal ears the reliability of the visualization for the inner ear structures was evaluated on original images and the targeted maximum intensity projection (MIP) images of the labyrinth. In ten normal ears, 3D surface display (3D) images were also created and compared with MIP images. On the original images the cochlear aqueduct, the vessels in the vicinity of the IAC, and more than three branches of the cranial nerves were visualized in the IAC in all the ears. The visibility of the endolympathic duct was 80%. On the MIP images the visibility of the three semicircular canals, anterior and posterior ampulla, and of more than two turns of the cochlea was 100%. The MIP images and 3D images were almost comparable. The visibility of the endolymphatic duct was 80% in normal ears and 0% in the affected ears of the patients with Meniere's disease (p<0.001). In one patient ear a small intracanalicular tumor was depicted clearly. In conclusion, the long echo train length T2-weighted 3D-FSE sequence enables the detailed visualization of the tiny structures of the inner ear and the IAC within a clinically acceptable scan time. Furthermore, obtaining a high contrast between the soft/bony tissue and the cerebrospinal/endolymph/perilymph fluid would be of significant value in the diagnosis of the pathologic conditions around the labyrinth and the IAC. (orig.)

  9. Comparison of fast spin echo, fast multiplanner spoiled gradient recalled and conventional T1 and T2 weighted imaging for experimentally induced hepatic tumors in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myeong Jin; Lee, Jong Tae; Suh, Jin Suk; Choi, Pil Sik; Lee, Yeon Hee; Yoo, Hyung Sik; Kim, Ki Whang [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1994-10-15

    To compare the ability of tumor detection and the lesion conspicuity between T1- and T2-weighted fast scanning sequence and T1- and T2-weighted conventional spin echo techniques in MR imaging of hepatic tumors. Hepatic tumors were induced on 13 male Sprague-Dawley rats by feeding 3'-methyl-dimethylethyl aminoazobenzene mixed with Miller's III formula for 12 weeks. MR images were obtained with 1.5 T magnet with dual TMJ coil(Sigma, GE Medical systems, Milwaukee, USA). Animals were anesthetized with 150 mg/kg of ketamine hydrochloride. T2 weighted fast spin echo(FSE), conventional spin echo(CSE) T2- and T1WI, fast multiplanner spoiled gradient recalled(FMPSPGR) imaging were obtained. Number of detected tumors and contrast-to-noise ratio of the tumors were compared for each sequence. Overall 110 tumors were developed. 75% of the tumors were detected on FSE. 65% on FMPSPGR, 41% on conventional T2WI, and 41% on T1WI images. For tumors more than 5 mm in diameter, sensitivity was 88% on FMPSPGR, 65% on conventional T2WI, and 81% on T1WI images respectively. CNR of the tumor was 28.94 {+-} 21.6 on FSE, 13.57 {+-} 8.64 on FMPSPGR, 12.62 {+-} 10.65 on CSE T2WI, and 9.47 {+-} 8.05 on CSE T1WI images, which was significantly high on FSE(p<0.05). Fast spin echo T2WI shows highest sensitivity and tumor-to-liver contrast. FMPSPGR imaging is also favorably comparable with conventional T1WI. Therefore, these two pulse sequences can be useful in clinical condition for hepatic MR imaging.

  10. Fat-suppressed fast spin-echo mid-TE (TE[effective]=34) MR images: comparison with fast spin-echo T2-weighted images for the diagnosis of tears and anatomic variants of the glenoid labrum

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J [Dept. of Radiology, Univ. of Wisconsin School of Medicine, Madison (United States); University of Wisconsin Hospital and Clinics, Dept. of Radiology, Madison, WI (United States); Shinners, T J; Hollister, M C [Dept. of Radiology, Univ. of Wisconsin School of Medicine, Madison (United States); Orwin, J F [Dept. of Orthopedic Surgery, University of Wisconsin School of Medicine, Madison (United States)

    1999-12-01

    Objective. To compare the sensitivity, specificity, and accuracy of fat-suppressed fast spin-echo (FSE) mid-TE (TE[effective]=34) images with fat-suppressed FSE T2-weighted images for the diagnosis of labral abnormalities.Design and patients. The study included 27 consecutive patients who had axial fat-suppressed FSE T2-weighted and fat-suppressed FSE mid-TE MR images, and had labral abnormalities diagnosed at arthroscopy. The acquisition time was about 5 min for each sequence, but the mid-TE sequence allowed a higher spatial resolution than the T2-weighted images (256 x 256 versus 256 x 192). Twenty-eight age-matched patients with arthroscopically normal labra were included as a control group. The labrum was graded on the MR images as normal or abnormal separately by two musculoskeletal radiologists who were masked to the history and arthroscopic results. The surgical findings were used as the gold standard for calculating the sensitivity, specificity, and accuracy for interpreting the correct location of a labral abnormality. The sensitivity, specificity, and accuracy for the two sequences were compared with a McNemar test, and significance defined as P<0.05.Results. For observer 1, the sensitivity for labral abnormalities was 0.59 on the T2-weighted images, and 0.78 on the mid-TE images (P=0.12). The specificity was 0.54 for the T2-weighted, and 0.64 for the mid-TE images (P=0.51). The accuracy was 0.56 for the T2-weighted, and 0.71 for the mid-TE images (P=0.08). For observer 2, the sensitivity/specificity/accuracy was 0.67/0.93/0.80 for the T2-weighted, and 0.70/0.86/0.78 for the mid-TE images (all P>0.5).Conclusion. In this small study there is no statistically significant difference for demonstrating labral abnormalities between FSE T2-weighted images, and higher-resolution fat-suppressed FSE mid-TE (TE[effective]=34) images obtained with a similar acquisition time. Although there was a general trend toward higher sensitivity and accuracy with the mid

  11. Comparison of T1-weighted fast spin-echo and T1-weighted fluid-attenuated inversion recovery images of the lumbar spine at 3.0 Tesla

    International Nuclear Information System (INIS)

    Lavdas, Eleftherios; Vlychou, Marianna; Arikidis, Nikos; Kapsalaki, Eftychia; Roka, Violetta; Fezoulidis, Ioannis V.

    2010-01-01

    Background: T1-weighted fluid-attenuated inversion recovery (FLAIR) sequence has been reported to provide improved contrast between lesions and normal anatomical structures compared to T1-weighted fast spin-echo (FSE) imaging at 1.5T regarding imaging of the lumbar spine. Purpose: To compare T1-weighted FSE and fast T1-weighted FLAIR imaging in normal anatomic structures and degenerative and metastatic lesions of the lumbar spine at 3.0T. Material and Methods: Thirty-two consecutive patients (19 females, 13 males; mean age 44 years, range 30-67 years) with lesions of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted FSE and fast T1-weighted FLAIR sequences. Both qualitative and quantitative analyses measuring the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and relative contrast (ReCon) between degenerative and metastatic lesions and normal anatomic structures were conducted, comparing these sequences. Results: On quantitative evaluation, SNRs of cerebrospinal fluid (CSF), nerve root, and fat around the root of fast T1-weighted FLAIR imaging were significantly lower than those of T1-weighted FSE images (P<0.001). CNRs of normal spinal cord/CSF and disc herniation/ CSF for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted FSE images (P<0.001). ReCon of normal spinal cord/CSF, disc herniation/CSF, and vertebral lesions/CSF for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted FSE images (P<0.001). On qualitative evaluation, it was found that CSF nulling and contrast at the spinal cord (cauda equina)/CSF interface for T1-weighted FLAIR images were significantly superior compared to those for T1-weighted FSE images (P<0.001), and the disc/spinal cord (cauda equina) interface was better for T1-weighted FLAIR images (P<0.05). Conclusion: The T1-weighted FLAIR sequence may be considered as the preferred lumbar spine imaging

  12. T1-weighted fluid-attenuated inversion recovery and T1-weighted fast spin-echo contrast-enhanced imaging: a comparison in 20 patients with brain lesions

    International Nuclear Information System (INIS)

    Al-Saeed, O.; Athyal, R. P.; Ismail, M.; Rudwan, M.; Khafajee, S.

    2009-01-01

    Full text: Tl-weighted fluid-attenuated inversion recovery (FLAIR) sequence is a relatively new pulse sequence for intracranial MR imaging. This study was performed to compare the image quality of Tl-weighted FLAIR with the Tl-weighted FSE sequence. Twenty patients with brain lesions underwent Tl-weighted fast spin-echo (FSE) and Tl-weighted FLAIR during the same imaging session. Four quantitative and three qualitative criteria were used to compare the two sequences after contrast. Two of four quantitative criteria pertained to lesion characteristics: lesion to white matter (WM) contrast-to-noise ratio (CNR) and lesion to cerebrospinal fluid (CSF) CNR, and two related to signals from normal tissue: grey matter to WM CNR and WM to CSF CNR. The three qualitative criteria were conspicuousness of the lesion, the presence of image artefacts and the overall image contrast. Both Tl-weighted FSE and FLAIR images were effective in demonstrating lesions. Image contrast was superior in Tl-weighted FLAIR images with significantly improved grey matter-WM CNRs and CSF-WM CNRs. The overall image contrast was judged to be superior on Tl-weighted FLAIR images compared with Tl-weighted FSE images by all neuroradiologists. Two of three reviewers considered that the FLAIR images had slightly increased imaging artefacts that, however, did not interfere with image interpretation. Tl-weighted FLAIR imaging provides improved lesion-to-background and grey to WM contrast-to-noise ratios. Superior conspicuity of lesions and overall image contrast is obtained in comparable acquisition times. These indicate an important role for Tl-weighted FLAIR in intracranial imaging and highlight its advantage over the more widely practiced Tl-weighted FSE sequence

  13. Fast spin-echo T2-weighted MR imaging of tongue cancer; the value of fat-suppression

    International Nuclear Information System (INIS)

    Kim, Zu Byoung; Na, Dong Gyu; Ryoo, Jae Wook; Kim, Kyeong Ah; Byun, Hong Sik; Baek, Chung Whan; Son, Yong Ik

    2000-01-01

    To compare the diagnostic efficacy of fast spin-echo (FSE) T2-weighted MR imaging with and without fat suppression. Twelve patients (7 men and 5 women; mean age, 48 years) with pathologically proven cancer of the tongue were included in this study. In all of these, FSE T2-weighted MR images with and without fat suppression were obtained in the same imaging planes before surgery or biopsy. Two radiologists visually compared the images thus obtained in terms of detection, extent, and conspicuity of the tumor, and the contrast-to-noise ratio (CNR) of each tumor was also calculated. In all patients, both imaging modalities were equal in terms of tumor detection. In 4 of 12(33%), the extent of the tumor was greater with fat suppression, while in eight (67%), it was almost the same both with and without. In ten patients (83%), the tumor was more conspicuous with fat suppression, and percentage CNRs were significantly higher with fat suppression than without (180±70% and 113±61%, respectively; p=0.02). For the evaluation of patients with tongue cancer, fat-suppressed FSE T2-weighted MR imaging is superior to its conventional equivalent

  14. Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512x358 matrix size

    International Nuclear Information System (INIS)

    Hopper, M.A.; Robinson, P.; Grainger, A.J.

    2011-01-01

    Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.

  15. Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512x358 matrix size

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, M.A.; Robinson, P. [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Grainger, A.J., E-mail: andrew.grainger@leedsth.nhs.u [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom)

    2011-04-15

    Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.

  16. Echo-Interleaved-Spiral MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Shirrie; Azhari, Haim [Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000 (Israel); Montag, Avram [Elscint Ltd., MRI division, Haifa (Israel)

    1999-12-31

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors) 4 refs., 3 figs.

  17. Echo-Interleaved-Spiral MR Imaging

    International Nuclear Information System (INIS)

    Rosenthal, Shirrie; Azhari, Haim; Montag, Avram

    1998-01-01

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors)

  18. Proton T2 relaxation effect of superparamagnetic iron oxide. Comparison between fast spin echo and conventional spin echo sequence

    International Nuclear Information System (INIS)

    Tanimoto, Akihiro; Satoh, Yoshinori; Higuchi, Nobuya; Izutsu, Mutsumu; Yuasa, Yuji; Hiramatsu, Kyoichi

    1995-01-01

    Superparamagnetic iron oxide (SPIO) particles have been known to show a great T 2 relaxation effect in the liver, which contributes to significant liver signal decrease and detection of hepatic neoplasms. Recently, fast spin echo (FSE) sequence with less scanning time than conventional spin echo (SE) sequence has been rapidly introduced in clinical MR imaging. To investigate whether SPIO would show decreased T 2 relaxation effect on FSE, we obtained T 2 relaxivity (R2) of SPIO in vitro and liver signal decrease caused by SPIO in vivo. SPIO showed 20% less R2 on Carr-Purcell-Meiboom-Gill (CPMG) sequence than on SE. Relative liver signal-to-noise ratio (SNR) decrease caused by SPIO was significantly smaller (p 2 relaxation effect on FSE than on SE. However, further studies will be required to assess the diagnostic capability of SPIO on FSE, in the detection of hepatic neoplasms. (author)

  19. Diagnostic performance of the three-dimensional fast spin echo-Cube sequence in comparison with a conventional imaging protocol in evaluation of the lachrymal drainage system

    International Nuclear Information System (INIS)

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li; Liu, Rong; Xiong, Wei

    2015-01-01

    To compare the three-dimensional (3D)-fast spin-echo (FSE)-Cube with a conventional imaging protocol in evaluation of dacryostenosis. Thirty-three patients with epiphora underwent examinations using Cube magnetic resonance dacryocystography (MRD) and a conventional protocol, which included 3D fast-recovery fast spin-echo (FRFSE) MRD and two-dimensional (2D)-FSE sequences at 3.0 T. Using lachrymal endoscopic findings as the reference standard, we calculated the sensitivity and specificity of both protocols for detecting lachrymal drainage system (LDS) obstruction and their accuracies in depicting the level of obstruction. Comparable coronal and axial images were selected for bot sequences. Two neuroradiologists graded paired images for blurring, artefacts, anatomic details, and overall image quality. The two methods showed no significant difference in sensitivity (89.5 % vs. 94.7 %; p =0.674), specificity (64.3 %; p =1) or accuracy (86.8 %; p =1) in detecting or depicting LDS obstruction. Blurring and artefacts were significantly better on 2D-FSE images (p 0.05). In comparison with the conventional protocol, Cube MRD demonstrates satisfactory image quality and similar diagnostic capability for cases of possible LDS disease. (orig.)

  20. Lesion discrimination in optic neuritis using high-resolution fat-suppressed fast spin-echo MRI

    International Nuclear Information System (INIS)

    Gass, A.; Moseley, I.F.; Barker, G.J.; Jones, S.; MacManus, D.; McDonald, W.I.; Miller, D.H.

    1996-01-01

    Fast spin-echo (FSE) is a new sequence with acquisition times currently down to one-sixteenth of those obtained with conventional spin-echo sequences, which allows high-resolution (512 x 512 matrix) images to be acquired in an acceptable time. We compared the higher resolution of FSE with the medium resolution of a short inversion-time inversion-recovery (STIR) sequence in depicting the optic nerves of healthy controls and patients with optic neuritis. Optic nerve MRI examinations were performed in 18 patients with optic neuritis and 10 normal controls. Two sequences were obtained coronally: fat-suppressed FSE (FSE TR 3250 ms/TEef 68 ms, echo-train length 16, 4 excitations, 24 cm rectangular field of view, 3 mm interleaved contiguous slices, in-plane resolution 0.5 x 0.5 mm) and STIR (TR 2000 ms/TE 50 ms/TI 175 ms, in-plane resolution 0.8 x 0.8 mm, slice thickness 5 mm). FSE demonstrated much more anatomical detail than STIR, e. g. distinction of optic nerve and sheath. Lesions were seen in 20 of 21 symptomatic nerves using FSE and in 18 of 21 using STIR. Nerve swelling or partial cross-sectional lesions of the optic nerve were each seen only on FSE in 3 cases. Fat-suppressed FSE imaging of the optic nerve improves anatomical definition and increases lesion detection in optic neuritis. (orig.). With 5 figs

  1. T2-weighted fast spin-echo MR imaging of the pelvis

    International Nuclear Information System (INIS)

    Francis, I.R.; Steiner, R.M.; Herfkens, R.J.; Jain, K.; Glover, G.H.

    1991-01-01

    A fast Se (FSE) sequence capable of acquiring SE images with a wide range of TRs and TEs in short imaging times has been recently introduced. I this paper, the authors evaluated the value of this technique compared with standard T2-weighted SE imaging. Twenty-five patients were evaluated with T2-weighted SE and FSE images on a 1.5-T GE Signa imager. Imaging times ranged from 3 to 5 minutes for the FSE acquisition and from 12 to 15 minutes for the SE images. Three observers performed a comparison by using a 10-point scale for organ definition and lesion conspicuity, with differences settled by consensus reading. Pelvic organ definition was superior and pelvic tumors and free fluid were also more conspicuous on FSE images. In 2/25 patients ringing artifacts were present

  2. Comparison of respiratory-triggered 3-D fast spin-echo and single-shot fast spin-echo radial slab MR cholangiopancreatography images in children

    Energy Technology Data Exchange (ETDEWEB)

    Chavhan, Govind B.; Almehdar, Abeer; Gupta, Sumeet [The Hospital for Sick Children and University of Toronto, Department of Diagnostic Imaging, Toronto (Canada); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto (Canada); Babyn, Paul S. [Royal University Hospital, Department of Medical Imaging, Saskatoon (Canada)

    2013-09-15

    The two most commonly performed magnetic resonance cholangiopancreatography (MRCP) sequences, 3-D fast spin-echo (3-D FSE) and single-shot fast spin-echo radial slabs (radial slabs), have not been compared in children. The purpose of this study was to compare 3-D FSE and radial slabs MRCP sequences on a 3-T scanner to determine their ability to show various segments of pancreaticobiliary tree and presence of artifacts in children. We reviewed 79 consecutive MRCPs performed in 74 children on a 3-T scanner. We noted visibility of major ducts on 3-D FSE and radial slabs. We noted the order of branching of ducts in the right and left hepatic ducts and the degree of visibility of the pancreatic duct. Statistical analysis was performed using McNemar and signed rank tests. There was no significant difference in the visibility of major bile ducts and the order of branching in the right hepatic lobe between sequences. A higher order of branching in the left lobe was seen on radial slabs than 3-D FSE (mean order of branching 2.82 versus 2.27; P-value = 0.0002). The visibility of pancreatic duct was better on radial slabs as compared to 3-D FSE (mean value of 1.53 vs. 0.90; P-value < 0.0001). 3-D FSE sequence was artifact-free in 25/79 (31.6%) MRCP exams as compared to radial slabs, which were artifact-free in 18/79 (22.8%) MRCP exams (P-value = 0.0001). There is no significant difference in the visibility of major bile ducts between 3-D FSE and radial slab MRCP sequences at 3-T in children. However, radial slab MRCP shows a higher order of branching in the left hepatic lobe and superior visibility of the pancreatic duct than 3-D FSE. (orig.)

  3. Comparison of FSE T2 W PROPELLER and 3D-FIESTA of 3 T MR for the internal auditory canal.

    Science.gov (United States)

    Wu, Hai-Bo; Yuan, Hui-Shu; Ma, Furong; Zhao, Qiang

    The study compared the use of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique fast spin echo (FSE) T2 W and the sequence of three-dimensional fast imaging employing steady-state acquisition (3D-FIESTA) technique in the MRI of the internal auditory canal for overall image quality improvement. One hundred thirty-two patients undergoing FSE T2 W PROPELLER and 3D-FIESTA examinations of the internal auditory canal were included. All examinations were performed at 3.0 T with comparison of a sagittal oblique FSE T2 W sequence with the PROPELLER technique to 3D-FIESTA in the same reconstructed orientation with PROPELLER. Image quality was evaluated by two radiologists using a 4-point scale. The Wilcoxon signed rank test was used to compare the data of the two techniques. The image quality of FSE T2 W PROPELLER was significantly improved compared to the reconstructed images of 3D-FIESTA. Observer 1: median FSE T2 W with PROPELLER, 4 [mean, 3.455] versus median reconstructed 3D-FIESTA, 3 [mean, 3.15], (PW with PROPELLER, 4 [mean, 3.47] versus median reconstructed 3D-FIESTA, 3 [mean, 3.25], (PW PROPELLER technique for MRI of internal auditory canal reduced uncertainty caused by motion artifact and improved the quality of the image compared to the reconstructed 3D-FIESTA. It was affected by different parameters including the blade width, echo train length (ETL). This is explained by data oversampling at the center region of k-space, which requires additional imaging time over conventional MRI techniques. Increasing blade was expected to improve motion correction effects but also the signal-to-noise ratio. ETL increases the image sharpness and the overall image quality. Copyright © 2016. Published by Elsevier Inc.

  4. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... receiver. This generic type of device may include signal analysis and display equipment, patient and...

  5. Free-breathing black-blood CINE fast-spin echo imaging for measuring abdominal aortic wall distensibility: a feasibility study

    Science.gov (United States)

    Lin, Jyh-Miin; Patterson, Andrew J.; Chao, Tzu-Cheng; Zhu, Chengcheng; Chang, Hing-Chiu; Mendes, Jason; Chung, Hsiao-Wen; Gillard, Jonathan H.; Graves, Martin J.

    2017-05-01

    The paper reports a free-breathing black-blood CINE fast-spin echo (FSE) technique for measuring abdominal aortic wall motion. The free-breathing CINE FSE includes the following MR techniques: (1) variable-density sampling with fast iterative reconstruction; (2) inner-volume imaging; and (3) a blood-suppression preparation pulse. The proposed technique was evaluated in eight healthy subjects. The inner-volume imaging significantly reduced the intraluminal artifacts of respiratory motion (p  =  0.015). The quantitative measurements were a diameter of 16.3  ±  2.8 mm and wall distensibility of 2.0  ±  0.4 mm (12.5  ±  3.4%) and 0.7  ±  0.3 mm (4.1  ±  1.0%) for the anterior and posterior walls, respectively. The cyclic cross-sectional distensibility was 35  ±  15% greater in the systolic phase than in the diastolic phase. In conclusion, we developed a feasible CINE FSE method to measure the motion of the abdominal aortic wall, which will enable clinical scientists to study the elasticity of the abdominal aorta.

  6. Single-shot echo-planar imaging of multiple sclerosis: effects of varying echo time

    International Nuclear Information System (INIS)

    Wolansky, L.J.; Chong, S.; Liu, W.C.; Kang, E.; Simpson, S.W.; Karimi, S.; Akbari, H.

    1999-01-01

    Our aim was to determine the relative merits of short and long echo times (TE) with single-shot echo-planar imaging for imaging cerebral lesions such as multiple sclerosis. We examined seven patients with clinically definite multiple sclerosis were imaged at 1.5 T. Patients were scanned with spin-echo, single-shot echo-planar imaging, using TEs of 45, 75, 105, and 135 ms. Region of interest (ROI) measurements were performed on 36 lesions at or above the level of the corona radiata. The mean image contrast (IC) was highest (231.1) for a TE of 45 ms, followed by 75 ms (218.9), 105 ms (217.9), and 135 ms (191.6). When mean contrast-to-noise ratios (C/N) were compared, the value was again highest (29.7) for TE 45 ms, followed by 75 ms (28.9), 105 ms (28.5), and 135 ms (26.3). In a lesion-by-lesion comparison, TE 45 ms had the highest IC and C/N in the largest number of cases (50 % and 47.2 %, respectively). IC and C/N for TE 45 ms were superior to those of 75 ms in 64 % and 58 %, respectively. These results support the use of relatively short TEs for single-shot echo-planar imaging in the setting of cerebral lesions such as multiple sclerosis. (orig.) (orig.)

  7. Stellar Echo Imaging of Exoplanets, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — All stars exhibit intensity fluctuations over several time scales, from nanoseconds to days; these intensity fluctuations echo off planetary bodies in the star...

  8. Stellar Echo Imaging of Exoplanets, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — All stars exhibit intensity fluctuations over several time scales, from nanoseconds to days; these intensity fluctuations echo off planetary bodies in the star...

  9. Variable-flip-angle spin-echo imaging (VFSE)

    International Nuclear Information System (INIS)

    Kasai, Toshifumi; Sugimura, Kazuro; Kawamitsu, Hideaki; Yasui, Kiyoshi; Ishida, Tetsuya; Tsukamoto, Tetsuji.

    1990-01-01

    T 2 weighted imaging provides images with high object contrast for pathologic conditions in which the water content of tissues is increased. The authors predicted theoretical analysis of the effects of changing flip angle, and analyzed the effects in MR imaging of both phantoms and humans. Variable flip angle spin echo MR imaging (VFSE) with a 1,000/80 (repetition time msec/echo time msec) can obtain T 2 weighted image when flip angle is smaller than 80 degrees. VFSE with 40 to 60 degrees flip angle have higher contrast than other flip angle images. Signal to noise ratio (S/N) of VFSE are 55% at a 30 degree, 76% at a 45 degree, 92% at a 60 degree respectively as compared with conventional spin echo image (2000/80, flip angle 90 degree). VFSE is applicable to obtain T 2 weighted image reduced imaging time. (author)

  10. Visual discrimination among patients with depression and schizophrenia and healthy individuals using semiquantitative color-coded fast spin-echo T1-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Makoto; Kudo, Kohsuke; Narumi, Shinsuke [Iwate Medical University, Advanced Medical Research Center, Morioka (Japan); Shibata, Eri; Ohtsuka, Kotaro; Endoh, Jin; Sakai, Akio [Iwate Medical University, Department of Neuropsychiatry, Morioka (Japan)

    2010-02-15

    Fast spin-echo (FSE) T1-weighted (T1W) magnetic resonance imaging (MRI) at 3T, which is sensitive to neuromelanin-related contrast, can quantitatively detect signal alterations in the locus ceruleus (LC) and the substantia nigra pars compacta (SNc) of depressive and schizophrenic patients; however, its qualitative diagnostic performance remains unknown. We investigated whether visual interpretation of semiquantitative color maps can be used for discriminating between depressive and schizophrenic patients and healthy individuals. We retrospectively examined 23 patients with major depression, 23 patients with schizophrenia, and 23 age-matched healthy controls by using a FSE-T1W MRI technique. Semiquantitative color maps of sections through the LC and SNc were visually interpreted by nine raters using a continuous confidence rating scale for receiver operating characteristic (ROC) analysis. The area under the ROC curve (Az), which reflects the performance in differentiating between depressive patients and controls, was 0.88, and the sensitivity and specificity at the maximum likelihood were 76% and 83%, respectively. In contrast, the Az value, sensitivity, and specificity values between schizophrenics and controls and between depressives and schizophrenics were 0.66 and 0.69, 42% and 48%, and 82% and 84%, respectively. Semiquantitative, color-coded FSE-T1W MRI at 3T can be used for visually differentiating depressive patients from healthy individuals with a substantially high likelihood, but this technique cannot be applied to distinguish schizophrenic patients from the other two groups. (orig.)

  11. Visual discrimination among patients with depression and schizophrenia and healthy individuals using semiquantitative color-coded fast spin-echo T1-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Kudo, Kohsuke; Narumi, Shinsuke; Shibata, Eri; Ohtsuka, Kotaro; Endoh, Jin; Sakai, Akio

    2010-01-01

    Fast spin-echo (FSE) T1-weighted (T1W) magnetic resonance imaging (MRI) at 3T, which is sensitive to neuromelanin-related contrast, can quantitatively detect signal alterations in the locus ceruleus (LC) and the substantia nigra pars compacta (SNc) of depressive and schizophrenic patients; however, its qualitative diagnostic performance remains unknown. We investigated whether visual interpretation of semiquantitative color maps can be used for discriminating between depressive and schizophrenic patients and healthy individuals. We retrospectively examined 23 patients with major depression, 23 patients with schizophrenia, and 23 age-matched healthy controls by using a FSE-T1W MRI technique. Semiquantitative color maps of sections through the LC and SNc were visually interpreted by nine raters using a continuous confidence rating scale for receiver operating characteristic (ROC) analysis. The area under the ROC curve (Az), which reflects the performance in differentiating between depressive patients and controls, was 0.88, and the sensitivity and specificity at the maximum likelihood were 76% and 83%, respectively. In contrast, the Az value, sensitivity, and specificity values between schizophrenics and controls and between depressives and schizophrenics were 0.66 and 0.69, 42% and 48%, and 82% and 84%, respectively. Semiquantitative, color-coded FSE-T1W MRI at 3T can be used for visually differentiating depressive patients from healthy individuals with a substantially high likelihood, but this technique cannot be applied to distinguish schizophrenic patients from the other two groups. (orig.)

  12. Diagnosis of partial and complete rotator cuff tears using combined gradient echo and spin echo imaging

    International Nuclear Information System (INIS)

    Tuite, M.J.; Yandow, D.R.; DeSmet, A.A.; Orwin, J.F.; Quintana, F.A.

    1994-01-01

    Most magnetic resonance (MR) studies evaluating the rotator cuff for tears have used T2-weighted imaging in the coronal oblique and sagittal oblique planes. T2 * -weighted gradient echo imaging, however, has advantages over spin echo imaging, including contiguous slices without cross-talk, high contrast around the cuff, and intrinsically shorter imaging times which can be used to increase the number of signals averaged and thus improve the signal-to-noise ratio. We reviewed the shoulder MR scans of 87 consecutive patients who underwent both a MR scan and a shoulder arthroscopy during which the size of tears, if present, was graded. The reviewers were blinded as to the history and arthroscopic results. The MR scans included oblique coronal T2 * -weighted gradient echo and oblique sagittal T2-weighted spin echo images. MR cuff grades were correlated with arthroscopic findings. For complete tears, the sensitivity of MR was 0.91 and the specificity 0.95. For partial tears, the sensitivity was 0.74 and the specificity 0.87. This accuracy is similar to two-plane T2-weighted imaging as previously reported in the literature. There was a statistically significant correlation (p < 0.0005) between the cuff grade as determined by MR and the arthroscopic findings. (orig.)

  13. Diagnosis of partial and complete rotator cuff tears using combined gradient echo and spin echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); Yandow, D R [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); DeSmet, A A [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); Orwin, J F [Div. of Orthopedic Surgery, Univ. of Wisconsin, Madison, WI (United States); Quintana, F A [Dept. of Biostatistics, Univ. of Wisconsin, Madison, WI (United States)

    1994-10-01

    Most magnetic resonance (MR) studies evaluating the rotator cuff for tears have used T2-weighted imaging in the coronal oblique and sagittal oblique planes. T2{sup *}-weighted gradient echo imaging, however, has advantages over spin echo imaging, including contiguous slices without cross-talk, high contrast around the cuff, and intrinsically shorter imaging times which can be used to increase the number of signals averaged and thus improve the signal-to-noise ratio. We reviewed the shoulder MR scans of 87 consecutive patients who underwent both a MR scan and a shoulder arthroscopy during which the size of tears, if present, was graded. The reviewers were blinded as to the history and arthroscopic results. The MR scans included oblique coronal T2{sup *}-weighted gradient echo and oblique sagittal T2-weighted spin echo images. MR cuff grades were correlated with arthroscopic findings. For complete tears, the sensitivity of MR was 0.91 and the specificity 0.95. For partial tears, the sensitivity was 0.74 and the specificity 0.87. This accuracy is similar to two-plane T2-weighted imaging as previously reported in the literature. There was a statistically significant correlation (p < 0.0005) between the cuff grade as determined by MR and the arthroscopic findings. (orig.)

  14. Echo

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Dustin Yewell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-25

    This document is a white paper marketing proposal for Echo™ is a data analysis platform designed for efficient, robust, and scalable creation and execution of complex workflows. Echo’s analysis management system refers to the ability to track, understand, and reproduce workflows used for arriving at results and decisions. Echo improves on traditional scripted data analysis in MATLAB, Python, R, and other languages to allow analysts to make better use of their time. Additionally, the Echo platform provides a powerful data management and curation solution allowing analysts to quickly find, access, and consume datasets. After two years of development and a first release in early 2016, Echo is now available for use with many data types in a wide range of application domains. Echo provides tools that allow users to focus on data analysis and decisions with confidence that results are reported accurately.

  15. Spatial resolution properties in 3D fast spin-echo using variable refocusing flip angles

    International Nuclear Information System (INIS)

    Ozaki, Masanori; Mizukami, Shinya; Hata, Hirofumi; Sato, Mayumi; Komi, Syotaro; Miyati, Tosiaki; Nozaki, Atsushi

    2011-01-01

    A new 3-dimensional fast spin-echo (3D FSE) method that uses a variable refocusing flip angle technique has recently been applied to imaging. The imaging pulse sequence can inhibit T 2 decay by varying the refocusing flip angle. Use of a long echo train length allows acquisition of 3D T 2 -weighted images with less blurring in a short scan time. The smaller refocusing flip angle in the new 3D FSE method than in the conventional method can reduce the specific absorption rate. However, T 2 decay differs between the new and conventional 3D FSE methods, so the resolution properties of the 2 methods may differ. We investigated the resolution properties of the new 3D FSE method using a variable refocusing flip angle technique. Varying the refocusing flip angle resulted in different resolution properties for the new 3D FSE method compared to the conventional method, a difference particularly noticeable when the imaging parameters were set for obtaining proton density weighted images. (author)

  16. MR contrast of ferritin and hemosiderin in the brain: comparison among gradient-echo, conventional spin-echo and fast spin-echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Tabassum Laz; Miki, Yukio; Kanagaki, Mitsunori; Takahashi, Takahiro; Yamamoto, Akira; Konishi, Junya; Nozaki, Kazuhiko; Hashimoto, Nobuo; Konishi, Junji

    2003-12-01

    Objective: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. Materials and methods: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. Results: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). Conclusion: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation.

  17. MR contrast of ferritin and hemosiderin in the brain: comparison among gradient-echo, conventional spin-echo and fast spin-echo sequences

    International Nuclear Information System (INIS)

    Haque, Tabassum Laz; Miki, Yukio; Kanagaki, Mitsunori; Takahashi, Takahiro; Yamamoto, Akira; Konishi, Junya; Nozaki, Kazuhiko; Hashimoto, Nobuo; Konishi, Junji

    2003-01-01

    Objective: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. Materials and methods: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. Results: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). Conclusion: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation

  18. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging

    Directory of Open Access Journals (Sweden)

    Boujraf Said

    2009-01-01

    Full Text Available The choice of imaging parameters for functional MRI can have an impact on the accuracy of functional localization by affecting the image quality and the degree of blood oxygenation-dependent (BOLD contrast achieved. By improving sampling efficiency, parallel acquisition techniques such as sensitivity encoding (SENSE have been used to shorten readout trains in single-shot (SS echo planar imaging (EPI. This has been applied to susceptibility artifact reduction and improving spatial resolution. SENSE together with single-shot spin-echo (SS-SE imaging may also reduce off-resonance artifacts. The goal of this work was to investigate the BOLD response of a SENSE-adapted SE-EPI on a three Tesla scanner. Whole-brain fMRI studies of seven healthy right hand-dominant volunteers were carried out in a three Tesla scanner. fMRI was performed using an SS-SE EPI sequence with SENSE. The data was processed using statistical parametric mapping. Both, group and individual subject data analyses were performed. Individual average percentage and maximal percentage signal changes attributed to the BOLD effect in M1 were calculated for all the subjects as a function of echo time. Corresponding activation maps and the sizes of the activated clusters were also calculated. Our results show that susceptibility artifacts were reduced with the use of SENSE; and the acquired BOLD images were free of the typical quadrature artifacts of SS-EPI. Such measures are crucial at high field strengths. SS SE-EPI with SENSE offers further benefits in this regard and is more specific for oxygenation changes in the microvasculature bed. Functional brain activity can be investigated with the help of single-shot spin echo EPI using SENSE at high magnetic fields.

  19. 31P NMR imaging of solid bone with solid echoes combined with refocused gradients

    International Nuclear Information System (INIS)

    Li, L.; Utah Univ., Salt Lake City, UT; Kruger, R.A.

    1990-01-01

    This note on 31 p NMR imaging presents some observations of the solid echoes acquired from solid bone and how the proposed solid echo imaging method can be employed to obtain the 31 images of solid bone. (UK)

  20. 3D isotropic T2-weighted fast spin echo (VISTA) versus 2D T2-weighted fast spin echo in evaluation of the calcaneofibular ligament in the oblique coronal plane.

    Science.gov (United States)

    Park, H J; Lee, S Y; Choi, Y J; Hong, H P; Park, S J; Park, J H; Kim, E

    2017-02-01

    To investigate whether the image quality of three-dimensional (3D) volume isotropic fast spin echo acquisition (VISTA) magnetic resonance imaging (MRI) of the calcaneofibular ligament (CFL) view is comparable to that of 2D fast spin echo T2-weighted images (2D T2 FSE) for the evaluation of the CFL, and whether 3D VISTA can replace 2D T2 FSE for the evaluation of CFL injuries. This retrospective study included 76 patients who underwent ankle MRI with CFL views of both 2D T2 FSE MRI and 3D VISTA. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of both techniques were measured. The anatomical identification score and diagnostic performances were evaluated by two readers independently. The diagnostic performances of 3D VISTA and 2D T2 FSE were analysed by sensitivity, specificity, and accuracy for diagnosing CFL injury with reference standards of surgically or clinically confirmed diagnoses. Surgical correlation was performed in 29% of the patients, and clinical examination was used in those who did not have surgery (71%). The SNRs and CNRs of 3D VISTA were significantly higher than those of 2D T2 FSE. The anatomical identification scores on 3D VISTA were inferior to those on 2D T2 FSE, and the differences were statistically significant (pT2 FSE for the anatomical evaluation of CFL, 3D VISTA has a diagnostic performance comparable to that of 2D T2 FSE for the diagnosis of CFL injuries. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  1. Isotropic three-dimensional fast spin-echo Cube magnetic resonance dacryocystography: comparison with the three-dimensional fast-recovery fast spin-echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Wuhan (China); Liu, Rong [Huazhong University of Science and Technology, Department of Ophthalmology, Tongji Hospital, Wuhan (China); Xiong, Wei [GE Healthcare China Wuhan Office, Wuhan (China)

    2015-04-01

    Three-dimensional fast spin-echo Cube (3D-FSE-Cube) uses modulated refocusing flip angles and autocalibrates two dimensional (2D)-accelerated parallel and nonlinear view ordering to produce high-quality volumetric image sets with high-spatial resolution. Furthermore, 3D-FSE-Cube with topical instillation of fluid can also be used for magnetic resonance dacryocystography (MRD) with good soft tissue contrast. The purpose of this study was to evaluate the technical quality and visualization of the lacrimal drainage system (LDS) when using the 3D-FSE-Cube sequence and the 3D fast-recovery fast spin-echo (FRFSE) sequence. In total, 75 patients with primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FSE-Cube MRD and 3D-FRFSE MRD at 3.0 T after topical administration of compound sodium chloride eye drops. Two radiologists graded the images from either of the two sequences in a blinded fashion, and appropriate statistical tests were used to assess differences in technical quality, visibility of ductal segments, and number of segments visualized per LDS. Obstructions were confirmed in 90 of the 150 LDSs assessed. The technical quality of 3D-FSE-Cube MRD and 3D-FRFSE MRD was statistically equivalent (P = 0.871). However, compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD improved the overall visibility and the visibility of the upper drainage segments in normal and obstructed LDSs (P < 0.001). There was a corresponding increase in the number of segments visualized per LDS in both groups (P < 0.001). Compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD potentially improves the visibility of the LDS. (orig.)

  2. Clinical evaluation of multishot echo planar imaging after administration of superparamagnetic iron oxide for hepatic tumors

    International Nuclear Information System (INIS)

    Sugai, Yukio; Watanabe, Yorihisa; Ito, Kazushi; Hosoya, Takaaki; Yamaguchi, Koichi

    1998-01-01

    Ten cases of hepatocellular carcinoma and three cases of metastatic liver tumor were evaluated using breath-hold multishot echo planar imaging (EPI) before and after administration of super-paramagnetic iron oxide (SPIO), and the results were compared to those with breath-hold fast multi-planar SPGR (T 1 WI) and fat-suppressed respiratory-triggered FSE (T 2 WI). Qualitative imaging evaluation of lesion detectability showed that T 2 WI was much more useful than T 1 WI as previously reported, and more useful than EPI. Quantitative evaluation showed that the signal to noise (S/N) ratios of the liver parenchyma decreased after administration of SPIO and the changes were significant on all pulse sequences. The change ratio of the S/N ratio of the liver parenchyma after administration of SPIO on EPI was significantly higher than on T 1 WI and T 2 WI. The tumor-liver contrast to noise (C/N) ratios increased after administration of SPIO and the changes were significant on T 1 WI and T 2 WI, but not on EPI. These results suggested that the tumor S/N ratio decreased after administration of SPIO on EPI. The tumor diameters on EPI were significantly reduced after administration of SPIO. Magnetization and flow artifacts on EPI were detected in all cases and caused distortion: the signal decreased in the liver parenchyma. We concluded that EPI after administration of SPIO is not currently useful compared to other pulse sequences and cannot yet replace T 2 WI. (author)

  3. SPAMM, cine phase contrast imaging and fast spin-echo T2-weighted imaging in the study of intracranial cerebrospinal fluid (CSF) flow

    International Nuclear Information System (INIS)

    Connor, S.E.J.; O'Gorman, R.; Summers, P.; Simmons, A.; Moore, E.M.; Chandler, C.; Jarosz, J.M.

    2001-01-01

    AIM: To compare the qualitative assessment of cerebrospinal fluid (CSF) flow using a SPAMM (spatial modulation of magnetization) technique with cine phase contrast images (cine PC) and fast spin echo (FSE) T2-weighted images. MATERIALS AND METHODS: SPAMM, PC and T2-weighted sequences were performed on 22 occasions in 19 patients. Eleven of the studies were performed following a neuroendoscopic third ventriculostomy (NTV), and in these cases, the success of the NTV was determined by clinical follow-up. Two observers used consensus to grade the presence of CSF flow at nine different sites for each study. RESULTS: At 14 of the 178 matched sites, which could be assessed by both SPAMM and cine PC, SPAMM CSF flow grade was higher than that of cine PC. At a further 14/178 matched sites, the cine PC grade was higher than that of SPAMM. There was definite CSF flow at 113/182 (62%) of all the cine PC sites assessed, and 110/181 (61%) of all SPAMM sites assessed whilst 108/198 (54%) of FSE T2-weighted image sites demonstrated flow voids. Cine PC grades were higher than SPAMM at the cerebral aqueduct (P < 0.05, Wilcoxon sign rank test). Definite CSF flow within the anterior third ventricle was present in 4/5 (SPAMM) and 3/5 (cine PC) successful NTVs, 0/2 (SPAMM and cine PC) unsuccessful NTVs and 1/10 (SPAMM and cine PC) patients without NTV. CONCLUSION: SPAMM provides a comparable assessment of intracranial CSF flow to that of cine phase contrast imaging at all CSF sites except the cerebral aqueduct. Connor, S.E.J. et al. (2001)

  4. Visualization of cranial nerves by MR cisternography using 3D FASE. Comparison with 2D FSE

    Energy Technology Data Exchange (ETDEWEB)

    Asakura, Hirofumi; Nakano, Satoru; Togami, Taro [Kagawa Medical School, Miki (Japan)] (and others)

    2001-03-01

    MR cisternography using 3D FASE was compared with that of 2D FSE in regard to visualization of normal cranial nerves. In a phantom study, contrast-to-noise ratio (C/N) of fine structures was better in 3D FASE images than in 2D FSE. In clinical cases, visualization of trigeminal nerve, abducent nerve, and facial/vestibulo-cochlear nerve were evaluated. Each cranial nerve was visualized better in 3D FASE images than in 2D FSE, with a significant difference (p<0.05). (author)

  5. Visualization of cranial nerves by MR cisternography using 3D FASE. Comparison with 2D FSE

    International Nuclear Information System (INIS)

    Asakura, Hirofumi; Nakano, Satoru; Togami, Taro

    2001-01-01

    MR cisternography using 3D FASE was compared with that of 2D FSE in regard to visualization of normal cranial nerves. In a phantom study, contrast-to-noise ratio (C/N) of fine structures was better in 3D FASE images than in 2D FSE. In clinical cases, visualization of trigeminal nerve, abducent nerve, and facial/vestibulo-cochlear nerve were evaluated. Each cranial nerve was visualized better in 3D FASE images than in 2D FSE, with a significant difference (p<0.05). (author)

  6. Diagnosis of acute subarachnoid hemorrhage at 1.5 Tesla using proton-density weighted FSE and FLAIR sequences

    International Nuclear Information System (INIS)

    Wiesmann, M.; Mayer, T.E.; Brueckmann, H.; Medele, R.

    1999-01-01

    Purpose: To evaluate MR imaging at 1.5 Tesla in patients suffering from acute subarachnoid hemorrhage (SAH) using proton-density weighted (PDW) fast spin echo (FSE) and fluid attenuated inversion recovery (FLAIR) sequences. Methods: 19 patients suffering from acute SAH as diagnosed by CT were studied 6 h to 3 days after hemorrhage. 10 patients without SAH were studied as a control group. The presence of subarachnoid blood as well as possible artifacts was recorded. Results: In all 19 patients subarachnoid hemorrhage was detected on both FLAIR and PDW images (100%). On the FLAIR images, the cerebral ventricles were partially obscured by flow artifacts in 7 of 19 patients, the basal cisterns in 6 of 19 patients. In 4 of these 13 regions blood was diagnosed on both PDW and CT images, while in the other 9 regions both PDW and CT were unremarkable. Conclusion: The sensitivity of MRI at 1.5 Tesla in the diagnosis of subarachnoid hemorrhage is comparable to CT. The combination of FLAIR and PDW FSE sequences helps to avoid false-positive results caused by flow artifacts. (orig.) [de

  7. Relationship between the trochlear groove angle and patellar cartilage morphology defined by 3D spoiled gradient-echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Yuko; Tokuda, Osamu; Matsunaga, Naofumi [Yamaguchi University Graduate School of Medicine, Department of Radiology, Yamaguchi (Japan); Fukuda, Kouji [Shunan Memorial Hospital, Division of Radiological Technology, Yamaguchi (Japan); Shiraishi, Gen; Motomura, Tetsuhisa [Shunan Memorial Hospital, Department of Orthopedics Surgery, Yamaguchi (Japan); Kimura, Motoichi [Customer Application Gr., GE Healthcare MR Sales and Marketing Department, Osaka (Japan)

    2012-05-15

    To examine whether the femoral trochlear groove angle (TGA) is a determinant of the patellar cartilage volume and patellar cartilage damage. Patellar cartilage was evaluated by MR imaging in 66 patients (22 males and 44 females) with knee pain. Fat-suppressed 3D spoiled gradient-echo images were used to calculate the cartilage volume and to grade the cartilage damage. The proximal and distal TGAs were measured from axial PD-weighted FSE MR images with fat suppression. For every increase in the TGA at the distal femur, the patellar cartilage volume was significantly increased by 6.07 x 10{sup -3} cm{sup 3} (95% CI: 1.27 x 10{sup -3}, 10.9 x 10{sup -3}) after adjustment for age, gender, and patellar bone volume (P < 0.05). The MR grade of medial patellar cartilage damage progressed as the distal TGA became narrower, although there was no significant correlation between the distal TGA and the MR grading of patellar cartilage damage. A more flattened distal TGA was associated with increased patellar cartilage volume. However, there was no association between TGA and patellar cartilage defects. (orig.)

  8. Evaluation of the menisci of the knee joint using three-dimensional isotropic resolution fast spin-echo imaging: diagnostic performance in 250 patients with surgical correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kijowski, Richard; Davis, Kirkland W.; Blankenbaker, Donna G.; Woods, Michael A.; De Smet, Arthur A. [University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI (United States); Munoz del Rio, Alejandro [University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI (United States); University of Wisconsin School of Medicine and Public Health, Department of Statistics, Madison, WI (United States)

    2012-02-15

    To compare the diagnostic performance of FSE-Cube, a three-dimensional isotropic resolution intermediate-weighted fast spin-echo sequence, with a routine magnetic resonance (MR) protocol at 3.0 T for detecting surgically confirmed meniscal tears of the knee joint in a large patient population. FSE-Cube was added to a routine MR protocol performed at 3.0 T on 250 patients who underwent subsequent knee arthroscopy. Three radiologists independently used FSE-Cube during one review and the routine MR protocol during a second review to detect medial and lateral meniscal tears. Using arthroscopy as the reference standard, the sensitivity and specificity of FSE-Cube and the routine MR protocol for detecting meniscal tears were determined for all readers combined. McNemar's tests were used to compare diagnostic performance between FSE-Cube and the routine MR protocol. FSE-cube and the routine MR protocol had similar sensitivity (95.5%/95.3% respectively, P=0.94) and similar specificity (69.8%/74.0% respectively, P=0.10) for detecting 156 medial meniscal tears. FSE-Cube had significantly lower sensitivity than the routine MR protocol (79.4%/85.0% respectively, P < 0.05) but similar specificity (83.9%/82.2% respectively, P=0.37) for detecting 89 lateral mensical tears. For lateral meniscal tears, FSE-Cube had significantly lower sensitivity (P < 0.05) than the routine MR protocol for detecting 19 root tears but similar sensitivity (P=0.17-1.00) for detecting all other tear locations and types. FSE-Cube had diagnostic performance similar to a routine MR protocol for detecting meniscal tears except for a significantly lower sensitivity for detecting lateral meniscal tears, which was mainly attributed to decreased ability to identify lateral meniscus root tears. (orig.)

  9. Evaluation of the menisci of the knee joint using three-dimensional isotropic resolution fast spin-echo imaging: diagnostic performance in 250 patients with surgical correlation

    International Nuclear Information System (INIS)

    Kijowski, Richard; Davis, Kirkland W.; Blankenbaker, Donna G.; Woods, Michael A.; De Smet, Arthur A.; Munoz del Rio, Alejandro

    2012-01-01

    To compare the diagnostic performance of FSE-Cube, a three-dimensional isotropic resolution intermediate-weighted fast spin-echo sequence, with a routine magnetic resonance (MR) protocol at 3.0 T for detecting surgically confirmed meniscal tears of the knee joint in a large patient population. FSE-Cube was added to a routine MR protocol performed at 3.0 T on 250 patients who underwent subsequent knee arthroscopy. Three radiologists independently used FSE-Cube during one review and the routine MR protocol during a second review to detect medial and lateral meniscal tears. Using arthroscopy as the reference standard, the sensitivity and specificity of FSE-Cube and the routine MR protocol for detecting meniscal tears were determined for all readers combined. McNemar's tests were used to compare diagnostic performance between FSE-Cube and the routine MR protocol. FSE-cube and the routine MR protocol had similar sensitivity (95.5%/95.3% respectively, P=0.94) and similar specificity (69.8%/74.0% respectively, P=0.10) for detecting 156 medial meniscal tears. FSE-Cube had significantly lower sensitivity than the routine MR protocol (79.4%/85.0% respectively, P < 0.05) but similar specificity (83.9%/82.2% respectively, P=0.37) for detecting 89 lateral mensical tears. For lateral meniscal tears, FSE-Cube had significantly lower sensitivity (P < 0.05) than the routine MR protocol for detecting 19 root tears but similar sensitivity (P=0.17-1.00) for detecting all other tear locations and types. FSE-Cube had diagnostic performance similar to a routine MR protocol for detecting meniscal tears except for a significantly lower sensitivity for detecting lateral meniscal tears, which was mainly attributed to decreased ability to identify lateral meniscus root tears. (orig.)

  10. Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences

    Energy Technology Data Exchange (ETDEWEB)

    Altahawi, Faysal F.; Blount, Kevin J.; Omar, Imran M. [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Morley, Nicholas P. [Marshfield Clinic, Department of Radiology, Marshfield, WI (United States); Raithel, Esther [Siemens Healthcare GmbH, Erlangen (Germany)

    2017-01-15

    To compare a faster, new, high-resolution accelerated 3D-fast-spin-echo (3D-FSE) acquisition sequence (CS-SPACE) to traditional 2D and high-resolution 3D sequences for knee 3-T magnetic resonance imaging (MRI). Twenty patients received knee MRIs that included routine 2D (T1, PD ± FS, T2-FS; 0.5 x 0.5 x 3 mm{sup 3}; ∝10 min), traditional 3D FSE (SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝7.5 min), and accelerated 3D-FSE prototype (CS-SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝5 min) acquisitions on a 3-T MRI system (Siemens MAGNETOM Skyra). Three musculoskeletal radiologists (MSKRs) prospectively and independently reviewed the studies with graded surveys comparing image and diagnostic quality. Tissue-specific signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) were also compared. MSKR-perceived diagnostic quality of cartilage was significantly higher for CS-SPACE than for SPACE and 2D sequences (p < 0.001). Assessment of diagnostic quality of menisci and synovial fluid was higher for CS-SPACE than for SPACE (p < 0.001). CS-SPACE was not significantly different from SPACE but had lower assessments than 2D sequences for evaluation of bones, ligaments, muscles, and fat (p ≤ 0.004). 3D sequences had higher spatial resolution, but lower overall assessed contrast (p < 0.001). Overall image quality from CS-SPACE was assessed as higher than SPACE (p = 0.007), but lower than 2D sequences (p < 0.001). Compared to SPACE, CS-SPACE had higher fluid SNR and CNR against all other tissues (all p < 0.001). The CS-SPACE prototype allows for faster isotropic acquisitions of knee MRIs over currently used protocols. High fluid-to-cartilage CNR and higher spatial resolution over routine 2D sequences may present a valuable role for CS-SPACE in the evaluation of cartilage and menisci. (orig.)

  11. Evaluation of the chondromalacia patella using a microscopy coil: comparison of the two-dimensional fast spin echo techniques and the three-dimensional fast field echo techniques.

    Science.gov (United States)

    Kim, Hyun-joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung-Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast field echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FS-PD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p chondromalacia patella.

  12. Comparison of spin echo T1-weighted sequences versus fast spin-echo proton density-weighted sequences for evaluation of meniscal tears at 1.5 T

    International Nuclear Information System (INIS)

    Wolff, Andrew B.; Pesce, Lorenzo L.; Wu, Jim S.; Smart, L.R.; Medvecky, Michael J.; Haims, Andrew H.

    2009-01-01

    At our institution, fast spin-echo (FSE) proton density (PD) imaging is used to evaluate articular cartilage, while conventional spin-echo (CSE) T1-weighted sequences have been traditionally used to characterize meniscal pathology. We sought to determine if FSE PD-weighted sequences are equivalent to CSE T1-weighted sequences in the detection of meniscal tears, obviating the need to perform both sequences. We retrospectively reviewed the records of knee arthroscopies performed by two arthroscopy-focused surgeons from an academic medical center over a 2-year period. The preoperative MRI images were interpreted independently by two fellowship-trained musculoskeletal radiologists who graded the sagittal CSE T1 and FSE PD sequences at different sittings with grades 1-5, where 1 = normal meniscus, 2 = probable normal meniscus, 3 indeterminate, 4 = probable torn meniscus, and 5 = torn meniscus. Each meniscus was divided into an anterior and posterior half, and these halves were graded separately. Operative findings provided the gold standard. Receiver operating characteristic (ROC) analysis was performed to compare the two sequences. There were 131 tears in 504 meniscal halves. Using ROC analysis, the reader 1 area under curve for FSE PD was significantly better than CSE T1 (0.939 vs. 0.902, >95% confidence). For reader 2, the difference met good criteria for statistical non-inferiority but not superiority (0.913 for FSE PD and 0.908 for CSE T1; >95% non-inferiority for difference at most of -0.027). FSE PD-weighted sequences, using our institutional protocol, are not inferior to CSE T1-weighted sequences for the detection of meniscal tears and may be superior. (orig.)

  13. Assessment of diagnosing metastatic bone tumor on T2*-weighted images. Comparison between turbo spin echo (TSE) method and gradient echo (GE) method

    International Nuclear Information System (INIS)

    Hayashi, Takahiko; Sugiyama, Akira; Katayama, Motoyuki

    1996-01-01

    We examined the usefulness of T2 * weighted gradient field echo images for diagnosis for metastatic bone tumors in comparison with T2 weighted turbo spin echo (fast spin echo) images. In T2 * weighted gradient field echo sequence to obtain maximum contrast-to-noise ratio (CNR), we experimentally manipulated flip angle (FA) (5deg-90deg), repetition time (TR) (400, 700 msec), and echo time (TE) (10-50 msec). The best CNR was 16.4 in fast low angle shot (FLASH) (TE: 24 msec, TR: 700 msec, FA: 40deg). Magnetic resonance imaging was carried out in 28 patients with metastatic bone tumors. In addition to conventional T1 weighted spin echo images, T2 weighted turbo spin echo (fast spin echo images) and T2 * weighted gradient field echo images were obtained. T2 * weighted gradient field echo images were superior to T2 weighted turbo spin echo (fast spin echo) images in delineating the tumors, adjacent fat tissues, and bone marrow. (author)

  14. CISS MR imaging findings of epidermoid tumor : comparison with spin-echo images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Woo; Kim, Hak Jin; Choi, Sang Yoel; Heo, Jin Sam; Jung, Hoon Sik; Lee, Suck Hong; Kim, Byung Soo [Pusan National Univ. College of Medicine, Pusan (Korea, Republic of); Lee, Jong Wha [Ulsan Univ. Hospital, Ulsan (Korea, Republic of)

    1999-03-01

    To evaluate CISS MR imaging findings of epidermoid tumor in comparison with conventional spin-echo images. We studied 6 cases of epidermoid tumor in the subarachnoid space. We used a 1.5T MR unit to obtain CISS images(TR/TE/FA ; 12.3msec/5.9 msec/700) and T1- and T2- weighted spin-echo images. CISS MR imaging findings were evaluated with respect to tumor's signal intensity , contour, and relation with adjacent structures. Conspicuity of the tumor was compared between CISS and spin-echo images. A quantitative analysis was performed by measuring tumor to CSF contrast. In qualitative analysis, three radiologists independently compared CISS image and conventional spin-echo images for visibility of the tumor and graded them into three categories( poor, good, and excellent). Epidermoid tumors were located in the cerebellopontine angle in 4 cases, the prepontine cisstern in 1 case, and the cerebellopontine angle-prepontine cistern in 1 case. The tumors were hyperintense relative to brain parenchyma and hypointense relative to CSF on CISS images, were lobulated, encased adjacent cranial nerve and vessels, and invaginated into brain parenchyma. In qualitative analysis, CISS images showed clear demarcation between tumor and CSF, exact tumor extension, and tumor's relation with cranial nerves and vessels better than conventional spin-echo images. In quantitative analysis, the mean contrast values of tumor to CSF on T1-, T2-weighted images, and CISS images were 0.12, 0.06, and 0.52, respectively. The contrast value for CISS images was significantly higher than that for T1-and T2-weighted images(p<0.05). Epidermoid tumors in the subarachnoid space are better demonstrated on CISS images than on conventional spin-echo images. This special MR sequence can be added as a routine protocol in the diagnosis of subarachnoid epidermoid tumor.

  15. Fast spin-echo MR imaging of the eye

    International Nuclear Information System (INIS)

    Hosten, N.; Lemke, A.J.; Bornfeld, N.; Wassmuth, R.; Schweiger, U.; Terstegge, K.; Felix, R.

    1996-01-01

    Magnetic resonance imaging of the eye usually includes T2-weighted images both for screening purposes and for characterization of melanoma. Conventional T2-weighted spin-echo (SE) imaging suffers both from long acquisition times and incomplete recovery of the virteous' signal. A fast SE sequence was therefore compared prospectively with conventional sequences in 29 consecutive patients with lesions of the eye. Fast SE images delineated melanoma and other lesions of the eye from vitreous better than conventional T2-weighted images. Image quality and lesion conspicuity were improved on the fast sequence. Whereas melanoma appeared hypointense to vitreous on both types of images, subretinal effusion was hypointense on fast images and hyperintense on conventional T2-weighted images. Ghosting of the globe, which, however, did not decrease diagnostic value, was more pronounced on fast images. Conventional T2-weighted images may be replaced by fast SE images in MR studies of the eye with a gain in lesion conspicuity and significant time saving. (orig.)

  16. MR fingerprinting using the quick echo splitting NMR imaging technique.

    Science.gov (United States)

    Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A

    2017-03-01

    The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining magnetic resonance fingerprinting (MRF) technique with quick echo splitting NMR imaging technique (QUEST). A QUEST-based MRF sequence was implemented to acquire high-order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T 1 and T 2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The specific absorption rate (SAR) of MRF-QUEST was compared with the clinically available methods. MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head SAR of 0.03 W/kg. T 1 and T 2 values estimated by MRF-QUEST are in good agreement with the traditional methods. The combination of the MRF and the QUEST provides an accurate quantification of T 1 and T 2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. Magn Reson Med 77:979-988, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Magnetic resonance imaging of lumbar spine. Comparison of multiple spin echo and low flip angle gradient echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Takamichi; Fujita, Norihiko; Harada, Koushi; Kozuka, Takahiro (Osaka Univ. (Japan). Faculty of Medicine)

    1989-07-01

    Sixteen patients including 13 cases with disk herniation and 3 cases with spondylosis of lumbar spine were examined on a resistive MRI system operating at 0.1 T. All lesions were studied with both multiple spin echo (MSE) and low flip angle gradient echo (LF) techniques to evaluate which technique is more effective in detecting the disk degeneration and the indentation on subarachnoid space. MSE images were obtained with repetition time (TR) of 1100-1500 ms or cardiac gating, an echo time (TE) of 30, 60, 90, 120, 150, and 180 ms symmetrical 6 echoes, and total acquisition time of more than 281 sec. LF images were obtained with TR of 500, 250, and 100 ms, TE of 18 ms, a flip angle of 30 degree, and total acquisition time of 128 sec. Eleven lesions of spinal disk degeneration and 12 of indentation on subarachnoid space were detected with LF. On the other hand, 26 lesions of spinal disk degeneration and 38 of indentation on subarachnoid space were detected with MSE. Although the parameters of LF employed in this study were relatively effective to emphasize T2{sup *}-based contrast, the ability of LF in detection of spinal disk degeneration and indentation on subarachnoid space is less than that of MSE. Signal contrast to noise ratios for normal disk and degenerative disk, epidural-fat and disk herniated material, CSF and disk herniated material, and epidural-fat and CSF were less than 4 with LF, but more than 4 with MSE. This difference of contrast to noise ratio between MSE and LF was one of the main causes of the difference of the detection rate of spinal disk degeneration and indentation on subarachnoid space. (author).

  18. Quantitation of structural distortion with gradient-echo imaging techniques

    International Nuclear Information System (INIS)

    Tien, R.D.; Schwaighofer, B.W.; Hesselink, J.R.; Chu, P.K.

    1990-01-01

    This paper determines the structural distortion and measurement error associated with fast MR imaging of the spinal neural foramina. Dry skeletal specimens and a thin cadaveric sagittal section through the neural foramina were placed in a water bath. MR images were obtained with a 1.5-T unit in different planes and with various pulse sequences. The size and shape of each neural foramen were carefully measured on the images and on the skeletal specimens. Gradient-echo (GRE) techniques (gradient recalled acquisition in a steady state, MPGR, three-dimensional volume acquisition) resulted in structural distortion in up to 10% on the fresh skeleton and 30% of the dry skeleton specimens when a small TE was used (the foramina appear narrower on the images)

  19. NMR multiple-echo phase-contrast blood flow imaging

    International Nuclear Information System (INIS)

    O'Donnell, M.

    1986-01-01

    A method is described for magnetic resonance imaging of fluid flow in a sample, comprising the steps of: (a) immersing the sample in a static magnetic field disposed in a first direction; (b) applying a first sequence of magnetic field gradients and radio-frequency signals to the sample to both define a slab, of the sample to be imaged, in a plane substantially orthogonal to a selected direction for which flow velocity is to be measured, and to obtain a plurality N of spin-echo response signals form that slab; (c) processing the plurality of first sequence spin-echo signals to obtain a complex value A/sub 1/(X,Y,Z) relating both the spin density rho'(X,Y,Z),... and the phase rotation phi(X,Y,Z), induced by the first sequence, for each of a selected number of sequential locations (X,Y,Z) in the sample slab; (d) applying a second sequence of magnetic field gradient and radio-frequency signals to both define the same sample slab as in step (b) and to obtain another plurality N of spin-echo response signals from that slab; (e) including a waveform in at least one of the magnetic field gradient and radio-frequency signals applied in step (d) for imparting to each of the spin-echo signal components from each slab location having a flowing material therein a phase rotation dependent upon the magnitude of the flow velocity therein in the selected direction; (f) processing the plurality of second sequence spin-echo signals to obtain a complex value A/sub 2/(X,Y,Z) relating the spin density rho'(X,Y,Z) and the imparted phase rotation of the sample material along the selected flow measurement direction for each of the sequential locations (X,Y,Z) in the sample slab; and (g) processing the complex values A/sub 1/(X,Y,Z) and A/sub 2/(X,Y,Z) for each sample location to obtain a differential phase-contrast value related to the velocity of the flowing material therein in the selected measurement direction

  20. Evaluation of cardiac function using multi-shot echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tadashi; Tanitame, Nobuko; Hata, Ryoichiro; Hirai, Nobuhiko; Ikeda, Midori; Ono, Chiaki; Fukuoka, Haruhito; Ito, Katsuhide [Hiroshima Univ. (Japan). School of Medicine

    1998-01-01

    In this study, we performed multi-shot echo planar imaging (8 shot, TR/TE/FL=55 ms/18 ms/60 degrees) and k-space segmented fast gradient echo sequence (8 views per segment, TR/TE/FL=9.9 ms/1.8 ms/30 degrees) to assess cardiac function in healthy volunteers. Transaxial sections of the entire heart were obtained with both sequences in ECG triggered, breath hold, and with a 256 x 128 matrix. Resulting temporal resolution was 55 ms for echo planar imaging, and 71 ms for k-space segmented fast gradient echo sequence, respectively. Ventricular volume and ejection fraction of both ventricles and left ventricular mass obtained with multi-shot echo planar imaging were assessed in comparison with k-space segmented fast gradient echo sequence. Measurements of left ventricular volume, ejection fraction and mass obtained with multi-shot echo planar imaging demonstrated close correlation with those obtained with k-space segmented fast gradient echo sequence. Right ventricular volumes obtained with echo planar imaging were significantly higher than those obtained with k-space segmented fast gradient echo sequence. This tendency is considered to be due to differing contrast between right ventricular myocardium and fat tissue observed with echo planar imaging relative to that observed with fast gradient echo sequence, because fat suppression is always performed in echo planar images. Multi-shot echo planar imaging can be a reliable tool for measurement of cardiac functional parameters, although wall motion analysis of the left ventricle requires higher temporal resolution and a short axial section. (K.H.)

  1. MR imaging of carotid webs

    International Nuclear Information System (INIS)

    Boesen, Mari E.; Eswaradass, Prasanna Venkatesan; Singh, Dilip; Mitha, Alim P.; Menon, Bijoy K.; Goyal, Mayank; Frayne, Richard

    2017-01-01

    We propose a magnetic resonance (MR) imaging protocol for the characterization of carotid web morphology, composition, and vessel wall dynamics. The purpose of this case series was to determine the feasibility of imaging carotid webs with MR imaging. Five patients diagnosed with carotid web on CT angiography were recruited to undergo a 30-min MR imaging session. MR angiography (MRA) images of the carotid artery bifurcation were acquired. Multi-contrast fast spin echo (FSE) images were acquired axially about the level of the carotid web. Two types of cardiac phase resolved sequences (cineFSE and cine phase contrast) were acquired to visualize the elasticity of the vessel wall affected by the web. Carotid webs were identified on MRA in 5/5 (100%) patients. Multi-contrast FSE revealed vessel wall thickening and cineFSE demonstrated regional changes in distensibility surrounding the webs in these patients. Our MR imaging protocol enables an in-depth evaluation of patients with carotid webs: morphology (by MRA), composition (by multi-contrast FSE), and wall dynamics (by cineFSE). (orig.)

  2. MR imaging of carotid webs

    Energy Technology Data Exchange (ETDEWEB)

    Boesen, Mari E. [University of Calgary, Department of Biomedical Engineering, Calgary (Canada); Foothills Medical Centre, Seaman Family MR Research Centre, Calgary (Canada); Eswaradass, Prasanna Venkatesan; Singh, Dilip; Mitha, Alim P.; Menon, Bijoy K. [University of Calgary, Department of Clinical Neurosciences, Calgary (Canada); Foothills Medical Centre, Calgary Stroke Program, Calgary (Canada); Goyal, Mayank [Foothills Medical Centre, Calgary Stroke Program, Calgary (Canada); University of Calgary, Department of Radiology, Calgary (Canada); Frayne, Richard [Foothills Medical Centre, Seaman Family MR Research Centre, Calgary (Canada); University of Calgary, Hotchkiss Brain Institute, Calgary (Canada)

    2017-04-15

    We propose a magnetic resonance (MR) imaging protocol for the characterization of carotid web morphology, composition, and vessel wall dynamics. The purpose of this case series was to determine the feasibility of imaging carotid webs with MR imaging. Five patients diagnosed with carotid web on CT angiography were recruited to undergo a 30-min MR imaging session. MR angiography (MRA) images of the carotid artery bifurcation were acquired. Multi-contrast fast spin echo (FSE) images were acquired axially about the level of the carotid web. Two types of cardiac phase resolved sequences (cineFSE and cine phase contrast) were acquired to visualize the elasticity of the vessel wall affected by the web. Carotid webs were identified on MRA in 5/5 (100%) patients. Multi-contrast FSE revealed vessel wall thickening and cineFSE demonstrated regional changes in distensibility surrounding the webs in these patients. Our MR imaging protocol enables an in-depth evaluation of patients with carotid webs: morphology (by MRA), composition (by multi-contrast FSE), and wall dynamics (by cineFSE). (orig.)

  3. Ultra-high-speed inversion recovery echo planar MR imaging

    International Nuclear Information System (INIS)

    Stehling, M.K.; Ordidge, R.J.; Coxon, R.; Chapman, B.; Houseman, A.M.; Guifoyle, D.; Blamire, A.; Gibbs, P.; Mansfield, P.

    1988-01-01

    Fast two-dimensional FT MR imaging techniques such as fast low-angle shot do not allow inversion recovery (IR). Rapid repetition of low-angle pulses is incompatible with a 180 0 inversion pulse. Echo planar imaging (EPI) can be applied in conjunction with IR, because after preparation of the spin system, a complete image is acquired. Data acquisition in less than 100 msec and real-time display allows interactive optimization of inversion time (4.0-9,000 msec) with little time penalty. The authors have applied IR EPI to the study of the brain, liver, and kidneys in normal volunteers and patients. Technical details are presented, and the applications of this first ultra-high-speed IR technique will be shown

  4. Proton T2 Relaxation effect of superparamagnetic iron oxide on fast spin echo sequence. Influence of echo number (even or odd) of effective TE

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Fujita, Isao

    1999-01-01

    The T 2 relaxation effect of the fast spin echo sequence (FSE) was investigated using superparamagnetic iron oxide (SPIO) particles. When even echoes were used as the effective TE of FSE, the signal intensity ratio [signal intensity of FSE/signal intensity of conventional spin echo sequence (CSE)] of FSE and CSE increased, whereas the T 2 relaxation effect of SPIO with FSE was reduced. However, when odd echoes were used, neither signal intensity changed, and weakening of the T 2 relaxation effect, considered a problem with FSE, was reduced. This phenomenon was not observed when the refocusing flip angle was changed to 30 and 60 degrees. However, it was observed when the refocusing flip angle was 120 and 150 degrees. Thus, this phenomenon can be considered to be related to oscillation in longitudinal magnetization when using the Carr-Purcell-Meiboom-Gill (CPMG) technique. (author)

  5. IDEAL 3D spoiled gradient echo of the articular cartilage of the knee on 3.0 T MRI: a comparison with conventional 3.0 T fast spin-echo T2 fat saturation image.

    Science.gov (United States)

    Han, Chul Hee; Park, Hee Jin; Lee, So Yeon; Chung, Eun Chul; Choi, Seon Hyeong; Yun, Ji Sup; Rho, Myung Ho

    2015-12-01

    Many two-dimensional (2D) morphologic cartilage imaging sequences have disadvantages such as long acquisition time, inadequate spatial resolution, suboptimal tissue contrast, and image degradation secondary to artifacts. IDEAL imaging can overcome these disadvantages. To compare sound-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and quality of two different methods of imaging that include IDEAL 3D SPGR and 3.0-T FSE T2 fat saturation (FS) imaging and to evaluate the utility of IDEAL 3D SPGR for knee joint imaging. SNR and CNR of the patellar and femoral cartilages were measured and calculated. Two radiologists performed subjective scoring of all images for three measures: general image quality, FS, and cartilage evaluation. SNR and CNR values were compared by paired Student's t-tests. Mean SNRs of patellar and femoral cartilages were 90% and 66% higher, respectively, for IDEAL 3D SPGR. CNRs of patellar cartilages and joint fluids were 2.4 times higher for FSE T2 FS, and CNR between the femoral cartilage and joint fluid was 2.2 times higher for FSE T2 FS. General image quality and FS were superior using FSE T2 FS compared to those of IDEAL 3D SPGR imaging according to both readers, while cartilage evaluation was superior using IDEAL 3D SPGR. Additionally, cartilage injuries were more prominent in IDEAL 3D SPGR than in FSE T2FS according to both readers. IDEAL 3D SPGR images show excellent visualization of patellar and femoral cartilages in 3.0 T and can compensate for the weaknesses of FSE T2 FS in the evaluation of cartilage injuries. © The Foundation Acta Radiologica 2014.

  6. Magnetic resonance imaging of an equine fracture model containing stainless steel metal implants.

    Science.gov (United States)

    Pownder, S L; Koff, M F; Shah, P H; Fortier, L A; Potter, H G

    2016-05-01

    Post operative imaging in subjects with orthopaedic implants is challenging across all modalities. Magnetic resonance imaging (MRI) is preferred to assess human post operative musculoskeletal complications, as soft tissue and bones are evaluated without using ionising radiation. However, with conventional MRI pulse sequences, metal creates susceptibility artefact that distorts anatomy. Assessment of the post operative equine patient is arguably more challenging due to the volume of metal present, and MRI is often not performed in horses with implants. Novel pulse sequences such as multiacquisition variable resonance image combination (MAVRIC) now provide improved visibility in the vicinity of surgical-grade implants and offer an option for imaging horses with metal implants. To compare conspicuity of regional anatomy in an equine fracture-repair model using MAVRIC, narrow receiver bandwidth (NBW) fast spin echo (FSE), and wide receiver bandwidth (WBW) FSE sequences. Nonrandomised in vitro experiment. MAVRIC, NBW FSE and WBW FSE were performed on 9 cadaveric distal limbs with fractures and stainless steel implants in the third metacarpal bone and proximal phalanx. Objective measures of artefact reduction were performed by calculating the total artefact area in each transverse image as a percentage of the total anatomic area. The number of transverse images in which fracture lines were visible was tabulated for each sequence. Regional soft tissue conspicuity was assessed subjectively. Overall anatomic delineation was improved using MAVRIC compared with NBW FSE; delineation of structures closest to the metal implants was improved using MAVRIC compared with WBW FSE and NBW FSE. Total artefact area was the highest for NBW FSE and lowest for MAVRIC; the total number of transverse slices with a visible fracture line was highest in MAVRIC and lowest in NBW FSE. MAVRIC and WBW FSE are feasible additions to minimise artefact around implants. © 2015 EVJ Ltd.

  7. Diuretic-enhanced gadolinium excretory MR urography: comparison of conventional gradient-echo sequences and echo-planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nolte-Ernsting, C.C.A.; Tacke, J.; Adam, G.B.; Haage, P.; Guenther, R.W. [Univ. of Technology, Aachen (Germany). Dept. of Diagnostic Radiology; Jung, P.; Jakse, G. [Univ. of Technology, Aachen (Germany). Dept. of Urology

    2001-01-01

    The aim of this study was to investigate the utility of different gadolinium-enhanced T1-weighted gradient-echo techniques in excretory MR urography. In 74 urologic patients, excretory MR urography was performed using various T1-weighted gradient-echo (GRE) sequences after injection of gadolinium-DTPA and low-dose furosemide. The examinations included conventional GRE sequences and echo-planar imaging (GRE EPI), both obtained with 3D data sets and 2D projection images. Breath-hold acquisition was used primarily. In 20 of 74 examinations, we compared breath-hold imaging with respiratory gating. Breath-hold imaging was significantly superior to respiratory gating for the visualization of pelvicaliceal systems, but not for the ureters. Complete MR urograms were obtained within 14-20 s using 3D GRE EPI sequences and in 20-30 s with conventional 3D GRE sequences. Ghost artefacts caused by ureteral peristalsis often occurred with conventional 3D GRE imaging and were almost completely suppressed in EPI sequences (p < 0.0001). Susceptibility effects were more pronounced on GRE EPI MR urograms and calculi measured 0.8-21.7% greater in diameter compared with conventional GRE sequences. Increased spatial resolution degraded the image quality only in GRE-EPI urograms. (orig.)

  8. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  9. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2011-02-15

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  10. High temporal resolution functional MRI using parallel echo volumar imaging

    International Nuclear Information System (INIS)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F.; Le Roux, P.; Dehaine-Lambertz, G.

    2008-01-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  11. Usefulness of dual echo volumetric isotropic turbo spin echo acquisition (VISTA) in MR imaging of the temporomandibular joint

    International Nuclear Information System (INIS)

    Sugimori, Yuko; Tanaka, Shigeko; Naito, Yukari; Nishimura, Tetsuya; Yamamoto, Akira; Miki, Yukio; Ohfuji, Satoko; Katsumata, Yasutomo

    2013-01-01

    We investigated the ability to detect the articular disk and joint effusion of the temporomandibular joint (TMJ) of a method of dual echo volumetric isotropic turbo spin echo acquisition (DE-VISTA) additional fusion images (AFI). DE-VISTA was performed in the 26 TMJ of 13 volunteers and 26 TMJ of 13 patients. Two-dimensional (2D) dual echo turbo spin echo was performed in the 26 TMJ of 13 volunteers. On a workstation, we added proton density-weighted images (PDWI) and T 2 weighted images (T 2 WI) of the DE-VISTA per voxel to reconstruct DE-VISTA-AFI. Two radiologists reviewed these images visually and quantitatively. Visual evaluation of the articular disk was equivalent between DE-VISTA-AFI and 2D-PDWI. The sliding thin-slab multiplanar reformation (MPR) method of DE-VISTA-AFI could detect all articular disks. The ratio of contrast (CR) of adipose tissue by the articular disk to that of the articular disk itself was significantly higher in DE-VISTA-AFI than DE-VISTA-PDWI (P 2 WI but in only 3 of those joints in 2D-T 2 WI. The CR of joint effusion to adipose tissue on DE-VISTA-AFI did not differ significantly from that on DE-VISTA-PDWI. However, using DE-VISTA-T 2 WI in addition to DE-VISTA-PDWI, we could visually identify joint effusion on DE-VISTA-AFI that could not be identified on DE-VISTA-PDWI alone. DE-VISTA-AFI can depict the articular disk and a small amount of joint effusion by the required plane of MPR using the sliding thin-slab MPR method. (author)

  12. Utility of dual echo T2-weighted turbo spin echo MR imaging for differentiation of solid, malignant hepatic lesions from nonsolid, benign hepatic lesions

    International Nuclear Information System (INIS)

    Yang, Dal Mo; Yoon, Myung Hwan; Kim, Hak Soo; Lee, Eun Joo; Kim, Jong Ho; Kim, Hyung Sik; Chung, Jin Woo

    1999-01-01

    To evaluate the additive value of multiphasic contrast-enhanced dynamic MR imaging as a supplement to dual-echo T2-weighted TSE MR imaging for the differentiation of solid, malignant hepatic lesions from nonsolid, benign hepatic lesions. Two radiologists retrospectively reviewed dual-echo T2-weighted TSE MR images and gadolinium-enhanced MR images in 51 patients with hepatic lesions (28 malignant, 69 benign). For the differentiation of malignant from benign lesions, as seen on dual-echo T2-weighted TSE MR images, we evaluated sensitivity, specificity, and accuracy, and compared with the results with those for dual echo T2-weighted MR images plus multiphasic contrast-enhanced dynamic MR images. In addition, Az values for dual echo T2-weighted MR images were compared with those for dual echo T2-weighted MR images plus multiphasic contrast-enhanced dynamic MR images. For the differentiation of malignant from benign hepatic lesions, as seen on dual-echo T2-weighted TSE images, sensitivity, specificity, and accuracy were 80.0%, 97.5%, and 93.9%, respectively, for lesions less than 3cm in diameter, and 92.3%, 95.0%, and 93.5%, respectively, for those that were 3cm or larger. The results for dual-echo T2-weighted MR imaging plus multiphasic contrast-enhanced dynamic MR imaging were 86.7%, 100.0%, and 97.3%, respectively, for lesions less than 3cm, and 92.3%, 100.0%, and 95.7%, respectively for those that were 3cm or larger. There were no significant differences in sensitivity, specificity, or accuracy between the results obtained using dual-echo T2-weighted MR imaging and those obtained with dual-echo T2-weighted MR imaging plus multiphasic contrast-enhanced dynamic MR imaging. Nor were these statistically significant differences in Az values between the two groups. For the differentiation of solid, malignant hepatic lesions from nonsolid, benign hepatic lesions, there is no difference in accuracy between dual-echo T2-weighted TSE MR imaging and the additional use of

  13. Readout-Segmented Echo-Planar Imaging in Diffusion-Weighted MR Imaging in Breast Cancer: Comparison with Single-Shot Echo-Planar Imaging in Image Quality

    International Nuclear Information System (INIS)

    Kim, Yun Ju; Kim, Sung Hun; Kang, Bong Joo; Park, Chang Suk; Kim, Hyeon Sook; Son, Yo Han; Porter, David Andrew; Song, Byung Joo

    2014-01-01

    The purpose of this study was to compare the image quality of standard single-shot echo-planar imaging (ss-EPI) and that of readout-segmented EPI (rs-EPI) in patients with breast cancer. Seventy-one patients with 74 breast cancers underwent both ss-EPI and rs-EPI. For qualitative comparison of image quality, three readers independently assessed the two sets of diffusion-weighted (DW) images. To evaluate geometric distortion, a comparison was made between lesion lengths derived from contrast enhanced MR (CE-MR) images and those obtained from the corresponding DW images. For assessment of image parameters, signal-to-noise ratio (SNR), lesion contrast, and contrast-to-noise ratio (CNR) were calculated. The rs-EPI was superior to ss-EPI in most criteria regarding the qualitative image quality. Anatomical structure distinction, delineation of the lesion, ghosting artifact, and overall image quality were significantly better in rs-EPI. Regarding the geometric distortion, lesion length on ss-EPI was significantly different from that of CE-MR, whereas there were no significant differences between CE-MR and rs-EPI. The rs-EPI was superior to ss-EPI in SNR and CNR. Readout-segmented EPI is superior to ss-EPI in the aspect of image quality in DW MR imaging of the breast

  14. Comparison of gradient-recalled echo and spin-echo echo-planar imaging MR elastography in staging liver fibrosis. A meta-analysis

    International Nuclear Information System (INIS)

    Kim, Yong Seek; Jang, Yu Na; Song, Ji Soo

    2018-01-01

    To compare the diagnostic performance of gradient-recalled echo-based magnetic resonance elastography (GRE-MRE) and spin-echo echo-planar imaging-based MRE (SE-EPI-MRE) in liver fibrosis staging. A systematic literature search was performed to identify studies involving the performance of MRE for the diagnosis of liver fibrosis. Pooled sensitivity, specificity, positive and negative likelihood ratios, the diagnostic odds ratio, and a summary receiver operating characteristic (ROC) curve were estimated by using a bivariate random effects model. Subgroup analyses were performed between different study characteristics. Twenty-six studies with a total of 3,200 patients were included in the meta-analysis. Pooled sensitivity and specificity of GRE-MRE and SE-EPI-MRE did not differ significantly. The area under the summary ROC curve for stage diagnosis of any (F ≥ 1), significant (F ≥ 2), advanced (F ≥ 3), and cirrhosis (F = 4) on GRE-MRE and SE-EPI-MRE were 0.93 versus 0.94, 0.95 versus 0.94, 0.94 versus 0.95, and 0.92 versus 0.93, respectively. Substantial heterogeneity was detected for both sequences. Both GRE and SE-EPI-MRE show high sensitivity and specificity for detection of each stage of liver fibrosis, without significant differences. Magnetic resonance elastography (MRE) may be useful for noninvasive evaluation of liver fibrosis in chronic liver disease. (orig.)

  15. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    Science.gov (United States)

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  16. HST Archival Imaging of the Light Echoes of SN 1987A

    Science.gov (United States)

    Lawrence, S. S.; Hayon, M.; Sugerman, B. E. K.; Crotts, A. P. S.

    2002-12-01

    We have undertaken a search for light echo signals from Supernova 1987A that have been serendipitously recorded in images taken near the 30 Doradus region of the Large Magellanic Cloud by HST. We used the MAST interface to create a database of the 1282 WF/PC, WFPC2 and STIS images taken within 15 arcminutes of the supernova, between 1992 April and 2002 June. These 1282 images are grouped into 125 distinct epochs and pointings, with each epoch containing between 1 and 42 separate exposures. Sorting this database with various programs, aided by the STScI Visual Target Tuner, we have identified 63 pairs of WFPC2 imaging epochs that are not centered on the supernova but that have a significant amount of spatial overlap between their fields of view. These image data were downloaded from the public archive, cleaned of cosmic rays, and blinked to search for light echoes at radii larger than 2 arcminutes from the supernova. Our search to date has focused on those pairs of epochs with the largest degree of overlap. Of 16 pairs of epochs scanned to date, we have detected 3 strong light echoes and one faint, tentative echo signal. We will present direct and difference images of these and any further echoes, as well as the 3-D geometric, photometric and color properties of the echoing dust structures. In addition, a set of 20 epochs of WF/PC and WFPC2 imaging centered on SN 1987A remain to be searched for echoes within 2 arcminutes of the supernova. We will discuss our plans to integrate the high spatial-resolution HST snapshots of the echoes with our extensive, well-time-sampled, ground-based imaging data. We gratefully acknowledge the support of this undergraduate research project through an HST Archival Research Grant (HST-AR-09209.01-A).

  17. Fast FLAIR MR imaging finidngs of cerebral infarction : comparison with T2-weighted spin echo imaging

    International Nuclear Information System (INIS)

    Kong, Keun Young; Choi, Woo Suk; Kim, Eui Jong

    1997-01-01

    To evaluate the utility of FLAIR(Fluid Attenuated Inversion Recovery) MR imaging in cerebral infarction by comparing its results with those of T2-weighted spin-echo imaging. We retrospectively evaluated fast FLAIR images and conventional spin echo images of 82 patients (47 men and 20 women ; median age 60.9 years) with cerebral infarction. MR imaging used a 1.5T MR unit with conventional T2(TR 3900, TE 90) and fast FLAIR sequence (TR 8000, TE 105, TI 2400). We analysed the size of the main lesion and number of lesions, and discrimination between old and new lesions and between small infarction and perivascular space. When T2-weighted and FLAIR imaging were compared, the latter showed that the main lesion was larger in 38 cases (46%), similar in 38 (46%), and smaller in six (7%). The number of lesions was greater in 23 cases(28%), similar in 52 (63%), and fewer in seven (9%). FLAIR images discriminated between old and new lesions in 31 cases ; perivascular space and small infarotion were differentiated in eight cases, and CSF inflowing artifact was observed in 66 (80%). In the diagnosis of cerebral infaretion, fast FLAIR provides images that are equal or superior to T2-weighted images. The fast FLAIR sequence may therefore be used as a part of routine MR brain study in the diagnosis of cerebral infarction

  18. Echo Planar Diffusion-Weighted Imaging: Possibilities and Considerations with 12- and 32-Channel Head Coils

    Directory of Open Access Journals (Sweden)

    John N Morelli

    2012-01-01

    Full Text Available Interest in clinical brain magnetic resonance imaging using 32-channel head coils for signal reception continues to increase. The present investigation assesses possibilities for improving diffusion-weighted image quality using a 32-channel in comparison to a conventional 12-channel coil. The utility of single-shot (ss and an approach to readout-segmented (rs echo planar imaging (EPI are examined using both head coils. Substantial image quality improvements are found with rs-EPI. Imaging with a 32-channel head coil allows for implementation of greater parallel imaging acceleration factors or acquisition of scans at a higher resolution. Specifically, higher resolution imaging with rs-EPI can be achieved by increasing the number of readout segments without increasing echo-spacing or echo time to the degree necessary with ss-EPI - a factor resulting in increased susceptibility artifact and reduced signal-to-noise with the latter.

  19. Spontaneous cerebral microbleeds on gradient echo MR imaging in the stroke patients

    International Nuclear Information System (INIS)

    Kwak, Seong Ho; Song, Chang June; Kim, Dae Bong; Jeong, Geum Chae

    2003-01-01

    To investigate the spontaneous cerebral microbleeding occurring at gradient-echo MRI, and its relationship with associated stroke lesions and risk factors. Between September 2001 and December, 2002, 32 patients (21 men and 11 women; mean age 63 years) in whom cerebral microbleeding occurred at gradient-echo MRI were retrospectively investigated. Using a 1.5T MR imager, spin-echo T1-weighted, fast spin-echo T2-weighted, diffusion-weighted, and gradient-echo images were obtained. The number and location of microbleeds seen on gradient echo images, patients data, and associated stroke lesions such as intracerebral hemorrhage and lacunar and territorial infarction were assessed. Among the 32 patients, 563 microbleeds and between 1 and 66 (mean, 17.6) were noted at gradient-echo imaging. Microbleeding occurred in the cortical/subcortical area (n=216), the basal ganglia (n=173), thalamus (n=92), cerebellum (n=41), brainstem (n=36) and corpus callosum (n=1), and in 20 patients was bilateral. Patients had a history of hypertension (n=26), hypertriglycemia (n=12), heart disease (n=4), and diabetes mellitus (n=3). Stroke lesions were seen in 27 patients, intracerebral hemorrhage in ten, lacunar infarction in 24, and territorial infarction in four. The incidence and number of microbleeds was greater in older patients and in those with hypertension, hypertriglycemia, and stroke lesions such as intracerebral hemorrhage or lacunar infarction. The detection of microbleeding at gradient-echo imaging is helpful, since it predicts the possibility of cerebral hemorrhage in these patients

  20. Partial flip angle spin-echo imaging to obtain T1 weighted images with electrocardiographic gating

    International Nuclear Information System (INIS)

    Kawamitsu, Hideaki; Sugimura, Kazuro; Kasai, Toshifumi; Kimino, Katsuji

    1993-01-01

    ECG-gated spin-echo (SE) imaging can reduce physiologic motion artifact. However, it does not provide strong T 1 -weighted images, because the repetition time (TR) depends on heart rate (HR). For odd-echo SE imaging, T 1 contrast can be maximized by using a smaller flip angle (FA) of initial excitation RF pulses. We investigated the usefulness of partial FA SE imaging in order to obtain more T 1 -dependent contrast with ECG gating and determined the optimal FA at each heart rate. In computer simulation and phantom study, the predicted image contrast and signal-to-noise ratio (SNR) obtained for each FA (0∼180deg) and each HR (55∼90 beats per minute (bpm)) were compared with those obtained with conventional T 1 -weighted SE imaging (TR=500 ms, TE=20 ms, FA=90deg). The optimal FA was decreased by reducing HR. The FA needed to obtain T 1 -dependent contrast identical to that with T 1 -weighted SE imaging was 43deg at a HR of 65 bpm, 53deg at 70 bpm, 60deg at 75 bpm. This predicted FA were in excellent agreement with that obtained with clinical evaluation. The predicted SNR was decreased by reducing FA. The SNR of partial FA SE imaging at HR of 65 bpm (FA=43deg) was 80% of that with conventional T 1 -weighted SE imaging. However, this imaging method presented no marked clinical problem. ECG-gated partial FA SE imaging provides better T 1 -dependent contrast than conventional ECG-gated SE imaging, especially for Gd-DTPA enhanced imaging. (author)

  1. New spoiled spin-echo technique for three-dimensional MR imaging

    International Nuclear Information System (INIS)

    Darrasse, L.; Mao, L.; Saint-Jalmes, H.

    1989-01-01

    For 3D MR imaging within a convenient scanning time, the authors propose an improved spin-echo technique that permits the use of TRs shorter than 100 msec. They use a two-pulse RF sequence (α-π echo). The echo is read with conventional 3DFT encoding. To avoid steady-state signal refocusing before either α or (imperfect) π pulses, we apply randomized gradient spoilers both before each α pulse and on each side of the π pulse. So the sequence works like standard spin- echo sequences, with the z-magnetization recovery being adjusted by means of α rather than TR. The authors have investigated the method on a new 0.1-T Magnetom system dedicated for 3D MR imaging

  2. Fast method of NMR imaging based on trains of spin echoes

    International Nuclear Information System (INIS)

    Hennel, F.

    1993-01-01

    A theoretical introduction to Fourier NMR imaging and a discussion of fast methods are presented. Then an application of the method of echo-planar imaging (EPI) with spin echoes in a micro-imaging system is described together with introduced modifications of the sequence. A new technique for the measurement of flow profiles in liquids which results from a modification of x-pulsed EPI is presented. The development of new software for a NMR micro-imaging system is described, too. 51 refs, 29 refs

  3. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity.

    Science.gov (United States)

    Cohen, Alexander D; Nencka, Andrew S; Lebel, R Marc; Wang, Yang

    2017-01-01

    A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI.

  4. Fast-gradient-echo variable-flip-angle imaging of the cervical spine

    International Nuclear Information System (INIS)

    Van Dyke, C.W.; Ross, J.S.; Masaryk, T.J.; Tkach, J.; Beale, S.; Hueftle, M.G.; Kaufman, B.; Modic, M.T.

    1987-01-01

    Two hundred consecutive patients were studied with 4-mm sagittal and axial T1-weighted images and gradient echo sequences with 6-msec or 13-msec echo time (TE) and 10 0 or 60 0 flip angles to evaluate cervical extradural disease. Images were independently evaluated for contrast behavior and anatomy, then directly compared for conspicuity of lesions. FLASH sequences produced better conspicuity of disease in half the imaging time. T1-weighted spin-echo (SE) sequences were more sensitive to marrow changes and intradural disease. Shorter TEs produced overall image improvement and reduced susceptibility effects. A fast and sensitive cervical examination combines sagittal T1-weighted SE with sagittal and axial FLASH 10 0 sequences with 6-msec TE

  5. Application of velocity imaging and gradient-recalled echo in neuroimaging

    International Nuclear Information System (INIS)

    Boyko, O.B.; Pelc, N.J.; Shimakawa, A.

    1990-01-01

    This paper describes the initial clinical experience with imaging blood flow at 1.5 T by means of a phase-sensitive gradient refocused pulse sequence. A spin-echo flow-encoding technique was modified to a gradient recalled acquisition in a steady state sequence, producing a velocity imaging and gradient recalled echo (VIGRE) sequence (TR = 24 msec, TE = 13 msec, flip angle = 45 degrees, 24-cm field of view, 7 mm contiguous sections). Two views per phase-encoding step are acquired; one using the first-moment flow-compensation gradient waveform and the second having a (selectable) nonzero first moment. A phase subtraction image is obtained where the signal is dependent on the direction and velocity of flow. The sequence was done following routine spin-echo imaging in 35 patients

  6. Contrast-enhanced dynamic MR imaging of parasellar tumor using fast spin-echo sequence

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Ohue, Shiro; Ichikawa, Haruhisa; Saito, Masahiro; Sadamoto, Kazuhiko; Sakaki, Saburo; Miki, Hitoshi.

    1995-01-01

    We have applied a new dynamic MRI technique that uses a fast spin-echo sequence to parasellar tumors. This sequence has less susceptible effect and better spatial resolution than a gradient echo sequence, providing faster images than a short spin-echo sequence does. Image was obtained in the coronal or sagittal plane using a 1.5T clinical MRI system, and then, dynamic MR images were acquired every 10 to 20 sec after administration of Gd-DTPA (0.1 mmol/kg). The subjects were 12 patients (5 microadenomas, 5 macroadenomas and 2 Rathke's cleft cysts) and 5 normal volunteers. As for volunteers, the cavernous sinus, pituitary stalk and posterior pituitary gland were contrasted on the first image, followed by visualization of the proximal portion adjacent to the junction of the infundibulum and the anterior pituitary gland, and finally by contrasting the distal portion of the anterior pituitary gland. There was a difference with respect to tumor contrast between microadenomas and macroadenomas. In the case of the macroadenomas, the tumor was contrasted at the same time as, or faster than the anterior pituitary gland, while with the microadenomas the tumor was enhanced later than the anterior pituitary gland. No enhancement with contrast medium was seen in Rathke's cleft cysts. In addition, it was possible to differentiate a recurrent tumor from a piece of muscle placed at surgery since the images obtained by the fast spin-echo sequence were clearer than those obtained by gradient echo sequence. (author)

  7. Time-resolved echo-shared parallel MRA of the lung: observer preference study of image quality in comparison with non-echo-shared sequences

    International Nuclear Information System (INIS)

    Fink, C.; Puderbach, M.; Zaporozhan, J.; Plathow, C.; Kauczor, H.-U.; Ley, S.

    2005-01-01

    The aim of this study was to evaluate the image quality of time-resolved echo-shared parallel MRA of the lung. The pulmonary vasculature of nine patients (seven females, two males; median age: 44 years) with pulmonary disease was examined using a time-resolved MRA sequence combining echo sharing with parallel imaging (time-resolved echo-shared angiography technique, or TREAT). The sharpness of the vessel borders, conspicuousness of peripheral lung vessels, artifact level, and overall image quality of TREAT was assessed independently by four readers in a side-by-side comparison with non-echo-shared time-resolved parallel MRA data (pMRA) previously acquired in the same patients. Furthermore, the SNR of pulmonary arteries (PA) and veins (PV) achieved with both pulse sequences was compared. The mean voxel size of TREAT MRA was decreased by 24% compared with the non-echo-shared MRA. Regarding the sharpness of the vessel borders, conspicuousness of peripheral lung vessels, and overall image quality the TREAT sequence was rated superior in 75-76% of all cases. If the TREAT images were preferred over the pMRA images, the advantage was rated as major in 61-71% of all cases. The level of artifacts was not increased with the TREAT sequence. The mean interobserver agreement for all categories ranged between fair (artifact level) and good (overall image quality). The maximum SNR of TREAT did not differ from non-echo-shared parallel MRA (PA: TREAT: 273±45; pMRA: 280±71; PV: TREAT: 273±33; pMRA: 258±62). TREAT achieves a higher spatial resolution than non-echo-shared parallel MRA which is also perceived as an improved image quality. (orig.)

  8. Study of turbulent flow using Half-Fourier Echo-Planar imaging

    International Nuclear Information System (INIS)

    Rodriguez, A.O.

    2006-01-01

    The Echo-Planar Imaging technique combined with a partial Fourier acquisition method was used to obtain velocity images for liquid flows in a circular cross-section pipe at Reynolds number of up to 8000. This partial-Fourier imaging scheme is able to generate shorter echo times than the full-Fourier Echo-Planar Imaging methods, reducing the signal attenuation due to T2 * and flow. Velocity images along the z axis were acquired with a time-scale of 80 ms thus obtaining a real-time description of flow in both the laminar and turbulent regimes. Velocity values and velocity fluctuations were computed with the flow image data. A comparison plot of NMR velocity and bulk velocity and a plot of velocity fluctuations were calculated to investigate the feasibility of this imaging technique. Flow encoded Echo-Planar Imaging together with a reduced data acquisition method can provide us with a real-time technique to capture instantaneous images of the flow field for both laminar and turbulent regimes. (author)

  9. Gradient-echo imaging of intervertebral disk degeneration and facet joint disease

    International Nuclear Information System (INIS)

    Berns, D.H.; Kormos, D.; Modic, M.T.; Carter, J.; Masaryk, T.J.; Ross, J.S.

    1988-01-01

    The purpose of this study was to evaluate the accuracy of gradient-echo, partial-flip angle images in the evaluation of components of degenerative spine disease. First, cadaveric spines were studied with plain radiographs, high-resolution CT, T1-weighted spin-echo (SE) MR images (repetition time msec/echo time msec=500/17). T2-weighted SE images (2,000/30-90), and fast low-angle shot (FLASH) images (200/10.50 0 ) before and after intradiskal injection of air (0.1-1cc). Second, lumbar spine MR images were retrospectively evaluated to compare gradient-echo and SE sequences. Results indicate that the signal intensity changes of the intervertebral disk related to degeneration were best appreciated on T2-weighted SE studies in both groups. Vacuum phenomenon and calcification were most accurately assessed with FLASH imaging (based on susceptibility changes) and CT images. SE images appeared more sensitive to adjacent marrow change. In the facet joints, CT was more accurate for changes in the subarticular bone, but FLASH images were more sensitive to change in the articular cartilage

  10. Detection of cerebrospinal fluid leakage: initial experience with three-dimensional fast spin-echo magnetic resonance myelography.

    Science.gov (United States)

    Tomoda, Y; Korogi, Y; Aoki, T; Morioka, T; Takahashi, H; Ohno, M; Takeshita, I

    2008-03-01

    The pathogenesis of cerebrospinal fluid (CSF) hypovolemia is supposed to be caused by CSF leakage through small dural defects. To compare source three-dimensional (3D) fast spin-echo (FSE) images of magnetic resonance (MR) myelography with radionuclide cisternography findings, and to evaluate the feasibility of MR myelography in the detection of CSF leakage. A total of 67 patients who were clinically suspected of CSF hypovolemia underwent indium-111 radionuclide cisternography, and 27 of those who had direct findings of CSF leakage were selected for evaluation. MR myelography with 3D FSE sequences (TR/TE 6000/203 ms) was performed at the lumbar spine for all patients. We evaluated source images and maximum intensity projection (MIP) images of MR myelography, and the findings were correlated with radionuclide cisternography findings. MR myelography of five healthy volunteers was used as a reference. The MR visibility of the CSF leakage was graded as definite (leakage clearly visible), possible (leakage poorly seen), or absent (not shown). CSF leakage was identified with source 3D FSE images in 22 (81.5%) of 27 patients. Of the 22 patients, 16 were graded as definite and six were graded as possible. For the definite cases, 3D FSE images clearly showed the extent of the leaked CSF in the paraspinal structures. In the remaining five patients with absent findings, radionuclide cisternography showed only slight radionuclide activity out of the arachnoid space. Source 3D FSE images of MR myelography seem useful in the detection of CSF leakage. Invasive radionuclide cisternography may be reserved for equivocal cases only.

  11. Liver imaging at 3.0 T: Diffusion-induced black-blood echo-planar imaging with large anatomic volumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences: Feasibility study

    NARCIS (Netherlands)

    I.C. van den Bos (Indra); S.M. Hussain (Shahid); G.P. Krestin (Gabriel); P.A. Wielopolski (Piotr)

    2008-01-01

    textabstractInstitutional Review Board approval and signed informed consent were obtained by all participants for an ongoing sequence optimization project at 3.0 T. The purpose of this study was to evaluate breath-hold diffusion-induced blackblood echo-planar imaging (BBEPI) as a potential

  12. In vivo quantitative NMR imaging of fruit tissues during growth using Spoiled Gradient Echo sequence

    DEFF Research Database (Denmark)

    Kenouche, S.; Perrier, M.; Bertin, N.

    2014-01-01

    of this study was to design a robust and accurate quantitative measurement method based on NMR imaging combined with contrast agent (CA) for mapping and quantifying water transport in growing cherry tomato fruits. A multiple flip-angle Spoiled Gradient Echo (SGE) imaging sequence was used to evaluate...

  13. Visualization of cranial nerves I-XII: value of 3D CISS and T2-weighted FSE sequences

    Energy Technology Data Exchange (ETDEWEB)

    Yousry, I.; Camelio, S.; Wiesmann, M.; Brueckmann, H.; Yousry, T.A. [Department of Neuroradiology, Klinikum Grosshadern, Ludwig-Maximilians University, Marchioninistrasse 15, D-81377 Munich (Germany); Schmid, U.D. [Neurosurgical Unit, Klinik im Park, 8000 Zurich (Switzerland); Horsfield, M.A. [Department of Medical Physics, University of Leicester, Leicester LE1 5WW (United Kingdom)

    2000-07-01

    The aim of this study was to evaluate the sensitivity of the three-dimensional constructive interference of steady state (3D CISS) sequence (slice thickness 0.7 mm) and that of the T2-weighted fast spin echo (T2-weighted FSE) sequence (slice thickness 3 mm) for the visualization of all cranial nerves in their cisternal course. Twenty healthy volunteers were examined using the T2-weighted FSE and the 3D CISS sequences. Three observers evaluated independently the cranial nerves NI-NXII in their cisternal course. The rates for successful visualization of each nerve for 3D CISS (and for T2-weighted FSE in parentheses) were as follows: NI, NII, NV, NVII, NVIII 40 of 40 (40 of 40), NIII 40 of 40 (18 of 40), NIV 19 of 40 (3 of 40), NVI 39 of 40 (5 of 40), NIX, X, XI 40 of 40 (29 of 40), and NXII 40 of 40 (4 of 40). Most of the cranial nerves can be reliably assessed when using the 3D CISS and the T2-weighted FSE sequences. Increasing the spatial resolution when using the 3D CISS sequence increases the reliability of the identification of the cranial nerves NIII-NXII. (orig.)

  14. Visualization of cranial nerves I-XII: value of 3D CISS and T2-weighted FSE sequences

    International Nuclear Information System (INIS)

    Yousry, I.; Camelio, S.; Wiesmann, M.; Brueckmann, H.; Yousry, T.A.; Schmid, U.D.; Horsfield, M.A.

    2000-01-01

    The aim of this study was to evaluate the sensitivity of the three-dimensional constructive interference of steady state (3D CISS) sequence (slice thickness 0.7 mm) and that of the T2-weighted fast spin echo (T2-weighted FSE) sequence (slice thickness 3 mm) for the visualization of all cranial nerves in their cisternal course. Twenty healthy volunteers were examined using the T2-weighted FSE and the 3D CISS sequences. Three observers evaluated independently the cranial nerves NI-NXII in their cisternal course. The rates for successful visualization of each nerve for 3D CISS (and for T2-weighted FSE in parentheses) were as follows: NI, NII, NV, NVII, NVIII 40 of 40 (40 of 40), NIII 40 of 40 (18 of 40), NIV 19 of 40 (3 of 40), NVI 39 of 40 (5 of 40), NIX, X, XI 40 of 40 (29 of 40), and NXII 40 of 40 (4 of 40). Most of the cranial nerves can be reliably assessed when using the 3D CISS and the T2-weighted FSE sequences. Increasing the spatial resolution when using the 3D CISS sequence increases the reliability of the identification of the cranial nerves NIII-NXII. (orig.)

  15. Phase-processing as a tool for speckle reduction in pulse-echo images

    DEFF Research Database (Denmark)

    Healey, AJ; Leeman, S; Forsberg, F

    1991-01-01

    . Traditional speckle reduction procedures regard speckle correction as a stochastic process and trade image smoothing (resolution loss) for speckle reduction. Recently, a new phase acknowledging technique has been proposed that is unique in its ability to correct for speckle interference with no image......Due to the coherent nature of conventional ultrasound medical imaging systems interference artefacts occur in pulse echo images. These artefacts are generically termed 'speckle'. The phenomenon may severely limit low contrast resolution with clinically relevant information being obscured...

  16. Low flip angle spin-echo MR imaging to obtain better Gd-DTPA enhanced imaging with ECG gating

    International Nuclear Information System (INIS)

    Sugimura, Kazuro; Kawamitsu, Hideaki; Yoshikawa, Kazuaki; Kasai, Toshifumi; Yuasa, Koji; Ishida, Tetsuya

    1992-01-01

    ECG-gated spin-echo imaging (ECG-SE) can reduce physiological motion artifact. However, ECG-SE does not provide strong T1-weighted images because repetition time (TR) depends on heart rate (HR). We investigated the usefulness of low flip angle spin-echo imaging (LFSE) in obtaining more T1-dependent contrast with ECG gating. In computer simulation, the predicted image contrast and single-to-noise ratio (SNR) obtained for each flip angle (0-180deg) and each TR (300 msec-1200 msec) were compared with those obtained by conventional T1-weighted spin-echo imaging (CSE: TR=500 msec, TE=20 msec). In clinical evaluation, tissue contrast [contrast index (CI): (SI of lesion-SI of muslce) 2* 100/SI of muscle] obtained by CSE and LFSE were compared in 17 patients. At a TR of 1,000 msec, T1-dependent contrast increased with decreasing flip angle and that at 38deg was identical to that with T1-weighted spin-echo. SNR increased with the flip angle until 100deg, and that at 53deg was identical to that with T1-weighted spin-echo. CI on LFSE (74.0±52.0) was significantly higher than CI on CSE (40.9±35.9). ECG-gated LFSE imaging provides better T1-dependent contrast than conventional ECG-SE. This method was especially useful for Gd-DTPA enhanced MR imaging. (author)

  17. Comparison of Turbo Spin Echo and Echo Planar Imaging for intravoxel incoherent motion and diffusion tensor imaging of the kidney at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, Fabian; Wech, Tobias; Neubauer, Henning; Veldhoen, Simon; Bley, Thorsten Alexander; Koestler, Herbert [Wuerzburg Univ. (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie

    2017-10-01

    Echo Planar Imaging (EPI) is most commonly applied to acquire diffusion-weighted MR-images. EPI is able to capture an entire image in very short time, but is prone to distortions and artifacts. In diffusion-weighted EPI of the kidney severe distortions may occur due to intestinal gas. Turbo Spin Echo (TSE) is robust against distortions and artifacts, but needs more time to acquire an entire image compared to EPI. Therefore, TSE is more sensitive to motion during the readout. In this study we compare diffusion-weighted TSE and EPI of the human kidney with regard to intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI). Images were acquired with b-values between 0 and 750 s/mm{sup 2} with TSE and EPI. Distortions were observed with the EPI readout in all volunteers, while the TSE images were virtually distortion-free. Fractional anisotropy of the diffusion tensor was significantly lower for TSE than for EPI. All other parameters of DTI and IVIM were comparable for TSE and EPI. Especially the main diffusion directions yielded by TSE and EPI were similar. The results demonstrate that TSE is a worthwhile distortion-free alternative to EPI for diffusion-weighted imaging of the kidney at 3 Tesla.

  18. MR imaging characteristics of intracranial hemorrhage using gradient-echo signal acquisition at 1.5 T: Comparison with spin-echo imaging and clinical applications

    International Nuclear Information System (INIS)

    Atlas, S.W.; Grossman, R.I.; Gomori, J.M.; Hackney, D.B.; Goldberg, H.I.; Bilaniuk, L.T.; Zimmerman, R.A.

    1987-01-01

    Evolving paramagnetic blood-breakdown products create static local magnetic susceptibility gradients, which induce rapid phase dispersion on the basis of T2/sup */ shortening. The authors evaluated 30 patients with 50 separate hemorrhagic intracranial lesions with both spin-echo (SE) and gradient echo signal acquisition (GESA) MR imaging at 1.5 T. GESA sequences used repetition time (TR) of 200-750 msec, echo time (TE) of 50-80 msec, and flip angles of 10 0 to 15 0 to emphasize T2/sup */-based contributions to contrast. SE sequences in all cases utilized both short and long TR (600 and 2,500-3,000 msec), with TE of 20-120 msec. Advantages of GESA imaging with Long TE and short flip angles in the evaluation of intracranial hemorrhage include (1) increased sensitivity to susceptibility-induced phase loss from T2/sup */ shortening, resulting in detection of hemorrhagic lesions not seen on conventional long TR/long TE SE images, and (2) very rapid acquisition of images with T2/sup */-based contrast. Limitations of this sequence include (1) severe diamagnetic susceptibility-induced artifacts, especially near air-brain interfaces, which often obscure large portions of the brain and occasionally simulate serious pathology, (2) characteristic internal signal intensity patterns demonstrated by SE imaging, such as in evolving hematomas, occult vascular malformations, and hemorrhagic malignancies, are often obscured by marked hypointensity on GESA images, and (3) reduced signal-noise ratio. The authors conclude that, although images with marked sensitivity to T2/sup */ effects can be rapidly generated by GESA, there is only a limited role for this sequence when evaluating intracranial hemorrhage at 1.5 T, and, in fact, significant information is lost when compared to SE images

  19. Dual-echo, chemical shift gradient-echo magnetic resonance imaging to quantify hepatic steatosis: Implications for living liver donation.

    Science.gov (United States)

    Rinella, Mary E; McCarthy, Richard; Thakrar, Kiran; Finn, John Paul; Rao, Sambasiva M; Koffron, Alan J; Abecassis, Michael; Blei, Andres T

    2003-08-01

    In living liver donation, a fatty liver poses risks for both recipient and donor. Currently, liver biopsy is the standard for assessing the presence and extent of steatosis. The goals of this study were to correlate a steatosis index derived from magnetic resonance imaging (MRI) to the histologic grade on biopsy as well as to determine the topographic distribution of steatosis within the liver. We examined the ability of dual-echo, chemical shift gradient-echo MRI to predict the degree of steatosis on liver biopsy. A total of 22 subjects received both a liver biopsy and detailed MRI evaluation. These individuals included 15 potential living donors and 7 patients with nonalcoholic fatty liver disease. MRI steatosis index was then compared with histologic grade on liver biopsy. The topographic distribution of hepatic steatosis was determined from those subjects in whom MRI detected hepatic steatosis. The steatosis index had a positive correlation with grade of steatosis on liver biopsy (correlation coefficient, 0.84). There was no significant variation in the degree of steatosis among segments. A steatosis index of >0.2 had good positive and negative predictive value for the presence of significant steatosis (>15%) on biopsy. Our quantitative MRI protocol can predict the degree of hepatic steatosis when it is minimal to moderate, and may obviate the need for liver biopsy for the purpose of quantification of steatosis in living donors. Fat saturation added to the MRI protocol may further improve diagnostic accuracy. This technique may be applicable to the larger population with hepatic steatosis.

  20. Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions.

    Science.gov (United States)

    Chauhan, Munish; Vidya Shankar, Rohini; Ashok Kumar, Neeta; Kodibagkar, Vikram D; Sadleir, Rosalind

    2018-01-01

    Magnetic resonance electrical impedance tomography (MREIT) sequences typically use conventional spin or gradient echo-based acquisition methods for reconstruction of conductivity and current density maps. Use of MREIT in functional and electroporation studies requires higher temporal resolution and faster sequences. Here, single and multishot echo planar imaging (EPI) based MREIT sequences were evaluated to see whether high-quality MREIT phase data could be obtained for rapid reconstruction of current density, conductivity, and electric fields. A gel phantom with an insulating inclusion was used as a test object. Ghost artifact, geometric distortion, and MREIT correction algorithms were applied to the data. The EPI-MREIT-derived phase-projected current density and conductivity images were compared with simulations and spin-echo images as a function of EPI shot number. Good agreement among measures in simulated, spin echo, and EPI data was achieved. Current density errors were stable and below 9% as the shot number decreased from 64 to 2, but increased for single-shot images. Conductivity reconstruction relative contrast ratios were stable as the shot number decreased. The derived electric fields also agreed with the simulated data. The EPI methods can be combined successfully with MREIT reconstruction algorithms to achieve fast imaging of current density, conductivity, and electric field. Magn Reson Med 79:71-82, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data

    OpenAIRE

    Renvall, Ville; Witzel, Thomas; Wald, Lawrence L.; Polimeni, Jonathan R.

    2016-01-01

    Echo planar imaging (EPI) is the method of choice for the majority of functional magnetic resonance imaging (fMRI), yet EPI is prone to geometric distortions and thus misaligns with conventional anatomical reference data. The poor geometric correspondence between functional and anatomical data can lead to severe misplacements and corruption of detected activation patterns. However, recent advances in imaging technology have provided EPI data with increasing quality and resolution. Here we pre...

  2. Externally calibrated parallel imaging for 3D multispectral imaging near metallic implants using broadband ultrashort echo time imaging.

    Science.gov (United States)

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Reeder, Scott B

    2017-06-01

    To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. Magn Reson Med 77:2303-2309, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Utility of echo-planar gradient-echo T2*-weighted MR images in patients with primary intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Yokoe, Toshio; Yoshida, Tazuka; Kobayashi, Nozomu; Nakamura, Yukihiro; Kubota, Kazuyuki

    2005-01-01

    Magnetic resonance imaging (MRI) has the potential to reveal residues of intracerabral hemorrhage (ICH) throughout life because of the high sensitivity for iron-containing compounds. Gradient-echo T2 * -weighted MR imaging (T2 * MRI) requiring short times for complete acquisition is known to detect small areas of signal loss without surrounding edema representing microbleeds (MBs). MBs in the basal ganglia including the thalami are suggested to be closely related to intracerebral atherosclerotic microangiopathy. We looked for more than 3 MBs in basal ganglia or thalamus of patients with and without episodes of previous ICH. Twelve patients with previous hemorrhagic stroke and 82 without were studied. Multiple MBs in those regions were significantly more frequent in patients with recurrent ICH. In addition, a 76-year-old woman with a history of hypertension was transferred to our hospital for treatment of head injury. She had multiple incidental old basal ganglionic and thalamic MBs. The patient had an asymptomatic primary ICH on computed tomography (CT) 3 months later. In conclusion, MR evidence of multiple MBs in the basal ganglia and thalamus might identify patients at a risk for new and recurrent ICH. Therefore, patients with multiple MBs in those regions should be treated for cerebrovascular risk factors, especially hypertension. Our results appear to confirm the utility of T2 * MRI in hemorrhagic stroke. (author)

  4. Non-Cooperative Target Imaging and Parameter Estimation with Narrowband Radar Echoes

    Directory of Open Access Journals (Sweden)

    Chun-mao Yeh

    2016-01-01

    Full Text Available This study focuses on the rotating target imaging and parameter estimation with narrowband radar echoes, which is essential for radar target recognition. First, a two-dimensional (2D imaging model with narrowband echoes is established in this paper, and two images of the target are formed on the velocity-acceleration plane at two neighboring coherent processing intervals (CPIs. Then, the rotating velocity (RV is proposed to be estimated by utilizing the relationship between the positions of the scattering centers among two images. Finally, the target image is rescaled to the range-cross-range plane with the estimated rotational parameter. The validity of the proposed approach is confirmed using numerical simulations.

  5. Comparison of intravoxel incoherent motion diffusion-weighted imaging between turbo spin-echo and echo-planar imaging of the head and neck

    Energy Technology Data Exchange (ETDEWEB)

    Mikayama, Ryoji; Yabuuchi, Hidetake; Nagatomo, Kazuya; Kimura, Mitsuhiro; Kumazawa, Seiji [Kyushu University, Department of Health Sciences, Graduate School of Medical Sciences, Fukuoka (Japan); Sonoda, Shinjiro; Kobayashi, Koji [Kyushu University Hospital, Division of Radiology, Department of Medical Technology, Fukuoka (Japan); Kawanami, Satoshi; Kamitani, Takeshi; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan)

    2018-01-15

    To compare image quality, apparent diffusion coefficient (ADC), and intravoxel incoherent motion (IVIM)-derived parameters between turbo spin-echo (TSE)-diffusion-weighted imaging (DWI) and echo-planar imaging (EPI)-DWI of the head and neck. Fourteen volunteers underwent head and neck imaging using TSE-DWI and EPI-DWI. Distortion ratio (DR), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), ADC and IVIM-derived parameters were compared between the two techniques. Bland-Altman analysis was performed to analyse reproducibility between the quantitative parameters of TSE-DWI and EPI-DWI. DR of TSE-DWI was significantly smaller than that of EPI-DWI. SNR and CNR of TSE-DWI were significantly higher than those of EPI-DWI. ADC and IVIM-derived parameters of TSE-DWI showed higher values than those of EPI-DWI, although the difference was not significant. Bland-Altman analysis showed wide limits of agreement between the two sequences. TSE-DWI can produce better image quality than EPI-DWI, while TSE-DWI possibly exhibits different values of quantitative parameters. Therefore, TSE-DWI could be a good alternative to EPI-DWI for patients sensitive to distortion. However, it is not recommended to use both TSE-DWI and EPI-DWI on follow-up. (orig.)

  6. MR imaging of articular cartilage : comparison of magnetization transfer contrast and fat-suppression in multiplanar and 3D gradient-echo, spin-echo, turbo spin-echo techniques

    International Nuclear Information System (INIS)

    Lee, Young Joon; Joo, Eun Young; Eun, Choong Ki

    1999-01-01

    The purpose of this study was to evaluate the effects of magnetization transfer contrast(MTC) and fat-suppression(FS) in variable spin-echo and gradient-echo sequences for articular cartilage imaging and to determine the optimal pulse sequences. Using variable 7-pulse sequences, the knees of 15 pigs were imaged Axial images were obtained using proton density and T2-weighted spin-echo (PDWSE and T2WSE), turbo spin-echo (TSE), multiplanar gradient-echo (MPGR), and 3D steady-state gradient-echo (3DGRE) sequences, and the same pulse sequences were then repeated using MTC. Also T1-weighted spin-echo(T1WSE) and 3D spoiled gradient-echo(3DSPGR) images of knees were also acquired, and the procedure was repeated using FS. For each knee, a total of 14 axial images were acquired, and using a 6-band scoring system, the visibility of and the visibilities of the the articular cartilage was analyzed. The visual effect of MTC and FS was scored using a 4-band scale. For each image, the signal intensities of articular cartilage, subchondral bone, muscles, and saline were measured, and signal-to-noise ratios(SNR) and contrast-to-noise ratios(CNR) were also calculated. Visibility of the cartilage was best when 3DSPGR and T1WSE sequences were used. MTC imaging increased the negative contrast between cartilage and saline, but FS imaging provided more positive contrast. CNR between cartilage and saline was highest when using TSE with FS(-351.1±15.3), though CNR between cartilage and bone then fell to -14.7±10.8. In MTC imaging using MPGR showed the greatest increase of negative contrast between cartilage and saline(CNR change=-74.7); the next highest was when 3DGRE was used(CNR change=-34.3). CNR between cartilage and bone was highest with MPGR(161.9±17.7), but with MTC, the greatest CNR decrease(-81.8) was observed. The greatest CNR increase between cartilage and bone was noted in T1WSE with FS. In all scans, FS provided a cartilage-only positive contrast image, though the absolute

  7. Application of fast spin-echo T2-weighted imaging for examination of the neurocranium. Comparison with the conventional T2-weighted spin-echo sequence

    International Nuclear Information System (INIS)

    Siewert, C.; Hosten, N.; Felix, R.

    1994-01-01

    T 2 -weighted spin-echo imaging is the standard screening procedure in MR imaging of the neutrocranium. We evaluated fast spin-echo T 2 -weighted imaging (TT 2 ) of the neurocranium in comparison to conventional spin-echo T 2 -weighted imaging (T 2 ). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher than TT 2 than in T 2 (with the exception of grey-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT 2 , Parkinson patients have to be examined by conventional T 2 . If these limitations are taken into account, fast spin-echo T 2 -weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T 2 -weighting achieved in a short acquisition time. (orig.) [de

  8. Abdominal MR imaging using a HASTE sequence : image comparison on the different echo times

    International Nuclear Information System (INIS)

    Park, Kwang Bo; Lee, Moon Gyu; Lim, Tae Hwan; Jeong, Yoong Ki; Ha, Hyun Kwon; Kim, Pyo Nyun; Auh, Yong Ho

    1999-01-01

    To determine the optimal parameters of abdominal HASTE imaging by means of a comparison of intermediate and long TE (echo time). We evaluated 30 consecutive patients who had undergone liver MR during a three-month period. Twelve patients were diagnosed as normal, four as having liver cirrhosis, and 14 were found to be suffering form hepatic hemangioma. On the basis of measured signal intensity of the liver, spleen, pancreas and gallbladder, and of fat, muscle, hemangioma, and background, we calculated the ratios of signal to noise (S/N), signal difference to noise (SD/N), and signal intensity (SI). Image quality was compared using these three ratios, and using two HASTE sequences with TEs of 90 msec and 134 msec, images were qualitatively evaluated. S/N ratio of the liver was higher when TE was 90 msec(p<.05), though S/N, SD/N and SI rations of the spleen, gallbladder, and pancreas-and of hemangiom-were higher when TE was 134 msec (p<.05). However, in muscle, all these three ratios were higher at a TE of 90 msec. SD/N ratio and SI of fat were higher at a TE of 134 msec. Overall image quality was better at a TE of 134 msec than at one of 90msec. A HASTE sequence with a TE of 134msec showed greater tissue contrast and stronger T2-weighted images than one with a TE of 90msec

  9. Initial experience in perfusion MR imaging of intracranial major artery occlusion with echo-planar technique

    International Nuclear Information System (INIS)

    Tsuchiya, Kazuhiro; Mizutani, Yoshiyuki; Inaoka, Sayuki; Hachiya, Junichi

    1997-01-01

    The purpose of this study was to evaluate the usefulness of perfusion MR imaging using a single-shot echo-planar technique in occlusion of intracranial main arteries. Our patient group consisted of 16 patients with internal carotid artery occlusion (n=9), Moyamoya disease (n=4), and middle cerebral artery occlusion (n=3). We performed the echo-planar perfusion studies with a 1.5-T unit using a free-induction-decay-type echo-planar sequence. With a bolus injection of Gd-DTPA, 30 consecutive scans were obtained at 10 sections every 2 seconds. The data were analyzed in three ways: a time-intensity curves in the territory of the involved artery (n=16); semiquantitative flow map of each section representing signal changes due to passage of Gd-DTPA (n=15); and serial images at a selected section (n=7). The time intensity curves were abnormal in 13 patients. The peak of signal drop was delayed in all of them. Flow maps showed focal flow abnormalities in 11 patients, but they were apparently normal in 4 patients probably due to collateral flow. In serial images, delay in appearance and/or disappearance of Gd-DTPA was noted in 6 patients. In patients with occlusion of intracranial main arteries, MR single-shot echo-planar technique is of clinical use because it can provide information about hemodynamic changes in a short examination time, in multiple sections, and with good temporal resolution. (author)

  10. An efficient ultrasonic SAFT imaging for pulse-echo immersion testing

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hong Wei [Changsha University of Science and Technology, Changsha (China); Jeong, Hyun Jo [Div. of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2017-04-15

    An ultrasonic synthetic aperture focusing technique (SAFT) using a root mean square (RMS) velocity model is proposed for pulse-echo immersion testing to improve the computational efficiency. Considering the immersion ultrasonic testing of a steel block as an example, three kinds of imaging were studied (B-Scan, SAFT imaging based on ray tracing technology and RMS velocity). The experimental results show that two kinds of SAFT imaging have almost the same imaging performance, while the efficiency of RMS velocity SAFT imaging is almost 25 times greater than the SAFT based on Snell's law.

  11. An efficient ultrasonic SAFT imaging for pulse-echo immersion testing

    International Nuclear Information System (INIS)

    Hu, Hong Wei; Jeong, Hyun Jo

    2017-01-01

    An ultrasonic synthetic aperture focusing technique (SAFT) using a root mean square (RMS) velocity model is proposed for pulse-echo immersion testing to improve the computational efficiency. Considering the immersion ultrasonic testing of a steel block as an example, three kinds of imaging were studied (B-Scan, SAFT imaging based on ray tracing technology and RMS velocity). The experimental results show that two kinds of SAFT imaging have almost the same imaging performance, while the efficiency of RMS velocity SAFT imaging is almost 25 times greater than the SAFT based on Snell's law

  12. Clinical utility of partial flip angle T2-weighted spin-echo imaging of the brain

    International Nuclear Information System (INIS)

    Chang, K.H.; Yi, J.G.; Han, M.H.; Han, M.C.; Kim, C.W.; Cho, M.H.; Cho, Z.H.

    1990-01-01

    To assess the clinical usefulness of partial flip angle (PFA) spin-echo (SE) brain imaging, a total of eighty patients were examined with both conventional double echo T2-weighted SE (2500/30, 80/90deg/one excitation) and PFA double echo SE (1200/30, 70/45deg/two excitations) on 2.0T system. Two comparative studies were performed: (1) In 65 patients PFA SE technique was compared with conventional SE without flow compensating gradients, and (2) in 15 patients the former was compared with the latter with flow compensating gradients. Imaging time was nearly identical in each sequence. In both studies we found that PFA T2-weighted SE images were almost identical to those obtained with the conventional SE technique in the contrast characteristics and the detection rate of the abnormalities (100%, 85/85 lesions), and more importantly, PFA SE revealed few flow artifacts in the brain stem, temporal lobes and basal ganglia which were frequently seen on conventional SE without flow compensating gradients. Additionally, PFA SE images demonstrated no suppression of CSF flow void in the aqueduct which was commonly seen on conventional SE with flow compensating gradients. In overall image quality, the PFA SE images, particularly the second echo images, were almost comparable with those of conventional SE with flow compensating gradients. A flip angle of 45deg seems to be close to Ernst angle, the angle at which maximum signal occurs, for a given TR of 1200 msec for CSF and most of the abnormalities containing higher water content. In conclusion, PFA SE sequence (i.e. 1200/30, 70/45deg/2) appears to be useful as a primary or an adjunctive technique in certain clinical circumstances, particularly in imaging of hydrocephalic patients for assessing aqueductal patency. (orig.)

  13. Comparison between FLAIR images and T2-weighted fast spin-echo images of cerebral territory and lacunar infarction

    International Nuclear Information System (INIS)

    Paeng, Mi Hye; Choi, Hye-Young; Lim, Soo Mee; Lee, Jung Sik

    2003-01-01

    To assess the significance of fluid-attenuated inversion recovery (FLAIR) magnetic resonance (MR) imaging in the diagnosis of intracranial infarctions and to find out differential points between central lacunar infarctions and perivascular spaces. We consecutively selected 25 cases of territorial infarction in 20 patients, 37 cases of central infarction in 40 patients, and 30 patients with perivascular space. Signal intensity and lesion conspicuity were analyzed and compared between FLAIR and FSE T2-weighted images, and differences in signal intensity between central infarction and perivascular spaces were determined. Lesion conspicuity for FLAIR was better than for T2-weighted images in 12 and 15, worse in 4 and 24, and similar in 9 and 16 of territorial and central infarctions, respectively. In nine cases of territorial and one case of central infarction, there was associated hemorrhage. At FLAIR imaging, perivascular spaces showed a fine round low signal without a peripheral high signal rim in 17 patients but no demonstrable signals in 15. Differential diagnosis of perivascular spaces and central infarction was thus not difficult. FLAIR MRI was useful in the diagnosis of infarctions and in differentiating between central small lacular infarctions and perivascular spaces

  14. Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging

    Directory of Open Access Journals (Sweden)

    Fabio Baselice

    2014-01-01

    Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.

  15. Fast spin-echo MR assessment of patients with poor outcome following spinal cervical surgery

    International Nuclear Information System (INIS)

    Wu, W.; Thuomas, K.AA.; Hedlund, R.; Leszniewski, W.; Vavruch, L.

    1996-01-01

    The aim of the investigation was to evaluate poor outcome following spinal cervical surgery. A total of 146 consecutive patients operated with anterior discectomy and fusion (ADF) with the Cloward technique were investigated. Clinical notes, plain radiography, CT, and fast spin-echo (FSE) images were retrospectively evaluated. Some 30% of the patients had unsatisfactory clinical results within 12 months after surgery; 13% had initial improvement followed by deterioration of the preoperative symptoms, while 14.4% were not improved or worsened. Disc herniation and bony stenosis above, below, or at the fused level were the most common findings. In 45% of patients, surgery failed to decompress the spinal canal. In only 4 patients was no cause of remaining myelopathy and/or radiculopathy found. FSE demonstrated a large variety of pathological findings in the patients with poor clinical outcome after ADF. Postoperatively, patients with good clinical outcome had a lower incidence of pathological changes. FSE is considered the primary imaging modality for the cervical spine. However, CT is a useful complement in the axial projection to visualize bone changes. (orig.)

  16. Ultra-high-speed imaging of the brain by the echo planar technique

    International Nuclear Information System (INIS)

    Worthington, B.S.; Stehling, M.K.; Ordidge, R.J.; Coxon, R.; Howseman, A.M.; Chapman, B.; Turner, R.; Firth, J.L.; Mansfield, P.

    1988-01-01

    Reduced examination time, greater patient tolerance and throughput, and the ability to study vascular and cerebrospinal fluid (CSF) flow phenomena are important advantages of ultra-high-speed brain imaging. The EPI derivatives BEST and MBEST create a complete 128 X 128-pixel image in 64 msec and 128 msec, respectively. In BEST images, T2 weighting is altered by adjusting the echo time, modulus BEST images have intrinsic T2 weighting. Repetition time alterations provide variable T1 weighting in both. Volunteer and patient studies illustrate how selective contrast manipulation allows excellent discrimination between gray and white matter and the brain and the CSF, enabling the demonstration of pathology

  17. Endoluminal MR imaging of porcine gastric structure in vivo

    International Nuclear Information System (INIS)

    Yoshinaka, Hayato; Morita, Yoshinori; Matsuoka, Yuichiro

    2010-01-01

    Recently, several new endoscopic instruments have been developed. However, even with the full use of current modalities, the safety of endoscopic surgery is not guaranteed. Information regarding factors such as fibrosis and the blood vessels under the mucosa is very important for avoiding procedure-related complications. The aim of this study was to define the detailed anatomy of the gastric wall structure in vivo using original endoluminal radiofrequency coils for safer endoscopic therapy. Swine were used as the subjects and controlled with general anesthesia. Anatomical images were obtained with T1-weighted fast spin echo (T1FSE) and T2-weighted fast spin echo (T2FSE). Dynamic magnetic resonance (MR) angiography was also obtained with three-dimensional T1-weighted fast spoiled gradient recalled acquisition in the steady state (3D-DMRA) following the injection of hyaluronic acid sodium into the submucosal layer. Porcine gastric wall structure was visualized, and four layers were discriminated in the T1FSE and T2FSE images. The vascular structure was clearly recognized in the submucosa on 3D-DMRA. Endoluminal MR imaging was able to visualize the porcine stomach with similar quality to endoscopic ultrasonography imaging. Additionally, it was possible to visualize the vascular structures in the submucosal layer. This is the first report to show that blood vessels under the gastric mucosa can be depicted in vivo. (author)

  18. Whole heart cine MR imaging of pulmonary veins in patients with congenital heart disease. Comparison with Spin Echo MR imaging

    International Nuclear Information System (INIS)

    Mitsui, Hideaki; Saito, Haruo; Ishibashi, Tadashi; Takahashi, Shoki; Zuguchi, Masayuki; Yamada, Shogo

    2002-01-01

    We evaluated the accuracy of Whole Heart Cine (WHC) magnetic resonance (MR) imaging in the depiction of pulmonary veins (PVs) in patients with congenital heart disease (CHD) compared to that of spin echo (SE) MR imaging. Among our 35 patients, 4 patients had anomalous PV return. Detectability of four PVs on each MR examination images were evaluated. MR imaging is an effective modality for the clarification of PVs, and WHC MR imaging is more useful in delineating PV anomalies than SE MR imaging. (author)

  19. STIR imaging of lymphadenopathy: Advantages over conventional spin-echo techniques

    International Nuclear Information System (INIS)

    Porter, B.A.; Neumann, E.B.; Olson, D.O.; Nyberg, D.A.; Teefy, S.A.; Shields, A.F.

    1987-01-01

    Spin-echo (SE) imaging of lymphadenopathy has been limited by the high signal of surrounding fat. With short TI Inversion Recovery (STIR), fat is cancelled (black), T1 and T2 contrast are additive, and pathologic nodes are white. STIR images (repetition time, 1,400 - 2,400; echo time, 36 or 40; inversion time, 100 or 125) of 69 patients with malignant adenopathy were compared with T1-weighted spin-echo (T1 SE) or intermediate SE and some T2 SE sequences at 0.15 T. Signal-intensity measurements of nodes versus adjacent tissues were used as a measure of contrast. Ratios of these values ranged from 2.5- to more than 17-fold greater for STIR versus T1 or intermediate SE sequences and to more than 40:1 for STIR versus T2 SE images. Some nodes detected on STIR were only identifiable in retrospection CT or T1 SE. In two cases, STIR detected minimally enlarged nodes not detected on CT; biopsy confirmed malignancy. Normal nodes have lower signal than malignant nodes; inflammatory nodes may mimic neoplasm. The authors replaced T2 SE with a combination of T1 SE and STIR, shortening imaging time and enhancing detection of lymphadenopathy

  20. MRI of the anterior talofibular ligament, talar cartilage and os subfibulare: Comparison of isotropic resolution 3D and conventional 2D T2-weighted fast spin-echo sequences at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jisook; Cha, Jang Gyu [Soonchunhyang University Bucheon Hospital, Department of Radiology, Wonmi-gu, Bucheon-si (Korea, Republic of); Lee, Young Koo [Soonchunhyang University Bucheon Hospital, Department of Orthopedics, Wonmi-gu, Bucheon-si (Korea, Republic of); Lee, Bo Ra [Soonchunhyang University Bucheon Hospital, Department of Biomedical Statistics, Wonmi-gu, Bucheon-si (Korea, Republic of); Jeon, Chan Hong [Soonchunhyang University Bucheon Hospital, Division of Rheumatology, Department of Internal Medicine, Wonmi-gu, Bucheon-si (Korea, Republic of)

    2016-07-15

    To determine the accuracy of a three-dimensional (3D) T2-weighted fast spin-echo (FSE) magnetic resonance (MR) sequence compared with two-dimensional (2D) sequence for diagnosing anterior talofibular ligament (ATFL) tears, chondral lesion of the talus (CLT) and os subfibulare/avulsion fracture of the distal fibula (OSF). Thirty-five patients were included, who had undergone ankle MRI with 3D T2-weighted FSE and 2D T2-weighted FSE sequences, as well as subsequent ankle arthroscopy, between November 2013 and July 2014. Each MR imaging sequence was independently scored by two readers retrospectively for the presence of ATFL tears, CLT and OSF. The area under the receiver operating curve (AUC) was compared to determine the discriminatory power of the two image sequences. Interobserver agreement was expressed as unweighted kappa value. Arthroscopic findings confirmed 21 complete tears of the ATFL, 14 partial tears of the ATFL, 17 CLTs and 7 OSFs. There were no significant differences in the diagnoses of ATFL tears (p = 0.074-0.501), CLT (p = 0.090-0.450) and OSF (p = 0.317) obtained from the 2D and 3D sequences by either reader. The interobserver agreement rates between two readers using the 3D T2-weighted FSE sequence versus those obtained with the 2D sequence were substantial (κ = 0.659) versus moderate (κ = 0.553) for ATFL tears, moderate (κ = 0.499) versus substantial (κ = 0.676) for CLT and substantial (κ = 0.621) versus substantial (κ = 0.689) for OSF. Three-dimensional isotropic T2-weighted FSE MRI of the ankle resulted in no statistically significant difference in diagnostic performance compared to two-dimensional T2-weighted FSE MRI in the evaluation of ATFL tears, CLTs and OSFs. (orig.)

  1. MRI of the anterior talofibular ligament, talar cartilage and os subfibulare: Comparison of isotropic resolution 3D and conventional 2D T2-weighted fast spin-echo sequences at 3.0 T

    International Nuclear Information System (INIS)

    Yi, Jisook; Cha, Jang Gyu; Lee, Young Koo; Lee, Bo Ra; Jeon, Chan Hong

    2016-01-01

    To determine the accuracy of a three-dimensional (3D) T2-weighted fast spin-echo (FSE) magnetic resonance (MR) sequence compared with two-dimensional (2D) sequence for diagnosing anterior talofibular ligament (ATFL) tears, chondral lesion of the talus (CLT) and os subfibulare/avulsion fracture of the distal fibula (OSF). Thirty-five patients were included, who had undergone ankle MRI with 3D T2-weighted FSE and 2D T2-weighted FSE sequences, as well as subsequent ankle arthroscopy, between November 2013 and July 2014. Each MR imaging sequence was independently scored by two readers retrospectively for the presence of ATFL tears, CLT and OSF. The area under the receiver operating curve (AUC) was compared to determine the discriminatory power of the two image sequences. Interobserver agreement was expressed as unweighted kappa value. Arthroscopic findings confirmed 21 complete tears of the ATFL, 14 partial tears of the ATFL, 17 CLTs and 7 OSFs. There were no significant differences in the diagnoses of ATFL tears (p = 0.074-0.501), CLT (p = 0.090-0.450) and OSF (p = 0.317) obtained from the 2D and 3D sequences by either reader. The interobserver agreement rates between two readers using the 3D T2-weighted FSE sequence versus those obtained with the 2D sequence were substantial (κ = 0.659) versus moderate (κ = 0.553) for ATFL tears, moderate (κ = 0.499) versus substantial (κ = 0.676) for CLT and substantial (κ = 0.621) versus substantial (κ = 0.689) for OSF. Three-dimensional isotropic T2-weighted FSE MRI of the ankle resulted in no statistically significant difference in diagnostic performance compared to two-dimensional T2-weighted FSE MRI in the evaluation of ATFL tears, CLTs and OSFs. (orig.)

  2. Fast triple-spin-echo Dixon (FTSED) sequence for water and fat imaging

    Czech Academy of Sciences Publication Activity Database

    Kořínek, Radim; Bartušek, Karel; Starčuk jr., Zenon

    2017-01-01

    Roč. 37, APR (2017), s. 164-170 ISSN 0730-725X R&D Projects: GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : fast triple-spin-echo Dixon * sequence * MRI * fat fraction * water-fat * ultra-high field * 9.4 T * FTSED Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 2.225, year: 2016

  3. Usefulness of turbo spin-echo MR imaging in meniscal tears of the knee

    International Nuclear Information System (INIS)

    Jeong, Gun Young; Choi, Chang Lak; Chung, Jin Young; Han, Tae Il; Jang, Hong Im; Kim, Ji Min; Han, Hyun Young; Song, Mun Kab; Yang, Chang Kyu

    1998-01-01

    To evaluate the usefulness and diagnostic accuracy of turbo spin-echo(TSE) proton-density and T2-weighted images of meniscal tears of the knee. We retrospectively evaluated the sensitivity, specificity, and accuracy of TSE proton density and T2-weighted images of meniscal tears confirmed arthroscopically or surgically in 47 patients(98 menisci). The routine TSE parameters used in all patients were the dual echo sequence with sagittal proton density and T2-weighed images(4000/16, 90/5/2 [TR/effectiveTE/ETL/NEX]), and fat-suppressed coronal proton density and T2-weighted images. The chi-square test was used for statistical analysis. The sensitivity, specificity, and accuracy of TSE proton density images for the detection of meniscal tears were 93.9%, 93.8%, and 93.9%, respectively, in the medial meniscus, and 92.9%, 91.4%, and 91.8% in the lateral. On T2-weighted images the corresponding figures were 87.9%, 8%, and 89.8%, respectively, in the medial meniscus, and 64.3%, 91.4%, and 83.7% in the lateral. With regard to sensitivity and accuracy, TSE proton density images of meniscal tears were superior to TSE T2-weighted images.=20

  4. The FSE system for crop simulation, version 2.1

    NARCIS (Netherlands)

    Kraalingen, van D.W.G.

    1995-01-01

    A FORTRAN 77 programming environment for continuous simulation of agro-ecological processes, such as crop growth and calculation of water balances is presented. This system, called FSE (FORTRAN Simulation Environment), consists of a main program, weather data and utilities for performing specific

  5. Magnetization transfer contrast on gradient echo MR imaging of the temporomandibular joint

    International Nuclear Information System (INIS)

    Niitsu, M.; Hirohata, H.; Yoshioka, H.; Anno, I.; Campeau, N.G.; Itai, Y.

    1995-01-01

    Thirty-nine temporomandibular joints (TMJ) from 20 patients with suspected internal derangements were imaged by a 1.5 T MR imager. The on-resonance binomial magnetization transfer contrast (MTC) pulse was applied to gradient echo images with a dual receiver coil (9 s/section). With the use of an opening device, a series of sequential images were obtained at increments of mouth opening and closing. The tissue signal intensities with (Ms) and without (Mo) MTC were measured and subjective image analysis was performed. Compared with the standard images, MTC technique provided selective signal suppression of disks. The average of Ms/Mo ratio of the disks (0.56) was lower than that of the retrodiskal pad (0.79) and of the effusion (0.89). With MTC technique, fluid conspicuity was superior to standard image. However, no significant superiority was found in disk definition subjectively. (orig.)

  6. Impact of the Parameter Variation on the Image Blurring in 3 T Magnetic Resonance Imaging: A Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Woo; Lee, Sang Hoon; Kim, Nam Kug; Cho, Kyung Sik; Lee, Jin Seong [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2013-04-15

    To evaluate the effects of the key imaging-parameter alterations on the four MR sequences in a phantom study. Magnetic resonance (MR) imaging was performed on a MR phantom with an 8-channel head coil by using a 3 T MR system. The images were obtained in the axial plane on four MR sequences [T1-weighted, T2-weighted, Proton-density, and 3 dimensional (3D) fast spin echo (FSE)] with controlled variations in the following key parameters: 1) echo train length (ETL), 2) repetition time (TR), and 3) echo time (TE). The image blurring was determined by the degree of the gradient angle; i.e., the blurring increased as the gradient angle decreases. The increasing ETL was observed to cause an increase in the image blurring on all pulse sequences with a statistical significance (p = 0.004) on the 3D FSE. Increasing the TR appeared to have no effect except a statistically significant decrease on the T1-weighted images (p = 0.011). Increasing TE showed no effect on the T1-weighted images (p = 0.932); however, it caused an increase of blurring on the proton density images (p = 0.016) as well as the T2-weighted images (p < 0.001), and a decrease on the 3D FSE (p = 0.001). To reduce the image blurring, short ETL and long TE for 3D FSE, long TR for T1-weighted images and short TE for proton-density and T2-weighted images should be applied.

  7. Imaging tooth enamel using zero echo time (ZTE) magnetic resonance imaging

    Science.gov (United States)

    Rychert, Kevin M.; Zhu, Gang; Kmiec, Maciej M.; Nemani, Venkata K.; Williams, Benjamin B.; Flood, Ann B.; Swartz, Harold M.; Gimi, Barjor

    2015-03-01

    In an event where many thousands of people may have been exposed to levels of radiation that are sufficient to cause the acute radiation syndrome, we need technology that can estimate the absorbed dose on an individual basis for triage and meaningful medical decision making. Such dose estimates may be achieved using in vivo electron paramagnetic resonance (EPR) tooth biodosimetry, which measures the number of persistent free radicals that are generated in tooth enamel following irradiation. However, the accuracy of dose estimates may be impacted by individual variations in teeth, especially the amount and distribution of enamel in the inhomogeneous sensitive volume of the resonator used to detect the radicals. In order to study the relationship between interpersonal variations in enamel and EPR-based dose estimates, it is desirable to estimate these parameters nondestructively and without adding radiation to the teeth. Magnetic Resonance Imaging (MRI) is capable of acquiring structural and biochemical information without imparting additional radiation, which may be beneficial for many EPR dosimetry studies. However, the extremely short T2 relaxation time in tooth structures precludes tooth imaging using conventional MRI methods. Therefore, we used zero echo time (ZTE) MRI to image teeth ex vivo to assess enamel volumes and spatial distributions. Using these data in combination with the data on the distribution of the transverse radio frequency magnetic field from electromagnetic simulations, we then can identify possible sources of variations in radiation-induced signals detectable by EPR. Unlike conventional MRI, ZTE applies spatial encoding gradients during the RF excitation pulse, thereby facilitating signal acquisition almost immediately after excitation, minimizing signal loss from short T2 relaxation times. ZTE successfully provided volumetric measures of tooth enamel that may be related to variations that impact EPR dosimetry and facilitate the development

  8. Sub-piexl methods for improving vector quality in echo PIV flow, imaging technology.

    Science.gov (United States)

    Niu, Lili; Wang, Jing; Qian, Ming; Zheng, Hairong

    2009-01-01

    Developments of many cardiovascular problems have been shown to have a close relationship with arterial flow conditions. An ultrasound-based particle image velocimetry technique(Echo PIV) was recently developed to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. To improve the measurement accuracy, sub-pixel calculation method was adopted in this paper to maximize the ultrasound RF signal and B mode image correlation accuracy and increase the image spatial resolution. This algorithm is employed in processing both computer-generated particle image patterns and the B-mode images of microbubbles in rotating flows obtained by a high frame rate (up to 1000 frames per second) ultrasound imaging system. The results show the correlation of particle patterns and individual flow vector quality are improved and the overall flow mappings are also improved significantly. This would help the Echo PIV system to provide better multi-component velocity accuracy.

  9. Fast fluid-attenuated inversion-recovery MR image in the intracranial tumors: comparison with fast spin-echo image

    International Nuclear Information System (INIS)

    Choi, Hye Young; Kwang, Hyoen Joo; Baek, Seoung Yeon; Lee, Sun Wha

    1997-01-01

    To evaluate the significance of fluid-attenuated inversion recovery(FLAIR) magnetic resonance(MR) images for the diagnosis of intracranial tumors. MR imaging was used to study 15 patients with various intracranial tumors and were compared the findings according to fast spin echo and fast FLAIR images. In 12 of 15 patients, tumor signal intensities on FLAIR images were consistent with those shown on T2-weighted(T2W) images. In seven of eight patients who had cystic or necrotic components within the mass, FLAIR images showed isosignal intensity and in the other patient, high signal intensity was seen. There was variation in the signal intensity from cerebrospinal fluid(CSF). In 12 of 13 patients in whom edema was associated with tumor, FLAIR images were clearer than T2W images as their signal intensity was brighter. In eight patients, however, FLAIR and T2W images provided a similar definition of the margin between edema and tumor. In six patients with intratumoral hemorrhage except the chronic cystic stage. We concluded that in the diagnosis of intracranial tumors, FLAIR images can supplement conventional spin-echo images

  10. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez G, A.; Bowtell, R.; Mansfield, P. [Area de Procesamiento Digital de Senales e Imagenes Biomedicas. Universidad Autonoma Metropolitana Iztapalapa. Mexico D.F. 09340 Mexico (Mexico)

    1998-12-31

    Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

  11. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

    International Nuclear Information System (INIS)

    Rodriguez G, A.; Bowtell, R.; Mansfield, P.

    1998-01-01

    Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

  12. Usefulness of fluid attenuated inversion recovery(FLAIR) image in mesial temporal sclerosis : comparison with turbo spin-echo T2-weighted image

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seok Hyun; Chang, Seung Kuk; Eun, Choong Ki [Pusan Paik Hospital, Inje Univ. College of Medicine, Kimhae (Korea, Republic of)

    1999-12-01

    To determine the usefulness of fluid attenuated inversion recovery(FLAIR) imaging for the in detection of high signal intensity of hippocampus or amygdala in mesial temporal sclerosis (MTS), compared with that of turbo spin-echo T2-weighted imaging. Two neuroradiologists independently analyzed randomly mixed MR images of 20 lesions of 17 patients in whom MTS had been diagnosed, and ten normal controls. All subjects underwent both who performed both FLAIR and turbo spin-echo T2-weighted imaging, in a blind fashion. In order to determine hippocampal morphology, oblique coronal images perpendicular to the long axis of the hippocampus were obtained. The detection rate of high signal intensity in hippocampus or amygdala, the radiologists' preferred imaging sequence, and intersubject consistency of detection were evaluated. Signal intensity in hippocampus or amygdala was considered high if substantially higher than signal intensity in the cortex of adjacent temporo-parietal lobe. In all normal controls, FLAIR and spin-echo T2-weighted images showed normal signal intensity in hippocampus or amygdala. In MTS, the mean detection rate of high signal intensity in hippocampus or amygdala, as seen on FLAIR images was 93%, compared with 43% on spin-echo T2-weighted images. In all cases in which signal intensity on FLAIR images was normal, signal intensity on spin-echo T2-weighted images was also normal. The radiologists preferred the contrast properties of FLAIR to those of spin-echo T2-weighted images. In the diagnosis of MTS using MRI, FLAIR images are more useful for the detection of high signal intensity of hippocampus or amygdala than are spin-echo T2-weighted images. In the diagnosis of MTS, FLAIR imaging is therefore a suitable alternative to spin-echo T2-weighted imaging.

  13. Usefulness of fluid attenuated inversion recovery(FLAIR) image in mesial temporal sclerosis : comparison with turbo spin-echo T2-weighted image

    International Nuclear Information System (INIS)

    Son, Seok Hyun; Chang, Seung Kuk; Eun, Choong Ki

    1999-01-01

    To determine the usefulness of fluid attenuated inversion recovery(FLAIR) imaging for the in detection of high signal intensity of hippocampus or amygdala in mesial temporal sclerosis (MTS), compared with that of turbo spin-echo T2-weighted imaging. Two neuroradiologists independently analyzed randomly mixed MR images of 20 lesions of 17 patients in whom MTS had been diagnosed, and ten normal controls. All subjects underwent both who performed both FLAIR and turbo spin-echo T2-weighted imaging, in a blind fashion. In order to determine hippocampal morphology, oblique coronal images perpendicular to the long axis of the hippocampus were obtained. The detection rate of high signal intensity in hippocampus or amygdala, the radiologists' preferred imaging sequence, and intersubject consistency of detection were evaluated. Signal intensity in hippocampus or amygdala was considered high if substantially higher than signal intensity in the cortex of adjacent temporo-parietal lobe. In all normal controls, FLAIR and spin-echo T2-weighted images showed normal signal intensity in hippocampus or amygdala. In MTS, the mean detection rate of high signal intensity in hippocampus or amygdala, as seen on FLAIR images was 93%, compared with 43% on spin-echo T2-weighted images. In all cases in which signal intensity on FLAIR images was normal, signal intensity on spin-echo T2-weighted images was also normal. The radiologists preferred the contrast properties of FLAIR to those of spin-echo T2-weighted images. In the diagnosis of MTS using MRI, FLAIR images are more useful for the detection of high signal intensity of hippocampus or amygdala than are spin-echo T2-weighted images. In the diagnosis of MTS, FLAIR imaging is therefore a suitable alternative to spin-echo T2-weighted imaging

  14. Technical Note: Deep learning based MRAC using rapid ultra-short echo time imaging.

    Science.gov (United States)

    Jang, Hyungseok; Liu, Fang; Zhao, Gengyan; Bradshaw, Tyler; McMillan, Alan B

    2018-05-15

    In this study, we explore the feasibility of a novel framework for MR-based attenuation correction for PET/MR imaging based on deep learning via convolutional neural networks, which enables fully automated and robust estimation of a pseudo CT image based on ultrashort echo time (UTE), fat, and water images obtained by a rapid MR acquisition. MR images for MRAC are acquired using dual echo ramped hybrid encoding (dRHE), where both UTE and out-of-phase echo images are obtained within a short single acquisition (35 sec). Tissue labeling of air, soft tissue, and bone in the UTE image is accomplished via a deep learning network that was pre-trained with T1-weighted MR images. UTE images are used as input to the network, which was trained using labels derived from co-registered CT images. The tissue labels estimated by deep learning are refined by a conditional random field based correction. The soft tissue labels are further separated into fat and water components using the two-point Dixon method. The estimated bone, air, fat, and water images are then assigned appropriate Hounsfield units, resulting in a pseudo CT image for PET attenuation correction. To evaluate the proposed MRAC method, PET/MR imaging of the head was performed on 8 human subjects, where Dice similarity coefficients of the estimated tissue labels and relative PET errors were evaluated through comparison to a registered CT image. Dice coefficients for air (within the head), soft tissue, and bone labels were 0.76±0.03, 0.96±0.006, and 0.88±0.01. In PET quantification, the proposed MRAC method produced relative PET errors less than 1% within most brain regions. The proposed MRAC method utilizing deep learning with transfer learning and an efficient dRHE acquisition enables reliable PET quantification with accurate and rapid pseudo CT generation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. MRI in multiple sclerosis of the spinal cord: evaluation of fast short-tan inversion-recovery and spin-echo sequences

    International Nuclear Information System (INIS)

    Dietemann, J.L.; Thibaut-Menard, A.; Neugroschl, C.; Gillis, C.; Abu Eid, M.; Bogorin, A.; Warter, J.M.; Tranchant, C.

    2000-01-01

    We compared the sensitivity of T2-weighted spin-echo (FSE) and fast short-tau inversion-recovery (fSTIR) sequences in detection of multiple sclerosis of the spinal cord in 100 consecutive patients with clinically confirmed multiple sclerosis (MS); 86 patients underwent also brain MRI. In all, 310 focal lesions were detected on fSTIR and 212 on T2-weighted FSE, spinal cord lesions were seen better on fSTIR images, with a higher contrast between the lesion and the normal spinal cord. In 24 patients in whom cord plaques were shown with both sequences, the cranial study was normal or inconclusive. Assessment of spinal plaques can be particularly important when MRI of the brain is inconclusive, and in there situations fSTIR can be helpful. (orig.)

  16. Three-dimensional gradient echo versus spin echo sequence in contrast-enhanced imaging of the pituitary gland at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Kakite, Suguru, E-mail: sugkaki@med.tottori-u.ac.jp [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Fujii, Shinya [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Kurosaki, Masamichi [Department of Neurosurgery, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Kanasaki, Yoshiko; Matsusue, Eiji; Kaminou, Toshio; Ogawa, Toshihide [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan)

    2011-07-15

    Introduction: To clarify whether a three-dimensional-gradient echo (3D-GRE) or spin echo (SE) sequence is more useful for evaluating sellar lesions on contrast-enhanced T1-weighted MR imaging at 3.0 Tesla (T). Methods: We retrospectively assessed contrast-enhanced T1-weighted images using 3D-GRE and SE sequences at 3.0 T obtained from 33 consecutive patients with clinically suspected sellar lesions. Two experienced neuroradiologists evaluated the images qualitatively in terms of the following criteria: boundary edge of the cavernous sinus and pituitary gland, border of sellar lesions, delineation of the optic nerve and cranial nerves within the cavernous sinus, susceptibility and flow artifacts, and overall image quality. Results: At 3.0 T, 3D-GRE provided significantly better images than the SE sequence in terms of the border of sellar lesions, delineation of cranial nerves, and overall image quality; there was no significant difference regarding the boundary edge of the cavernous sinus and pituitary gland. In addition, the 3D-GRE sequence showed fewer pulsation artifacts but more susceptibility artifacts. Conclusion: Our results indicate that 3D-GRE is the more suitable sequence for evaluating sellar lesions on contrast-enhanced T1-weighted imaging at 3.0 T.

  17. Artifact Reduction of Susceptibility-Weighted Imaging Using a Short-Echo Phase Mask

    International Nuclear Information System (INIS)

    Ishimori, Y.; Monma, M.; Kohno, Y.

    2009-01-01

    Background: Susceptibility-weighted imaging (SWI) is utilized in magnetic resonance (MR) venography and other applications, but can include artifacts caused by the phase-masking process. Purpose: To demonstrate risks of filter processes used in making phase masks for SWI, and to propose a simple method for reducing artifacts. Material and Methods: Phase linearity related to echo time (TE) was evaluated for the original phase and high-pass-filtered phase using a CuSO 4 -doped water phantom. Effect of filter size of the Hanning window and background homogeneity were also evaluated in a phantom study. Use of a phase mask generated by data with differing magnitudes of TE was attempted in a human study. Shorter TE was used for making the phase mask, and the number of multiplications was increased. As short and long TEs were necessary simultaneously for phase mask and T2* contrast, a dual-echo technique was used. Results: Linearity of TE and phase value collapsed, and an unexpected negative phase appeared in the high-pass-filtered phase. Using a short-TE phase mask, phase-aliasing artifacts were reduced and visibility of deep veins was equivalent to that under conventional methods with an increased number of multiplications. Conclusion: Use of a short-echo phase mask in SWI is useful for reducing artifacts

  18. Artifact Reduction of Susceptibility-Weighted Imaging Using a Short-Echo Phase Mask

    Energy Technology Data Exchange (ETDEWEB)

    Ishimori, Y.; Monma, M. (Dept. of Radiological Sciences, Ibaraki Prefectural Univ. of Health Sciences, Inashiki-gun, Ibaraki (Japan)); Kohno, Y. (Dept. of Neurology, Ibaraki Prefectural Univ. of Health Sciences, Inashiki-gun, Ibaraki (Japan))

    2009-11-15

    Background: Susceptibility-weighted imaging (SWI) is utilized in magnetic resonance (MR) venography and other applications, but can include artifacts caused by the phase-masking process. Purpose: To demonstrate risks of filter processes used in making phase masks for SWI, and to propose a simple method for reducing artifacts. Material and Methods: Phase linearity related to echo time (TE) was evaluated for the original phase and high-pass-filtered phase using a CuSO{sub 4}-doped water phantom. Effect of filter size of the Hanning window and background homogeneity were also evaluated in a phantom study. Use of a phase mask generated by data with differing magnitudes of TE was attempted in a human study. Shorter TE was used for making the phase mask, and the number of multiplications was increased. As short and long TEs were necessary simultaneously for phase mask and T2 contrast, a dual-echo technique was used. Results: Linearity of TE and phase value collapsed, and an unexpected negative phase appeared in the high-pass-filtered phase. Using a short-TE phase mask, phase-aliasing artifacts were reduced and visibility of deep veins was equivalent to that under conventional methods with an increased number of multiplications. Conclusion: Use of a short-echo phase mask in SWI is useful for reducing artifacts

  19. Diagnostic Quality of 3D T2-SPACE Compared with T2-FSE in the Evaluation of Cervical Spine MRI Anatomy.

    Science.gov (United States)

    Chokshi, F H; Sadigh, G; Carpenter, W; Allen, J W

    2017-04-01

    Spinal anatomy has been variably investigated using 3D MRI. We aimed to compare the diagnostic quality of T2 sampling perfection with application-optimized contrasts by using flip angle evolution (SPACE) with T2-FSE sequences for visualization of cervical spine anatomy. We predicted that T2-SPACE will be equivalent or superior to T2-FSE for visibility of anatomic structures. Adult patients undergoing cervical spine MR imaging with both T2-SPACE and T2-FSE sequences for radiculopathy or myelopathy between September 2014 and February 2015 were included. Two blinded subspecialty-trained radiologists independently assessed the visibility of 12 anatomic structures by using a 5-point scale and assessed CSF pulsation artifact by using a 4-point scale. Sagittal images and 6 axial levels from C2-T1 on T2-FSE were reviewed; 2 weeks later and after randomization, T2-SPACE was evaluated. Diagnostic quality for each structure and CSF pulsation artifact visibility on both sequences were compared by using a paired t test. Interobserver agreement was calculated (κ). Forty-five patients were included (mean age, 57 years; 40% male). The average visibility scores for intervertebral disc signal, neural foramina, ligamentum flavum, ventral rootlets, and dorsal rootlets were higher for T2-SPACE compared with T2-FSE for both reviewers ( P T2-SPACE showed less degree of CSF flow artifact ( P T2-SPACE and -0.02-0.30 for T2-FSE (slight to fair agreement). T2-SPACE may be equivalent or superior to T2-FSE for the evaluation of cervical spine anatomic structures, and T2-SPACE shows a lower degree of CSF pulsation artifact. © 2017 by American Journal of Neuroradiology.

  20. Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Robert [University of California, Musculoskeletal and Quantitative Imaging Group, Department of Radiology, San Francisco, CA (United States); University Hospitals - Campus Grosshadern, Ludwig Maximilians University of Munich, Department of Clinical Radiology, Munich (Germany); Krug, Roland; Zuo, Jin; Majumdar, Sharmila; Link, Thomas M. [University of California, Musculoskeletal and Quantitative Imaging Group, Department of Radiology, San Francisco, CA (United States); Kelley, Douglas A.C. [General Electrics Healthcare Technologies, San Francisco, CA (United States); Ma, C.B. [University of California, Department of Orthopedic Surgery, San Francisco, CA (United States)

    2009-08-15

    The objectives of the study were to optimize three cartilage-dedicated sequences for in vivo knee imaging at 7.0 T ultra-high-field (UHF) magnetic resonance imaging (MRI) and to compare imaging performance and diagnostic confidence concerning osteoarthritis (OA)-induced changes at 7.0 and 3.0 T MRI. Optimized MRI sequences for cartilage imaging at 3.0 T were tailored for 7.0 T: an intermediate-weighted fast spin-echo (IM-w FSE), a fast imaging employing steady-state acquisition (FIESTA) and a T1-weighted 3D high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) sequence. Three healthy subjects and seven patients with mild OA were examined. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diagnostic confidence in assessing cartilage abnormalities, and image quality were determined. Abnormalities were assessed with the whole organ magnetic resonance imaging score (WORMS). Focal cartilage lesions and bone marrow edema pattern (BMEP) were also quantified. At 7.0 T, SNR was increased (p<0.05) for all sequences. For the IM-w FSE sequence, limitations with the specific absorption rate (SAR) required modifications of the scan parameters yielding an incomplete coverage of the knee joint, extensive artifacts, and a less effective fat saturation. CNR and image quality were increased (p<0.05) for SPGR and FIESTA and decreased for IM-w FSE. Diagnostic confidence for cartilage lesions was highest (p<0.05) for FIESTA at 7.0 T. Evaluation of BMEP was decreased (p < 0.05) at 7.0 T due to limited performance of IM-w FSE. Gradient echo-based pulse sequences like SPGR and FIESTA are well suited for imaging at UHF which may improve early detection of cartilage lesions. However, UHF IM-w FSE sequences are less feasible for clinical use. (orig.)

  1. Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint

    International Nuclear Information System (INIS)

    Stahl, Robert; Krug, Roland; Zuo, Jin; Majumdar, Sharmila; Link, Thomas M.; Kelley, Douglas A.C.; Ma, C.B.

    2009-01-01

    The objectives of the study were to optimize three cartilage-dedicated sequences for in vivo knee imaging at 7.0 T ultra-high-field (UHF) magnetic resonance imaging (MRI) and to compare imaging performance and diagnostic confidence concerning osteoarthritis (OA)-induced changes at 7.0 and 3.0 T MRI. Optimized MRI sequences for cartilage imaging at 3.0 T were tailored for 7.0 T: an intermediate-weighted fast spin-echo (IM-w FSE), a fast imaging employing steady-state acquisition (FIESTA) and a T1-weighted 3D high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) sequence. Three healthy subjects and seven patients with mild OA were examined. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diagnostic confidence in assessing cartilage abnormalities, and image quality were determined. Abnormalities were assessed with the whole organ magnetic resonance imaging score (WORMS). Focal cartilage lesions and bone marrow edema pattern (BMEP) were also quantified. At 7.0 T, SNR was increased (p<0.05) for all sequences. For the IM-w FSE sequence, limitations with the specific absorption rate (SAR) required modifications of the scan parameters yielding an incomplete coverage of the knee joint, extensive artifacts, and a less effective fat saturation. CNR and image quality were increased (p<0.05) for SPGR and FIESTA and decreased for IM-w FSE. Diagnostic confidence for cartilage lesions was highest (p<0.05) for FIESTA at 7.0 T. Evaluation of BMEP was decreased (p < 0.05) at 7.0 T due to limited performance of IM-w FSE. Gradient echo-based pulse sequences like SPGR and FIESTA are well suited for imaging at UHF which may improve early detection of cartilage lesions. However, UHF IM-w FSE sequences are less feasible for clinical use. (orig.)

  2. The clinical potential of ultra-high-speed echo-planar imaging

    International Nuclear Information System (INIS)

    Worthington, B.S.; Firth, J.L.; Morris, G.K.; Johnson, I.R.; Coxon, R.; Blamire, A.M.; Gibbs, P.; Mansfield, P.

    1990-01-01

    Ultra-high-speed echo-planar imaging (EPI) allows acquisition of a complete two-dimensional image in 64 to 128 ms devoid of movement artefact and without sacrifice of contrast due to relaxation time effects. In conventional whole-body MRI, however, obtrusive movement artefact and extended imaging time, resulting from the need to apply multiple sequences to facilitate lesion detection and pathological characterization, remain limitations. Reduced total examination time increases patient tolerance and throughput; furthermore optimization of contrast to achieve maximal conspicuity of particular features in liver or brain pathology is achieved simply and interactively by real time adjustment of the imaging parameters. The method provides the opportunity to study in real time dynamic events such as flow phenomena in the vascular and cerebrospinal fluid compartments of the brain as well as the kinetics of administered contrast agents. EPI is the only means of capturing the irregular motion of aperiodic cardiac events and bowel peristalsis. (author)

  3. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    Science.gov (United States)

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Radar Echo Scattering Modeling and Image Simulations of Full-scale Convex Rough Targets at Terahertz Frequencies

    Directory of Open Access Journals (Sweden)

    Gao Jingkun

    2018-02-01

    Full Text Available Echo simulation is a precondition for developing radar imaging systems, algorithms, and subsequent applications. Electromagnetic scattering modeling of the target is key to echo simulation. At terahertz (THz frequencies, targets are usually of ultra-large electrical size that makes applying classical electromagnetic calculation methods unpractical. In contrast, the short wavelength makes the surface roughness of targets a factor that cannot be ignored, and this makes the traditional echo simulation methods based on point scattering hypothesis in applicable. Modeling the scattering characteristics of targets and efficiently generating its radar echoes in THz bands has become a problem that must be solved. In this paper, a hierarchical semi-deterministic modeling method is proposed. A full-wave algorithm of rough surfaces is used to calculate the scattered field of facets. Then, the scattered fields of all facets are transformed into the target coordinate system and coherently summed. Finally, the radar echo containing phase information can be obtained. Using small-scale rough models, our method is compared with the standard high-frequency numerical method, which verifies the effectiveness of the proposed method. Imaging results of a full-scale cone-shape target is presented, and the scattering model and echo generation problem of the full-scale convex targets with rough surfaces in THz bands are preliminary solved; this lays the foundation for future research on imaging regimes and algorithms.

  5. Hemodynamic analysis of bladder tumors using T1-dynamic contrast-enhanced fast spin-echo MRI

    International Nuclear Information System (INIS)

    Kanazawa, Yuki; Miyati, Tosiaki; Sato, Osamu

    2012-01-01

    Objectives: To evaluate the hemodynamics of bladder tumors, we developed a method to calculate change in R 1 value (ΔR 1 ) from T 1 -dynamic contrast-enhanced fast spin-echo magnetic resonance imaging (T 1 DCE-FSE-MRI). Materials and methods: On a 1.5-T MR system, T 1 DCE-FSE-MRI was performed. This study was applied to 12 patients with urinary bladder tumor, i.e. urothelial carcinoma. We compared ΔR 1 –time and ΔSI–time between a peak in the ΔR 1 –time and ΔSI–time curve occurred during the first pass within 60 s. Next, we assessed the slope of increase for 180 s after CA injection (Slope 0–180 ). Results: The mean slope of the first pass was significantly higher for bladder tumors on both the ΔR 1 –time and the ΔSI–time curve compared with normal bladder walls. Moreover, a significant difference was apparent between bladder tumors and normal bladder walls on the mean Slope 0–180 in the ΔR 1 -time curve. However, no significant difference in the mean Slope 0–180 was observed on the ΔSI-time curve between bladder tumors and normal bladder walls. Conclusion: T 1 DCE-FSE-MRI offers three advantages: quantitative analysis; high-quality (i.e., artifact-free) images; and high temporal resolution even for SE images. Use of ΔR 1 analysis with T 1 DCE-FSE-MRI allows more detailed information on the hemodynamics of bladder tumors to be obtained and assists in differentiation between bladder tumors and the normal bladder wall.

  6. Gradient field echo imaging and Gd-DTPA for the assessment of renal function in humans

    International Nuclear Information System (INIS)

    Von Schulthess, G.K.; Kikinis, R.; Durr, R.; Bino, M.; Jager, P.; Kubler, O.

    1986-01-01

    To evaluate renal parenchymal function, 1.5 T gradient field echo imaging using a sequence of repetitive 10-second scans was performed in apneic patients after injection of Gd-DTPA (0.1 mmol/kg body weight). During the 10-second pauses the patients were allowed to breathe. Angled coronal images (TR=40 msec, TE =20 msec, flip angle = 40 0 ) were obtained in four volunteers and four patients with hydronephrosis. Image quality was excellent, suggesting unprecedented spatial resolution for renal function studies. Initially, cortical perfusion was observed. Then the papilae became isointense; after 70 seconds they became hypointense; and finally the renal pelvic signal dropped. No papillary signal drop was seen in hydronephrosis, as confirmed by region-of-interest analysis. These results strongly suggest that in MR renal ''function'' studies with Gd-DTPA, T1 and T2 paramagnetic effects are operative

  7. Application of diffusion-weighted echo planar imaging for diagnosis of small acute and subacute brain ischemic lesions

    International Nuclear Information System (INIS)

    Enomoto, Kyoko; Watanabe, Tsuneya; Amanuma, Makoto; Heshiki, Atsuko

    1997-01-01

    The aim of this study was to determine the utility of diffusion-weighted echo planar imaging (DW-EPI) for detecting acute and subacute brain ischemic foci less than 2 cm in size. Thirty patients underwent DW-EPI on a 1.5 T super-conducting unit using a SE-EPI sequence with an arbitrary pair of Stejskal-Tanner gradients applied along the imaging axes. DW-EPI demonstrated all the mast recent ischemic lesions as areas of decreased diffusion, providing greater conspicuity and larger size than conventional spin-echo imaging. DW-EPI is a promising method to detect within a subsecond early ischemia and reversible ischemic changes that are not demonstrate on routine spin-echo images. (author)

  8. High incidence of microbleeds in hemodialysis patients detected by T2*-weighted gradient-echo magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yokoyama, Shunichi; Uomizu, Kenji; Kajiya, Yoriko; Tajitsu, Kenichiro; Kusumoto, Kazuhiro; Hirano, Hirofumi

    2005-01-01

    The incidence and characteristics of microbleeds in hemodialysis (HD) patients were investigated to elucidate the clinical significance with T 2 * -weighted gradient-echo magnetic resonance (MR) imaging. The 57 patients with chronic renal failure maintained by HD had no previous history of stroke. The control group consisted of 53 patients without previous history of stroke or chronic renal failure. The incidence and the number of microbleeds were assessed in the HD and control groups. The findings of microbleeds with T 2 * -weighted gradient-echo MR imaging were compared with those of T 1 - and T 2 -weighted MR imaging in HD patients. The incidence of microbleeds was significantly greater in the HD patients compared with the control patients. T 2 * -weighted gradient-echo imaging revealed a total of 44 microbleeds in 11 HD patients. T 2 -weighted imaging demonstrated 13 of 44 microbleeds as hyperintensity, whereas T 1 -weighted imaging demonstrated 12 lesions as hypointensity. T 2 - and T 1 -weighted imagings did not demonstrate any findings in 31 and 32 lesions, respectively. T 2 * -weighted gradient-echo MR imaging is effective to detect microbleeds which may be a predictor of intracerebral hemorrhage in HD patients and should be included in the protocol for the study of cerebrovascular disease, because T 2 - and T 1 -weighted MR imaging recognizes microbleeds as lacunar infarction. (author)

  9. Fast susceptibility-weighted imaging with three-dimensional short-axis propeller (SAP)-echo-planar imaging.

    Science.gov (United States)

    Holdsworth, Samantha J; Yeom, Kristen W; Moseley, Michael E; Skare, S

    2015-05-01

    Susceptibility-weighted imaging (SWI) in neuroimaging can be challenging due to long scan times of three-dimensional (3D) gradient recalled echo (GRE), while faster techniques such as 3D interleaved echo-planar imaging (iEPI) are prone to motion artifacts. Here we outline and implement a 3D short-axis propeller echo-planar imaging (SAP-EPI) trajectory as a faster, motion-correctable approach for SWI. Experiments were conducted on a 3T MRI system. The 3D SAP-EPI, 3D iEPI, and 3D GRE SWI scans were acquired on two volunteers. Controlled motion experiments were conducted to test the motion-correction capability of 3D SAP-EPI. The 3D SAP-EPI SWI data were acquired on two pediatric patients as a potential alternative to 2D GRE used clinically. The 3D GRE images had a better target resolution (0.47 × 0.94 × 2 mm, scan time = 5 min), iEPI and SAP-EPI images (resolution = 0.94 × 0.94 × 2 mm) were acquired in a faster scan time (1:52 min) with twice the brain coverage. SAP-EPI showed motion-correction capability and some immunity to undersampling from rejected data. While 3D SAP-EPI suffers from some geometric distortion, its short scan time and motion-correction capability suggest that SAP-EPI may be a useful alternative to GRE and iEPI for use in SWI, particularly in uncooperative patients. © 2014 Wiley Periodicals, Inc.

  10. Characteristics of magnetic resonance imaging with partial flip angle and gradient field echo

    International Nuclear Information System (INIS)

    Hamada, Tatsumi; Uto, Tatsurou; Okafuji, Tatsumasa; Ookusa, Akihiko; Oonishi, Takuya; Mabuchi, Nobuhisa; Fujii, Kouichi; Yoshioka, Hiroyasu; Ishida, Osamu

    1988-01-01

    Characteristics of a magnetic resonance (MR) imaging pulse sequence with short repetition time (Tr), short echo time (Te), partial flip angle and gradient field echo, at 0.5 T, were studied. A series of sagittal images of the cerebrospinal region was obtained with varied Tr, Te and flip angle, signal intensities were measured by means of a region of interest (ROI) function, and optimal parameters to achieve maximum tissue contrast were found. Of the parameters flip angle had the greatest effect on tissue contrast. Flip angles less than 20 or more than 60 degrees were necessary to discriminate between spinal cord and cerebrospinal fluid. So called MR myelography was obtained with the flip angle of 15 degrees. Opposed and inphase images were obtained at the Te levels of 21 and 28 ms, respectively. Likewise, a series of transverse images of the abdomen with short Tr, short Te and varied flip angles was obtained in a breath-holding interval, and signal intensities of ROIs were measured. Maximum intensities of the liver, the spleen and perirenal fat were obtained at the flip angles of 40, 30 and 60 degrees, respectively. Although maximum intensity was found at the flip angle of 30 degrees for both of the renal cortex and medulla, the maximum contrast between the two tissues was obtained at the flip angles of 50-60 degrees. The image contrast obtained by these pulse sequences was also theoretically predictable, and so it is thought possible that flip angle, Tr and Te are manipulated to yield a desired contrast. (author)

  11. Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain.

    Science.gov (United States)

    Lin, Fa-Hsuan; Tsai, Shang-Yueh; Otazo, Ricardo; Caprihan, Arvind; Wald, Lawrence L; Belliveau, John W; Posse, Stefan

    2007-02-01

    Magnetic resonance spectroscopic imaging (MRSI) provides spatially resolved metabolite information that is invaluable for both neuroscience studies and clinical applications. However, lengthy data acquisition times, which are a result of time-consuming phase encoding, represent a major challenge for MRSI. Fast MRSI pulse sequences that use echo-planar readout gradients, such as proton echo-planar spectroscopic imaging (PEPSI), are capable of fast spectral-spatial encoding and thus enable acceleration of image acquisition times. Combining PEPSI with recent advances in parallel MRI utilizing RF coil arrays can further accelerate MRSI data acquisition. Here we investigate the feasibility of ultrafast spectroscopic imaging at high field (3T and 4T) by combining PEPSI with sensitivity-encoded (SENSE) MRI using eight-channel head coil arrays. We show that the acquisition of single-average SENSE-PEPSI data at a short TE (15 ms) can be accelerated to 32 s or less, depending on the field strength, to obtain metabolic images of choline (Cho), creatine (Cre), N-acetyl-aspartate (NAA), and J-coupled metabolites (e.g., glutamate (Glu) and inositol (Ino)) with acceptable spectral quality and localization. The experimentally measured reductions in signal-to-noise ratio (SNR) and Cramer-Rao lower bounds (CRLBs) of metabolite resonances were well explained by both the g-factor and reduced measurement times. Thus, this technology is a promising means of reducing the scan times of 3D acquisitions and time-resolved 2D measurements. Copyright (c) 2007 Wiley-Liss, Inc.

  12. Long T2 suppression in native lung 3-D imaging using k-space reordered inversion recovery dual-echo ultrashort echo time MRI.

    Science.gov (United States)

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-08-01

    Long T2 species can interfere with visualization of short T2 tissue imaging. For example, visualization of lung parenchyma can be hindered by breathing artifacts primarily from fat in the chest wall. The purpose of this work was to design and evaluate a scheme for long T2 species suppression in lung parenchyma imaging using 3-D inversion recovery double-echo ultrashort echo time imaging with a k-space reordering scheme for artifact suppression. A hyperbolic secant (HS) pulse was evaluated for different tissues (T1/T2). Bloch simulations were performed with the inversion pulse followed by segmented UTE acquisition. Point spread function (PSF) was simulated for a standard interleaved acquisition order and a modulo 2 forward-reverse acquisition order. Phantom and in vivo images (eight volunteers) were acquired with both acquisition orders. Contrast to noise ratio (CNR) was evaluated in in vivo images prior to and after introduction of the long T2 suppression scheme. The PSF as well as phantom and in vivo images demonstrated reduction in artifacts arising from k-space modulation after using the reordering scheme. CNR measured between lung and fat and lung and muscle increased from -114 and -148.5 to +12.5 and 2.8 after use of the IR-DUTE sequence. Paired t test between the CNRs obtained from UTE and IR-DUTE showed significant positive change (p lung-fat CNR and p = 0.03 for lung-muscle CNR). Full 3-D lung parenchyma imaging with improved positive contrast between lung and other long T2 tissue types can be achieved robustly in a clinically feasible time using IR-DUTE with image subtraction when segmented radial acquisition with k-space reordering is employed.

  13. High-field spin-echo MR imaging of superficial and subependymal siderosis secondary to neonatal intraventricular hemorrhage

    International Nuclear Information System (INIS)

    Gomori, J.M.; Grossman, R.I.; Goldberg, H.I.; Zimmerman, R.A.; Bilaniuk, L.T.

    1987-01-01

    Two cases of superficial siderosis with subependymal siderosis, secondary to neonatal intraventricular hemorrhage, are presented. High-field spin-echo MR imaging (1.5 Tesla) showed marginal hypointensity of the ventricular walls as well as of the subpial regions. These findings were most evident on T 2 weighted images, characteristic of hemosiderotic deposits. (orig.)

  14. Paradoxical signal pattern of mediastinal cysts on T2-weighted MR imaging: phantom and clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Ken, E-mail: k-ueda@radiol.med.osaka-u.ac.jp [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Yanagawa, Masahiro [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Ueguchi, Takashi [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Satoh, Yukihisa; Kawai, Misa; Gyobu, Tomoko; Sumikawa, Hiromitsu; Honda, Osamu; Tomiyama, Noriyuki [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan)

    2014-06-15

    Purpose: To evaluate the intracystic MRI (magnetic resonance imaging) signal intensity of mediastinal cystic masses on T2-weighted images. Materials and methods: A phantom study was performed to evaluate the signal intensity of a mediastinal cystic mass phantom (rubber balloon containing water) adjacent to a cardiac phantom pulsing at the rate of 60/min. T2-weighted images (sequence, fast spin echo [FSE] and single shot fast spin echo [SSFSE]) were acquired for the mediastinal cystic mass phantom. Further, a clinical study was performed in 33 patients (16 men, 17 women; age range, 19-85 years; mean, 65years) with thymic cysts or pericardial cysts. In all patients, T2-weighted images (FSE and SSFSE) were acquired. The signal intensity of cystic lesion was evaluated and was compared with that of muscle. A region of interest (ROI) was positioned on the standard MR console, and signal intensity of the cystic mass (cSI), that of the muscle (mSI), and the rate of absolute value of cSI–mSI to standard deviation (SD) of background noise (|cSI–mSI|/SD = CNR [contrast-to-noise ratio]) were measured. Results: The phantom study demonstrated that the rate phantom-ROI/saline-ROI was higher in SSFSE (0.36) than in FSE (0.19). In clinical cases, the degree of the signal intensity was higher in SSFSE than in FSE. The CNR was significantly higher in SSFSE (mean ± standard deviation, 111.0 ± 47.6) than in FSE (72.8 ± 36.6) (p < 0.001, Wilcoxon signed-rank test). Conclusions: Anterior mediastinal cysts often show lower signal intensity than the original signal intensity of water on T2-weighted images. SSFSE sequence reduces this paradoxical signal pattern on T2-weighted images, which may otherwise cause misinterpretation when assessing cystic lesions.

  15. Paradoxical signal pattern of mediastinal cysts on T2-weighted MR imaging: phantom and clinical study

    International Nuclear Information System (INIS)

    Ueda, Ken; Yanagawa, Masahiro; Ueguchi, Takashi; Satoh, Yukihisa; Kawai, Misa; Gyobu, Tomoko; Sumikawa, Hiromitsu; Honda, Osamu; Tomiyama, Noriyuki

    2014-01-01

    Purpose: To evaluate the intracystic MRI (magnetic resonance imaging) signal intensity of mediastinal cystic masses on T2-weighted images. Materials and methods: A phantom study was performed to evaluate the signal intensity of a mediastinal cystic mass phantom (rubber balloon containing water) adjacent to a cardiac phantom pulsing at the rate of 60/min. T2-weighted images (sequence, fast spin echo [FSE] and single shot fast spin echo [SSFSE]) were acquired for the mediastinal cystic mass phantom. Further, a clinical study was performed in 33 patients (16 men, 17 women; age range, 19-85 years; mean, 65years) with thymic cysts or pericardial cysts. In all patients, T2-weighted images (FSE and SSFSE) were acquired. The signal intensity of cystic lesion was evaluated and was compared with that of muscle. A region of interest (ROI) was positioned on the standard MR console, and signal intensity of the cystic mass (cSI), that of the muscle (mSI), and the rate of absolute value of cSI–mSI to standard deviation (SD) of background noise (|cSI–mSI|/SD = CNR [contrast-to-noise ratio]) were measured. Results: The phantom study demonstrated that the rate phantom-ROI/saline-ROI was higher in SSFSE (0.36) than in FSE (0.19). In clinical cases, the degree of the signal intensity was higher in SSFSE than in FSE. The CNR was significantly higher in SSFSE (mean ± standard deviation, 111.0 ± 47.6) than in FSE (72.8 ± 36.6) (p < 0.001, Wilcoxon signed-rank test). Conclusions: Anterior mediastinal cysts often show lower signal intensity than the original signal intensity of water on T2-weighted images. SSFSE sequence reduces this paradoxical signal pattern on T2-weighted images, which may otherwise cause misinterpretation when assessing cystic lesions

  16. Simultaneous multislice echo planar imaging with blipped controlled aliasing in parallel imaging results in higher acceleration: a promising technique for accelerated diffusion tensor imaging of skeletal muscle

    OpenAIRE

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Guggenberger, Roman; Andreisek, Gustav; Beck, Thomas; Runge, Val M; Boss, Andreas

    2015-01-01

    PURPOSE The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. MATERIALS AND METHODS After federal ethics board approval, the lower leg muscles of 8 healthy volunteers (mean [SD] age, 29.4 [2.9] years) were examined in a clinical 3-T magnetic ...

  17. Three-dimensional T1 and T2* mapping of human lung parenchyma using interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE).

    Science.gov (United States)

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-04-01

    To develop and assess a new technique for three-dimensional (3D) full lung T1 and T2* mapping using a single free breathing scan during a clinically feasible time. A 3D stack of dual-echo ultrashort echo time (UTE) radial acquisition interleaved with and without a WET (water suppression enhanced through T1 effects) saturation pulse was used to map T1 and T2* simultaneously in a single scan. Correction for modulation due to multiple views per segment was derived. Bloch simulations were performed to study saturation pulse excitation profile on lung tissue. Optimization of the saturation delay time (for T1 mapping) and echo time (for T2* mapping) was performed. Monte Carlo simulation was done to predict accuracy and precision of the sequence with signal-to-noise ratio of in vivo images used in the simulation. A phantom study was carried out using the 3D interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE) sequence and reference standard inversion recovery spin echo sequence (IR-SE) to compare accuracy of the sequence. Nine healthy volunteers were imaged and mean (SD) of T1 and T2* in lung parenchyma at 3T were estimated through manually assisted segmentation. 3D lung coverage with a resolution of 2.5 × 2.5 × 6 mm 3 was performed and nominal scan time was recorded for the scans. Repeatability was assessed in three of the volunteers. Regional differences in T1/T2* values were also assessed. The phantom study showed accuracy of T1 values to be within 2.3% of values obtained from IR-SE. Mean T1 value in lung parenchyma was 1002 ± 82 ms while T2* was 0.85 ± 0.1 ms. Scan time was ∼10 min for volunteer scans. Mean coefficient of variation (CV) across slices was 0.057 and 0.09, respectively. Regional variation along the gravitational direction and between right and left lung were not significant (P = 0.25 and P = 0.06, respectively) for T1. T2* showed significant variation (P = 0.03) along the

  18. Anatomical constraints on visualization of the human hippocampus using echo-planar imaging

    International Nuclear Information System (INIS)

    Asano, Shuichiro; Kirino, Takaaki; Mihara, Ban; Sugishita, Morihiro

    2004-01-01

    Reliable visualization of the hippocampus on echo-planar imaging (EPI) is essential in analyzing memory function using functional magnetic resonance imaging. However, the hippocampal area is notoriously prone to susceptibility artifacts caused by structures at the skull base, and avoiding such artifacts by appropriately selecting the subjects for a study is of practical importance. To elucidate factors affecting the extent of the artifacts we obtained EPI in a total of 62 hippocampi from 31 healthy volunteers and evaluated various anatomical measurements possibly associated with the quality of the images. The hippocampal head was sufficiently well demonstrated on 40 of 62 images (65%), and there were two parameters that significantly differed between the good (n=40) and poor (n=22) imaging studies: The vertical diameter (DV) of the opening of the internal acoustic meatus (IAM) and the pneumatization rate of the sphenoid sinus (RP-SS). From logistic regression analysis with the stepwise method, in addition to these two factors, the distance between the hippocampal body and IAM (Dhippo-IAM) and the distance between the hippocampal head and the middle cranial fossa at the skull base (Dhippo-base) were extracted. DV-IAM, RP-SS, and Dhippo-base were negatively correlated with the good imaging of the hippocampal head. On the other hand, Dhippo-IAM was positively correlated. These easily measurable parameters will be helpful in selecting subjects and in increasing the efficiency of hippocampal visualization in studies on human memory function. (orig.)

  19. Study of internal structure of the human fetus in utero by echo-planar magnetic resonance imaging.

    Science.gov (United States)

    Johnson, I R; Stehling, M K; Blamire, A M; Coxon, R J; Howseman, A M; Chapman, B; Ordidge, R J; Mansfield, P; Symonds, E M; Worthington, B S

    1990-08-01

    The ultrafast echo-planar magnetic resonance imaging technology, developed and built in Nottingham, has been used to produce the first snapshot images of the human fetus in utero. The imager, operating at a proton resonance frequency of 22 MHz, produces transaxial views in 64 or 128 milliseconds. These images comprise either 64 x 128 or 128 x 128 pixels with an in-plane resolution of 3 x 3 mm2. The slice thickness is 10 mm. Fetal scans of up to 32 contiguous slices are produced in a few minutes. These have been used to study the internal structure of the uterus and the fetus in a range of cases with gestations ranging from 26 weeks to term. Echo-planar imaging seems particularly suitable as an imaging modality since its high speed obviates image blurring arising from fetal motion.

  20. Simultaneous pH-sensitive and oxygen-sensitive MRI of human gliomas at 3 T using multi-echo amine proton chemical exchange saturation transfer spin-and-gradient echo echo-planar imaging (CEST-SAGE-EPI).

    Science.gov (United States)

    Harris, Robert J; Yao, Jingwen; Chakhoyan, Ararat; Raymond, Catalina; Leu, Kevin; Liau, Linda M; Nghiemphu, Phioanh L; Lai, Albert; Salamon, Noriko; Pope, Whitney B; Cloughesy, Timothy F; Ellingson, Benjamin M

    2018-04-06

    To introduce a new pH-sensitive and oxygen-sensitive MRI technique using amine proton CEST echo spin-and-gradient echo (SAGE) EPI (CEST-SAGE-EPI). pH-weighting was obtained using CEST estimations of magnetization transfer ratio asymmetry (MTR asym ) at 3 ppm, and oxygen-weighting was obtained using R2' measurements. Glutamine concentration, pH, and relaxation rates were varied in phantoms to validate simulations and estimate relaxation rates. The values of MTR asym and R2' in normal-appearing white matter, T 2 hyperintensity, contrast enhancement, and macroscopic necrosis were measured in 47 gliomas. Simulation and phantom results confirmed an increase in MTR asym with decreasing pH. The CEST-SAGE-EPI estimates of R 2 , R2*, and R2' varied linearly with gadolinium diethylenetriamine penta-acetic acid concentration (R 2  = 6.2 mM -1 ·sec -1 and R2* = 6.9 mM -1 ·sec -1 ). The CEST-SAGE-EPI and Carr-Purcell-Meiboom-Gill estimates of R 2 (R 2  = 0.9943) and multi-echo gradient-echo estimates of R2* (R 2  = 0.9727) were highly correlated. T 2 lesions had lower R2' and higher MTR asym compared with normal-appearing white matter, suggesting lower hypoxia and high acidity, whereas contrast-enhancement tumor regions had elevated R2' and MTR asym , indicating high hypoxia and acidity. The CEST-SAGE-EPI technique provides simultaneous pH-sensitive and oxygen-sensitive image contrasts for evaluation of the brain tumor microenvironment. Advantages include fast whole-brain acquisition, in-line B 0 correction, and simultaneous estimation of CEST effects, R 2 , R2*, and R2' at 3 T. © 2018 International Society for Magnetic Resonance in Medicine.

  1. Signal changes in gradient echo images of human brain induced by hypo- and hyperoxia

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1995-01-01

    The effect of hypoxia (inspired oxygen fraction, FiO2 of 10% and 16%) and hyperoxia (FiO2) of 100%) on gradient echo images of the brain using long echo times was investigated in six healthy volunteers (age 24-28 years). Different flip angles were used with an FiO2 of 10% to assess the importance...... of saturation effects. The total cerebral blood flow was measured by a phase mapping technique during normoxia as well as hypoxia (FiO2 of 10% and 16%) and hyperoxia (FiO2 of 50% and 100%). High relative signal changes were found, independently of the flip angle, with FiO2 of 10%. With a flip angle of 40...... degrees the values of delta R2* for cortical grey matter, central grey matter, white matter and the sagittal sinus were 0.79, 0.41, 0.26 and 3.00/s; with a flip angle of 10 degrees the corresponding values were 0.70, 0.37, 0.24 and 3.15/s. The total cerebral blood flow increased by 41% during inhalation...

  2. Quantitative comparison between a multiecho sequence and a single-echo sequence for susceptibility-weighted phase imaging.

    Science.gov (United States)

    Gilbert, Guillaume; Savard, Geneviève; Bard, Céline; Beaudoin, Gilles

    2012-06-01

    The aim of this study was to investigate the benefits arising from the use of a multiecho sequence for susceptibility-weighted phase imaging using a quantitative comparison with a standard single-echo acquisition. Four healthy adult volunteers were imaged on a clinical 3-T system using a protocol comprising two different three-dimensional susceptibility-weighted gradient-echo sequences: a standard single-echo sequence and a multiecho sequence. Both sequences were repeated twice in order to evaluate the local noise contribution by a subtraction of the two acquisitions. For the multiecho sequence, the phase information from each echo was independently unwrapped, and the background field contribution was removed using either homodyne filtering or the projection onto dipole fields method. The phase information from all echoes was then combined using a weighted linear regression. R2 maps were also calculated from the multiecho acquisitions. The noise standard deviation in the reconstructed phase images was evaluated for six manually segmented regions of interest (frontal white matter, posterior white matter, globus pallidus, putamen, caudate nucleus and lateral ventricle). The use of the multiecho sequence for susceptibility-weighted phase imaging led to a reduction of the noise standard deviation for all subjects and all regions of interest investigated in comparison to the reference single-echo acquisition. On average, the noise reduction ranged from 18.4% for the globus pallidus to 47.9% for the lateral ventricle. In addition, the amount of noise reduction was found to be strongly inversely correlated to the estimated R2 value (R=-0.92). In conclusion, the use of a multiecho sequence is an effective way to decrease the noise contribution in susceptibility-weighted phase images, while preserving both contrast and acquisition time. The proposed approach additionally permits the calculation of R2 maps. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. MR imaging near metallic implants using MAVRIC SL: initial clinical experience at 3T.

    Science.gov (United States)

    Gutierrez, Luis B; Do, Bao H; Gold, Garry E; Hargreaves, Brian A; Koch, Kevin M; Worters, Pauline W; Stevens, Kathryn J

    2015-03-01

    To compare the effectiveness of multiacquisition with variable resonance image combination selective (MAVRIC SL) with conventional two-dimensional fast spin-echo (2D-FSE) magnetic resonance (MR) techniques at 3T in imaging patients with a variety of metallic implants. Twenty-one 3T MR studies were obtained in 19 patients with different types of metal implants. Paired MAVRIC SL and 2D-FSE sequences were reviewed by two radiologists and compared for in-plane and through-plane metal artifact, visualization of the bone implant interface and surrounding soft tissues, blurring, and overall image quality using a two-tailed Wilcoxon signed rank test. The area of artifact on paired images was measured and compared using a paired Wilcoxon signed rank test. Changes in patient management resulting from MAVRIC SL imaging were documented. Significantly less in-plane and through-plane artifact was seen with MAVRIC SL, with improved visualization of the bone-implant interface and surrounding soft tissues, and superior overall image quality (P = .0001). Increased blurring was seen with MAVRIC SL (P = .0016). MAVRIC SL significantly decreased the image artifact compared to 2D-FSE (P = .0001). Inclusion of MAVRIC SL to the imaging protocol determined the need for surgery or type of surgery in five patients and ruled out the need for surgery in 13 patients. In three patients, the area of interest was well seen on both MAVRIC SL and 2D-FSE images, so the addition of MAVRIC had no effect on patient management. Imaging around metal implants with MAVRIC SL at 3T significantly improved image quality and decreased image artifact compared to conventional 2D-FSE imaging techniques and directly impacted patient management. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  4. Functional imaging of submandibular glands: diffusion-weighted echo-planar MRI before and after stimulation

    International Nuclear Information System (INIS)

    Arndt, C.; Cramer, M.C.; Weiss, F.; Kaul, M.G.; Adam, G.; Habermann, C.R.; Graessner, J.; Petersen, K.; Reitmeier, F.; Jaehne, M.

    2006-01-01

    Purpose: To investigate the feasibility of diffusion-weighted (DWI) echo-planar imaging (EPI) to depict the submandibular glands and to measure different functional conditions. Materials and Methods: Twenty-seven healthy volunteers were examined. Diffusion weighted sequence was performed prior to stimulation. Exactly 30 seconds after a commercially available lemon juice was given orally, the diffusion weighted sequence was repeated. All examinations were performed by using a 1.5-T superconducting system with a 30 mT/m maximum gradient capability and maximum slew rate of 125 mT/m/sec (Magnetom Symphony, Siemens, Erlangen, Germany). The lower part of the circularly polarized (CP) head coil and a standard two-element CP neck array coil were used. The flexibility of the neck array coil allowed positioning the N1 element (upper part of the coil) right next to the submandibular gland. The axial diffusion-weighted EPI (echo planar imaging) sequence was performed using a matrix of 119 x 128, a field of view of 250 x 250 mm (pixel size 2.1 x 1.95 mm), a section thickness of 5 mm with an interslice gap of 1 mm. The b factors used were 0 sec/mm 2 , 500 sec/mm 2 and 1000 sec/mm 2 . Apparent diffusion coefficient (ADC) maps were digitally transferred to MRIcro (Chris Rorden, University of Nottingham, Great Britain). After detecting the submandibular glands a region of interest (ROI) was placed manually exactly within the boarder of both submandibular glands, excluding the external carotid artery on ADC maps. These procedures were performed on all ADC slices the submandibular glands could be differentiated in before and after oral stimulation. For statistical comparison of results, a student's t-test was performed with an overall two-tailed significance level of p=0.05. Results: The visualization of the submandibular glands using the diffusion-weighted EPI sequence was possible in all of the 27 volunteers. Prior to oral stimulation an ADC of 1.31 x 10 -3 mm 2 /sec (95% CI, 1

  5. Functional imaging of parotid glands: Diffusion-weighted echo-planar MRI before and after stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Habermann, C.R.; Cramer, M.C.; Gossrau, P.; Adam, G. [University Hospital Hamburg-Eppendorf (Germany). Department of Diagnostic and Interventional Radiology; Graessner, J. [Siemens AG, Hamburg (Germany). Medical Solutions; Reitmeier, F.; Jaehne, M. [University Hospital Hamburg-Eppendorf (Germany). Department of Oto-, Rhino-, Laryngology; Fiehler, J. [University Hospital Hamburg-Eppendorf (Germany). Department of Neuroradiology; Schoder, V. [University Hospital Hamburg-Eppendorf (Germany). Institute for Medical Biometry and Epidemiology

    2004-10-01

    Purpose: To investigate the feasibility of diffusion-weighted (DW) echo-planar imaging (EPI) for measuring different functional conditions of the parotid gland and to compare different measurement approaches. Materials and Methods: Parotid glands of 27 healthy volunteers were examined with a DW EPI sequence (TR 1,500 msec, TE 77 msec, field-of-view 250 x 250 mm, pixel size 2.10 x 1.95 mm, section thickness 5 mm) before and after oral stimulation with commercially available lemon juice. The b factors used were 0, 500, and 1,000 sec/mm{sup 2}. Apparent diffusion coefficient (ADC) maps were digitally transferred to MRIcro (Chris Rorden, University of Nottingham, Great Britain) and evaluated with a manually placed circular region of interest (ROI) containing 100-200 pixel. Additional ROIs including the entire parotid gland were placed on either side. The results of both measurements were compared, using the Student's t test based on the median ADC values for each person. A two-tailed p-value of less than.05 was determined to indicate statistical significance. To compare both measurement approaches, the Pearson's correlation coefficient (r) was calculated. Results: Diffusion-weighted echo-planar MR imaging successfully visualized the parotid gland of all volunteers. In a first step, the median ADC value per person was computed. Using ROIs of 100-200 pixels, the mean was calculated to be 1.08 x 10{sup -3} mm{sup 2}/sec{+-}0.12 x 10{sup -3} mm{sup 2}/sec for both parotid glands prior to simulation. After stimulation, the mean ADC was measured at 1.15 x 10{sup -3} mm{sup 2}/sec{+-}0.11 x 10{sup -3} mm{sup 2}/sec for both parotid glands. Evaluating the entire parotid gland, the ADC was 1.12 x 10{sup -3} mm{sup 2}/sec{+-}0.08 x 10{sup -3} mm{sup 2}/sec prior to simulation, whereas the ADC increased to 1.18 x 10{sup -3} mm{sup 2}/sec{+-}0.09 x 10{sup -3} mm{sup 2}/sec after simulation with lemon juice. For both types of measurements, the increase in ADC after

  6. Spin-echo Echo-planar Imaging MR Elastography versus Gradient-echo MR Elastography for Assessment of Liver Stiffness in Children and Young Adults Suspected of Having Liver Disease.

    Science.gov (United States)

    Serai, Suraj D; Dillman, Jonathan R; Trout, Andrew T

    2017-03-01

    Purpose To compare two-dimensional (2D) gradient-recalled echo (GRE) and 2D spin-echo (SE) echo-planar imaging (EPI) magnetic resonance (MR) elastography for measurement of hepatic stiffness in pediatric and young adult patients suspected of having liver disease. Materials and Methods In this institutional review board-approved, HIPAA-compliant study, 58 patients underwent both 2D GRE and 2D SE-EPI MR elastography at 1.5 T during separate breath holds. Liver stiffness (mean of means; in kilopascals) was measured by five blinded reviewers. Pooled mean liver stiffness and region-of-interest (ROI) size were compared by using paired t tests. Intraclass correlation coefficients (ICCs) were used to assess agreement between techniques. Respiratory motion artifacts were compared across sequences by using the Fisher exact test. Results Mean patient age was 14.7 years ± 5.2 (standard deviation; age range, 0.7-20.5 years), and 55.2% (32 of 58) of patients were male. Mean liver stiffness was 2.92 kPa ± 1.29 measured at GRE MR elastography and 2.76 kPa ± 1.39 at SE-EPI MR elastography (n = 290; P = .15). Mean ROI sizes were 8495 mm 2 ± 4482 for 2D GRE MR elastography and 15 176 mm 2 ± 7609 for 2D SE-EPI MR elastography (n = 290; P range, 0.91-0.95). Moderate or severe breathing artifacts were observed on 27.5% (16 of 58) of 2D GRE images versus 0% 2D SE-EPI images (P < .001). Conclusion There is excellent agreement on measured hepatic stiffness between 2D GRE and 2D SE-EPI MR elastography across multiple reviewers. SE-EPI MR elastography allowed for stiffness measurement across larger areas of the liver and can be performed in a single breath hold. © RSNA, 2016.

  7. Application of fast spin-echo T[sub 2]-weighted imaging for examination of the neurocranium. Comparison with the conventional T[sub 2]-weighted spin-echo sequence. Die Anwendung der T[sub 2]-gewichteten Turbo-Spin-Echo-Sequenz zur Untersuchung des Neurokraniums. Vergleich mit der konventionellen T[sub 2]-gewichteten Spin-Echo-Sequenz

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, C. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Hosten, N. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Felix, R. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany))

    1994-07-01

    T[sub 2]-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neutrocranium. We evaluated fast spin-echo T[sub 2]-weighted imaging (TT[sub 2]) of the neurocranium in comparison to conventional spin-echo T[sub 2]-weighted imaging (T[sub 2]). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher than TT[sub 2] than in T[sub 2] (with the exception of grey-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT[sub 2], Parkinson patients have to be examined by conventional T[sub 2]. If these limitations are taken into account, fast spin-echo T[sub 2]-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T[sub 2]-weighting achieved in a short acquisition time. (orig.)

  8. Imaging of the Achilles tendon in spondyloarthritis: a comparison of ultrasound and conventional, short and ultrashort echo time MRI with and without intravenous contrast

    International Nuclear Information System (INIS)

    Hodgson, R.J.; Emery, P.; Grainger, A.J.; O'Connor, P.J.; Evans, R.; Coates, L.; Marzo-Ortega, H.; Helliwell, P.; McGonagle, D.; Robson, M.D.

    2011-01-01

    To compare conventional MRI, ultrashort echo time MRI and ultrasound for assessing the extent of tendon abnormalities in spondyloarthritis. 25 patients with spondyloarthritis and Achilles symptoms were studied with MRI and ultrasound. MR images of the Achilles tendon were acquired using T1-weighted spin echo, gradient echo and ultrashort echo time (UTE) sequences with echo times (TE) between 0.07 and 16 ms, before and after intravenous contrast medium. Greyscale and power Doppler ultrasound were also performed. The craniocaudal extent of imaging abnormalities measured by a consultant musculoskeletal radiologist was compared between the different techniques. Abnormalities were most extensive on spoiled gradient echo images with TE=2 ms. Contrast enhancement after intravenous gadolinium was greatest on the UTE images (TE=0.07 ms). Fewer abnormalities were demonstrated using unenhanced UTE. Abnormalities were more extensive on MRI than ultrasound. Contrast enhancement was more extensive than power Doppler signal. 3D spoiled gradient echo images with an echo time of 2 ms demonstrate more extensive tendon abnormalities than the other techniques in spondyloarthritis. Abnormalities of vascularity are best demonstrated on enhanced ultrashort echo time images. (orig.)

  9. Evaluation of crosstalk effect on spin-echo images at 1.5 and 3 T

    International Nuclear Information System (INIS)

    Kajisako, Masaaki; Taniguchi, Masahiro; Koizumi, Koji; Hiraga, Akira; Miyati, Tosiaki; Syakudo, Yuko; Miki, Yukio

    2011-01-01

    The purpose of this study is to evaluate the crosstalk effect on spin-echo (SE) images at 1.5 and 3 T MRI. We examined the influence of crosstalk by comparing the full width at half-maximum (FWHM) and slice profile of images of a wedge-shaped phantom for various slice gaps. We also assessed crosstalk effect in the brain by comparing image contrast among healthy volunteers (n=8). Among the subjects, the shapes of the slice profiles at 1.5 T were similar to those at 3 T for long repetition times (TRs); however, at shorter TRs, differences in slice profiles were observed among the subjects and were more apparent at 3 than at 1.5 T. The relative contrast between white matter and gray matter on T 1 -weighted images was lower at 3 than at 1.5 T. The crosstalk effect was strongest when the TR of the excitation pulse was short. The influence of the adjacent excitation pulse is important in the process of T 1 relaxation because T 1 values are greater at 3 T. In conclusion, the influence of crosstalk on SE T 1 -weighted images is greater at 3 than at 1.5 T. (author)

  10. Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.

    Science.gov (United States)

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.

  11. Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study.

    Science.gov (United States)

    Hussain, Shahid M; De Becker, Jan; Hop, Wim C J; Dwarkasing, Soendersing; Wielopolski, Piotr A

    2005-03-01

    To optimize and assess the feasibility of a single-shot black-blood T2-weighted spin-echo echo-planar imaging (SSBB-EPI) sequence for MRI of the liver using sensitivity encoding (SENSE), and compare the results with those obtained with a T2-weighted turbo spin-echo (TSE) sequence. Six volunteers and 16 patients were scanned at 1.5T (Philips Intera). In the volunteer study, we optimized the SSBB-EPI sequence by interactively changing the parameters (i.e., the resolution, echo time (TE), diffusion weighting with low b-values, and polarity of the phase-encoding gradient) with regard to distortion, suppression of the blood signal, and sensitivity to motion. The influence of each change was assessed. The optimized SSBB-EPI sequence was applied in patients (N = 16). A number of items, including the overall image quality (on a scale of 1-5), were used for graded evaluation. In addition, the signal-to-noise ratio (SNR) of the liver was calculated. Statistical analysis was carried out with the use of Wilcoxon's signed rank test for comparison of the SSBB-EPI and TSE sequences, with P = 0.05 considered the limit for significance. The SSBB-EPI sequence was improved by the following steps: 1) less frequency points than phase-encoding steps, 2) a b-factor of 20, and 3) a reversed polarity of the phase-encoding gradient. In patients, the mean overall image quality score for the optimized SSBB-EPI (3.5 (range: 1-4)) and TSE (3.6 (range: 3-4)), and the SNR of the liver on SSBB-EPI (mean +/- SD = 7.6 +/- 4.0) and TSE (8.9 +/- 4.6) were not significantly different (P > .05). Optimized SSBB-EPI with SENSE proved to be feasible in patients, and the overall image quality and SNR of the liver were comparable to those achieved with the standard respiratory-triggered T2-weighted TSE sequence. (c) 2005 Wiley-Liss, Inc.

  12. Optimal pulse sequence for ferumoxides-enhanced MR imaging used in the detection of hepatocellular carcinoma: a comparative study using seven pulse sequences

    International Nuclear Information System (INIS)

    Kim, Seung Hoon; Choi, Dongil; Lim, Jae Hoon; Lee, Won Jae; Jang, Hyun Jung; Lim, Kyo Keun; Lee, Soon Jin; Cho, Jae Min; Kim, Seung Kwon; Kim, Gab Chul

    2002-01-01

    To identify the optimal pulse sequence for ferumoxides-enhanced magnetic resonance (MR) imaging in the detection of hepatocelluar carcinomas (HCCs). Sixteen patients with 25 HCCs underwent MR imaging following intravenous infusion of ferumoxides. All MR studies were performed on a 1.5-T MR system, using a phased-array coil. Ferumoxides (Feridex IV) at a dose of 15 μmol/Kg was slowly infused intravenously, and axial images of seven sequences were obtained 30 minutes after the end of infusion. The MR protocol included fast spin-echo (FSE) with two echo times (TR3333-8571/TE18 and 90-117), singleshot FSE (SSFSE) with two echo times (TR∞/TE39 and 98), T2-weighted gradient-recalled acquisition in the steady state (GRASS) (TR216/TE20), T2-weighted fast multiplanar GRASS (FMPGR) (TR130/TE8.4-9.5), and T2-weighted fast multiplanar spoiled GRASS (FMPSPGR) (TR130/TE8.4-9.5). Contrast-to-noise ratios (CNRs) of HCCs determined during the imaging sequences formed the basis of quantitative analysis, and images were qualitatively assessed in terms of lesion conspicuity and image artifacts. The diagnostic accuracy of all sequences was assessed using receiver operating characteristic (ROC) analysis. Quantitative analysis revealed that the CNRs of T2-weighted FMPGR and T2-weighted FMPSPGR were significantly higher than those of the other sequences, while qualitative analysis showed that image artifacts were prominent at T2-weighted GRASS imaging. Lesion conspicuity was statistically significantly less clear at SSFSE imaging. In term of lesion detection, T-weighted FMPGR, T2- weighted FMPSPGR, and proton density FSE imaging were statistically superior to the others. T2-weighted FMPGR, T2- weighted FMPSPGR, and proton density FSE appear to be the optimal pulse sequences for ferumoxidesenhanced MR imaging in the detection of HCCs

  13. MR STIR imaging versus spin-echo imaging of the breast

    International Nuclear Information System (INIS)

    Zobel, B.B.; Tella, S.; Patrizio, G.; Confalone, D.; D'Archivio, C.; Passariello, R.

    1989-01-01

    A valid tissue characterization of human breast diseases with conventional spin-echo (SE) sequences has not been achieved yet. In spite of experimental works showing that fibroadenomas have a small but significant difference in T1 relaxation time, T1- and T2-weighted SE sequences are not always able to differentiate them. We tried to solve the problem employing two different short T1 inversion-recovery (STIR) sequences with T1 values adequate to nullify the signal of glandular and fatty tissues. This paper reports on twenty-five nodules, including cysts, fibroadenomas, phylloids, and adenocarcinomas, examined with both STIR sequences performed on a superconductive 0.5-T unit

  14. Fast STIR (Short TI Inversion Recovery) imaging of the spine. The assessment of the role for the depiction of intramedullary spinal cord lesions and the usefulness of the additional transverse images

    International Nuclear Information System (INIS)

    Okumura, Ryosuke; Kan, Tomoko; Hirose, Tomohiro; Hara, Tadashi; Shibata, Toyomichi; Ueno, Makoto; Takagi, Takehisa; Kohno, Shigene

    2002-01-01

    It is known that the fast STIR images of the spine achieve more excellent lesion contrast than the usual fast spin echo (FSE) T2-weighted images, because the elongation of T1 and T2 relaxation time of the lesion additively contribute to the contrast. The fast STIR images showed advantages in the depiction of acute and chronic lesion of multiple sclerosis and tolerable disadvantages in the depiction of other lesions, such as spondylotic myelopathy or syringomyelia. Transverse images showed less usefulness than sagittal images except for their superior gray-to-white matter contrast. Fast STIR imaging can replace FSE T2-weighted imaging in the study of restricted patients' population. (author)

  15. Comparison of spin-echo and gradient recalled echo T1 weighted MR images for quantitative voxel-based clinical brain research

    International Nuclear Information System (INIS)

    Barnden, L.R.; Crouch, B.

    2010-01-01

    Full text: New methods to normalise inter-subject global variations in T 1 -weighted MR (T I w) signal levels have permitted their use in voxel based population studies of brain dysfunction. Here we address the question of whether a spin-echo (SE) or a gradient recalled echo (GRE) T I w sequence is better for this purpose. GRE images are commonly referred to as 3D MRL SE has superior signal/noise properties to GRE but is slower to acquire so that typical slice thicknesses are 3-5 mm compared to 1-2 mm for GRE. GRE has better grey/white matter contrast which should permit better spatial normalization. However, unlike SE, GRE is affected by subject-specific magnetic field inhomogeneities that distort the images. We acquired T I brain images for 25 chronic fatigue syndrome (CFS) patients and 25 normal controls (NC) with TRITE/flip-angle of 600 ms/l5 ms/90 deg for SE and 5.76 ms/1.9 ms/9 deg for GRE. For GRE, the magnetic field inhomogeneity related signal level distortions could be corrected, but not the spatial distortions. After spatial normalization we subjected them to voxel-based statistical analysis with adjustment for global signal level using the SPM5 package. Initially, the same spatial normalization deformations were applied to both SE and GRE after coregistering them. Although the SPM regressions of SE and GRE yielded similar spatial distributions of significance, the SE regressions were consistently statistically stronger. For example, in one strong regression, the corrected cluster P value was twenty times stronger (I.Oe-5 versus I.Oe-3). T I w SE have proved better than T I GRE images in quantitative analysis in a clinical research study. (author)

  16. Echo-planar MR imaging of dissolved hyperpolarized 129Xe. Potential for M angiography

    International Nuclear Information System (INIS)

    Maansson, S.

    2002-01-01

    Purpose: The feasibility of hyperpolarized 129 Xe for fast MR angiography (MRA) was evaluated using the echo-planar imaging (EPI) technique. Material and Methods: Hyperpolarized Xe gas was dissolved in ethanol; a carrier agent with high solubility for Xe (Ostwald solubility coefficient 2.5) and long relaxation times. The dissolved Xe was injected as a bolus into a flow phantom where the mean flow velocity was 15 cm/s. Ultrafast EPI images with 44 ms scan time were acquired of the flowing bolus and the signal-to-noise ratios (SNR) were measured. Results: The relaxation times of hyperpolarized Xe in ethanol were measured to T1=160±11 s and T2 ≅ 20 s. The resulting images of the flowing liquid were of reasonable quality and had an SNR of about 70. Conclusion: Based on the SNR of the obtained Xe EPI images; it was estimated that rapid in vivo MRA with 129 Xe may be feasible; provided that an efficient; biologically acceptable carrier for Xe can be found and polarization levels of more than 25% can be achieved in isotopically enriched 129 Xe

  17. Fast spine echo and fast fluid attenuated inversion recovery sequences in multiple sclerosis

    International Nuclear Information System (INIS)

    Paolillo, Andrea; Giugni, Elisabetta; Bozzao, Alessandro; Bastianello, Stefano

    1997-01-01

    Fast spin echo (FSE) and fast fluid attenuated inversion recovery (fast-FLAIR) sequences, were compared with conventional spin echo (CSE) in quantitating multiple sclerosis (MS) lesion burden. For each sequence, the total number and volume of MS lesions were calculated in 38 remitting multiple sclerosis patients using a semiautomated lesion detection program. Conventional spin echo, fast spin echo, and fast fluid attenuated inversion recovery image were reported on randomly and at different times by two expert observers. Interobserver differences, the time needed to quantitative multiple sclerosis lesions and lesion signal intensity (contrast-to-noise ratio and overall contrast) were considered. The lesions were classified by site into infratentorial, white matter and cortical/subcortical. A total of 2970 lesions with a volume of 961.7 cm 3 was calculated on conventional spin echo images. Fast spin echo images depicted fewer (16.6%; p < .005) and smaller (24.9%; p < .0001) lesions and the differences were statistically significant. Despite an overall nonsignificant reduction for fast-FLAIR images (-5% and 4.8% for lesion number and volume, respectively), significantly lower values (lesion number: p < 0.1; volume: p < .04)were observed for infratentorial lesions, while significantly higher values were seen for cortical/subcortical lesions (lesion number: p < .01; volume: p < .02). A higher lesion/white matter contrast (p < .002), a significant time saving for lesion burden quantitation (p < .05) and very low interobserver variability were found in favor of fast-FLAIR. Our data suggest that, despite the limitations regarding infratentorial lesions, fast-FLAIR sequences are indicated in R studies because of their good identification of cortical/subcortical lesions, almost complete interobserver agreement, higher contrast-to-noise ratio and limited time needed for semiautomated quantitation

  18. STrategically Acquired Gradient Echo (STAGE) imaging, part I: Creating enhanced T1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping.

    Science.gov (United States)

    Chen, Yongsheng; Liu, Saifeng; Wang, Yu; Kang, Yan; Haacke, E Mark

    2018-02-01

    To provide whole brain grey matter (GM) to white matter (WM) contrast enhanced T1W (T1WE) images, multi-echo quantitative susceptibility mapping (QSM), proton density (PD) weighted images, T1 maps, PD maps, susceptibility weighted imaging (SWI), and R2* maps with minimal misregistration in scanning times creating enhanced GM/WM contrast (the T1WE). The proposed T1WE image was created from a combination of the proton density weighted (6°, PDW) and T1W (24°) images and corrected for RF transmit field variations. Prior to the QSM calculation, a multi-echo phase unwrapping strategy was implemented using the unwrapped short echo to unwrap the longer echo to speed up computation. R2* maps were used to mask deep grey matter and veins during the iterative QSM calculation. A weighted-average sum of susceptibility maps was generated to increase the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). The proposed T1WE image has a significantly improved CNR both for WM to deep GM and WM to cortical GM compared to the acquired T1W image (the first echo of 24° scan) and the T1MPRAGE image. The weighted-average susceptibility maps have 80±26%, 55±22%, 108±33% SNR increases across the ten subjects compared to the single echo result of 17.5ms for the putamen, caudate nucleus, and globus pallidus, respectively. STAGE imaging offers the potential to create a standardized brain imaging protocol providing four pieces of quantitative tissue property information and multiple types of qualitative information in just 5min. Published by Elsevier Inc.

  19. Echo planar perfusion imaging with high spatial and temporal resolution: methodology and clinical aspects

    International Nuclear Information System (INIS)

    Bitzer, M.; Klose, U.; Naegele, T.; Friese, S.; Kuntz, R.; Voigt, K.; Fetter, M.; Opitz, H.

    1999-01-01

    The purpose of the present study was to analyse specific advantages of calculated parameter images and their limitations using an optimized echo-planar imaging (EPI) technique with high spatial and temporal resolution. Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) was performed in 12 patients with cerebrovascular disease and in 13 patients with brain tumours. For MR imaging of cerebral perfusion an EPI sequence was developed which provides a temporal resolution of 0.68 s for three slices with a 128 x 128 image matrix. To evaluate DSC-MRI, the following parameter images were calculated pixelwise: (1) Maximum signal reduction (MSR); (2) maximum signal difference (ΔSR); (3) time-to-peak (T p ); and (4) integral of signal-intensity-time curve until T p (S Int ). The MSR maps were superior in the detection of acute infarctions and ΔSR maps in the delineation of vasogenic brain oedema. The time-to-peak (T p ) maps seemed to be highly sensitive in the detection of poststenotic malperfused brain areas (sensitivity 90 %). Hyperperfused areas of brain tumours were detectable down to a diameter of 1 cm with high sensitivity (> 90 %). Distinct clinical and neuroradiological conditions revealed different suitabilities for the parameter images. The time-to-peak (T p ) maps may be an important advantage in the detection of poststenotic ''areas at risk'', due to an improved temporal resolution using an EPI technique. With regard to spatial resolution, a matrix size of 128 x 128 is sufficient for all clinical conditions. According to our results, a further increase in matrix size would not improve the spatial resolution in DSC-MRI, since the degree of the vascularization of lesions and the susceptibility effect itself seem to be the limiting factors. (orig.)

  20. Comparison of a T1-weighted inversion-recovery-, gradient-echo- and spin-echo sequence for imaging of the brain at 3.0 Tesla

    International Nuclear Information System (INIS)

    Stehling, C.; Niederstadt, T.; Kraemer, S.; Kugel, H.; Schwindt, W.; Heindel, W.; Bachmann, R.

    2005-01-01

    Purpose: The increased T1 relaxation times at 3.0 Tesla lead to a reduced T1 contrast, requiring adaptation of imaging protocols for high magnetic fields. This prospective study assesses the performance of three techniques for T1-weighted imaging (T1w) at 3.0 T with regard to gray-white differentiation and contrast-to-noise-ratio (CNR). Materials and Methods: Thirty-one patients were examined at a 3.0 T system with axial T1 w inversion recovery (IR), spin-echo (SE) and gradient echo (GE) sequences and after contrast enhancement (CE) with CE-SE and CE-GE sequences. For qualitative analysis, the images were ranked with regard to artifacts, gray-white differentiation, image noise and overall diagnostic quality. For quantitative analysis, the CNR was calculated, and cortex and basal ganglia were compared with the white matter. Results: In the qualitative analysis, IR was judged superior to SE and GE for gray-white differentiation, image noise and overall diagnostic quality, but inferior to the GE sequence with regard to artifacts. CE-GE proved superior to CE-SE in all categories. In the quantitative analysis, CNR of the based ganglia was highest for IR, followed by GE and SE. For the CNR of the cortex, no significant difference was found between IR (16.9) and GE (15.4) but both were superior to the SE (9.4). The CNR of the cortex was significantly higher for CE-GE compared to CE-SE (12.7 vs. 7.6, p<0.001), but the CNR of the basal ganglia was not significantly different. Conclusion: For unenhanced T1w imaging at 3.0 T, the IR technique is, despite increased artifacts, the method of choice due to its superior gray-white differentiation and best overall image quality. For CE-studies, GE sequences are recommended. For cerebral imaging, SE sequences give unsatisfactory results at 3.0 T. (orig.)

  1. Acoustic noise reduction in T 1- and proton-density-weighted turbo spin-echo imaging.

    Science.gov (United States)

    Ott, Martin; Blaimer, Martin; Breuer, Felix; Grodzki, David; Heismann, Björn; Jakob, Peter

    2016-02-01

    To reduce acoustic noise levels in T 1-weighted and proton-density-weighted turbo spin-echo (TSE) sequences, which typically reach acoustic noise levels up to 100 dB(A) in clinical practice. Five acoustic noise reduction strategies were combined: (1) gradient ramps and shapes were changed from trapezoidal to triangular, (2) variable-encoding-time imaging was implemented to relax the phase-encoding gradient timing, (3) RF pulses were adapted to avoid the need for reversing the polarity of the slice-rewinding gradient, (4) readout bandwidth was increased to provide more time for gradient activity on other axes, (5) the number of slices per TR was reduced to limit the total gradient activity per unit time. We evaluated the influence of each measure on the acoustic noise level, and conducted in vivo measurements on a healthy volunteer. Sound recordings were taken for comparison. An overall acoustic noise reduction of up to 16.8 dB(A) was obtained by the proposed strategies (1-4) and the acquisition of half the number of slices per TR only. Image quality in terms of SNR and CNR was found to be preserved. The proposed measures in this study allowed a threefold reduction in the acoustic perception of T 1-weighted and proton-density-weighted TSE sequences compared to a standard TSE-acquisition. This could be achieved without visible degradation of image quality, showing the potential to improve patient comfort and scan acceptability.

  2. SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR.

    Science.gov (United States)

    Lee, Hyunyeol; Park, Jaeseok

    2013-07-01

    Phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo imaging was recently introduced, producing high-resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted-averaging-based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal-to-noise ratio-optimized version of the phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three-step prescribed signal evolution while those in the second acquisition are calculated using a two-step pseudo-steady state signal transition with a high flip-angle pseudo-steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip-angle pseudo-steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal-to-noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid-attenuated imaging. Copyright © 2012 Wiley Periodicals, Inc.

  3. Single-shot T2 mapping using overlapping-echo detachment planar imaging and a deep convolutional neural network.

    Science.gov (United States)

    Cai, Congbo; Wang, Chao; Zeng, Yiqing; Cai, Shuhui; Liang, Dong; Wu, Yawen; Chen, Zhong; Ding, Xinghao; Zhong, Jianhui

    2018-04-24

    An end-to-end deep convolutional neural network (CNN) based on deep residual network (ResNet) was proposed to efficiently reconstruct reliable T 2 mapping from single-shot overlapping-echo detachment (OLED) planar imaging. The training dataset was obtained from simulations that were carried out on SPROM (Simulation with PRoduct Operator Matrix) software developed by our group. The relationship between the original OLED image containing two echo signals and the corresponding T 2 mapping was learned by ResNet training. After the ResNet was trained, it was applied to reconstruct the T 2 mapping from simulation and in vivo human brain data. Although the ResNet was trained entirely on simulated data, the trained network was generalized well to real human brain data. The results from simulation and in vivo human brain experiments show that the proposed method significantly outperforms the echo-detachment-based method. Reliable T 2 mapping with higher accuracy is achieved within 30 ms after the network has been trained, while the echo-detachment-based OLED reconstruction method took approximately 2 min. The proposed method will facilitate real-time dynamic and quantitative MR imaging via OLED sequence, and deep convolutional neural network has the potential to reconstruct maps from complex MRI sequences efficiently. © 2018 International Society for Magnetic Resonance in Medicine.

  4. Diagnostic accuracy of dynamic contrast-enhanced MR imaging of renal masses with rapid-acquisition spin-echo technique

    International Nuclear Information System (INIS)

    Eilenberg, S.S.; Lee, J.K.T.; Brown, J.J.; Heiken, J.P.; Mirowitz, S.A.

    1990-01-01

    This paper compares the diagnostic accuracy of Gd-DTPA-enhanced rapid-acquisition spin-echo (RASE) imaging with standard spin-echo techniques for detecting renal cysts and solid renal neoplasms. RASE imaging combines a short TR (275 msec)/short TE (10 msec), single excitation pulse sequence with half-Fourier data sampling. Eighteen patients with CT evidence of renal masses were first evaluated with standard T1-and T2-weighted SE sequences. Pre- and serial postcontrast (Cd-DTPA, 0.1 mmol./kg) RASE sequences were then performed during suspended respiration. A final set of postcontrast images was obtained with the standard T1-weighted SE sequence. Each set of MR images was first reviewed separately (ie, T1, T2, pre- and post-contrast RASE, etc)

  5. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    DEFF Research Database (Denmark)

    Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.

    2017-01-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large...... modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori...... decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first...

  6. Readout-segmented echo-planar imaging improves the image quality of diffusion-weighted MR imaging in rectal cancer: Comparison with single-shot echo-planar diffusion-weighted sequences

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Chun-chao; Liu, Xi; Peng, Wan-lin; Li, Lei; Zhang, Jin-ge [Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Meng, Wen-jian; Deng, Xiang-bing [Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Zuo, Pan-li [Siemens Healthcare, MR Collaborations NE Asia, 100010, Beijing (China); Li, Zhen-lin, E-mail: lzlcd01@126.com [Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China)

    2016-10-15

    Purpose: To determine whether readout-segmented echo-planar imaging (rs-EPI) diffusion-weighted imaging (DWI) can improve the image quality in patients with rectal cancer compared with single-shot echo-planar imaging (ss-EPI) DWI using 3.0 T magnetic resonance (MR) imaging. Materials and methods: This study was approved by the Institutional Review Board, and informed consent was obtained from all patients. Seventy-one patients with rectal cancer were enrolled in this study. For all patients, both rs-EPI and ss-EPI DWI were performed using a 3T MR scanner. Two radiologists independently assessed the overall image quality, lesion conspicuity, geometric distortion and distinction of anatomical structures. The signal-to-noise ratio (SNR), lesion contrast, contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) were also measured. Comparisons of the quantitative and qualitative parameters between the two sequences were performed using the paired t-test and the Wilcoxon signed rank test. Results: The scores of overall image quality, lesion conspicuity, geometric distortion and distinction of anatomical structures of rs-EPI were all significantly higher than those of ss-EPI (all p < 0.05). The SNR and CNR were higher in rs-EPI than those in ss-EPI (all p < 0.05). There was no significant difference between ss-EPI and rs-EPI with regard to ROI size and mean ADCs of the tumour (p = 0.574 and p = 0.479, respectively), but the mean ADC of the normal tissue was higher in rs-EPI than in ss-EPI (1.73 ± 0.30 × 10{sup −3} mm{sup 2}/s vs. 1.60 ± 0.31 × 10{sup −3} mm{sup 2}/s, p = 0.001). Conclusions: DW imaging based on readout-segmented echo-planar imaging is a clinically useful technique to improve the image quality for the purpose of evaluating lesions in patients with rectal tumours.

  7. Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data.

    Science.gov (United States)

    Renvall, Ville; Witzel, Thomas; Wald, Lawrence L; Polimeni, Jonathan R

    2016-07-01

    Echo planar imaging (EPI) is the method of choice for the majority of functional magnetic resonance imaging (fMRI), yet EPI is prone to geometric distortions and thus misaligns with conventional anatomical reference data. The poor geometric correspondence between functional and anatomical data can lead to severe misplacements and corruption of detected activation patterns. However, recent advances in imaging technology have provided EPI data with increasing quality and resolution. Here we present a framework for deriving cortical surface reconstructions directly from high-resolution EPI-based reference images that provide anatomical models exactly geometric distortion-matched to the functional data. Anatomical EPI data with 1mm isotropic voxel size were acquired using a fast multiple inversion recovery time EPI sequence (MI-EPI) at 7T, from which quantitative T1 maps were calculated. Using these T1 maps, volumetric data mimicking the tissue contrast of standard anatomical data were synthesized using the Bloch equations, and these T1-weighted data were automatically processed using FreeSurfer. The spatial alignment between T2(⁎)-weighted EPI data and the synthetic T1-weighted anatomical MI-EPI-based images was improved compared to the conventional anatomical reference. In particular, the alignment near the regions vulnerable to distortion due to magnetic susceptibility differences was improved, and sampling of the adjacent tissue classes outside of the cortex was reduced when using cortical surface reconstructions derived directly from the MI-EPI reference. The MI-EPI method therefore produces high-quality anatomical data that can be automatically segmented with standard software, providing cortical surface reconstructions that are geometrically matched to the BOLD fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Conception and test of Echoes, a spectro-imager dedicated to the seismology of Jupiter

    Science.gov (United States)

    Soulat, L.; Schmider, F.-X.; Robbe-Dubois, S.; Appourchaux, T.; Gaulme, P.; Bresson, Y.; Gay, J.; Daban, J.-B.; Gouvret, C.

    2017-11-01

    Echoes is a project of a spaceborne Doppler Spectro-Imager (DSI) which has been proposed as payload to the JUICE mission project selected in the Cosmic Vision program of the European Space Agency (ESA). It is a Fourier transform spectrometer which measures phase shifts in the interference patterns induced by Doppler shifts of spectral lines reflected at the surface of the planet. Dedicated to the seismology of Jupiter, the instrument is designed to analyze the periodic movements induced by internal acoustic modes of the planet. It will allow the knowledge of the internal structure of Jupiter, in particular of the central region, which is essential for the comprehension of the scenario of the giant planets' formation. The optical design is based on a modified Mach-Zehnder interferometer operating in the visible domain and takes carefully into account the sensitivity of the optical path difference to the temperature. The instrument produces simultaneously four images in quadrature which allows the measurement of the phase without being contaminated by the continuum component of the incident light. We expect a noise level less than 1 cm2s-2µHz-1 in the frequency range [0.5 -10] mHz. In this paper, we present the prototype implemented at the Observatoire de la Côte d'Azur (OCA) in collaboration with Institut d'Astrophysique Spatiale (IAS) to study the real performances in laboratory and to demonstrate the capability to reach the required Technology Readiness Level 5.

  9. Self-diffusion imaging by spin echo in Earth's magnetic field.

    Science.gov (United States)

    Mohoric, A; Stepisnik, J; Kos, M; Planinsi

    1999-01-01

    The NMR of the Earth's magnetic field is used for diffusion-weighted imaging of phantoms. Due to a weak Larmor field, care needs to be taken regarding the use of the usual high field assumption in calculating the effect of the applied inhomogeneous magnetic field. The usual definition of the magnetic field gradient must be replaced by a generalized formula valid when the strength of a nonuniform magnetic field and a Larmor field are comparable (J. Stepisnik, Z. Phys. Chem. 190, 51-62 (1995)). It turns out that the expression for spin echo attenuation is identical to the well-known Torrey formula only when the applied nonuniform field has a proper symmetry. This kind of problem may occur in a strong Larmor field as well as when the slow diffusion rate of particles needs an extremely strong gradient to be applied. The measurements of the geomagnetic field NMR demonstrate the usefulness of the method for diffusion and flow-weighted imaging. Copyright 1999 Academic Press.

  10. MR imaging findings of diffuse axonal injury: comparison of T2-weighted gradient images and T1- and T2-weighted spin-echo images

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seo Young; Lee, Ghi Jai; Kim, Jeong Seok; Shim, Jae Chan; Kim, Ho Kyun [Inje Univ. College of Medicine, Seoul (Korea, Republic of)

    1998-10-01

    To compare T2-weighted images with spin-echo T1- and turbo spin-echo (TSE) T2-weighted images in patients with diffuse axonal injury(DAI). Using a 1.0T MR unit, SE T1-, TSE T2-, and and FLASH T2-weighted images were obtained from 69 patients with a history of head trauma. In 18MR images of 17 patients with imaging findings of DAI, T2-weighted images were retrospectively compared with SE T1- and TSE T2-weighted images. The interval between trauma and MR scan varied from 5 days to 24(mean, 11) months. Focusing on the number of lesions, and their location and signal intensity, as weel as associated findings, three images were simultaueously evaluated. In 18 MR images of 17 patients with MR imaging findings of DAI, 21 lesions were detected on T1-weighted images, 28 on TSE T2-weighted images, and 70 on T2-weighted images;the last of these revealed all lesions detected on the other two. Most lesions were hypointense on T1-weighted images(17/21), hyperintense on TSE T2-weighted (21/28), and hypointense on T2-weighted (63/70). Common locations for DAI were the frontal lobe (n=3D35) and corpus callosum (n=3D22). Associated brain injuries were cortical contusion (n=3D5), brainstem injury (n=3D3), deep gray matter injury (n=3D2), and subdural hematoma(n=3D1). In patients with DAI. T2-weighted images can detect more lesions and associated petechial hemorrhage than can TSE T2-weighted images. This modality is thus useful for the evaluation of patients with head trauma.=20.

  11. First results in rapid MR imaging of focal liver and spleen lesions using field echos and small angle excitation (gradient echo sequences)

    International Nuclear Information System (INIS)

    Griebel, J.; Hess, C.F.; Kurtz, B.; Klose, U.; Kueper, K.

    1987-01-01

    15 healthy subjects and 39 patients with focal liver and spleen lesions were examined via MR tomography at 1.5 tesla. Gradient field echos at small angle excitation ( 0 ) were employed. The imaging time per layer was 10 seconds so that rapid imaging could be carried out at respiratory standstill. This enabled visualisation of liver and spleen without interference by breathing artifacts and with accurate localisation. Focal lesions can be imaged best at low flip-angle pulses (liver) or low to medium-angle pulses (spleen). The primary liver cell carcinoma is visualised as an inhomogeneous structure with similar signal intensity as the surrounding tissue. All other examined liver lesions (metastases, haemangiomas, lymphatic infiltrates, echinococcus cysts, FNH, gummae) showed greater signal intensity than the remaining organ at small angle excitation. Furthermore, contrast reversals were seen at medium-angle pulses. Contrariwise, with the exception of the light-coloured spleen infarcts, spleen lesions (lymphatic infiltrate, Boeck's disease or sarcoidosis) appeared darker at all excitation angles than the surrounding tissue. (orig.) [de

  12. First results in rapid MR imaging of focal liver and spleen lesions using field echos and small angle excitation (gradient echo sequences)

    Energy Technology Data Exchange (ETDEWEB)

    Griebel, J.; Hess, C.F.; Kurtz, B.; Klose, U.; Kueper, K.

    1987-01-01

    15 healthy subjects and 39 patients with focal liver and spleen lesions were examined via MR tomography at 1.5 tesla. Gradient field echos at small angle excitation (< 90/sup 0/) were employed. The imaging time per layer was 10 seconds so that rapid imaging could be carried out at respiratory standstill. This enabled visualisation of liver and spleen without interference by breathing artifacts and with accurate localisation. Focal lesions can be imaged best at low flip-angle pulses (liver) or low to medium-angle pulses (spleen). The primary liver cell carcinoma is visualised as an inhomogeneous structure with similar signal intensity as the surrounding tissue. All other examined liver lesions (metastases, haemangiomas, lymphatic infiltrates, echinococcus cysts, FNH, gummae) showed greater signal intensity than the remaining organ at small angle excitation. Furthermore, contrast reversals were seen at medium-angle pulses. Contrariwise, with the exception of the light-coloured spleen infarcts, spleen lesions (lymphatic infiltrate, Boeck's disease or sarcoidosis) appeared darker at all excitation angles than the surrounding tissue.

  13. Comparison of spin-echo echoplanar imaging and gradient recalled echo-based MR elastography at 3 Tesla with and without gadoxetic acid administration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Seek [Chonbuk National University Medical School and Hospital, Department of Radiology, Jeonju, Chonbuk (Korea, Republic of); Song, Ji Soo [Chonbuk National University Medical School and Hospital, Department of Radiology, Jeonju, Chonbuk (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Chonbuk (Korea, Republic of); Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Chonbuk (Korea, Republic of); Kannengiesser, Stephan [Siemens Healthcare, MR Applications Development, Erlangen (Germany); Seo, Seung Young [Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Chonbuk (Korea, Republic of); Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Chonbuk (Korea, Republic of); Chonbuk National University Medical School and Hospital, Department of Internal Medicine, Jeonju (Korea, Republic of)

    2017-10-15

    To compare spin-echo echoplanar imaging (SE-EPI) and gradient recalled echo (GRE) MR elastography (MRE) at 3 T with and without gadoxetic acid administration. We included 84 patients who underwent MRE before and after gadoxetic acid administration, each time using SE-EPI and GRE sequences. Diagnostic performance for predicting clinical liver cirrhosis and high-risk oesophageal varices was assessed using the area under the receiver-operating characteristic curve (AUC). The relationships between T2* and success of MRE, and correlations of liver stiffness (LS) values between the two sequences or before and after gadoxetic acid administration, were investigated. SE-EPI-MRE resulted in a significantly lower failure rate than GRE-MRE (1.19% vs. 10.71%, P = 0.018). Increased T2* was related to higher probability of successful LS measurement (odds ratio, 1.426; P = 0.004). The AUC of SE-EPI-MRE was comparable to that of GRE-MRE for the detection of clinical liver cirrhosis (0.938 vs. 0.948, P = 0.235) and high-risk oesophageal varices (0.839 vs. 0.752, P = 0.354). LS values were not significantly different before and after gadoxetic acid administration. SE-EPI-MRE can substitute for GRE-MRE for the detection of clinical liver cirrhosis and high-risk oesophageal varices. SE-EPI-MRE is particularly useful in patients with iron deposition, with lower failure rates than GRE-MRE. (orig.)

  14. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    Science.gov (United States)

    Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus; Strobl, Markus

    2017-06-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering.

  15. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    International Nuclear Information System (INIS)

    Sales, Morten; Strobl, Markus; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus

    2017-01-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering. (paper)

  16. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, R.; Scheidler, J.; Porn, U.; Reiser, M. [Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Seelos, K.; Yousry, T. [Department of Neuroradiology, Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Exner, H. [Institute for Medical Epidemiology, Klinikum Grosshadern, University of Munich, Munich (Germany); Rosen, B.R. [Department of Radiology, Massachusetts General Hospital, NMR Center, Charlestown, MA (United States)

    1999-09-01

    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1.5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. (orig.) With 3 figs., 3 tabs., 27 refs.

  17. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors

    International Nuclear Information System (INIS)

    Bruening, R.; Scheidler, J.; Porn, U.; Reiser, M.; Seelos, K.; Yousry, T.; Exner, H.; Rosen, B.R.

    1999-01-01

    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1.5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. (orig.)

  18. Significance of spin-echo intracardiac signal during cine cardiac MR imaging

    International Nuclear Information System (INIS)

    Feiglin, D.H.I.; O'Donnell, J.K.

    1987-01-01

    Thirty patient studies were performed using several multisection spin multi-echo pulse sequences (SEPS) formattable into the cine mode, with repetition time (TR)≤RR interval and 18 msec ≤ echo time (TE) ≤ 64 msec. Thirteen studies were performed in patients with various cardiomyopathies, ten in patients with cardiac tumors, and seven in healthy volunteers. The SEPS in the multi-echo acquisition format differentiated between tumor and stasis in terms of signal behavior. Healthy subjects may exhibit stasis of flow adjacent to the endocardium during the cardiac cycle

  19. Size Distribution Imaging by Non-Uniform Oscillating-Gradient Spin Echo (NOGSE MRI.

    Directory of Open Access Journals (Sweden)

    Noam Shemesh

    Full Text Available Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems - ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE, can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE's ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions - where the ground truth can be determined from ancillary microscopy - corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE's potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development.

  20. Contrast-enhanced MR imaging of metastatic brain tumor at 3 Tesla. Utility of T1-weighted SPACE compared with 2D spin echo and 3D gradient echo sequence

    International Nuclear Information System (INIS)

    Komada, Tomohiro; Naganawa, Shinji; Ogawa, Hiroshi

    2008-01-01

    We evaluated the newly developed whole-brain, isotropic, 3-dimensional turbo spin-echo imaging with variable flip angle echo train (SPACE) for contrast-enhanced T 1 -weighted imaging in detecting brain metastases at 3 tesla (T). Twenty-two patients with suspected brain metastases underwent postcontrast study with SPACE, magnetization-prepared rapid gradient-echo (MP-RAGE), and 2-dimensional T 1 -weighted spin echo (2D-SE) imaging at 3 T. We quantitatively compared SPACE, MP-RAGE, and 2D-SE images by using signal-to-noise ratios (SNRs) for gray matter (GM) and white matter (WM) and contrast-to-noise ratios (CNRs) for GM-to-WM, lesion-to-GM, and lesion-to-WM. Two blinded radiologists evaluated the detection of brain metastases by segment-by-segment analysis and continuously-distributed test. The CNR between GM and WM was significantly higher on MP-RAGE images than on SPACE images (P 1 -weighted imaging. (author)

  1. TU-EF-BRA-03: Free Induction Decay (without the Decay) and Spin-Echo Imaging

    International Nuclear Information System (INIS)

    Price, R.

    2015-01-01

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common

  2. TU-EF-BRA-03: Free Induction Decay (without the Decay) and Spin-Echo Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Price, R. [Vanderbilt Medical Center (United States)

    2015-06-15

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common

  3. Gadolinium-Enhanced Three-Dimensional Magnetization - Prepared Rapid Gradient-Echo (3D MP-RAGE) Imaging is Superior to Spin-Echo Imaging in Delineating Brain Metastases

    International Nuclear Information System (INIS)

    Takeda, T.; Takeda, A.; Nagaoka, T.; Kunieda, E.; Takemasa, K.; Watanabe, M.; Hatou, T.; Oguro, S.; Katayama, M.

    2008-01-01

    Background: Precisely defining the number and location of brain metastases is very important for establishing a treatment strategy for malignancies. Although magnetic resonance imaging (MRI) is now considered the best modality, various improvements in sequences are still being made. Purpose: To prospectively compare the diagnostic ability of three-dimensional, magnetization-prepared rapid gradient-echo (3D MP-RAGE) imaging in detecting metastatic brain tumors, with that of two-dimensional spin-echo (2D SE) T1-weighted imaging. Material and Methods: A total of 123 examinations were included in this study, and 119 examinations from 88 patients with known malignancies were analyzed. All patients underwent T1- and T2-weighted 2D SE transverse imaging, followed by gadolinium-enhanced T1-weighted transverse and coronal 2D SE imaging and 3D MP-RAGE transverse imaging. Four radiologists interpreted the images to compare the accuracy and the time required for interpretation for each imaging. Results: 3D MP-RAGE imaging was significantly better than 2D SE imaging for detecting metastatic brain lesions, regardless of the readers' experience. The sensitivities of the 3D MP-RAGE and 2D SE imaging for all observers were 0.81 vs. 0.80 (P>0.05), specificities were 0.93 vs. 0.87 (P 0.05), and accuracies were 0.84 vs. 0.78 (P<0.05), respectively. There was no significant difference in the time required for image interpretation between the two modalities (15.6±4.0 vs. 15.4±4.1 min). Conclusion: 3D MP-RAGE imaging proved superior to 2D SE imaging in the detection of brain metastases

  4. T2-weighted MR imaging of liver lesions: a prospective evaluation comparing turbo spin-echo, breath-hold turbo spin-echo and half-Fourier turbo spin-echo (HASTE) sequences

    International Nuclear Information System (INIS)

    Martin, J.; Villajos, M.; Oses, M. J.; Veintemillas, M.; Rue, M.; Puig, J.; Sentis, M.

    2000-01-01

    To compare turbo spin-echo (TSE), breath-hold TSE and half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequences quantitatively and qualitatively in T2-weighted images of liver lesions. The authors evaluated prospectively 89 liver lesions in 73 patients using a 1.0-T magnetic resonance system to compare TSE, breath-hold TSE and HASTE sequences. The quantitative parameters were: lesion-to-liver contrast and lesion-to-liver contrast-to-noise ratio. The qualitative analysis was performed by two observers in consensus who examined four parameters: respiratory artifacts, lesion edge definition, intrahepatic vessel definition and image quality. Repeated measures analysis of variance was utilized to compare the quantitative variables and Friedman's nonparametric test for the qualitative parameters. In quantitative terms, the lesion-to-liver contrast was similar in TSE and breath-hold TSE sequences (2.45±1.44 versus 2.60±1.66), both of which were significantly better than the HASTE sequence (1.12±0.72; p<0.001). The lesion-to-liver contrast-to-noise ratio was significantly higher in the TSE sequence (62.60±46.40 versus 40.22±25.35 versus 50.90±32.10 for TSE, breath-hold TSE and HASTE sequences, respectively; p<0.001). In the qualitative comparisons, the HASTE sequence was significantly better than the TSE and breath-hold TSE sequences (p<0.001) in terms of artifacts and definition of lesion edge and intrahepatic vessels. Image quality was also significantly greater in the HASTE sequence (p<0.001). In quantitative terms, the TSE sequence is better than the breath-hold TSE and HASTE sequences, but there are no movement artifacts in the HASTE sequence, which is also significantly superior to TSE and breath-hold TSE sequences in qualitative terms and, thus, can be employed for T2-weighted images in liver studies. (Author) 17 refs

  5. Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging.

    Science.gov (United States)

    Truong, Trong-Kha; Song, Allen W; Chen, Nan-Kuei

    2015-01-01

    In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2(∗) -weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.

  6. ECHO virus

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that can lead ...

  7. Diffusion-weighted single shot echo planar imaging of colorectal cancer using a sensitivity-encoding technique

    International Nuclear Information System (INIS)

    Nasu, Katsuhiro; Kuroki, Yoshihumi; Murakami, Koji; Nawano, Shigeru; Kuroki, Seiko; Moriyama, Noriyuki

    2004-01-01

    We wanted to determine the feasibility of diffusion-weighted single shot echo planar imaging using a sensitivity encoding diffusion weighted imaging (SENSE-DWI) technique in depicting colorectal cancer. Forty-two patients with sigmoid colon cancer and rectal cancer, all proven pathologically, were examined on T2-turbo spin echo (TSE) and SENSE-DWI. No bowel preparation was performed before examination. The b-factors used in SENSE-DWI were zero and 1000 s/mm 2 . In 10 randomly selected cases, the images whose b-factors were 250 and 500 s/mm 2 were also obtained. The reduction factor of SENSE was 2.0 in all sequences. Two radiologists evaluated the obtained images from the viewpoints of tumor detectability, image distortion and misregistration of the tumors. The apparent diffusion coefficients (ADCs) of the tumors and urine in the urinary bladders in each patient were measured to evaluate the correlation between ADC and pathological classification of each tumor. All tumors were depicted hyperintensely on SENSE-DWI. Even though single shot echo planar imaging (EPI) was used, the image distortion and misregistration was quite pronounced because of simultaneous use of SENSE. On SENSE-DWI whose b-factor was 1000 s/mm 2 , the normal colon wall and feces were always hypointense and easily differentiated from the tumors. The mean ADC value of each tumor was 1.02±0.1 (x 10 -3 ) mm 2 /s. No overt correlation can be pointed out between ADC and pathological classification of each tumor. SENSE-DWI is a feasible method for depicting colorectal cancer. SENSE-DWI provides strong contrast among colorectal cancers, normal rectal wall and feces. (authors)

  8. MRI of acute cerebral infarction: a comparison of FLAIR and T2-weighted fast spin-echo imaging

    International Nuclear Information System (INIS)

    Noguchi, K.; Ogawa, T.; Inugami, A.; Fujita, H.; Hatazawa, J.; Shimosegawa, E.; Okudera, T.; Uemura, K.; Seto, H.

    1997-01-01

    Fluid-attenuated inversion-recovery (FLAIR) sequences have been reported to provide high sensitivity to a wide range of central nervous system diseases. To our knowledge, however, FLAIR sequences have not been used to study patients with acute cerebral infarcts. We evaluated the usefulness of FLAIR sequences in this context. FLAIR sequences were acquired on a 0.5 T superconducting unit within 8 h of the onset in 19 patients (aged 26-80 years) with a total of 23 ischaemic lesions. The images were reviewed retrospectively by three neuroradiologists, and the FLAIR images were compared with T2-weighted fast spin-echo images. All but one of the ischaemic lesions involving grey matter was clearly demonstrated on FLAIR images as increased signal intensity in cortical or central grey matter. FLAIR images were particularly useful for detecting the hyperacute cortical infarcts within 3 h of onset, which were not readily detected on the spin-echo images. In 9 of 11 patients with complete proximal occlusion, the distal portion of the cerebral artery was visible as an area of high signal intensity on FLAIR images. (orig.). With 4 figs., 1 tab

  9. Echo-lucency of computerized ultrasound images of carotid atherosclerotic plaques are associated with increased levels of triglyceride-rich lipoproteins as well as increased plaque lipid content

    DEFF Research Database (Denmark)

    Grønholdt, Marie-Louise Moes; Nordestgaard, Børge G.; Weibe, Brit M.

    1998-01-01

    carotid plaque echo-lucency and that echo-lucency predicts a high plaque lipid content. Methods and Results-The study included 137 patients with neurological symptoms and greater than or equal to 50% stenosis of the relevant carotid artery, High-resolution B-mode ultrasound images of carotid plaques were......Background-Echo-lucency of carotid atherosclerotic plaques on computerized ultrasound B-mode images has been associated with a high incidence of brain infarcts as evaluated on CT scans. We tested the hypotheses that triglyceride-rich lipoproteins in the fasting and postprandial state predict...

  10. Echo Particle Image Velocimetry for Estimation of Carotid Artery Wall Shear Stress: Repeatability, Reproducibility and Comparison with Phase-Contrast Magnetic Resonance Imaging.

    Science.gov (United States)

    Gurung, Arati; Gates, Phillip E; Mazzaro, Luciano; Fulford, Jonathan; Zhang, Fuxing; Barker, Alex J; Hertzberg, Jean; Aizawa, Kunihiko; Strain, William D; Elyas, Salim; Shore, Angela C; Shandas, Robin

    2017-08-01

    Measurement of hemodynamic wall shear stress (WSS) is important in investigating the role of WSS in the initiation and progression of atherosclerosis. Echo particle image velocimetry (echo PIV) is a novel ultrasound-based technique for measuring WSS in vivo that has previously been validated in vitro using the standard optical PIV technique. We evaluated the repeatability and reproducibility of echo PIV for measuring WSS in the human common carotid artery. We measured WSS in 28 healthy participants (18 males and 10 females, mean age: 56 ± 12 y). Echo PIV was highly repeatable, with an intra-observer variability of 1.0 ± 0.1 dyn/cm 2 for peak systolic (maximum), 0.9 dyn/cm 2 for mean and 0.5 dyn/cm 2 for end-diastolic (minimum) WSS measurements. Likewise, echo PIV was reproducible, with a low inter-observer variability (max: 2.0 ± 0.2 dyn/cm 2 , mean: 1.3 ± 0.1 dyn/cm 2 , end-diastolic: 0.7 dyn/cm 2 ) and more variable inter-scan (test-retest) variability (max: 7.1 ± 2.3 dyn/cm 2 , mean: 2.9 ± 0.4 dyn/cm 2 , min: 1.5 ± 0.1 dyn/cm 2 ). We compared echo PIV with the reference method, phase-contrast magnetic resonance imaging (PC-MRI); echo PIV-based WSS measurements agreed qualitatively with PC-MRI measurements (r = 0.89, p PIV vs. PC-MRI): WSS at peak systole: 21 ± 7.0 dyn/cm 2 vs. 15 ± 5.0 dyn/cm 2 ; time-averaged WSS: 8.9 ± 3.0 dyn/cm 2 vs. 7.1 ± 3.0 dyn/cm 2 (p  0.05). For the first time, we report that echo PIV can measure WSS with good repeatability and reproducibility in adult humans with a broad age range. Echo PIV is feasible in humans and offers an easy-to-use, ultrasound-based, quantitative technique for measuring WSS in vivo in humans with good repeatability and reproducibility. Copyright © 2017. Published by Elsevier Inc.

  11. Short repetition time multiband echo-planar imaging with simultaneous pulse recording allows dynamic imaging of the cardiac pulsation signal.

    Science.gov (United States)

    Tong, Yunjie; Hocke, Lia M; Frederick, Blaise deB

    2014-11-01

    Recently developed simultaneous multislice echo-planar imaging (EPI) sequences permit imaging of the whole brain at short repetition time (TR), allowing the cardiac fluctuations to be fully sampled in blood-oxygen-level dependent functional MRI (BOLD fMRI). A novel low computational analytical method was developed to dynamically map the passage of the pulsation signal through the brain and visualize the whole cerebral vasculature affected by the pulse signal. This algorithm is based on a simple combination of fast BOLD fMRI and the scanner's own built-in pulse oximeter. Multiple, temporally shifted copies of the pulse oximeter data (with 0.08 s shifting step and coverage of a 1-s span) were downsampled and used as cardiac pulsation regressors in a general linear model based analyses (FSL) of the fMRI data. The resulting concatenated z-statistics maps show the voxels that are affected as the cardiac signal travels through the brain. Many voxels were highly correlated with the pulsation regressor or its temporally shifted version. The dynamic and static cardiac pulsation maps obtained from both the task and resting state scans, resembled cerebral vasculature. The results demonstrated: (i) cardiac pulsation significantly affects most voxels in the brain; (ii) combining fast fMRI and this analytical method can reveal additional clinical information to functional studies. Copyright © 2013 Wiley Periodicals, Inc.

  12. Fat suppression at three-dimensional T1-weighted MR imaging of the hands: Dixon method versus CHESS technique.

    Science.gov (United States)

    Kirchgesner, T; Perlepe, V; Michoux, N; Larbi, A; Vande Berg, B

    2018-01-01

    To compare the effectiveness of fat suppression and the image quality of the Dixon method with those of the chemical shift-selective (CHESS) technique in hands of normal subjects at non-enhanced three-dimensional (3D) T1-weighted MR imaging. Both hands of 14 healthy volunteers were imaged with 3D fast spoiled gradient echo (FSPGR) T1-weighted Dixon, 3D FSPGR T1-weighted CHESS and 3D T1-weighted fast spin echo (FSE) CHESS sequences in a 1.5T MR scanner. Three radiologists scored the effectiveness of fat suppression in bone marrow (EFS BM ) and soft tissues (EFS ST ) in 20 joints per subject. One radiologist measured the signal-to-noise ratio (SNR) in 10 bones per subject. Statistical analysis used two-way ANOVA with random effects (PCHESS sequence and the 3D FSE T1-weighted CHESS sequence (PCHESS sequence (PCHESS sequence in the axial plane (P=0.0028). Mean SNR was statistically significantly higher for 3D FSPGR T1-weighted Dixon sequence than for 3D FSPGR T1-weighted CHESS and 3D FSE T1-weighted CHESS sequences (PCHESS technique at 3D T1-weighted MR imaging of the hands. Copyright © 2017 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  13. Echo intensity obtained from ultrasonography images reflecting muscle strength in elderly men

    Directory of Open Access Journals (Sweden)

    Watanabe Y

    2013-07-01

    Full Text Available Yuya Watanabe,1 Yosuke Yamada,1,2 Yoshihiro Fukumoto,3 Tatsuro Ishihara,4 Keiichi Yokoyama,1 Tsukasa Yoshida,1 Motoko Miyake,1 Emi Yamagata,5 Misaka Kimura1 1Laboratory of Sports and Health Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; 2Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan; 3Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan; 4Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan; 5Laboratory of Gerontological Nursing, Kyoto Prefectural University of Medicine, Kyoto, Japan Background: It is well known that loss of muscle mass (quantitative change is a major change that occurs with aging. Qualitative changes in skeletal muscle, such as increased intramuscular fat, also occur as one ages. Enhanced echo intensity (EI on ultrasonography images of skeletal muscle is believed to reflect muscle quality. Recent studies evaluating the quality of skeletal muscle using computer-aided gray scale analysis showed that EI is associated with muscle strength independently of age or muscle size in middle-aged and elderly women. The aim of the present study was to investigate whether muscle quality based on EI is associated with muscle strength independently of muscle size for elderly men. Methods: A total of 184 elderly men (65–91 years living independently in Kyoto, Japan, participated in this study. The EI, muscle thickness (MT, and subcutaneous fat thickness (FT of the anterior compartment of the right thigh were determined by assessing ultrasonography images. The maximum isometric torque of knee extension at a knee angle of 90° was measured. Results: The EI showed a significant negative correlation with muscle strength (r = -0.333, P < 0.001. Multivariate regression analysis revealed that the MT and EI of the knee extensor muscle were independently associated with maximum isometric knee extension strength. Even when partial correlation analysis was performed with age

  14. Development of pulse-echo ultrasonic propagation imaging system and its delivery to Korea Air Force

    Science.gov (United States)

    Ahmed, Hasan; Hong, Seung-Chan; Lee, Jung-Ryul; Park, Jongwoon; Ihn, Jeong-Beom

    2017-04-01

    This paper proposes a full-field pulse-echo ultrasonic propagation imaging (FF-PE-UPI) system for non-destructive evaluation of structural defects. The system works by detection of bulk waves that travel through the thickness of a specimen. This is achieved by joining the laser beams for the ultrasonic wave generation and sensing. This enables accurate and clear damage assessment and defect localization in the thickness with minimum signal processing since bulk waves are less susceptible to dispersion during short propagation through the thickness. The system consists of a Qswitched laser for generating the aforementioned waves, a laser Doppler vibrometer (LDV) for sensing, optical elements to combine the generating and sensing laser beams, a dual-axis automated translation stage for raster scanning of the specimen and a digitizer to record the signals. A graphical user interface (GUI) is developed to control all the individual blocks of the system. Additionally, the software also manages signal acquisition, processing, and display. The GUI is created in C++ using the QT framework. In view of the requirements posed by the Korean Air Force(KAF), the system is designed to be compact and portable to allow for in situ inspection of a selected area of a larger structure such as radome or rudder of an aircraft. The GUI is designed with a minimalistic approach to promote usability and adaptability while masking the intricacies of actual system operation. Through the use of multithreading the software is able to show the results while a specimen is still being scanned. This is achieved by real-time and concurrent acquisition, processing, and display of ultrasonic signal of the latest scan point in the scan area.

  15. Tracking of Range and Azimuth for Continuous Imaging of Marine Target in Monopulse ISAR with Wideband Echoes

    Directory of Open Access Journals (Sweden)

    Junhao Xie

    2016-01-01

    Full Text Available Real-time tracking of maneuvering targets is the prerequisite for continuous imaging of moving targets in inverse synthetic aperture radar (ISAR. In this paper, the range and azimuth tracking (RAT method with wideband radar echoes is first presented for a mechanical scanning monopulse ISAR, which is regarded as the simplest phased array unit due to the two antenna feeds. To relieve the estimation fluctuation and poor robustness of the RAT method with a single snapshot, a modified range and azimuth tracking approach based on centroid algorithm (RATCA with forgotten factor and multiple echoes is then proposed. The performances of different forgotten factors are investigated. Both theoretical analysis and experimental results demonstrate that RATCA is superior to RAT method. Particularly, when target echo is missing occasionally, RAT method fails while RATCA still keeps good performance. The potential of continuous imaging with shipborne ISAR is verified by experimental results. With minor modification, the method proposed in this paper can be potentially applied in the phased array radar.

  16. Conjugate echoes of artifically injected electron beams detected optically by means of new image processing

    International Nuclear Information System (INIS)

    Hallinan, T.J.; Stenbaek-Nielsen, H.C.; Baldridge, J.; Winckler, J.; Malcolm, P.

    1990-01-01

    Following two upward injections of energetic electrons (38 keV and 26 keV) from the Echo 4 rocket-borne electron accelerator, artificial auroral streaks were detected by ground-based low-light-level television. They were delayed relative to the injections by 2.06 s and 2.42 s, respectively. The delays are only 4-5% longer than calculated using a dynamic model of the geomagnetic field. Other field models yielded shorter bounce times. Since the delays were in the inverse ratio of the relativistic velocities calculated for the nominal beam energies, it is concluded that the potential of the payload remained below 1 kV during 45 mA injections at an altitude of 210 km. The echo streaks showed little dispersion in either time or space, indicating that the portion of the beam returning to the northen hemisphere loss cone remained collimated and nearly monoenergetic. But there was a 70% loss in the return flux. A diligent search failed to locate similar echoes from the more powerful injections employed in the Echo 5 and Echo 7 rocket experiments, suggesting flux losses of at least 98% and 92%, respectively. The losses are thought to be due to pitch angle scattering out of the loss cone as the electrons traverse the equatorial region but could also be due to collective beam plasma interactions

  17. Magnetic resonance in cartilaginous lesions of the knee joint with three-dimensional gradient-echo imaging

    International Nuclear Information System (INIS)

    Reiser, M.F.; Bongartz, G.; Erlemann, R.; Gaebert, K.; Stoeber, U.; Peters, P.E.; Strobel, M.; Pauly, T.

    1988-01-01

    Diagnosis of chondromalacia of the patellofemoral joint using three-dimensional gradient-echo sequences was investigated in 41 patients, with arthroscopic verification in 25 patients. In vitro examinations in human caderveric patellae were performed in order to determine optimal imaging parameters. FLASH (T R =40 ms, T E =10 ms, flip angle=30 0 ) and FISP (T R =40 ms, T E =10 ms, flip angle=40 0 ) were used in clinical studies. The therapeutically relevant differentiation of major and minor degrees of chondromalacia seems to be possible. 30 0 FLASH-images in the axial plane proved to be the most efficacious technique for the diagnosis of chondromalacia. (orig./GDG)

  18. Combined echo offset (Dixon) and line volume chemical shift imaging as a clinical imaging protocol

    International Nuclear Information System (INIS)

    Listerud, J.; Chan, T.; Lenkinski, R.E.; Kressel, H.Y.; Chao, P.W.

    1989-01-01

    The authors have studied the sensitivity and specificity of the line-volume chemical-shift imaging (CSI) method as compared with the Dixon method they have recently implemented on a Signa, which supports a variety of options. Potential sources or error for the Dixon method include line broadening due to susceptibility, field inhomogeneity, and errors form olefinic resonances associated with fat, which behave like water in the Dixon regime. The authors investigate whether a combined Dixon/line-volume CSI method could be used to improve the placement of the line volume and to provide higher sensitivity and specificity than does the Dixon method alone

  19. Fat-Suppressed T2 Sequences for Routine 3.0-Tesla Lumbar Spine Magnetic Resonance Imaging: A Preliminary Report

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, A. M.; Gadani, S.; Palmer, C. S.; Vidarsson, L. (Dept. of Radiology, Hennepin County and Univ. of Minnesota Medical Centers, Minneapolis, MN (United States))

    2008-09-15

    Background: Clear depiction of the ligamentum flavum on routine lumbar magnetic resonance imaging (MRI) is essential in accurately describing the extent of degenerative disease. In routine, noncontrast evaluations, focal fatty deposition or hemangiomas can be difficult to distinguish from malignant foci on fast spin-echo (FSE) T2-weighted images. Purpose: To describe the use of T2 fast field echo (T2FFE) in combination with spectral presaturation inversion recovery (SPIR) fat suppression for noncontrast, routine lumbar spine outpatient MR imaging at 3.0 Tesla (3T). Material and Methods: An axial gradient echo (GE) T2FFE sequence was combined with SPIR fat suppression (T2FFE-SPIR), via a 3T Philips Intera (Philips Medical Systems, Best, The Netherlands) scanner, and added to the routine, noncontrast lumbar MRI examinations, which included sagittal FSE T1-weighted (T1WI), T2-weighted (T2WI), short-tau inversion recovery (STIR), and axial FSE T2WI. The sequence was performed in over 500 patients over a 1-year period, without intravenous contrast, and with slice thickness and planes of section identical to the axial FSE T1WI and T2WI images. The sequence typically lasted about 4.5-6 min. Results: The use of T2FFE-SPIR enabled visualization of the ligamentum flavum in degenerative disease, and the exclusion of focal fatty lesions on FSE T2WI. Other benefits included: the identification of malignant foci, the uncommon detection of hemorrhage, and the elimination of spurious flow voids. Several brief examples are provided to demonstrate the utility of this technique. Conclusion: The addition of T2FFE-SPIR to routine, noncontrast protocols in outpatients could provide further confidence in the visualization of the ligamentum flavum in degenerative disease, and can exclude malignancy in T2-bright areas of focal fatty marrow. Larger studies would be helpful to evaluate the accuracy of this technique versus FSE techniques in depicting degenerative, malignant, or inflammatory

  20. Fat-Suppressed T2* Sequences for Routine 3.0-Tesla Lumbar Spine Magnetic Resonance Imaging: A Preliminary Report

    International Nuclear Information System (INIS)

    McKinney, A. M.; Gadani, S.; Palmer, C. S.; Vidarsson, L.

    2008-01-01

    Background: Clear depiction of the ligamentum flavum on routine lumbar magnetic resonance imaging (MRI) is essential in accurately describing the extent of degenerative disease. In routine, noncontrast evaluations, focal fatty deposition or hemangiomas can be difficult to distinguish from malignant foci on fast spin-echo (FSE) T2-weighted images. Purpose: To describe the use of T2* fast field echo (T2FFE) in combination with spectral presaturation inversion recovery (SPIR) fat suppression for noncontrast, routine lumbar spine outpatient MR imaging at 3.0 Tesla (3T). Material and Methods: An axial gradient echo (GE) T2FFE sequence was combined with SPIR fat suppression (T2FFE-SPIR), via a 3T Philips Intera (Philips Medical Systems, Best, The Netherlands) scanner, and added to the routine, noncontrast lumbar MRI examinations, which included sagittal FSE T1-weighted (T1WI), T2-weighted (T2WI), short-tau inversion recovery (STIR), and axial FSE T2WI. The sequence was performed in over 500 patients over a 1-year period, without intravenous contrast, and with slice thickness and planes of section identical to the axial FSE T1WI and T2WI images. The sequence typically lasted about 4.5-6 min. Results: The use of T2FFE-SPIR enabled visualization of the ligamentum flavum in degenerative disease, and the exclusion of focal fatty lesions on FSE T2WI. Other benefits included: the identification of malignant foci, the uncommon detection of hemorrhage, and the elimination of spurious flow voids. Several brief examples are provided to demonstrate the utility of this technique. Conclusion: The addition of T2FFE-SPIR to routine, noncontrast protocols in outpatients could provide further confidence in the visualization of the ligamentum flavum in degenerative disease, and can exclude malignancy in T2-bright areas of focal fatty marrow. Larger studies would be helpful to evaluate the accuracy of this technique versus FSE techniques in depicting degenerative, malignant, or inflammatory

  1. T2-weighted MR imaging of the liver: Qualitative and quantitative comparison of SPACE MR imaging with turbo spin-echo MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dohan, Anthony, E-mail: anthony.dohan@lrb.aphp.fr [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Université Paris-Diderot, Sorbonne Paris Cité, 10 Rue de Verdun, 75010 Paris (France); UMR INSERM 965, Hôpital Lariboisière, 2 Rue Amboise Paré, 75010 Paris (France); Gavini, Jean-Philippe, E-mail: jpgavini@gmail.com [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Université Paris-Diderot, Sorbonne Paris Cité, 10 Rue de Verdun, 75010 Paris (France); Placé, Vinciane, E-mail: vinciane.place@gmail.com [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Sebbag, Delphine, E-mail: delphinesebbag@gmail.com [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Université Paris-Diderot, Sorbonne Paris Cité, 10 Rue de Verdun, 75010 Paris (France); Vignaud, Alexandre, E-mail: alexandre.vignaud@cea.fr [LRMN, Neurospin, CEA-SACLAY, Bâtiment 145, 91 191 Gif-sur-Yvette Cedex (France); and others

    2013-11-01

    Objective: To qualitatively and quantitatively compare T2-weighted MR imaging of the liver using volumetric spin-echo with sampling perfection with application-optimized contrast using different flip angle evolutions (SPACE) with conventional turbo spin-echo (TSE) sequence for fat-suppressed T2-weighted MR imaging of the liver. Materials and methods: Thirty-three patients with suspected focal liver lesions had SPACE MR imaging and conventional fat-suppressed TSE MR imaging. Images were analyzed quantitatively by measuring the lesion-to-liver contrast-to-noise ratio (CNR), and the signal-to-noise ratio (SNR) of main focal hepatic lesions, hepatic and splenic parenchyma and qualitatively by evaluating the presence of vascular, respiratory motion and cardiac artifacts. Wilcoxon signed rank test was used to search for differences between the two sequences. Results: SPACE MR imaging showed significantly greater CNR for focal liver lesions (median = 22.82) than TSE MR imaging (median = 14.15) (P < .001). No differences were found for SNR of hepatic parenchyma (P = .097), main focal hepatic lesions (P = .35), and splenic parenchyma (P = .25). SPACE sequence showed less artifacts than TSE sequence (vascular, P < .001; respiratory motion, P < .001; cardiac, P < .001) but needed a longer acquisition time (228.4 vs. 162.1 s; P < .001). Conclusion: SPACE MR imaging provides a significantly increased CNR for focal liver lesions and less artifacts by comparison with the conventional TSE sequence. These results should stimulate further clinical studies with a surgical standard of reference to compare the two techniques in terms of sensitivity for malignant lesions.

  2. Gadolinium-enhanced fat-suppression MR imaging of the female pelvis

    International Nuclear Information System (INIS)

    Shin, Joo Yong; Kim, Jung Sik; Kim, Hong

    1998-01-01

    To compare the value of Gd-DTPA enhanced, fat-suppression T1-weighted (Gd-FST1SE) MR images in the diagnosis of female pelvic disorders with that of fast spin-echo T1-weighted(T1FSE) and fast spin-echoT2-weighted(T2FSE) MR images. Materials and Methods : Pelvic MR images of 42 women (24 ovarian disorders, 19 uterine disorders) were reviewed by two radiologists. Discrimination of normal anatomic structures, identification of pathologic lesions and recognition of internal structure of the lesions such as solid and cystic portion,papillary nodule, septa and wall were evaluated using a scoring system. The Friedman two-way ANOVA test was used for data analysis. Results : T2FSE was useful for evaluation of the uterine cervix(T1/T2/Gd, 2.5/3.9/2.8,respectively), junctional zone(1.6/3.1/2.5), endometrium (2.0/3.3/3.0), ovary(1.1/2.1/1.7) and uterine myoma(1.7/2.4/2.1)(P<0.001), but secondary degeneration was best visualized on Gd-FS T1SE. The Gd-FS T1SE ;lymphadenopathy(3.4/1.5/3.7) was better visualised on this modality than on either TIFSE or T2FSE. Gd-FS T1SE images also clearly depicted papillary projection(2.4/3.1/3.8) and the solid component (2.9/3.1/3.5) of ovariancystic neoplasm(P<0.01). The confidence level in the identification of ovarian mass, internal septation and surrounding wall of cystic neoplasm was not improved on Gd-FS T1SE. Conclusion : The Gd-FS T1SE images were useful for the evaluation of metastatic lymphadenopathy in uterine cervical malignancy and for identification of the solid component and papillary projection of ovarian cystic neoplasm

  3. Short-scan-time multi-slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging.

    Science.gov (United States)

    Callot, Virginie; Duhamel, Guillaume; Cozzone, Patrick J; Kober, Frank

    2008-10-01

    Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images

  4. MR venography using the 3D-MEDIC (multi echo data imaging combination) sequence for lower extremities

    International Nuclear Information System (INIS)

    Kitagawa, Hisashi; Kishi, Takayuki; Saito, Ryo; Shohji, Tomokazu; Noguchi, Keiji; Sunohara, Nobuo

    2008-01-01

    It is possible to diagnose varicose vein from medical history and physical examinations including inspection and palpation. Non-contrast enhanced MRV (magnetic resonance venography) is becoming popular because it can be easily performed without being affected by the radiographer's skill. We thought that the use of MEDIC (multi echo data imaging combination) would enable us to delineate varicose veins within a short acquisition time and without need for synchronization or contrast enhancement. We used the SIEMENS MAGNETOM Avanto 1.5-Tesla unit to acquire images. Our subjects were five healthy volunteers and five patients with varicose vein. The signal strength of deep veins and muscles were measured. The SNR (signal-to-nose ratio) of deep veins and the CNR (contrast-to-noise ratio) between deep veins and muscles were also measured. Flip angle, fat suppression methods, MTC (magnetic transfer contrast) pulse, and combined echo. Using the optimum image acquisition protocol following our preliminary study with varicose vein patients, the ability of the 3D-MEDIC method to delineate varicose veins was compared with that of the electrocardiogram (ECG)-synchronized two-dimensional time of flight (2D-TOF) method. We found that the following settings would enable us to acquire images from a wide range=coronal, within short acquisition time and needless ECG-triggering. Flip angle=20 degrees, fat suppression method=water excitation, MTC pulse=ON, combined echo=2. 3D-MEDIC was better than the 2D-TOF method in delineating the varicose vein itself and the connection between the varicose vein and deep veins. It is expected that 3D-MEDIC may be useful in the clinical diagnosis of varicose veins. (author)

  5. K-space trajectory mapping and its application for ultrashort Echo time imaging

    Czech Academy of Sciences Publication Activity Database

    Latta, P.; Starčuk jr., Zenon; Gruwel, M. L. H.; Weber, M.H.; Tomanek, B.

    2017-01-01

    Roč. 36, February (2017), s. 68-76 ISSN 0730-725X R&D Projects: GA ČR(CZ) GA15-12607S Institutional support: RVO:68081731 Keywords : gradient imperfections * K-space deviation * trajectrory estaimation * ultrashort echo time Subject RIV: FS - Medical Facilities ; Equipment OBOR OECD: Medical engineering Impact factor: 2.225, year: 2016

  6. Prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects - a 3.0 T magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Stahl, Robert; Luke, Anthony; Ma, C.B.; Krug, Roland; Steinbach, Lynne; Majumdar, Sharmila; Link, Thomas M.

    2008-01-01

    To determine the prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects. To compare the diagnostic performance of cartilage-dedicated magnetic resonance imaging (MRI) sequences at 3.0 T. Ten marathon runners underwent 3.0 T MRI 2-3 days before and after competition. Twelve physically active asymptomatic subjects not performing long-distance running were examined as controls. Pathologic condition was assessed with the whole-organ magnetic resonance imaging score (WORMS). Cartilage abnormalities and bone marrow edema pattern (BMEP) were quantified. Visualization of cartilage pathology was assessed with intermediate-weighted fast spin-echo (IM-w FSE), fast imaging employing steady-state acquisition (FIESTA) and T1-weighted three-dimensional (3D) high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) MRI sequences. Eight of ten marathon runners and 7/12 controls showed knee abnormality. Slightly more and larger cartilage abnormalities, and BMEP, in marathon runners yielded higher but not significantly different WORMS (P > 0.05) than in controls. Running a single marathon did not alter MR findings substantially. Cartilage abnormalities were best visualized with IM-w FSE images (P < 0.05). A high prevalence of knee abnormalities was found in marathon runners and also in active subjects participating in other recreational sports. IM-w FSE sequences delineated more cartilage MR imaging abnormalities than did FIESTA and SPGR sequences. (orig.)

  7. Prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects-a 3.0 T magnetic resonance imaging study.

    Science.gov (United States)

    Stahl, Robert; Luke, Anthony; Ma, C Benjamin; Krug, Roland; Steinbach, Lynne; Majumdar, Sharmila; Link, Thomas M

    2008-07-01

    To determine the prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects. To compare the diagnostic performance of cartilage-dedicated magnetic resonance imaging (MRI) sequences at 3.0 T. Ten marathon runners underwent 3.0 T MRI 2-3 days before and after competition. Twelve physically active asymptomatic subjects not performing long-distance running were examined as controls. Pathologic condition was assessed with the whole-organ magnetic resonance imaging score (WORMS). Cartilage abnormalities and bone marrow edema pattern (BMEP) were quantified. Visualization of cartilage pathology was assessed with intermediate-weighted fast spin-echo (IM-w FSE), fast imaging employing steady-state acquisition (FIESTA) and T1-weighted three-dimensional (3D) high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) MRI sequences. Eight of ten marathon runners and 7/12 controls showed knee abnormality. Slightly more and larger cartilage abnormalities, and BMEP, in marathon runners yielded higher but not significantly different WORMS (P > 0.05) than in controls. Running a single marathon did not alter MR findings substantially. Cartilage abnormalities were best visualized with IM-w FSE images (P marathon runners and also in active subjects participating in other recreational sports. IM-w FSE sequences delineated more cartilage MR imaging abnormalities than did FIESTA and SPGR sequences.

  8. Prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects - a 3.0 T magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Robert [University of California, San Francisco, Musculoskeletal and Quantitative Imaging Group, Department of Radiology, San Francisco, CA (United States); Ludwig Maximilians University of Munich, Department of Clinical Radiology, University Hospitals-Campus Grosshadern, Munich (Germany); Luke, Anthony [University of California, San Francisco, Department of Orthopedic Surgery, San Francisco, CA (United States); University of California, San Francisco, Department of Family and Community Medicine, San Francisco, CA (United States); Ma, C.B. [University of California, San Francisco, Department of Orthopedic Surgery, San Francisco, CA (United States); Krug, Roland; Steinbach, Lynne; Majumdar, Sharmila; Link, Thomas M. [University of California, San Francisco, Musculoskeletal and Quantitative Imaging Group, Department of Radiology, San Francisco, CA (United States)

    2008-07-15

    To determine the prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects. To compare the diagnostic performance of cartilage-dedicated magnetic resonance imaging (MRI) sequences at 3.0 T. Ten marathon runners underwent 3.0 T MRI 2-3 days before and after competition. Twelve physically active asymptomatic subjects not performing long-distance running were examined as controls. Pathologic condition was assessed with the whole-organ magnetic resonance imaging score (WORMS). Cartilage abnormalities and bone marrow edema pattern (BMEP) were quantified. Visualization of cartilage pathology was assessed with intermediate-weighted fast spin-echo (IM-w FSE), fast imaging employing steady-state acquisition (FIESTA) and T1-weighted three-dimensional (3D) high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) MRI sequences. Eight of ten marathon runners and 7/12 controls showed knee abnormality. Slightly more and larger cartilage abnormalities, and BMEP, in marathon runners yielded higher but not significantly different WORMS (P > 0.05) than in controls. Running a single marathon did not alter MR findings substantially. Cartilage abnormalities were best visualized with IM-w FSE images (P < 0.05). A high prevalence of knee abnormalities was found in marathon runners and also in active subjects participating in other recreational sports. IM-w FSE sequences delineated more cartilage MR imaging abnormalities than did FIESTA and SPGR sequences. (orig.)

  9. FLAIR imaging in the follow-up of low-grade gliomas: time to dispense with the dual-echo?

    Energy Technology Data Exchange (ETDEWEB)

    Bynevelt, M.; Britton, J.; Seymour, H.; MacSweeney, E.; Sandhu, K. [Atkinson Morley' s Hospital, London (United Kingdom). Dept. of Neuroradiology; Thomas, N. [Dept. of Neurosurgery, Atkinson Morley' s Hospital, London (United Kingdom)

    2001-02-01

    Fluid-attenuated inversion-recovery (FLAIR) imaging has established its utility in neuroimaging. We propose this imaging sequence as a replacement for proton density (PD) and T2-weighted spin-echo sequences in the follow-up of low-grade glioma. 26 MRI examinations of 18 patients with such tumours were reviewed by three neuroradiologists and a neurosurgeon. FLAIR was found to be superior for appreciation of the lesion (91 % of studies) and for demonstration of its margin (92 %). FLAIR was also better at showing different tumour components, particularly in regions difficult to demonstrate in some planes, such as the vertex in axial imaging. The sequence also defines the postoperative cavity, shows the least amount of susceptibility effect associated with surgical clips, and demonstrates local spread (to white matter tracts, subependymal and capsular) more distinctly. We conclude that FLAIR can replace PD and T2-weighted spin-echo imaging in radiological follow-up of low-grade glioma. (orig.)

  10. Diffusion-weighted imaging-guided MR spectroscopy in breast lesions using readout-segmented echo-planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kun; Chai, Weimin; Zhan, Ying; Luo, Xianfu; Yan, Fuhua [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ruijin Hospital, Shanghai (China); Fu, Caixia [Siemens MRI Center, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen (China); Shen, Kunwei [Shanghai Jiao Tong University School of Medicine, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai (China)

    2016-06-15

    To investigate the feasibility and effectiveness of diffusion-weighted imaging (DWI)-guided magnetic resonance spectroscopy (MRS) using readout-segmented echo-planar imaging (RS-EPI) to characterise breast lesions. A total of 258 patients with 258 suspicious breast lesions larger than 1 cm in diameter were examined using DWI-guided, single-voxel MRS with RS-EPI. The mean total choline-containing compound (tCho) signal-to-noise ratio (SNR) and concentration were used for the interpretation of MRS data. T-tests, χ{sup 2}-tests, receiver operating characteristic (ROC) curve analyses and Pearson correlations were conducted for statistical analysis. Histologically, 183 lesions were malignant, and 75 lesions were benign. Both the mean tCho SNR and concentration of malignant lesions were higher than those of benign lesions (6.23 ± 3.30 AU/mL vs. 1.26 ± 1.75 AU/mL and 3.17 ± 2.03 mmol/kg vs. 0.86 ± 0.83 mmol/kg, respectively; P < 0.0001). For a tCho SNR of 2.0 AU/mL and a concentration of 1.76 mmol/kg, the corresponding areas under the ROC curves were 0.93 and 0.90, respectively. The mean tCho SNR and concentration negatively correlated with apparent diffusion coefficients calculated from RS-EPI, with correlation coefficients of -0.54 and -0.48, respectively. DWI-guided MRS using RS-EPI is feasible and accurate for characterising breast lesions. (orig.)

  11. Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil.

    Science.gov (United States)

    Kodama, Nao; Kose, Katsumi

    2016-10-11

    Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (~54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach.

  12. Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil

    Science.gov (United States)

    KODAMA, Nao; KOSE, Katsumi

    2016-01-01

    Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (∼54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach. PMID:27001398

  13. A case of Marchiafava-Bignami disease: MRI findings on spin-echo and fluid attenuated inversion recovery (FLAIR) images

    International Nuclear Information System (INIS)

    Yamamoto, Takashi; Ashikaga, Ryuichiro; Araki, Yutaka; Nishimura, Yasumasa

    2000-01-01

    Marchiafava-Bignami disease (MBD) was diagnosed in a 56-year-old man. Spin-echo (SE) magnetic resonance imaging (MRI) at the acute phase showed normal signal areas in the central layer of the corpus callosum (CC), although the intensity of these areas revealed abnormal hyperintensity on fluid attenuated inversion recovery (FLAIR). On follow-up SE MRI at the late phase, the central layer of the CC showed fluid-like intensity. On FLAIR MRI, the lesions of the CC turned into hypointense cores surrounded by hyperintense rims indicating central necrosis and peripheral demyelination. Degenerative changes of the CC in MBD were clearly demonstrated by FLAIR MRI

  14. Prognostic value of gradient echo T2* sequences for brain MR imaging in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Bruine, Francisca T. de; Berg-Huysmans, Annette A. van den; Buchem, Mark A. van; Grond, Jeroen van der [Leiden University Medical Center, Department of Radiology, PO Box 9600, Leiden (Netherlands); Steggerda, Sylke J.; Leijser, Lara M.; Rijken, Monique [Leiden University Medical Center, Department of Pediatrics, subdivision of Neonatology, Leiden (Netherlands); Wezel-Meijler, Gerda van [Leiden University Medical Center, Department of Pediatrics, subdivision of Neonatology, Leiden (Netherlands); Isala Hospital, Department of Neonatology, Zwolle (Netherlands)

    2014-03-15

    Gradient echo T2*-W sequences are more sensitive than T2-W spin-echo sequences for detecting hemorrhages in the brain. The aim of this study is to correlate presence of hemosiderin deposits in the brain of very preterm infants (gestational age <32 weeks) detected by T2*-W gradient echo MRI to white matter injury and neurodevelopmental outcome at 2 years. In 101 preterm infants, presence and location of hemosiderin were assessed on T2*-W gradient echo MRI performed around term-equivalent age (range: 40-60 weeks). White matter injury was defined as the presence of >6 non-hemorrhagic punctate white matter lesions (PWML), cysts and/or ventricular dilatation. Six infants with post-hemorrhagic ventricular dilatation detected by US in the neonatal period were excluded. Infants were seen for follow-up at 2 years. Univariate and regression analysis assessed the relation between presence and location of hemosiderin, white matter injury and neurodevelopmental outcome. In 38/95 (40%) of the infants, hemosiderin was detected. Twenty percent (19/95) of the infants were lost to follow-up. There was a correlation between hemosiderin in the ventricular wall with >6 PWML (P < 0.001) and cysts (P < 0.001) at term-equivalent age, and with a lower psychomotor development index (PDI) (P=0.02) at 2 years. After correcting for known confounders (gestational age, gender, intrauterine growth retardation and white matter injury), the correlation with PDI was no longer significant. The clinical importance of detecting small hemosiderin deposits is limited as there is no independent association with neurodevelopmental outcome. (orig.)

  15. Accelerated three-dimensional cine phase contrast imaging using randomly undersampled echo planar imaging with compressed sensing reconstruction.

    Science.gov (United States)

    Basha, Tamer A; Akçakaya, Mehmet; Goddu, Beth; Berg, Sophie; Nezafat, Reza

    2015-01-01

    The aim of this study was to implement and evaluate an accelerated three-dimensional (3D) cine phase contrast MRI sequence by combining a randomly sampled 3D k-space acquisition sequence with an echo planar imaging (EPI) readout. An accelerated 3D cine phase contrast MRI sequence was implemented by combining EPI readout with randomly undersampled 3D k-space data suitable for compressed sensing (CS) reconstruction. The undersampled data were then reconstructed using low-dimensional structural self-learning and thresholding (LOST). 3D phase contrast MRI was acquired in 11 healthy adults using an overall acceleration of 7 (EPI factor of 3 and CS rate of 3). For comparison, a single two-dimensional (2D) cine phase contrast scan was also performed with sensitivity encoding (SENSE) rate 2 and approximately at the level of the pulmonary artery bifurcation. The stroke volume and mean velocity in both the ascending and descending aorta were measured and compared between two sequences using Bland-Altman plots. An average scan time of 3 min and 30 s, corresponding to an acceleration rate of 7, was achieved for 3D cine phase contrast scan with one direction flow encoding, voxel size of 2 × 2 × 3 mm(3) , foot-head coverage of 6 cm and temporal resolution of 30 ms. The mean velocity and stroke volume in both the ascending and descending aorta were statistically equivalent between the proposed 3D sequence and the standard 2D cine phase contrast sequence. The combination of EPI with a randomly undersampled 3D k-space sampling sequence using LOST reconstruction allows a seven-fold reduction in scan time of 3D cine phase contrast MRI without compromising blood flow quantification. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Object analysis of bone marrow MR imaging using double echo STIR sequence in hematological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Hitomi [Saitama Medical School, Moroyama (Japan)

    1995-07-01

    The bone marrow of 84 patients with hematological disorders was investigated using short inversion time inversion recovery sequence (STIR) on an 1.5 Tesla superconducting MRI system. Double echo times of 20 and 100 msec were applied to research the signal characteristics of the lesion and carry out quantitative analysis of the receiver operating characteristic curve (ROC). The hematological diseases included 19 cases of myelodysplastic syndrome (MDS), 18 of multiple myeloma (MM), 18 of chronic myelocytic leukemia (CML), 9 of aplastic anemia (AA), 8 of acute myelocytic leukemia (AML), 3 of chronic lymphocytic leukemia (CLL), 3 of myelofibrosis, and 3 others. Using STIR with double echo times, bone marrow showed high signal intensity (SI) on short TE and low SI on long TE in MDS and CML; high SI on short and long TE in myelofibrosis and CLL; high SI on short TE and high to moderately high SI on long TE in MM; and low SI on short and long TE in AA. Quantitative analysis of 33 patients showed high sensitivity and specificity in AA (81% and 94%, respectively) and moderate sensitivity and high specificity in MM (61%, 88%). CML and MDS were similar with low sensitivities (40%, 41%) and high specificities (80%, 78%). Differential diagnosis between CML and MDS was difficult using STIR with the double echo time method. (author).

  17. Quantification of liver iron concentration with magnetic resonance imaging by combining T1-, T2-weighted spin echo sequences and a gradient echo sequence

    NARCIS (Netherlands)

    Kreeftenberg, HG; Mooyaart, EL; Sluiter, WJ; Kreeftenberg, HG; Huizenga, Reint

    Background: The aim of the study was to quantify hepatic iron by MRI for practical use. Methods: In twenty-three patients with various degrees of iron overload, measurements were carried out with a 1.5 Tesla MR unit. A combination of pulse sequences (T1, T2 and gradient echo) enabled us to quantify

  18. Fast mapping of the T2 relaxation time of cerebral metabolites using proton echo-planar spectroscopic imaging (PEPSI).

    Science.gov (United States)

    Tsai, Shang-Yueh; Posse, Stefan; Lin, Yi-Ru; Ko, Cheng-Wen; Otazo, Ricardo; Chung, Hsiao-Wen; Lin, Fa-Hsuan

    2007-05-01

    Metabolite T2 is necessary for accurate quantification of the absolute concentration of metabolites using long-echo-time (TE) acquisition schemes. However, lengthy data acquisition times pose a major challenge to mapping metabolite T2. In this study we used proton echo-planar spectroscopic imaging (PEPSI) at 3T to obtain fast T2 maps of three major cerebral metabolites: N-acetyl-aspartate (NAA), creatine (Cre), and choline (Cho). We showed that PEPSI spectra matched T2 values obtained using single-voxel spectroscopy (SVS). Data acquisition for 2D metabolite maps with a voxel volume of 0.95 ml (32 x 32 image matrix) can be completed in 25 min using five TEs and eight averages. A sufficient spectral signal-to-noise ratio (SNR) for T2 estimation was validated by high Pearson's correlation coefficients between logarithmic MR signals and TEs (R2 = 0.98, 0.97, and 0.95 for NAA, Cre, and Cho, respectively). In agreement with previous studies, we found that the T2 values of NAA, but not Cre and Cho, were significantly different between gray matter (GM) and white matter (WM; P PEPSI and SVS scans was less than 9%. Consistent spatial distributions of T2 were found in six healthy subjects, and disagreement among subjects was less than 10%. In summary, the PEPSI technique is a robust method to obtain fast mapping of metabolite T2. (c) 2007 Wiley-Liss, Inc.

  19. Three-dimensional fast recovery fast spin-echo imaging of the inner ear and the vestibulocochlear nerve

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, K.; Morikawa, M.; Ishimaru, H.; Ochi, M.; Hayashi, K. [Department of Radiology, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki 852-8501 (Japan); Kabasawa, H. [GE Yokogawa Medical Systems, Tokyo (Japan)

    2002-11-01

    The aim of this study was to assess the performance of three-dimensional fast recovery fast spin-echo (3DFRFSE) for imaging of the inner ear as well as the facial and vestibulocochlear nerves. We evaluated 3DFRFSE sequences, comparing it with 3D fast spin-echo (3DFSE) in a water phantom and in 12 normal volunteers. We also examined 66 patients using 3DFRFSE sequence and assessed the visualization of their pathologies. In a water phantom study, signal intensity (SI) on 3DFRFSE was higher than that on 3DFSE at the same TR ranging from 1500 to 6000 ms. In normal volunteers, 3DFRFSE with TR of 2800 ms showed comparable SI, and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) superior to those on 3DFSE with TR of 5000 ms. In clinical setting, 3DFRFSE was useful in demonstrating anatomic details in the labyrinth and pathologic findings of inner ear. The 3DFRFSE can provide high-resolution heavily T2-weighted images (T2WI) with shorter scan time than 3DFSE without significant disadvantage. The 3DFRFSE is a beneficial technique for evaluation of lesions in the inner ear as well as the facial and vestibulocochlear nerves. (orig.)

  20. The Usefulness of Readout-Segmented Echo-Planar Imaging (RESOLVE) for Bio-phantom Imaging Using 3-Tesla Clinical MRI.

    Science.gov (United States)

    Yoshimura, Yuuki; Kuroda, Masahiro; Sugiantoc, Irfan; Bamgbosec, Babatunde O; Miyahara, Kanae; Ohmura, Yuichi; Kurozumi, Akira; Matsushita, Toshi; Ohno, Seiichiro; Kanazawa, Susumu; Asaumi, Junichi

    2018-02-01

    Readout-segmented echo-planar imaging (RESOLVE) is a multi-shot echo-planar imaging (EPI) modality with k-space segmented in the readout direction. We investigated whether RESOLVE decreases the distortion and artifact in the phase direction and increases the signal-to-noise ratio (SNR) in phantoms image taken with 3-tesla (3T) MRI versus conventional EPI. We used a physiological saline phantom and subtraction mapping and observed that RESOLVE's SNR was higher than EPI's. Using RESOLVE, the combination of a special-purpose coil and a large-loop coil had a higher SNR compared to using only a head/neck coil. RESOLVE's image distortioas less than EPI's. We used a 120 mM polyethylene glycol phantom to examine the phase direction artifact.vThe range where the artifact appeared in the apparent diffusion coefficient (ADC) image was shorter with RESOLVE compared to EPI. We used RESOLVE to take images of a Jurkat cell bio-phantom: the cell-region ADC was 856×10-6mm2/sec and the surrounding physiological saline-region ADC was 2,951×10-6mm2/sec. The combination of RESOLVE and the 3T clinical MRI device reduced image distortion and improved SNR and the identification of accurate ADC values due to the phase direction artifact reduction. This combination is useful for obtaining accurate ADC values of bio-phantoms.

  1. Magnetic resonance fingerprinting using echo-planar imaging: Joint quantification of T1 and T2∗ relaxation times.

    Science.gov (United States)

    Rieger, Benedikt; Zimmer, Fabian; Zapp, Jascha; Weingärtner, Sebastian; Schad, Lothar R

    2017-11-01

    To develop an implementation of the magnetic resonance fingerprinting (MRF) paradigm for quantitative imaging using echo-planar imaging (EPI) for simultaneous assessment of T 1 and T2∗. The proposed MRF method (MRF-EPI) is based on the acquisition of 160 gradient-spoiled EPI images with rapid, parallel-imaging accelerated, Cartesian readout and a measurement time of 10 s per slice. Contrast variation is induced using an initial inversion pulse, and varying the flip angles, echo times, and repetition times throughout the sequence. Joint quantification of T 1 and T2∗ is performed using dictionary matching with integrated B1+ correction. The quantification accuracy of the method was validated in phantom scans and in vivo in 6 healthy subjects. Joint T 1 and T2∗ parameter maps acquired with MRF-EPI in phantoms are in good agreement with reference measurements, showing deviations under 5% and 4% for T 1 and T2∗, respectively. In vivo baseline images were visually free of artifacts. In vivo relaxation times are in good agreement with gold-standard techniques (deviation T 1 : 4 ± 2%, T2∗: 4 ± 5%). The visual quality was comparable to the in vivo gold standard, despite substantially shortened scan times. The proposed MRF-EPI method provides fast and accurate T 1 and T2∗ quantification. This approach offers a rapid supplement to the non-Cartesian MRF portfolio, with potentially increased usability and robustness. Magn Reson Med 78:1724-1733, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Comparison of 250 MHz electron spin echo and continuous wave oxygen EPR imaging methods for in vivo applications

    Science.gov (United States)

    Epel, Boris; Sundramoorthy, Subramanian V.; Barth, Eugene D.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: The authors compare two electron paramagnetic resonance imaging modalities at 250 MHz to determine advantages and disadvantages of those modalities for in vivo oxygen imaging. Methods: Electron spin echo (ESE) and continuous wave (CW) methodologies were used to obtain three-dimensional images of a narrow linewidth, water soluble, nontoxic oxygen-sensitive trityl molecule OX063 in vitro and in vivo. The authors also examined sequential images obtained from the same animal injected intravenously with trityl spin probe to determine temporal stability of methodologies. Results: A study of phantoms with different oxygen concentrations revealed a threefold advantage of the ESE methodology in terms of reduced imaging time and more precise oxygen resolution for samples with less than 70 torr oxygen partial pressure. Above∼100 torr, CW performed better. The images produced by both methodologies showed pO2 distributions with similar mean values. However, ESE images demonstrated superior performance in low pO2 regions while missing voxels in high pO2 regions. Conclusions: ESE and CW have different areas of applicability. ESE is superior for hypoxia studies in tumors. PMID:21626937

  3. Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in echo-planar imaging.

    Science.gov (United States)

    Yeo, Desmond T B; Fessler, Jeffrey A; Kim, Boklye

    2008-06-01

    The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts and associated field map changes that induce different geometric distortion at different time points. Conventionally, geometric distortion is "corrected" with a static field map independently of image registration. That approach ignores all field map changes induced by head motion. This work evaluates the improved motion correction capability of mapping slice to volume with concurrent iterative field corrected reconstruction using updated field maps derived from an initial static field map that has been spatially transformed and resampled. It accounts for motion-induced field map changes for translational and in-plane rotation motion. The results from simulated EPI time series data, in which motion, image intensity and activation ground truths are available, show improved accuracy in image registration, field corrected image reconstruction and activation detection.

  4. Bone marrow lesions: evaluation with fat-suppression turbo spin echo MR imaging at 0.5T

    International Nuclear Information System (INIS)

    Chrysikopoulos, H.; Papazoglou, A.; Roussakis, A.; Andreou, J.

    1996-01-01

    The purpose of this study was the assessment of the diagnostic value of fat-suppression T2-weighted images for a variety of bone marrow lesions. We performed 40 studies of the axial or appendicular skeleton in 33 patients (age range 4-80 years) with neoplastic, inflammatory or traumatic lesions with a 0.5 T system (Gyroscan T5, Philips Medical Systems, Best, The Netherlands). Fat-suppression T2-weighted images [turbo spin echo (TSE) with spectral presaturation with inversion recovery (SPIR)] were obtained in addition to the routine T1-weighted SE and T2-weighted TSE sequences. Fat-suppression TSE T2-weighted images were better than standard TSE T2-weighted images in 25 studies. In 11 of them demonstration and characterization of the lesions (known from T1-weighted images) was possible only after fat suppression. In the other 14 patients demonstration of the full extent of the lesion especially to the nearby soft tissues was possible only after fat suppression. In 13 studies no advantage was conferred by SPIR, whereas in two instances T2-weighted images were better. Fat-suppression T2-weighted images are diagnostically useful in a variety of lesions of the musculoskeletal system, but their limitations should be known. (orig.)

  5. Reducing contrast contamination in radial turbo-spin-echo acquisitions by combining a narrow-band KWIC filter with parallel imaging.

    Science.gov (United States)

    Neumann, Daniel; Breuer, Felix A; Völker, Michael; Brandt, Tobias; Griswold, Mark A; Jakob, Peter M; Blaimer, Martin

    2014-12-01

    Cartesian turbo spin-echo (TSE) and radial TSE images are usually reconstructed by assembling data containing different contrast information into a single k-space. This approach results in mixed contrast contributions in the images, which may reduce their diagnostic value. The goal of this work is to improve the image contrast from radial TSE acquisitions by reducing the contribution of signals with undesired contrast information. Radial TSE acquisitions allow the reconstruction of multiple images with different T2 contrasts using the k-space weighted image contrast (KWIC) filter. In this work, the image contrast is improved by reducing the band-width of the KWIC filter. Data for the reconstruction of a single image are selected from within a small temporal range around the desired echo time. The resulting dataset is undersampled and, therefore, an iterative parallel imaging algorithm is applied to remove aliasing artifacts. Radial TSE images of the human brain reconstructed with the proposed method show an improved contrast when compared with Cartesian TSE images or radial TSE images with conventional KWIC reconstructions. The proposed method provides multi-contrast images from radial TSE data with contrasts similar to multi spin-echo images. Contaminations from unwanted contrast weightings are strongly reduced. © 2014 Wiley Periodicals, Inc.

  6. Reconstruction strategy for echo planar spectroscopy and its application to partially undersampled imaging

    DEFF Research Database (Denmark)

    Hanson, L G; Schaumburg, K; Paulson, O B

    2000-01-01

    The most commonly encountered form of echo planar spectroscopy involves oscillating gradients in one spatial dimension during readout. Data are consequently not sampled on a Cartesian grid. A fast gridding algorithm applicable to this particular situation is presented. The method is optimal, i.......e., it performs as well as the full discrete Fourier transform for band limited signals while allowing for use of the fast Fourier transform. The method is demonstrated for reconstruction of data that are partially undersampled in the time domain. The advantages of undersampling are lower hardware requirements...

  7. Magnetic resonance in cartilaginous lesions of the knee joint with three-dimensional gradient-echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, M.F.; Bongartz, G.; Erlemann, R.; Gaebert, K.; Stoeber, U.; Peters, P.E.; Strobel, M.; Pauly, T.

    1988-10-01

    Diagnosis of chondromalacia of the patellofemoral joint using three-dimensional gradient-echo sequences was investigated in 41 patients, with arthroscopic verification in 25 patients. In vitro examinations in human caderveric patellae were performed in order to determine optimal imaging parameters. FLASH (T/sub R/=40 ms, T/sub E/=10 ms, flip angle=30/sup 0/) and FISP (T/sub R/=40 ms, T/sub E/=10 ms, flip angle=40/sup 0/) were used in clinical studies. The therapeutically relevant differentiation of major and minor degrees of chondromalacia seems to be possible. 30/sup 0/ FLASH-images in the axial plane proved to be the most efficacious technique for the diagnosis of chondromalacia. (orig./GDG).

  8. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE).

    Science.gov (United States)

    Zhu, Chengcheng; Tian, Bing; Chen, Luguang; Eisenmenger, Laura; Raithel, Esther; Forman, Christoph; Ahn, Sinyeob; Laub, Gerhard; Liu, Qi; Lu, Jianping; Liu, Jing; Hess, Christopher; Saloner, David

    2018-06-01

    Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. A 3D accelerated T 1 -weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T 1 -weighted SPACE while maintaining good image quality.

  9. Appearances of diffuse excessive high signal intensity (DEHSI) on MR imaging following preterm birth

    International Nuclear Information System (INIS)

    Hart, Anthony R.; Smith, Michael F.; Rigby, Alan S.; Wallis, Lauren I.; Whitby, Elspeth H.

    2010-01-01

    Diffuse damage to the periventricular white matter has recently been suggested to be a cause of the cognitive deficits seen following preterm birth. It is unclear whether this form of injury can be visualised on MR imaging, but one group has described diffuse excessive high signal intensity (DEHSI) as a possible form of diffuse white matter injury. This finding is dependant on window imaging and the subjective assessment of the reviewer, but little data have been published on the degree of subjectivity on its appearance among raters. To assess the subjectivity of DEHSI on conventional and ultrafast T2-weighted MR imaging following preterm birth. An observational study of 40 preterm infants who had MR imaging of the brain around term-equivalent age, including conventional fast spin-echo (FSE) and ultrafast single-shot fast spin-echo (SSFSE) T2-weighted sequences in the axial plane. Images were anonymised and scored twice by four observers for the presence of DEHSI. Inter- and intra-observer agreement were calculated. Sixty-five percent of conventional and 100% of the ultrafast images were of diagnostic quality. DEHSI was noted in between 0% and 69.2% of conventional images and 27.5-90% of the ultrafast images. Inter- and intra-observer agreement ranged from none to moderate. The visual appearances of DEHSI on conventional FSE and ultrafast SSFSE T2-W images are highly subjective, limiting its clinical application. (orig.)

  10. Appearances of diffuse excessive high signal intensity (DEHSI) on MR imaging following preterm birth

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Anthony R. [Sheffield Teaching Hospital NHS Foundation Trust, Department of Neonatology, Jessop Wing, Sheffield (United Kingdom); University of Sheffield, Academic Unit of Radiology, Royal Hallamshire Hospital, Sheffield (United Kingdom); University of Sheffield, Department of Academic Radiology, Royal Hallamshire Hospital, Sheffield (United Kingdom); Smith, Michael F. [Sheffield Teaching Hospital NHS Foundation Trust, Department of Neonatology, Jessop Wing, Sheffield (United Kingdom); Rigby, Alan S. [University of Hull, Postgraduate Medical Centre, Castle Hill Hospital, East Yorkshire (United Kingdom); Wallis, Lauren I.; Whitby, Elspeth H. [University of Sheffield, Academic Unit of Radiology, Royal Hallamshire Hospital, Sheffield (United Kingdom)

    2010-08-15

    Diffuse damage to the periventricular white matter has recently been suggested to be a cause of the cognitive deficits seen following preterm birth. It is unclear whether this form of injury can be visualised on MR imaging, but one group has described diffuse excessive high signal intensity (DEHSI) as a possible form of diffuse white matter injury. This finding is dependant on window imaging and the subjective assessment of the reviewer, but little data have been published on the degree of subjectivity on its appearance among raters. To assess the subjectivity of DEHSI on conventional and ultrafast T2-weighted MR imaging following preterm birth. An observational study of 40 preterm infants who had MR imaging of the brain around term-equivalent age, including conventional fast spin-echo (FSE) and ultrafast single-shot fast spin-echo (SSFSE) T2-weighted sequences in the axial plane. Images were anonymised and scored twice by four observers for the presence of DEHSI. Inter- and intra-observer agreement were calculated. Sixty-five percent of conventional and 100% of the ultrafast images were of diagnostic quality. DEHSI was noted in between 0% and 69.2% of conventional images and 27.5-90% of the ultrafast images. Inter- and intra-observer agreement ranged from none to moderate. The visual appearances of DEHSI on conventional FSE and ultrafast SSFSE T2-W images are highly subjective, limiting its clinical application. (orig.)

  11. Prognostic value of gradient echo T2* sequences for brain MR imaging in preterm infants

    International Nuclear Information System (INIS)

    Bruine, Francisca T. de; Berg-Huysmans, Annette A. van den; Buchem, Mark A. van; Grond, Jeroen van der; Steggerda, Sylke J.; Leijser, Lara M.; Rijken, Monique; Wezel-Meijler, Gerda van

    2014-01-01

    Gradient echo T2*-W sequences are more sensitive than T2-W spin-echo sequences for detecting hemorrhages in the brain. The aim of this study is to correlate presence of hemosiderin deposits in the brain of very preterm infants (gestational age 6 non-hemorrhagic punctate white matter lesions (PWML), cysts and/or ventricular dilatation. Six infants with post-hemorrhagic ventricular dilatation detected by US in the neonatal period were excluded. Infants were seen for follow-up at 2 years. Univariate and regression analysis assessed the relation between presence and location of hemosiderin, white matter injury and neurodevelopmental outcome. In 38/95 (40%) of the infants, hemosiderin was detected. Twenty percent (19/95) of the infants were lost to follow-up. There was a correlation between hemosiderin in the ventricular wall with >6 PWML (P < 0.001) and cysts (P < 0.001) at term-equivalent age, and with a lower psychomotor development index (PDI) (P=0.02) at 2 years. After correcting for known confounders (gestational age, gender, intrauterine growth retardation and white matter injury), the correlation with PDI was no longer significant. The clinical importance of detecting small hemosiderin deposits is limited as there is no independent association with neurodevelopmental outcome. (orig.)

  12. Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo sequence: improvement of the image quality of oxygen-enhanced MRI

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Higashino, Takanori; Kawamitsu, Hideaki; Watanabe, Hirokazu; Takenaka, Daisuke; Cauteren, Marc van; Sugimura, Kazuro

    2004-01-01

    Purpose: The purpose of the study presented here was to determine the improvement in image quality of oxygen-enhanced magnetic resonance (MR) subtraction imaging obtained with a centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence compared with that obtained with a conventional sequentially reordered inversion recovery single-shot HASTE (s-IR-HASTE) sequence for pulmonary imaging. Materials and methods: Oxygen-enhanced MR imaging using a 1.5 T whole body scanner was performed on 12 healthy, non-smoking volunteers. Oxygen-enhanced MR images were obtained with the coronal two-dimensional (2D) c-IR-HASTE sequence and 2D s-IR-HASTE sequence combined with respiratory triggering. For a 256x256 matrix, 132 phase-encoding steps were acquired including four steps for phase correction. Inter-echo spacing for each sequence was 4.0 ms. The effective echo time (TE) for c-IR-HASTE was 4.0 ms, and 16 ms for s-IR-HASTE. The inversion time (TI) was 900 ms. To determine the improvement in oxygen-enhanced MR subtraction imaging by c-IR-HASTE, CNRs of subtraction image, overall image quality, and image degradation of the c-IR-HASTE and s-IR-HASTE techniques were statistically compared. Results: CNR, overall image quality, and image degradation of c-IR-HASTE images showed significant improvement compared to those s-IR-HASTE images (P<0.05). Conclusion: Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence enhanced the signal from the lung and improved the image quality of oxygen-enhanced MR subtraction imaging

  13. Turbo-Proton Echo Planar Spectroscopic Imaging (t-PEPSI) MR technique in the detection of diffuse axonal damage in brain injury. Comparison with Gradient-Recalled Echo (GRE) sequence.

    Science.gov (United States)

    Giugni, E; Sabatini, U; Hagberg, G E; Formisano, R; Castriota-Scanderbeg, A

    2005-01-01

    Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury, and is frequently accompanied by tissue tear haemorrhage. The T2*-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of haemorrhage. This study was undertaken to determine whether turbo-PEPSI, an extremely fast multi-echo-planar-imaging sequence, can be used as an alternative to the GRE sequence for detection of DAI. Nineteen patients (mean age 24,5 year) with severe traumatic brain injury (TBI), occurred at least 3 months earlier, underwent a brain MRI study on a 1.5-Tesla scanner. A qualitative evaluation of the turbo-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and turbo-PEPSI images, and divided according to their anatomic location into lobar and/or deep brain. There was no significant difference between GRE and turbo-PEPSI sequences in the total number of DAI lesions detected (283 vs 225 lesions, respectively). The GRE sequence identified a greater number of hypointense lesions in the temporal lobe compared to the t-PEPSI sequence (72 vs 35, pPEPSI than for the GRE sequence (pPEPSI sequence can be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.

  14. Recent Hubble Space Telescope Imaging of the Light Echoes of Supernova 2014J in M 82 and Supernova 2016adj in Centaurus A

    Science.gov (United States)

    Lawrence, Stephen S.; Hyder, Ali; Sugerman, Ben; Crotts, Arlin P. S.

    2017-06-01

    We report on our ongoing use of Hubble Space Telescope (HST) imaging to monitor the scattered light echoes of recent heavily-extincted supernovae in two nearby, albeit unusual, galaxies.Supernova 2014J was a highly-reddened Type Ia supernova that erupted in the nearby irregular star-forming galaxy M 82 in 2014 January. It was discovered to have light echo by Crotts (2016) in early epoch HST imaging and has been further described by Yang, et al. (2017) based on HST imaging through late 2014. Our ongoing monitoring in the WFC3 F438W, F555W, and F814W filters shows that, consistent with Crotts (2106) and Yang, et al. (2017), throughout 2015 and 2016 the main light echo arc expanded through a dust complex located approximately 230 pc in the foreground of the supernova. This main light echo has, however, faded dramatically in our most recent HST imaging from 2017 March. The supernova itself has also faded to undetectable levels by 2017 March.Supernova 2016adj is a highly-reddened core-collapse supernova that erupted inside the unusual dust lane of the nearby giant elliptical galaxy Centaurus A (NGC 5128) in 2016 February. It was discovered to have a light echo by Sugerman & Lawrence (2016) in early epoch HST imaging in 2016 April. Our ongoing monitoring in the WFC3 F438W, F547M, and F814W filters shows a slightly elliptical series of light echo arc segments hosted by a tilted dust complex ranging approximately 150--225 pc in the foreground of the supernova. The supernova itself has also faded to undetectable levels by 2017 April.References: Crotts, A. P. S., ApJL, 804, L37 (2016); Yang et al., ApJ, 834, 60 (2017); Sugerman, B. and Lawrence, S., ATel #8890 (2016).

  15. Magnetic resonance imaging of third molars: developing a protocol suitable for forensic age estimation.

    Science.gov (United States)

    De Tobel, Jannick; Hillewig, Elke; Bogaert, Stephanie; Deblaere, Karel; Verstraete, Koenraad

    2017-03-01

    Established dental age estimation methods in sub-adults study the development of third molar root apices on radiographs. In living individuals, however, avoiding ionising radiation is expedient. Studying dental development with magnetic resonance imaging complies with this requirement, adding the advantage of imaging in three dimensions. To elaborate the development of an MRI protocol to visualise all third molars for forensic age estimation, with particular attention to the development of the root apex. Ex vivo scans of porcine jaws and in vivo scans of 10 volunteers aged 17-25 years were performed to select adequate sequences. Studied parameters were T1 vs T2 weighting, ultrashort echo time (UTE), fat suppression, in plane resolution, slice thickness, 3D imaging, signal-to-noise ratio, and acquisition time. A bilateral four-channel flexible surface coil was used. Two observers evaluated the suitability of the images. T2-weighted images were preferred to T1-weighted images. To clearly distinguish root apices in (almost) fully developed third molars an in plane resolution of 0.33 × 0.33 mm 2 was deemed necessary. Taking acquisition time limits into account, only a T2 FSE sequence with slice thickness of 2 mm generated images with sufficient resolution and contrast. UTE, thinner slice T2 FSE and T2 3D FSE sequences could not generate the desired resolution within 6.5 minutes. Three Tesla MRI of the third molars is a feasible technique for forensic age estimation, in which a T2 FSE sequence can provide the desired in plane resolution within a clinically acceptable acquisition time.

  16. Contrast-enhanced turbo spin-echo(TSE) T1-weighted imaging: improved contrast of enhancing lesions

    International Nuclear Information System (INIS)

    Choi, Sung Wook; Lee, Ghi Jai; Shim, Jae Chan; Lee, Young Ju; Jeong, Se Hyung; Kim, Ho kyun

    1997-01-01

    The purpose of this study was to evaluate the effect of contrast improvement of enhancing brain lesions by inherent magnetization transfer effect in turbo spin-echo(TSE)T1-weighted MR imaging. Twenty-six enhancing lesions of 19 patients were included in this study. Using a 1.0T superconductive MR unit, contrast-enhanced SE T1-weighted images(TR=3D600 msec, TE=3D12 msec, NEX=3D2, acquistition time=3D4min 27sec) and contrast-enhanced TSE T1-weighted images(TR=3D600 msec, TE=3D12, acquistition time=3D1min 44sec) were obtained. Signal intensities at enhancing lesions and adjacent white matter were measured in the same regions of both images. Signal-to-noise ratio(SNR) of enhancing lesions and adjacent white matter, and con-trast-to-noise ratio(CNR) and lesion-to-background contrast (LBC) of enhancing lesions were calculated and statistically analysed using the paired t-test. On contrast-enhanced TSE T1-weighted images, SNR of enhancing lesions and adjacent white matter decreased by 18%(p<0.01) and 32%(p<0.01), respectively, compared to contrast-enhanced SE T1-weighted images. CNR and LBC of enhancing lesions increased by 16%(p<0.05) and 66%(p<0.01), respectively. Due to the proposed inherent magnetization transfer effects in TSE imaging, con-trast-enhanced T1-weighted TSE images demonstrated a statistically significant improvement in CNR and LBC, compared to conventional contrast-enhanced T1-weighted SE images, and scan time was much shorter

  17. Utility of single shot fast spin echo technique in evaluating pancreaticobiliary diseases: T2-weighted image and magnetic resonance cholangiopancreatography

    International Nuclear Information System (INIS)

    Choi, Byoung Wook; Kim, Myeong Jin; Chung, Jae Bok; Ko, Heung Kyu; Kim, Dong Joon; Kim, Joo Hee; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae

    1999-01-01

    To evaluate the accuracy of T2-weighted imaging an MR cholangiopancreatography using the single shot fast spin-echo technique for evaluating pancreaticobiliary disease. Between March and July 1997, axial and coronal T2-weighted images(TE: 80-200 msec) and MR cholangiopancreatograms (TE: 800-1200 msec) were obtained in two ways [single slab (thickness: 30-50 mm) and multislice acquisition under chemical fat saturation] using SSFSE pulse sequencing in 131 cases of suspected pancreati-cobiliary disease. The accuracy of SSFSE MR imaging was assessed in 89 lesions of 74 patients [male, 48; female, 26; age range, 30-86 (mean, 59) years] confirmed surgicopathologically (50 lesions in 39 patients) and clinically (39 lesions in 35 patients). Two radiologists reviewed the MR images and diagnosis was determined by consensus. Correct diagnosis was confirmed in 84 of 89 lesions (94%). Seven lesions were falsely interpreted, false positive and false negative results accounting for two and five cases, respectively. Two pancreatic cancers were misdiagnosed as pancreatitis and a cancer of the proximal common bile duct(CBD) was interpreted as a distal CBD cancer. The sensitivity of SSFSE MR imaging for malignancy was 93 %. One CBD stone revealed by endoscopic retrograde cholangiopancreatography (ERCP) was not detected on MR images. In contrast, a stone in the CBD seen on MR images was not apparent on subsequent ERCP. Sensitivity and specificity for calculous disease were 96% and 99.7%, respectively. A benign stricture of the ampulla of Vater was falsely interpreted as normal, and correct diagnosis was possible in two falsely diagnosed cases when MR images were reviewed retrospectively. The combination of T2-weighted and cholangiographic images using SSFSE is an accurate method for diagnosing pancreatcobiliary diseases

  18. 3D printed phantoms mimicking cortical bone for the assessment of ultrashort echo time magnetic resonance imaging.

    Science.gov (United States)

    Rai, Robba; Manton, David; Jameson, Michael G; Josan, Sonal; Barton, Michael B; Holloway, Lois C; Liney, Gary P

    2018-02-01

    Human cortical bone has a rapid T2∗ decay, and it can be visualized using ultrashort echo time (UTE) techniques in magnetic resonance imaging (MRI). These sequences operate at the limits of gradient and transmit-receive signal performance. Development of multicompartment anthropomorphic phantoms that can mimic human cortical bone can assist with quality assurance and optimization of UTE sequences. The aims of this study were to (a) characterize the MRI signal properties of a photopolymer resin that can be 3D printed, (b) develop multicompartment phantoms based on the resin, and (c) demonstrate the feasibility of using these phantoms to mimic human anatomy in the assessment of UTE sequences. A photopolymer resin (Prismlab China Ltd, Shanghai, China) was imaged on a 3 Tesla MRI system (Siemens Skyra) to characterize its MRI properties with emphasis on T2∗ signal and longevity. Two anthropomorphic phantoms, using the 3D printed resin to simulate skeletal anatomy, were developed and imaged using UTE sequences. A skull phantom was developed and used to assess the feasibility of using the resin to develop a complex model with realistic morphological human characteristics. A tibia model was also developed to assess the suitability of the resin at mimicking a simple multicompartment anatomical model and imaged using a three-dimensional UTE sequence (PETRA). Image quality measurements of signal-to-noise ratio (SNR) and contrast factor were calculated and these were compared to in vivo values. The T2∗ and T 1 (mean ± standard deviation) of the photopolymer resin was found to be 411 ± 19 μs and 74.39 ± 13.88 ms, respectively, and demonstrated no statistically significant change during 4 months of monitoring. The resin had a similar T2∗ decay to human cortical bone; however, had lower T 1 properties. The bone water concentration of the resin was 59% relative to an external water reference phantom, and this was higher than in vivo values reported for human cortical

  19. The Usefulness of Fast-Spin-Echo T2-Weighted MR Imaging in Nutcracker Syndrome: a Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Heong Leng; Chen, Matt Chiung Yu; Wu, Cgek Siung; Fu, Kuo An; Lin, Cheng Hao [Yuan' s General Hospital, Kaohsiung (China); Weng, Mei Jui; Liang, Huei Lung; Pan, Huay Ben [National Yang-Ming University, Taipei (Korea, Republic of)

    2010-06-15

    Nutcracker syndrome occurs when the left renal vein (LRV) is compressed between the superior mesenteric artery and the aorta, and this syndrome is often characterized by venous hypertension and related pathologies. However, invasive studies such as phlebography and measuring the reno-caval pressure gradient should be performed to identify venous hypertension. Here we present a case of Nutcracker syndrome where the LRV and intra-renal varicosities appeared homogeneously hyperintense on magnetic resonance (MR) fast-spin-echo T2- weighted imaging, which suggested markedly stagnant intravenous blood flow and the presence of venous hypertension. The patient was diagnosed and treated without obtaining the reno-caval pressure gradient. The discomfort of the patient lessened after treatment. Furthermore, on follow-up evaluation, the LRV displayed a signal void, and this was suggestive of a restoration of the normal LRV flow and a decrease in LRV pressure.

  20. Comparative study between the Spin-echo and 3-D fast imaging techniques in the Knee evaluation with magnetic resonance

    International Nuclear Information System (INIS)

    Oleaga Zufiria, L.; Ibanez Zubiarrain, A.; Grande Icaran, J.; Vela Martin, A.C.; Cintora Leon, E.; Grau Garcia, M.; Grande Icaran, D.

    1993-01-01

    We have carried out a retrospective analysis of the results of magnetic resonance (MR) studies in 20 patients, comparing two different sequences. We compared a 2-D spin-echo (SE2D) sequence with a 3-D fast imaging with steady-state precession (FISP3D) sequence in the attempt to compare the reliability of each in the detection of knee injuries. Arthroscopy was employed as a control technique. Our study revealed no statistically significant difference between the two sequences, although the overall sensitivity for the detection of meniscal lesions was slightly greater with the FISP3D sequence; however, the reliability in the detection of ruptures of the posterior cruciate ligament is less with this sequence than with the SE2D sequence. Both sequences showed very low sensitivity in the detection of hyaline cartilage injuries. (Author) 14 refs

  1. Magnetic resonance imaging of the equine temporomandibular joint anatomy.

    Science.gov (United States)

    Rodríguez, M J; Agut, A; Soler, M; López-Albors, O; Arredondo, J; Querol, M; Latorre, R

    2010-04-01

    In human medicine, magnetic resonance imaging (MRI) is considered the 'gold standard' imaging procedure to assess the temporomandibular joint (TMJ). However, there is no information regarding MRI evaluation of equine TMJ. To describe the normal sectional MRI anatomy of equine TMJ by using frozen and plastinated anatomical sections as reference; and determine the best imaging planes and sequences to visualise TMJ components. TMJs from 6 Spanish Purebred horse cadavers (4 immature and 2 mature) underwent MRI examination. Spin-echo T1-weighting (SE T1W), T2*W, fat-suppressed (FS) proton density-weighting (PDW) and fast spin-echo T2-weighting (FSE T2W) sequences were obtained in oblique sagittal, transverse and dorsal planes. Anatomical sections were procured on the same planes for a thorough interpretation. The oblique sagittal and transverse planes were the most informative anatomical planes. SE T1W images showed excellent spatial resolution and resulted in superior anatomic detail when comparing to other sequences. FSE T2W sequence provided an acceptable anatomical depiction but T2*W and fat-suppressed PDW demonstrated higher contrast in visualisation of the disc, synovial fluid, synovial pouches and articular cartilage. The SE T1W sequence in oblique sagittal and transverse plane should be the baseline to identify anatomy. The T2*W and fat-suppressed PDW sequences enhance the study of the articular cartilage and synovial pouches better than FSE T2W. The information provided in this paper should aid clinicians in the interpretation of MRI images of equine TMJ and assist in the early diagnosis of those problems that could not be diagnosed by other means.

  2. MR imaging of the gastrointestinal tract with half-fourier single-shot fast spin echo (SSFSE)

    International Nuclear Information System (INIS)

    Boku, Houjun; Takehara, Yasuo; Isoda, Haruo; Isogai, Satoshi; Kaneko, Masao

    1999-01-01

    Our objective was to implement a non-invasive magnetic resonance imaging (MRI) technique combined with concentrated milk ingestion for depicting the gastrointestinal (GI) tract and detecting gastrointestinal motility and transit. The half-Fourier SSFSE (single-shot fast spin echo) sequence was optimized on the basis of a phantom study. In order to determine the feasibility of milk ingestion as a substitute for contrast medium, ten human volunteers were examined with SSFSE after two types of liquid ingestion (i.e., milk and water). The snapshot images provided subsecond data acquisition for each coronal plane, allowing visualization of peristalsis in the gastrointestinal tract in an almost real-time fashion, without motion-related image degradation, as would normally be seen using conventional MRI. There was no significant difference between concentrated milk and water in terms of depiction of the upper gastrointestinal tract; however, 10 min and 30 min after ingestion, concentrated milk showed better delineation of the intestine than that observed after water ingestion (p<0.01). MR gastrointestinal imaging is a non-invasive method that allows gastrointestinal depiction as well as analysis of motility and passage. Especially with concentrated milk ingestion, the distal intestines were well depicted with adequate contrast filling and distention. (author)

  3. Multi-Rate Acquisition for Dead Time Reduction in Magnetic Resonance Receivers: Application to Imaging With Zero Echo Time.

    Science.gov (United States)

    Marjanovic, Josip; Weiger, Markus; Reber, Jonas; Brunner, David O; Dietrich, Benjamin E; Wilm, Bertram J; Froidevaux, Romain; Pruessmann, Klaas P

    2018-02-01

    For magnetic resonance imaging of tissues with very short transverse relaxation times, radio-frequency excitation must be immediately followed by data acquisition with fast spatial encoding. In zero-echo-time (ZTE) imaging, excitation is performed while the readout gradient is already on, causing data loss due to an initial dead time. One major dead time contribution is the settling time of the filters involved in signal down-conversion. In this paper, a multi-rate acquisition scheme is proposed to minimize dead time due to filtering. Short filters and high output bandwidth are used initially to minimize settling time. With increasing time since the signal onset, longer filters with better frequency selectivity enable stronger signal decimation. In this way, significant dead time reduction is accomplished at only a slight increase in the overall amount of output data. Multi-rate acquisition was implemented with a two-stage filter cascade in a digital receiver based on a field-programmable gate array. In ZTE imaging in a phantom and in vivo, dead time reduction by multi-rate acquisition is shown to improve image quality and expand the feasible bandwidth while increasing the amount of data collected by only a few percent.

  4. Evaluation of 2-point, 3-point, and 6-point Dixon magnetic resonance imaging with flexible echo timing for muscle fat quantification.

    Science.gov (United States)

    Grimm, Alexandra; Meyer, Heiko; Nickel, Marcel D; Nittka, Mathias; Raithel, Esther; Chaudry, Oliver; Friedberger, Andreas; Uder, Michael; Kemmler, Wolfgang; Quick, Harald H; Engelke, Klaus

    2018-06-01

    The purpose of this study is to evaluate and compare 2-point (2pt), 3-point (3pt), and 6-point (6pt) Dixon magnetic resonance imaging (MRI) sequences with flexible echo times (TE) to measure proton density fat fraction (PDFF) within muscles. Two subject groups were recruited (G1: 23 young and healthy men, 31 ± 6 years; G2: 50 elderly men, sarcopenic, 77 ± 5 years). A 3-T MRI system was used to perform Dixon imaging on the left thigh. PDFF was measured with six Dixon prototype sequences: 2pt, 3pt, and 6pt sequences once with optimal TEs (in- and opposed-phase echo times), lower resolution, and higher bandwidth (optTE sequences) and once with higher image resolution (highRes sequences) and shortest possible TE, respectively. Intra-fascia PDFF content was determined. To evaluate the comparability among the sequences, Bland-Altman analysis was performed. The highRes 6pt Dixon sequences served as reference as a high correlation of this sequence to magnetic resonance spectroscopy has been shown before. The PDFF difference between the highRes 6pt Dixon sequence and the optTE 6pt, both 3pt, and the optTE 2pt was low (between 2.2% and 4.4%), however, not to the highRes 2pt Dixon sequence (33%). For the optTE sequences, difference decreased with the number of echoes used. In conclusion, for Dixon sequences with more than two echoes, the fat fraction measurement was reliable with arbitrary echo times, while for 2pt Dixon sequences, it was reliable with dedicated in- and opposed-phase echo timing. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eibofner, Frank; Wojtczyk, Hanne; Graf, Hansjörg, E-mail: hansjoerg.graf@med.uni-tuebingen.de, E-mail: drGraf@t-online.de [Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany); Clasen, Stephan [Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany)

    2014-06-15

    Purpose: Instrument visualization in interventional magnetic resonance imaging (MRI) is commonly performed via susceptibility artifacts. Unfortunately, this approach suffers from limited conspicuity in inhomogeneous tissue and disturbed spatial encoding. Also, susceptibility artifacts are controllable only by sequence parameters. This work presents the basics of a new visualization method overcoming such problems by applying sequence-triggered direct current (DC) pulses in spin-echo (SE) imaging. SE phase images allow for background free current path localization. Methods: Application of a sequence-triggered DC pulse in SE imaging, e.g., during a time period between radiofrequency excitation and refocusing, results in transient field inhomogeneities. Dependent on the additional z-magnetic field from the DC, a phase offset results despite the refocusing pulse. False spatial encoding is avoided by DC application during periods when read-out or slice-encoding gradients are inactive. A water phantom containing a brass conductor (water equivalent susceptibility) and a titanium needle (serving as susceptibility source) was used to demonstrate the feasibility. Artifact dependence on current strength and orientation was examined. Results: Without DC, the brass conductor was only visible due to its water displacement. The titanium needle showed typical susceptibility artifacts. Applying triggered DC pulses, the phase offset of spins near the conductor appeared. Because SE phase images are homogenous also in regions of persistent field inhomogeneities, the position of the conductor could be determined with high reliability. Artifact characteristic could be easily controlled by amperage leaving sequence parameters unchanged. For an angle of 30° between current and static field visualization was still possible. Conclusions: SE phase images display the position of a conductor carrying pulsed DC free from artifacts caused by persistent field inhomogeneities. Magnitude and phase

  6. Simultaneous Multislice Echo Planar Imaging With Blipped Controlled Aliasing in Parallel Imaging Results in Higher Acceleration: A Promising Technique for Accelerated Diffusion Tensor Imaging of Skeletal Muscle.

    Science.gov (United States)

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Guggenberger, Roman; Andreisek, Gustav; Beck, Thomas; Runge, Val M; Boss, Andreas

    2015-07-01

    The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. After federal ethics board approval, the lower leg muscles of 8 healthy volunteers (mean [SD] age, 29.4 [2.9] years) were examined in a clinical 3-T magnetic resonance scanner using a 15-channel knee coil. The EPI was performed at a b value of 500 s/mm2 without slice acceleration (conventional DTI) as well as with 2-fold and 3-fold acceleration. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in all 3 acquisitions. Fiber tracking performance was compared between the acquisitions regarding the number of tracks, average track length, and anatomical precision using multivariate analysis of variance and Mann-Whitney U tests. Acquisition time was 7:24 minutes for conventional DTI, 3:53 minutes for 2-fold acceleration, and 2:38 minutes for 3-fold acceleration. Overall FA and MD values ranged from 0.220 to 0.378 and 1.595 to 1.829 mm2/s, respectively. Two-fold acceleration yielded similar FA and MD values (P ≥ 0.901) and similar fiber tracking performance compared with conventional DTI. Three-fold acceleration resulted in comparable MD (P = 0.199) but higher FA values (P = 0.006) and significantly impaired fiber tracking in the soleus and tibialis anterior muscles (number of tracks, P DTI of skeletal muscle with similar image quality and quantification accuracy of diffusion parameters. This may increase the clinical applicability of muscle anisotropy measurements.

  7. In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance: proton echo planar spectroscopic imaging (PEPSI).

    Science.gov (United States)

    Posse, S; Dager, S R; Richards, T L; Yuan, C; Ogg, R; Artru, A A; Müller-Gärtner, H W; Hayes, C

    1997-06-01

    A new rapid spectroscopic imaging technique with improved sensitivity and lipid suppression, referred to as Proton Echo Planar Spectroscopic Imaging (PEPSI), has been developed to measure the 2-dimensional distribution of brain lactate increases during hyperventilation on a conventional clinical scanner equipped with a head surface coil phased array. PEPSI images (nominal voxel size: 1.125 cm3) in five healthy subjects from an axial section approximately 20 mm inferior to the intercommissural line were obtained during an 8.5-min baseline period of normocapnia and during the final 8.5 min of a 10-min period of capnometry-controlled hyperventilation (end-tidal PCO2 of 20 mmHg). The lactate/N-acetyl aspartate signal increased significantly from baseline during hyperventilation for the insular cortex, temporal cortex, and occipital regions of both the right and left hemisphere, but not in the basal ganglia. Regional or hemispheric right-to-left differences were not found. The study extends previous work using single-voxel MR spectroscopy to dynamically study hyperventilation effects on brain metabolism.

  8. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    International Nuclear Information System (INIS)

    Yoshino, Ayako

    1998-01-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds (ΔRT2) was calculated by the following equation: ΔRT2 = (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  9. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Ayako [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-07-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds ({Delta}RT2) was calculated by the following equation: {Delta}RT2 (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  10. A paradoxical signal intensity increase in fatty livers using opposed-phase gradient echo imaging with fat-suppression pulses

    International Nuclear Information System (INIS)

    Mulkern, Robert V.; Voss, Stephan; Loeb Salsberg, Sandra; Krauel, Marta Ramon; Ludwig, David S.

    2008-01-01

    With the increase in obese and overweight children, nonalcoholic fatty liver disease has become more prevalent in the pediatric population. Appreciating subtleties of magnetic resonance (MR) signal intensity behavior from fatty livers under different imaging conditions thus becomes important to pediatric radiologists. We report an initially confusing signal behavior - increased signal from fatty livers when fat-suppression pulses are applied in an opposed-phase gradient echo imaging sequence - and seek to explain the physical mechanisms for this paradoxical signal intensity behavior. Abdominal MR imaging at 3 T with a 3-D volumetric interpolated breath-hold (VIBE) sequence in the opposed-phase condition (TR/TE 3.3/1.3 ms) was performed in five obese boys (14±2 years of age, body mass index >95th percentile for age and sex) with spectroscopically confirmed fatty livers. Two VIBE acquisitions were performed, one with and one without the use of chemical shift selective (CHESS) pulse fat suppression. The ratios of fat-suppressed over non-fat-suppressed signal intensities were assessed in regions-of-interest (ROIs) in five tissues: subcutaneous fat, liver, vertebral marrow, muscle and spleen. The boys had spectroscopically estimated hepatic fat levels between 17% and 48%. CHESS pulse fat suppression decreased subcutaneous fat signals dramatically, by more than 85% within regions of optimal fat suppression. Fatty liver signals, in contrast, were elevated by an average of 87% with CHESS pulse fat suppression. Vertebral marrow signal was also significantly elevated with CHESS pulse fat suppression, while spleen and muscle signals demonstrated only small signal increases on the order of 10%. We demonstrated that CHESS pulse fat suppression actually increases the signal intensity from fatty livers in opposed-phase gradient echo imaging conditions. The increase can be attributed to suppression of one partner of the opposed-phase pair that normally contributes to the

  11. A paradoxical signal intensity increase in fatty livers using opposed-phase gradient echo imaging with fat-suppression pulses

    Energy Technology Data Exchange (ETDEWEB)

    Mulkern, Robert V.; Voss, Stephan [Harvard Medical School, Department of Radiology, Children' s Hospital Boston, Boston, MA (United States); Loeb Salsberg, Sandra; Krauel, Marta Ramon; Ludwig, David S. [Harvard Medical School, Department of Medicine, Children' s Hospital Boston, Boston, MA (United States)

    2008-10-15

    With the increase in obese and overweight children, nonalcoholic fatty liver disease has become more prevalent in the pediatric population. Appreciating subtleties of magnetic resonance (MR) signal intensity behavior from fatty livers under different imaging conditions thus becomes important to pediatric radiologists. We report an initially confusing signal behavior - increased signal from fatty livers when fat-suppression pulses are applied in an opposed-phase gradient echo imaging sequence - and seek to explain the physical mechanisms for this paradoxical signal intensity behavior. Abdominal MR imaging at 3 T with a 3-D volumetric interpolated breath-hold (VIBE) sequence in the opposed-phase condition (TR/TE 3.3/1.3 ms) was performed in five obese boys (14{+-}2 years of age, body mass index >95th percentile for age and sex) with spectroscopically confirmed fatty livers. Two VIBE acquisitions were performed, one with and one without the use of chemical shift selective (CHESS) pulse fat suppression. The ratios of fat-suppressed over non-fat-suppressed signal intensities were assessed in regions-of-interest (ROIs) in five tissues: subcutaneous fat, liver, vertebral marrow, muscle and spleen. The boys had spectroscopically estimated hepatic fat levels between 17% and 48%. CHESS pulse fat suppression decreased subcutaneous fat signals dramatically, by more than 85% within regions of optimal fat suppression. Fatty liver signals, in contrast, were elevated by an average of 87% with CHESS pulse fat suppression. Vertebral marrow signal was also significantly elevated with CHESS pulse fat suppression, while spleen and muscle signals demonstrated only small signal increases on the order of 10%. We demonstrated that CHESS pulse fat suppression actually increases the signal intensity from fatty livers in opposed-phase gradient echo imaging conditions. The increase can be attributed to suppression of one partner of the opposed-phase pair that normally contributes to the

  12. Frequency bandwidth extension by use of multiple Zeeman field offsets for electron spin-echo EPR oxygen imaging of large objects

    Science.gov (United States)

    Seifi, Payam; Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: Electron spin-echo (ESE) oxygen imaging is a new and evolving electron paramagnetic resonance (EPR) imaging (EPRI) modality that is useful for physiological in vivo applications, such as EPR oxygen imaging (EPROI), with potential application to imaging of multicentimeter objects as large as human tumors. A present limitation on the size of the object to be imaged at a given resolution is the frequency bandwidth of the system, since the location is encoded as a frequency offset in ESE imaging. The authors’ aim in this study was to demonstrate the object size advantage of the multioffset bandwidth extension technique.Methods: The multiple-stepped Zeeman field offset (or simply multi-B) technique was used for imaging of an 8.5-cm-long phantom containing a narrow single line triaryl methyl compound (trityl) solution at the 250 MHz imaging frequency. The image is compared to a standard single-field ESE image of the same phantom.Results: For the phantom used in this study, transverse relaxation (T2e) electron spin-echo (ESE) images from multi-B acquisition are more uniform, contain less prominent artifacts, and have a better signal to noise ratio (SNR) compared to single-field T2e images.Conclusions: The multi-B method is suitable for imaging of samples whose physical size restricts the applicability of the conventional single-field ESE imaging technique. PMID:21815379

  13. Time efficient whole-brain coverage with MR Fingerprinting using slice-interleaved echo-planar-imaging.

    Science.gov (United States)

    Rieger, Benedikt; Akçakaya, Mehmet; Pariente, José C; Llufriu, Sara; Martinez-Heras, Eloy; Weingärtner, Sebastian; Schad, Lothar R

    2018-04-27

    Magnetic resonance fingerprinting (MRF) is a promising method for fast simultaneous quantification of multiple tissue parameters. The objective of this study is to improve the coverage of MRF based on echo-planar imaging (MRF-EPI) by using a slice-interleaved acquisition scheme. For this, the MRF-EPI is modified to acquire several slices in a randomized interleaved manner, increasing the effective repetition time of the spoiled gradient echo readout acquisition in each slice. Per-slice matching of the signal-trace to a precomputed dictionary allows the generation of T 1 and T 2 * maps with integrated B 1 + correction. Subsequent compensation for the coil sensitivity profile and normalization to the cerebrospinal fluid additionally allows for quantitative proton density (PD) mapping. Numerical simulations are performed to optimize the number of interleaved slices. Quantification accuracy is validated in phantom scans and feasibility is demonstrated in-vivo. Numerical simulations suggest the acquisition of four slices as a trade-off between quantification precision and scan-time. Phantom results indicate good agreement with reference measurements (Difference T 1 : -2.4 ± 1.1%, T 2 *: -0.5 ± 2.5%, PD: -0.5 ± 7.2%). In-vivo whole-brain coverage of T 1 , T 2 * and PD with 32 slices was acquired within 3:36 minutes, resulting in parameter maps of high visual quality and comparable performance with single-slice MRF-EPI at 4-fold scan-time reduction.

  14. Musculoskeletal MRI at 3.0 T and 7.0 T: a comparison of relaxation times and image contrast.

    Science.gov (United States)

    Jordan, Caroline D; Saranathan, Manojkumar; Bangerter, Neal K; Hargreaves, Brian A; Gold, Garry E

    2013-05-01

    The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.0 T. We measured the T₁ and T₂ relaxation times of cartilage, muscle, synovial fluid, bone marrow and subcutaneous fat at both 3.0 T and 7.0 T in the knees of five healthy volunteers. The T₁ relaxation times were measured using a spin-echo inversion recovery sequence with six inversion times. The T₂ relaxation times were measured using a spin-echo sequence with seven echo times. The accuracy of both the T₁ and T₂ measurement techniques was verified in phantoms at both magnetic field strengths. We used the measured relaxation times to help design 7.0 T musculoskeletal protocols that preserve the favorable contrast characteristics of our 3.0 T protocols, while achieving significantly higher resolution at higher SNR efficiency. The T₁ relaxation times in all tissues at 7.0 T were consistently higher than those measured at 3.0 T, while the T₂ relaxation times at 7.0 T were consistently lower than those measured at 3.0 T. The measured relaxation times were used to help develop high resolution 7.0 T protocols that had similar fluid-to-cartilage contrast to that of the standard clinical 3.0 T protocols for the following sequences: proton-density-weighted fast spin-echo (FSE), T₂-weighted FSE, and 3D-FSE-Cube. The T₁ and T₂ changes were within the expected ranges. Parameters for musculoskeletal protocols at 7.0 T can be optimized based on these values, yielding improved resolution in musculoskeletal imaging with similar contrast to that of standard 3.0 T clinical protocols. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Musculoskeletal MRI at 3.0 T and 7.0 T: A comparison of relaxation times and image contrast

    International Nuclear Information System (INIS)

    Jordan, Caroline D.; Saranathan, Manojkumar; Bangerter, Neal K.; Hargreaves, Brian A.; Gold, Garry E.

    2013-01-01

    Objective: The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.0 T. Materials and methods: We measured the T 1 and T 2 relaxation times of cartilage, muscle, synovial fluid, bone marrow and subcutaneous fat at both 3.0 T and 7.0 T in the knees of five healthy volunteers. The T 1 relaxation times were measured using a spin-echo inversion recovery sequence with six inversion times. The T 2 relaxation times were measured using a spin-echo sequence with seven echo times. The accuracy of both the T 1 and T 2 measurement techniques was verified in phantoms at both magnetic field strengths. We used the measured relaxation times to help design 7.0 T musculoskeletal protocols that preserve the favorable contrast characteristics of our 3.0 T protocols, while achieving significantly higher resolution at higher SNR efficiency. Results: The T 1 relaxation times in all tissues at 7.0 T were consistently higher than those measured at 3.0 T, while the T 2 relaxation times at 7.0 T were consistently lower than those measured at 3.0 T. The measured relaxation times were used to help develop high resolution 7.0 T protocols that had similar fluid-to-cartilage contrast to that of the standard clinical 3.0 T protocols for the following sequences: proton-density-weighted fast spin-echo (FSE), T 2 -weighted FSE, and 3D-FSE-Cube. Conclusion: The T 1 and T 2 changes were within the expected ranges. Parameters for musculoskeletal protocols at 7.0 T can be optimized based on these values, yielding improved resolution in musculoskeletal imaging with similar contrast to that of standard 3.0 T clinical protocols

  16. High-resolution MR imaging of the elbow using a microscopy surface coil and a clinical 1.5 T MR machine: preliminary results

    International Nuclear Information System (INIS)

    Yoshioka, Hiroshi; Ueno, Teruko; Takahashi, Nobuyuki; Saida, Yukihisa; Tanaka, Toshikazu; Kujiraoka, Yuka; Shindo, Masashi; Nishiura, Yasumasa; Ochiai, Naoyuki

    2004-01-01

    To obtain high-resolution MR images of the elbow using a microscopy surface coil with a 1.5 T clinical machine and to evaluate the feasibility of its use for elbow injuries. Five asymptomatic normal volunteers and 13 patients with elbow pain were prospectively studied with MR imaging using a microscopy surface coil 47 mm in diameter. High-resolution MR images using a microscopy coil were obtained with fast spin echo (FSE) proton density-weighted sequence, gradient recalled echo (GRE) T2*-weighted sequence, and short tau inversion recovery (STIR) sequence, with a 1-2 mm slice thickness, a 50-70 mm field of view, an imaging matrix of 140-224 x 512 using zero fill interpolation, and 2-6 excitations. High-resolution MR images of normal volunteers using a microscopy coil clearly showed each structure of the medial and lateral collateral ligaments on GRE T2*-weighted images and FSE proton-density weighted images. Partial medial collateral ligament injury, a small avulsion of the medial epicondyle, and osteochondritis dissecans were well demonstrated on high-resolution MR images. High-resolution MR imaging of the elbow using a microscopy surface coil with a 1.5 T clinical machine is a promising method for accurately characterizing the normal anatomy of the elbow and depicting its lesions in detail. (orig.)

  17. Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour acute hypoxia?

    International Nuclear Information System (INIS)

    Baudelet, Christine; Ansiaux, Reginald; Jordan, Benedicte F; Havaux, Xavier; Macq, Benoit; Gallez, Bernard

    2004-01-01

    T2*-weighted gradient-echo magnetic resonance imaging (T2*-weighted GRE MRI) was used to investigate spontaneous fluctuations in tumour vasculature non-invasively. FSa fibrosarcomas, implanted intramuscularly (i.m.) in the legs of mice, were imaged at 4.7 T, over a 30 min or 1 h sampling period. On a voxel-by-voxel basis, time courses of signal intensity were analysed using a power spectrum density (PSD) analysis to isolate voxels for which signal changes did not originate from Gaussian white noise or linear drift. Under baseline conditions, the tumours exhibited spontaneous signal fluctuations showing spatial and temporal heterogeneity over the tumour. Statistically significant fluctuations occurred at frequencies ranging from 1 cycle/3 min to 1 cycle/h. The fluctuations were independent of the scanner instabilities. Two categories of signal fluctuations were reported: (i) true fluctuations (TFV), i.e., sequential signal increase and decrease, and (ii) profound drop in signal intensity with no apparent signal recovery (SDV). No temporal correlation between tumour and contralateral muscle fluctuations was observed. Furthermore, treatments aimed at decreasing perfusion-limited hypoxia, such as carbogen combined with nicotinamide and flunarizine, decreased the incidence of tumour T2*-weighted GRE fluctuations. We also tracked dynamic changes in T2* using multiple GRE imaging. Fluctuations of T2* were observed; however, fluctuation maps using PSD analysis could not be generated reliably. An echo-time dependency of the signal fluctuations was observed, which is typical to physiological noise. Finally, at the end of T2*-weighted GRE MRI acquisition, a dynamic contrast-enhanced MRI was performed to characterize the microenvironment in which tumour signal fluctuations occurred in terms of vessel functionality, vascularity and microvascular permeability. Our data showed that TFV were predominantly located in regions with functional vessels, whereas SDV occurred in regions

  18. Carotid plaque signal differences among four kinds of T1-weighted magnetic resonance imaging techniques: A histopathological correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Ayumi; Narumi, Shinsuke; Ohba, Hideki; Yamaguchi, Mao; Terayama, Yasuo [Iwate Medical University, Department of Neurology and Gerontology, Morioka (Japan); Sasaki, Makoto; Kudo, Kohsuke [Iwate Medical University, Institute for Biomedical Sciences, Morioka (Japan); Ogasawara, Kuniaki; Kobayashi, Masakazu [Iwate Medical University, Department of Neurosurgery, Morioka (Japan); Hitomi, Jiro [Iwate Medical University, Department of Anatomy, Morioka (Japan)

    2012-11-15

    Several magnetic resonance (MR) imaging techniques are used to examine atherosclerotic plaque of carotid arteries; however, the best technique for visualizing intraplaque characteristics has yet to be determined. Here, we directly compared four kinds of T1-weighted (T1W) imaging techniques with pathological findings in patients with carotid stenosis. A total of 31 patients who were candidates for carotid endarterectomy were prospectively examined using a 1.5-T MRI scanner, which produced four kinds of T1W images, including non-gated spin echo (SE), cardiac-gated black-blood (BB) fast-SE (FSE), magnetization-prepared rapid acquisition with gradient echo (MPRAGE), and source image of three-dimensional time-of-flight MR angiography (SI-MRA). The signal intensity of the carotid plaque was manually measured, and the contrast ratio (CR) against the adjacent muscle was calculated. CRs from the four imaging techniques were compared to each other and correlated with histopathological specimens. CRs of the carotid plaques mainly containing fibrous tissue, lipid/necrosis, and hemorrhage were significantly different with little overlaps (range: 0.92-1.15, 1.22-1.52, and 1.55-2.30, respectively) on non-gated SE. However, BB-FSE showed remarkable overlaps among the three groups (0.89-1.10, 1.07-1.23, and 1.01-1.42, respectively). MPRAGE could discriminate fibrous plaques from hemorrhagic plaques but not from lipid/necrosis-rich plaques: (0.77-1.07, 1.45-2.43, and 0.85-1.42, respectively). SI-MRA showed the same tendencies (1.01-1.39, 1.45-2.57, and 1.12-1.39, respectively). Among T1W MR imaging techniques, non-gated SE images can more accurately characterize intraplaque components in patients who underwent CEA when compared with cardiac-gated BB-FSE, MPRAGE, and SI-MRA images. (orig.)

  19. High-resolution morphologic and ultrashort time-to-echo quantitative magnetic resonance imaging of the temporomandibular joint

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Won C.; Chang, Eric Y.; Biswas, Reni; Statum, Sheronda; Chung, Christine B. [Veterans Administration San Diego Healthcare System, Department of Radiology, San Diego, CA (United States); University of California, San Diego, School of Medicine, Department of Radiology, San Diego, CA (United States); Tafur, Monica; Du, Jiang; Healey, Robert [University of California, San Diego, School of Medicine, Department of Radiology, San Diego, CA (United States); Kwack, Kyu-Sung [Ajou University Medical Center, Department of Radiology, Wonchon-dong, Yeongtong-gu, Gyeonggi-do, Suwon (Korea, Republic of)

    2016-03-15

    To implement high-resolution morphologic and quantitative magnetic resonance imaging (MRI) of the temporomandibular joint (TMJ) using ultrashort time-to-echo (UTE) techniques in cadavers and volunteers. This study was approved by the institutional review board. TMJs of cadavers and volunteers were imaged on a 3-T MR system. High-resolution morphologic and quantitative sequences using conventional and UTE techniques were performed in cadaveric TMJs. Morphologic and UTE quantitative sequences were performed in asymptomatic and symptomatic volunteers. Morphologic evaluation demonstrated the TMJ structures in open- and closed-mouth position. UTE techniques facilitated the visualization of the disc and fibrocartilage. Quantitative UTE MRI was successfully performed ex vivo and in vivo, reflecting the degree of degeneration. There was a difference in the mean UTE T2* values between asymptomatic and symptomatic volunteers. MRI evaluation of the TMJ using UTE techniques allows characterization of the internal structure and quantification of the MR properties of the disc. Quantitative UTE MRI can be performed in vivo with short scan times. (orig.)

  20. 3D Fast Spin Echo T2-weighted Contrast for Imaging the Female Cervix

    Science.gov (United States)

    Vargas Sanchez, Andrea Fernanda

    Magnetic Resonance Imaging (MRI) with T2-weighted contrast is the preferred modality for treatment planning and monitoring of cervical cancer. Current clinical protocols image the volume of interest multiple times with two dimensional (2D) T2-weighted MRI techniques. It is of interest to replace these multiple 2D acquisitions with a single three dimensional (3D) MRI acquisition to save time. However, at present the image contrast of standard 3D MRI does not distinguish cervical healthy tissue from cancerous tissue. The purpose of this thesis is to better understand the underlying factors that govern the contrast of 3D MRI and exploit this understanding via sequence modifications to improve the contrast. Numerical simulations are developed to predict observed contrast alterations and to propose an improvement. Improvements of image contrast are shown in simulation and with healthy volunteers. Reported results are only preliminary but a promising start to establish definitively 3D MRI for cervical cancer applications.

  1. Clinical application of Half Fourier Acquisition Single Shot Turbo Spin Echo (HASTE) imaging accelerated by simultaneous multi-slice acquisition.

    Science.gov (United States)

    Schulz, Jenni; P Marques, José; Ter Telgte, Annemieke; van Dorst, Anouk; de Leeuw, Frank-Erik; Meijer, Frederick J A; Norris, David G

    2018-01-01

    As a single-shot sequence with a long train of refocusing pulses, Half-Fourier Acquisition Single-Shot Turbo-Spin-Echo (HASTE) suffers from high power deposition limiting use at high resolutions and high field strengths, particularly if combined with acceleration techniques such as simultaneous multi-slice (SMS) imaging. Using a combination of multiband (MB)-excitation and PINS-refocusing pulses will effectively accelerate the acquisition time while staying within the SAR limitations. In particular, uncooperative and young patients will profit from the speed of the MB-PINS HASTE sequence, as clinical diagnosis can be possible without sedation. Materials and MethodsMB-excitation and PINS-refocusing pulses were incorporated into a HASTE-sequence with blipped CAIPIRINHA and TRAPS including an internal FLASH reference scan for online reconstruction. Whole brain MB-PINS HASTE data were acquired on a Siemens 3T-Prisma system from 10 individuals and compared to a clinical HASTE protocol. ResultsThe proposed MB-PINS HASTE protocol accelerates the acquisition by about a factor 2 compared to the clinical HASTE. The diagnostic image quality proved to be comparable for both sequences for the evaluation of the overall aspect of the brain, the detection of white matter changes and areas of tissue loss, and for the evaluation of the CSF spaces although artifacts were more frequently encountered with MB-PINS HASTE. ConclusionsMB-PINS HASTE enables acquisition of slice accelerated highly T2-weighted images and provides good diagnostic image quality while reducing acquisition time. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Diffusion-weighted echo planar imaging in patients with recent myocardial infarction

    International Nuclear Information System (INIS)

    Deux, Jean-Francois; Maatouk, Mezri; Luciani, Alain; Lenczner, Gregory; Mayer, Julie; Kobeiter, Hicham; Rahmouni, Alain; Vignaud, Alexandre; Lim, Pascal; Dubois-Rande, Jean-Luc

    2011-01-01

    To evaluate a diffusion-weighted (DW) black blood MR sequence for the detection of myocardium signal abnormalities in patients with recent myocardial infarction (MI). A DW black blood EPI sequence was acquired at 1.5 T in 12 patients with recent MI. One slice per patient was acquired with b = 0 and b = 50 s/mm 2 . A standard short tau inversion recovery (STIR) T2-weighted sequence was acquired at the same level. Viability was assessed with delayed-enhancement sequences. Images were analyzed qualitatively and quantitatively. A non parametric Wilcoxon test was used for statistical analysis, with a significance level of P <.05. The mean quality of blood suppression was higher on DW EPI images than on STIR T2-weighted images (3.9 ± 0.3 and 3.0 ± 0.7, respectively; P = 0.01). Myocardial high signal areas were detected in respectively 100% (12/12) and 67% (8/12) of the patients on DW EPI and STIR T2-weighted images. The four patients (33%) with false-negative STIR T2 findings all had high signal areas on DW EPI images corresponding to the location of the MI on the delayed-enhanced images. DW EPI sequences are a feasible alternative to standard STIR T2-weighted sequences for detecting myocardium high signal areas in patients with recent MI. (orig.)

  3. Image correction during large and rapid B(0) variations in an open MRI system with permanent magnets using navigator echoes and phase compensation.

    Science.gov (United States)

    Li, Jianqi; Wang, Yi; Jiang, Yu; Xie, Haibin; Li, Gengying

    2009-09-01

    An open permanent magnet system with vertical B(0) field and without self-shielding can be quite susceptible to perturbations from external magnetic sources. B(0) variation in such a system located close to a subway station was measured to be greater than 0.7 microT by both MRI and a fluxgate magnetometer. This B(0) variation caused image artifacts. A navigator echo approach that monitored and compensated the view-to-view variation in magnetic resonance signal phase was developed to correct for image artifacts. Human brain imaging experiments using a multislice gradient-echo sequence demonstrated that the ghosting and blurring artifacts associated with B(0) variations were effectively removed using the navigator method.

  4. Optimal MR pulse sequences for hepatic hemangiomas : comparison of T2-weighted turbo-spin-echo, T2-weighted breath-hold turbo-spin-echo, and T1-weighted FLASH dynamic imaging

    International Nuclear Information System (INIS)

    Wang, Wen Chao; Choi, Byung Ihn; Han, Joon Koo; Kim, Tae Kyoung; Cho, Soon Gu

    1997-01-01

    To optimize MR imaging pulse sequences in the imaging of hepatic hemangioma and to evaluate on dynamic MR imaging the enhancing characteristics of the lesions. Twenty patients with 35 hemangiomas were studied by using Turbo-spin-echo (TSE) sequence (T2-weighted, T2- and heavily T2-weighted breath-hold) and T1-weighted FLASH imaging acquired before, immediately on, and 1, 3 and 5 minutes after injection of a bolus of Gd-DTPA (0.1mmol/kg). Phased-array multicoil was employed. Images were quantitatively analyzed for lesion-to-liver signal difference to noise ratios (SD/Ns), and lesion-to-liver signal ratios (H/Ls), and qualitatively analyzed for lesion conspicuity. The enhancing characteristics of the hemangiomas were described by measuring the change of signal intensity as a curve in T1-weighted FLASH dynamic imaging. For T2-weighted images, breath-hold T2-weighted TSE had a slightly higher SD/N than other pulse sequences, but there was no statistical difference in three fast pulse sequences (p=0.211). For lesion conspicuity, heavily T2-weighted breath-hold TSE images was superior to T2-weighted breath-hold or non-breath-hold TSE (H/L, 5.75, 3.81, 2.87, respectively, p<0.05). T2-weighted breath-hold TSE imaging was more effective than T2-weighted TSE imaging in removing lesion blurring or lack of sharpness, and there was a 12-fold decrease in acquisition time (20sec versus 245 sec). T1-weighted FLASH dynamic images of normal liver showed peak enhancement at less than 1 minute, and of hemangioma at more than 3 minutes;the degree of enhancement for hemangioma decreased after a 3 minute delay. T2-weighed breath-hold TSE imaging and Gd-DTPA enhanced FLASH dynamic imaging with 5 minutes delay are sufficient for imaging hepatic hemangiomas

  5. Short- and long-term quantitation reproducibility of brain metabolites in the medial wall using proton echo planar spectroscopic imaging.

    Science.gov (United States)

    Tsai, Shang-Yueh; Lin, Yi-Ru; Wang, Woan-Chyi; Niddam, David M

    2012-11-15

    Proton echo planar spectroscopic imaging (PEPSI) is a fast magnetic resonance spectroscopic imaging (MRSI) technique that allows mapping spatial metabolite distributions in the brain. Although the medial wall of the cortex is involved in a wide range of pathological conditions, previous MRSI studies have not focused on this region. To decide the magnitude of metabolic changes to be considered significant in this region, the reproducibility of the method needs to be established. The study aims were to establish the short- and long-term reproducibility of metabolites in the right medial wall and to compare regional differences using a constant short-echo time (TE30) and TE averaging (TEavg) optimized to yield glutamatergic information. 2D sagittal PEPSI was implemented at 3T using a 32 channel head coil. Acquisitions were repeated immediately and after approximately 2 weeks to assess the coefficients of variation (COV). COVs were obtained from eight regions-of-interest (ROIs) of varying size and location. TE30 resulted in better spectral quality and similar or lower quantitation uncertainty for all metabolites except glutamate (Glu). When Glu and glutamine (Gln) were quantified together (Glx) reduced quantitation uncertainty and increased reproducibility was observed for TE30. TEavg resulted in lowered quantitation uncertainty for Glu but in less reliable quantification of several other metabolites. TEavg did not result in a systematically improved short- or long-term reproducibility for Glu. The ROI volume was a major factor influencing reproducibility. For both short- and long-term repetitions, the Glu COVs obtained with TEavg were 5-8% for the large ROIs, 12-17% for the medium sized ROIs and 16-26% for the smaller cingulate ROIs. COVs obtained with TE30 for the less specific Glx were 3-5%, 8-10% and 10-15%. COVs for N-acetyl aspartate, creatine and choline using TE30 with long-term repetition were between 2-10%. Our results show that the cost of more specific

  6. Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla.

    Science.gov (United States)

    Juchem, Christoph; Umesh Rudrapatna, S; Nixon, Terence W; de Graaf, Robin A

    2015-01-15

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity

  7. Dynamic Multi-Coil Technique (DYNAMITE) Shimming for Echo-Planar Imaging of the Human Brain at 7 Tesla

    Science.gov (United States)

    Juchem, Christoph; Rudrapatna, S. Umesh; Nixon, Terence W.; de Graaf, Robin A.

    2014-01-01

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (Juchem et al., J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13 Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8 mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3 mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large

  8. Improved visualization of collateral ligaments of the ankle: multiplanar reconstructions based on standard 2D turbo spin-echo MR images

    International Nuclear Information System (INIS)

    Duc, Sylvain R.; Mengiardi, Bernard; Pfirrmann, Christian W.A.; Hodler, Juerg; Zanetti, Marco

    2007-01-01

    The purpose of the study was to evaluate the visualization of the collateral ankle ligaments on multiplanar reconstructions (MPR) based on standard 2D turbo spin-echo images. Coronal and axial T2-weighted turbo spin-echo and MPR angled parallel to the course of the ligaments of 15 asymptomatic and 15 symptomatic ankles were separately analyzed by two musculoskeletal radiologists. Image quality was assessed in the asymptomatic ankles qualitatively. In the symptomatic ankles interobserver agreement and reader confidence was determined for each ligament. On MPR the tibionavicular and calcaneofibular ligaments were more commonly demonstrated on a single image than on standard MR images (reader 1: 13 versus 0, P=0.002; reader 2: 14 versus 1, P=0.001 and reader 1: 13 versus 2, P=0.001; reader 2: 14 versus 0, P<0.001). The tibionavicular ligament was considered to be better delineated on MPR by reader 1 (12 versus 3, P=0.031). In the symptomatic ankles, reader confidence was greater with MPR for all ligaments except for the tibiocalcanear ligament (both readers) and the anterior and posterior talofibular ligaments (for reader 2). Interobserver agreement was increased with MPR for the tibionavicular ligament. Multiplanar reconstructions of 2D turbo spin-echo images improve the visualization of the tibionavicular and calcaneofibular ligaments and strengthen diagnostic confidence for these ligaments. (orig.)

  9. In vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI) : [3,4-(CH2)-C-13] glutamate/glutamine tomography in rat brain

    NARCIS (Netherlands)

    Hyder, F; Renken, R; Rothman, DL

    1999-01-01

    A method for in vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI) is described. This method is composed of an echo-planar based acquisition implemented with C-13-H-1 J editing spectroscopy and is intended for high temporal and spatial resolution in vivo

  10. Magnetic resonance imaging (MRI) of articular cartilage of the knee using ultrashort echo time (uTE) sequences with spiral acquisition

    International Nuclear Information System (INIS)

    Goto, Hajimu; Fujii, Masahiko; Iwama, Yuki; Aoyama, Nobukazu; Ohno, Yoshiharu; Sugimura, Kazuro

    2012-01-01

    The objective of this study was to evaluate the sensitivity of ultrashort echo time (uTE) sequence for visualisation of calcified deep layers of articular cartilage. MRI with a uTE sequence was performed on five healthy volunteers. Signals from the calcified deep layers of the articular knee cartilage were evaluated on uTE subtraction images and computed tomography images. The calcified deep layers of the articular cartilage changed from having a low to a high signal when imaged with a uTE sequence. The reported uTE sequence was effective in imaging the deep layers of the knee cartilage.

  11. Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32-channel phased-array coil.

    Science.gov (United States)

    Tsai, Shang-Yueh; Otazo, Ricardo; Posse, Stefan; Lin, Yi-Ru; Chung, Hsiao-Wen; Wald, Lawrence L; Wiggins, Graham C; Lin, Fa-Hsuan

    2008-05-01

    Parallel imaging has been demonstrated to reduce the encoding time of MR spectroscopic imaging (MRSI). Here we investigate up to 5-fold acceleration of 2D proton echo planar spectroscopic imaging (PEPSI) at 3T using generalized autocalibrating partial parallel acquisition (GRAPPA) with a 32-channel coil array, 1.5 cm(3) voxel size, TR/TE of 15/2000 ms, and 2.1 Hz spectral resolution. Compared to an 8-channel array, the smaller RF coil elements in this 32-channel array provided a 3.1-fold and 2.8-fold increase in signal-to-noise ratio (SNR) in the peripheral region and the central region, respectively, and more spatial modulated information. Comparison of sensitivity-encoding (SENSE) and GRAPPA reconstruction using an 8-channel array showed that both methods yielded similar quantitative metabolite measures (P > 0.1). Concentration values of N-acetyl-aspartate (NAA), total creatine (tCr), choline (Cho), myo-inositol (mI), and the sum of glutamate and glutamine (Glx) for both methods were consistent with previous studies. Using the 32-channel array coil the mean Cramer-Rao lower bounds (CRLB) were less than 8% for NAA, tCr, and Cho and less than 15% for mI and Glx at 2-fold acceleration. At 4-fold acceleration the mean CRLB for NAA, tCr, and Cho was less than 11%. In conclusion, the use of a 32-channel coil array and GRAPPA reconstruction can significantly reduce the measurement time for mapping brain metabolites. (c) 2008 Wiley-Liss, Inc.

  12. Ultrashort echo time imaging with acquisition trajectory mapping for correction of gradient imperfections

    Czech Academy of Sciences Publication Activity Database

    Latta, P.; Starčuk jr., Zenon; Gruwel, M. L. H.; Tománek, B.

    2015-01-01

    Roč. 28, S1 (2015), S102 ISSN 0968-5243. [ESMRMB 2015. Annual Scientific Meeting /32./. 01.09.2015-03.09.2015, Edinburgh] R&D Projects: GA ČR(CZ) GA15-12607S Institutional support: RVO:68081731 Keywords : UTE MRI * radial sampling * image reconstructio Subject RIV: FS - Medical Facilities ; Equipment

  13. Echo project

    DEFF Research Database (Denmark)

    Gfader, Verina; Carson, Rebecca; Kraus, Chris

    2016-01-01

    team to both present the printed matter in the format of running a book stall, and stage a discursive event at the Classroom. Echo reverberates some of the encounters and debates there, with new commissioned chapters propelling a ongoing correspondence across urban environs: An essay on the General...... mothers and demonology (Kathy Acker’s property deals in the UK), and more; and future materials formalized as poster texts . . ....

  14. Imaging with 11B of intact tissues using magnetic resonance gradient echoes

    International Nuclear Information System (INIS)

    Richards, T.L.; Bradshaw, K.M.; Freeman, D.M.; Sotak, C.H.; Gavin, P.R.

    1988-01-01

    Boron neutron capture therapy (BNCT) is a proposed method of treating Glioblastoma Multiforme. BNCT is based on 10 B intake by the tumor and in-situ activation by neutron beam. It is estimated that to have successful BNCT, a 10 B delivery mechanism must deposit 20 ppM or more of 10 B within the tumor. To study and understand this delivery mechanism, 11 B can be used instead of 10 B. The pharmacokinetics of any compound using 11 B will be the same as 10 B. The advantage of using 11 B over 10 B is its greater nuclear magnetic resonance sensitivity for both spectroscopy and imaging. The use of 11 B imaging to detect and quantitate boron uptake non-invasively in animal tumor modes will facilitate continued work with 10 B. Preliminary work has shown that 11 B nuclear magnetic resonance (NMR) spectroscopy (nonlocalized) can detect 11 B in intact mouse tissues and the area under the boron peak correlates with the total boron content (correlation coefficient of 0.997). Once the ability to non-invasively measure the boron compound is established using magnetic resonance imaging (MRI) combined with spectroscopy, we will be able to address the following questions: (1) what is the optimum method of boron administration for maximum tumor selective uptake, (2) at what time is peak tumor boron concentration after infusion, and (3) what is the dose distribution in the head (based on neutron radiation and boron concentration)? The purpose of this study was to test the feasibility of imaging 11 B in intact tissues using magnetic resonance

  15. Water Flow Investigation on Quartz Sand with 13-interval Stimulated Echo Multi Slice Imaging

    Science.gov (United States)

    Spindler, Natascha; Pohlmeier, Andreas; Galvosas, Petrik

    2011-03-01

    Understanding root water uptake in soils is of high importance for securing nutrition in the context of climate change and linked phenomena like stronger varying weather conditions (draught, strong rain). One step to understand how root water uptake occurs is the knowledge of the water flow in soil towards plant roots. Magnetic Resonance Imaging (MRI) in combination with q-space imaging is potentially the most powerful analytical tool for non-invasive three dimensional visualization of flow and transport in porous media. Numerous attempts have been made to measure local velocity in porous media by combining velocity phase encoding with fast imaging methods, where flow velocities in the vascular bundles of plant stems were investigated. In contrast to water situated in the cellular structure of plants, NMR signal arising from water in the pore space in soil may be much more affected by the presence of internal magnetic field gradients. In this work we account for the existence of these gradients by employing bipolar pulsed field magnetic gradients for velocity encoding. This enables one to study flow through sand (as a model system for soil) at flow rates relevant for the water uptake of plant roots.

  16. In-phase and out-of-phase gradient-echo imaging in abdominal studies: intra-individual comparison of three different techniques

    International Nuclear Information System (INIS)

    Ramalho, Miguel; Heredia, Vasco; Campos, Rafael O. P. de; Azevedo, Rafael M.; Semelka, Richard C.; Dale, Brian M.

    2012-01-01

    Background: T1-weighted gradient-echo in-phase and out-of-phase imaging is an essential component of comprehensive abdominal MR exams. It is useful for the study of fat-containing lesions and to identify various disease states related to the presence of fat in the liver. Purpose: To compare three T1-weighted in-phase and out-of-phase (IP/OP) gradient-echo imaging sequences in an intra-individual fashion, and to determine whether advantages exist for each of these sequences for various patient types. Material and Methods: One hundred and eighteen consecutive subjects (74 men, 44 women; mean age 53.9 ± 13.8 years) who had MRI examinations containing all three different IP/OP sequences (two-dimensional spoiled gradient-echo [2D-GRE], three-dimensional gradient-echo [3D-GRE], and magnetization-prepared gradient-recall echo [MP-GRE]) were included. Two different reviewers independently and blindly qualitatively evaluated IP/OP sequences to determine image quality, extent of artifacts, lesion detectability and conspicuity, and subjective grading of liver steatosis for the various sequences. Quantitative analysis was also performed. Qualitative and quantitative data were subjected to statistical analysis. Results: Respiratory ghosting, parallel imaging, and truncation artifacts as well as shading and blurring were more pronounced with 3D-GRE IP/OP imaging. Overall image quality was higher with 2D-GRE (P < 0.05). Detectability of low-fluid content lesions was lower with IP/OP MP-GRE sequences. MP-GRE sequences had the lowest SNRs (P < 0.001). Liver-to-spleen and liver-to-lesion CNRs were significantly lower with 3D-GRE and MP-GR, respectively (P < 0.001). Fat liver indexes showed strongly positive correlation between all sequences. Conclusion: Currently, 2D-GRE remains the best approach for clinical IP/OP imaging. The good image quality of MP-GRE sequences acquired in a free-breathing manner should recommend its use in patients unable to suspend breathing

  17. In-phase and out-of-phase gradient-echo imaging in abdominal studies: intra-individual comparison of three different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Miguel; Heredia, Vasco; Campos, Rafael O. P. de; Azevedo, Rafael M.; Semelka, Richard C. (Dept. of Radiology, Univ. of North Carolina at Chapel Hill (United States)); Dale, Brian M. (Siemens Medical Systems, Morrisville (United States)), email: richsem@med.unc.edu

    2012-05-15

    Background: T1-weighted gradient-echo in-phase and out-of-phase imaging is an essential component of comprehensive abdominal MR exams. It is useful for the study of fat-containing lesions and to identify various disease states related to the presence of fat in the liver. Purpose: To compare three T1-weighted in-phase and out-of-phase (IP/OP) gradient-echo imaging sequences in an intra-individual fashion, and to determine whether advantages exist for each of these sequences for various patient types. Material and Methods: One hundred and eighteen consecutive subjects (74 men, 44 women; mean age 53.9 +- 13.8 years) who had MRI examinations containing all three different IP/OP sequences (two-dimensional spoiled gradient-echo [2D-GRE], three-dimensional gradient-echo [3D-GRE], and magnetization-prepared gradient-recall echo [MP-GRE]) were included. Two different reviewers independently and blindly qualitatively evaluated IP/OP sequences to determine image quality, extent of artifacts, lesion detectability and conspicuity, and subjective grading of liver steatosis for the various sequences. Quantitative analysis was also performed. Qualitative and quantitative data were subjected to statistical analysis. Results: Respiratory ghosting, parallel imaging, and truncation artifacts as well as shading and blurring were more pronounced with 3D-GRE IP/OP imaging. Overall image quality was higher with 2D-GRE (P < 0.05). Detectability of low-fluid content lesions was lower with IP/OP MP-GRE sequences. MP-GRE sequences had the lowest SNRs (P < 0.001). Liver-to-spleen and liver-to-lesion CNRs were significantly lower with 3D-GRE and MP-GR, respectively (P < 0.001). Fat liver indexes showed strongly positive correlation between all sequences. Conclusion: Currently, 2D-GRE remains the best approach for clinical IP/OP imaging. The good image quality of MP-GRE sequences acquired in a free-breathing manner should recommend its use in patients unable to suspend breathing

  18. Evaluation of a multiple spin- and gradient-echo (SAGE) EPI acquisition with SENSE acceleration: applications for perfusion imaging in and outside the brain.

    Science.gov (United States)

    Skinner, Jack T; Robison, Ryan K; Elder, Christopher P; Newton, Allen T; Damon, Bruce M; Quarles, C Chad

    2014-12-01

    Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2(*)) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2(*) in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2(*) in white (WM) (rR2=[0.55-0.79], rR2*=[0.47-0.71]) and gray (GM) matter (rR2=[0.26-0.59], rR2*=[0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters K(trans) and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2', a parameter that has been shown to correlate

  19. Quantitative mapping of total choline in healthy human breast using proton echo planar spectroscopic imaging (PEPSI) at 3 Tesla.

    Science.gov (United States)

    Zhao, Chenguang; Bolan, Patrick J; Royce, Melanie; Lakkadi, Navneeth; Eberhardt, Steven; Sillerud, Laurel; Lee, Sang-Joon; Posse, Stefan

    2012-11-01

    To quantitatively measure tCho levels in healthy breasts using Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI). The two-dimensional mapping of tCho at 3 Tesla across an entire breast slice using PEPSI and a hybrid spectral quantification method based on LCModel fitting and integration of tCho using the fitted spectrum were developed. This method was validated in 19 healthy females and compared with single voxel spectroscopy (SVS) and with PRESS prelocalized conventional Magnetic Resonance Spectroscopic Imaging (MRSI) using identical voxel size (8 cc) and similar scan times (∼7 min). A tCho peak with a signal to noise ratio larger than 2 was detected in 10 subjects using both PEPSI and SVS. The average tCho concentration in these subjects was 0.45 ± 0.2 mmol/kg using PEPSI and 0.48 ± 0.3 mmol/kg using SVS. Comparable results were obtained in two subjects using conventional MRSI. High lipid content in the spectra of nine tCho negative subjects was associated with spectral line broadening of more than 26 Hz, which made tCho detection impossible. Conventional MRSI with PRESS prelocalization in glandular tissue in two of these subjects yielded tCho concentrations comparable to PEPSI. The detection sensitivity of PEPSI is comparable to SVS and conventional PRESS-MRSI. PEPSI can be potentially used in the evaluation of tCho in breast cancer. A tCho threshold concentration value of ∼0.7 mmol/kg might be used to differentiate between cancerous and healthy (or benign) breast tissues based on this work and previous studies. Copyright © 2012 Wiley Periodicals, Inc.

  20. Combining parallel detection of proton echo planar spectroscopic imaging (PEPSI) measurements with a data-consistency constraint improves SNR.

    Science.gov (United States)

    Tsai, Shang-Yueh; Hsu, Yi-Cheng; Chu, Ying-Hua; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2015-12-01

    One major challenge of MRSI is the poor signal-to-noise ratio (SNR), which can be improved by using a surface coil array. Here we propose to exploit the spatial sensitivity of different channels of a coil array to enforce the k-space data consistency (DC) in order to suppress noise and consequently to improve MRSI SNR. MRSI data were collected using a proton echo planar spectroscopic imaging (PEPSI) sequence at 3 T using a 32-channel coil array and were averaged with one, two and eight measurements (avg-1, avg-2 and avg-8). The DC constraint was applied using a regularization parameter λ of 1, 2, 3, 5 or 10. Metabolite concentrations were quantified using LCModel. Our results show that the suppression of noise by applying the DC constraint to PEPSI reconstruction yields up to 32% and 27% SNR gain for avg-1 and avg-2 data with λ = 5, respectively. According to the reported Cramer-Rao lower bounds, the improvement in metabolic fitting was significant (p < 0.01) when the DC constraint was applied with λ ≥ 2. Using the DC constraint with λ = 3 or 5 can minimize both root-mean-square errors and spatial variation for all subjects using the avg-8 data set as reference values. Our results suggest that MRSI reconstructed with a DC constraint can save around 70% of scanning time to obtain images and spectra with similar SNRs using λ = 5. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Fat-suppressed three-dimensional fast spoiled gradient-recalled echo imaging: a modified FS 3D SPGR technique for assessment of patellofemoral joint chondromalacia.

    Science.gov (United States)

    Wang, S F; Cheng, H C; Chang, C Y

    1999-01-01

    Fast fat-suppressed (FS) three-dimensional (3D) spoiled gradient-recalled echo (SPGR) imaging of 64 articular cartilage regions in 16 patellofemoral joints was evaluated to assess its feasibility in diagnosing patellofemoral chondromalacia. It demonstrated good correlation with arthroscopic reports and took about half of the examination time that FS 3D SPGR did. This modified, faster technique has the potential to diagnose patellofemoral chondromalacia with shorter examination time than FS 3D SPGR did.

  2. Functional MR imaging of the primary motor area in patients with brain tumors of the motor cortex. Evaluation with echo-planer imaging on a clinical 1.0 T MR imager

    International Nuclear Information System (INIS)

    Hara, Yoshie; Nakamura, Mitsugu; Tamaki, Norihiko; Ehara, Kazumasa; Kitamura, Junji

    1998-01-01

    The study included 3 healthy volunteers and 8 patients with a brain tumor of the motor cortex. The fMRI study was based on the spin echo (SE) type single shot echo-planer technique. Ten contiguous axial slices consisted of 40-60 echo-planer images acquired during 80-120 seconds of repeated task performances and resting periods. Activation maps were calculated by a Z-score method with thresholding, and interpolated on T1 images and surface anatomy scans. In all cases, areas of a significant signal increase were detected as clusters of several pixels on the precentral gyrus contralateral to the motor task performance. The mean signal change was 3.6±0.9% in normal subjects, and 7.2±4.1% in brain tumor patients. There was no significant difference between the two groups. In 5 brain tumor patients significant displacement of the precentral gyrus was observed on T1- or T2-weighted SE images. Of these, 2 also had marked peritumoral edema spreading over the precentral gyrus. There was no significant difference in the size, or the degree, of signal change between patients with or without compression or edema, nor between patients with and without preoperative motor impairment. During surgical intervention, displacement of the precentral gyrus was observed as had been demonstrated on preoperative images of patients. In all patients the precentral gyrus was preserved in all cases, and no deterioration of motor function occurred. Resolution of the displacement and edema was detected on postoperative MRI. Using the echo-planer technique on a clinical 1.0 T imager fMRI localization of the primary motor cortex was obtained in normal and brain tumor subjects. The activated areas were detected on the precentral gyrus of both groups, and even when there was marked brain compression or edema. It is important to identify and preserve the precentral gyrus during surgery to avoid deterioration of motor function. (K.H.)

  3. Magnetic resonance imaging of the sacroiliac joints in patients with suspected spondyloarthritis. Comparison of turbo spin-echo and gradient-echo sequences for the detection of structural alterations

    International Nuclear Information System (INIS)

    Dornia, C.; Hoffstetter, P.; Asklepios Klinikum, Bad Abbach; Fleck, M.; Asklepios Klinikum, Bad Abbach; Hartung, W.; Niessen, C.; Stroszczynski, C.

    2015-01-01

    Magnetic resonance imaging (MRI) is the method of choice for the evaluation of spondyloarthritis (SpA). According to the guidelines of the Assessment of Spondyloarthritis International Society (ASAS) and Outcome Measures in Rheumatology (OMERACT), MRI findings in SpA of the spine and the sacroiliac joints (SIJ) are classified as inflammatory and structural alterations. Modern gradient-echo sequences (GRE) are recommended for optimized detection of structural alterations of the SIJ. We assess the benefit of GRE in the detection of structural alterations of the SIJ in comparison to conventional turbo spin-echo sequences (TSE). Retrospective study of 114 patients who received MRI of the SIJ for the evaluation of SpA. Structural alterations of the SIJ were assessed by two blinded readers separately for T1 TSE and T2 * GRE. The findings were classified according to a previously published chronicity score separately for both sides and sequences. Interobserver reliability was calculated with Cohen's Kappa, and the significance of findings was assessed with the Wilcoxon test. P-values * GRE showed a high interobserver reliability in the detection of structural alterations in patients with SpA. However, T2 * GRE detected significantly more structural alterations than T1 TSE and should be an integral part of a modern MRI protocol for the diagnostic workup of patients with suspected SpA.

  4. Reducing task-based fMRI scanning time using simultaneous multislice echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Mate [Hungarian Academy of Sciences, Brain Imaging Centre, Research Centre for Natural Sciences, Budapest (Hungary); Janos Szentagothai PhD School, MR Research Centre, Budapest (Hungary); National Institute of Clinical Neuroscience, Department of Neuroradiology, Budapest (Hungary); Hermann, Petra; Vidnyanszky, Zoltan; Gal, Viktor [Hungarian Academy of Sciences, Brain Imaging Centre, Research Centre for Natural Sciences, Budapest (Hungary)

    2018-03-15

    To maintain alertness and to remain motionless during scanning represent a substantial challenge for patients/subjects involved in both clinical and research functional magnetic resonance imaging (fMRI) examinations. Therefore, availability and application of new data acquisition protocols allowing the shortening of scan time without compromising the data quality and statistical power are of major importance. Higher order category-selective visual cortical areas were identified individually, and rapid event-related fMRI design was used to compare three different sampling rates (TR = 2000, 1000, and 410 ms, using state-of-the-art simultaneous multislice imaging) and four different scanning lengths to match the statistical power of the traditional scanning methods to high sampling-rate design. The results revealed that ∝ 4 min of the scan time with 1 Hz (TR = 1000 ms) sampling rate and ∝ 2 min scanning at ∝ 2.5 Hz (TR = 410 ms) sampling rate provide similar localization sensitivity and selectivity to that obtained with 11-min session at conventional, 0.5 Hz (TR = 2000 ms) sampling rate. Our findings suggest that task-based fMRI examination of clinical population prone to distress such as presurgical mapping experiments might substantially benefit from the reduced (20-40%) scanning time that can be achieved by the application of simultaneous multislice sequences. (orig.)

  5. Multisensor fusion in gastroenterology domain through video and echo endoscopic image combination: a challenge

    Science.gov (United States)

    Debon, Renaud; Le Guillou, Clara; Cauvin, Jean-Michel; Solaiman, Basel; Roux, Christian

    2001-08-01

    Medical domain makes intensive use of information fusion. In particular, the gastro-enterology is a discipline where physicians have the choice between several imagery modalities that offer complementary advantages. Among all existing systems, videoendoscopy (based on a CCD sensor) and echoendoscopy (based on an ultrasound sensor) are the most efficient. The use of each system corresponds to a given step in the physician diagnostic elaboration. Nowadays, several works aim to achieve automatic interpretation of videoendoscopic sequences. These systems can quantify color and superficial textures of the digestive tube. Unfortunately the relief information, which is important for the diagnostic, is very difficult to retrieve. On the other hand, some studies have proved that 3D information can be easily quantified using echoendoscopy image sequences. That is why the idea to combine these information, acquired from two very different points of view, can be considered as a real challenge for the medical image fusion topic. In this paper, after a review of actual works concerning numerical exploitation of videoendoscopy and echoendoscopy, the following question will be discussed: how can the use of complementary aspects of the different systems ease the automatic exploitation of videoendoscopy ? In a second time, we will evaluate the feasibility of the achievement of a realistic 3D reconstruction based both on information given by echoendoscopy (relief) and videoendoscopy (texture). Enumeration of potential applications of such a fusion system will then follow. Further discussions and perspectives will conclude this first study.

  6. Usefulness and limitation of functional MRI with echo planar imaging using clinical MR apparatus

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Zenke, Kiichiro; Saito, Masahiro; Sadamoto, Kazuhiko; Ohue, Shiro; Sakaki, Saburo; Kumon, Yoshiaki; Kabasawa, Hiroyuki; Nagasawa, Kiyoshi

    1998-01-01

    We studied blood oxygen level-dependent (BOLD) functional MRI (fMRI) with EPI sequence in 21 normal volunteers and 8 presurgical clinical patients using a 1.5 T clinical MRI apparatus. To optimize the imaging parameters, we compared the fMRI images obtained by GFE-EPI and by SE-EPI in normal volunteers while each squeezed a sponge ball. We identified the motor cortex in 85.7% of normal volunteers by GFE-EPI in contrast to only 28.6% by SE-EPI. In addition, our clinical MR apparatus, using optimized parameters, maximally provides 15 slices per 5 seconds. In patients with brain tumor close to the sensorimotor cortex, we attempted to identify the motor cortex preoperatively by this procedure and found a significant increase of signal intensity in the motor cortex in 5 of 8 patients. In conclusion, fMRI using EPI may be useful for identifying the motor cortex preoperatively. However, further development of the apparatus is needed to obtain better temporal and spatial resolution for clinical applications. (author)

  7. Stimulated echo diffusion tensor imaging and SPAIR T2 -weighted imaging in chronic exertional compartment syndrome of the lower leg muscles.

    Science.gov (United States)

    Sigmund, Eric E; Sui, Dabang; Ukpebor, Obehi; Baete, Steven; Fieremans, Els; Babb, James S; Mechlin, Michael; Liu, Kecheng; Kwon, Jane; McGorty, KellyAnne; Hodnett, Philip A; Bencardino, Jenny

    2013-11-01

    To evaluate the performance of diffusion tensor imaging (DTI) in the evaluation of chronic exertional compartment syndrome (CECS) as compared to T2 -weighted (T2w) imaging. Using an Institutional Review Board (IRB)-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant protocol, spectral adiabatic inversion recovery (SPAIR) T2w imaging and stimulated echo DTI were applied to eight healthy volunteers and 14 suspected CECS patients before and after exertion. Longitudinal and transverse diffusion eigenvalues, mean diffusivity (MD), and fractional anisotropy (FA) were measured in seven calf muscle compartments, which in patients were classified by their response on T2w: normal (20% change). Mixed model analysis of variance compared subject groups and compartments in terms of response factors (post/pre-exercise ratios) of DTI parameters. All diffusivities significantly increased (P DTI shows promise as an ancillary imaging method in the diagnosis and understanding of the pathophysiology in CECS. Future studies may explore its utility in predicting response to treatment. Copyright © 2013 Wiley Periodicals, Inc.

  8. Factors affecting the effectiveness of a projection dephaser in 2D gradient-echo imaging

    International Nuclear Information System (INIS)

    Bakker, Chris J G; Peters, Nicky H G M; Vincken, Koen L; Bom, Martijn van der; Seppenwoolde, Jan-Henry

    2007-01-01

    Projection dephasers are often used for background suppression and dynamic range improvement in thick-slab 2D imaging in order to promote the visibility of subslice structures, e.g., blood vessels and interventional devices. In this study, we explored the factors that govern the effectiveness of a projection dephaser by simulations and phantom experiments. This was done for the ideal case of a single subslice hyper- or hypointensity against a uniform background in the absence of susceptibility effects. Simulations and experiments revealed a pronounced influence of the slice profile, the nominal flip angle and the TE and TR of the acquisition, the size, intraslice position and MR properties of the subslice structure, and T 1 of the background. The complexity of the ideal case points to the necessity of additional explorations when considering the use of projection dephasers under less ideal conditions, e.g., in the presence of tissue heterogeneities and susceptibility gradients

  9. Differentiation of prostate cancer from benign prostate hypertrophy using dual-echo dynamic contrast MR imaging

    International Nuclear Information System (INIS)

    Muramoto, Satoshi; Uematsu, Hidemasa; Kimura, Hirohiko; Ishimori, Yoshiyuki; Sadato, Norihiro; Oyama, Nobuyuki; Matsuda, Tsuyoshi; Kawamura, Yasutaka; Yonekura, Yoshiharu; Okada, Kenichiro; Itoh, Harumi

    2002-01-01

    Objective: To investigate the usefulness of dynamic contrast magnetic resonance (MR) imaging in the differentiation of prostate cancer (PC) from benign prostate hypertrophy (BPH). Materials and methods: Eleven PC patients and 13 BPH patients were entered into the analysis. The mean gradient (MG) was calculated from the T2* term-eliminated time-signal intensity curve obtained from dynamic contrast MR data, and the MG of PC and that of BPH were compared. Results: The MG of PC was significantly higher than that of BPH. When the threshold value was set to 1.88% per s for discriminating PC from BPH, the sensitivity, specificity, and accuracy were 100, 85, and 92%, respectively. Conclusion: The MG, which is derived from the T2* term-eliminated time-signal intensity curve, may be a useful index for differentiating PC from BPH

  10. Detection of hepatic VX2 carcinomas with ferucarbotran-enhanced magnetic resonance imaging in rabbits: Comparison of nine pulse sequences

    International Nuclear Information System (INIS)

    Kim, Seong Hyun; Choi, Dongil; Lim, Hyo K.; Kim, Min Ju; Jang, Kyung Mi; Kim, Seung Hoon; Lee, Won Jae; Lee, Jongmee; Jeon, Yong Hwan; Lim, Jae Hoon

    2006-01-01

    Objective: To compare the diagnostic performance of a variety of magnetic resonance imaging (MRI) sequences, in order to identify the most effective ferucarbotran-enhanced sequence for the detection of multiple small hepatic VX2 carcinomas in rabbits. Methods: Fifteen rabbits with experimentally induced 135 VX2 carcinomas in the liver underwent ferucarbotran-enhanced MRI using the following nine pulse sequences: a fat-suppressed fast spin-echo (FSE) sequence with two echo times (TE) (proton density- and T2-weighted images), four different T2*-weighted fast multiplanar GRASS (gradient-recalled acquisition in the steady state) (FMPGR) with the combination of three TEs (9, 12, 15 ms, respectively) and two flip angles (20 deg., 80 deg., respectively), T2*-weighted fast multiplanar spoiled GRASS (FMPSPGR), T1-weighted FMPSPGR, and dynamic T1-weighted FMPSPGR. All images were reviewed by three radiologists with quantitative and qualitative analysis. Results: Tumor-to-liver contrast-to-noise ratio of the proton density-weighted FSE sequence was significantly higher than those of the others (p o ) images were superior to those of the others and for the detection of very small hepatic tumors of less than 5 mm, the sensitivities of these sequences were less than 30%. Conclusion: Ferucarbotran-enhanced T2- and proton density-weighted FSE and T2*-weighed FMPGR (TE/flip angle, 12/20 o ) images were found to be the most effective pulse sequences for the detection of multiple small hepatic VX2 carcinomas but these sequences were limited in the detection of very small hepatic tumors of less than 5 mm in size

  11. Accelerated echo-planar J-resolved spectroscopic imaging in the human brain using compressed sensing: a pilot validation in obstructive sleep apnea.

    Science.gov (United States)

    Sarma, M K; Nagarajan, R; Macey, P M; Kumar, R; Villablanca, J P; Furuyama, J; Thomas, M A

    2014-06-01

    Echo-planar J-resolved spectroscopic imaging is a fast spectroscopic technique to record the biochemical information in multiple regions of the brain, but for clinical applications, time is still a constraint. Investigations of neural injury in obstructive sleep apnea have revealed structural changes in the brain, but determining the neurochemical changes requires more detailed measurements across multiple brain regions, demonstrating a need for faster echo-planar J-resolved spectroscopic imaging. Hence, we have extended the compressed sensing reconstruction of prospectively undersampled 4D echo-planar J-resolved spectroscopic imaging to investigate metabolic changes in multiple brain locations of patients with obstructive sleep apnea and healthy controls. Nonuniform undersampling was imposed along 1 spatial and 1 spectral dimension of 4D echo-planar J-resolved spectroscopic imaging, and test-retest reliability of the compressed sensing reconstruction of the nonuniform undersampling data was tested by using a brain phantom. In addition, 9 patients with obstructive sleep apnea and 11 healthy controls were investigated by using a 3T MR imaging/MR spectroscopy scanner. Significantly reduced metabolite differences were observed between patients with obstructive sleep apnea and healthy controls in multiple brain regions: NAA/Cr in the left hippocampus; total Cho/Cr and Glx/Cr in the right hippocampus; total NAA/Cr, taurine/Cr, scyllo-Inositol/Cr, phosphocholine/Cr, and total Cho/Cr in the occipital gray matter; total NAA/Cr and NAA/Cr in the medial frontal white matter; and taurine/Cr and total Cho/Cr in the left frontal white matter regions. The 4D echo-planar J-resolved spectroscopic imaging technique using the nonuniform undersampling-based acquisition and compressed sensing reconstruction in patients with obstructive sleep apnea and healthy brain is feasible in a clinically suitable time. In addition to brain metabolite changes previously reported by 1D MR

  12. T2*-based MR imaging (gradient echo or susceptibility-weighted imaging) in midline and off-midline intracranial germ cell tumors. A pilot study

    International Nuclear Information System (INIS)

    Morana, Giovanni; Tortora, Domenico; Severino, Mariasavina; Rossi, Andrea; Alves, Cesar Augusto; Finlay, Jonathan L.; Nozza, Paolo; Ravegnani, Marcello; Pavanello, Marco; Milanaccio, Claudia; Garre, Maria Luisa; Maghnie, Mohamad

    2018-01-01

    The role of T2*-based MR imaging in intracranial germ cell tumors (GCTs) has not been fully elucidated. The aim of this study was to evaluate the susceptibility-weighted imaging (SWI) or T2* gradient echo (GRE) features of germinomas and non-germinomatous germ cell tumors (NGGCTs) in midline and off-midline locations. We retrospectively evaluated all consecutive pediatric patients referred to our institution between 2005 and 2016, for newly diagnosed, treatment-naive intracranial GCT, who underwent MRI, including T2*-based MR imaging (T2* GRE sequences or SWI). Standard pre- and post-contrast T1- and T2-weighted imaging characteristics along with T2*-based MR imaging features of all lesions were evaluated. Diagnosis was performed in accordance with the SIOP CNS GCT protocol criteria. Twenty-four subjects met the inclusion criteria (17 males and 7 females). There were 17 patients with germinomas, including 5 basal ganglia primaries, and 7 patients with secreting NGGCT. All off-midline germinomas presented with SWI or GRE hypointensity; among midline GCT, all NGGCTs showed SWI or GRE hypointensity whereas all but one pure germinoma were isointense or hyperintense to normal parenchyma. A significant difference emerged on T2*-based MR imaging among midline germinomas, NGGCTs, and off-midline germinomas (p < 0.001). Assessment of the SWI or GRE characteristics of intracranial GCT may potentially assist in differentiating pure germinomas from NGGCT and in the characterization of basal ganglia involvement. T2*-based MR imaging is recommended in case of suspected intracranial GCT. (orig.)

  13. T2*-based MR imaging (gradient echo or susceptibility-weighted imaging) in midline and off-midline intracranial germ cell tumors. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Morana, Giovanni; Tortora, Domenico; Severino, Mariasavina; Rossi, Andrea [Istituto Giannina Gaslini, Neuroradiology Unit, Genoa (Italy); Alves, Cesar Augusto [Hospital Das Clinicas, Radiology Department, Sao Paulo (Brazil); Finlay, Jonathan L. [Nationwide Children' s Hospital and The Ohio State University, Division of Hematology, Oncology and BMT, Columbus, OH (United States); Nozza, Paolo [Istituto Giannina Gaslini, Pathology Unit, Genoa (Italy); Ravegnani, Marcello; Pavanello, Marco [Istituto Giannina Gaslini, Neurosurgery Unit, Genoa (Italy); Milanaccio, Claudia; Garre, Maria Luisa [Istituto Giannina Gaslini, Neuro-oncology Unit, Genoa (Italy); Maghnie, Mohamad [Istituto Giannina Gaslini, University of Genova, Pediatric Endocrine Unit, Genoa (Italy)

    2018-01-15

    The role of T2*-based MR imaging in intracranial germ cell tumors (GCTs) has not been fully elucidated. The aim of this study was to evaluate the susceptibility-weighted imaging (SWI) or T2* gradient echo (GRE) features of germinomas and non-germinomatous germ cell tumors (NGGCTs) in midline and off-midline locations. We retrospectively evaluated all consecutive pediatric patients referred to our institution between 2005 and 2016, for newly diagnosed, treatment-naive intracranial GCT, who underwent MRI, including T2*-based MR imaging (T2* GRE sequences or SWI). Standard pre- and post-contrast T1- and T2-weighted imaging characteristics along with T2*-based MR imaging features of all lesions were evaluated. Diagnosis was performed in accordance with the SIOP CNS GCT protocol criteria. Twenty-four subjects met the inclusion criteria (17 males and 7 females). There were 17 patients with germinomas, including 5 basal ganglia primaries, and 7 patients with secreting NGGCT. All off-midline germinomas presented with SWI or GRE hypointensity; among midline GCT, all NGGCTs showed SWI or GRE hypointensity whereas all but one pure germinoma were isointense or hyperintense to normal parenchyma. A significant difference emerged on T2*-based MR imaging among midline germinomas, NGGCTs, and off-midline germinomas (p < 0.001). Assessment of the SWI or GRE characteristics of intracranial GCT may potentially assist in differentiating pure germinomas from NGGCT and in the characterization of basal ganglia involvement. T2*-based MR imaging is recommended in case of suspected intracranial GCT. (orig.)

  14. Short-echo 3D H-1 Magnetic Resonance Spectroscopic Imaging of patients with glioma at 7T for characterization of differences in metabolite levels

    Science.gov (United States)

    Li, Yan; Larson, Peder; Chen, Albert P.; Lupo, Janine M.; Ozhinsky, Eugene; Kelley, Douglas; Chang, Susan M.; Nelson, Sarah J.

    2014-01-01

    Purpose The purpose of this study was to evaluate the feasibility of using a short echo time, 3D H-1 magnetic resonance spectroscopic imaging (MRSI) sequence at 7T to assess the metabolic signature of lesions for patients with glioma. Materials and Methods 29 patients with glioma were studied. MRSI data were obtained using CHESS water suppression, spectrally-selective adiabatic inversion-recovery pulses and automatically prescribed outer-volume-suppression for lipid suppression, and spin echo slice selection (TE=30ms). An interleaved flyback echo-planar trajectory was applied to shorten the total acquisition time (~10min). Relative metabolite ratios were estimated in tumor and in normal-appearing white and gray matter (NAWM, GM). Results Levels of glutamine, myo-inositol, glycine and glutathione relative to total creatine (tCr) were significantly increased in the T2 lesions for all tumor grades compared to those in the NAWM (p < 0.05), while N-acetyl aspartate to tCr were significantly decreased (p < 0.05). In grade 2 gliomas, level of total choline-containing-compounds to tCr was significantly increased (p = 0.0137), while glutamate to tCr was significantly reduced (p = 0.0012). Conclusion The improved sensitivity of MRSI and the increased number of metabolites that can be evaluated using 7T MR scanners is of interest for evaluating patients with glioma. This study has successfully demonstrated the application of a short-echo spin-echo MRSI sequence to detect characteristic differences in regions of tumor versus normal appearing brain. PMID:24935758

  15. MR Imaging of the Internal Auditory Canal and Inner Ear at 3T: Comparison between 3D Driven Equilibrium and 3D Balanced Fast Field Echo Sequences

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Jun Soo; Kim, Hyung Jin; Yim, Yoo Jeong; Kim, Sung Tae; Jeon, Pyoung; Kim, Keon Ha [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Sam Soo; Jeon, Yong Hwan; Lee, Ji Won [Kangwon National University College of Medicine, Chuncheon (Korea, Republic of)

    2008-06-15

    To compare the use of 3D driven equilibrium (DRIVE) imaging with 3D balanced fast field echo (bFFE) imaging in the assessment of the anatomic structures of the internal auditory canal (IAC) and inner ear at 3 Tesla (T). Thirty ears of 15 subjects (7 men and 8 women; age range, 22 71 years; average age, 50 years) without evidence of ear problems were examined on a whole-body 3T MR scanner with both 3D DRIVE and 3D bFFE sequences by using an 8-channel sensitivity encoding (SENSE) head coil. Two neuroradiologists reviewed both MR images with particular attention to the visibility of the anatomic structures, including four branches of the cranial nerves within the IAC, anatomic structures of the cochlea, vestibule, and three semicircular canals. Although both techniques provided images of relatively good quality, the 3D DRIVE sequence was somewhat superior to the 3D bFFE sequence. The discrepancies were more prominent for the basal turn of the cochlea, vestibule, and all semicircular canals, and were thought to be attributed to the presence of greater magnetic susceptibility artifacts inherent to gradient-echo techniques such as bFFE. Because of higher image quality and less susceptibility artifacts, we highly recommend the employment of 3D DRIVE imaging as the MR imaging choice for the IAC and inner ear

  16. Three-dimensional ultrashort echo time MRI and Short T2 images generated from subtraction for determination of tumor burden in lung cancer: Preclinical investigation in transgenic mice.

    Science.gov (United States)

    Müller, Andreas; Jagoda, Philippe; Fries, Peter; Gräber, Stefan; Bals, Robert; Buecker, Arno; Jungnickel, Christopher; Beisswenger, Christoph

    2018-02-01

    To investigate the potential of 3D ultrashort echo time MRI and short T 2 images generated by subtraction for determination of total tumor burden in lung cancer. As an animal model of spontaneously developing non-small cell lung cancer, the K-rasLA1 transgenic mouse was used. Three-dimensional MR imaging was performed with radial k-space acquisition and echo times of 20 µs and 1 ms. For investigation of the short T 2 component in the recorded signal, subtraction images were generated from these data sets and used for consensus identification of tumors. Next, manual segmentation was performed on all MR images by two independent investigators. MRI data were compared with the results from histologic investigations and among the investigators. Tumor number and total tumor burden from imaging experiments correlated strongly with the results of histologic investigations. Intra- and interuser comparison showed highest correlations between the individual measurements for ultra-short TE MRI. Three-dimensional MRI protocols facilitate accurate tumor identification in mice harboring lung tumors. Ultrashort TE MRI is the superior imaging strategy when investigating lung tumors of miscellaneous size with 3D MR imaging strategies. Magn Reson Med 79:1052-1060, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Does non-echo-planar diffusion-weighted magnetic resonance imaging have a role in assisting the clinical diagnosis of cholesteatoma in selected cases?

    Science.gov (United States)

    Nash, R; Lingam, R K; Chandrasekharan, D; Singh, A

    2018-03-01

    To determine the diagnostic performance of diffusion-weighted magnetic resonance imaging in the assessment of patients with suspected, but not clinically evident, cholesteatoma. A retrospective analysis of a prospectively collected database of non-echo-planar diffusion-weighted magnetic resonance imaging studies (using a half-Fourier single-shot turbo-spin echo sequence) was conducted. Clinical records were retrospectively reviewed to determine indications for imaging and operative findings. Seventy-eight investigations in 74 patients with suspected cholesteatoma aged 5.7-79.2 years (mean, 41.7 years) were identified. Operative confirmation was available in 44 ears. Diagnostic accuracy of the imaging technique was calculated using operative findings as a 'gold standard'. Sensitivity of the investigation was examined via comparison with clinically evident cholesteatoma. The accuracy of diffusion-weighted magnetic resonance imaging in assessment of suspected cholesteatoma was 63.6 per cent. The imaging technique was significantly less accurate in assessment of suspected cholesteatoma than clinically evident disease (p < 0.001). Computed tomography and diffusion-weighted magnetic resonance imaging may be complementary in assessment of suspected cholesteatoma, but should be used with caution, and clinical judgement is paramount.

  18. 3T MR Spin Echo T1 Weighted Image at Optimization of Flip Angle

    International Nuclear Information System (INIS)

    Lim, Chung Hwang; Bae, Sung Jin

    2009-01-01

    This study presents the optimization of flip angle (FA) to obtain higher contrast to noise ratio (CNR) and lower specific absorption rate (SAR). T1-weighted images of the cerebrum of brain were obtained from 50 degrees to 130 degrees FA with 10 interval. Signal to noise ratios (SNRs) were calculated for white matter (WM), gray matter (GM), and background noise. The proper FA was analyzed by T-test statistics and Kruskal-wallis analysis using R1 = 1- exp (-TR/T1) and Ernst angle cos = exp ((-TR/T1). The SNR of WM at 130 degrees FA is approximately 1.6 times higher than the SNR of WM at 50 degrees. The SNR of GM at 130 degrees FA is approximately 1.9 times higher than the SNR of GM at 50 degrees. Although the SNRs of WM and GM showed similar trends with the change of FA values, the slowdown point of decrease after linear fitting were different. While the SNR of WM started decreasing at 120 degrees FA, the SNR of GM started decreasing at less than 110 degrees. The highest SNRs of WM and GM were obtained at 130 degrees FA. The highest CNRs, however, were obtained at 80 degrees FA. Although SNR increased with the change of FA values from 50 degrees to 130 degrees at 3T SE T1WI, CNR was higher at 80 degrees FA than at the usually used 90 degrees FA. In addition, the SAR was decreased by using smaller FA. The CNR can be increased by using this optimized FA at 3T MR SE T1WI.

  19. Dynamic MR imaging in Tolosa-Hunt syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Tabassum Laz; Miki, Yukio; Kashii, Satoshi; Yamamoto, Akira; Kanagaki, Mitsunori; Takahashi, Takahiro; Fushimi, Yasutaka; Asato, Reinin; Murase, Nagako; Shibasaki, Hiroshi; Konishi, Junji

    2004-09-01

    Objective: To evaluate the cavernous sinuses with dynamic magnetic resonance (MR) imaging in patients with Tolosa-Hunt syndrome (THS). Methods: The sellar and parasellar regions of five patients with THS and 12 control subjects were examined with dynamic MR (1.5 T) imaging in the coronal plane. Dynamic images were obtained with spin-echo (SE) sequences in three patients, and with fast spin-echo (FSE) sequences in two patients and control subjects. Conventional MR images of the cranium including sellar and parasellar regions were also obtained on T1-weighted pre- and post-contrast SE, and T2-weighted FSE sequences in the coronal plane. Results: MR images revealed affected cavernous sinus with bulged convex lateral wall in three patients and concave lateral wall in two patients. In all control subjects, cavernous sinuses were observed with concave lateral wall. The signal intensity on T1- and T2-weighted images and contrast enhancement on post-contrast images of the affected cavernous sinuses in patients were similar to those of the unaffected cavernous sinuses in patients and control subjects. The dynamic images in all patients disclosed small areas adjacent to the cranial nerve filling-defects within the enhanced venous spaces of the affected cavernous sinus, which showed slow and gradual enhancement from the early to the late dynamic images. No such gradually enhancing area was observed in control subjects except one. The follow-up dynamic MR images after corticosteroid therapy revealed complete resolution of the gradually enhancing areas in the previously affected cavernous sinus. Conclusion: Dynamic MR imaging may facilitate the diagnosis of THS.

  20. Dynamic MR imaging in Tolosa-Hunt syndrome

    International Nuclear Information System (INIS)

    Haque, Tabassum Laz; Miki, Yukio; Kashii, Satoshi; Yamamoto, Akira; Kanagaki, Mitsunori; Takahashi, Takahiro; Fushimi, Yasutaka; Asato, Reinin; Murase, Nagako; Shibasaki, Hiroshi; Konishi, Junji

    2004-01-01

    Objective: To evaluate the cavernous sinuses with dynamic magnetic resonance (MR) imaging in patients with Tolosa-Hunt syndrome (THS). Methods: The sellar and parasellar regions of five patients with THS and 12 control subjects were examined with dynamic MR (1.5 T) imaging in the coronal plane. Dynamic images were obtained with spin-echo (SE) sequences in three patients, and with fast spin-echo (FSE) sequences in two patients and control subjects. Conventional MR images of the cranium including sellar and parasellar regions were also obtained on T1-weighted pre- and post-contrast SE, and T2-weighted FSE sequences in the coronal plane. Results: MR images revealed affected cavernous sinus with bulged convex lateral wall in three patients and concave lateral wall in two patients. In all control subjects, cavernous sinuses were observed with concave lateral wall. The signal intensity on T1- and T2-weighted images and contrast enhancement on post-contrast images of the affected cavernous sinuses in patients were similar to those of the unaffected cavernous sinuses in patients and control subjects. The dynamic images in all patients disclosed small areas adjacent to the cranial nerve filling-defects within the enhanced venous spaces of the affected cavernous sinus, which showed slow and gradual enhancement from the early to the late dynamic images. No such gradually enhancing area was observed in control subjects except one. The follow-up dynamic MR images after corticosteroid therapy revealed complete resolution of the gradually enhancing areas in the previously affected cavernous sinus. Conclusion: Dynamic MR imaging may facilitate the diagnosis of THS

  1. Abnormal intraluminal signal within the pulmonary arteries on MR imaging: Differentiation between slow blood flow and thrombus using an ECG-gated; multiphasic: Spin-echo technique

    International Nuclear Information System (INIS)

    White, R.D.; Higgins, C.B.

    1986-01-01

    The authors evaluated abnormal MR imaging signal patterns in the pulmonary arteries of 22 patients with pulmonary hypertension (n = 13), pulmonary embolus (n = 4), or both (n = 5). Using multiphasic (five or six phases; 19 patients) or standard (three patients with pulmonary embolus) ECG-gated, double spin-echo techniques, they were able to differentiate between causes of such abnormal signal patterns. The pattern of slow blood flow (abnormal signal in systole with fluctuating distribution during cardiac cycle, and intensity increasing visually from first to second echo) was noted in 89% of patients with pulmonary hypertension alone or in combination with pulmonary embolism, and was characteristic of high systolic pulmonary pressures (12 of 12 patients with pressure > 80 mm Hg, vs. 3 of 5 patients with pressure 55 mm Hg vs. 5 of 7 patients with pressures <55 mm Hg). This pattern was differentiated from that of thrombus (persistent signal with fixed distribution during cardiac cycle, and little to no visible intensity change from first to second echo), which was noted in six of seven proved embolus cases. Thus, gated multiphase MR imaging shows potential for the noninvasive visualization of pulmonary embolus and the differentiation of this entity from the slow blood flow of pulmonary hypertension

  2. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chandarana, Hersh; Block, Kai T.; Winfeld, Matthew J.; Lala, Shailee V.; Mazori, Daniel; Giuffrida, Emalyn; Babb, James S.; Milla, Sarah S. [New York University Langone Medical Center, Department of Radiology, New York, NY (United States)

    2014-02-15

    To compare the image quality of contrast-enhanced abdominopelvic 3D fat-suppressed T1-weighted gradient-echo imaging with radial and conventional Cartesian k-space acquisition schemes in paediatric patients. Seventy-three consecutive paediatric patients were imaged at 1.5 T with sequential contrast-enhanced T1-weighted Cartesian (VIBE) and radial gradient echo (GRE) acquisition schemes with matching parameters when possible. Cartesian VIBE was acquired as a breath-hold or as free breathing in patients who could not suspend respiration, followed by free-breathing radial GRE in all patients. Two paediatric radiologists blinded to the acquisition schemes evaluated multiple parameters of image quality on a five-point scale, with higher score indicating a more optimal examination. Lesion presence or absence, conspicuity and edge sharpness were also evaluated. Mixed-model analysis of variance was performed to compare radial GRE and Cartesian VIBE. Radial GRE had significantly (all P < 0.001) higher scores for overall image quality, hepatic edge sharpness, hepatic vessel clarity and respiratory motion robustness than Cartesian VIBE. More lesions were detected on radial GRE by both readers than on Cartesian VIBE, with significantly higher scores for lesion conspicuity and edge sharpness (all P < 0.001). Radial GRE has better image quality and lesion conspicuity than conventional Cartesian VIBE in paediatric patients undergoing contrast-enhanced abdominopelvic MRI. (orig.)

  3. MR Imaging of the Spine at 3.0T with T2-Weighted IDEAL Fast Recovery Fast Spin-Echo Technique

    International Nuclear Information System (INIS)

    Ren, Ai Jun; Guo, Yong; Tian, Shu Ping; Shi, Li Jing; Huang, Min Hua

    2012-01-01

    To compare the iterative decomposition of water and fat with echo asymmetry and the least-squares estimation (IDEAL) method with a fat-saturated T2-weighted (T2W) fast recovery fast spin-echo (FRFSE) imaging of the spine. Images acquired at 3.0 Tesla (T) in 35 patients with different spine lesions using fat-saturated T2W FRFSE imaging were compared with T2W IDEAL FRFSE images. Signal-to-noise ratio (SNR)-efficiencies measurements were made in the vertebral bodies and spinal cord in the mid-sagittal plane or nearest to the mid-sagittal plane. Images were scored with the consensus of two experienced radiologists on a four-point grading scale for fat suppression and overall image quality. Statistical analysis of SNR-efficiency, fat suppression and image quality scores was performed with a paired Student's t test and Wilcoxon's signed rank test. Signal-to-noise ratio-efficiency for both vertebral body and spinal cord was higher with T2W IDEAL FRFSE imaging (p < 0.05) than with T2W FRFSE imaging. T2W IDEAL FRFSE demonstrated superior fat suppression (p < 0.01) and image quality (p < 0.01) compared to fat-saturated T2W FRFSE. As compared with fat-saturated T2W FRFSE, IDEAL can provide a higher image quality, higher SNR-efficiency, and consistent, robust and uniform fat suppression. T2W IDEAL FRFSE is a promising technique for MR imaging of the spine at 3.0T.

  4. Moderately T2-weighted images obtained with the single-shot fast spin-echo technique. Differentiating between malignant and benign urinary obstructions

    International Nuclear Information System (INIS)

    Obuchi, Masao; Sugimoto, Hideharu; Kubota, Hayato; Yamamoto, Wakako; Kinebuchi, Yuko; Honda, Minoru; Takahara, Taro

    2002-01-01

    The purpose of this study was to determine whether a distinction could be made between benign and malignant urinary obstructions in moderately T 2 -weighted images obtained with the single-shot fast spin-echo technique. Forty-four lesions in 39 patients with urinary obstruction were evaluated with the single-shot fast spin-echo (SSFSE) technique with an effective TE of 90-100 ms and without fat saturation. Benign and malignant lesions were compared for the presence of ureteral wall thickening and a signal intensity relative to the proximal ureteral wall. Statistically significant differences were found between benign and malignant lesions in both morphologic change (P 2 -weighted SSFSE technique without fat saturation can accurately distinguish between benign and malignant urinary obstructions. (author)

  5. Clinical evaluation of echo-planar diffusion-weighted imaging (EPI-DWI) for diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Nakajima, Mika; Nitatori, Toshiaki; Matsuda, Minoru; Fukushima, Hisaki; Ihara, Kuniko; Seki, Tsuneaki

    2008-01-01

    The purpose of this study was to compare echo-planar diffusion-weighted imaging (EPI-DWI) with dynamic contrast-enhanced magnetic resonance imaging (MRI) in terms of the rate of detection, extension, and quality of diagnosis of breast cancer in order to estimate the usefulness of EPI-DWI. One hundred and three cases of 101 patients who underwent MRI prior to surgery for breast cancer were evaluated. (papillotubular carcinoma 22; solid-tubular carcinoma 20; scirrhous carcinoma 45; mucinous carcinoma 2; medullary carcinoma 1; invasive lobular carcinoma 2; apocrine carcinoma 2; ductal carcinoma in situ (DCIS) and microinvasive ductal carcinoma 9). Twelve cases of benign lesion were also evaluated. Single-shot EPI-DWI was performed before routine dynamic MRI and images of cancer detection and cancer extension both were compared with the pathological findings. The apparent diffusion coefficient (ADC) values of the lesions were measured and compared to the ADC values of benign lesions and normal breast tissues. The differences between the ADC values for the various histopathological types and the time-intensity curve (TIC) patterns of the dynamic MRI were also estimated. The EPI-DWI demonstrated abnormal high-intensity areas corresponding to the breast cancer lesions; these areas demonstrated good correlation with the enhanced areas observed in the early phase of dynamic MRI and cancer extension in the pathological findings. Frequently, normal breast tissues manifested as high-intensity areas in EPI-DWI; however, it was possible to distinguish between normal breast tissues and breast lesions by correlating these images with T2- weighted images and corresponding ADC values. The threshold value between malignant and benign lesions that resulted both high sensitivity and specificity was about 1.5 x 10 -3 x mm 2 /second. Mucinous carcinoma and DCIS/ microinvasive carcinoma exhibited higher ADC values than those observed in the other histopathological types, however, no

  6. Echo-Planar Imaging Based J-Resolved Spectroscopic Imaging for Improved Metabolite Detection in Prostate Cancer

    Science.gov (United States)

    2012-10-01

    Clinical Setting" was presented at the 20th International Society of Magnetic Resonance in Medicine (ISMRM) meeting in Melbourne , Australia (May 5-11...experience. Eur Urol 2001;40(1):75–83. 5. Chandra RV, Heinze S, Dowling R, Shadbolt C, Costello A, Pedersen J. Endorectal mag- netic resonance imaging

  7. Comparison of axial T1 spin-echo and T1 fat-saturation magnetic resonance imaging techniques in the diagnosis of chondromalacia patellae.

    Science.gov (United States)

    Vanarthos, W J; Pope, T L; Monu, J U

    1994-12-01

    To test the diagnostic value of T1 spin-echo and T1 fat-saturated magnetic resonance images (MRIs), we reviewed axial T1-weighted images with and without fat saturation in 20 patients with clinically suspected chondromalacia of the patella. All scans were obtained on 1.5-MR units. The scans were randomly ordered and reviewed independently at different times by two radiologists without knowledge of the arthroscopy results. The sensitivity of the individual techniques for detecting grade 3 or 4 chondromalacia patellae was 92% for fat-saturated axial T1-weighted images alone, and 67% for axial T1-weighted images without fat saturation. The sensitivity of the combined techniques was 100% for grades 3 and 4 and 90% for all grades (0 to 4). Chondromalacia patellae is diagnosed more accurately by using T1 fat saturation than by using T1 spin-echo images. With a combination of the two techniques, accuracy is 90% to 100%.

  8. Identification of the primary motor cortex: value of T2 echo-planar imaging, diffusion-weighted imaging and quantitative apparent diffusion coefficient measurement at 3 T

    International Nuclear Information System (INIS)

    Dincer, Alp; Erzen, Canan; Oezyurt, Onur; Pamir, M.N.

    2010-01-01

    To investigate the primary motor cortex (PMC) concerning T2 shortening on T2 echo-planar imaging (EPI-T2) and the double-layer sign on diffusion-weighted imaging (DWI), and also to measure its apparent diffusion coefficient (ADC). 3-T MR DWI was performed in 134 adult volunteers and 64 patients. T2 shortening was graded as hypointense or isointense compared with the signal of the superior frontal cortex (SFC). The double-layer sign of the PMC was graded as present or absent. Both findings (T2 shortening and double-layer sign) were evaluated independently by two authors. ADC of the PMC and the SFC were calculated using manually selected ROIs. T2 shortening was found in 131 adults and 62 patients by author 1 and in 132 adults and 61 patients by author 2 (κ = 0.96 and 0.91). The double-layer sign was found in 131 adults and 61 patients by author 1 and in 127 adults and 58 patients by author 2 (κ = 0.94 and 0.91). ADC values of the PMC and the SFC were different for all subjects (p < 0.01). T2 shortening and/or the double-layer sign on 3-T MR can be used to locate the PMC. The difference in ADC values between PMC and SFC is a distinguishing feature. (orig.)

  9. Surgical evaluation of magnetic resonance imaging findings in piriformis muscle syndrome

    International Nuclear Information System (INIS)

    Pecina, Hrvoje Ivan; Boric, Igor; Smoljanovic, Tomislav; Pecina, Marko; Duvancic, Davor

    2008-01-01

    The objective of this study was to evaluate the accuracy of magnetic resonance imaging (MRI) in the diagnosis of the piriformis muscle syndrome (PMS). In ten patients, seven female and three male, with a long history of clinical symptoms of the PMS, an MRI was performed as the last preoperative diagnostic tool. All patients were imaged using 2T MR system (Elscint, Haifa, Israel). Axial and coronal spin-echo, fast spin-echo (FSE), and fat-suppressed FSE-weighted images were made through the pelvic region with 3-mm section thickness and a 0.5-mm gap to show the whole piriformis muscle and the course of sciatic nerve on its way out of the pelvis. A routine examination also included axial fast spin-echo T2, three-dimensional gradient echo. In seven cases, an MRI abnormality for the PMS was found. In two women, the MRI demonstrated a bigastric appearance of the piriformis muscle with a tendinous portion between the muscle heads and the course of the common peroneal nerve through the muscle between the tendinous portions of the muscle. In one female patient, the common peroneal nerve passed through the hypertrophied piriformis muscle. In four patients, the MRI showed a hypertrophied aspect of the piriformis muscle and an anteriorly displaced sciatic nerve. All MRI findings were confirmed surgically. In three patients, no apparent abnormalities could be observed, but after a surgical treatment, i.e., a tenotomy of the piriformis muscle and neurolysis of the sciatic nerve, all symptoms disappeared. In piriformis muscle syndrome, MRI may demonstrate signal abnormalities of the sciatic nerve as well as its relationship with the normal and abnormal piriformis muscle. (orig.)

  10. Echo-Planar Imaging-Based, J-Resolved Spectroscopic Imaging for Improved Metabolite Detection in Prostate Cancer

    Science.gov (United States)

    2016-12-01

    post-process the multi-dimensional MRS data from different prostate pathologies . Scope: Improved cancer detection (specificity) in differentiating...MATERIALS AND METHODS Patients Between March 2012 and May 2013, twenty-two patients with PCa with a mean age of 63.8 years (range, 46–79 years), who...tumor voxels, which was confirmed by the pathology report. After reconstruction, the EP-JRESI data were overlaid onto MRI images. MRI and MRSI A body

  11. Improved imaging of cochlear nerve hypoplasia using a 3-Tesla variable flip-angle turbo spin-echo sequence and a 7-cm surface coil.

    Science.gov (United States)

    Giesemann, Anja M; Raab, Peter; Lyutenski, Stefan; Dettmer, Sabine; Bültmann, Eva; Frömke, Cornelia; Lenarz, Thomas; Lanfermann, Heinrich; Goetz, Friedrich

    2014-03-01

    Magnetic resonance imaging of the temporal bone has an important role in decision making with regard to cochlea implantation, especially in children with cochlear nerve deficiency. The purpose of this study was to evaluate the usefulness of the combination of an advanced high-resolution T2-weighted sequence with a surface coil in a 3-Tesla magnetic resonance imaging scanner in cases of suspected cochlear nerve aplasia. Prospective study. Seven patients with cochlear nerve hypoplasia or aplasia were prospectively examined using a high-resolution three-dimensional variable flip-angle turbo spin-echo sequence using a surface coil, and the images were compared with the same sequence in standard resolution using a standard head coil. Three neuroradiologists evaluated the magnetic resonance images independently, rating the visibility of the nerves in diagnosing hypoplasia or aplasia. Eight ears in seven patients with hypoplasia or aplasia of the cochlear nerve were examined. The average age was 2.7 years (range, 9 months-5 years). Seven ears had accompanying malformations. The inter-rater reliability in diagnosing hypoplasia or aplasia was greater using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence (fixed-marginal kappa: 0.64) than with the same sequence in lower resolution (fixed-marginal kappa: 0.06). Examining cases of suspected cochlear nerve aplasia using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence in combination with a surface coil shows significant improvement over standard methods. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  12. MRI of the hip at 7T: feasibility of bone microarchitecture, high-resolution cartilage, and clinical imaging.

    Science.gov (United States)

    Chang, Gregory; Deniz, Cem M; Honig, Stephen; Egol, Kenneth; Regatte, Ravinder R; Zhu, Yudong; Sodickson, Daniel K; Brown, Ryan

    2014-06-01

    To demonstrate the feasibility of performing bone microarchitecture, high-resolution cartilage, and clinical imaging of the hip at 7T. This study had Institutional Review Board approval. Using an 8-channel coil constructed in-house, we imaged the hips of 15 subjects on a 7T magnetic resonance imaging (MRI) scanner. We applied: 1) a T1-weighted 3D fast low angle shot (3D FLASH) sequence (0.23 × 0.23 × 1-1.5 mm(3) ) for bone microarchitecture imaging; 2) T1-weighted 3D FLASH (water excitation) and volumetric interpolated breath-hold examination (VIBE) sequences (0.23 × 0.23 × 1.5 mm(3) ) with saturation or inversion recovery-based fat suppression for cartilage imaging; 3) 2D intermediate-weighted fast spin-echo (FSE) sequences without and with fat saturation (0.27 × 0.27 × 2 mm) for clinical imaging. Bone microarchitecture images allowed visualization of individual trabeculae within the proximal femur. Cartilage was well visualized and fat was well suppressed on FLASH and VIBE sequences. FSE sequences allowed visualization of cartilage, the labrum (including cartilage and labral pathology), joint capsule, and tendons. This is the first study to demonstrate the feasibility of performing a clinically comprehensive hip MRI protocol at 7T, including high-resolution imaging of bone microarchitecture and cartilage, as well as clinical imaging. Copyright © 2013 Wiley Periodicals, Inc.

  13. MR imaging of scaphoid fractures

    DEFF Research Database (Denmark)

    Meincke, Louise; Radev, Dimitar; Eriksen, Rie Østbjerg

    2017-01-01

    the importance of early MRI and hereby predict bone bruise with the help of fat suppression sequence; however, only a limited selection articles compares various fat suppression techniques. The purpose of this prospective study was to compare the short tau inversion recovery (STIR) and T2 fat saturation (FAT SAT......) sequences, sectional directed along the scaphoid bone axis. In relation to background fat intensity suppression, this study sought the sequence that best evaluated posttraumatic bone marrow edema (bone bruise) on scaphoid injury musculoskeletal magnetic resonance imaging (MRI, 1.5 T extremity scanner......). Materials and methods: Two hundred and fifty-one patients with relevant trauma and positive clinical test for scaphoid bone fractures, exceeding no more than 14 days, underwent MRI examinations. A fast STIR and T2 FAT SAT fast spin echo sequence (FSE) were obtained using a comparable parameter setting (scan...

  14. Comparison between arthroscopy and 3 dimensional double echo steady state 3D-DESS sequences in magnetic resonance imaging of internal derangements of the knee

    International Nuclear Information System (INIS)

    Dongola, Nagwa A.; Gishen, Philip

    2004-01-01

    This study was performed with the aim of evaluating the usefulness of 3 dimensional double-echo steady state sequences in examining the internal derangements of the knee. Arthroscopy was used as a referral standard. The study was performed in the Radiology and Arthroscopy Departments of Kings College Hospital, London, United Kingdom, during a 6-month period from January 1997 to June 1997. All patients who had knee magnetic resonance imaging within 3 months of arthroscopy were retrospectively studied. Thirty-three patients fulfilled these criteria and were selected. Three dimensional double-echo steady state sequences produced sensitivity for detecting meniscal tears of 87.5% for medial menisci (MM) and 75% for lateral menisci (LM). Specificity was 76% for MM and 96% for LM; positive predictive value (PPV) was 46.1% for MM and 85.7% for LM and negative predictive value (NPV) of 95% for MM and 96% for LM. The sensitivity for the anterior cruciate ligament was 83.3%, specificity was 77.7%, PPV was 45.4% and NPV was 95.4%. Three dimensional double-echo steady state sequences are useful in evaluating internal derangement of the knee, especially in advanced cartilage lesions. (author)

  15. MRI of the wrist at 7 tesla using an eight-channel array coil combined with parallel imaging: preliminary results.

    Science.gov (United States)

    Chang, Gregory; Friedrich, Klaus M; Wang, Ligong; Vieira, Renata L R; Schweitzer, Mark E; Recht, Michael P; Wiggins, Graham C; Regatte, Ravinder R

    2010-03-01

    To determine the feasibility of performing MRI of the wrist at 7 Tesla (T) with parallel imaging and to evaluate how acceleration factors (AF) affect signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and image quality. This study had institutional review board approval. A four-transmit eight-receive channel array coil was constructed in-house. Nine healthy subjects were scanned on a 7T whole-body MR scanner. Coronal and axial images of cartilage and trabecular bone micro-architecture (3D-Fast Low Angle Shot (FLASH) with and without fat suppression, repetition time/echo time = 20 ms/4.5 ms, flip angle = 10 degrees , 0.169-0.195 x 0.169-0.195 mm, 0.5-1 mm slice thickness) were obtained with AF 1, 2, 3, 4. T1-weighted fast spin-echo (FSE), proton density-weighted FSE, and multiple-echo data image combination (MEDIC) sequences were also performed. SNR and CNR were measured. Three musculoskeletal radiologists rated image quality. Linear correlation analysis and paired t-tests were performed. At higher AF, SNR and CNR decreased linearly for cartilage, muscle, and trabecular bone (r < -0.98). At AF 4, reductions in SNR/CNR were:52%/60% (cartilage), 72%/63% (muscle), 45%/50% (trabecular bone). Radiologists scored images with AF 1 and 2 as near-excellent, AF 3 as good-to-excellent (P = 0.075), and AF 4 as average-to-good (P = 0.11). It is feasible to perform high resolution 7T MRI of the wrist with parallel imaging. SNR and CNR decrease with higher AF, but image quality remains above-average.

  16. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging.

    Science.gov (United States)

    Murphy, B J

    2001-06-01

    To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee.

  17. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging

    International Nuclear Information System (INIS)

    Murphy, B.J.

    2001-01-01

    Objective. To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee.Design and patients. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed.Results. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%.Conclusion. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee. (orig.)

  18. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B.J. [Dept. of Radiology, Univ. of Miami School of Medicine, FL (United States)

    2001-06-01

    Objective. To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee.Design and patients. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed.Results. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%.Conclusion. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee. (orig.)

  19. Ultrashort Echo Time Magnetic Resonance Imaging of the Lung Using a High-Relaxivity T1 Blood-Pool Contrast Agent

    Directory of Open Access Journals (Sweden)

    Joris Tchouala Nofiele

    2014-10-01

    Full Text Available The lung remains one of the most challenging organs to image using magnetic resonance imaging (MRI due to intrinsic rapid signal decay. However, unlike conventional modalities such as computed tomography, MRI does not involve radiation and can provide functional and morphologic information on a regional basis. Here we demonstrate proof of concept for a new MRI approach to achieve substantial gains in a signal to noise ratio (SNR in the lung parenchyma: contrast-enhanced ultrashort echo time (UTE imaging following intravenous injection of a high-relaxivity blood-pool manganese porphyrin T1 contrast agent. The new contrast agent increased relative enhancement of the lung parenchyma by over 10-fold compared to gadolinium diethylene triamine pentaacetic acid (Gd-DTPA, and the use of UTE boosted the SNR by a factor of 4 over conventional T1-weighted gradient echo acquisitions. The new agent also maintains steady enhancement over at least 60 minutes, thus providing a long time window for obtaining high-resolution, high-quality images and the ability to measure a number of physiologic parameters.

  20. Evaluation of shoulder pathology: three-dimensional enhanced T1 high-resolution isotropic volume excitation MR vs two-dimensional fast spin echo T2 fat saturation MR.

    Science.gov (United States)

    Park, H J; Lee, S Y; Kim, M S; Choi, S H; Chung, E C; Kook, S H; Kim, E

    2015-03-01

    To evaluate the diagnostic accuracy of three-dimensional (3D) enhanced T1 high-resolution isotropic volume excitation (eTHRIVE) shoulder MR for the detection of rotator cuff tears, labral lesions and calcific tendonitis of the rotator cuff in comparison with two-dimensional (2D) fast spin echo T2 fat saturation (FS) MR. This retrospective study included 73 patients who underwent shoulder MRI using the eTHRIVE technique. Shoulder MR images were interpreted separately by two radiologists. They evaluated anatomic identification and image quality of the shoulder joint on routine MRI sequences (axial and oblique coronal T2 FS images) and compared them with the reformatted eTHRIVE images. The images were scored on a four-point scale (0, poor; 1, questionable; 2, adequate; 3, excellent) according to the degree of homogeneous and sufficient fat saturation to penetrate bone and soft tissue, visualization of the glenoid labrum and distinction of the supraspinatus tendon (SST). The diagnostic accuracy of eTHRIVE images compared with routine MRI sequences was evaluated in the setting of rotator cuff tears, glenoid labral injuries and calcific tendonitis of the SST. Fat saturation scores for eTHRIVE were significantly higher than those of the T2 FS for both radiologists. The sensitivity and accuracy of the T2 FS in diagnosing rotor cuff tears were >90%, whereas sensitivity and accuracy of the eTHRIVE method were significantly lower. The sensitivity, specificity and accuracy of both images in diagnosing labral injuries and calcific tendonitis were similar and showed no significant differences. The specificity of both images for the diagnosis of labral injuries and calcific tendonitis was higher than the sensitivities. The accuracy of 3D eTHRIVE imaging was comparable to that of 2D FSE T2 FS for the diagnosis of glenoid labral injury and calcific tendonitis of SST. The 3D eTHRIVE technique was superior to 2D FSE T2 FS in terms of fat saturation. Overall, 3D eTHRIVE was inferior

  1. Differentiation between cavernous hemangiomas and untreated malignant neoplasms of the liver with free-breathing diffusion-weighted MR imaging: Comparison with T2-weighted fast spin-echo MR imaging

    International Nuclear Information System (INIS)

    Soyer, Philippe; Corno, Lucie; Boudiaf, Mourad; Aout, Mounir; Sirol, Marc; Place, Vinciane; Duchat, Florent; Guerrache, Youcef; Fargeaudou, Yann; Vicaut, Eric; Pocard, Marc; Hamzi, Lounis

    2011-01-01

    Objective: To test interobserver variability of ADC measurements and compare the diagnostic performances of free-breathing diffusion-weighted (FBDW) with that of T2-weighted FSE (T2WFSE) MR imaging for differentiating between cavernous hemangiomas and untreated malignant hepatic neoplasms. Materials and methods: Thirty-five patients with cavernous hemangiomas and 35 with untreated hepatic malignant neoplasms had FBDW and T2WFSE MR imaging. Hepatic lesions were characterized with ADC measurement and visual evaluation. Interobserver agreement for ADC measurement was calculated. Association between ADC value and lesion type was assessed using univariate analysis. Sensitivity, specificity and accuracy of ADC values and visual evaluation of MR images for the diagnosis of untreated malignant hepatic neoplasm were compared. Results: ADC measurements showed excellent interobserver correlation (intraclass correlation coefficient = 0.980). Malignant neoplasms had lower ADC values than hemangiomas for the two observers (1.11 x 10 -3 mm 2 /s ± .21 x 10 -3 vs. 1.77 x 10 -3 mm 2 /s ± .29 x 10 -3 for observer 1 and 1.11 x 10 -3 mm 2 /s ± .19 x 10 -3 vs. 1.79 x 10 -3 mm 2 /s ± .32 x 10 -3 for observer 2) and univariate analysis found significant correlations between lesion type and ADC values. Depending on ADC threshold value, accuracy for the diagnosis of malignant neoplasm varied from 82.9% to 94.3%. Using visual evaluation, FBDW showed better specificity and accuracy than T2WFSE MR images for the diagnosis of malignant neoplasm (97.1% vs. 77.1% and 94.3% vs. 62.9%, respectively). Conclusion: FBDW imaging provides reproducible quantitative information and surpasses the value of T2WFSE MR imaging for differentiating between cavernous hemangiomas and untreated malignant hepatic neoplasms.

  2. Accelerated magnetic resonance diffusion tensor imaging of the median nerve using simultaneous multi-slice echo planar imaging with blipped CAIPIRINHA

    Energy Technology Data Exchange (ETDEWEB)

    Filli, Lukas; Kenkel, David; Boss, Andreas; Manoliu, Andrei; Andreisek, Gustav; Runge, Val M.; Guggenberger, Roman [University Hospital of Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Piccirelli, Marco [University Hospital of Zurich, Department of Neuroradiology, Zurich (Switzerland); Bhat, Himanshu [Siemens Medical Solutions USA Inc, Charlestown, MA (United States)

    2016-06-15

    To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm{sup 2}; 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm{sup 2}/s; twofold acceleration: 1.016 ± 0.123 mm{sup 2}/s; threefold acceleration: 0.979 ± 0.153 mm{sup 2}/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. (orig.)

  3. SU-D-207A-04: Use of Gradient Echo Plural Contrast Imaging (GEPCI) in MR-Guided Radiation Therapy: A Feasibility Study Targeting Brain Treatment

    International Nuclear Information System (INIS)

    Cai, B; Rao, Y; Tsien, C; Huang, J; Green, O; Mutic, S; Gach, H; Wen, J; Yablonskiy, D

    2016-01-01

    Purpose: To implement the Gradient Echo Plural Contrast Imaging(GEPCI) technique in MRI-simulation for radiation therapy and assess the feasibility of using GEPCI images with advanced inhomogeneity correction in MRI-guided radiotherapy for brain treatment. Methods: An optimized multigradient-echo GRE sequence (TR=50ms;TE1=4ms;delta-TE=4ms;flip angle=300,11 Echoes) was developed to generate both structural (T1w and T2*w) and functional MRIs (field and susceptibility maps) from a single acquisition. One healthy subject (Subject1) and one post-surgical brain cancer patient (Subject2) were scanned on a Philips Ingenia 1.5T MRI used for radiation therapy simulation. Another healthy subject (Subject3) was scanned on a 0.35T MRI-guided radiotherapy (MR-IGRT) system (ViewRay). A voxel spread function (VSF) was used to correct the B0 inhomogeneities caused by surgical cavities and edema for Subject2. GEPCI images and standard radiotherapy planning MRIs for this patient were compared focusing the delineation of radiotherapy target region. Results: GEPCI brain images were successfully derived from all three subjects with scan times of <7 minutes. The images derived for Subjects1&2 demonstrated that GEPCI can be applied and combined into radiotherapy MRI simulation. Despite low field, T1-weighted and R2* images were successfully reconstructed for Subject3 and were satisfactory for contour and target delineation. The R2* distribution of grey matter (center=12,FWHM=4.5) and white matter (center=14.6, FWHM=2) demonstrated the feasibility for tissue segmentation and quantification. The voxel spread function(VSF) corrected surgical site related inhomogeneities for Subject2. R2* and quantitative susceptibility map(QSM) images for Subject2 can be used to quantitatively assess the brain structure response to radiation over the treatment course. Conclusion: We implemented the GEPCI technique in MRI-simulation and in MR-IGRT system for radiation therapy. The images demonstrated that it

  4. Cartilage volume quantification with multi echo data image combination sequence in swine knee at 3.0 T MRI

    International Nuclear Information System (INIS)

    Zhang Lirong; Wang Dongqing; Wei Chuanshe; Ma Cong; Wang Dehang

    2010-01-01

    Objective: To investigate the accuracy and reproducibility of multi echo data imagine combination (MEDIC) sequence with water excitation at 3.0 T in swine knee cartilage. Methods: Sagittal MEDIC sequences (0.6 mm slice thickness, isotropic) were acquired twice at 3.0 T MRI in 30 swine knees. The knee cartilage was then removed and the volume was directly measured with water substitution method. The cartilage volume was also determined with a validated open source image software OsiriX by two observers (A and B). The cartilage volumes obtained by two methods were compared. The reproducibility of MEDIC for quantitative measurement was accessed by the root-mean-square (RMS) of variation coefficient. Interobserver and intraobserver precision errors were compared using a paired students t-test. The accuracy of MEDIC for quantitative measurement was determined by the random pairwise differences, systematic pairwise differences and the Pearson, correlation coefficients. Time of semiautomatic and manual segmentation were recorded. Results: Time was saved about 75% by using semiautomatic segmentation methods [(4.0± 1.5) min] versus manual segmentation [(16.0±0.9) min]. Interobserver precision errors (RMS CV% for paired analysis) between A and B for cartilage volume measurement were (2.66±0.82) ml and(2.61± 0.81) ml, t=0.24, P=0.81 (patella); (2.40±0.69) ml and (2.49±0.85) ml, t=-0.45, P=0.65 (medial femoral condyle); (2.28±0.74) ml and(2.41±0.78) ml, t=-0.66, P=0.51 (lateral femoral condyle); (3.43±1.28) ml and (3.51±1.08) ml, t=-0.26, P=0.79 (femora trochlea) with sagittal MEDIC. Intraobserver precision errors (RMS CV% for paired analysis) of observer A for the first and second cartilage volume measurement were (2.64±0.62) ml and (2.67±0.60) ml, t=-0.19, P=0.85 (patella); (2.43±0.60) ml and (2.39±0.59) ml, t=0.26, P=0.80 (medial femoral condyle); (2.26±0.56) ml and (2.30±0.57) ml, t=-0.27, P=0.78 (lateral femoral condyle); (3.40± 1.20) ml and (3.47±1

  5. Comparison of multi-echo and single-echo gradient-recalled echo sequences for SPIO-enhanced Liver MRI at 3 T

    International Nuclear Information System (INIS)

    Choi, J.S.; Kim, M.-J.; Kim, J.H.; Choi, J.-Y.; Chung, Y.E.; Park, M.-S.; Kim, K.W.

    2010-01-01

    Aim: To assess the utility of a T2*-weighted, multi-echo data imaging combination sequenced on superparamagnetic iron oxide (SPIO)-enhanced liver magnetic resonance imaging (MRI) using a 3 T system. Materials and methods: Fifty patients underwent SPIO-enhanced MRI at 3 T using T2*-weighted, single-echo, gradient-recalled echo (GRE) sequences [fast imaging with steady precession; repetition time (TR)/echo time (TE), 126 ms/9 ms; flip angle, 30 o ] and multi-echo GRE (multi-echo data image combination) sequences (TR/TE, 186 ms/9 ms; flip angle, 30 o ). Three radiologists independently reviewed the images in a random order. The sensitivity and accuracy for the detection of focal hepatic lesions (a total of 76 lesions in 33 patients; 48 solid lesions, 28 non-solid lesions) were compared by analysing the area under the receiver operating characteristic curves. Image artefacts (flow artefacts, susceptibility artefacts, dielectric artefacts, and motion artefacts), lesion conspicuity, and overall image quality were evaluated according to a four-point scale: 1, poor; 2, fair; 3, good; 4, excellent. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the lesions were compared. Results: Image artefacts were more frequent with single-echo GRE (p < 0.05). The mean scale of image quality assessment for flow, susceptibility, dielectric, and motion artefacts were 2.76, 3.13, 3.42, and 2.89 with singe-echo, respectively, compared with 3.47, 3.43, 3.47, and 3.39, respectively, with multi-echo GRE. There was no significant difference in lesion conspicuity between single-echo (3.15) and multi-echo (3.30) GRE sequences. The overall image quality was significantly (p < 0.05) better with multi-echo (3.37) than with single-echo GRE (2.89). The mean SNR and CNR of the lesions were significantly (p < 0.05) higher on multi-echo (79 ± 23 and 128 ± 59, respectively) images than on single-echo (38 ± 11 and 102 ± 44, respectively) images. Lesion detection accuracy and

  6. Three-dimensional susceptibility-weighted imaging and two-dimensional T2*-weighted gradient-echo imaging of intratumoral hemorrhages in pediatric diffuse intrinsic pontine glioma

    International Nuclear Information System (INIS)

    Loebel, Ulrike; Sedlacik, Jan; Sabin, Noah D.; Hillenbrand, Claudia M.; Patay, Zoltan; Kocak, Mehmet; Broniscer, Alberto

    2010-01-01

    We compared the sensitivity and specificity of T2*-weighted gradient-echo imaging (T2*-GRE) and susceptibility-weighted imaging (SWI) in determining prevalence and cumulative incidence of intratumoral hemorrhages in children with diffuse intrinsic pontine glioma (DIPG) undergoing antiangiogenic and radiation therapy. Patients were recruited from an institutional review board-approved prospective phase I trial of vandetanib administered in combination with radiation therapy. Patient consent was obtained before enrollment. Consecutive T2*-GRE and SWI exams of 17 patients (F/M: 9/8; age 3-17 years) were evaluated. Two reviewers (R1 and R2) determined the number and size of hemorrhages at baseline and multiple follow-ups (92 scans, mean 5.4/patient). Statistical analyses were performed using descriptive statistics, graphical tools, and mixed-effects Poisson regression models. Prevalence of hemorrhages at diagnosis was 41% and 47%; the cumulative incidences of hemorrhages at 6 months by T2*-GRE and SWI were 82% and 88%, respectively. Hemorrhages were mostly petechial; 9.7% of lesions on T2*-GRE and 5.2% on SWI were hematomas (>5 mm). SWI identified significantly more hemorrhages than T2*-GRE did. Lesions were missed or misinterpreted in 36/39 (R1/R2) scans by T2*-GRE and 9/3 scans (R1/R2) by SWI. Hemorrhages had no clinically significant neurological correlates in patients. SWI is more sensitive than T2*-GRE in detecting hemorrhages and differentiating them from calcification, necrosis, and artifacts. Also, petechial hemorrhages are more common in DIPG at diagnosis than previously believed and their number increases during the course of treatment; hematomas are rare. (orig.)

  7. Detection and Elimination of Oncogenic Signaling Networks in Premalignant and Malignant Cells with Magnetic Resonance Imaging

    Science.gov (United States)

    2015-10-01

    proton resonance frequency TR- relaxation time GRE- gradient echo MT- magnetization transfer 6 FSE- fast spin echo 7 3. Overall Progress Summary...support project. – SBA certified 8(a)/Small Disadvantaged Business, HUBZone, and 8(m)/Economically Disadvantaged Woman owned, technology services

  8. Detection and Elimination of Oncogenic Signalling Networks in Premalignant and Malignant Cells with Magnetic Resonance Imaging

    Science.gov (United States)

    2015-10-01

    proton resonance frequency TR- relaxation time GRE- gradient echo MT- magnetization transfer 6 FSE- fast spin echo 7 3. Overall Progress Summary...support project. – SBA certified 8(a)/Small Disadvantaged Business, HUBZone, and 8(m)/Economically Disadvantaged Woman owned, technology services

  9. Carcinoma of the uterine cervix. High-resolution turbo spin-echo MR imaging with contrast-enhanced dynamic scanning and T2-weighting

    International Nuclear Information System (INIS)

    Abe, Y.; Yamashita, Y.; Namimoto, T.; Takahashi, M.; Katabuchi, H.; Tanaka, N.; Okamura, H.

    1998-01-01

    Purpose: To compare high-resolution contrast-enhanced (Gd-DTPA) dynamic MR imaging with T2-weighted turbo spin-echo (TSE) imaging in the evaluation of uterine cervical carcinoma. Material and Methods: Thirty-two patients with cervical carcinoma underwent MR imaging on a 1.5 T superconductive unit to have the extension of the disease assessed before treatment. A phased-array coil was used in all patients. In 25 patients, surgical confirmation of the diagnosis was obtained after imaging. Radiation therapy was selected for the remaining 7 patients with advanced carcinoma. Qualitative and quantitative image analyses were also performed. Results: The cervical carcinomas showed maximum contrast in the cervical stroma and myometrium in the early dynamic phase. The tumor/cervical-stroma contrast in the early dynamic phase obtained with the T1-weighted TSE technique (contrast-to-noise ratio 22.6) was significantly higher than that obtained in T2-weighted TSE imaging (contrast-to-noise ratio 4.3). In the evaluation of parametrial invasion, the accuracy of T2-weighted imaging was 71.8% and contrast-enhanced dynamic imaging 81.2%. Conclusion: High-resolution contrast-enhanced (Gd-DTPA) dynamic MR imaging in cervical cancer offers improved tumor/cervical-stroma contrast and provides useful information on parametrial invasion. (orig.)

  10. Non-invasive quantification of hepatic steatosis in living, related liver donors using dual-echo Dixon imaging and single-voxel proton spectroscopy

    International Nuclear Information System (INIS)

    Krishan, S.; Jain, D.; Bathina, Y.; Kale, A.; Saraf, N.; Saigal, S.; Choudhary, N.; Baijal, S.S.; Soin, A.

    2016-01-01

    Aim: To evaluate the diagnostic implications of hepatic fat fraction calculated using dual-echo Dixon imaging and "1H magnetic resonance spectroscopy (MRS) to detect hepatic steatosis in potential liver donors using histopathology as the reference standard. Materials and methods: One hundred and forty-five potential liver donors were included in the study. Magnetic resonance imaging (MRI) was performed using a 1.5 T system using a three-dimensional dual-echo MRI sequence with automated reconstruction of in-phase (IP), out-of-phase (OP), fat-signal-only, and water-signal-only images. Hepatic fat fraction was calculated by drawing 15 regions of interest on the IP, OP, fat-only, and water-only images. Single-voxel MRS was performed at echo times (TEs) of 30 ms in the right and left lobes of liver. Liver fat fraction was calculated from water and fat peaks. One hundred and forty-five biopsies were prospectively evaluated for steatosis by a pathologist using traditional determination of the cell-count fraction. MRI and pathology values of steatosis were correlated using Pearson's correlation coefficient. The sensitivity and specificity of each of these methods was calculated using histopathology as the reference standard. Reproducibility was assessed in 40 patients who had repeat scanning within 4–40 days. Measurement error was calculated from the coefficient of variation (CoV) with histopathologically proven <5% fat (n=112). Results: The Bland–Altman limits of agreement with 95% confidence intervals (CI) was –2.9 to 5.3%. The intraclass correlation coefficient (ICC) for interobserver variability and reproducibility was 0.94 (95% CI: 0.91–0.97), 0.92 (95% CI: 0.91–0.97). The CoV was 7.6% (95% CI: 3.4–11.85). The area under the receiver operating characteristic (ROC) curve (AUC) for Dixon imaging 0.89 (95% CI: 0.87–0.91), for MRS 0.88 (95% CI: 0.86–0.90). The sensitivity for detecting <5% fat was 84% and specificity was 90%. Conclusion: Combination of

  11. Validity of gradient-echo three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: A histologically controlled study

    Energy Technology Data Exchange (ETDEWEB)

    Zilkens, Christoph, E-mail: christoph.zilkens@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Miese, Falk, E-mail: falk.miese@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstraße 5, D-40225 Dusseldorf (Germany); Herten, Monika, E-mail: Moherten@web.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Kurzidem, Sabine, E-mail: sabine.kurzidem@uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Jäger, Marcus [Univ Essen, Medical Faculty, Department of Orthopaedic Surgery, D-45147 Essen (Germany); König, Dietmar, E-mail: Dietmarpierre.koenig@lvr.de [LVR Clinic for Orthopedic Surgery, D-41749 Viersen (Germany); Antoch, Gerald, E-mail: antoch@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstraße 5, D-40225 Dusseldorf (Germany); Krauspe, Rüdiger, E-mail: krauspe@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Bittersohl, Bernd, E-mail: bernd.bittersohl@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany)

    2013-02-15

    Objective: To validate gradient-echo three-dimensional (3D) delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) by means of histological analyses in the assessment of hip joint cartilage. Materials and methods: Twenty-one femoral head specimens collected from 21 patients (7 males, 14 females, mean age: 60.9 ± 9.6 years; range: 37.6–77.3 years), who underwent total hip replacement for symptomatic hip joint osteoarthritis, underwent MRI and histological assessment. A region of 2 cm{sup 2} at the weight-bearing area was marked with four pins to enable multi-planar MRI reformatting to be matched with histological sections. MRI was performed at 3 T with a 3D double-echo steady-state (DESS) sequence for morphological cartilage assessment and 3D Volumetric Interpolated Breathhold Examination (VIBE) for T1{sub Gd} mapping. Histological sections were evaluated according to the Mankin score system. Total Mankin score, grade of toluidine staining (sensitive for glycosaminoglycan content) and a modified Mankin score classification system with four sub-groups of cartilage damage were correlated with MRI data. Results: Spearman's rho correlation analyses revealed a statistically significant correlation between T1{sub Gd} mapping and histological analyses in all categories including total Mankin score (r = −0.658, p-value ≤ 0.001), toluidine staining (r = −0.802, p-value < 0.001) and modified Mankin score (r = −0.716, p-value < 0.001). The correlation between morphological MRI and histological cartilage assessment was statistically significant but inferior to the biochemical cartilage MRI (r-values ranging from −0.411 to 0.525, p-values < 0.001). Conclusions: Gradient-echo dGEMRIC is reliable while offering the unique features of high image resolution and 3D biochemically sensitive MRI for the assessment of early cartilage degeneration.

  12. Liver Lobe Based Multi-Echo Gradient Recalled Echo T2*-Weighted Imaging in Chronic Hepatitis B-Related Cirrhosis: Association with the Presence and Child-Pugh Class of Cirrhosis.

    Directory of Open Access Journals (Sweden)

    Dan Wang

    Full Text Available To investigate whether liver lobe based T2* values measured on gradient recalled echo T2*-weighted imaging are associated with the presence and Child-Pugh class of hepatitis B-related cirrhosis.Fifty-six patients with hepatitis B-related cirrhosis and 23 healthy control individuals were enrolled in this study and underwent upper abdominal T2*-weighted magnetic resonance imaging. T2* values of the left lateral lobe (LLL, left medial lobe (LML, right lobe (RL and caudate lobe (CL were measured on T2*-weighted imaging. Statistical analyses were performed to determine the association between liver lobe based T2* values and the presence and Child-Pugh class of cirrhosis.The T2* values of the LLL, LML and RL decreased with the progression of cirrhosis from Child-Pugh class A to C (r = -0.231, -0.223, and -0.395, respectively; all P 0.05. To a certain extent, Mann-Whitney U tests with Bonferroni correction for multigroup comparisons showed that the T2* values of the LLL, LML and RL could distinguish cirrhotic liver from healthy liver (all P 0.05. Receiver operating characteristic analysis demonstrated that the T2* value of the RL could best distinguish cirrhosis from healthy liver, with an area under the receiver operating characteristic curve (AUC of 0.713 among T2* values of the liver lobes, and that only the T2* value of the RL could distinguish Child-Pugh class C from A-B, with an AUC of 0.697 (all P < 0.05.The T2* value of the RL can be associated with the presence and Child-Pugh class of hepatitis B-related cirrhosis.

  13. Classification of radar echoes using fractal geometry

    International Nuclear Information System (INIS)

    Azzaz, Nafissa; Haddad, Boualem

    2017-01-01

    Highlights: • Implementation of two concepts of fractal geometry to classify two types of meteorological radar echoes. • A new approach, called a multi-scale fractal dimension is used for classification between fixed echoes and rain echoes. • An Automatic identification system of meteorological radar echoes was proposed using fractal geometry. - Abstract: This paper deals with the discrimination between the precipitation echoes and the ground echoes in meteorological radar images using fractal geometry. This study aims to improve the measurement of precipitations by weather radars. For this, we considered three radar sites: Bordeaux (France), Dakar (Senegal) and Me lbourne (USA). We showed that the fractal dimension based on contourlet and the fractal lacunarity are pertinent to discriminate between ground and precipitation echoes. We also demonstrated that the ground echoes have a multifractal structure but the precipitations are more homogeneous than ground echoes whatever the prevailing climate. Thereby, we developed an automatic classification system of radar using a graphic interface. This interface, based on the fractal geometry makes possible the identification of radar echoes type in real time. This system can be inserted in weather radar for the improvement of precipitation estimations.

  14. MR imaging of the ankle at 3 Tesla and 1.5 Tesla: protocol optimization and application to cartilage, ligament and tendon pathology in cadaver specimens

    International Nuclear Information System (INIS)

    Barr, Cameron; Malfair, David; Henning, Tobias D.; Steinbach, Lynne; Link, Thomas M.; Bauer, Jan S.; Ma, Benjamin

    2007-01-01

    The objective of this study was to optimize ankle joint MR imaging in volunteers at 1.5 Tesla (T) and 3.0 T, and to compare these optimized sequences concerning image quality and performance in assessing cartilage, ligament and tendon pathology in fresh human cadaver specimens. Initially our clinical ankle protocol consisting of T1-weighted (-w), fat-saturated (fs) T2-w, and short τ inversion-recovery fast spinecho (FSE) sequences was optimized at 1.5 T and 3.0 T by two radiologists. For dedicated cartilage imaging, fs-intermediate (IM)-w FSE, fs spoiled gradient echo, and balanced free-precession steady-state sequences were optimized. Using the optimized sequences, thirteen cadaver ankle joints were imaged. Four radiologists independently assessed these images concerning image quality and pathology. All radiologists consistently rated image quality higher at 3.0 T (all sequences p<0.05). For detecting cartilage pathology, diagnostic performance was significantly higher at 3.0 T (ROC-values up to 0.93 vs. 0.77; p<0.05); the fs-IM FSE sequence showed highest values among the different sequences. Average sensitivity for detecting tendon pathology was 63% at 3.0 T vs. 41% at 1.5 T and was significantly higher at 3.0 T for 2 out of 4 radiologists (p<0.05). Compared to 1.5 T, imaging of the ankle joint at 3.0 T significantly improved image quality and diagnostic performance in assessing cartilage pathology. (orig.)

  15. A sustainable solid state recycling of pure aluminum by means of friction stir extrusion process (FSE)

    Science.gov (United States)

    Mehtedi, Mohamad El; Forcellese, Archimede; Simoncini, Michela; Spigarelli, Stefano

    2018-05-01

    In this research, the feasibility of solid-state recycling of pure aluminum AA1099 machining chips using FSE process is investigated. In the early stage, a FE simulation was conducted in order to optimize the die design and the process parameters in terms of plunge rotational speed and extrusion rate. The AA1099 aluminum chips were produced by turning of an as-received bar without lubrication. The chips were compacted on a MTS machine up to 150KN of load. The extruded samples were analyzed by optical and electron microscope in order to see the material flow and to characterize the microstructure. Finally, micro-hardness Vickers profiles were carried out, in both longitudinal and transversal direction of the obtained profiles, in order to investigate the homogeneity of the mechanical properties of the extrudate.

  16. Experimental considerations on the removal of alimentary tract signal in T2 multi shot inversion recovery echo planar imaging using ferric ammonium citrate as contrast agent

    International Nuclear Information System (INIS)

    Kato, Joji; Saito, Haruyoshi; Tomisato, Kenichi; Maruyama, Tomoyuki; Watanabe, Tsuneo; Kawamura, Yoshihiko

    1997-01-01

    We investigated the removal of alimentary tract signal in T 2 echo planar imaging using an oral positive contrast agent for the alimentary tract mainly consisting of ferric ammonium citrate (FerriSeltz: Otsuka Pharmaceutical Co., Ltd.). It has been reported that the FerriSeltz preparation is useful as negative contrast agent because of its enhancing effect of reducing T 2 at high concentrations. However, it was shown to enhance susceptibility artifact in echo planar imaging (EPI). Thus, it is considered difficult to use FerriSeltz at high concentrations in EPI. In contrast, in IR EPI (TI 150 and 200 ms) high concentrations of FerriSeltz are not required, and it is possible to achieve excellent signal suppression at an ordinary concentration of 5.97 mmol/l. This might be due to the fact that the bounce point of FerriSeltz aqueous solution reached about 150 to 200 ms. At present, no effective negative contrast agent for alimentary tract MRI is available. Therefore, it is thought that IR EPI combined with FerriSeltz is a useful technique, since it can eliminate the signal of the alimentary tract at an ordinary concentration. (author)

  17. The role of MR imaging with Half Fourier Acquired Single Shot Turbo Spin Echo sequence in the diagnosis of lung lesions in comparison with multislice CT

    International Nuclear Information System (INIS)

    Hekimoglu, B.; Gurgen, F.; Tatar, I.G.; Aydin, H.; Kizilgoz, V.; Keyik, B.

    2013-01-01

    Objective: To compare the diagnostic values of magnetic resonance imaging using Half Fourier Acquired Single Shot Turbo Spin Echo sequence and multidetector computed tomography in patients with pathologically examined pulmonary lesions. Methods: The retrospective, descriptive study was conducted at Radiology Department, Diskapi Research Hospital, Ankara, Turkey, and comprised records of patients with pathologically examined pulmonary lesions between May 2009 and March 2012. Patients were divided into three groups and examined by both multi dedector computed tomography and magnetic resonance imaging. During the imaging, patients were not administered any intravenous contrast medium. Electrocardiogram gating and breath holding were not performed in echo sequence. Pulmonary lesions were evaluated on the basis of their dimensions, numbers, differentiation from atelectasis and consolidation, invasion to the thoracic wall-mediastinal structures and presence of lymphadenopathies. Results: Sensitivity of all patients was 50% (p=0.214) and specificity of CT and MRI were 82.5% (p=0.134) for the detectability of submilimetric nodules . For differentiation of the mass from atelectasis and consolidation, the sensitivity of computed tomography was statistically more significant compared to magnetic resonance imaging (86.6%; p=0.035). For the invasion of the mass to the mediastinal structures and the thoracic wall, the sensitivity of magnetic resonance imaging was statistically more significant compared to tomography (86.6%; p=0.035). Conclusion: HASTE sequence can be used to determine the invasion of the pulmonary mass to the mediastinal structures and the thoracic wall since it is more sensitive than computed tomography. It can also be used to detect submilimetric nodules. It has equal sensitivity and specificity compared to computed tomography. But computed tomography is superior for the differentiation of the mass from atelectasis and consolidation. (author)

  18. BOLD contrast fMRI of whole rodent tumour during air or carbogen breathing using echo-planar imaging at 1.5 T

    International Nuclear Information System (INIS)

    Landuyt, W.; Bogaert, W. van den; Lambin, P.; Hermans, R.; Bosmans, H.; Sunaert, S.; Beatse, E.; Farina, D.; Meijerink, M.; Zhang, H.; Marchal, G.

    2001-01-01

    The aim of this study was to evaluate the feasibility of functional MR imaging (fMRI) at 1.5 T, exploiting blood oxygenation level-dependent (BOLD) contrast, for detecting changes in whole-tumour oxygenation induced by carbogen (5% CO 2 +95% O 2 ) inhalation of the host. Adult WAG/Rij rats with rhabdomyosarcomas growing subcutaneously in the lower flank were imaged when tumours reached sizes between 1 and 11 cm 3 (n=12). Air and carbogen were alternatively supplied at 2 l/min using a snout mask. Imaging was done on a 1.5-T MR scanner using a T2*-weighted gradient-echo, echo-planar imaging (GE-EPI) sequence. Analysis of the whole-tumour EPI images was based on statistical parametric maps. Voxels with and without signal intensity changes (SIC) were recorded. Significance thresholds were set at p<0.05, corrected for multiple comparisons. In continuous air breathing condition, 3 of 12 tumours showed significant negative SIC and 1 tumour had a clear-cut positive SIC. The remaining tumours showed very little or no change. When switching to carbogen breathing, the SIC were significantly positive in 10 of 12 tumours. Negative SIC were present in 4 tumours, of which three were simultaneously characterised by positive SIC. The overall analysis indicated that 6 of the 12 tumours could be considered as strong positive responders to carbogen. Our research demonstrates the applicability of fMRI GE-EPI at 1.5 T to study whole-tumour oxygenation non-invasively. The observed negative SIC during air condition may reflect the presence of transient hypoxia during these measurements. Selection of tumours on the basis of their individual response to carbogen is possible, indicating a role of such non-invasive measurements for using tailor-made treatments. (orig.)

  19. Distortion-free diffusion tensor imaging for evaluation of lumbar nerve roots: Utility of direct coronal single-shot turbo spin-echo diffusion sequence.

    Science.gov (United States)

    Sakai, Takayuki; Doi, Kunio; Yoneyama, Masami; Watanabe, Atsuya; Miyati, Tosiaki; Yanagawa, Noriyuki

    2018-06-01

    Diffusion tensor imaging (DTI) based on a single-shot echo planer imaging (EPI-DTI) is an established method that has been used for evaluation of lumbar nerve disorders in previous studies, but EPI-DTI has problems such as a long acquisition time, due to a lot of axial slices, and geometric distortion. To solve these problems, we attempted to apply DTI based on a single-shot turbo spin echo (TSE-DTI) with direct coronal acquisition. Our purpose in this study was to investigate whether TSE-DTI may be more useful for evaluation of lumbar nerve disorders than EPI-DTI. First, lumbar nerve roots of five healthy volunteers were evaluated for optimization of imaging parameters with TSE-DTI including b-values and the number of motion proving gradient (MPG) directions. Subsequently, optimized TSE-DTI was quantitatively compared with conventional EPI-DTI by using fractional anisotropy (FA) values and visual scores in subjective visual evaluation of tractography. Lumbar nerve roots of six patients, who had unilateral neurologic symptoms in one leg, were evaluated by the optimized TSE-DTI. TSE-DTI with b-value of 400 s/mm 2 and 32 diffusion-directions could reduce the image distortion compared with EPI-DTI, and showed that the average FA values on the symptomatic side for six patients were significantly lower than those on the non-symptomatic side (P DTI might show damaged areas of lumbar nerve roots without severe image distortion. TSE-DTI might improve the reproducibility in measurements of FA values for quantification of a nerve disorder, and would become a useful tool for diagnosis of low back pain. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Accelerated magnetic resonance diffusion tensor imaging of the median nerve using simultaneous multi-slice echo planar imaging with blipped CAIPIRINHA.

    Science.gov (United States)

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Boss, Andreas; Manoliu, Andrei; Andreisek, Gustav; Bhat, Himanshu; Runge, Val M; Guggenberger, Roman

    2016-06-01

    To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm(2); 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm(2)/s; twofold acceleration: 1.016 ± 0.123 mm(2)/s; threefold acceleration: 0.979 ± 0.153 mm(2)/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. • Standard DTI of the median nerve is limited by its long acquisition time. • Simultaneous multi-slice acquisition is a new technique for accelerated DTI. • Accelerated DTI of the median nerve yields similar results to standard DTI.

  1. Basic evaluation of the new pulse sequence for simultaneous acquisition of T1- and T2-weighted images

    International Nuclear Information System (INIS)

    Kurose, Atsunari; Takahashi, Tohru; Ohishi, Tae; Ishikawa, Akihiro

    2006-01-01

    A novel pulse sequence that enables simultaneous acquisition of T1-weighted (T1W) and T2-weighted (T2W) images is presented. In this new technique, the inversion recovery (IR) pulse of conventional fast inversion recovery (Fast IR) is replaced with a pulse train that consists of a fast spin echo (FSE) and 180(y)+90(x) for driven inversion (DI). By using a shorter T1 and independent k-space ordering, the first part of the sequence provides T2W images and the second part provides T1W images, thereby enabling simultaneous acquisition in a single scan time comparable to that of Fast IR. Signal simulation also was conducted, and this was compared with conventional scanning techniques using normal volunteers. In the human studies, both T1W and T2W images showed the same image quality as conventional images, suggesting the potential for this technique to replace the combination of Fast IR and T2W FSE for scan-time reduction. (author)

  2. Fat-suppressed volume isotropic turbo spin echo acquisition (VISTA) MR imaging in evaluating radial and root tears of the meniscus: Focusing on reader-defined axial reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Daekeon; Lee, Young Han; Kim, Sungjun; Song, Ho-Taek; Suh, Jin-Suck, E-mail: jss@yuhs.ac

    2013-12-01

    Objective: To assess the diagnostic value of fat-suppressed (FS) three-dimensional (3D) volume isotropic turbo spin echo acquisition (VISTA) imaging in detecting radial and root tears of the meniscus, including the reader-defined reformatted axial (RDA) plane. Materials and methods: Twenty-three patients with arthroscopically confirmed radial or root tears of the meniscus underwent magnetic resonance imaging (MRI) with 2D and FS 3D VISTA sequences. MRIs were reviewed independently by two musculoskeletal radiologists blinded to the arthroscopic findings. Sensitivity, specificity, accuracy, and interobserver agreement were calculated for radial and root tears. Both radiologists reported confidence scale for the presence of meniscal tears in 2D axial imaging, 3D axial imaging, and RDA imaging, based on a five-point scale. Wilcoxon's signed rank test was used to compare confidence scale. Results: The sensitivity, specificity, and accuracy of FS 3D VISTA MR imaging versus 2D MR imaging were as follows: 96%, 96%, and 96% versus 91%, 91%, and 91%, respectively in reader 1, and 96%, 96%, and 96% versus 83%, 91%, and 87%, respectively, in reader 2. Interobserver agreement for detecting meniscal tears was excellent (κ = 1) with FS 3D VISTA. The confidence scale was significantly higher for 3D axial images than 2D imaging (p = 0.03) and significantly higher in RDA images than 3D axial image in detecting radial and root tears. Conclusions: FS 3D VISTA had a better diagnostic performance in evaluating radial and root tears of the meniscus. The reader-defined reformatted axial plane obtained from FS 3D VISTA MR imaging is useful in detecting radial and root tears of the meniscus.

  3. Hippocampal Microbleed on a Post-Mortem T2*-Weighted Gradient-Echo 7.0-Tesla Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    J. De Reuck

    2011-09-01

    Full Text Available The present post-mortem study of a brain from an Alzheimer patient showed on a T2*-weighted gradient-echo 7.0-T MRI of a coronal brain section a hyposignal in the hippocampus, suggesting a microbleed. On the corresponding histological examination, only iron deposits around the granular cellular layer and in blood vessel walls of the hippocampus were observed without evidence of a bleeding. This case report illustrates that the detection of microbleeds on MRI has to be interpreted with caution.

  4. Simultaneous Measurement of T2 and Apparent Diffusion Coefficient (T2+ADC) in the Heart With Motion-Compensated Spin Echo Diffusion-Weighted Imaging

    Science.gov (United States)

    Aliotta, Eric; Moulin, Kévin; Zhang, Zhaohuan; Ennis, Daniel B.

    2018-01-01

    Purpose To evaluate a technique for simultaneous quantitative T2 and apparent diffusion coefficient (ADC) mapping in the heart (T2+ADC) using spin echo (SE) diffusion-weighted imaging (DWI). Theory and Methods T2 maps from T2+ADC were compared with single-echo SE in phantoms and with T2-prepared (T2-prep) balanced steady-state free precession (bSSFP) in healthy volunteers. ADC maps from T2+ADC were compared with conventional DWI in phantoms and in vivo. T2+ADC was also demonstrated in a patient with acute myocardial infarction (MI). Results Phantom T2 values from T2+ADC were closer to a single-echo SE reference than T2-prep bSSFP (−2.3 ± 6.0% vs 22.2 ± 16.3%; P T2 values from T2+ADC were significantly shorter than T2-prep bSSFP (35.8 ± 3.1 vs 46.8 ± 3.8 ms; P T2+ADC and conventional motion-compensated DWI (1.39 ± 0.18 vs 1.38 ± 0.18 mm2/ms; P = N.S.). In the patient, T2 and ADC were both significantly elevated in the infarct compared with remote myocardium (T2: 40.4 ± 7.6 vs 56.8 ± 22.0; P T2+ADC generated coregistered, free-breathing T2 and ADC maps in healthy volunteers and a patient with acute MI with no cost in accuracy, precision, or scan time compared with DWI. PMID:28516485

  5. In vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI): [3,4-(13)CH(2)]glutamate/glutamine tomography in rat brain.

    Science.gov (United States)

    Hyder, F; Renken, R; Rothman, D L

    1999-12-01

    A method for in vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI) is described. This method is composed of an echo-planar based acquisition implemented with (13)C-(1)H J editing spectroscopy and is intended for high temporal and spatial resolution in vivo spectroscopic imaging of (13)C turnover, from D-[1,6-(13)C]glucose to glutamate and glutamine, in the brain. At a static magnetic field strength of 7 T, both in vitro and in vivo chemical shift imaging data are presented with a spatial resolution of 8 microL (i.e., 1.25 x 1.25 x 5.00 mm(3)) and a maximum spectral bandwidth of 5.2 ppm in (1)H. Chemical shift imaging data acquired every 11 minutes allowed detection of regional [4-(13)CH(2)]glutamate turnover in rat brain. The [4-(13)CH(2)]glutamate turnover curves, which can be converted to tricarboxylic acid cycle fluxes, showed that the tricarboxylic acid cycle flux (V(TCA)) in pure gray and white matter can range from 1.2 +/- 0.2 to 0.5 +/- 0.1 micromol/g/min, respectively, for morphine-anesthetized rats. The mean cortical V(TCA) from 32 voxels of 1.0 +/- 0.3 micromol/g/min (N = 3) is in excellent agreement with previous localized measurements that have demonstrated that V(TCA) can range from 0.9-1.1 micromol/g/min under identical anesthetized conditions. Magn Reson Med 42:997-1003, 1999. Copyright 1999 Wiley-Liss, Inc.

  6. Evaluation of patellar chondromalacia with MR: comparison between T2-weighted FSE SPIR and GE MTC.

    Science.gov (United States)

    Macarini, Luca; Perrone, Alessandra; Murrone, Mario; Marini, Stefania; Stefanelli, Michele

    2004-09-01

    To compare two different MR sequences to tissue signal suppression in the study of patellar cartilage abnormalities. We examined 26 patients with magnetic resonance (MR) imaging: sequences included spectral presaturation with inversion recovery (SPIR), with fat suppression and T2-weighted images, magnetization transfer contrast (MTC) sequences, T1-weighted and T2-weighted spin-echo sequences. All patients underwent conventional knee arthroscopy and in all patients a hyaline cartilage lesion was assessed in three articular zones: the patellar medial facet, the lateral facet and the patellar crista. Was assessed 78 articular facets. The lesions were classified using a standard arthroscopic grading system adapted to MR imaging: normal cartilage that corresponds to the grade 0 according to the Noyes grading system, low grade lesions that correspond to the grade I e IIa and high grade lesions that correspond to grades IIb and III. The arthroscopic results were compared with MR images. We assessed the MR diagnostic accuracy, sensitivity, specificity and MR positive predictive value and negative predictive value of the two sequences taking into consideration total lesions, and high-grade and low grade lesions separately. Twenty-four low grade lesions (16 grade I e 8 grade IIa) and 18 high grade lesions (10 grade IIb e 8 grade III) were diagnosed by arthroscopy. Regarding low grade and high-grade lesions together, the accuracy was 77% for MTC sequences and 90% for SPIR sequences. In identifying low-grade lesions, the sensitivity was 88% for SPIR sequence and 42% for MTC sequences. Specificity for the detection of all lesions was 89% for the SPIR sequences and 94% for the MTC sequences. The SPIR sequence visualised water content abnormalities in degenerating cartilage, which are representative of low-grade lesions. The sensitivity of the sequence enabled us to obtain improved contrast for detecting cartilage surface irregularities. The MTC sequences allowed us to grade high

  7. Evaluation of short repetition time, partial flip angle, gradient recalled echo pulse sequences in cervical spine imaging

    International Nuclear Information System (INIS)

    Enzmann, D.; Rubin, J.B.

    1987-01-01

    A short repetition time (TR), partial flip angle, gradient recalled echo pulse sequence (GRASS) was prospectively studied to optimize it for the diagnosis of cervical disk and cord disease in 98 patients. Changes in signal-to-noise ratio (SNR) and contrast were measured as the following parameters were varied: flip angle (3 0 to 18 0 ), TR (22-60 msec), and echo time (TE) (12.5-25 msec). Flip angle was the single most important parameter. For disk disease, cerebrospinal fluid (CSF) SNR peaked at an 8 0 flip angle in the axial view but at a 4 0 flip angle in the sagittal view. In the sagittal view, disk-CSF contrast decreased progressively from a flip angle of 3 0 , while in the axial view it peaked at 10 0 . For cord lesions the findings were similar except that lesion-cord contrast could be increased by lengthening both TR and TE. No one combination of parameters proved greatly superior for either disk disease or cord disease. The selection of parameters required balancing of several factors that often had opposing effects

  8. The clinical utility of reduced-distortion readout-segmented echo-planar imaging in the head and neck region: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Koyasu, Sho; Iima, Mami; Umeoka, Shigeaki; Morisawa, Nobuko; Togashi, Kaori [Kyoto University, Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Sakyo-Ku, Kyoto (Japan); Porter, David A. [Siemens AG, MED MR PLM AW Neurology, Allee am Roethelheimpark 2, Erlangen (Germany); Ito, Juichi [Kyoto University, Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Sakyo-Ku, Kyoto (Japan); Le Bihan, Denis [Kyoto University, Human Brain Research Center, Graduate School of Medicine, Sakyo-Ku, Kyoto (Japan); Neurospin, CEA-Saclay Center, Gif-sur-Yvette Cedex (France)

    2014-12-15

    To evaluate whether readout-segmented echo-planar imaging (RS-EPI) diffusion weighted image (DWI) can diminish image distortion in the head and neck area, compared with single-shot (SS)-EPI DWI. We conducted phantom and patient studies using 3 T magnetic resonance imaging (MRI) with a 16-channel coil. For the phantom study, we evaluated distortion and signal homogeneity in gel phantoms. For the patient study, 29 consecutive patients with clinically suspicious parotid lesions were prospectively enrolled. RS-EPI and SS-EPI DWI were evaluated by two independent readers for identification of organ/lesion and distortion, using semiquantitative scales and quantitative scores. Apparent diffusion coefficient (ADC) values and contrast-noise ratios of parotid tumours (if present; n = 15) were also compared. The phantom experiments showed that RS-EPI provided less distorted and more homogeneous ADC maps than SS-EPI. In the patient study, RS-EPI was found to provide significantly less distortion in almost all organs/lesions (p < 0.05), according to both semiquantitative scales and quantitative scores. There was no significant difference in ADC values and contrast-noise ratios between the two DWI techniques. The distortion in DWI was significantly reduced with RS-EPI in both phantom and patient studies. The RS-EPI technique provided more homogenous images than SS-EPI, and can potentially offer higher image quality in the head and neck area. (orig.)

  9. Improved fat-suppression homogeneity with mDIXON turbo spin echo (TSE) in pediatric spine imaging at 3.0 T.

    Science.gov (United States)

    Pokorney, Amber L; Chia, Jonathan M; Pfeifer, Cory M; Miller, Jeffrey H; Hu, Houchun H

    2017-11-01

    Background Robust fat suppression remains essential in clinical MRI to improve tissue signal contrast, minimize fat-related artifacts, and enhance image quality. Purpose To compare fat suppression between mDIXON turbo spin echo (TSE) and conventional frequency-selective and inversion-recovery methods in pediatric spine MRI. Material and Methods Images from T1-weighted (T1W) and T2-weighted (T2W) TSE sequences coupled with conventional methods and the mDIXON technique were compared in 36 patients (5.8 ± 5.4 years) at 3.0 T. Images from 42 pairs of T1W (n = 16) and T2W (n = 26) scans were acquired. Two radiologists reviewed the data and rated images using a three-point scale in two categories, including the uniformity of fat suppression and overall diagnostic image quality. The Wilcoxon rank-sum test was used to compare the scores. Results The Cohen's kappa coefficient for inter-rater agreement was 0.69 (95% confidence interval [CI], 0.56-0.83). Images from mDIXON TSE were considered superior in fat suppression ( P 3.0 T and should be considered as a permanent replacement of traditional methods, in particular frequency-selective techniques.

  10. Comparison of 3D vs. 2D fast spin echo imaging for evaluation of articular cartilage in the knee on a 3 T system scientific research

    International Nuclear Information System (INIS)

    Milewski, Matthew D.; Smitaman, Edward; Moukaddam, Hicham; Katz, Lee D.; Essig, David A.; Medvecky, Michael J.; Haims, Andrew H.

    2012-01-01

    Highlights: ► Compared 3D to 2D MR sequences for articular cartilage in the knee. ► 3D imaging acquired in a single plane, 2D acquired in 3 separate planes. ► No significant difference in accuracy between 3D and 2D sequences. - Abstract: Purpose: We sought to retrospectively compare the accuracy of a three-dimensional fat-suppressed, fast spin-echo sequences acquired in the sagittal plane, with multiplanar reconstructions to that of two-dimensional fat-suppressed, fast spin echo sequences acquired in three planes on a 3 T MR system for the evaluation of articular cartilage in the knee. Materials and methods: Our study group consisted of all patients (N = 34) that underwent 3 T MR imaging of the knee at our institution with subsequent arthroscopy over an 18-month period. There were 21 males and 13 females with an average age of 36 years. MR images were reviewed by 3 musculoskeletal radiologists, blinded to operative results. 3D and 2D sequences were reviewed at different sittings separated by 4 weeks to prevent bias. Six cartilage surfaces were evaluated both with MR imaging and arthroscopically with a modified Noyes scoring system and arthroscopic results were used as the gold standard. Sensitivity, specificity, and accuracy were calculated for each reader along with Fleiss Kappa assessment agreement between the readers. Accuracies for each articular surface were compared using a difference in proportions test with a 95% confidence interval and statistical significance was calculated using a Fisher's Exact Test. Results: Two hundred and four articular surfaces were evaluated and 49 articular cartilage lesions were present at arthroscopy. For the patellofemoral surfaces, the sensitivity, specificity, and accuracy were 76.5%, 83%, and 78.2% for the 3D sequences and were 82.3%, 76%, and 82% respectively for the 2D sequences. For the medial compartment surfaces, the sensitivity, specificity, and accuracy were 81.1%, 65.1%, and 78.5% for the 3D sequences and were

  11. Regional cerebral blood volume (rCBV) in the cerebral and cerebellar hemispheres in nomal 52 healthy adults. Measurement with contrast-enhanced dynamic echo-planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Muroi, Kenzo; Kurihara, Hiroaki; Amauchi, Hiroshi; Nozawa, Takeo; Matsubara, Sho; Yamamoto, Isao [Yokohama City Univ. (Japan). Hospital; Iwasawa, Tae

    2001-05-01

    The aim of this study was to investigate the possibility of absolute quantification of mean transit time (MTT) and rCBV in normal 52 healthy adults using contrast-enhanced dynamic echo-planar imaging, changes in signals in the middle cerebral arteries (MCAs) in the Sylvian fissures as AIF. MR was performed with a 1.5 T magnet (Horizon, GE Medical System, Milwaukee, WI). Dynamic susceptibility contrast-enhanced imaging was obtained every 1.8 second using echo-planar imaging (EPI) sequence (TE=42 msec, matrices=128 x 128) in six slices (6 mm slice thickness with 10 mm gap) including the cerebellar hemisphere at the level of middle cerebellar peduncles. The regional cerebral blood volume (rCBV) was calculated based on dilution theory. We calculated rCBV of the cerebral white matter (WM), cortical gray matter (GM), and cerebellar hemispheres (CH), and the effect of age on MTT and rCBV were evaluated linear regression analyses. The MTT of MCAs did not change with age, and the area under the curve of MCAs declined slightly with age. The mean rCBV of cortical GM, cerebral WM and cerebellar hemispheres were 8.2{+-}2.8, 2.0{+-}0.8 and 8.8{+-}2.1 respectively. The rCBV of cortical GM and the CH decreased slightly with age, however, that of WM remained to be a greater extent than those in GM. From these results, the method using AIF determined in bilateral MCAs was considered as an practical approach for the quantification of rCBV. Further clinical and/or comparative studies with other modalities will be necessary for the application of this method for patients with atherosclerosis and/or major vessel occlusion. (author)

  12. Subjective and objective image qualities: a comparison of sagittal T2 weighted spin-echo and turbo-spin-eco sequences in magnetic resonance imaging of the spine by use of a subjective ranking system

    Energy Technology Data Exchange (ETDEWEB)

    Goerres, G. [Institut fuer diagnostische Radiologie, Departement Radiologie, Universitaetskliniken, Kantonsspital Basel (Switzerland); Mader, I. [Radiologische Gemeinschaftspraxis Dres. Siems, Grossmann, Bayreuth (Germany); Proske, M. [Klinikum Rosenheim (Germany). Inst. fuer Diagnostische Radiologie

    1998-12-31

    We evaluated the subjective image impression of two different magnetic resonance (MR) sequences by using a subjective ranking system. This ranking system was based on 20 criteria describing several tissue characteristics such as the signal intensity of normal anatomical structures and the changes of signal intensities and shape of lesions as well as artefacts. MR of the vertebral spine was performed in 48 female and 52 male patients (mean age 44.8 years) referred consecutively for investigation of a back problem. Ninety-six pathologies were found in 82 patients. Sagittal and axial T1 weighted spin-echo before and after administration of Gadolinium (Gd-DOTA), and sagittal T2 weighted spin-echo (T2wSE) and Turbo-spin-echo (TSE) sequences were performed by means of surface coils. Using the subjective ranking system the sagittal T2wSE and sagittal TSE were compared. Both sequences were suitable for identification of normal anatomy and pathologic changes and there was no trend for increased detection of disease by one imaging sequence over the other. We found that sagittal TSE sequences can replace sagittal T2wSE sequences in spinal MR and that artefacts at the cervical and lumbar spine are less frequent using TSE, thus confirming previous studies. In this study, our ranking system reveiled, that there are differences between the subjective judgement of image qualities and objective measurement of SNR. However, this approach may not be helpful to compare two different MR sequences as it is limited to the anatomical area investigated and is time consuming. The subjective image impression, i.e. the quality of images, may not always be represented by physical parameters such as a signal-to-noise ratio (SNR), radiologists should try to define influences of image quality also by subjective parameters. (orig.)

  13. Comparative study of image quality between axial T2-weighted BLADE and turbo spin-echo MRI of the upper abdomen on 3.0 T.

    Science.gov (United States)

    Zhang, Lin; Tian, ChunMei; Wang, PeiYuan; Chen, Liang; Mao, XiJin; Wang, ShanShan; Wang, Xu; Dong, JingMin; Wang, Bin

    2015-09-01

    To compare image quality of turbo spin-echo (TSE) with BLADE [which is also named periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER)] on magnetic resonance imaging (MRI) for upper abdomen. This study involved the retrospective evaluation of 103 patients (63 males, 40 females; age range 19-76 years; median age 53.8 years) who underwent 3.0 T MRI with both conventional TSE T2-weighted imaging (T2WI) and BLADE TSE T2WI. Two radiologists assessed respiratory motion, gastrointestinal peristalsis, and vascular pulsation artifacts, as well as the sharpness of the liver and pancreas edges. Scores for all magnetic resonance (MR) images were recorded. Wilcoxon's rank test was used to compare hierarchical data. Cohen's kappa coefficient was adopted to analyze interobserver consistency. Compared to TSE T2WI, BLADE TSE T2WI reduced all of the examined motion artifacts and increased the sharpness of the liver and pancreas edges (all P image quality.

  14. Diffusion-weighted MR imaging of the liver at 3.0 Tesla using TRacking Only Navigator echo (TRON): a feasibility study.

    Science.gov (United States)

    Ivancevic, Marko K; Kwee, Thomas C; Takahara, Taro; Ogino, Tetsuo; Hussain, Hero K; Liu, Peter S; Chenevert, Thomas L

    2009-11-01

    To assess the feasibility of TRacking Only Navigator echo (TRON) for diffusion-weighted magnetic resonance imaging (DWI) of the liver at 3.0T. Ten volunteers underwent TRON, respiratory triggered, and free breathing DWI of the liver at 3.0 Tesla (T). Scan times were measured. Image sharpness, degree of stair-step and stripe artifacts for the three methods were assessed by two observers. Mean scan times of TRON and respiratory triggered DWI relative to free breathing DWI were 34% and 145% longer respectively. In four of eight comparisons (two observers, two b-values, two slice orientations), TRON DWI image sharpness was significantly better than free breathing DWI, but inferior to respiratory triggered DWI. In two of four comparisons (two observers, two b-values), degree of stair-step artifacts in TRON DWI was significantly lower than in respiratory triggered DWI. Degree of stripe artifacts between the three methods was not significantly different. DWI of the liver at 3.0T using TRON is feasible. Image sharpness in TRON DWI is superior to that in free breathing DWI. Although image sharpness of respiratory triggered DWI is still better, TRON DWI requires less scan time and reduces stair-step artifacts.

  15. Dissecting a Light Echo

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for audio animation This animation illustrates how a light echo works, and how an optical illusion of material moving outward is created. A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The animation starts by showing the explosion of a star, which results in a flash of light that moves outward in all directions. The direction of our line of sight from Earth is indicated by the blue arrow. When the light flash reaches surrounding dust, shown here as three dark clouds, the dust is heated up, creating infrared light that begins to travel toward Earth (indicated by the red arrows). Dust closest to the explosion lights up first, while the explosion's shock wave takes longer to reach more distant material. This results in light from different parts of the cloud reaching Earth at different times, creating the illusion of motion over time. As the animation shows, the inclination of the cloud toward our line of sight can result in the material seeming to move both away from and toward the central star.

  16. [3D FSPGR (fast spoiled gradient echo) magnetic resonance imaging in the diagnosis of focal cortical dysplasia in children].

    Science.gov (United States)

    Alikhanov, A A; Sinitsyn, V E; Perepelova, E M; Mukhin, K Iu; Demushkina, A A; Omarova, M O; Piliia, S V

    2001-01-01

    Small dysplastic lesions of the cerebral cortex are often missed by conventional MRI methods. The identification of subtle structural abnormalities by traditional multiplanar rectilinear slices is often limited by the complex convolutional pattern of the brain. We used a method of FSPGR (fast spoiled gradient-echo) of three-dimensional MRI data that improves the anatomical display of the sulcal structure of the hemispheric convexities. It also reduces the asymmetric sampling of gray-white matter that may lead to false-positive results. We present 5 from 12 patients with dysplastic cortical lesions in whom conventional two-dimensional and three-dimensional MRI with multiplanar reformatting was initially considered normal. Subsequent studies using 3D FSPGR identified various types of focal cortical dysplasia in all. These results indicate that an increase in the detection of subtle focal dysplastic lesions may be accomplished when one improves the anatomical display of the brain sulcal structure by performing 3D FSPGR.

  17. Low-field MR imaging of the spine. A comparative study of a traditional and a new, completely balanced gradient-echo sequence

    International Nuclear Information System (INIS)

    Drejer, J.; Thomsen, H.S.; Tanttu, J.

    1995-01-01

    49 patients underwent 53 examinations with both a traditional T1-weighted gradient-echo (PS) sequence and a new completely balanced steady-state 3-D (CBASS3D) sequence; 20 examinations included the cervical spine, 8 the thoracic spine and 25 the lumbar spine. All 106 examinations were reviewed twice regarding visibility of selected structures in the spinal region and diagnostic usefulness. The CBASS3D sequence delineated the medulla, nerve roots, CSF, the intervertebral discs and the posterior longitudinal ligament significantly better than the PS sequence. Disc hernia was also better visualised (p<0.01). There were significantly more artefacts on images obtained with the CBASS3D sequence, but they were usually outside the region of interest and occurred less frequently over time due to increased experience of the staff. Both reviewers found the diagnostic usefulness of CBASS3D to be superior compared to that of PS and excellent for diagnostic purposes. (orig./MG)

  18. Low-field MR imaging of the spine. A comparative study of a traditional and a new, completely balanced gradient-echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Drejer, J. [Dept. of Diagnostic Radiology, Herlev Hospital, Univ. Copenhagen (Denmark); Thomsen, H.S. [Dept. of Diagnostic Radiology, Herlev Hospital, Univ. Copenhagen (Denmark); Tanttu, J. [Picker Nordstar, Helsinki (Finland)

    1995-09-01

    49 patients underwent 53 examinations with both a traditional T1-weighted gradient-echo (PS) sequence and a new completely balanced steady-state 3-D (CBASS3D) sequence; 20 examinations included the cervical spine, 8 the thoracic spine and 25 the lumbar spine. All 106 examinations were reviewed twice regarding visibility of selected structures in the spinal region and diagnostic usefulness. The CBASS3D sequence delineated the medulla, nerve roots, CSF, the intervertebral discs and the posterior longitudinal ligament significantly better than the PS sequence. Disc hernia was also better visualised (p<0.01). There were significantly more artefacts on images obtained with the CBASS3D sequence, but they were usually outside the region of interest and occurred less frequently over time due to increased experience of the staff. Both reviewers found the diagnostic usefulness of CBASS3D to be superior compared to that of PS and excellent for diagnostic purposes. (orig./MG).

  19. Geometrically undistorted MRI in the presence of field inhomogeneities using compressed sensing accelerated broadband 3D phase encoded turbo spin-echo imaging

    International Nuclear Information System (INIS)

    Van Gorp, Jetse S; Bakker, Chris J G; Bouwman, Job G; Zijlstra, Frank; Seevinck, Peter R; Smink, Jouke

    2015-01-01

    In this study, we explore the potential of compressed sensing (CS) accelerated broadband 3D phase-encoded turbo spin-echo (3D-PE-TSE) for the purpose of geometrically undistorted imaging in the presence of field inhomogeneities. To achieve this goal 3D-PE-SE and 3D-PE-TSE sequences with broadband rf pulses and dedicated undersampling patterns were implemented on a clinical scanner. Additionally, a 3D multi-spectral spin-echo (ms3D-SE) sequence was implemented for reference purposes. First, we demonstrated the influence of susceptibility induced off-resonance effects on the spatial encoding of broadband 3D-SE, ms3D-SE, 3D-PE-SE and 3D-PE-TSE using a grid phantom containing a titanium implant (Δχ = 182 ppm) with x-ray CT as a gold standard. These experiments showed that the spatial encoding of 3D-PE-(T)SE was unaffected by susceptibility induced off-resonance effects, which caused geometrical distortions and/or signal hyper-intensities in broadband 3D-SE and, to a lesser extent, in ms3D-SE frequency encoded methods. Additionally, an SNR analysis was performed and the temporally resolved signal of 3D-PE-(T)SE sequences was exploited to retrospectively decrease the acquisition bandwidth and obtain field offset maps. The feasibility of CS acceleration was studied retrospectively and prospectively for the 3D-PE-SE sequence using an existing CS algorithm adapted for the reconstruction of 3D data with undersampling in all three phase encoded dimensions. CS was combined with turbo-acceleration by variable density undersampling and spherical stepwise T 2 weighting by randomly sorting consecutive echoes in predefined spherical k-space layers. The CS-TSE combination resulted in an overall acceleration factor of 60, decreasing the original 3D-PE-SE scan time from 7 h to 7 min. Finally, CS accelerated 3D-PE-TSE in vivo images of a titanium screw were obtained within 10 min using a micro-coil demonstrating the feasibility of geometrically undistorted MRI near severe

  20. Contrast-enhanced MR venography of the head using magnetization prepared rapid gradient echo imaging. Comparison between head and body radiofrequency transmitter coil systems

    International Nuclear Information System (INIS)

    Matsunobu, Satosi; Amanuma, Makoto; Tsukuda, Shunji

    2004-01-01

    The purpose of this study was to evaluate the image quality and vascular selectivity of MR venography of the head using an magnetization prepared rapid gradient echo (MP-RAGE) technique when obtained with a body radiofrequency transmitter coil system. A total of 24 patients were imaged with a head or body radiofrequency (RF) transmission system. Subtraction MR angiography (MRA) was processed with 0.1 mmol Gd-DTPA administration, and signal-to-noise ratios of the vascular system were measured. Venous demonstration and selectivity were also assessed. MP-RAGE MR venography with a body transmission system showed almost the same signal intensity for the venous and arterial systems, resulting in nonspecific vascular demonstration, while the head transmission system showed semi-selective venograms owing to inflow-induced high signal on precontrast images. However, MRA with a body transmission system provided a 1.5- to 2.5-fold higher signal-to-noise ratios based on higher gradient performance and excellent demonstration of the head veins, especially those below the skull base. Although selective venography was difficult, MRA with a body transmission coil provided excellent vascular images of the brain. (author)

  1. Feasibility of three-dimensional ultrashort echo time magnetic resonance imaging at 1.5 T for the diagnosis of skull fractures

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao; Zhong, Yu-min; Zhang, Hong; Lin, Yi; Zhu, Ming [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Shanghai Children' s Medical Center, Shanghai (China); Nie, Quan-min; Guo, Lie-mei; Yang, Xi [Shanghai Jiao Tong University School of Medicine, Department of Neurosurgery Ren Ji Hospital, Shanghai (China); Chen, Wei-bo; Dai, Yong-ming [Philips Healthcare, Shanghai (China); Xu, Jian-rong [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ren Ji Hospital, Shanghai (China)

    2016-01-15

    To investigate the feasibility of ultrashort echo time (UTE) magnetic resonance imaging (MRI) for the diagnosis of skull fractures. The skull fracture models of ten Bama pigs and 364 patients with craniocerebral trauma were subjected to computed tomography (CT), UTE and conventional MRI sequences. The accuracy of UTE imaging in skull fracture diagnosis was analysed using receiver operating characteristic (ROC) curve analysis, McNemar's test and Kappa values. Differences among CT, UTE imaging and anatomical measurement (AM) values for linear fractures (LFs) and depressed fractures (DFs) were compared using one-way ANOVA and a paired-samples t-test. UTE imaging clearly demonstrated skull structures and fractures. The accuracy, validity and reliability of UTE MRI were excellent, with no significant differences between expert readings (P > 0.05; Kappa, 0.899). The values obtained for 42 LFs and 13 DFs in the ten specimens were not significantly different among CT, UTE MRI and AMs, while those obtained for 55 LFs and ten DFs in 44 patients were not significantly different between CT and UTE MRI (P > 0.05). UTE MRI sequences are feasible for the evaluation of skull structures and fractures, with no radiation exposure, particularly for paediatric and pregnant patients. (orig.)

  2. 3D double-echo steady-state sequence assessment of hip joint cartilage and labrum at 3 Tesla: comparative analysis of magnetic resonance imaging and intraoperative data

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, Christoph; Antoch, Gerald [University of Dusseldorf, Department of Diagnostic and Interventional Radiology, Medical Faculty, Duesseldorf (Germany); Hesper, Tobias; Rettegi, Fanni; Zilkens, Christoph; Krauspe, Ruediger; Bittersohl, Bernd [University of Dusseldorf, Department of Orthopedic Surgery, Medical Faculty, Duesseldorf (Germany); Hosalkar, Harish S. [Paradise Valley Hospital, Joint Preservation and Deformity Correction, San Diego, CA (United States); Tri-city Medical Center, Hip Preservation, San Diego, CA (United States)

    2017-10-15

    To assess the diagnostic accuracy of a high-resolution, three-dimensional (3D) double-echo steady-state (DESS) sequence with radial imaging at 3 Tesla (T) for evaluating cartilage and labral alterations in the hip. Magnetic resonance imaging (MRI) data obtained at 3 T, including radially reformatted DESS images and intraoperative data of 45 patients (mean age 42 ± 13.7 years) who underwent hip arthroscopy, were compared. The acetabular cartilage and labrum of the upper hemisphere of the acetabulum and the central femoral head cartilage were evaluated. Sensitivity, specificity, accuracy, and negative and positive predictive values were determined. Sensitivity, specificity and accuracy of the DESS technique were 96.7%, 75% and 93.7% for detecting cartilage lesions and 98%, 76.2% and 95.9% for detecting labral lesions. The positive and negative predictive values for detecting or ruling out cartilage lesions were 96% and 78.9%. For labral lesions, the positive and negative predictive values were 97.5% and 80%. A high-resolution, 3D DESS technique with radial imaging at 3 T demonstrated high accuracy for detecting hip cartilage and labral lesions with excellent interobserver agreement and moderate correlation between MRI and intraoperative assessment. (orig.)

  3. MR imaging of the knee: Improvement of signal and contrast efficiency of T1-weighted turbo spin echo sequences by applying a driven equilibrium (DRIVE) pulse

    Energy Technology Data Exchange (ETDEWEB)

    Radlbauer, Rudolf, E-mail: rudolf.radlbauer@stpoelten.lknoe.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Lomoschitz, Friedrich, E-mail: friedrich.lomoschitz@stpoelten.lknoe.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Salomonowitz, Erich, E-mail: erich.salomonowitz@stpoelten.lknoe.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Eberhardt, Knut E., E-mail: info@mrt-kompetenzzentrum.d [MRT Competence Center Schloss Werneck, Balthasar-Neumann-Platz 2, 97440 Werneck (Germany); Stadlbauer, Andreas, E-mail: andi@nmr.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Department of Neurosurgery, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen (Germany)

    2010-08-15

    The purpose of this study was to assess the effect of a driven equilibrium (DRIVE) pulse incorporated in a standard T1-weighted turbo spin echo (TSE) sequence as used in our routine MRI protocol for examination of pathologies of the knee. Sixteen consecutive patients with knee disorders were examined using the routine MRI protocol, including T1-weighted TSE-sequences with and without a DRIVE pulse. Signal-to-noise ratios (SNRs) and contrast-to-noise ratio (CNR) of anatomical structures and pathologies were calculated and compared for both sequences. The differences in diagnostic value of the T1-weighted images with and without DRIVE pulse were assessed. SNR was significantly higher on images acquired with DRIVE pulse for fluid, effusion, cartilage and bone. Differences in the SNR of meniscus and muscle between the two sequences were not statistically significant. CNR was significantly increased between muscle and effusion, fluid and cartilage, fluid and meniscus, cartilage and meniscus, bone and cartilage on images acquired using the DRIVE pulse. Diagnostic value of the T1-weighted images was found to be improved for delineation of anatomic structures and for diagnosing a variety of pathologies when a DRIVE pulse is incorporated in the sequence. Incorporation of a DRIVE pulse into a standard T1-weighted TSE-sequence leads to significant increase of SNR and CNR of both, anatomical structures and pathologies, and consequently to an increase in diagnostic value within the same acquisition time.

  4. MR imaging of the knee: Improvement of signal and contrast efficiency of T1-weighted turbo spin echo sequences by applying a driven equilibrium (DRIVE) pulse

    International Nuclear Information System (INIS)

    Radlbauer, Rudolf; Lomoschitz, Friedrich; Salomonowitz, Erich; Eberhardt, Knut E.; Stadlbauer, Andreas

    2010-01-01

    The purpose of this study was to assess the effect of a driven equilibrium (DRIVE) pulse incorporated in a standard T1-weighted turbo spin echo (TSE) sequence as used in our routine MRI protocol for examination of pathologies of the knee. Sixteen consecutive patients with knee disorders were examined using the routine MRI protocol, including T1-weighted TSE-sequences with and without a DRIVE pulse. Signal-to-noise ratios (SNRs) and contrast-to-noise ratio (CNR) of anatomical structures and pathologies were calculated and compared for both sequences. The differences in diagnostic value of the T1-weighted images with and without DRIVE pulse were assessed. SNR was significantly higher on images acquired with DRIVE pulse for fluid, effusion, cartilage and bone. Differences in the SNR of meniscus and muscle between the two sequences were not statistically significant. CNR was significantly increased between muscle and effusion, fluid and cartilage, fluid and meniscus, cartilage and meniscus, bone and cartilage on images acquired using the DRIVE pulse. Diagnostic value of the T1-weighted images was found to be improved for delineation of anatomic structures and for diagnosing a variety of pathologies when a DRIVE pulse is incorporated in the sequence. Incorporation of a DRIVE pulse into a standard T1-weighted TSE-sequence leads to significant increase of SNR and CNR of both, anatomical structures and pathologies, and consequently to an increase in diagnostic value within the same acquisition time.

  5. MR imaging of the temporomandibular joint. Part 2. Effect of flip angle on MR imaging with FLASH sequence

    International Nuclear Information System (INIS)

    Sakamoto, Maya; Sasano, Takashi; Higano, Shuichi; Takahashi, Shoki; Kurihara, Noriko

    1998-01-01

    In our previous study on MR imaging of the temporomandibular joint (TMJ), fast low angle shot (FLASH) showed the highest image contrast between disc and surrounding TMJ tissues compared with those of 4 other sequences (i,e., fast imaging with steady precession (FISP), conventional T1-weighted spin echo (SE) and fast spin echo (FSE, TR/TE/ETL: 1100/12/3, 3000/15/7)). Furthermore, FLASH also received a high score on visual evaluation including the position and contour of the disc, and the border between the disc and surrounding tissues. Therefore, we concluded that FLASH was the most suitable sequence for evaluating the TMJ disc. However, the image contrast and signal intensity on MR imaging with gradient echo pulse sequence are affected by flip angle. Consequently, in this report, to find the most suitable flip angle for MR scanning of the TMJ using a FLASH sequence (TR/TE: 450/11), ten TMJs of 5 volunteers were experimentally imaged with various flip angles from 10 degrees to 70 degrees at an interval of 10 degrees between 10 to 70. The image contrast and contrast-to-noise ratio (CNR) between the disc and surrounding tissues were compared. In addition, signal-to-noise ratio (SNR) of phantoms was also calculated using the same imaging parameters. Visual evaluation including position and contour of the disc, and the border between the disc and surrounding tissues, was also performed by 4 radiologists. As the flip angle increased, imaging contrast decreased while SNR increased. Images with flip angles between 30 and 60 degrees demonstrated high CNR. On visual evaluation, images using flip angles between 30 and 50 degrees received high scores. In conclusion, FLASH sequence with a flip angle between 30 and 50 degrees was considered most suitable for evaluating the TMJ disc based on the results of visual assessment and analysis of three major components of image diagnostic quality: image contrast, CNR and SNR. (author)

  6. Isotropic resolution diffusion tensor imaging of lumbosacral and sciatic nerves using a phase-corrected diffusion-prepared 3D turbo spin echo.

    Science.gov (United States)

    Cervantes, Barbara; Van, Anh T; Weidlich, Dominik; Kooijman, Hendrick; Hock, Andreas; Rummeny, Ernst J; Gersing, Alexandra; Kirschke, Jan S; Karampinos, Dimitrios C

    2018-08-01

    To perform in vivo isotropic-resolution diffusion tensor imaging (DTI) of lumbosacral and sciatic nerves with a phase-navigated diffusion-prepared (DP) 3D turbo spin echo (TSE) acquisition and modified reconstruction incorporating intershot phase-error correction and to investigate the improvement on image quality and diffusion quantification with the proposed phase correction. Phase-navigated DP 3D TSE included magnitude stabilizers to minimize motion and eddy-current effects on the signal magnitude. Phase navigation of motion-induced phase errors was introduced before readout in 3D TSE. DTI of lower back nerves was performed in vivo using 3D TSE and single-shot echo planar imaging (ss-EPI) in 13 subjects. Diffusion data were phase-corrected per k z plane with respect to T 2 -weighted data. The effects of motion-induced phase errors on DTI quantification was assessed for 3D TSE and compared with ss-EPI. Non-phase-corrected 3D TSE resulted in artifacts in diffusion-weighted images and overestimated DTI parameters in the sciatic nerve (mean diffusivity [MD] = 2.06 ± 0.45). Phase correction of 3D TSE DTI data resulted in reductions in all DTI parameters (MD = 1.73 ± 0.26) of statistical significance (P ≤ 0.001) and in closer agreement with ss-EPI DTI parameters (MD = 1.62 ± 0.21). DP 3D TSE with phase correction allows distortion-free isotropic diffusion imaging of lower back nerves with robustness to motion-induced artifacts and DTI quantification errors. Magn Reson Med 80:609-618, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2018 The Authors Magnetic Resonance

  7. ECHO Gov Login | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  8. The value of 3D T1-weighted gradient-echo MR imaging for evaluation of the appendix during pregnancy: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kyung Mi; Kim, Seong Hyun; Choi, Dongil; Lee, Soon Jin; Rhim, Hyunchul; Park, Min Jung (Depts. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of)), email: kshyun@skku.edu

    2011-10-15

    Background The use of oral contrast has been essential for the identification of a normal appendix on MR imaging during pregnancy. However, stool could be used as a positive oral contrast as it is characterized by a relatively high signal on T1-weighted imaging, and 3D T1-weighted gradient-echo (T1W-GRE) MR imaging has been used to evaluate 3 mm diameter intestines in fetuses. Purpose To evaluate the added value of 3D T1W-GRE MR imaging in combination with T2-weighted imaging (T2WI) compared to T2WI alone for evaluating the appendix during pregnancy. Material and Methods Eighteen consecutive pregnant patients who were clinically suspected of having acute appendicitis underwent appendix MR imaging which included T2WI with or without spectral presaturation attenuated inversion-recovery (SPAIR) fat suppression, and 3D T1W-GRE with SPAIR fat suppression. Two radiologists reviewed the two image sets (the T2WI set and the combined set of T2WI and 3D T1W-GRE images). Pathologic and clinical results served as the reference standard. The differences in the degree of visibility of the appendix and confidence scale for diagnosing acute appendicitis between two image sets were compared by using the paired Wilcoxon signed rank test. Results For both reviewers, the degree of visibility of the appendix using the combined T2WI and 3D T1W-GRE images was significantly higher than using T2WI alone (P < 0.01), and the confidence levels for acute appendicitis using combined T2WI and 3D T1W-GRE images were significantly different from those using T2WI alone (P < 0.01). In the 13 patients with a normal appendix, both reviewers showed improved confidence levels for appendicitis using combined T2WI and 3D T1W-GRE images than T2WI alone. Conclusion Adding 3D T1W-GRE images to T2WI is helpful for identification of the appendix, as compared to T2WI alone in pregnant women without ingestion of oral contrast material. This may improve diagnostic confidence for acute appendicitis in pregnant

  9. Iterative Decomposition of Water and Fat with Echo Asymmetric and Least—Squares Estimation (IDEAL (Reeder et al. 2005 Automated Spine Survey Iterative Scan Technique (ASSIST (Weiss et al. 2006

    Directory of Open Access Journals (Sweden)

    Kenneth L. Weiss

    2008-01-01

    Full Text Available Background and Purpose: Multi-parametric MRI of the entire spine is technologist-dependent, time consuming, and often limited by inhomogeneous fat suppression. We tested a technique to provide rapid automated total spine MRI screening with improved tissue contrast through optimized fat-water separation.Methods: The entire spine was auto-imaged in two contiguous 35 cm field of view (FOV sagittal stations, utilizing out-of-phase fast gradient echo (FGRE and T1 and/or T2 weighted fast spin echo (FSE IDEAL (Iterative Decomposition of Water and Fat with Echo Asymmetric and Least-squares Estimation sequences. 18 subjects were studied, one twice at 3.0T (pre and post contrast and one at both 1.5 T and 3.0T for a total of 20 spine examinations (8 at 1.5 T and 12 at 3.0T. Images were independently evaluated by two neuroradiologists and run through Automated Spine Survey Iterative Scan Technique (ASSIST analysis software for automated vertebral numbering.Results: In all 20 total spine studies, neuroradiologist and computer ASSIST labeling were concordant. In all cases, IDEAL provided uniform fat and water separation throughout the entire 70 cm FOV imaged. Two subjects demonstrated breast metastases and one had a large presumptive schwannoma. 14 subjects demonstrated degenerative disc disease with associated Modic Type I or II changes at one or more levels. FGRE ASSIST afforded subminute submillimeter in-plane resolution of the entire spine with high contrast between discs and vertebrae at both 1.5 and 3.0T. Marrow signal abnormalities could be particularly well characterized with IDEAL derived images and parametric maps.Conclusion: IDEAL ASSIST is a promising MRI technique affording a rapid automated high resolution, high contrast survey of the entire spine with optimized tissue characterization.

  10. Split hand muscle echo intensity index as a reliable imaging marker for differential diagnosis of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Seok, Hung Youl; Park, Jinseok; Kim, Yoo Hwan; Oh, Ki-Wook; Kim, Seung Hyun; Kim, Byung-Jo

    2018-04-17

    The objective of this study was to investigate the usefulness of muscle ultrasound in evaluating dissociated small hand muscle atrophy, termed 'split hand', and its feasibility in the diagnosis of amyotrophic lateral sclerosis (ALS). Forty-four patients with ALS, 18 normal subjects and 9 patients with other neuromuscular disorders were included in this study. The hand muscles were divided into three regions, the median-innervated lateral hand muscle group (ML), the ulnar-innervated lateral hand muscle (UL) and the ulnar-innervated medial hand muscle (UM), and the muscle echo intensity (EI) and compound muscle action potential (CMAP) were measured. We calculated the split hand index (SHI) using muscle EI (SHI mEI ) and CMAP (SHI CMAP ) for comparison among groups. The SHI was derived by dividing muscle EI (or CMAP) measured at the ML and UL by that measured at the UM. The SHI mEI was significantly higher in patients with ALS (51.7±28.3) than in normal controls (29.7±9.9) and disease controls with other neuromuscular disorders (36.5±7.3; Pdifferentiating ALS from other neuromuscular disorders and healthy controls. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Cardiac resynchronization therapy by multipoint pacing improves response of left ventricular mechanics and fluid dynamics: a three-dimensional and particle image velocimetry echo study.

    Science.gov (United States)

    Siciliano, Mariachiara; Migliore, Federico; Badano, Luigi; Bertaglia, Emanuele; Pedrizzetti, Gianni; Cavedon, Stefano; Zorzi, Alessandro; Corrado, Domenico; Iliceto, Sabino; Muraru, Denisa

    2017-11-01

    To characterize the effect of multipoint pacing (MPP) compared to biventricular pacing (BiV) on left ventricle (LV) mechanics and intraventricular fluid dynamics by three-dimensional echocardiography (3DE) and echocardiographic particle imaging velocimetry (Echo-PIV). In 11 consecutive patients [8 men; median age 65 years (57-75)] receiving cardiac resynchronization therapy (CRT) with a quadripolar LV lead (Quartet,St.Jude Medical,Inc.), 3DE and Echo-PIV data were collected for each pacing configuration (CRT-OFF, BiV, and MPP) at follow-up after 6 months. 3DE data included LV volumes, LV ejection fraction (LVEF), strain, and systolic dyssynchrony index (SDI). Echo-PIV was used to evaluate the directional distribution of global blood flow momentum, ranging from zero, when flow force is predominantly along the base-apex direction, up to 90° when it becomes transversal. MPP resulted in significant reduction in end-diastolic and end-systolic volumes compared with both CRT-OFF (P = 0.02; P = 0.008, respectively) and BiV (P = 0.04; P = 0.03, respectively). LVEF and cardiac output were significant superior in MPP compared with CRT-OFF, but similar between MPP and BiV. Statistical significant differences when comparing global longitudinal and circumferential strain and SDI with MPP vs. CRT-OFF were observed (P = 0.008; P = 0.008; P = 0.01, respectively). There was also a trend towards improvement in strain between BiV and MPP that did not reach statistical significance. MPP reflected into a significant reduction of the deviation of global blood flow momentum compared with both CRT-OFF and BiV (P = 0.002) indicating a systematic increase of longitudinal alignment from the base-apex orientation of the haemodynamic forces. These preliminary results suggest that MPP resulted in significant improvement of LV mechanics and fluid dynamics compared with BiV. However, larger studies are needed to confirm this hypothesis. © Crown copyright 2016.

  12. [Contrastive analysis of artifacts produced by metal dental crowns in 3.0 T magnetic resonance imaging with six sequences].

    Science.gov (United States)

    Lan, Gao; Yunmin, Lian; Pu, Wang; Haili, Huai

    2016-06-01

    This study aimed to observe and evaluate six 3.0 T sequences of metallic artifacts produced by metal dental crowns. Dental crowns fabricated with four different materials (Co-Gr, Ni-Gr, Ti alloy and pure Ti) were evaluated. A mature crossbreed dog was used as the experimental animal, and crowns were fabricated for its upper right second premolar. Each crown was examined through head MRI (3.0 T) with six sequences, namely, T₁ weighted-imaging of spin echo (T₁W/SE), T₂ weighted-imaging of inversion recovery (T₂W/IR), T₂ star gradient echo (T₂*/GRE), T2 weighted-imaging of fast spin echo (T₂W/FSE), T₁ weighted-imaging of fluid attenuate inversion recovery (T₂W/FLAIR), and T₂ weighted-imaging of propeller (T₂W/PROP). The largest area and layers of artifacts were assessed and compared. The artifact in the T₂*/GRE sequence was significantly wider than those in the other sequences (P 0.05). T₂*/GRE exhibit the strongest influence on the artifact, whereas the five other sequences contribute equally to artifact generation.

  13. Efficacy of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) for shoulder magnetic resonance (MR) imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, Kazuya, E-mail: nkgzmyn.1103@gmail.com [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Yabuuchi, Hidetake, E-mail: h-yabu@med.kyushu-u.ac.jp [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Yamasaki, Yuzo, E-mail: yyama@radiol.med.kyushu-u.ac.jp [Department of Clinical Radiology, Graduate of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Narita, Hiroshi, E-mail: hiroshi.narita.ty@hitachi.com [Hitachi Medical Corporation, 3-26-29 Hakataekimae, Hakata-ku, Fukuoka 812-0011 (Japan); Kumazawa, Seiji, E-mail: s_kmzw@hs.med.kyushu-u.ac.jp [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Kojima, Tsukasa, E-mail: k.tsukasa.0910@gmail.com [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Sakai, Noriyuki, E-mail: noriyuki.sakai0602@gmail.com [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Masaki, Masahumi, E-mail: m-masaki@kimura-hosp.or.jp [Department of Radiology, Kimura Hospital, 2-13-19 Chiyo, Hakata-ku, Fukuoka 812-0044 (Japan); Kimura, Hiroshi, E-mail: h-kimura@kimura-hosp.or.jp [Department of Surgery, Kimura Hospital, 2-13-19 Chiyo, Hakata-ku, Fukuoka 812-0044 (Japan)

    2016-10-15

    Objectives: To elucidate the utility of PROPELLER for motion artefact reduction on shoulder MRI and to examine the influence of streak artefacts on diagnosis of clinical images. Methods: 15 healthy volunteers and 48 patients underwent shoulder MRI with/without PROPELLER (coronal oblique proton density-fast spin echo [PD-FSE], sagittal oblique T2-FSE). In a volunteer study, all sequences were performed in both static and exercise-loaded conditions. Two radiologists graded artefacts and delineation of various anatomical structures in the volunteer study and motion and streak artefacts in the clinical study. Mean scores were compared between sequences with/without PROPELLER. In the clinical study, mean scores of motion artefacts were compared with mean scores of streak artefacts. Wilcoxon signed-rank test was used for all comparisons. Results: In both studies, PROPELLER significantly reduced motion artefacts (P < 0.05). In the volunteer study, it significantly improved delineations in sagittal oblique images in the exercise-loaded condition (P < 0.05). In the clinical study, streak artefacts appeared dominantly on images with PROPELLER (P < 0.05), but influenced diagnosis to a lesser extent than motion artefacts. Conclusion: PROPELLER can reduce motion artefacts in shoulder MRI. While it does cause streak artefacts, it affects diagnosis to a lesser extent.

  14. Grating stimulated echo

    International Nuclear Information System (INIS)

    Dubetsky, B.; Berman, P.R.; Sleator, T.

    1992-01-01

    A theory of a grating simulated echo (GTE) is developed. The GSE involves the sequential excitation of atoms by two counterpropagating traveling waves, a standing wave, and a third traveling wave. It is shown that the echo signal is very sensitive to small changes in atomic velocity, much more sensitive than the normal stimulated echo. Use of the GSE as a collisional probe or accelerometer is discussed

  15. Whole-brain intracranial vessel wall imaging at 3 Tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo.

    Science.gov (United States)

    Fan, Zhaoyang; Yang, Qi; Deng, Zixin; Li, Yuxia; Bi, Xiaoming; Song, Shlee; Li, Debiao

    2017-03-01

    Although three-dimensional (3D) turbo spin echo (TSE) with variable flip angles has proven to be useful for intracranial vessel wall imaging, it is associated with inadequate suppression of cerebrospinal fluid (CSF) signals and limited spatial coverage at 3 Tesla (T). This work aimed to modify the sequence and develop a protocol to achieve whole-brain, CSF-attenuated T 1 -weighted vessel wall imaging. Nonselective excitation and a flip-down radiofrequency pulse module were incorporated into a commercial 3D TSE sequence. A protocol based on the sequence was designed to achieve T 1 -weighted vessel wall imaging with whole-brain spatial coverage, enhanced CSF-signal suppression, and isotropic 0.5-mm resolution. Human volunteer and pilot patient studies were performed to qualitatively and quantitatively demonstrate the advantages of the sequence. Compared with the original sequence, the modified sequence significantly improved the T 1 -weighted image contrast score (2.07 ± 0.19 versus 3.00 ± 0.00, P = 0.011), vessel wall-to-CSF contrast ratio (0.14 ± 0.16 versus 0.52 ± 0.30, P = 0.007) and contrast-to-noise ratio (1.69 ± 2.18 versus 4.26 ± 2.30, P = 0.022). Significant improvement in vessel wall outer boundary sharpness was observed in several major arterial segments. The new 3D TSE sequence allows for high-quality T 1 -weighted intracranial vessel wall imaging at 3 T. It may potentially aid in depicting small arteries and revealing T 1 -mediated high-signal wall abnormalities. Magn Reson Med 77:1142-1150, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ruangwattanapaisarn, Nichanan [Mahidol University, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Bangkok (Thailand); Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Loening, Andreas M.; Saranathan, Manojkumar; Vasanawala, Shreyas S. [Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Litwiller, Daniel V. [GE Healthcare, Rochester, MN (United States)

    2015-06-15

    Single-shot fast spin echo (SSFSE) is particularly appealing in pediatric patients because of its motion robustness. However radiofrequency energy deposition at 3 tesla forces long pauses between slices, leading to longer scans, longer breath-holds and more between-slice motion. We sought to learn whether modulation of the SSFSE refocusing flip-angle train could reduce radiofrequency energy deposition without degrading image quality, thereby reducing inter-slice pauses and overall scan times. We modulated the refocusing flip-angle train for SSFSE to minimize energy deposition while minimizing blurring and motion-related signal loss. In a cohort of 50 consecutive patients (25 boys, mean age 5.5 years, range 1 month to 17 years) referred for abdominal MRI we obtained standard SSFSE and variable refocusing flip-angle (vrfSSFSE) images and recorded sequence scan times. Two readers independently scored the images in blinded, randomized order for noise, tissue contrast, sharpness, artifacts and left lobe hepatic signal uniformity on a four-point scale. The null hypothesis of no difference between SSFSE and vrfSSFSE image-quality was assessed with a Mann-Whitney U test, and the null hypothesis of no scan time difference was assessed with the paired t-test. SSFSE and vrfSSFSE mean acquisition times were 54.3 and 26.2 s, respectively (P-value <0.0001). For each reader, SSFSE and vrfSSFSE noise, tissue contrast, sharpness and artifacts were not significantly different (P-values 0.18-0.86). However, SSFSE had better left lobe hepatic signal uniformity (P < 0.01, both readers). vrfSSFSE is twice as fast as SSFSE, with equivalent image quality with the exception of left hepatic lobe signal heterogeneity. (orig.)

  17. Diffusion-weighted magnetic resonance imaging of extraocular muscles in patients with Grave's ophth