WorldWideScience

Sample records for eccentric exercise induces

  1. Eccentric exercise

    DEFF Research Database (Denmark)

    Kjaer, Michael; Heinemeier, Katja Maria

    2014-01-01

    Eccentric exercise can influence tendon mechanical properties and matrix protein synthesis. mRNA for collagen and regulatory factors thereof are upregulated in animal tendons, independent of muscular contraction type, supporting the view that tendon, compared with skeletal muscle, is less sensitive...

  2. Ischemic Preconditioning Blunts Muscle Damage Responses Induced by Eccentric Exercise.

    Science.gov (United States)

    Franz, Alexander; Behringer, Michael; Harmsen, Jan-Frieder; Mayer, Constantin; Krauspe, Rüdiger; Zilkens, Christoph; Schumann, Moritz

    2017-08-22

    Ischemic preconditioning (IPC) is known to reduce muscle damage induced by ischemia and reperfusion-injury (I/R-Injury) during surgery. Due to similarities between the pathophysiological formation of I/R-injury and eccentric exercise-induced muscle damage (EIMD), as characterized by an intracellular accumulation of Ca, an increased production of reactive oxygen species and increased pro-inflammatory signaling, the purpose of the present study was to investigate whether IPC performed prior to eccentric exercise may also protect against EIMD. Nineteen healthy men were matched to an eccentric only (ECC) (n=9) or eccentric proceeded by IPC group (IPC+ECC) (n=10). The exercise protocol consisted of bilateral biceps curls (3x10 repetitions at 80% of the concentric 1RM). In IPC+ECC, IPC was applied bilaterally at the upper arms by a tourniquet (200 mmHg) immediately prior to the exercise (3x5 minutes of occlusion, separated by 5 minutes of reperfusion). Creatine Kinase (CK), arm circumference, subjective pain (VAS score) and radial displacement (Tensiomyography, Dm) were assessed before IPC, pre-exercise, post-exercise, 20 minutes-, 2 hours-, 24 hours-, 48 hours- and 72 hours post-exercise. CK differed from baseline only in ECC at 48h (pexercise. After 24h, 48h and 72h, CK was increased in ECC compared to IPC+ECC (between groups: 24h: p=0.004, 48h: pexercise, when compared to IPC+ECC (between groups: all pexercise days in ECC (all peccentric exercise of the elbow flexors blunts EIMD and exercise-induced pain, while maintaining the contractile properties of the muscle.

  3. The effect of estrogen usage on eccentric exercise-induced damage in rat testes.

    Science.gov (United States)

    Can, Serpil; Selli, Jale; Buyuk, Basak; Aydin, Sergulen; Kocaaslan, Ramazan; Guvendi, Gulname Findik

    2015-04-01

    Recent years, lots of scientific studies are focused on the possible mechanism of inflammatory response and oxidative stress which are the mechanism related with tissue damage and exercise fatigue. It is well-known that free oxygen radicals may be induced under invitro conditions as well as oxidative stress by exhaustive physical exercise. The aim of this study was to investigate the effects of anabolic steroids in conjunction with exercise in the process of spermatogenesis in the testes, using histological and stereological methods. Thirty-six male Sprague Dawley rats were divided to six groups, including the control group, the eccentric exercise administered group, the estrogen applied group, the estrogen applied and dissected one hour after eccentric exercise group, the no estrogen applied and dissected 48 hours after eccentric exercise group and the estrogen applied and dissected 48 hours after eccentric exercise group. Eccentric exercise was performed on a motorized rodent treadmill and the estrogen applied groups received daily physiological doses by subcutaneous injections. Testicular tissues were examined using specific histopathological, immunohistochemical and stereological methods. Sections of the testes tissue were stained using the TUNEL method to identify apoptotic cells. Apoptosis was calculated as the percentage of positive cells, using stereological analysis. A statistical analysis of the data was carried out with one-way analysis of variance (ANOVA) for the data obtained from stereological analysis. Conventional light microscopic results revealed that testes tissues of the eccentric exercise administered group and the estrogen supplemented group exhibited slight impairment. In groups that were both eccentrically exercised and estrogen supplemented, more deterioration was detected in testes tissues. Likewise, immunohistochemistry findings were also more prominent in the eccentrically exercised and estrogen supplemented groups. The findings suggest

  4. Delayed Onset Vascular Stiffening Induced by Eccentric Resistance Exercise and Downhill Running.

    Science.gov (United States)

    Lin, Hsin-Fu; Chou, Chun-Chung; Cheng, Hao-Min; Tanaka, Hirofumi

    2017-07-01

    Eccentric exercise induces muscle stiffening and soreness as well as unfavorable changes in macrovascular function. We tested the hypothesis that systemic eccentric exercise could evoke greater arterial stiffening than local eccentric resistance exercise. Twenty healthy young men were randomly assigned into either the downhill running (DR) and the eccentric resistance exercise (RE) group followed by a crossover design with an exercise and sham control trial. Carotid-femoral pulse wave velocity (cfPWV), central hemodynamic measures, and biomarkers were obtained. Muscle soreness and plasma creatine kinase concentrations increased similarly after exercise in both groups. The cfPWV increased significantly at 48 hours post-exercise in both groups and remained elevated at 72 hours in DR. C-reactive protein (CRP) was elevated at 24 and 48 hours in DR, and 48 hours in RE. The increases in cfPWV were associated with the corresponding elevations in CRP in DR (r = 0.70, P < 0.05). There were no changes in arterial wave reflection measures. Both systemic and localized eccentric exercise modes induced delayed onset vascular stiffening with more prolonged changes observed in downhill running. The effect on arterial stiffening was associated, at least in part, with systemic inflammatory responses.

  5. Assessment of Eccentric Exercise-Induced Oxidative Stress Using Oxidation-Reduction Potential Markers

    Directory of Open Access Journals (Sweden)

    Dimitrios Stagos

    2015-01-01

    Full Text Available The aim of the present study was to investigate the use of static (sORP and capacity ORP (cORP oxidation-reduction potential markers as measured by the RedoxSYS Diagnostic System in plasma, for assessing eccentric exercise-induced oxidative stress. Nineteen volunteers performed eccentric exercise with the knee extensors. Blood was collected before, immediately after exercise, and 24, 48, and 72 h after exercise. Moreover, common redox biomarkers were measured, which were protein carbonyls, thiobarbituric acid-reactive substances, total antioxidant capacity in plasma, and catalase activity and glutathione levels in erythrocytes. When the participants were examined as one group, there were not significant differences in any marker after exercise. However, in 11 participants there was a high increase in cORP after exercise, while in 8 participants there was a high decrease. Thus, the participants were divided in low cORP group exhibiting significant decrease in cORP after exercise and in high cORP group exhibiting significant increase. Moreover, only in the low cORP group there was a significant increase in lipid peroxidation after exercise suggesting induction of oxidative stress. The results suggested that high decreases in cORP values after exercise may indicate induction of oxidative stress by eccentric exercise, while high increases in cORP values after exercise may indicate no existence of oxidative stress.

  6. Assessment of eccentric exercise-induced oxidative stress using oxidation-reduction potential markers.

    Science.gov (United States)

    Stagos, Dimitrios; Goutzourelas, Nikolaos; Ntontou, Amalia-Maria; Kafantaris, Ioannis; Deli, Chariklia K; Poulios, Athanasios; Jamurtas, Athanasios Z; Bar-Or, David; Kouretas, Dimitrios

    2015-01-01

    The aim of the present study was to investigate the use of static (sORP) and capacity ORP (cORP) oxidation-reduction potential markers as measured by the RedoxSYS Diagnostic System in plasma, for assessing eccentric exercise-induced oxidative stress. Nineteen volunteers performed eccentric exercise with the knee extensors. Blood was collected before, immediately after exercise, and 24, 48, and 72 h after exercise. Moreover, common redox biomarkers were measured, which were protein carbonyls, thiobarbituric acid-reactive substances, total antioxidant capacity in plasma, and catalase activity and glutathione levels in erythrocytes. When the participants were examined as one group, there were not significant differences in any marker after exercise. However, in 11 participants there was a high increase in cORP after exercise, while in 8 participants there was a high decrease. Thus, the participants were divided in low cORP group exhibiting significant decrease in cORP after exercise and in high cORP group exhibiting significant increase. Moreover, only in the low cORP group there was a significant increase in lipid peroxidation after exercise suggesting induction of oxidative stress. The results suggested that high decreases in cORP values after exercise may indicate induction of oxidative stress by eccentric exercise, while high increases in cORP values after exercise may indicate no existence of oxidative stress.

  7. Effect of Alcohol Consumption on Recovery From Eccentric Exercise Induced Muscle Damage in Females.

    Science.gov (United States)

    McLeay, Yanita; Stannard, Stephen R; Mundel, Toby; Foskett, Andrew; Barnes, Matthew

    2017-04-01

    This study was designed to investigate the effects of alcohol consumption on recovery of muscle force when consumed immediately postexercise in young females. Eight young women completed 300 maximal eccentric actions of the quadriceps femoris muscle on an isokinetic dynamometer on two occasions in a randomized, cross-over design after which an alcoholic beverage (0.88g ethanol/kg body weight) or an iso-caloric placebo was consumed. Maximal isokinetic (concentric and eccentric) torque and isometric tension produced across the knee were measured in both the exercised and control leg predamage, 36 hr post, and 60 hr post damage. Venous blood creatine kinase (CK) activity and muscle soreness ratings were taken before damage and once per day to 60 hr post damage. Significant differences were observed between the exercised and control leg for maximal concentric, and eccentric torque and isometric tension (p eccentric torque. No main effects of treatment (alcohol) or interactions with Time × Leg or Leg × Treatment were observed. Perceived muscle soreness during box stepping and squatting showed significant time effects (p eccentric exercise-induced muscle damage does not affect recovery in the days following damage in females.

  8. Effect of eccentric exercise-induced muscle damage on electromyographyic activity of quadriceps in untrained healthy females.

    Science.gov (United States)

    Rezaei, Mandana; Ebrahimi-Takamjani, Ismael; Jamshidi, Ali A; Vassaghi-Gharamaleki, Behnoush; Hedayatpour, Nosratollah; Havaei, Naser

    2014-01-01

    The aim of this study was to investigate muscle damage indicators and electromyography activities of quadriceps muscles at 25° of hip flexion in untrained healthy females after an eccentric exercise induced muscle fiber damage. A total of 14 healthy females participated in this pre-experimental study. The subjects performed maximal eccentric quadriceps contractions at 25˚ of hip flexion. Maximum voluntary extensor isometric and concentric moments, angle of maximum moment for concentric contractions, perceived pain intensity, and pain pressure threshold were examined before, immediately, 48 hours, 120 hours and 14 days after eccentric exercise. Additionally, electromyography of three parts of quadriceps muscle, knee flexion range of motion and thigh circumference were measured before and after eccentric exercise. Significant reductions in maximum isometric moment and maximum concentric moment were observed at angular velocity of 60˚ per sec immediately after eccentric exercise (peccentric exercise. Increased pain intensity and decreased knee joint range of motion manifested 48 hours after eccentric exercise. Pain pressure threshold for the quadriceps was higher 14 days after exercise as compared to 48 and 120 hours (p0.05). Eccentric exercise performed at 25˚ of hip flexion resulted in muscle fiber injuries within the quadriceps muscle. However, electromyography of quadriceps muscle was not significantly different than the baseline. The result indicates that hip joint position may modify the effect of eccentric exercise on muscle activation.

  9. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage

    Directory of Open Access Journals (Sweden)

    McLeay Yanita

    2012-07-01

    Full Text Available Abstract Background Exercise-induced muscle damage (EIMD is accompanied by localized oxidative stress / inflammation which, in the short-term at least, is associated with impaired muscular performance. Dietary antioxidants have been shown to reduce excessive oxidative stress; however, their effectiveness in facilitating recovery following EIMD is not clear. Blueberries demonstrate antioxidant and anti-inflammatory properties. In this study we examine the effect of New Zealand blueberries on EIMD after strenuous eccentric exercise. Methods In a randomized cross-over design, 10 females consumed a blueberry smoothie or placebo of a similar antioxidant capacity 5 and 10 hours prior to and then immediately, 12 and 36 hours after EIMD induced by 300 strenuous eccentric contractions of the quadriceps. Absolute peak and average peak torque across the knee, during concentric, isometric, and eccentric actions were measured. Blood biomarkers of oxidative stress, antioxidant capacity, and inflammation were assessed at 12, 36 and 60 hours post exercise. Data were analyzed using a two-way ANOVA. Results A significant (p p = 0.047 interaction effect was seen for peak isometric tension suggesting a faster rate of recovery in the blueberry intervention group. A similar trend was observed for concentric and eccentric strength. An increase in oxidative stress and inflammatory biomarkers was also observed in both treatment groups following EIMD. Although a faster rate of decrease in oxidative stress was observed in the blueberry group, it was not significant (p  Conclusions This study demonstrates that the ingestion of a blueberry smoothie prior to and after EIMD accelerates recovery of muscle peak isometric strength. This effect, although independent of the beverage’s inherent antioxidant capacity, appears to involve an up-regulation of adaptive processes, i.e. endogenous antioxidant processes, activated by the combined actions of the eccentric exercise

  10. Vitamin D2 Supplementation Amplifies Eccentric Exercise-Induced Muscle Damage in NASCAR Pit Crew Athletes

    Directory of Open Access Journals (Sweden)

    David C. Nieman

    2013-12-01

    Full Text Available This study determined if 6-weeks vitamin D2 supplementation (vitD2, 3800 IU/day had an influence on muscle function, eccentric exercise-induced muscle damage (EIMD, and delayed onset of muscle soreness (DOMS in National Association for Stock Car Auto Racing (NASCAR NASCAR pit crew athletes. Subjects were randomized to vitD2 (n = 13 and placebo (n = 15, and ingested supplements (double-blind for six weeks. Blood samples were collected and muscle function tests conducted pre- and post-study (leg-back and hand grip dynamometer strength tests, body weight bench press to exhaustion, vertical jump, 30-s Wingate test. Post-study, subjects engaged in 90 min eccentric-based exercise, with blood samples and DOMS ratings obtained immediately after and 1- and 2-days post-exercise. Six weeks vitD2 increased serum 25(OHD2 456% and decreased 25(OHD3 21% versus placebo (p < 0.001, p = 0.036, respectively, with no influence on muscle function test scores. The post-study eccentric exercise bout induced EIMD and DOMS, with higher muscle damage biomarkers measured in vitD2 compared to placebo (myoglobin 252%, 122% increase, respectively, p = 0.001; creatine phosphokinase 24 h post-exercise, 169%, 32%, p < 0.001, with no differences for DOMS. In summary, 6-weeks vitD2 (3800 IU/day significantly increased 25(OHD2 and decreased 25(OHD3, had no effect on muscle function tests, and amplified muscle damage markers in NASCAR pit crew athletes following eccentric exercise.

  11. Effects of flexibility training on eccentric exercise-induced muscle damage.

    Science.gov (United States)

    Chen, Che-Hsiu; Nosaka, Kazunori; Chen, Hsin-Lian; Lin, Ming-Ju; Tseng, Kuo-Wei; Chen, Trevor C

    2011-03-01

    This study investigated whether flexibility training would attenuate muscle damage induced by maximal eccentric exercise. Thirty untrained young men were allocated to static stretching (SS), proprioceptive neuromuscular facilitation (PNF), or control group (n = 10 per group). The SS consisted of 30 sets of a 30-s standard SS with a 30-s rest between sets, and the PNF included 5 sets of the 30-s standard SS followed by 3 sets of three "contract-relax-agonist-contract" procedures. These were performed three times a week for 8 wk, and all subjects performed six sets of 10 maximal isokinetic (30°·s) lengthening contractions of the knee flexors after the 8-wk training or 8 wk after the baseline measures (control). Changes in indirect markers of muscle damage before and for 5 d after the eccentric exercise were compared among the groups. The range of motion (ROM) of the hip joint increased by 25°, and the optimum angle of the knee flexors shifted (P knee flexor muscle strength and smaller changes in optimum angle, ROM, muscle soreness, and plasma creatine kinase activity and myoglobin concentration without significant differences between the groups. The preeccentric exercise ROM or optimum angle was significantly (P eccentric exercise-induced muscle damage and that flexible muscles are less susceptible to the damage.

  12. Assessment of Muscle Pain Induced by Elbow-Flexor Eccentric Exercise.

    Science.gov (United States)

    Lau, Wing Yin; Blazevich, Anthony J; Newton, Michael J; Wu, Sam Shi Xuan; Nosaka, Kazunori

    2015-11-01

    Delayed-onset muscle soreness (DOMS) is a common muscle pain that many people experience and is often used as a model of acute muscle pain. Researchers have reported the effects of various interventions on DOMS, but different DOMS assessment protocols used in these studies make it difficult to compare the effects. To investigate DOMS characteristics after elbow-flexor eccentric exercise to establish a standardized DOMS assessment protocol. Descriptive laboratory study. Research laboratory. Ten healthy, untrained men (21-39 years). Participants performed 10 sets of 6 maximal isokinetic eccentric contractions of the elbow flexors. Indirect muscle-damage markers were maximal voluntary isometric contraction torque, range of motion, and serum creatine kinase activity. Muscle pain was assessed before exercise, immediately postexercise, and 1 to 5 days postexercise using (1) a visual analog scale (VAS), (2) a category ratio-10 scale (CR-10) when applying static pressure and palpation at different sites (3, 9, and 15 cm above the elbow crease), and (3) pressure-pain thresholds (PPTs) at 50 sites (pain mapping). Maximal voluntary isometric contraction and range of motion decreased and creatine kinase activity increased postexercise, indicating muscle damage. Palpation induced greater pain than static pressure, and longitudinal and transverse palpations induced greater pain than circular palpation (P exercise, but the pain-sensitive regions shifted to the central and distal regions of the biceps brachii at 1 to 3 days postexercise (P eccentric exercise.

  13. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage

    Science.gov (United States)

    2012-01-01

    Background Exercise-induced muscle damage (EIMD) is accompanied by localized oxidative stress / inflammation which, in the short-term at least, is associated with impaired muscular performance. Dietary antioxidants have been shown to reduce excessive oxidative stress; however, their effectiveness in facilitating recovery following EIMD is not clear. Blueberries demonstrate antioxidant and anti-inflammatory properties. In this study we examine the effect of New Zealand blueberries on EIMD after strenuous eccentric exercise. Methods In a randomized cross-over design, 10 females consumed a blueberry smoothie or placebo of a similar antioxidant capacity 5 and 10 hours prior to and then immediately, 12 and 36 hours after EIMD induced by 300 strenuous eccentric contractions of the quadriceps. Absolute peak and average peak torque across the knee, during concentric, isometric, and eccentric actions were measured. Blood biomarkers of oxidative stress, antioxidant capacity, and inflammation were assessed at 12, 36 and 60 hours post exercise. Data were analyzed using a two-way ANOVA. Results A significant (p eccentric torque was observed 12 hours following exercise in both treatment groups. During the 60 hour recovery period, a significant (p = 0.047) interaction effect was seen for peak isometric tension suggesting a faster rate of recovery in the blueberry intervention group. A similar trend was observed for concentric and eccentric strength. An increase in oxidative stress and inflammatory biomarkers was also observed in both treatment groups following EIMD. Although a faster rate of decrease in oxidative stress was observed in the blueberry group, it was not significant (p exercise and interestingly coincided with a gradual increase in plasma antioxidant capacity, whereas biomarkers for inflammation were still elevated after 60 hours recovery. Conclusions This study demonstrates that the ingestion of a blueberry smoothie prior to and after EIMD accelerates

  14. Vitamin D2 supplementation amplifies eccentric exercise-induced muscle damage in NASCAR pit crew athletes.

    Science.gov (United States)

    Nieman, David C; Gillitt, Nicholas D; Shanely, R Andrew; Dew, Dustin; Meaney, Mary Pat; Luo, Beibei

    2013-12-20

    This study determined if 6-weeks vitamin D2 supplementation (vitD2, 3800 IU/day) had an influence on muscle function, eccentric exercise-induced muscle damage (EIMD), and delayed onset of muscle soreness (DOMS) in National Association for Stock Car Auto Racing (NASCAR) NASCAR pit crew athletes. Subjects were randomized to vitD2 (n=13) and placebo (n=15), and ingested supplements (double-blind) for six weeks. Blood samples were collected and muscle function tests conducted pre- and post-study (leg-back and hand grip dynamometer strength tests, body weight bench press to exhaustion, vertical jump, 30-s Wingate test). Post-study, subjects engaged in 90 min eccentric-based exercise, with blood samples and DOMS ratings obtained immediately after and 1- and 2-days post-exercise. Six weeks vitD2 increased serum 25(OH)D2 456% and decreased 25(OH)D3 21% versus placebo (peccentric exercise bout induced EIMD and DOMS, with higher muscle damage biomarkers measured in vitD2 compared to placebo (myoglobin 252%, 122% increase, respectively, p=0.001; creatine phosphokinase 24 h post-exercise, 169%, 32%, peccentric exercise.

  15. Eccentric-exercise induced inflammation attenuates the vascular responses to mental stress.

    Science.gov (United States)

    Paine, Nicola J; Ring, Christopher; Aldred, Sarah; Bosch, Jos A; Wadley, Alex J; Veldhuijzen van Zanten, Jet J C S

    2013-05-01

    Mental stress has been identified as a trigger of myocardial infarction (MI), with inflammation and vascular responses to mental stress independently implicated as contributing factors. This study examined whether inflammation moderates the vascular responses to mental stress. Eighteen healthy male participants completed a stress task under two counter balanced conditions. In the exercise condition, a morning bout of eccentric exercise (12×5 repetitions of unilateral eccentric knee extension at 120% intensity of concentric one repetition maximum) was used to increase levels of inflammatory-responsive cytokines during an afternoon stress session scheduled 6h later. In the control condition, participants sat and relaxed for 45min, 6h prior to the afternoon stress session. Forearm blood flow, calf blood flow (measured in the leg which completed the exercise task), blood pressure, heart rate and cardiac output were assessed at rest and in response to mental stress. As expected, interleukin-6 was higher (p=.02) 6h post exercise, i.e., at the start of the stress session, as compared to the no-exercise control condition. Mental stress increased forearm blood flow, calf blood flow, blood pressure, heart rate, and cardiac output in both conditions (p'sexercise condition compared to the control condition (peccentric exercise attenuated the vascular responses to mental stress locally at the site of eccentric exercise-induced inflammation. The observed impairment in vascular responses to stress associated with increased levels of inflammation suggests a mechanism through which inflammation might increase the risk for MI. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Benefits of dietary phytochemical supplementation on eccentric exercise-induced muscle damage: Is including antioxidants enough?

    Science.gov (United States)

    Pereira Panza, Vilma Simões; Diefenthaeler, Fernando; da Silva, Edson Luiz

    2015-09-01

    The purpose of this review was to critically discuss studies that investigated the effects of supplementation with dietary antioxidant phytochemicals on recovery from eccentric exercise-induced muscle damage. The performance of physical activities that involve unaccustomed eccentric muscle actions-such as lowering a weight or downhill walking-can result in muscle damage, oxidative stress, and inflammation. These events may be accompanied by muscle weakness and delayed-onset muscle soreness. According to the current evidences, supplementation with dietary antioxidant phytochemicals appears to have the potential to attenuate symptoms associated with eccentric exercise-induced muscle damage. However, there are inconsistencies regarding the relationship between muscle damage and blood markers of oxidative stress and inflammation. Furthermore, the effectiveness of strategies appear to depend on a number of aspects inherent to phytochemical compounds as well as its food matrix. Methodological issues also may interfere with the proper interpretation of supplementation effects. Thus, the study may contribute to updating professionals involved in sport nutrition as well as highlighting the interest of scientists in new perspectives that can widen dietary strategies applied to training. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A weekly bout of eccentric exercise is sufficient to induce health-promoting effects.

    Science.gov (United States)

    Paschalis, Vassilis; Nikolaidis, Michalis G; Theodorou, Anastasios A; Panayiotou, George; Fatouros, Ioannis G; Koutedakis, Yiannis; Jamurtas, Athanasios Z

    2011-01-01

    The effects of chronic eccentric-only versus concentric-only exercise on muscle physiology and blood biochemistry were investigated. Twenty women performed on an isokinetic dynamometer a concentric (n = 10;mean ± SEM: age = 21.0 ± 0.4 yr, body fat = 22.0% ± 0.9%) or an eccentric (n = 10, age = 20.0 ± 0.3 yr, body fat = 23.2% ± 0.7%) exercise session using the knee extensors of both lower limbs once a week for eight subsequent weeks. Muscle function (isometric, concentric, and eccentric peak torque, range of movement, and soreness) was evaluated before, immediately after, and 48 h postexercise in each one of the eight training weeks. Body fat, resting energy expenditure (REE), lipid, and carbohydrate oxidation rate as well as blood chemistry measurements (lipid, lipoprotein and apolipoprotein profile, glucose, insulin, glycosylated hemoglobin, and creatine kinase) were examined before and 48 h postexercise at the first and eighth week of training. Acute eccentric exercise increased REE and fat oxidation at week 1 (12.7% and 12.9%, respectively) and at week 8 (0.7% and 2.8%, respectively). Chronic eccentric exercise increased resting REE and fat oxidation at week 8 compared with week 1 (5.0% and 9.9%, respectively). Acute eccentric exercise improved blood lipid profile at week 1 and week 8. Chronic eccentric exercise improved resting blood lipid profile at week 8. Acute eccentric exercise increased insulin resistance at week 1 but not at week 8. Chronic eccentric exercise decreased resting insulin resistance at week 8. It is reported for the first time that only 30 min of eccentric exercise per week for 8 wk was sufficient to improve health risk factors.

  18. Nociceptor interleukin 10 receptor 1 is critical for muscle analgesia induced by repeated bouts of eccentric exercise in the rat.

    Science.gov (United States)

    Alvarez, Pedro; Bogen, Oliver; Green, Paul G; Levine, Jon D

    2017-08-01

    Delayed-onset muscle soreness is typically observed after strenuous or unaccustomed eccentric exercise. Soon after recovery, blunted muscle soreness is observed on repeated eccentric exercise, a phenomenon known as repeated bout effect (RBE). Although regular physical activity decreases muscle hyperalgesia, likely because of increased production of the anti-inflammatory cytokine interleukin-10 (IL-10) in the skeletal muscle, whether IL-10 also contributes to the antinociceptive effect of RBE is unknown. Furthermore, whether IL-10 attenuates muscle hyperalgesia by acting on muscle nociceptors remains to be established. Here, we explored the hypothesis that blunted muscle nociception observed in RBE depends on a local effect of IL-10, acting on IL-10 receptor 1 (IL-10R1) expressed by muscle nociceptors. Results show that after a second bout of eccentric exercise, rats exhibited decreased muscle hyperalgesia, indicative of RBE, and increased expression of IL-10 in the exercised gastrocnemius muscle. Although knockdown of IL-10R1 protein in nociceptors innervating the gastrocnemius muscle by intrathecal antisense oligodeoxynucleotide did not change nociceptive threshold in naive rats, it unveiled latent muscle hyperalgesia in rats submitted to eccentric exercise 12 days ago. Furthermore, antisense also prevented the reduction of muscle hyperalgesia observed after a second bout of eccentric exercise. These data indicate that recovery of nociceptive threshold after eccentric exercise and RBE-induced analgesia depend on a local effect of IL-10, acting on its canonical receptor in muscle nociceptors.

  19. Two maximal isometric contractions attenuate the magnitude of eccentric exercise-induced muscle damage.

    Science.gov (United States)

    Chen, Hsin-Lian; Nosaka, Kazunori; Pearce, Alan J; Chen, Trevor C

    2012-08-01

    This study investigated whether maximal voluntary isometric contractions (MVC-ISO) would attenuate the magnitude of eccentric exercise-induced muscle damage. Young untrained men were placed into one of the two experimental groups or one control group (n = 13 per group). Subjects in the experimental groups performed either two or 10 MVC-ISO of the elbow flexors at a long muscle length (20° flexion) 2 days prior to 30 maximal isokinetic eccentric contractions of the elbow flexors. Subjects in the control group performed the eccentric contractions without MVC-ISO. No significant changes in maximal voluntary concentric contraction peak torque, peak torque angle, range of motion, upper arm circumference, plasma creatine kinase (CK) activity and myoglobin concentration, muscle soreness, and ultrasound echo intensity were evident after MVC-ISO. Changes in the variables following eccentric contractions were smaller (P MVC-ISO group (e.g., peak torque loss at 5 days after exercise, 23% ± 3%; peak CK activity, 1964 ± 452 IU·L(-1); peak muscle soreness, 46 ± 4 mm) or the 10 MVC-ISO group (13% ± 3%, 877 ± 198 IU·L(-1), 30 ± 4 mm) compared with the control (34% ± 4%, 6192 ± 1747 IU·L(-1), 66 ± 5 mm). The 10 MVC-ISO group showed smaller (P MVC-ISO group. Therefore, two MVC-ISO conferred potent protective effects against muscle damage, whereas greater protective effect was induced by 10 MVC-ISO, which can be used as a strategy to minimize muscle damage.

  20. Mechanisms underpinning protection against eccentric exercise-induced muscle damage by ischemic preconditioning.

    Science.gov (United States)

    Franz, Alexander; Behringer, Michael; Nosaka, Kazunori; Buhren, Bettina Alexandra; Schrumpf, Holger; Mayer, Constantin; Zilkens, Christoph; Schumann, Moritz

    2017-01-01

    Eccentric exercise training is effective for increasing muscle mass and strength, and improving insulin sensitivity and blood lipid profiles. However, potential muscle damage symptoms such as prolonged loss of muscle function and delayed onset of muscle soreness may restrict the use of eccentric exercise, especially in clinical populations. Therefore, strategies to reduce eccentric exercise-induced muscle damage (EIMD) are necessary, and an extensive number of scientific studies have tried to identify potential intervention modalities to perform eccentric exercises without adverse effects. The present paper is based on a narrative review of current literature, and provides a novel hypothesis by which an ischemic preconditioning (IPC) of the extremities may reduce EIMD. IPC consists of an intermittent application of short-time non-lethal ischemia to an extremity (e.g. using a tourniquet) followed by reperfusion and was discovered in clinical settings in an attempt to minimize inflammatory responses induced by ischemia and ischemia-reperfusion-injury (I/R-Injury) during surgery. The present hypothesis is based on morphological and biochemical similarities in the pathophysiology of skeletal muscle damage during clinical surgery and EIMD. Even though the primary origin of stress differs between I/R-Injury and EIMD, subsequent cellular alterations characterized by an intracellular accumulation of Ca(2+), an increased production of reactive oxygen species or increased apoptotic signaling are essential elements for both. Moreover, the incipient immune response appears to be similar in I/R-Injury and EIMD, which is indicated by an infiltration of leukocytes into the damaged soft-tissue. Thus far, IPC is considered as a potential intervention strategy in the area of cardiovascular or orthopedic surgery and provides significant impact on soft-tissue protection and downregulation of undesired excessive inflammation induced by I/R-Injury. Based on the known major impact of IPC

  1. Eccentric exercise testing and training

    Science.gov (United States)

    Clarkson, Priscilla M.

    1994-01-01

    Some researchers and practitioners have touted the benefits of including eccentric exercise in strength training programs. However, others have challenged its use because they believe that eccentric actions are dangerous and lead to injuries. Much of the controversy may be based on a lack of understanding of the physiology of eccentric actions. This review will present data concerning eccentric exercise in strength training, the physiological characteristics of eccentric exercise, and the possible stimulus for strength development. Also a discussion of strength needs for extended exposure to microgravity will be presented. Not only is the use of eccentric exercise controversial, but the name itself is fraught with problems. The correct pronunciation is with a hard 'c' so that the word sounds like ekscentric. The confusion in pronunciation may have been prevented if the spelling that Asmussen used in 1953, excentric, had been adopted. Another problem concerns the expressions used to describe eccentric exercise. Commonly used expressions are negatives, eccentric contractions, lengthening contractions, resisted muscle lengthenings, muscle lengthening actions, and eccentric actions. Some of these terms are cumbersome (i.e., resisted muscle lengthenings), one is slang (negatives), and another is an oxymoron (lengthening contractions). Only eccentric action is appropriate and adoption of this term has been recommended by Cavanagh. Despite the controversy that surrounds eccentric exercise, it is important to note that these types of actions play an integral role in normal daily activities. Eccentric actions are used during most forms of movement, for example, in walking when the foot touches the ground and the center of mass is decelerated and in lowering objects, such as placing a bag of groceries in the car.

  2. Eccentric Exercise: Physiological Characteristics and Acute Responses.

    Science.gov (United States)

    Douglas, Jamie; Pearson, Simon; Ross, Angus; McGuigan, Mike

    2017-04-01

    An eccentric contraction involves the active lengthening of muscle under an external load. The molecular and neural mechanisms underpinning eccentric contractions differ from those of concentric and isometric contractions and remain less understood. A number of molecular theories have been put forth to explain the unexplained observations during eccentric contractions that deviate from the predictions of the established theories of muscle contraction. Postulated mechanisms include a strain-induced modulation of actin-myosin interactions at the level of the cross-bridge, the activation of the structural protein titin, and the winding of titin on actin. Accordingly, neural strategies controlling eccentric contractions also differ with a greater, and possibly distinct, cortical activation observed despite an apparently lower activation at the level of the motor unit. The characteristics of eccentric contractions are associated with several acute physiological responses to eccentrically-emphasised exercise. Differences in neuromuscular, metabolic, hormonal and anabolic signalling responses during, and following, an eccentric exercise bout have frequently been observed in comparison to concentric exercise. Subsequently, the high levels of muscular strain with such exercise can induce muscle damage which is rarely observed with other contraction types. The net result of these eccentric contraction characteristics and responses appears to be a novel adaptive signal within the neuromuscular system.

  3. Attenuation of eccentric exercise-induced muscle damage conferred by maximal isometric contractions: a mini review

    Directory of Open Access Journals (Sweden)

    Leonardo Coelho Rabello Lima

    2015-10-01

    Full Text Available Although beneficial in determined contexts, eccentric exercise-induced muscle damage (EIMD might be unwanted during training regimens, competitions and daily activities. There are a vast number of studies investigating strategies to attenuate EIMD response after damaging exercise bouts. Many of them consist of performing exercises that induce EIMD, consuming supplements or using equipment that are not accessible for most people. It appears that performing maximal isometric contractions (ISOs 2-4 days prior to damaging bouts promotes significant attenuation of EIMD symptoms that are not related to muscle function. It has been shown that the volume of ISOs, muscle length in which they are performed, and interval between them and the damaging bout influence the magnitude of this protection. Additionally, it appears that this protection is not long-lived, lasting no longer than 4 days. Although no particular mechanisms for these adaptations were identified, professionals should consider applying this non-damaging stimulus before submitting their patients to unaccustomed exercised. However, it seems not to be the best option for athletes or relatively trained individuals. Future studies should focus on establishing if ISOs protect other populations (i.e., trained individuals or muscle groups (i.e., knee extensors against EIMD, as well as investigate different mechanisms for ISO-induced protection.

  4. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.

    Science.gov (United States)

    Fernandes, T; Soci, U P R; Oliveira, E M

    2011-09-01

    Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  5. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants

    Directory of Open Access Journals (Sweden)

    T. Fernandes

    2011-09-01

    Full Text Available Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1 receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  6. Effect of Contraction Velocity on Selected Muscle Damage Indices Following Acute Eccentric Exercise-Induced Muscle Damage: A Review

    Directory of Open Access Journals (Sweden)

    Farzaneh Movaseghi

    2016-12-01

    Full Text Available Background & Objective: Eccentric muscle action is mechanically more efficient but employs a unique activation strategy which predisposes the muscle to damage. Type II muscle fibers are more susceptible than type I fibers to muscle damage; hence, velocity probably interferes with mechanical stress and thus may modulate muscle damage. The purpose of this review study was to investigate the effect of contraction velocity on selected muscle damage indices following acute eccentric exercise-induced muscle damage. Material & Method: Looking up related articles published in valid scientific databases such as PubMed, Springer, Elsevier, Science Direct, and SID with standard keywords and according to the research criteria, 16 studies (1980 to 2015 were selected. Results: Ten studies showed that high velocity eccentric exercise induced greater muscle damage. Five studies showed no differences between velocities, and a single study indicated a greater magnitude of muscle damage following slow eccentric exercise. Conclusion: Thus, greater magnitude of damage is induced by contractions performed at a higher velocity. However, considering differences during tension in the majority of studies, focusing on elbow flexor muscles and muscle damage profile variety in various muscle groups, and more animal and human studies in other muscular groups are necessary to confirm how the velocity of acute eccentric exercise would affect the muscle damage.

  7. Isokinetic eccentric exercise can induce skeletal muscle injury within the physiologic excursion of muscle-tendon unit: a rabbit model

    Directory of Open Access Journals (Sweden)

    Chen Pei-Yu

    2007-08-01

    Full Text Available Abstract Background and Purpose Intensive eccentric exercise can cause muscle damage. We simulated an animal model of isokinetic eccentric exercise by repetitively stretching stimulated triceps surae muscle-tendon units to determine if such exercise affects the mechanical properties of the unit within its physiologic excursion. Methods Biomechanical parameters of the muscle-tendon unit were monitored during isokinetic eccentric loading in 12 rabbits. In each animal, one limb (control group was stretched until failure. The other limb (study group was first subjected to isokinetic and eccentric cyclic loading at the rate of 10.0 cm/min to 112% (group I or 120% (group II of its initial length for 1 hour and then stretched to failure. Load-deformation curves and biomechanical parameters were compared between the study and control groups. Results When the muscle-tendon unit received eccentric cyclic loading to 112%, changes in all biomechanical parameters – except for the slope of the load-deformation curve – were not significant. In contrast, most parameters, including the slope of the load-deformation curve, peak load, deformation at peak load, total energy absorption, and energy absorption before peak load, significantly decreased after isokinetic eccentric cyclic loading to 120%. Conclusion We found a threshold for eccentrically induced injury of the rabbit triceps surae muscle at between 12% and 20% strain, which is within the physiologic excursion of the muscle-tendon units. Our study provided evidence that eccentric exercise may induce changes in the biomechanical properties of skeletal muscles, even within the physiologic range of the excursion of the muscle-tendon unit.

  8. A semiquantitative scoring tool to evaluate eccentric exercise-induced muscle damage in trained rats.

    Science.gov (United States)

    Rizo-Roca, D; Ríos-Kristjánsson, J G; Núñez-Espinosa, C; Ascensão, A; Magalhães, J; Torrella, J R; Pagès, T; Viscor, G

    2015-11-02

    Unaccustomed eccentric exercise is a well-documented cause of exercise-induced muscle damage. However, in trained subjects muscle injury involves only light or moderate tissue damage. Since trained rats are widely used as a model for skeletal muscle injury, here we propose a semiquantitative scoring tool to evaluate muscle damage in trained rats. Twenty male Sprague-Dawley rats were trained fortwo weeks following a two-week preconditioning period, and randomly divided into two groups: control rats (CTL; n=5) and rats with eccentric exercise-induced muscle damage (INJ; n=15). Injured rats were sacrificed at three time points: 1, 3 and 7 days post injury (n=5 each). Transverse sections from the right soleus were cut (10 µm) and stained with haematoxylin-eosin. Samples were evaluated by two groups of observers (four researchers experienced in skeletal muscle histopathology and four inexperienced) using the proposed tool, which consisted of six items organised in three domains: abnormal fibre morphology, necrotic/(re)degenerating fibres (muscle fibre domain), endomysial and perimysial infiltration (inflammatory state domain) and endomysium and perimysium distension (interstitial compartment domain). We observed the expected time course in the six evaluated items. Furthermore, agreement among observers was evaluated by measuring the Intraclass Correlation Coefficient (ICC). Within the experienced group, items from the muscle fibre and interstitial compartment domains showed good agreement and the two items from the infiltration compartment domain showed excellent agreement. in conclusion, the proposed tool allowed quick and correct evaluation of light to moderate muscle damage in trained rats with good agreement between observers.

  9. Panax ginseng and salvia miltiorrhiza supplementation abolishes eccentric exercise-induced vascular stiffening: a double-blind randomized control trial.

    Science.gov (United States)

    Lin, Hsin-Fu; Tung, Kang; Chou, Chun-Chung; Lin, Ching-Che; Lin, Jaung-Geng; Tanaka, Hirofumi

    2016-06-06

    Muscle damage induced by unaccustomed or eccentric exercise results in delayed onset vascular stiffening. We tested the hypothesis that a 7-day supplementation of panax ginseng and salvia miltiorrhiza prior to an acute eccentric exercise could attenuate arterial stiffening. By using a double-blind study placebo-controlled randomized design, subjects were randomly assigned to either the Chinese herb (N = 12) or the placebo group (N = 11) and performed a downhill running (eccentric exercise) trial and a control (seated rest) trial. Muscle soreness increased 1-2 days after exercise similarly in both groups, whereas the herb group demonstrated a faster recovery on active range of motion. Plasma creatine kinase concentration increased significantly at 24 h in both groups but the magnitude of increase was attenuated in the herb group. Arterial stiffness as measured by carotid-femoral pulse wave velocity increased significantly at 24 h in the placebo group but such increase was absent in the herb group. Flow-mediated dilation did not change in either group. Plasma concentrations of CRP and IL-6 increased in the placebo group but no such increases were observed in the herb group. Changes in arterial stiffness induced by eccentric exercise were associated with the corresponding changes in IL-6 (r = 0.46, P exercise. ClinicalTrials.gov: NCT02007304. Registered Dec. 5, 2013).

  10. Comparison of changes in markers of muscle damage induced by eccentric exercise and ischemia/reperfusion.

    Science.gov (United States)

    Su, Q-S; Zhang, J-G; Dong, R; Hua, B; Sun, J-Z

    2010-10-01

    To examine the effects of eccentric exercise (EE) and ischemia/reperfusion (I/R) on the markers of muscle damage, 72 rats were randomly assigned to the EE group, I/R group and control group (C), respectively. The rats in EE ran downhill on a treadmill with a 16 ° inclination at a constant speed for 90 min, and the rats in the I/R group underwent 90 min of four-limb ischemia, followed by 24, 48 and 72 h of reperfusion. Blood and tissue samples were collected immediately, 24, 48 and 72 h after exercise or reperfusion. Quantitative analyses showed that the I/R group had a significantly larger mitochondrial volume at 24 h after reperfusion compared with the C, and there were more disrupted Z-lines in the EE group and more disrupted mitochondria in the I/R group at 24 h after exercise or reperfusion. When compared with the C, a significantly lower total antioxidant capacity and higher interleukin-6 value were observed after exercise or reperfusion. Our data suggest that although EE and I/R result in some similar changes in the muscle damage markers, there are still some differences. The EE- and I/R-induced muscle damage may be due to different mechanisms.

  11. Low-intensity eccentric contractions attenuate muscle damage induced by subsequent maximal eccentric exercise of the knee extensors in the elderly.

    Science.gov (United States)

    Chen, Trevor C; Tseng, Wei-Chin; Huang, Guan-Ling; Chen, Hsin-Lian; Tseng, Kou-Wei; Nosaka, Kazunori

    2013-04-01

    This study investigated whether low-intensity eccentric contractions of the knee extensors would attenuate the magnitude of muscle damage induced by maximal eccentric exercise of the same muscle performed 7 days later using elderly individuals. Healthy older men (66.4 ± 4.6 years) were assigned to control or experimental (Exp) group (n = 13 per group). The control group performed six sets of ten maximal eccentric contractions (MaxECC) of the knee extensors of non-dominant leg. The Exp group performed six sets of ten low-intensity eccentric contractions of the knee extensors on a leg extension machine by lowering a weight of 10 % maximal voluntary isometric knee extension strength (10 %ECC) 7 days prior to MaxECC. Changes in maximal voluntary isokinetic concentric torque (MVC-CON), angle at peak torque, range of motion (ROM), upper thigh circumference, muscle soreness, plasma creatine kinase activity and myoglobin (Mb) concentration and B-mode ultrasound echo-intensity before and for 5 days after MaxECC were compared between groups by a mixed factor ANOVA. No significant changes in any variables were observed following 10 %ECC. Following MaxECC, all variables changed significantly, and changes in all variables except for angle at peak torque were significantly different between groups. MVC-CON and ROM decreased smaller and recovered faster (P eccentric contractions was effective for attenuating muscle damage induced by subsequent MaxECC of the knee extensors for elderly individuals.

  12. Myocellular enzyme leakage, polymorphonuclear neutrophil activation and delayed onset muscle soreness induced by isokinetic eccentric exercise.

    Science.gov (United States)

    Croisier, J L; Camus, G; Deby-Dupont, G; Bertrand, F; Lhermerout, C; Crielaard, J M; Juchmès-Ferir, A; Deby, C; Albert, A; Lamy, M

    1996-01-01

    To address the question of whether delayed onset muscular soreness (DOMS) following intense eccentric muscle contraction could be due to increased production of the arachidonic acid derived product prostaglandin E2 (PGE2). 10 healthy male subjects were submitted to eccentric and concentric isokinetic exercises on a Kin Trex device at 60 degrees/s angular velocity. Exercise consisted of 8 stages of 5 maximal contractions of the knee extensor and flexor muscle groups of both legs separated by 1 min rest phases. There was an interval of at least 30 days between eccentric and concentric testing, and the order of the two exercise sessions was randomly assigned. The subjective presence and intensity of DOMS was evaluated using a visual analogue scale, immediately, following 24 h and 48 h after each test. Five blood samples were drawn from an antecubital vein: at rest before exercise, immediately after, after 30 min recovery, 24 h and 48 h after the tests. The magnitude of the acute inflammatory response to exercise was assessed by measuring plasma levels of polymorphonuclear elastase ([EL]), myeloperoxidase ([MPO]) and PGE2 ([PGE2]). Using two way analysis of variance, it appeared that only eccentric exercise significantly increased [EL] and DOMS, especially of the hamstring muscles. Furthermore, a significant decrease in eccentric peak torque of this muscle group only was observed on day 2 after eccentric work (- 21%; P < 0.002). Serum activity of creatine kinase and serum concentration of myoglobin increased significantly 24 and 48 h after both exercise tests. However, these variables reached significantly higher values following eccentric contractions 48 h after exercise. Mean [PGE2] in the two exercise modes remained unchanged over time and were practically equal at each time point. On the basis of these findings, we conclude that the magnitude of polymorphonuclear (PMN) activation, muscle damage, and DOMS are greater after eccentric than after concentric muscle

  13. Attenuation of indirect markers of eccentric exercise-induced muscle damage by curcumin.

    Science.gov (United States)

    Tanabe, Yoko; Maeda, Seiji; Akazawa, Nobuhiko; Zempo-Miyaki, Asako; Choi, Youngju; Ra, Song-Gyu; Imaizumi, Atsushi; Otsuka, Yoshihiko; Nosaka, Kazunori

    2015-09-01

    Polyphenolic curcumin is known to have potent anti-inflammatory effects; thus the present study investigated the hypothesis that curcumin ingestion would attenuate muscle damage after eccentric exercise. Fourteen untrained young men (24 ± 1 years) performed 50 maximal isokinetic (120°/s) eccentric contractions of the elbow flexors of one arm on an isokinetic dynamometer and the same exercise with the other arm 4 weeks later. They took 150 mg of curcumin (theracurmin) or placebo (starch) orally before and 12 h after each eccentric exercise bout in a randomised, crossover design. Maximal voluntary contraction (MVC) torque of the elbow flexors, range of motion of the elbow joint, upper-arm circumference, muscle soreness, serum creatine kinase (CK) activity, and plasma interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) concentration were measured before, immediately after, and 24, 48, 72 and 96 h after each eccentric exercise. Changes in these variables over time were compared between curcumin and placebo conditions by two-way repeated measures ANOVA. MVC torque decreased smaller and recovered faster (e.g., 4 days post-exercise: -31 ± 13 % vs. -15 ± 15 %), and peak serum CK activity was smaller (peak: 7684 ± 8959 IU/L vs. 3398 ± 3562 IU/L) for curcumin than placebo condition (P exercise. It is concluded that theracurmin ingestion attenuates some aspects of muscle damage such as MVC loss and CK activity increase.

  14. The susceptibility of the knee extensors to eccentric exercise-induced muscle damage is not affected by leg dominance but by exercise order.

    Science.gov (United States)

    Hody, S; Rogister, B; Leprince, P; Laglaine, T; Croisier, J-L

    2013-09-01

    The aims of this study were first to compare the response of dominant and non-dominant legs to eccentric exercise and second, to examine whether there is an effect of exercise order on the magnitude of symptoms associated with intense eccentric protocols. Eighteen young men performed three sets of 30 maximal eccentric isokinetic (60° s(-1)) contractions of the knee extensors (range of motion, ROM: 0°-100°, 0 = full extension) using either dominant or non-dominant leg. They repeated a similar eccentric bout using the contralateral leg 6 weeks later. The sequence of leg's use was allocated to create equally balanced groups. Four indirect markers of muscle damage including subjective pain intensity, maximal isometric strength, muscle stiffness and plasma creatine kinase (CK) activity were measured before and 24 h after exercise. All markers changed significantly following the eccentric bout performed either by dominant or non-dominant legs, but no significant difference was observed between legs. Interestingly, the comparison between the first and second eccentric bouts revealed that muscle soreness (-42%, Pexercise-induced muscle damage and supports for the first time the existence of a contralateral protection against exercise-induced muscle damage in the lower limbs.

  15. Aging, Functional Capacity and Eccentric Exercise Training

    Science.gov (United States)

    Gault, Mandy L.; Willems, Mark E.T.

    2013-01-01

    Aging is a multi-factorial process that ultimately induces a decline in our physiological functioning, causing a decreased health-span, quality of life and independence for older adults. Exercise participation is seen as a way to reduce the impact of aging through maintenance of physiological parameters. Eccentric exercise is a model that can be employed with older adults, due to the muscle’s ability to combine high muscle force production with a low energy cost. There may however be a risk of muscle damage before the muscle is able to adapt. The first part of this review describes the process of aging and how it reduces aerobic capacity, muscle strength and therefore functional mobility. The second part highlights eccentric exercise and the associated muscle damage, in addition to the repeated bout effect. The final section reviews eccentric exercise interventions that have been completed by older adults with a focus on the changes in functional mobility. In conclusion, eccentric endurance exercise is a potential training modality that can be applied to older adults for improving muscle strength, aerobic capacity and functional ability. However, further research is needed to assess the effects on aerobic capacity and the ideal prescription for eccentric endurance exercise. PMID:24307968

  16. Effect of vibration treatment on symptoms associated with eccentric exercise-induced muscle damage.

    Science.gov (United States)

    Lau, Wing Yin; Nosaka, Kazunori

    2011-08-01

    : The aim of this study was to test the hypothesis that vibration treatment reduces delayed-onset muscle soreness and swelling and enhances recovery of muscle function after eccentric exercise. : A randomized crossover design was used. Fifteen young men performed ten sets of six maximal eccentric contractions of the elbow flexors with the right arm for one occasion and the left arm for the other occasion separated by 4 wks. One arm received a 30-min vibration treatment at 30 mins after and 1, 2, 3, and 4 days after the exercise (treatment group), and the other arm did not receive any treatment (control group). The order of the treatment and control conditions and the use of the dominant and nondominant arms were counterbalanced among subjects. Changes in indirect markers of muscle damage were compared between arms by a two-way repeated-measures analysis of variance. : Compared with the control group, the treatment group showed significantly (P reduction in delayed-onset muscle soreness at 2 to 5 days after exercise. The recovery of range of motion was significantly (P control group. However, no significant effects on the recovery of muscle strength and serum creatine kinase activity were evident. Immediately after the vibration treatment, a significant (P motion were found. : These results showed that the vibration treatment was effective for attenuation of delayed-onset muscle soreness and recovery of range of motion after strenuous eccentric exercise but did not affect swelling, recovery of muscle strength, and serum creatine kinase activity.

  17. Concentrically trained cyclists are not more susceptible to eccentric exercise-induced muscle damage than are stretch-shortening exercise-trained runners.

    Science.gov (United States)

    Snieckus, Audrius; Kamandulis, Sigitas; Venckūnas, Tomas; Brazaitis, Marius; Volungevičius, Gintautas; Skurvydas, Albertas

    2013-03-01

    Here, we test the hypothesis that continuous concentric exercise training renders skeletal muscles more susceptible to damage in response to eccentric exercise. Elite road cyclists (CYC; n = 10, training experience 8.1 ± 2.0 years, age 22.9 ± 3.7 years), long-distance runners (LDR; n = 10, 9.9 ± 2.3 years, 24.4 ± 2.5 years), and healthy untrained (UT) men (n = 10; 22.4 ± 1.7 years) performed 100 submaximal eccentric contractions at constant angular velocity of 60° s(-1). Concentric isokinetic peak torque, isometric maximal voluntary contraction (MVC), and electrically induced knee extension torque were measured at baseline and immediately and 48 h after an eccentric exercise bout. Muscle soreness was assessed and plasma creatine kinase (CK) activity was measured at baseline and 48 h after exercise. Voluntary and electrically stimulated knee extension torque reduction were significantly greater (p exercise, MVC decreased by 32 % and 20 % in UT, 20 % and 5 % in LDR, and 25 % and 6 % in CYC. Electrically induced 20 Hz torque decreased at the same times by 61 and 29 % in UT, 40 and 17 % in LDR, and 26 and 14 % in CYC. Muscle soreness and plasma CK activity 48 h after exercise did not differ significantly between athletes and UT subjects. In conclusion, even though elite endurance athletes are more resistant to eccentric exercise-induced muscle damage than are UT people, stretch-shortening exercise-trained LDR have no advantage over concentrically trained CYC.

  18. Eccentric resistance training intensity may affect the severity of exercise induced muscle damage.

    Science.gov (United States)

    Hasenoehrl, Timothy; Wessner, Barbara; Tschan, Harald; Vidotto, Claudia; Crevenna, Richard; Csapo, Robert

    2017-09-01

    The aim of the present study was to assess the role of eccentric exercise intensity in the development of and recovery from delayed onset muscle soreness (DOMS). Using a cross-over study design, 15 healthy, male college students were tested on two occasions. The training stimulus consisted of an exhaustive series of eccentric muscle contractions of the elbow flexors at either 100% (high intensity) or 50% (low intensity) of the individual concentric one-repetition maximum. Blood samples were taken at baseline as well as 24, 48, 72 and 96 hours postexercise, and analyzed for creatine kinase, myoglobin, interleukin-6 and prostaglandin-2. Additionally, upper arm circumference (CIRC) and DOMS-related sensation of pain (PAIN) were measured. Following high intensity training, CIRC was significantly greater (P=0.007). Further, creatine kinase, myoglobin and interleukin-6 tended to be higher, although the main effect of the factor "intensity" just failed to reach significance (creatine kinase: P=0.056, myoglobin: P=0.064, interleukin-6: P=0.091). No differences were found for prostaglandin-2 (P=0.783) and PAIN (P=0.147). When performed at greater intensity, fatiguing eccentric resistance exercise of the elbow flexors leads to greater muscle swelling and, potentially, increases in serum markers reflecting lesions in the muscle's cellular membrane.

  19. Comparison in eccentric exercise-induced muscle damage among four limb muscles.

    Science.gov (United States)

    Chen, Trevor C; Lin, Kun-Yi; Chen, Hsin-Lian; Lin, Ming-Ju; Nosaka, Kazunori

    2011-02-01

    This study tested the hypothesis that changes in indirect markers of muscle damage following maximal eccentric exercise would be smaller for the knee extensors (KE) and flexors (KF) compared with the elbow flexors (EF) and extensors (EE). A total of 17 sedentary men performed five sets of six maximal isokinetic (90° s(-1)) eccentric contractions of EF (range of motion, ROM: 90°-0°, 0 = full extension), EE (55°-145°), KF (90°-0°), and KE (30°-120°) using a different limb with a 4-5-week interval in a counterbalanced order. Changes in maximal isometric and concentric isokinetic strength, optimum angle, limb circumference, ROM, plasma creatine kinase activity and myoglobin concentration, muscle soreness, and echo-intensity of B-mode ultrasound images before and for 5 days following exercise were compared amongst the four exercises using two-way repeated-measures ANOVA. All variables changed significantly following EF, EE, and KF exercises, but KE exercise did not change the optimum angle, limb circumference, and echo-intensity. Compared with KF and KE, EF and EE showed significantly greater changes in all variables, without significant differences between EF and EE. Changes in all variables were significantly greater for KF than KE. For the same subjects, the magnitude of change in the dependent variables following exercise varied among the exercises. These results suggest that the two arm muscles are equally more susceptible to muscle damage than leg muscles, but KF is more susceptible to muscle damage than KE. The difference in the susceptibility to muscle damage seems to be associated with the use of muscles in daily activities.

  20. Combined isometric, concentric, and eccentric resistance exercise prevents unloading-induced muscle atrophy in rats.

    Science.gov (United States)

    Adams, G R; Haddad, F; Bodell, P W; Tran, P D; Baldwin, K M

    2007-11-01

    Previously, we reported that an isometric resistance training program that was effective in stimulating muscle hypertrophy in ambulatory rats could not completely prevent muscle atrophy during unloading (Haddad F, Adams GR, Bodell PW, Baldwin KM. J Appl Physiol 100: 433-441, 2006). These results indicated that preventing muscle atrophy does not appear to be simply a function of providing an anabolic stimulus. The present study was undertaken to determine if resistance training, with increased volume (3-s contractions) and incorporating both static and dynamic components, would be effective in preventing unloading-induced muscle atrophy. Rats were exposed to 5 days of muscle unloading via tail suspension. During that time one leg received electrically stimulated resistance exercise (RE) that included an isometric, concentric, and eccentric phase. The results of this study indicate that this combined-mode RE provided an anabolic stimulus sufficient to maintain the mass and myofibril content of the trained but not the contralateral medial gastrocnemius (MG) muscle. Relative to the contralateral MG, the RE stimulus increased the amount of total RNA (indicative of translational capacity) as well as the mRNA for several anabolic/myogenic markers such as insulin-like growth factor-I, myogenin, myoferlin, and procollagen III-alpha-1 and decreased that of myostatin, a negative regulator of muscle size. The combined-mode RE protocol also increased the activity of anabolic signaling intermediates such as p70S6 kinase. These results indicate that a combination of static- and dynamic-mode RE of sufficient volume provides an effective stimulus to stimulate anabolic/myogenic mechanisms to counter the initial stages of unloading-induced muscle atrophy.

  1. Preconditioning by light-load eccentric exercise is equally effective as low-level laser therapy in attenuating exercise-induced muscle damage in collegiate men

    Directory of Open Access Journals (Sweden)

    Nausheen S

    2017-09-01

    Full Text Available Samar Nausheen,1 Jamal Ali Moiz,1 Shahid Raza,1 Mohammad Yakub Shareef,2 Shahnawaz Anwer,3,4 Ahmad H Alghadir3 1Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi, India; 2Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India; 3Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia; 4Dr. D. Y. Patil College of Physiotherapy, Dr. D. Y. Patil Vidyapeeth, Pune, India Background/objective: Previous studies have already reported an independent effect of light-load eccentric exercise (10% eccentric exercise contraction [EEC] and low-level laser therapy (LLLT as a protective measure against more strenuous eccentric exercise. However, the difference between these two interventions is largely unknown. Therefore, the present study aimed to compare the preconditioning effect of 10% EEC vs. LLLT on subjective, physiological, and biochemical markers of muscle damage in elbow flexors in collegiate men.Methods: All 36 enrolled subjects were randomly assigned to either 10% EEC or LLLT group. Subjects in 10% EEC group performed 30 repetitions of an eccentric exercise with 10% maximal voluntary contraction strength 2 days prior to maximal eccentric exercise bout, whereas subjects in LLLT group were given LLLT. All the indirect markers of muscle damage were measured pre-exercise and at 24, 48, and 72 hours after the exercise-induced muscle damage protocol.Results: The muscle soreness was reduced in both groups (p = 0.024; however, soreness was attenuated more in LLLT group at 48 hours (33.5 vs. 42.7, p = 0.004. There was no significant difference between the effect of 10% EEC and LLLT groups on other markers of muscle damage like a maximum voluntary isometric contraction (p = 0.47, range of motion (p = 0.16, upper arm circumference (p = 0.70, creatine kinase (p = 0.42, and lactate dehydrogenase (p = 0.08. Within-group analysis showed both interventions provided

  2. Chronic Eccentric Exercise and the Older Adult.

    Science.gov (United States)

    Gluchowski, Ashley; Harris, Nigel; Dulson, Deborah; Cronin, John

    2015-10-01

    Eccentric exercise has gained increasing attention as a suitable and promising intervention to delay or mitigate the known physical and physiological declines associated with aging. Determining the relative efficacy of eccentric exercise when compared with the more conventionally prescribed traditional resistance exercise will support evidence-based prescribing for the aging population. Thus, original research studies incorporating chronic eccentric exercise interventions in the older adult population were included in this review. The effects of a range of eccentric exercise modalities on muscular strength, functional capacity, body composition, muscle architecture, markers of muscle damage, the immune system, cardiovascular system, endocrine system, and rating of perceived exertion were all reviewed as outcomes of particular interest in the older adult. Muscular strength was found to increase most consistently compared with results from traditional resistance exercise. Functional capacity and body composition showed significant improvements with eccentric endurance protocols, especially in older, frail or sedentary cohorts. Muscle damage was avoided with the gradual progression of novel eccentric exercise, while muscle damage from intense acute bouts was significantly attenuated with repeated sessions. Eccentric exercise causes little cardiovascular stress; thus, it may not generate the overload required to elicit cardiovascular adaptations. An anabolic state may be achievable following eccentric exercise, while improvements to insulin sensitivity have not been found. Finally, rating of perceived exertion during eccentric exercise was often significantly lower than during traditional resistance exercise. Overall, evidence supports the prescription of eccentric exercise for the majority of outcomes of interest in the diverse cohorts of the older adult population.

  3. Effects of low-intensity concentric and eccentric exercise combined with blood flow restriction on indices of exercise-induced muscle damage

    Science.gov (United States)

    Yasuda, Tomohiro; Loenneke, Jeremy P.; Abe, Takashi

    2013-01-01

    Low-intensity blood-flow restriction (BFR) resistance training significantly increases strength and muscle size, but some studies report it produces exercise-induced muscle damage (EIMD) in the lower body after exercise to failure. Purpose: To investigate the effects of a pre-set number of repetitions of upper body concentric and eccentric exercise when combined with BFR on changes in EIMD. Methods: Ten young men had arms randomly assigned to either concentric BFR (CON-BFR) or eccentric BFR (ECC-BFR) dumbbell curl exercise (30% one-repetition maximum (1-RM), 1 set of 30 repetitions followed by 3 sets of 15 repetitions). Maximal isometric voluntary contraction force (MVC), muscle thickness (MTH), circumference, range of motion (ROM), ratings of perceived exertion (RPE), and muscle soreness were measured before, immediately after, and daily for 4 days post-exercise. Results: MVC decreased by 36% for CON-BFR and 12% for ECC-BFR immediately after exercise but was not changed 1–4 days post-exercise (p > 0.05). Only CON-BFR had significant changes in MTH and circumference immediately after exercise (p exercise. Conclusions: Low-intensity ECC-BFR produces significant muscle soreness at 24 h but neither ECC-BFR nor CON-BFR exercise produces significant changes in multiple indices of EIMD. PMID:24265891

  4. Changes in muscle architecture of biceps femoris induced by eccentric strength training with nordic hamstring exercise.

    Science.gov (United States)

    Alonso-Fernandez, D; Docampo-Blanco, P; Martinez-Fernandez, J

    2017-03-17

    Eccentric strength training alters muscle architecture, but it is also an important factor for the prevention of hamstring injuries. The purpose was to determine the architectural adaptations of the biceps femoris long head (BFlh) after eccentric strength training with nordic hamstring exercise (NHE), followed by a subsequent detraining period. The participants in this intervention (n=23) completed a period of 13 weeks consisting of a first week of control and prior training, followed by 8 weeks of eccentric strength training with NHE, and concluding with a 4-week period of detraining. The architectural characteristics of the BFlh were measured at rest using two-dimensional ultrasound before (M1-week 1) and after (M2-week 9) the eccentric strength training, and at the end of the detraining period (M3-week 13). The muscle fascicle length significantly increased (t=-7.73, d=2.28, P<.001) in M2 compared to M1, as well as the muscle thickness (t=-5.23, d=1.54, P<.001), while the pennation angle presented a significant decrease (t=7.81, d=2.3, P<.001). The muscle fascicle length decreased significantly (t=6.07, d=1.79, P<.001) in M3 compared to M2, while the pennation angle showed a significant increase (t=-4.63, d=1.36, P<.001). The results provide evidence that NHE may cause alterations in the architectural conditions of the BFlh and may have practical implications for injury prevention and rehabilitation programs. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The effects of eccentric exercise-induced muscle damage on running kinematics at different speeds.

    Science.gov (United States)

    Tsatalas, Themistoklis; Giakas, Giannis; Spyropoulos, Giannis; Sideris, Vasileios; Lazaridis, Savvas; Kotzamanidis, Christos; Koutedakis, Yiannis

    2013-01-01

    This study investigated the effects of knee localised muscle damage on running kinematics at varying speeds. Nineteen young women (23.2 ± 2.8 years; 164 ± 8 cm; 53.6 ± 5.4 kg), performed a maximal eccentric muscle damage protocol (5 × 15) of the knee extensors and flexors of both legs at 60 rad · s(-1). Lower body kinematics was assessed during level running on a treadmill at three speeds pre- and 48 h after. Evaluated muscle damage indices included isometric torque, muscle soreness and serum creatine kinase activity. The results revealed that all indices changed significantly after exercise, indicating muscle injury. Step length decreased and stride frequency significantly increased 48 h post-exercise only at the fastest running speed (3 m · s(-1)). Support time and knee flexion at toe-off increased only at the preferred transition speed and 2.5 m · s(-1). Knee flexion at foot contact, pelvic tilt and obliquity significantly increased, whereas hip extension during stance-phase, knee flexion during swing-phase, as well as knee and ankle joints range of motion significantly decreased 48 h post-exercise at all speeds. In conclusion, the effects of eccentric exercise of both knee extensors and flexors on particular tempo-spatial parameters and knee kinematics of running are speed-dependent. However, several pelvic and lower joint kinematics present similar behaviour at the three running speeds examined. These findings provide new insights into how running kinematics at different speeds are adapted to compensate for the impaired function of the knee musculature following muscle damage.

  6. Hypoxia-inducible factor-1 modulates the expression of vascular endothelial growth factor and endothelial nitric oxide synthase induced by eccentric exercise.

    Science.gov (United States)

    Rodriguez-Miguelez, Paula; Lima-Cabello, Elena; Martínez-Flórez, Susana; Almar, Mar; Cuevas, María J; González-Gallego, Javier

    2015-04-15

    The present study investigated the effects of acute and chronic eccentric exercise on the hypoxia-inducible factor (HIF)-1α activation response and the concomitant modulation of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) expression in rat skeletal muscle. Twenty-four male Wistar rats were randomly assigned to three experimental groups: rested control group, acutely exercised group after an intermittent downhill protocol for 90 min, and acutely exercise group with a previous eccentric training of 8 wk. HIF-1α activation, VEGF and eNOS gene expression, protein content, and promoter activation were assessed in vastus lateralis muscle biopsies. Acute eccentric exercise induced a marked activation of HIF-1α and resulted in increased VEGF and eNOS mRNA level and protein concentration. The binding of HIF-1α to the VEGF and eNOS promoters, measured by a chromatin immunoprecipitation assay, was undetectable in rested rats, whereas it was evident in acutely exercised animals. Acute exercise also increased myeloperoxidase, toll-like receptor-4, tumor necrosis factor-α, and interleukin-1β protein content, suggesting a contribution of proinflammatory stimuli to HIF-1α activation and VEGF overexpression. All of these effects were partially abolished by training. Moreover, training resulted in an increased capillary density. In summary, our findings indicate that eccentric exercise prompts an HIF-1α response in untrained skeletal muscle that contributes to the upregulation of VEGF and eNOS gene expression and is attenuated after an eccentric training program. Copyright © 2015 the American Physiological Society.

  7. Piroxicam fails to reduce myocellular enzyme leakage and delayed onset muscle soreness induced by isokinetic eccentric exercise

    Directory of Open Access Journals (Sweden)

    J-L. Croisier

    1996-01-01

    Full Text Available To test the hypothesis that delayed onset muscular soreness (DOMS following intense eccentric muscle contraction could be due to increased production of prostaglandin E2 (PGE2, ten healthy male subjects were studied. Using a double-blind randomized crossover design, each subject performed two isokinetic tests separated by a period of at least 6 weeks: once with placebo, and once with piroxicam (Feldene®. They were given one capsule containing either placebo or piroxicam (20 mg per day for 6 days with initial doses given starting 3 days prior to isokinetic testing. Exercise consisted of eight stages of five maximal contractions of the knee extensor and flexor muscle groups of both legs separated by 1 min rest phases, on a Kin Trex device at 60°/s angular velocity. The subjective presence and intensity of DOMS were evaluated using a visual analogue scale immediately after, and 24 and 48 h after each test. The mean plasma concentration of PGE2 measured at rest and after exercise was significantly lower in the group treated with piroxicam (p < 0.05. However, statistical analysis (two-way ANOVA test revealed that exercise did not cause any significant change of mean plasma PGE2 over time in either of the two groups. Eccentric work was followed by severe muscle pain in extensor and flexor muscle groups. Maximal soreness was noted 48 h postexercise. Serum creatine kinase activity and the serum concentration of myoglobin increased significantly, and reached peak values 48 h after exercise in both experimental conditions (p < 0.001. By paired t-test, it appeared that there were no significant differences in the serum levels of these two markers of muscle damage between the two groups at any time point. We conclude that: (1 oral administration of piroxicam fails to reduce muscle damage and DOMS caused by strenuous eccentric exercise; and (2 the hypothetical role of increased PGE2 production in eccentric exercise-induced muscle damage, DOMS, and reduced

  8. Piroxicam fails to reduce myocellular enzyme leakage and delayed onset muscle soreness induced by isokinetic eccentric exercise

    Science.gov (United States)

    Croisier, J-L.; Monfils, T.; Deby-Dupon, G.; Fafchamps, M.; Venneman, I.; Crielaard, J-M.; Juchmès-Ferir, A.; Lhermerout, C.; Lamy, M.; Deby, C.

    1996-01-01

    To test the hypothesis that delayed onset muscular soreness (DOMS) following intense eccentric muscle contraction could be due to increased production of prostaglandin E2 (PGE2), ten healthy male subjects were studied. Using a double-blind randomized crossover design, each subject performed two isokinetic tests separated by a period of at least 6 weeks: once with placebo, and once with piroxicam (Feldene®). They were given one capsule containing either placebo or piroxicam (20 mg) per day for 6 days with initial doses given starting 3 days prior to isokinetic testing. Exercise consisted of eight stages of five maximal contractions of the knee extensor and flexor muscle groups of both legs separated by 1 min rest phases, on a Kin Trex device at 60°/s angular velocity. The subjective presence and intensity of DOMS were evaluated using a visual analogue scale immediately after, and 24 and 48 h after each test. The mean plasma concentration of PGE2 measured at rest and after exercise was significantly lower in the group treated with piroxicam (p < 0.05). However, statistical analysis (two-way ANOVA test) revealed that exercise did not cause any significant change of mean plasma PGE2 over time in either of the two groups. Eccentric work was followed by severe muscle pain in extensor and flexor muscle groups. Maximal soreness was noted 48 h postexercise. Serum creatine kinase activity and the serum concentration of myoglobin increased significantly, and reached peak values 48 h after exercise in both experimental conditions (p < 0.001). By paired t-test, it appeared that there were no significant differences in the serum levels of these two markers of muscle damage between the two groups at any time point. We conclude that: (1) oral administration of piroxicam fails to reduce muscle damage and DOMS caused by strenuous eccentric exercise; and (2) the hypothetical role of increased PGE2 production in eccentric exercise-induced muscle damage, DOMS, and reduced isokinetic

  9. Aerobic interval exercise with an eccentric contraction induces muscular hypertrophy and augmentation of muscular strength in rats.

    Science.gov (United States)

    Tsumiyama, Wakako; Oki, Sadaaki; Takamiya, Naomi; Umei, Namiko; Shimizu, Michele Eisemann; Ono, Takeya; Otsuka, Akira

    2015-04-01

    [Purpose] The purpose of this study was to examine whether an aerobic interval exercise using an eccentric contraction would result in skeletal muscular hypertrophy and augmentation of muscular strength in rats. [Subjects and Methods] Twenty-one female Wistar rats were used in this study. The rats were randomly divided into three groups. The control group performed no exercise. The aerobic endurance exercise group ran for 90 min. The aerobic interval exercise group ran for a total of 90 minutes in 5 minute bouts separated by 2 minute rest periods. The exercise groups ran on a downhill treadmill incline, once every three days, for a total of twenty sessions. [Results] The muscle wet weights, the muscle fiber cross-section minor axes, and the tetanus tension results of the aerobic endurance and aerobic interval exercise groups were significantly larger than those of the control group. [Conclusion] These results indicate that aerobic interval exercise may be an effective method of inducing hypertrophy and augmenting muscular strength in skeletal muscle.

  10. Eccentric exercise in treatment of Achilles tendinopathy

    DEFF Research Database (Denmark)

    Nørregaard, J; Larsen, C C; Bieler, T

    2007-01-01

    Prognosis and treatment of Achilles tendon pain (achillodynia) has been insufficiently studied. The purpose of the present study was to examine the long-term effect of eccentric exercises compared with stretching exercises on patients with achillodynia.......Prognosis and treatment of Achilles tendon pain (achillodynia) has been insufficiently studied. The purpose of the present study was to examine the long-term effect of eccentric exercises compared with stretching exercises on patients with achillodynia....

  11. Serial assessment of local peripheral vascular function after eccentric exercise.

    Science.gov (United States)

    Stacy, Mitchel R; Bladon, Kallie J; Lawrence, Jennifer L; McGlinchy, Sarah A; Scheuermann, Barry W

    2013-12-01

    Muscle damage is a common response to unaccustomed eccentric exercise; however, the effects of skeletal muscle damage on local vascular function and blood flow are poorly understood. This study examined serial local vascular responses to flow-mediated (endothelial-dependent) and nitroglycerin-mediated (endothelial-independent) dilation in the brachial artery after strenuous eccentric exercise and serially assessed resting blood flow. Ten healthy males performed 50 maximal eccentric unilateral arm contractions to induce muscle damage to the biceps brachii. Changes in maximal isometric strength and vascular responses were assessed 1, 24, 48, and 96 h after exercise. Mean blood velocities and arterial diameters, measured with Doppler ultrasound, were used to calculate blood flow and shear stress (expressed as area under the curve). Eccentric exercise resulted in impaired maximal isometric strength for up to 96 h (p exercise, 9.4% ± 2.6%; 1 h after exercise, 5.1% ± 2.2%) and nitroglycerin responses (before exercise, 26.3% ± 6.5%; 1 h after exercise, 20.7% ± 4.7%) were observed in the 1 h after exercise and remained lower for 96 h (p exercise and remained impaired for 48 h (p eccentric exercise leads to impaired local endothelial and vascular smooth muscle function. Lower shear stress after exercise might contribute to the observed reduction in flow-mediated dilation responses, but the mechanism responsible for the attenuated endothelial-independent vasodilation remains unclear.

  12. Aerobic interval exercise with an eccentric contraction induces muscular hypertrophy and augmentation of muscular strength in rats

    OpenAIRE

    Tsumiyama, Wakako; Oki, Sadaaki; Takamiya, Naomi; Umei, Namiko; Shimizu, Michele Eisemann; Ono, Takeya; Otsuka, Akira

    2015-01-01

    [Purpose] The purpose of this study was to examine whether an aerobic interval exercise using an eccentric contraction would result in skeletal muscular hypertrophy and augmentation of muscular strength in rats. [Subjects and Methods] Twenty-one female Wistar rats were used in this study. The rats were randomly divided into three groups. The control group performed no exercise. The aerobic endurance exercise group ran for 90 min. The aerobic interval exercise group ran for a total of 90 minut...

  13. Isokinetic eccentric exercise as a model to induce and reproduce pathophysiological alterations related to delayed onset muscle soreness

    DEFF Research Database (Denmark)

    Lund, Henrik; Vestergaard-Poulsen, P; Kanstrup, I.L.

    1998-01-01

    Physiological alterations following unaccustomed eccentric exercise in an isokinetic dynamometer of the right m. quadriceps until exhaustion were studied, in order to create a model in which the physiological responses to physiotherapy could be measured. In experiment I (exp. I), seven selected...... parameters were measured bilaterally in 7 healthy subjects at day 0 as a control value. Then after a standardized bout of eccentric exercise the same parameters were measured daily for the following 7 d (test values). The measured parameters were: the ratio of phosphocreatine to inorganic phosphate (PCr...... (133Xenon washout technique). This was repeated in experiment II (exp. II) 6-12 months later in order to study reproducibility. In experiment III (exp. III), the normal fluctuations over 8 d of the seven parameters were measured, without intervention with eccentric exercise in 6 other subjects. All...

  14. Eccentric Exercise to Enhance Neuromuscular Control.

    Science.gov (United States)

    Lepley, Lindsey K; Lepley, Adam S; Onate, James A; Grooms, Dustin R

    Neuromuscular alterations are a major causal factor of primary and secondary injuries. Though injury prevention programs have experienced some success, rates of injuries have not declined, and after injury, individuals often return to activity with functionality below clinical recommendations. Considering alternative therapies to the conventional concentric exercise approach, such as one that can target neuromuscular injury risk and postinjury alterations, may provide for more effective injury prevention and rehabilitation protocols. Peer-reviewed sources available on the Web of Science and MEDLINE databases from 2000 through 2016 were gathered using searches associated with the keywords eccentric exercise, injury prevention, and neuromuscular control. Eccentric exercise will reduce injury risk by targeting specific neural and morphologic alterations that precipitate neuromuscular dysfunction. Clinical review. Level 4. Neuromuscular control is influenced by alterations in muscle morphology and neural activity. Eccentric exercise beneficially modifies several underlying factors of muscle morphology (fiber typing, cross-sectional area, working range, and pennation angle), and emerging evidence indicates that eccentric exercise is also beneficial to peripheral and central neural activity (alpha motorneuron recruitment/firing, sarcolemma activity, corticospinal excitability, and brain activation). There is mounting evidence that eccentric exercise is not only a therapeutic intervention influencing muscle morphology but also targets unique alterations in neuromuscular control, influencing injury risk.

  15. Reduced susceptibility to eccentric exercise-induced muscle damage in resistance-trained men is not linked to resistance training-related neural adaptations

    Science.gov (United States)

    Beck, TW; Wages, NP

    2015-01-01

    The purpose of this study was to examine the acute effects of maximal concentric vs. eccentric exercise on the isometric strength of the elbow flexor, as well as the biceps brachii muscle electromyographic (EMG) responses in resistance-trained (RT) vs. untrained (UT) men. Thirteen RT men (age: 24 ± 4 years; height: 180.2 ± 7.7 cm; body weight: 92.2 ± 16.9 kg) and twelve UT men (age: 23 ± 4 years; height: 179.2 ± 5.0 cm; body weight: 81.5 ± 8.6 kg) performed six sets of ten maximal concentric isokinetic (CON) or eccentric isokinetic (ECC) elbow flexion exercise in two separate visits. Before and after the exercise interventions, maximal voluntary contractions (MVCs) were performed for testing isometric strength. In addition, bipolar surface EMG signals were detected from the biceps brachii muscle during the strength testing. Both CON and ECC caused isometric strength to decrease, regardless of the training status. However, ECC caused greater isometric strength decline than CON did for the UT group (p = 0.006), but not for the RT group. Both EMG amplitude and mean frequency significantly decreased and increased, respectively, regardless of the training status and exercise intervention. Resistance-trained men are less susceptible to eccentric exercise-induced muscle damage, but this advantage is not likely linked to the chronic resistance training-induced neural adaptations. PMID:26424922

  16. Plasma Actin, Gelsolin and Orosomucoid Levels after Eccentric Exercise.

    Science.gov (United States)

    Tékus, Éva; Váczi, Márk; Horváth-Szalai, Zoltán; Ludány, Andrea; Kőszegi, Tamás; Wilhelm, Márta

    2017-02-01

    The present study investigated the acute effect of eccentric exercise on blood plasma actin, gelsolin (GSN) and orosomucoid (AGP) levels in untrained and moderately trained individuals, and their correlation with exercise induced muscle damage (EIMD) markers (CK, intensity of muscle soreness and maximal voluntary contraction torque deficit). Healthy physical education students (6 untrained, 12 moderately trained) participated in this research. Actin, GSN, AGP and CK levels were measured in blood plasma at baseline, immediately, 1 h, 6 h and 24 h post-exercise comprising 90 eccentric quadriceps contractions performed on a dynamometer. There was significant time main effect for GSN, AGP, CK and significant difference was found between baseline and the lowest value of post-exercise GSN (p exercise AGP (p exercise and CK activity at 6 h, p exercise, p eccentric exercise do not seem sensitive to training status. The plasma actin level is used as an indicator of injury, however, our results suggest that it is not an accurate marker of EIMD, while plasma GSN concentrations show a better relationship with EIMD and the post-exercise inflammatory process. The elevated plasma AGP and the correlation between GSN and AGP seem to be promising for assessment of exercise-induced muscle injury.

  17. Protective effect by maximal isometric contractions against maximal eccentric exercise-induced muscle damage of the knee extensors.

    Science.gov (United States)

    Tseng, Kuo-Wei; Tseng, Wei-Chin; Lin, Ming-Ju; Chen, Hsin-Lian; Nosaka, Kazunori; Chen, Trevor C

    2016-01-01

    This study investigated whether maximal voluntary isometric contractions (MVIC) performed before maximal eccentric contractions (MaxEC) would attenuate muscle damage of the knee extensors. Untrained men were placed to an experimental group that performed 6 sets of 10 MVIC at 90° knee flexion 2 weeks before 6 sets of 10 MaxEC or a control group that performed MaxEC only (n = 13/group). Changes in muscle damage markers were assessed before to 5 days after each exercise. Small but significant changes in maximal voluntary concentric contraction torque, range of motion (ROM) and plasma creatine kinase (CK) activity were evident at immediately to 2 days post-MVIC (p < 0.05), but other variables (e.g. thigh girth, myoglobin concentration, B-mode echo intensity) did not change significantly. Changes in all variables after MaxEC were smaller (p < 0.05) by 45% (soreness)-67% (CK) for the experimental than the control group. These results suggest that MVIC conferred potent protective effect against MaxEC-induced muscle damage.

  18. The effect of estrogen usage on eccentric exercise-induced damage in rat testes

    National Research Council Canada - National Science Library

    Can, Serpil; Selli, Jale; Buyuk, Basak; Aydin, Sergulen; Kocaaslan, Ramazan; Guvendi, Gulname Findik

    2015-01-01

    .... The aim of this study was to investigate the effects of anabolic steroids in conjunction with exercise in the process of spermatogenesis in the testes, using histological and stereological methods...

  19. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants

    OpenAIRE

    Fernandes, T.; Soci, U.P.R.; E.M. Oliveira

    2011-01-01

    Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of th...

  20. Decreased eccentric exercise-induced macrophage infiltration in skeletal muscle after supplementation with a class of ginseng-derived steroids.

    Directory of Open Access Journals (Sweden)

    Szu-Hsien Yu

    Full Text Available Dammarane steroids (DS are a class of chemical compounds present in Panax ginseng. Here, we evaluated the effect of 10 weeks of DS supplementation on inflammatory modulation in the soleus muscle following eccentric exercise (EE-induced muscle damage (downhill running. Eighty rats were randomized into 4 groups of DS supplementation (saline, 20, 60, 120 mg/kg body weight. Inflammatory markers were measured at rest and again 1 h after EE. At rest, NFκB signaling, TNF-alpha and IL-6 mRNAs, 3-nitrotyrosine, glutathione peroxidase, and GCS (glutamylcysteine synthetase levels were significantly elevated in the skeletal muscle of DS-treated rats in a dose-dependent manner. Additionally, there were no detectable increases in the number of necrotic muscle fibers or CD68+ M1 macrophages. However, muscle strength, centronucleation, IL-10 mRNA expression, and the number of CD163+ M2 macrophages increased significantly over controls with DS treatment in rat soleus muscle. Under EE-challenged conditions, significant increases in muscle fiber necrosis, CD68+ M1 macrophage distribution, and 3-nitrotyrosine were absent in rats that received low and medium doses (20 and 60 mg/kg of DS treatment, suggesting that DS possess anti-inflammatory action protecting against a muscle-damaging challenge. However, this protective activity was diminished when a high dose of DS (120 mg/kg was administered, suggesting that DS possess hormetic properties. In conclusion, our study provides new evidence suggesting that DS is an ergogenic component of ginseng that potentiate inflammation at baseline but that produce anti-inflammatory effects on skeletal muscle following muscle-damaging exercise. Furthermore, high doses should be avoided in formulating ginseng-based products.

  1. Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training.

    Science.gov (United States)

    Hedayatpour, Nosratollah; Falla, Deborah

    2015-01-01

    Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscle function. In this brief review, neuromuscular adaptations to different forms of exercise are reviewed, the positive training effects of eccentric exercise are presented, and the implications for training are considered.

  2. Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training

    Directory of Open Access Journals (Sweden)

    Nosratollah Hedayatpour

    2015-01-01

    Full Text Available Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscle function. In this brief review, neuromuscular adaptations to different forms of exercise are reviewed, the positive training effects of eccentric exercise are presented, and the implications for training are considered.

  3. Additional effects of taurine on the benefits of BCAA intake for the delayed-onset muscle soreness and muscle damage induced by high-intensity eccentric exercise.

    Science.gov (United States)

    Ra, Song-Gyu; Miyazaki, Teruo; Ishikura, Keisuke; Nagayama, Hisashi; Suzuki, Takafumi; Maeda, Seiji; Ito, Masaharu; Matsuzaki, Yasushi; Ohmori, Hajime

    2013-01-01

    Taurine (TAU) has a lot of the biological, physiological, and pharmocological functions including anti-inflammatory and anti-oxidative stress. Although previous studies have appreciated the effectiveness of branched-chain amino acids (BCAA) on the delayed-onset muscle soreness (DOMS), consistent finding has not still convinced. The aim of this study was to examine the additional effect of TAU with BCAA on the DOMS and muscle damages after eccentric exercise. Thirty-six untrained male volunteers were equally divided into four groups, and ingested a combination with 2.0 g TAU (or placebo) and 3.2 g BCAA (or placebo), thrice a day, 2 weeks prior to and 4 days after elbow flexion eccentric exercise. Following the period after eccentric exercise, the physiological and blood biochemical markers for DOMS and muscle damage showed improvement in the combination of TAU and BCAA supplementation rather than in the single or placebo supplementations. In conclusion, additional supplement of TAU with BCAA would be a useful way to attenuate DOMS and muscle damages induced by high-intensity exercise.

  4. Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training

    OpenAIRE

    Nosratollah Hedayatpour; Deborah Falla

    2015-01-01

    Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscl...

  5. Delayed onset of vastii muscle activity in response to rapid postural perturbations following eccentric exercise: a mechanism that underpins knee pain after eccentric exercise?

    Science.gov (United States)

    Hedayatpour, Nosratollah; Falla, Deborah

    2014-03-01

    Appropriate timing of activity of the vastus medialis obliqus (VMO) and vastus lateralis (VL) muscles is a key factor for proper tracking of the patella in the trochlear groove during knee extension. This study investigates the relative timing of activation of the VMO and VL muscles during unexpected perturbations performed before and after eccentric exercise. Surface electromyography signals were recorded from the VMO and VL muscles of the right leg in 11 healthy men during rapid postural perturbations performed at baseline, immediately after eccentric exercise of the quadriceps, and at 24 and 48 h after exercise. Participants stood on a moveable platform during which eight randomised postural perturbations were performed (4 repetitions of 2 perturbation types: 8 cm forward slides, 8 cm backward slides). Before the eccentric exercise, the onset of VMO activity was significantly earlier than the VL muscle (average for both forward and backward perturbations: VMO 39.0±7.1 ms; VL 43.7±7.9 ms). However, the onset of VMO activity was significantly later compared with VL muscle immediately after eccentric exercise and this remained 24 and 48 h after eccentric exercise (average across all postexercise sessions and perturbation directions: VMO 72.3±11.1 ms; VL 56.0±8.2 ms; peccentric exercise and during eccentric exercise-induced muscle soreness up to 48 h later. These observations may help explain the high prevalence of knee disorders after high intensity eccentric exercise.

  6. The Effect of Exercise-Induced Muscle Damage After a Bout of Accentuated Eccentric Load Drop Jumps and the Repeated Bout Effect.

    Science.gov (United States)

    Bridgeman, Lee A; Gill, Nicholas D; Dulson, Deborah K; McGuigan, Michael R

    2017-02-01

    Bridgeman, LA, Gill, ND, Dulson, DK, and McGuigan, MR. The effect of exercise induced muscle damage after a bout of accentuated eccentric load drop jumps and the repeated bout effect. J Strength Cond Res 31(2): 386-394, 2017-Although previous studies have investigated exercise-induced muscle damage (EIMD) after a bout of unloaded drop jumps (DJs), none have investigated the effects of accentuated eccentric load (AEL) DJs on EIMD. The purpose of this study was to investigate the effects of 30 and 50 AEL DJs on strength, jump performance, muscle soreness, and blood markers. Eight resistance trained athletes participated in this study. In week 1, baseline countermovement jump (CMJ), squat jump (SJ), concentric and eccentric peak force (PF), creatine kinase, and muscle soreness were assessed. Subjects then completed 30 AEL DJs and baseline measures were retested immediately postintervention, 1, 24, and 48 hours later. Two weeks later, the subjects completed the same protocol with an increase in AEL DJ volume (50). Subjects' SJ height was reduced in week 1 compared with week 3, postintervention, 1, 24, and 48 hours later (ES = -0.34, -0.44, -0.38, and -0.40). Subjects' CMJ height was reduced in week 1 compared with week 3, postintervention, 1, and 24 hours later (ES = -0.37, -0.29, and -0.39). Concentric PF was reduced in week 1 compared with week 3, postintervention and 24 and 48 hours later (ES = -0.02, -0.23, and -0.32). Eccentric PF was reduced in week 1 compared with week 3, postintervention, 24, and 48 hours later (ES = -0.24, -0.16, and -0.50). In this sample, 30 AEL DJs attenuated the effects of EIMD following which 50 AEL DJs completed 2 weeks later.

  7. Muscle damage and inflammation after eccentric exercise: can the repeated bout effect be removed?

    Science.gov (United States)

    Margaritelis, Nikos V; Theodorou, Anastasios A; Baltzopoulos, Vasilios; Maganaris, Constantinos N; Paschalis, Vassilis; Kyparos, Antonios; Nikolaidis, Michalis G

    2015-12-01

    The current consensus in exercise physiology is that the repeated bout effect always appears after few eccentric exercise sessions. This is the first attempt to challenge this tenet, by exploiting specificity in muscle plasticity. More specifically, we examined whether the opposing adaptations in muscle induced after concentric and eccentric exercise can attenuate and/or remove the repeated bout effect. Seventeen young men were randomly assigned into one of the following groups: (1) the alternating eccentric-concentric exercise group; and (2) the eccentric-only exercise group. Both groups performed 8 weeks of resistance exercise using the knee extensors of both legs on an isokinetic dynamometer. The alternating eccentric-concentric exercise group performed an alternating exercise protocol, switching between eccentric-only and concentric-only exercise every 4 weeks, while the eccentric-only group performed eccentric exercise. Evaluation of muscle damage using physiological (isometric torque, delayed onset muscle soreness, and range of movement) and biochemical (creatine kinase) markers and inflammation (C-reactive protein) was performed at weeks 1, 5, and 10. Baseline isometric peak torque was also evaluated at week 14 after another cycle (4 weeks) of alternating or eccentric-only exercise training. In the alternating eccentric-concentric exercise group, the concentric exercise training performed prior to eccentric exercise reduced dramatically the repeated bout effect by reversing muscle back to its unaccustomed state. On the contrary, the eccentric-only exercise group exhibited a typical manifestation of the repeated bout effect. Interestingly, muscle strength was elevated similarly for both alternating and eccentric-only exercise groups after 13 weeks of training. The alternating eccentric-concentric exercise scheme, implemented in the present study, has for the first time successfully overcame the repeated bout effect. The similarity in muscle strength

  8. Eccentric exercise decreases maximal insulin action in humans

    DEFF Research Database (Denmark)

    Asp, Svend; Daugaard, J R; Kristiansen, S

    1996-01-01

    1. Unaccustomed eccentric exercise decreases whole-body insulin action in humans. To study the effects of one-legged eccentric exercise on insulin action in muscle and systemically, the euglycaemic clamp technique combined with arterial and bilateral femoral venous catheterization was used. Seven...... subjects participated in two euglycaemic clamps, performed in random order. One clamp was preceded 2 days earlier by one-legged eccentric exercise (post-eccentric exercise clamp (PEC)) and one was without the prior exercise (control clamp (CC)). 2. During PEC the maximal insulin-stimulated glucose uptake......) necessary to maintain euglycaemia during maximal insulin stimulation was lower during PEC compared with CC (15.7%, 81.3 +/- 3.2 vs. 96.4 +/- 8.8 mumol kg-1 min-1, P eccentric exercise, muscle and whole-body insulin action is impaired at maximal...

  9. Moderate Load Eccentric Exercise; A Distinct Novel Training Modality.

    Science.gov (United States)

    Hoppeler, Hans

    2016-01-01

    Over the last 20 years a number of studies have been published using progressive eccentric exercise protocols on motorized ergometers or similar devices that allow for controlled application of eccentric loads. Exercise protocols ramp eccentric loads over an initial 3 weeks period in order to prevent muscle damage and delayed onset muscle soreness. Final training loads reach 400-500 W in rehabilitative settings and over 1200 W in elite athletes. Training is typically carried out three times per week for durations of 20-30 min. This type of training has been characterizes as moderate load eccentric exercise. It has also been denoted RENEW (Resistance Exercise via Negative Eccentric Work by LaStayo et al., 2014). It is distinct from plyometric exercises (i.e., drop jumps) that impose muscle loads of several thousand Watts on muscles and tendons. It is also distinct from eccentric overload training whereby loads in a conventional strength training setting are increased in the eccentric phase of the movement to match concentric loads. Moderate load eccentric exercise (or RENEW) has been shown to be similarly effective as conventional strength training in increasing muscle strength and muscle volume. However, as carried out at higher angular velocities of joint movement, it reduces joint loads. A hallmark of moderate load eccentric exercise is the fact that the energy requirements are typically 4-fold smaller than in concentric exercise of the same load. This makes moderate load eccentric exercise training the tool of choice in medical conditions with limitations in muscle energy supply. The use and effectiveness of moderate load eccentric exercise has been demonstrated mostly in small scale studies for cardiorespiratory conditions, sarcopenia of old age, cancer, diabetes type 2, and neurological conditions. It has also been used effectively in the prevention and rehabilitation of injuries of the locomotor system in particular the rehabilitation after anterior cruciate

  10. Functional changes of human quadriceps muscle injured by eccentric exercise

    Directory of Open Access Journals (Sweden)

    F.V. Serrão

    2003-06-01

    Full Text Available The present study evaluated functional changes of quadriceps muscle after injury induced by eccentric exercise. Maximal isometric torque of quadriceps and the surface electromyography (root mean square, RMS, and median frequency, MDF of the vastus medialis oblique (VMO and vastus lateralis (VL muscles were examined before, immediately after and during the first 7 days after injury. Serum creatine kinase (CK levels and magnetic resonance imaging (MRI were used to identify muscle injury. The subject was used as her own control and percent refers to pre-injury data. Experiments were carried out with a sedentary 23-year-old female. Injury was induced by 4 bouts of 15 maximal isokinetic eccentric contractions (angular velocity of 5º/s; range of motion from 40º to 110º of knee flexion. The isometric torque of the quadriceps (knee at 90º flexion decreased 52% immediately after eccentric exercise and recovered on the 5th day. The highest reduction of RMS occurred on the 2nd day after injury in both VL (63% and VMO (66% and only VL recovered to the pre-injury level on the 7th day. Immediately after injury, the MDF decreased by 5 and 3% (VMO and VL, respectively and recovered one day later. Serum CK levels increased by 109% on the 2nd day and were still increased by 32% on the 7th day. MRI showed large areas of injury especially in the deep region of quadriceps. In conclusion, eccentric exercise decreased the isometric torque and electromyographic signals of quadriceps muscle, which were recovered in one week, despite the muscle regeneration signals.

  11. Eccentric exercise inhibits the H reflex in the middle part of the trapezius muscle

    DEFF Research Database (Denmark)

    Vangsgaard, Steffen; Nørgaard, Lars Tønners; Korsholm Flaskager, Brian

    2013-01-01

    The objectives of this study were to (1) investigate the modulation of the H reflex immediately after and 24 h after eccentric exercise in the presence of delayed-onset muscle soreness (DOMS) and (2) test the reproducibility of the H reflex in trapezius across days. H reflexes were recorded from...... the dominant middle trapezius muscle by electrical stimulation of the C3/4 cervical nerve in ten healthy subjects. DOMS was induced by eccentric exercise of the dominant shoulder. H reflexes were obtained in four sessions: "24 h before", "Pre", "Post", and "24 h after" eccentric exercise. Ratios of maximal H...

  12. Eccentric Exercise Versus Eccentric Exercise and Soft Tissue Treatment (Astym) in the Management of Insertional Achilles Tendinopathy.

    Science.gov (United States)

    McCormack, Joshua R; Underwood, Frank B; Slaven, Emily J; Cappaert, Thomas A

    Eccentric exercise is commonly used in the management of Achilles tendinopathy (AT) but its effectiveness for insertional AT has been questioned. Soft tissue treatment (Astym) combined with eccentric exercise could result in better outcomes than eccentric exercise alone. Soft tissue treatment (Astym) plus eccentric exercise will be more effective than eccentric exercise alone for subjects with insertional AT. Prospective randomized controlled trial. Level 2. Sixteen subjects were randomly assigned to either a soft tissue treatment (Astym) and eccentric exercise group or an eccentric exercise-only group. Intervention was completed over a 12-week period, with outcomes assessed at baseline, 4, 8, 12, 26, and 52 weeks. Outcomes included the Victorian Institute of Sport Assessment Achilles-Specific Questionnaire (VISA-A), the numeric pain rating scale (NPRS), and the global rating of change (GROC). Significantly greater improvements on the VISA-A were noted in the soft tissue treatment (Astym) group over the 12-week intervention period, and these differences were maintained at the 26- and 52-week follow-ups. Both groups experienced a similar statistically significant improvement in pain over the short and long term. A significantly greater number of subjects in the soft tissue treatment (Astym) group achieved a successful outcome at 12 weeks. Soft tissue treatment (Astym) plus eccentric exercise was more effective than eccentric exercise only at improving function during both short- and long-term follow-up periods. Soft tissue treatment (Astym) plus eccentric exercise appears to be a beneficial treatment program that clinicians should consider incorporating into the management of their patients with insertional AT.

  13. Post-exercise muscle soreness after eccentric exercise: psychophysical effects and implications on mean arterial pressure.

    Science.gov (United States)

    Bajaj, P; Graven-Nielsen, T; Arendt-Nielsen, L

    2001-10-01

    The aim of the study was to examine the time course of changes in pressure pain threshold (PPT), visual analogue scale (VAS) pain and tenderness scores, McGill Pain Questionnaire (MPQ) descriptors, pain areas, skin temperature and mean arterial pressure (MAP) following intensive eccentric exercise. In 11 healthy male subjects, eccentric exercise of the first dorsal interosseous muscle (FDI) of the right hand with 114% maximum voluntary contraction weight (MVC) was used to induce post-exercise muscle soreness (PEMS) in the right hand, while the left hand served as a control. At 24 h to 48 h all the pain profiles indicated the presence of PEMS in the right hand when compared to before exercise (Prole of central mechanisms in the PEMS, thereby giving further insight into clinical aspects of muscle pain.

  14. Eccentric exercise and delayed onset muscle soreness of the quadriceps induce adjustments in agonist-antagonist activity, which are dependent on the motor task.

    Science.gov (United States)

    Vila-Chã, C; Hassanlouei, H; Farina, D; Falla, D

    2012-02-01

    This study investigates the effects of eccentric exercise and delayed onset muscle soreness (DOMS) of the quadriceps on agonist-antagonist activity during a range of motor tasks. Ten healthy volunteers (age, mean ± SD, 24.9 ± 3.2 years) performed maximum voluntary contractions (MVC) and explosive isometric contractions of the knee extensors followed by isometric contractions at 2.5, 5, 10, 15, 20, and 30% MVC at baseline, immediately after and 24 h after eccentric exercise of the quadriceps. During each task, force of the knee extensors and surface EMG of the vasti and hamstrings muscles were recorded concurrently. Rate of force development (RFD) was computed from the explosive isometric contraction, and the coefficient of variation of the force (CoV) signal was estimated from the submaximal contractions. Twenty-four hours after exercise, the subjects rated their perceived pain intensity as 4.1 ± 1.2 (score out of 10). The maximum RFD and MVC of the knee extensors was reduced immediately post- and 24 h after eccentric exercise compared to baseline (average across both time points: 19.1 ± 17.1% and 11.9 ± 9.8% lower, respectively, P eccentric exercise (up to 66% higher than baseline, P exercise during the presence of DOMS (P exercise and was accompanied by increased antagonist EMG for the explosive contraction only. On the contrary, reduced force steadiness was accompanied by a general increase in EMG amplitude of the vasti muscles and was accompanied by increased antagonist activity, but only at higher force levels (>15% MVC). This study shows that eccentric exercise and subsequent DOMS of the quadriceps reduce the maximal force, rate of force development and force steadiness of the knee extensors, and is accompanied by different adjustments of agonist and antagonist muscle activities.

  15. Eccentric Contraction-Induced Muscle Fibre Adaptation

    Directory of Open Access Journals (Sweden)

    Arabadzhiev T. I.

    2009-12-01

    Full Text Available Hard-strength training induces strength increasing and muscle damage, especially after eccentric contractions. Eccentric contractions also lead to muscle adaptation. Symptoms of damage after repeated bout of the same or similar eccentrically biased exercises are markedly reduced. The mechanism of this repeated bout effect is unknown. Since electromyographic (EMG power spectra scale to lower frequencies, the adaptation is related to neural adaptation of the central nervous system (CNS presuming activation of slow-non-fatigable motor units or synchronization of motor unit firing. However, the repeated bout effect is also observed under repeated stimulation, i.e. without participation of the CNS. The aim of this study was to compare the possible effects of changes in intracellular action potential shape and in synchronization of motor units firing on EMG power spectra. To estimate possible degree of the effects of central and peripheral changes, interferent EMG was simulated under different intracellular action potential shapes and different degrees of synchronization of motor unit firing. It was shown that the effect of changes in intracellular action potential shape and muscle fibre propagation velocity (i.e. peripheral factors on spectral characteristics of EMG signals could be stronger than the effect of synchronization of firing of different motor units (i.e. central factors.

  16. Eccentric endurance exercise economically improves metabolic and inflammatory risk factors.

    Science.gov (United States)

    Zeppetzauer, Markus; Drexel, Heinz; Vonbank, Alexander; Rein, Philipp; Aczel, Stefan; Saely, Christoph H

    2013-08-01

    Exercise is a cornerstone of cardiovascular prevention. Because many individuals are not willing or not able to perform regular exercise, new methods of exercise (like eccentric exercise) are necessary. Eccentric endurance exercise is supposed to be less strenuous than concentric exercise but its effects on glucose and lipid metabolism in relation to energy expenditure are unclear. We randomly allocated 45 healthy sedentary individuals to one of two groups, each hiking upwards or downwards for 2 months, with a crossover for a further 2 months; for the opposite way, a cable car was used. The difference in altitude was 540 metres; the distance was covered between three and five times a week. Energy expenditure was assessed for each hiking period. Both eccentric and concentric endurance exercise improved glucose tolerance vs. baseline (by 4.1%, p = 0.136; 6.2%, p = 0.023, respectively). Of note, adjustment for energy expenditure per exercise unit (127 ± 22 kcal/unit with eccentric and 442 ± 78 kcal/unit with concentric exercise) revealed a significantly greater improvement of glucose tolerance per kilocalorie spent by eccentric than by concentric exercise (4-times more economical; 0.1123 mg h/dl/kcal vs. 0.0245 mg h/dl/kcal; p = 0.038). Also the decrease of low-density lipoprotein (LDL) cholesterol per kilocalorie spent was significantly stronger with eccentric exercise (0.0982 mg/dl/kcal vs. 0.0346 mg/dl/kcal, p = 0.014). Serum levels of C-reactive protein and creatine kinase activity were reduced in both groups. Eccentric endurance exercise economically improves glucose tolerance and LDL cholesterol. It therefore is a promising new exercise modality for individuals who are not able to participate in more strenuous exercise regimens.

  17. Re-evaluation of sarcolemma injury and muscle swelling in human skeletal muscles after eccentric exercise.

    Science.gov (United States)

    Yu, Ji-Guo; Liu, Jing-Xia; Carlsson, Lena; Thornell, Lars-Eric; Stål, Per S

    2013-01-01

    The results regarding the effects of unaccustomed eccentric exercise on muscle tissue are often conflicting and the aetiology of delayed onset muscle soreness (DOMS) induced by eccentric exercise is still unclear. This study aimed to re-evaluate the paradigm of muscular alterations with regard to muscle sarcolemma integrity and fibre swelling in human muscles after voluntary eccentric exercise leading to DOMS. Ten young males performed eccentric exercise by downstairs running. Biopsies from the soleus muscle were obtained from 6 non-exercising controls, 4 exercised subjects within 1 hour and 6 exercised subjects at 2-3 days and 7-8 days after the exercise. Muscle fibre sarcolemma integrity, infiltration of inflammatory cells and changes in fibre size and fibre phenotype composition as well as capillary supply were examined with specific antibodies using enzyme histochemistry and immunohistochemistry. Although all exercised subjects experienced DOMS which peaked between 1.5 to 2.5 days post exercise, no significant sarcolemma injury or inflammation was detected in any post exercise group. The results do not support the prevailing hypothesis that eccentric exercise causes an initial sarcolemma injury which leads to subsequent inflammation after eccentric exercise. The fibre size was 24% larger at 7-8 days than at 2-3 days post exercise (pexercise (lower in 5 of the 6 subjects at 7-8 days than at 2-3 days; pexercise was interpreted to reflect fibre swelling. Because the fibre swelling did not appear at the time that DOMS peaked (between 1.5 to 2.5 days post exercise), we concluded that fibre swelling in the soleus muscle is not directly associated with the symptom of DOMS.

  18. MRI evaluation of topical heat and static stretching as therapeutic modalities for the treatment of eccentric exercise-induced muscle damage.

    Science.gov (United States)

    Jayaraman, R C; Reid, R W; Foley, J M; Prior, B M; Dudley, G A; Weingand, K W; Meyer, R A

    2004-10-01

    The aim of this study was to monitor the effects of topical heat and/or static stretch treatments on the recovery of muscle damage by eccentric exercise. For this purpose, 32 untrained male subjects performed intense eccentric knee extension exercise, followed by 2 weeks of treatment (heat, stretch, heat plus stretch) or no treatment (control, n=8/group). Isometric strength testing, pain ratings, and multi-echo magnetic resonance imaging of the thigh were performed before and at 2, 3, 4, 8, and 15 days following the exercise. Increased T2 relaxation time, muscle swelling, pain ratings, and strength loss confirmed significant muscle damage during the post-exercise period. Pain ratings and muscle volume recovered to baseline by 15 days, although muscle strength remained lower [77 (4) vs. 95 (3) kg pre-exercise, mean (SE)] and T2 values higher [32.2 (0.8) vs. 28.6 (0.2) ms pre-exercise]. Our results indicate that heat and/or static stretching does not consistently reduce soreness, swelling or muscle damage. The practical implication of our findings is that clinicians should be aware that prescribing heat and/or static stretching following intense eccentric or unaccustomed exercise will not enhance the recovery of damaged muscles.

  19. Effect of transcutaneous electromyostimulation on pressure pain threshold and tolerance in athletes under eccentric exercise

    Directory of Open Access Journals (Sweden)

    Selman Burak UĞURLU

    2014-08-01

    Full Text Available Exercise - induced hypoalgesia typically reported during and / or follow ing exercise. In this study, we investigated the role of transcutaneous electromyostimulation (EMS on pressure pain threshold and tolerance in athletes under eccentric exercise. Eleven male athletes aged 23,125 ± 0,99 years with 10,25 ± 2,66 years of athl etic training were recruited for this study . Following baseline measurements of pressure pain threshold and tolerance from m. biceps brachii and m. triceps brachii muscle and myofascial regions of the dominant upper extremity by using a digital algometer, subjects were underwent an acute bout of eccentric exercise. Participants were completed 4 sets of eccentric exercise each comprising 20 repetitions of lifting 80% of their 1 RM by using a dumbbell. Pressure pain threshold and tolerance tests were repeated 10, 20 and 30 minutes, and 24 and 48 hours following exercise. One week after acute exercise protocol, EMS protocol was applied to the participants immediately following eccentric exercise, and all measurements were repeated at the same timeline as eccent ric exercise. Standard EMS protocol at active recovery mode for 10 minutes was applied to the m. biceps brachii muscle by using surface electrodes. Results are presented as mean + standarts deviation. Data of the same timeline were analyzed by using repeat ed measures of ANOVA followed by Tukey’s post hoc test . A level of p<0.05 was accepted statistical significant. Eccentric exercise resulted to increase the pain tolerence in athletes, and EMS was found to decrease the pain tolerence 10 and 20 minutes at th e muscle region, and 10 and 30 minutes, and 24 hours at the myofascial region of m. biceps brachii, 10 min and 24 hr from muscle region, 10 and 30 min and 24 hr from myofascial region of M. triceps brachii following acute bout of eccentric exercise. We con cluded that EMS at active recovery phase mitigates the the hypoalgesic response following single bout of

  20. Achilles tendinopathy modulates force frequency characteristics of eccentric exercise.

    Science.gov (United States)

    Grigg, Nicole L; Wearing, Scott C; O'Toole, John M; Smeathers, James E

    2013-03-01

    Previous research has demonstrated that ground reaction force (GRF) recorded during eccentric ankle exercise is characterized by greater power in the 8- to 12-Hz bandwidth when compared with that recorded during concentric ankle exercise. Subsequently, it was suggested that vibrations in this bandwidth may underpin the beneficial effect of eccentric loading in tendon repair. However, this observation has been made only in individuals without Achilles tendinopathy. This research compared the force frequency characteristics of eccentric and concentric exercises in individuals with and without Achilles tendinopathy. Eleven male adults with unilateral midportion Achilles tendinopathy and nine control male adults without tendinopathy participated in the research. Kinematics and GRF were recorded while the participants performed a common eccentric rehabilitation exercise protocol and a concentric equivalent. Ankle joint kinematics and the frequency power spectrum of the resultant GRF were calculated. Eccentric exercise was characterized by a significantly greater proportion of spectral power between 4.5 and 11.5 Hz when compared with concentric exercise. There were no significant differences between limbs in the force frequency characteristics of concentric exercise. Eccentric exercise, in contrast, was defined by a shift in the power spectrum of the symptomatic limb, resulting in a second spectral peak at 9 Hz, rather than 10 Hz in the control limb. Compared with healthy tendon, Achilles tendinopathy was characterized by lower frequency vibrations during eccentric rehabilitation exercises. This finding may be associated with changes in neuromuscular activation and tendon stiffness that have been shown to occur with tendinopathy and provides a possible rationale for the previous observation of a different biochemical response to eccentric exercise in healthy and injured Achilles tendons.

  1. EFFECT OF HEAT PRECONDITIONING BY MICROWAVE HYPERTHERMIA ON HUMAN SKELETAL MUSCLE AFTER ECCENTRIC EXERCISE

    Directory of Open Access Journals (Sweden)

    Norio Saga

    2008-03-01

    Full Text Available The purpose of this study was to clarify whether heat preconditioning results in less eccentric exercise-induced muscle damage and muscle soreness, and whether the repeated bout effect is enhanced by heat preconditioning prior to eccentric exercise. Nine untrained male volunteers aged 23 ± 3 years participated in this study. Heat preconditioning included treatment with a microwave hyperthermia unit (150 W, 20 min that was randomly applied to one of the subject's arms (MW; the other arm was used as a control (CON. One day after heat preconditioning, the subjects performed 24 maximal isokinetic eccentric contractions of the elbow flexors at 30°·s-1 (ECC1. One week after ECC1, the subjects repeated the procedure (ECC2. After each bout of exercise, maximal voluntary contraction (MVC, range of motion (ROM of the elbow joint, upper arm circumference, blood creatine kinase (CK activity and muscle soreness were measured. The subjects experienced both conditions at an interval of 3 weeks. MVC and ROM in the MW were significantly higher than those in the CON (p < 0.05 for ECC1; however, the heat preconditioning had no significant effect on upper arm circumference, blood CK activity, or muscle soreness following ECC1 and ECC2. Heat preconditioning may protect human skeletal muscle from eccentric exercise-induced muscle damage after a single bout of eccentric exercise but does not appear to promote the repeated bout effect after a second bout of eccentric exercise

  2. Eccentric or Concentric Exercises for the Treatment of Tendinopathies?

    DEFF Research Database (Denmark)

    Couppé, Christian; Svensson, René B; Silbernagel, Karin Grävare

    2015-01-01

    with respect to parameters like load magnitude, speed of movement, and recovery period between exercise sessions. Future studies should control for these loading parameters, evaluate various exercise dosages, and also think beyond isolated eccentric exercises to arrive at firm recommendations regarding...

  3. Cross-education strength and activation after eccentric exercise.

    Science.gov (United States)

    Lepley, Lindsey K; Palmieri-Smith, Riann M

    2014-01-01

    After injury, eccentric exercise of the injured limb is often contraindicated. Cross-education training, whereby the uninvolved limb is exercised, is an alternative that may improve quadriceps muscle strength and activation in the unexercised limb. To determine the effect of eccentric exercise on quadriceps strength and activation gains in the unexercised limb. Eighteen healthy individuals were randomly assigned to an eccentric training group or a control group. Quadriceps strength and activation measures were collected at preintervention, midintervention, and postintervention. Eccentric training participants exercised their dominant limb with a dynamometer in eccentric mode at 60°/s, 3 times per week for 8 weeks. Quadriceps strength was quantified at 30° and 60°/s in concentric and eccentric modes. Quadriceps activation was assessed using the burst superimposition technique and quantified via the central activation ratio. A 2 × 3 repeated-measures analysis of variance was used to detect the effects of group and testing session on quadriceps strength and activation. Where appropriate, post hoc Bonferroni multiple-comparisons procedures were used. We found greater eccentric strength in the unexercised limbs of eccentric training participants between preintervention and midintervention and between preintervention and postintervention (preintervention to midintervention: 30°/s P = .05; preintervention to postintervention: 30°/s P = .02, 60°/s P = .02). No differences were noted in concentric strength (P > .05). An overall trend toward greater quadriceps activation in the unexercised knee was detected between preintervention and postintervention (P = .063), with the eccentric training group demonstrating a strong effect (Cohen d = 0.83). Control strength did not change (P > .05). Exercising with eccentric actions resulted in mode-specific and velocity-specific gains in quadriceps strength in the unexercised limb. A trend toward greater quadriceps activation in

  4. Xanthine oxidase in human skeletal muscle following eccentric exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik; Orthenblad, N.

    1997-01-01

    1. The present study tested the hypothesis that the level of xanthine oxidase is elevated in injured human skeletal muscle in association with inflammatory events. Seven male subjects performed five bouts of strenuous one-legged eccentric exercise. Muscle biopsies from both the exercised and the ......1. The present study tested the hypothesis that the level of xanthine oxidase is elevated in injured human skeletal muscle in association with inflammatory events. Seven male subjects performed five bouts of strenuous one-legged eccentric exercise. Muscle biopsies from both the exercised...... the increase in xanthine oxidase in the muscle there were no detectable changes in the levels of muscle malondialdehyde or in plasma antioxidant capacity up to 4 days post-exercise. 5. It is concluded that eccentric exercise leads to an increased level of xanthine oxidase in human muscle and that the increase...

  5. Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise.

    Science.gov (United States)

    Guilhem, G; Cornu, C; Guével, A

    2010-06-01

    To present the properties of an eccentric contraction and compare neuromuscular and muscle-tendon system adaptations induced by isotonic and isokinetic eccentric trainings. An eccentric muscle contraction is characterized by the production of muscle force associated to a lengthening of the muscle-tendon system. This muscle solicitation can cause micro lesions followed by a regeneration process of the muscle-tendon system. Eccentric exercise is commonly used in functional rehabilitation for its positive effect on collagen synthesis but also for resistance training to increase muscle strength and muscle mass in athletes. Indeed, eccentric training stimulates muscle hypertrophy, increases the fascicle pennation angle, fascicles length and neural activation, thus inducing greater strength gains than concentric or isometric training programs. Eccentric exercise is commonly performed either against a constant external load (isotonic) or at constant velocity (isokinetic), inducing different mechanical constraints. These different mechanical constraints could induce structural and neural adaptive strategies specific to each type of exercise. The literature tends to show that isotonic mode leads to a greater strength gain than isokinetic mode. This observation could be explained by a greater neuromuscular activation after IT training. However, the specific muscle adaptations induced by each mode remain difficult to determine due to the lack of standardized, comparative studies. 2010 Elsevier Masson SAS. All rights reserved.

  6. Eccentric Exercise Program Design: A Periodization Model for Rehabilitation Applications.

    Science.gov (United States)

    Harris-Love, Michael O; Seamon, Bryant A; Gonzales, Tomas I; Hernandez, Haniel J; Pennington, Donte; Hoover, Brian M

    2017-01-01

    The applied use of eccentric muscle actions for physical rehabilitation may utilize the framework of periodization. This approach may facilitate the safe introduction of eccentric exercise and appropriate management of the workload progression. The purpose of this data-driven Hypothesis and Theory paper is to present a periodization model for isokinetic eccentric strengthening of older adults in an outpatient rehabilitation setting. Exemplar and group data are used to describe the initial eccentric exercise prescription, structured familiarization procedures, workload progression algorithm, and feasibility of the exercise regimen. Twenty-four men (61.8 ± 6.3 years of age) completed a 12-week isokinetic eccentric strengthening regimen involving the knee extensors. Feasibility and safety of the regimen was evaluated using serial visual analog scale (VAS, 0-10) values for self-reported pain, and examining changes in the magnitude of mean eccentric power as a function of movement velocity. Motor learning associated with the familiarization sessions was characterized through torque-time curve analysis. Total work was analyzed to identify relative training plateaus or diminished exercise capacity during the progressive phase of the macrocycle. Variability in the mean repetition interval decreased from 68 to 12% during the familiarization phase of the macrocycle. The mean VAS values were 2.9 ± 2.7 at the start of the regimen and 2.6 ± 2.9 following 12 weeks of eccentric strength training. During the progressive phase of the macrocycle, exercise workload increased from 70% of the estimated eccentric peak torque to 141% and total work increased by 185% during this training phase. The slope of the total work performed across the progressive phase of the macrocycle ranged from -5.5 to 29.6, with the lowest slope values occurring during microcycles 8 and 11. Also, mean power generation increased by 25% when eccentric isokinetic velocity increased from 60 to 90° s(-1) while

  7. Eccentric Exercise Program Design: A Periodization Model for Rehabilitation Applications

    Science.gov (United States)

    Harris-Love, Michael O.; Seamon, Bryant A.; Gonzales, Tomas I.; Hernandez, Haniel J.; Pennington, Donte; Hoover, Brian M.

    2017-01-01

    The applied use of eccentric muscle actions for physical rehabilitation may utilize the framework of periodization. This approach may facilitate the safe introduction of eccentric exercise and appropriate management of the workload progression. The purpose of this data-driven Hypothesis and Theory paper is to present a periodization model for isokinetic eccentric strengthening of older adults in an outpatient rehabilitation setting. Exemplar and group data are used to describe the initial eccentric exercise prescription, structured familiarization procedures, workload progression algorithm, and feasibility of the exercise regimen. Twenty-four men (61.8 ± 6.3 years of age) completed a 12-week isokinetic eccentric strengthening regimen involving the knee extensors. Feasibility and safety of the regimen was evaluated using serial visual analog scale (VAS, 0–10) values for self-reported pain, and examining changes in the magnitude of mean eccentric power as a function of movement velocity. Motor learning associated with the familiarization sessions was characterized through torque-time curve analysis. Total work was analyzed to identify relative training plateaus or diminished exercise capacity during the progressive phase of the macrocycle. Variability in the mean repetition interval decreased from 68 to 12% during the familiarization phase of the macrocycle. The mean VAS values were 2.9 ± 2.7 at the start of the regimen and 2.6 ± 2.9 following 12 weeks of eccentric strength training. During the progressive phase of the macrocycle, exercise workload increased from 70% of the estimated eccentric peak torque to 141% and total work increased by 185% during this training phase. The slope of the total work performed across the progressive phase of the macrocycle ranged from −5.5 to 29.6, with the lowest slope values occurring during microcycles 8 and 11. Also, mean power generation increased by 25% when eccentric isokinetic velocity increased from 60 to 90° s−1

  8. Effects of combined β-hydroxy-β-methylbutyrate (HMB) and whey protein ingestion on symptoms of eccentric exercise-induced muscle damage.

    Science.gov (United States)

    Shirato, Minayuki; Tsuchiya, Yosuke; Sato, Teruyuki; Hamano, Saki; Gushiken, Takeshi; Kimura, Naoto; Ochi, Eisuke

    2016-01-01

    The purpose of this study was to examine the effects of combined β-hydroxy-β-methylbutyrate (HMB) and whey protein ingestion on muscle strength and damage following a single bout of eccentric exercise. Eighteen untrained male subjects were assigned to HMB and Whey protein (HMB + Whey; 3 g/day HMB and 36.6 g/day whey protein, n = 6), HMB (3 g/day, n = 6), or whey protein (36.6 g/day, n = 6) groups. Ingestion commenced 7 days before non-dominant elbow flexor eccentric exercise (30 deg/sec, 6 reps × 7 sets) and continued until 4 days post-exercise. The maximal isometric strength, muscle soreness, plasma creatine kinase (CK), lactate dehydrogenase (LDH) were assessed pre-exercise, and at 1, 2, 3, and 5 days after exercise. The change scores of maximal isometric strength significantly decreased at day 1, 2, and 5 in the whey protein group compared to pre value and that in HMB + Whey protein and HMB groups decreased at day 1 and 5. The muscle soreness significantly increased in the whey and HMB + Whey protein groups at day 3 compared to pre value (p exercise. However, all data were not significant difference among the groups. These results suggest that ingestion of combined HMB and whey protein does not have a role to inhibit muscle strength loss and soreness, and decrease in muscle damage markers after eccentric exercise in comparison with HMB and whey protein alone.

  9. Eccentric exercise as an adjuvant to influenza vaccination in humans.

    Science.gov (United States)

    Edwards, Kate M; Burns, Victoria E; Allen, Louise M; McPhee, Jamie S; Bosch, Jos A; Carroll, Douglas; Drayson, Mark; Ring, Christopher

    2007-02-01

    The immune response to vaccination in animals can be enhanced by exposure to acute stress at the time of vaccination. The efficacy of this adjuvant strategy for vaccination in humans requires investigation. The current study employed a randomised controlled trial design to examine the effects of eccentric exercise prior to influenza vaccination on the antibody and cell-mediated responses. Sixty young healthy adults (29 men, 31 women) performed eccentric contractions of the deltoid and biceps brachii muscles of the non-dominant arm (exercise group) or rested quietly (control group), and were vaccinated 6h later in the non-dominant arm. Change in arm circumference and pain were measured to assess the physiological response to exercise. Antibody titres were measured pre-vaccination and at 6- and 20-week follow-ups. Interferon-gamma in response to in vitro stimulation by the whole vaccine, an index of the cell-mediated response, was measured 8 weeks post-vaccination. Interferon-gamma responses were enhanced by exercise in men, whereas antibody titres were enhanced by eccentric exercise in women but not in men. Men showed greater increase in arm circumference after eccentric exercise than women but there was no difference in reported pain. The interferon-gamma response was positively associated with the percentage increase in arm circumference among the exercise group. Eccentric exercise exerted differential effects on the response to vaccination in men and women, with enhancement of the antibody response in women, but enhancement of the cell-mediated response in men. Eccentric exercise of the muscle at the site of vaccine administration should be explored further as a possible behavioural adjuvant to vaccination.

  10. Cardiovascular Response and Serum Interleukin-6 Level in Concentric Vs. Eccentric Exercise.

    Science.gov (United States)

    Agarwal, Mayank; Singh, Shraddha; Narayan, Jagdish; Pandey, Shivani; Tiwari, Sunita; Sharma, Priyanka

    2017-04-01

    Cardiovascular Disease (CVD) is a leading cause of morbidity and mortality in India. Resistance exercise is strongly recommended for implementation in CVD prevention programs. Dynamic resistance exercise comprises of concentric (muscle shortening) and eccentric (muscle lengthening) phase. The contraction of skeletal muscle promotes the synthesis and secretion of cytokines and peptides from myocytes, known as 'myokines'. Interleukin-6 (IL-6) is the first myokine to be released in the blood in response to exercise. To compare the cardiovascular response and serum IL-6 level in concentric and eccentric exercise done at same absolute workload. In this non-randomised crossover study 24, apparently healthy and young male adults performed an acute bout of concentric and eccentric exercise. Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Heart Rate (HR), Mean Arterial Pressure (MAP), Pulse Pressure (PP) and serum IL-6 were measured just before and immediately after exercise. Paired t-test or Wilcoxon signed-rank test were applied to compare the data within-group and in-between group. SBP, HR, MAP, PP, DBP and IL-6 level increased significantly after both, concentric and eccentric exercise. The mean change in SBP, HR, MAP, PP, and IL-6 after concentric exercise (18.54±3.06, 57.21±10.73, 8.35±1.40, 15.25±5.29, 5.40±3.13 respectively) was significantly higher than after eccentric exercise (13.38±1.72, 43.25±8.34, 6.50±1.0, 10.21±3.16, 4.36±2.54 respectively). A non-significant rise in DBP was obtained after concentric exercise (3.25±2.79) as compared to eccentric exercise (3.08±1.89). Eccentric exercise not only caused a lesser cardiovascular demand as compared to concentric exercise but also a significant increment in IL-6 level. Exercise-induced IL-6 may prevent the initiation and development of CVD. Hence, eccentric exercise training might be recommended for reducing morbidity and mortality in individuals with- or at a risk of developing CVD.

  11. Associated decrements in rate of force development and neural drive after maximal eccentric exercise.

    Science.gov (United States)

    Farup, J; Rahbek, S K; Bjerre, J; de Paoli, F; Vissing, K

    2016-05-01

    The present study investigated the changes in contractile rate of force development (RFD) and the neural drive following a single bout of eccentric exercise. Twenty-four subjects performed 15 × 10 maximal isokinetic eccentric knee extensor contractions. Prior to and at 24, 48, 72, 96, and 168 h during post-exercise recovery, isometric RFD (30, 50 100, and 200 ms), normalized RFD [1/6,1/2, and 2/3 of maximal voluntary contraction (MVC)] and rate of electromyography rise (RER; 30, 50, and 75 ms) were measured. RFD decreased by 28-42% peaking at 48 h (P eccentric exercise. This association suggests that exercise-induced decrements in RFD can, in part, be explained decrements in neural drive. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The effect of eccentric exercise on position sense and joint reaction angle of the lower limbs.

    Science.gov (United States)

    Paschalis, V; Nikolaidis, M G; Giakas, G; Jamurtas, A Z; Pappas, A; Koutedakis, Y

    2007-04-01

    Impaired position sense and impaired joint reaction angle of the lower limbs after muscle-damaging activities is a serious functional limitation that may lead to an increased risk of injury, particularly in older populations. The purpose of the present study was to examine whether position sense and joint reaction angle to release can be affected by eccentric exercise-induced muscle damage. Twelve women underwent an isokinetic exercise session of the lower limb. Isometric peak torque, delayed-onset muscle soreness, serum creatine kinase, position sense, and knee joint reaction angle to release were examined before, immediately after, and 24, 48, and 72 h post-exercise. Due to the effect of eccentric exercise, subjects persistently placed their lower limb at a more extended position, representing a shorter knee extensor muscle. Eccentric exercise increased the knee reaction angle of the lower limb after release from 0 degrees and 15 degrees but not from 30 degrees and 45 degrees . Position sense and joint reaction to release were similarly affected by eccentric exercise and independently of visual feedback. Position sense was impaired only immediately post-exercise (probably due to muscle fatigue), whereas impairment of the reaction angle to release persisted up to 3 days post-exercise (probably due to muscle damage). Attenuation of position sense and joint reaction angle of the lower limbs after damaging activities is a serious functional limitation that may lead to an increase risk of injury, particularly in older populations.

  13. Pain sensitivity is normalized after a repeated bout of eccentric exercise.

    Science.gov (United States)

    Hosseinzadeh, Mahdi; Andersen, Ole K; Arendt-Nielsen, Lars; Madeleine, Pascal

    2013-10-01

    The purpose of this study was to investigate the effect of repeated bouts of eccentric exercise on the nociceptive withdrawal reflex (NWR) threshold, a measure of sensitivity in the spinal nociceptive system. Sixteen healthy students (age 25.7 ± 0.6 years, BMI 24.8 ± 1 kg m(-2)) participated in this randomized, controlled, crossover study. Two identical bouts of high-intensity eccentric exercises were performed on the tibialis anterior muscle 7 days apart. Control sessions involving no exercise were performed 4 weeks apart the exercise sessions. Pressure pain thresholds (PPT) and the NWR threshold were recorded before, immediately after, and 1 day after both bouts of exercise. Pressure pain thresholds decreased significantly at two of the muscle belly sites on the day after initial bout compared with baseline. NWR threshold decreased by 25 ± 4 % immediately after initial bout and by 30 ± 5 % the next day (p eccentric exercise indicating that both localized and generalized pain sensitivity were normalized. In conclusion, this study for the first time documented that an initial bout of unaccustomed high-intensity eccentric exercise, which results in muscle soreness can induce central sensitization. A repeated bout of exercise, however, facilitates inherent protective spinal mechanisms against the development of muscle soreness.

  14. Systemic cytokine response to three bouts of eccentric exercise

    Directory of Open Access Journals (Sweden)

    Stephen M. Cornish

    2014-01-01

    Full Text Available This research examined the changes in inflammatory cytokines interleukin 6 (IL-6, IL-1β, IL-10, as well as muscle force, muscle soreness, thigh circumference, and range of motion in response to 3 bouts of eccentric knee extension. Ten males were recruited to participate. The participants performed eccentric exercise on 3 consecutive days on the knee extensors on the right leg separated by 24 h. Participants performed 6 sets of 10 repetitions of isokinetic eccentric knee extension at 120° per second. Blood was sampled before and after each exercise bout and 24 h after the final exercise bout. Muscle isometric force, delayed onset muscle soreness (DOMS, thigh circumference, and range of motion were evaluated before and after each exercise bout and 24 h after the final exercise bout. There were no statistically significant differences noted for the changes in isometric strength, thigh circumference, and range of motion, or IL-6 over the 4 days (all p > 0.05. On the second day and third day there was a significant increase noted in DOMS as compared with baseline (p < 0.05. These results suggest that 3 consecutive days of eccentric exercise results in DOMS but does not produce a sustained systemic inflammatory reaction or changes in muscle function.

  15. Systemic cytokine response to three bouts of eccentric exercise

    Science.gov (United States)

    Cornish, Stephen M.; Johnson, Steven T.

    2014-01-01

    This research examined the changes in inflammatory cytokines interleukin 6 (IL-6), IL-1ß, IL-10, as well as muscle force, muscle soreness, thigh circumference, and range of motion in response to 3 bouts of eccentric knee extension. Ten males were recruited to participate. The participants performed eccentric exercise on 3 consecutive days on the knee extensors on the right leg separated by 24??h. Participants performed 6 sets of 10 repetitions of isokinetic eccentric knee extension at 120° per second. Blood was sampled before and after each exercise bout and 24?h after the final exercise bout. Muscle isometric force, delayed onset muscle soreness (DOMS), thigh circumference, and range of motion were evaluated before and after each exercise bout and 24?h after the final exercise bout. There were no statistically significant differences noted for the changes in isometric strength, thigh circumference, and range of motion, or IL-6 over the 4 days (all p > 0.05). On the second day and third day there was a significant increase noted in DOMS as compared with baseline (p eccentric exercise results in DOMS but does not produce a sustained systemic inflammatory reaction or changes in muscle function. PMID:24809007

  16. Position sense and reaction angle after eccentric exercise: the repeated bout effect.

    Science.gov (United States)

    Paschalis, V; Nikolaidis, M G; Giakas, G; Jamurtas, A Z; Owolabi, E O; Koutedakis, Y

    2008-05-01

    The purpose of the present investigation was to examine the effects of a repeated eccentric exercise on position sense and muscle reaction angle. Fourteen healthy women underwent an isokinetic exercise session on their knee flexors, which was repeated after 4 weeks. Muscle damage indices, position sense and joint reaction angle of the knee were examined before, immediately after, as well as at 1, 2, 3, 4 and 7 days after exercise. The second exercise bout induced significantly lesser effects in all muscle damage indices as well as lesser disturbances in position sense and reaction angle when compared to the first one. The main finding of this study is that position sense and joint reaction angle to release of the lower limbs may adapt in response to a repeated bout of eccentric exercise, leading to less disturbances in position sense and reaction angle after the second bout of exercise.

  17. Pressure pain mapping of the wrist extensors after repeated eccentric exercise at high intensity.

    Science.gov (United States)

    Delfa de la Morena, José M; Samani, Afshin; Fernández-Carnero, Josué; Hansen, Ernst A; Madeleine, Pascal

    2013-11-01

    The purpose of this study was to investigate adaptation mechanisms after 2 test rounds consisting of eccentric exercise using pressure pain imaging of the wrist extensors. Pressure pain thresholds (PPTs) were assessed over 12 points forming a 3 × 4 matrix over the dominant elbow in 12 participants. From the PPT assessments, pressure pain maps were computed. Delayed onset muscle soreness was induced in an initial test round of high-intensity eccentric exercise. The second test round performed 7 days later aimed at resulting in adaptation. The PPTs were assessed before, immediately after, and 24 hours after the 2 test rounds of eccentric exercise. For the first test round, the mean PPT was significantly lower 24 hours after exercise compared with before exercise (389.5 ± 64.1 vs. 500.5 ± 66.4 kPa, respectively; p = 0.02). For the second test round, the PPT was similar before and 24 hours after (447.7 ± 51.3 vs. 458.0 ± 73.1 kPa, respectively; p = 1.0). This study demonstrated adaptive effects of the wrist extensors monitored by pain imaging technique in healthy untrained humans. A lack of hyperalgesia, i.e., no decrease in PPT underlined adaptation after the second test round of eccentric exercise performed 7 days after the initial test round. The present findings showed for the first time that repeated eccentric exercise performed twice over 2 weeks protects the wrist extensor muscles from developing exacerbated pressure pain sensitivity. Thus, the addition of eccentric components to training regimens should be considered to induce protective adaptation.

  18. Achilles tendon of wistar rats treated with laser therapy and eccentric exercise

    Directory of Open Access Journals (Sweden)

    Maria Verônica de Souza

    2015-10-01

    Full Text Available ABSTRACTIntroduction:Both laser therapy and eccentric exercises are used in tendon injuries. However, the association of these physiotherapeutic modalities is yet little investigated.Objective:To evaluate the effect of low-level laser therapy associated to eccentric exercise (downhill walking on Achilles tendinopathy of Wistar rats.Method:Eighteen Achilles tendon from 15 adult male Wistar rats were used. Tendons were distributed in six groups (laser, eccentric exercise, laser and eccentric exercise, rest, contralateral tendon, and healthy tendon. Unilateral tendinopathy was surgically induced by transversal compression followed by scarification of tendon fibers. The treatments laser therapy (904 nm, 3J/cm² and/or eccentric exercise (downhill walking; 12 m/min; 50 min/day; 15o inclination treadmill began 24 hours after surgery and remained for 20 days. Clinical and biomechanical analyzes were conducted. Achilles tendon was macroscopically evaluated and the transversal diameter measured. Euthanasia was performed 21 days after lesion induction. Tendons of both limbs were collected and frozen at -20°C until biomechanical analysis, on which the characteristic of maximum load (N, stress at ultimate (MPa and maximum extension (mm were analyzed.Results:Swelling was observed within 72 hours postoperative. No fibrous adhesions were observed nor increase in transversal diameter of tendons. Animals with the exercised tendons, but not treated with laser therapy, presented lower (p=0.0000 locomotor capacity. No difference occurred be-tween groups for the biomechanical characteristics maximum load (p=0.4379, stress at ultimate (p=0.4605 and maximum extension (p=0.3820 evaluated, even considering healthy and contralateral tendons.Conclusion:The concomitant use of low-level laser and the eccentric exercise of downhill walking, starting 24 hours after surgically induced tendinopathy, do not result in a tendon with the same biomechanical resistance or elasticity

  19. Eccentric exercise in adults with cardiorespiratory disease: a systematic review.

    Science.gov (United States)

    Ellis, Rachel; Shields, Nora; Lim, Kwang; Dodd, Karen J

    2015-12-01

    To determine if eccentric exercise is effective, tolerable and safe for adults with chronic cardiorespiratory disease. We searched electronic databases from inception until January 2015 (Medline, CINAHL, Embase, SportDiscus, PEDro, Cochrane Central and AMED) supplemented by citation tracking and reference list scanning. Included articles had to report effects of eccentric exercise, alone or as a primary component of intervention, of any intensity and duration, on adults with chronic cardiorespiratory disease. Trials needed to be reported as full text in a peer-reviewed journal and include control data (randomised, quasi-randomised and single group cross-over design trials). Any outcomes or comparison interventions were accepted. Methodological rigor was assessed using the PEDro scale. Of 22 potentially relevant articles, 10 met inclusion criteria. They reported results from seven trials with a total of 112 participants across the diseases. PEDro scores were low (median 3). Eccentric exercise increased strength and mobility to comparable levels as concentric exercise, however, it did so with lower oxygen consumption (effect size as large as d = -3.07 (-4.12, -1.80)), and four-fold power output (effect size d = -3.60 (-5.03, -1.66)). There were no adverse events reported for eccentric exercise. Pain was avoided with familiarisation sessions and individual exercise prescription. Eccentric exercise is beneficial and at least comparable with traditional exercise in improving walking and strength for people with chronic cardiorespiratory disease. It was well tolerated and we identified no safety concerns for the use of this intervention for this population. © The Author(s) 2015.

  20. Acute alcohol consumption aggravates the decline in muscle performance following strenuous eccentric exercise.

    Science.gov (United States)

    Barnes, Matthew J; Mündel, Toby; Stannard, Stephen R

    2010-01-01

    This study investigated the effects of acute moderate alcohol intake on muscular performance during recovery from eccentric exercise-induced muscle damage. Eleven healthy males performed 300 maximal eccentric contractions of the quadriceps muscles of one leg on an isokinetic dynamometer. They then consumed a beverage containing 1g/kg bodyweight ethanol (as vodka and orange juice) (ALC). On another occasion they performed an equivalent bout of eccentric exercise on the contralateral leg after which they consumed an isocaloric quantity of orange juice (OJ). Measurement of maximal isokinetic (concentric and eccentric) and isometric torque produced across the knee, plasma creatine kinase (CK) concentrations and muscle soreness were made before and at 36 and 60h following each exercise bout. All measures of muscle performance were significantly reduced at 36 and 60h post-exercise compared to pre-exercise measures (all peccentric contractions, respectively. However, peak strength loss was significantly greater in ALC with the same performance measures decreasing by 34%, 40% and 34%, respectively. Post-exercise plasma creatine kinase activity and ratings of muscle soreness were not different between conditions (both p>0.05). These results indicate that consumption of even moderate amounts of alcohol following eccentric-based exercise magnifies the normally observed losses in dynamic and static strength. Therefore, to minimise exercise related losses in muscle function and expedite recovery, participants in sports involving eccentric muscle work should avoid alcohol-containing beverages in the post-event period. Copyright (c) 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Muscle fatigue experienced during maximal eccentric exercise is predictive of the plasma creatine kinase (CK) response.

    Science.gov (United States)

    Hody, S; Rogister, B; Leprince, P; Wang, F; Croisier, J-L

    2013-08-01

    Unaccustomed eccentric exercise may cause skeletal muscle damage with an increase in plasma creatine kinase (CK) activity. Although the wide variability among individuals in CK response to standardized lengthening contractions has been well described, the reasons underlying this phenomenon have not yet been understood. Therefore, this study investigated a possible correlation of the changes in muscle damage indirect markers after an eccentric exercise with the decline in muscle performance during the exercise. Twenty-seven healthy untrained male subjects performed three sets of 30 maximal isokinetic eccentric contractions of the knee extensors. The muscular work was recorded using an isokinetic dynamometer to assess muscle fatigue by means of various fatigue indices. Plasma CK activity, muscle soreness, and stiffness were measured before (pre) and one day after (post) exercise. The eccentric exercise bout induced significant changes of the three muscle damage indirect markers. Large inter-subject variability was observed for all criteria measured. More interestingly, the log (CK(post) /CK(pre)) and muscle stiffness appeared to be closely correlated with the relative work decrease (r = 0.84, r(2)  = 0.70 and r = 0.75, r(2)  = 0.56, respectively). This is the first study to propose that the muscle fatigue profile during maximal eccentric protocol could predict the magnitude of the symptoms associated with muscle damage in humans.

  2. Chronic Eccentric Exercise and Antioxidant Supplementation: Effects on Lipid Profile and Insulin Sensitivity.

    Science.gov (United States)

    Yfanti, Christina; Tsiokanos, Athanasios; Fatouros, Ioannis G; Theodorou, Anastasios A; Deli, Chariklia K; Koutedakis, Yiannis; Jamurtas, Athanasios Z

    2017-09-01

    Eccentric exercise has been shown to exert beneficial effects in both lipid profile and insulin sensitivity. Antioxidant supplementation during chronic exercise is controversial as it may prevent the physiological training-induced adaptations. The aim of this study was to investigate: 1) the minimum duration of the eccentric exercise training required before changes on metabolic parameters are observed and 2) whether antioxidant supplementation during training would interfere with these adaptations. Sixteen young healthy men were randomized into the Vit group (1 g of vitamin C and 400 IU vitamin E daily) and the placebo (PL) group. Subjects received the supplementation for 9 weeks. During weeks 5-9 all participants went through an eccentric exercise training protocol consisting of two exercise sessions (5 sets of 15 eccentric maximal voluntary contractions) per week. Plasma triglycerides (TG), total cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL), apolipoproteins (Apo A1, Apo B and Lpa) and insulin sensitivity (HOMA) were assessed before the supplementation (week 0), at weeks 5, 6, 7, 8 and 9. TG, TC and LDL were significantly lower compared to pre supplementation at both weeks 8 and 9 (Peccentric exercise training is required before beneficial effects in lipid profile can be observed in healthy young men. Concomitant antioxidant supplementation does not interfere with the training-induced adaptations.

  3. Muscle-Tendon Unit Properties during Eccentric Exercise Correlate with the Creatine Kinase Response

    Directory of Open Access Journals (Sweden)

    Kirsty M. Hicks

    2017-09-01

    Full Text Available Aim: The aim of this paper was to determine whether; (1 patella tendon stiffness, (2 the magnitude of vastus lateralis fascicle lengthening, and (3 eccentric torque correlate with markers of exercise induced muscle damage.Method: Combining dynamometry and ultrasonography, patella tendon properties and vastus lateralis architectural properties were measured pre and during the first of six sets of 12 maximal voluntary eccentric knee extensions. Maximal isometric torque loss and creatine kinase activity were measured pre-damage (−48 h, 48, 96, and 168 h post-damage as markers of exercise-induced muscle damage.Results: A significant increase in creatine kinase (883 ± 667 UL and a significant reduction in maximal isometric torque loss (21% was reported post-eccentric contractions. Change in creatine kinase from pre to peak significantly correlated with the relative change in vastus lateralis fascicle length during eccentric contractions (r = 0.53, p = 0.02 and with eccentric torque (r = 0.50, p = 0.02. Additionally, creatine kinase tended to correlate with estimated patella tendon lengthening during eccentric contractions (p < 0.10. However, creatine kinase did not correlate with resting measures of patella tendon properties or vastus lateralis properties. Similarly, torque loss did not correlate with any patella tendon or vastus lateralis properties at rest or during eccentric contractions.Conclusion: The current study demonstrates that the extent of fascicle strain during eccentric contractions correlates with the magnitude of the creatine kinase response. Although at rest, there is no relationship between patella tendon properties and markers of muscle damage; during eccentric contractions however, the patella tendon may play a role in the creatine kinase response following EIMD.

  4. Dissociated time course recovery between rate of force development and peak torque after eccentric exercise.

    Science.gov (United States)

    Molina, Renato; Denadai, Benedito S

    2012-05-01

    This study investigated the association between isokinetic peak torque (PT) of quadriceps and the corresponding peak rate of force development (peak RFD) during the recovery of eccentric exercise. Twelve untrained men (aged 21·7 ± 2·3 year) performed 100 maximal eccentric contractions for knee extensors (10 sets of 10 repetitions with a 2-min rest between each set) on isokinetic dynamometer. PT and peak RFD accessed by maximal isokinetic knee concentric contractions at 60° s(-1) were obtained before (baseline) and at 24 and 48 h after eccentric exercise. Indirect markers of muscle damage included delayed onset of muscle soreness (DOMS) and plasma creatine kinase (CK) activity. The eccentric exercise resulted in elevated DOMS and CK compared with baseline values. At 24 h, PT (-15·3%, P = 0·002) and peak RFD (-13·1%, P = 0·03) decreased significantly. At 48 h, PT (-7·9%, P = 0·002) was still decreased but peak RFD have returned to baseline values. Positive correlation was found between PT and peak RFD at baseline (r = 0·62, P = 0·02), 24 h (r = 0·99, P = 0·0001) and 48 h (r = 0·68, P = 0·01) after eccentric exercise. The magnitude of changes (%) in PT and peak RFD from baseline to 24 h (r = 0·68, P = 0·01) and from 24 to 48 h (r = 0·68, P = 0·01) were significantly correlated. It can be concluded that the muscle damage induced by the eccentric exercise affects differently the time course of PT and peak RFD recovery during isokinetic concentric contraction at 60° s(-1). During the recovery from exercise-induced muscle damage, PT and peak RFD are determined but not fully defined by shared putative physiological mechanisms. © 2011 The Authors. Clinical Physiology and Functional Imaging © 2011 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  5. Acute effects of stretching on muscle stiffness after a bout of exhaustive eccentric exercise.

    Science.gov (United States)

    Torres, R; Appell, H-J; Duarte, J A

    2007-07-01

    With the aim to analyze the influence of stretching on muscle stiffness after eccentric exercise, 30 young men (18 - 32 years old), were divided into three groups: STR, undergoing a stretching program (SP) of the dominant quadriceps muscle, ECC, undergoing exhaustive eccentric exercise, and ECC/STR, undergoing eccentric exercise, followed by SP. Muscle stiffness (MS) was assessed immediately before the respective programs, and 1 and 24 hours after, measuring the following parameters during Wartenberg pendulum test: angle and angular velocity of first knee flexion (FKF) and following oscillating extension, time of oscillating movements and final resting knee angle (FRKA). Despite the slight (2%) but significant increase of FRKA, all further parameters did not change over time in STR. MS in ECC was documented by the reduced range of motion (ROM) and the slower angular velocity. Reduction in FRKA (10%) was still present after 24 hours, while other variables tended to recover eventually. Similar reduction in FKF was observed for ECC/STR, but with significantly less impairment in the range of pendulum movement one hour after the exercise and in tendency still remained less impaired 24 hours after. The results suggest that SP conducted after exhaustive eccentric exercise alleviated reductions in ROM induced by exercise.

  6. Facilitation of quadriceps activation is impaired following eccentric exercise.

    Science.gov (United States)

    Hedayatpour, N; Arendt-Nielsen, L; Falla, D

    2014-04-01

    Contracting the knee flexor muscles immediately before a maximum voluntary contraction (MVC) of knee extension increases the maximal force that the extensor muscles can exert. It is hypothesized that this phenomenon can be impaired by muscle fiber damage following eccentric exercise [delayed onset muscle soreness (DOMS)]. This study investigates the effect of eccentric exercise and DOMS on knee extension MVC immediately following a reciprocal-resisted knee flexion contraction. Electromyography (EMG) was recorded from the knee extensors and flexors of 12 healthy men during knee extension MVCs performed in a reciprocal (maximal knee extension preceded by resisted knee flexion), and nonreciprocal condition (preceded by relaxation of the knee flexors). At baseline, knee extension MVC force was greater during the reciprocal condition (P eccentric exercise, the MVC force was not different between conditions. Similarly, at baseline, the EMG amplitude of the quadriceps during the MVC was larger for the reciprocal condition (P eccentric exercise abolished the facilitation of force production for the knee extensors, which normally occurs when maximum knee extension is preceded by activation of the knee flexors.

  7. Heat shock protein translocation and expression response is attenuated in response to repeated eccentric exercise

    DEFF Research Database (Denmark)

    Vissing, K.; Bayer, M.L.; Overgaard, K.

    2009-01-01

    and cytoskeletal protein fractions. The first bout of exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P ... weeks between bouts, and were compared with a control group (n = 6). Muscle biopsies collected from m. vastus lateralis of both legs prior to and at 3 h, 24 h and 7 days after exercise were quantified for mRNA levels and/or for HSP27, alpha beta-crystallin and inducible HSP70 content in cytosolic...... eccentric exercise bout. Our results show that HSP translocation and expression responses are induced by muscle damaging exercise, and suggest that such HSP responses are closely related to the extent of muscle damage Udgivelsesdato: 2009/7...

  8. Acute hormonal responses following different velocities of eccentric exercise.

    Science.gov (United States)

    Libardi, Cleiton A; Nogueira, Felipe R D; Vechin, Felipe C; Conceição, Miguel S; Bonganha, Valéria; Chacon-Mikahil, Mara Patricia T

    2013-11-01

    The aim of this study was to compare the acute hormonal responses following two different eccentric exercise velocities. Seventeen healthy, untrained, young women were randomly placed into two groups to perform five sets of six maximal isokinetic eccentric actions at slow (30° s(-1) ) and fast (210° s(-1) ) velocities with 60-s rest between sets. Growth hormone, cortisol, free and total testosterone were assessed by blood samples collected at baseline, immediately postexercise, 5, 15 and 30 min following eccentric exercise. Changes in hormonal responses over time were compared between groups, using a mixed model followed by a Tukey's post hoc test. The main findings of the present study were that the slow group showed higher growth hormone values immediately (5·08 ± 2·85 ng ml(-1) , P = 0·011), 5 (5·54 ± 3·01 ng ml(-1) , P = 0·004) and 15 min (4·30 ± 2·87 ng ml(-1) , P = 0·021) posteccentric exercise compared with the fast group (1·39 ± 2·41 ng ml(-1) , 1·34 ± 1·97 ng ml(-1) and 1·24 ± 1·87 ng ml(-1) , respectively), and other hormonal responses were not different between groups (P>0·05). In conclusion, slow eccentric exercise velocity enhances more the growth hormone(GH) response than fast eccentric exercise velocity without cortisol and testosterone increases. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  9. Joint-specific power loss after eccentric exercise.

    Science.gov (United States)

    Elmer, Steven J; Martin, James C

    2010-09-01

    Previous investigators have reported changes in maximal power after eccentric exercise. The influence of eccentric joint-specific power absorption on subsequent concentric joint-specific power production during multijoint actions has not been reported. Our purposes were to determine the extent to which ankle, knee, and hip joint actions absorbed power during eccentric cycling (ECCcyc) and to evaluate changes in power produced by those joint actions during subsequent maximal concentric cycling (CONcyc). We hypothesized that joint actions that absorbed the most power during ECCcyc would exhibit the greatest reductions in power during subsequent maximal CONcyc. Nineteen cyclists performed baseline trials of maximal single-leg CONcyc immediately before and 24 h after acute single-leg ECCcyc (5 min, 40% maximum single-leg CONcyc power). Pedal forces and limb kinematics were determined with a force-sensing pedal and instrumented spatial linkage system, respectively. Joint-specific powers were calculated using inverse dynamics and averaged over complete crank revolutions and over extension and flexion phases. The largest power-absorbing actions during ECCcyc were eccentric knee extensor activity (-185 +/- 12 W) followed by eccentric hip extensor activity (-92 +/- 12 W). Power absorbed through ankle joint actions was small (-10 +/- 2 W). At 24 h, pedal power produced during maximal CONcyc was reduced by 11% +/- 3% relative to baseline. Compared with baseline, knee extension power was reduced by 19% +/- 0 7%, whereas hip extension power did not differ. Power absorbed through eccentric knee extension actions significantly reduced knee extension power produced during subsequent maximal CONcyc. Even with reduced knee extensor function, participants were able to deliver 89% of their baseline power to the environment. These results have implications for individuals who must continue to perform multijoint activities after eccentric exercise.

  10. Pure eccentric exercise does not activate blood coagulation.

    Science.gov (United States)

    Hilberg, Thomas; Gläser, Doreen; Prasa, Dagmar; Stürzebecher, Jörg; Gabriel, Holger H W

    2005-08-01

    Eccentric exercise can cause skeletal muscle damage with ultrastructural disruption, inflammation and increased proteolytic enzyme activity. It may be possible that these changes are able to trigger blood coagulation in vivo. The aim of the study was to investigate changes in blood coagulation via the measurement of aPTT, the thrombin potential (total [TTP] and endogenous [ETP], both intrinsic [in] and extrinsic [ex]) and the thrombin generation (prothrombinfragment 1 + 2 [F1 + 2] and thrombin-antithrombin complex [TAT]) after pure eccentric exercise. Seventeen healthy non-smokers (28 +/- 6 years, VO2-peak 59 +/- 7 ml/min/kg) underwent pure eccentric down jumps (9 x 28 isolated down jumps in 90 min, drop from a height of 55 cm), a cycle exercise (90% of the individual anaerobic threshold for 60-90 min) and a control experiment on different days. Blood samples were drawn after a 30-min rest, immediately, and 2 h after exercise. After the cycle exercise, a clear shortening by 12% (Pcoagulation.

  11. Biomechanical characteristics of the eccentric Achilles tendon exercise

    DEFF Research Database (Denmark)

    Henriksen, Marius; Aaboe, Jens; Bliddal, Henning

    2009-01-01

    muscles were recorded. Joint kinematics, GRF frequency contents, average EMG amplitudes, and Achilles tendon loads were calculated. FINDINGS: The eccentric movement phase was characterized by a higher GRF frequency content in the 8-12 Hz range, and reduced EMG activity in the lower leg muscles...... into the biomechanics of the exercise may improve our understanding. METHODS: Sixteen healthy subjects performed one-legged full weight bearing ankle plantar and dorsiflexion exercises during which three-dimensional ground reaction forces (GRF), ankle joint kinematics and surface electromyography (EMG) of the lower leg....... No differences in Achilles tendon loads were found. INTERPRETATION: This descriptive study demonstrates differences in the movement biomechanics between the eccentric and concentric phases of one-legged full weight bearing ankle dorsal and plantar flexion exercises. In particular, the findings imply...

  12. Revisiting the Force-Joint Angle Relationship After Eccentric Exercise.

    Science.gov (United States)

    Welsh, Molly C; Allen, David L; Batliner, Matthew E; Byrnes, William C

    2015-12-01

    The purpose of this study was to evaluate force-angle curve fitting techniques pre-eccentric exercise, quantify changes in curve characteristics postexercise, and examine the relationship between curve changes and markers of muscle damage. Fourteen males unaccustomed to eccentric exercise performed 60 eccentric muscle actions of the elbow flexors. Maximal voluntary isometric force was measured throughout a range of angles pre- (Pre1 and Pre2), immediately post (IP), and 1, 2, 4, and 7 days postexercise. Force-angle curves for each visit were constructed using second-order polynomials. Changes in curve characteristics (optimal angle, peak force, curve height), range of motion, soreness, and creatine kinase activity were quantified. Optimal joint angle and force at optimal angle were significantly correlated from Pre1 to Pre2 (ICC = 0.821 and 0.979, respectively). Optimal angle was significantly right shifted (p = 0.035) by 10.4 ± 12.9° from Pre2 to IP and was restored by 1 day post exercise. Interestingly, the r value for curve fit was significantly decreased (p exercise (r = 0.750). Curve height was significantly decreased (39%) IP and restored to pre-exercise height by 4 days postexercise. There was no correlation between optimal angle or curve height and other damage markers. In conclusion, force-angle relationships can be accurately described using second-order polynomials. After eccentric exercise, the force-angle curve is flattened and shifted (downward and rightward), but these changes are not correlated to other markers of muscle damage. Changes in the force-angle relationship are multifaceted, but determining the physiological significance of these changes requires further investigation.

  13. Protein hydrolysates and recovery of muscle damage following eccentric exercise

    Directory of Open Access Journals (Sweden)

    Dale M.J.

    2015-01-01

    Full Text Available Background: A whey protein hydrolysate (NatraBoost XR; WPHNB has been shown to speed repair muscle damage. We sought to determine whether this benefit is specific to this hydrolysate to evaluate a marker for quality control. Methods: Three hydrolysates of the same whey protein isolate (WPI were prepared (WPHNB, WPH1 and WPH2. Isometric knee extensor strength was measured in 39 sedentary male participants before and after 100 maximal eccentric contractions of the knee extensors to induce muscle damage. Participants were then randomised to consume 250 ml of flavoured water (FW, n=9, or 250 ml of FW containing 25 g of either NatraBoost XR (n=3, WPH1 (n=9, WPH2 (n=9 or WPI (n=9. Strength was reassessed over the next seven days while the supplements were consumed daily. Fibroblasts were cultured for 48 hr in the presence of the different hydrolysates, WPI, saline or fetal bovine serum to ascertain effects on cell proliferation. Results: Strength was reduced in all treatment groups after eccentric exercise (P<0.001. Strength recovered steadily over 7 days in the FW, WPI, WPH1 and WPH2 treatment groups (P<0.001, with no difference between treatments (P=0.87. WPHNB promoted faster strength recovery compared with the other treatments (P<0.001. Fibroblast proliferation was greater with WPHNB compared with saline, WPI or the other hydrolysates (P<0.001. Conclusions: Promoting recovery from muscle damage seems unique to WPHNB. In vitro fibroblast proliferation may be a useful marker for quality control. It is not clear whether effects on fibroblast proliferation contribute to the in vivo effect of WPHNB on muscle damage.

  14. Protein hydrolysates and recovery of muscle damage following eccentric exercise

    Directory of Open Access Journals (Sweden)

    Dale M.J.

    2015-01-01

    Full Text Available Background: A whey protein hydrolysate (NatraBoost XR; WPHNB has been shown to speed repair muscle damage. We sought to determine whether this benefit is specific to this hydrolysate to evaluate a marker for quality control. Methods: Three hydrolysates of the same whey protein isolate (WPI were prepared (WPHNB, WPH1 and WPH2. Isometric knee extensor strength was measured in 39 sedentary male participants before and after 100 maximal eccentric contractions of the knee extensors to induce muscle damage. Participants were then randomised to consume 250 ml of flavoured water (FW, n=9, or 250 ml of FW containing 25 g of either NatraBoost XR (n=3, WPH1 (n=9, WPH2 (n=9 or WPI (n=9. Strength was reassessed over the next seven days while the supplements were consumed daily. Fibroblasts were cultured for 48 hr in the presence of the different hydrolysates, WPI, saline or fetal bovine serum to ascertain effects on cell proliferation. Results: Strength was reduced in all treatment groups after eccentric exercise (P<0.001. Strength recovered steadily over 7 days in the FW, WPI, WPH1 and WPH2 treatment groups (P<0.001, with no difference between treatments (P=0.87. WPHNB promoted faster strength recovery compared with the other treatments (P<0.001. Fibroblast proliferation was greater with WPHNB compared with saline, WPI or the other hydrolysates (P<0.001. Conclusions: Promoting recovery from muscle damage seems unique to WPHNB. In vitro fibroblast proliferation may be a useful marker for quality control. It is not clear whether effects on fibroblast proliferation contribute to the in vivo effect of WPHNB on muscle damage.

  15. TLR4-mediated blunting of inflammatory responses to eccentric exercise in young women.

    Science.gov (United States)

    Fernandez-Gonzalo, Rodrigo; De Paz, José A; Rodriguez-Miguelez, Paula; Cuevas, María J; González-Gallego, Javier

    2014-01-01

    This study assessed the inflammatory response mediated by the toll-like receptor 4 (TLR4) signaling pathway after acute eccentric exercise before and after an eccentric training program in women. Twenty women performed two acute eccentric bouts using a squat machine over a ~9 week interval. The training group (TG) carried out an eccentric training program during 6 weeks, while the control group (CG) did not follow any training. Protein content of markers involved in the TLR4-mediated activation of several nuclear transcription factors, such as nuclear factor κB (NF-κB), and interferon regulatory transcription factor 3 (IRF3), was analyzed. The inflammatory response after the first acute bout was similar between TG and CG, showing an upregulation of all the markers analyzed, with the exception of IRF3. After the second bout, the upregulation of TLR4 signaling pathway was blunted in TG, but not in CG, through both the myeloid differentiation factor 88- and toll/interleukin-1 receptor domain containing adapter inducing interferon-β-dependent pathways. These results highlight the role of the TLR4 in controlling the exercise-induced inflammatory response in young women. More importantly, these data suggest eccentric training may help to prevent TLR4 activation principally through NF-κB, and perhaps IRF3, downstream signaling in this population.

  16. TLR4-Mediated Blunting of Inflammatory Responses to Eccentric Exercise in Young Women

    Science.gov (United States)

    De Paz, José A.; Rodriguez-Miguelez, Paula; Cuevas, María J.

    2014-01-01

    This study assessed the inflammatory response mediated by the toll-like receptor 4 (TLR4) signaling pathway after acute eccentric exercise before and after an eccentric training program in women. Twenty women performed two acute eccentric bouts using a squat machine over a ~9 week interval. The training group (TG) carried out an eccentric training program during 6 weeks, while the control group (CG) did not follow any training. Protein content of markers involved in the TLR4-mediated activation of several nuclear transcription factors, such as nuclear factor κB (NF-κB), and interferon regulatory transcription factor 3 (IRF3), was analyzed. The inflammatory response after the first acute bout was similar between TG and CG, showing an upregulation of all the markers analyzed, with the exception of IRF3. After the second bout, the upregulation of TLR4 signaling pathway was blunted in TG, but not in CG, through both the myeloid differentiation factor 88- and toll/interleukin-1 receptor domain containing adapter inducing interferon-β-dependent pathways. These results highlight the role of the TLR4 in controlling the exercise-induced inflammatory response in young women. More importantly, these data suggest eccentric training may help to prevent TLR4 activation principally through NF-κB, and perhaps IRF3, downstream signaling in this population. PMID:25294957

  17. The effects of eccentric exercise on muscle function and proprioception of individuals being overweight and underweight.

    Science.gov (United States)

    Paschalis, Vassilis; Nikolaidis, Michalis G; Theodorou, Anastasios A; Deli, Chariklia K; Raso, Vagner; Jamurtas, Athanasios Z; Giakas, Giannis; Koutedakis, Yiannis

    2013-09-01

    The aim of this study was to estimate the effect of being overweight or underweight on proprioception at rest and after muscle damaging eccentric exercise. Twelve lean, 12 overweight, and 8 underweight female participants performed an eccentric exercise session using the knee extensor muscles of the dominant leg. Muscle damage indices and proprioception were assessed up to 3 days postexercise. The results indicated that proprioception at baseline of the lean individuals was superior to that of the other 2 groups. The overweight individuals exhibited a smaller knee joint reaction angle to release than did the lean group, whereas the underweight individuals exhibited a larger reaction angle to release than did the lean group. After eccentric exercise, proprioception was affected more in the overweight and the underweight groups than in the lean group. The greater exercise-induced muscle damage appeared in the overweight group, and the deficient muscle mass of the underweight participants could explain in part the greater disturbances that appeared in proprioception in these 2 groups than for the lean counterparts. In conclusion, deviating from the normal body mass is associated with significant disturbances in the proprioception of the legs at rest and after participation in activities involving eccentric actions.

  18. Effects of antioxidant therapy in women exposed to eccentric exercise.

    Science.gov (United States)

    Bloomer, Richard J; Goldfarb, Alan H; McKenzie, Michael J; You, Tonjian; Nguyen, Linh

    2004-08-01

    The purpose of this study was to determine the effects of antioxidant therapy on indirect markers of muscle damage following eccentric exercise (EE). Eighteen women were randomized to an antioxidant supplement or a placebo before a bout of EE. Plasma creatine kinase (CK) activity, muscle soreness (MS), maximal isometric force (MIF), and range of motion (ROM) were assessed before and through 14 d postexercise. Eccentric exercise resulted in an increase in CK activity and MS, and a drop in MIF and ROM during the days following EE, which returned to baseline values 14 d after EE in both groups. Antioxidants attenuated the CK activity and MS response to the EE, while little difference was noted between groups in MIF or ROM. These findings suggest that antioxidant supplementation was helpful in reducing the elevations in plasma CK activity and MS, with little impact on MIF and ROM loss.

  19. Arterial stiffness results from eccentrically biased downhill running exercise.

    Science.gov (United States)

    Burr, J F; Boulter, M; Beck, K

    2015-03-01

    There is increasing evidence that select forms of exercise are associated with vascular changes that are in opposition to the well-accepted beneficial effects of moderate intensity aerobic exercise. To determine if alterations in arterial stiffness occur following eccentrically accentuated aerobic exercise, and if changes are associated with measures of muscle soreness. Repeated measures experimental cohort. Twelve (m=8/f=4) moderately trained (VO₂max=52.2 ± 7.4 ml kg(-1)min(-1)) participants performed a downhill run at -12° grade using a speed that elicited 60% VO₂max for 40 min. Cardiovascular and muscle soreness measures were collected at baseline and up to 72 h post-running. Muscle soreness peaked at 48 h (p=<0.001). Arterial stiffness similarly peaked at 48 h (p=0.04) and remained significantly elevated above baseline through 72 h. Eccentrically accentuated downhill running is associated with arterial stiffening in the absence of an extremely prolonged duration or fast pace. The timing of alterations coincides with the well-documented inflammatory response that occurs from the muscular insult of downhill running, but whether the observed changes are a result of either systemic or local inflammation is yet unclear. These findings may help to explain evidence of arterial stiffening in long-term runners and following prolonged duration races wherein cumulative eccentric loading is high. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Changes in Achilles tendon mechanical properties following eccentric heel drop exercise are specific to the free tendon.

    Science.gov (United States)

    Obst, S J; Newsham-West, R; Barrett, R S

    2016-04-01

    Mechanical loading of the Achilles tendon during isolated eccentric contractions could induce immediate and region-dependent changes in mechanical properties. Three-dimensional ultrasound was used to examine the immediate effect of isolated eccentric exercise on the mechanical properties of the distal (free tendon) and proximal (gastrocnemii) regions of the Achilles tendon. Participants (n = 14) underwent two testing sessions in which tendon measurements were made at rest and during a 30% and 70% isometric plantar flexion contractions immediately before and after either: (a) 3 × 15 eccentric heel drops or (b) 10-min rest. There was a significant time-by-session interaction for free tendon length and strain for all loading conditions (P eccentric exercise (P exercise compared with the gastrocnemii aponeurosis or tendon. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Small heat shock proteins translocate to the cytoskeleton in human skeletal muscle following eccentric exercise independently of phosphorylation.

    Science.gov (United States)

    Frankenberg, Noni T; Lamb, Graham D; Overgaard, Kristian; Murphy, Robyn M; Vissing, Kristian

    2014-06-01

    Small heat shock proteins (sHSPs) are a subgroup of the highly conserved family of HSPs that are stress inducible and confer resistance to cellular stress and injury. This study aimed to quantitatively examine whether type of contraction (concentric or eccentric) affects sHSPs, HSP27 and αB-crystallin, localization, and phosphorylation in human muscle. Vastus lateralis muscle biopsies from 11 healthy male volunteers were obtained pre- and 3 h, 24 h, and 7 days following concentric (CONC), eccentric (ECC1), and repeated bout eccentric (ECC2) exercise. No changes were apparent in a control group (n = 5) who performed no exercise. Eccentric exercise induced muscle damage, as evidenced by increased muscle force loss, perceived muscle soreness, and elevated plasma creatine kinase and myoglobin levels. Total HSP27 and αB-crystallin amounts did not change following any type of exercise. Following eccentric exercise (ECC1 and ECC2) phosphorylation of HSP27 at serine 15 (pHSP27-Ser15) was increased approximately 3- to 6-fold at 3 h, and pαB-crystallin-Ser59 increased ~10-fold at 3 h. Prior to exercise most of the sHSP and psHSP pools were present in the cytosolic compartment. Eccentric exercise resulted in partial redistribution of HSP27 (~23%) from the cytosol to the cytoskeletal fraction (~28% for pHSP27-Ser15 and ~7% for pHSP27-Ser82), with subsequent full reversal within 24 h. αB-crystallin also showed partial redistribution from the cytosolic to cytoskeletal fraction (~18% of total) 3 h post-ECC1, but not after ECC2. There was no redistribution or phosphorylation of sHSPs with CONC. Eccentric exercise results in increased sHSP phosphorylation and translocation to the cytoskeletal fraction, but the sHSP translocation is not dependent on their phosphorylation. Copyright © 2014 the American Physiological Society.

  2. Eccentric Exercise, Kinesiology Tape, and Balance in Healthy Men.

    Science.gov (United States)

    Hosp, Simona; Folie, Ramona; Csapo, Robert; Hasler, Michael; Nachbauer, Werner

    2017-07-01

      Deficits in balance have been identified as a possible risk factor for knee injuries in athletes. Despite a lack of evidence for its effectiveness, kinesiology tape (KT) is widely used to prevent knee injuries.   To investigate the influence of KT at the knee joint on balance ability in healthy men after eccentric exercise.   Crossover study.   University laboratory.   Twelve young men with no history of lower limb injury volunteered for the study (age = 23.3 ± 2.6 years). All participants were students enrolled in a sports science program.   Participants performed the balance test with and without KT at the knee joint on 2 separate days.   The ability to maintain balance was assessed during a single-legged-stance test using a computerized balance-stability test system. The test was performed before and after 30 minutes of downhill walking on a treadmill.   Eccentric exercise resulted in a deterioration of balance ability, which was attenuated by the use of KT. Further analyses revealed that the effectiveness of KT depended on the participant's balance status, with the preventive effect being greater in participants presenting with poorer baseline balance ability.   Applied to the knee joint, KT counteracted the exercise-related deterioration of balance ability observed when no tape was used. Participants presenting with below-average balance ability received more benefit from KT. By preventing exercise-related impairment of balance ability, KT might help to reduce the risk of sport-associated knee injuries.

  3. Effects of eccentric exercise on toll-like receptor 4 signaling pathway in peripheral blood mononuclear cells.

    Science.gov (United States)

    Fernandez-Gonzalo, Rodrigo; De Paz, José A; Rodriguez-Miguelez, Paula; Cuevas, María J; González-Gallego, Javier

    2012-06-01

    This study aimed to investigate the response of the toll-like receptor 4 (TLR4) signaling pathway to an acute bout of eccentric exercise, and to assess whether eccentric training attenuated the effects induced by acute eccentric exercise. Twenty men (22.4 ± 0.5 yr) were divided into a control group (CG, n = 8) and a training group (TG, n = 12). Both groups performed two acute eccentric bouts on a squat machine in a 9-wk interval. During this time, TG followed a 6-wk eccentric training program (3 session/wk; 3-5 sets of 10 repetitions with loads ranging between the 40 and 50% of maximal isometric voluntary contraction). CD14, TLR4, and TNF-α mRNA levels, and CD14, TLR4, myeloid differentiation factor 88, tumor necrosis factor receptor-associated factor 6, TIR-domain-containing adapter-inducing interferon-β, phospho-IκB kinases, phospho-IκB, phospho-ERK-1/2, and TNF-α protein concentration were measured in peripheral blood mononuclear cells, before, immediately, and 2 h after each eccentric bout. The first acute eccentric bout triggered a proinflammatory response mediated by an upregulation of all of the factors measured within the TLR4 signaling pathway. Following the training period and after the second acute bout, CG showed a similar proinflammatory response than that seen after the first bout. However, the eccentric training intervention decreased significantly the protein concentration of all factors analyzed in TG compared with results obtained after the first bout. These results suggest that the TLR4-signaling pathway plays a critical role in the proinflammatory response seen after acute eccentric exercise. This response was attenuated after an eccentric training program through myeloid differentiation factor 88-dependent and -independent pathways.

  4. Neuromuscular Changes and Damage after Isoload versus Isokinetic Eccentric Exercise.

    Science.gov (United States)

    Doguet, Valentin; Nosaka, Kazunori; Plautard, Mathieu; Gross, Raphaël; Guilhem, GaËL; Guével, Arnaud; Jubeau, Marc

    2016-12-01

    This study compared the effects of isoload (IL) and isokinetic (IK) knee extensor eccentric exercises on changes in muscle damage and neuromuscular parameters to test the hypothesis that the changes would be different after IL and IK exercises. Twenty-two young men were paired based on their strength and placed in the IL (N = 11) or the IK (N = 11) group. The IL group performed 15 sets of 10 eccentric contractions with a 150% of predetermined one-repetition maximum load. The IK group performed 15 sets of several maximal eccentric contractions matched set by set for the total amount of work and mean angular velocity with the IL group. Muscle damage markers (voluntary isometric peak torque, muscle soreness, and creatine kinase activity) and neuromuscular variables (e.g., voluntary activation, H-reflex, M-wave, and evoked torque) were measured before, immediately after, and 24, 48, 72, and 96 h postexercise. Voluntary isometric peak torque decreased to the same extent (P = 0.94) in both groups immediately after (IL = -40.6% ± 13.8% vs IK = -42.4% ± 10.2%) to 96 h after the exercise (IL = -21.8% ± 28.5% vs IK = -26.7% ± 23.5%). Neither peak muscle soreness (IL = 48.1 ± 28.2 mm vs IK = 54.7 ± 28.9 mm, P = 0.57) nor creatine kinase activity (IL = 12,811 ± 22,654 U·L vs IK = 15,304 ± 24,739 U·L, P = 0.59) significantly differed between groups. H-reflex (IL = -23% vs IK = -35%) and M-wave (IL = -10% vs IK = -17%) significantly decreased immediately postexercise similarly between groups. The changes in muscle damage and neuromuscular function after the exercise are similar between IL and IK, suggesting that resistance modality has little effects on acute muscle responses.

  5. Variability in Muscle Damage after Eccentric Exercise and the Repeated Bout Effect

    Science.gov (United States)

    Chen, Trevor C.

    2006-01-01

    The first purpose of this study was to determine a possible explanation for the variability in the response to eccentric exercise by having participants repeat the same exercise 1 year apart. The second purpose was to examine whether initial injury in response to eccentric exercise was associated with the extent of the repeated bout effect (RBE).…

  6. Variability in Muscle Damage after Eccentric Exercise and the Repeated Bout Effect

    Science.gov (United States)

    Chen, Trevor C.

    2006-01-01

    The first purpose of this study was to determine a possible explanation for the variability in the response to eccentric exercise by having participants repeat the same exercise 1 year apart. The second purpose was to examine whether initial injury in response to eccentric exercise was associated with the extent of the repeated bout effect (RBE).…

  7. Muscle soreness, swelling, stiffness and strength loss after intense eccentric exercise.

    Science.gov (United States)

    Cleak, M J; Eston, R G

    1992-01-01

    High-intensity eccentric contractions induce performance decrements and delayed onset muscle soreness. The purpose of this investigation was to study the magnitude and time course of such decrements and their interrelationships in 26 young women of mean(s.d.) age 21.4(3.3) years. Subjects performed 70 maximal eccentric contractions of the elbow flexors on a pulley system, specially designed for the study. The non-exercised arm acted as the control. Measures of soreness, tenderness, swelling (SW), relaxed elbow joint angle (RANG) and isometric strength (STR) were taken before exercise, immediately after exercise (AE), analysis of variance and at 24-h intervals for 11 days. There were significant (P < 0.01, analysis of variance) changes in all factors. Peak effects were observed between 24 and 96 h AE. With the exception of STR, which remained lower (P < 0.01), all variables returned to baseline levels by day 11. A non-significant correlation between pain and STR indicated that pain was not a major factor in strength loss. Also, although no pain was evident, RANG was decreased immediately AE. There was no relationship between SW, RANG and pain. The prolonged nature of these symptoms indicates that repair to damaged soft tissue is a slow process. Strength loss is considered particularly important as it continues when protective pain and tenderness have disappeared. This has implications for the therapeutic management of patients with myopathologies and those receiving eccentric exercise for rehabilitation. PMID:1490222

  8. Decreased muscle GLUT-4 and contraction-induced glucose transport after eccentric contractions

    DEFF Research Database (Denmark)

    Kristiansen, S; Asp, Svend; Richter, Erik

    1996-01-01

    Eccentric exercise causes muscle damage and decreased muscle glycogen and glucose transporter isoform (GLUT-4) protein content. We investigated whether the contraction-induced increase in skeletal muscle glucose transport and muscle performance is affected by prior eccentric contractions. The calf...... than in CT rats. In the GW and GR muscle, prior eccentric exercise decreased contraction-induced stimulation of glucose transport compared with CT, ST, and CC rats despite no difference in tension development and oxygen uptake among the groups. There was no change in total GLUT-4 content and glucose...... muscles from rats were stimulated for eccentric (EC) or concentric (CC) contractions or were passively stretched (ST). Muscles from unstimulated control (CT) rats were also studied. Two days later, all rats had their isolated hindlimbs perfused either at rest or during 15 min of isometric muscle...

  9. Specific training improves skeletal muscle mitochondrial calcium homeostasis after eccentric exercise.

    Science.gov (United States)

    Rattray, Ben; Thompson, Martin; Ruell, Patricia; Caillaud, Corinne

    2013-02-01

    There is limited understanding of the mitochondrial adaptation following repeated eccentric exercise bouts, a model resulting in muscle adaptation known as the repeat bout effect. It was hypothesized that downhill training would reduce mitochondrial calcium content (MCC) post an acute eccentric bout with concurrent improvements in mitochondrial respiratory function. Thirty-four Sprague-Dawley rats were divided into four groups: control (N), control with acute eccentric exercise (N (ecc)), trained control (X) and trained with acute eccentric exercise (X (ecc)). Training for X and X (ecc) consisted of 30 min per day for five consecutive days of downhill treadmill running. The acute eccentric exercise bout was a -14° treadmill exercise for 90 min performed 2 weeks after the training period. Animals were killed 48 h post-exercise. Isolated mitochondria from the red quadriceps allowed for the measure of mitochondrial respiratory indices and MCC. Calpain activity and heat shock protein 72 expression (HSP72) were also measured. MCC dramatically increased following the acute bout of eccentric exercise in N (ecc) (p eccentric exercise. The results suggest that downhill exercise training improves mitochondrial calcium homeostasis following an acute bout of prolonged eccentric exercise and may stabilize mitochondrial respiratory function. These improvements coincide with a reduction in calpain activity and heat shock protein upregulation.

  10. L-arginine supplementation protects exercise performance and structural integrity of muscle fibers after a single bout of eccentric exercise in rats.

    Science.gov (United States)

    Lomonosova, Yulia N; Shenkman, Boris S; Kalamkarov, Grigorii R; Kostrominova, Tatiana Y; Nemirovskaya, Tatyana L

    2014-01-01

    Eccentric exercise is known to disrupt sarcolemmal integrity and induce damage of skeletal muscle fibers. We hypothesized that L-arginine (L-Arg; nitric oxide synthase (NOS) substrate) supplementation prior to a single bout of eccentric exercise would diminish exercise-induced damage. In addition, we used N-nitro-L-arginine methyl ester hydrochloride (L-NAME; NOS inhibitor) to clarify the role of native NOS activity in the development of exercise-induced muscle damage. Rats were divided into four groups: non-treated control (C), downhill running with (RA) or without (R) L-Arg supplementation and downhill running with L-NAME supplementation (RN). Twenty four hours following eccentric exercise seven rats in each group were sacrificed and soleus muscles were dissected and frozen for further analysis. The remaining seven rats in each group were subjected to the exercise performance test. Our experiments showed that L-Arg supplementation prior to a single bout of eccentric exercise improved subsequent exercise performance capacity tests in RA rats when compared with R, RN and C rats by 37%, 27% and 13%, respectively. This outcome is mediated by L-Arg protection against post-exercise damage of sarcolemma (2.26- and 0.87-fold less than R and RN groups, respectively), reduced numbers of damaged muscle fibers indicated by the reduced loss of desmin content in the muscle (15% and 25% less than R and RN groups, respectively), and diminished µ-calpain mRNA up-regulation (42% and 30% less than R and RN groups, respectively). In conclusion, our study indicates that L-Arg supplementation prior to a single bout of eccentric exercise alleviates muscle fiber damage and preserves exercise performance capacity.

  11. L-arginine Supplementation Protects Exercise Performance and Structural Integrity of Muscle Fibers after a Single Bout of Eccentric Exercise in Rats

    Science.gov (United States)

    Lomonosova, Yulia N.; Shenkman, Boris S.; Kalamkarov, Grigorii R.; Kostrominova, Tatiana Y.; Nemirovskaya, Tatyana L.

    2014-01-01

    Eccentric exercise is known to disrupt sarcolemmal integrity and induce damage of skeletal muscle fibers. We hypothesized that L-arginine (L-Arg; nitric oxide synthase (NOS) substrate) supplementation prior to a single bout of eccentric exercise would diminish exercise-induced damage. In addition, we used N-nitro-L-arginine methyl ester hydrochloride (L-NAME; NOS inhibitor) to clarify the role of native NOS activity in the development of exercise-induced muscle damage. Rats were divided into four groups: non-treated control (C), downhill running with (RA) or without (R) L-Arg supplementation and downhill running with L-NAME supplementation (RN). Twenty four hours following eccentric exercise seven rats in each group were sacrificed and soleus muscles were dissected and frozen for further analysis. The remaining seven rats in each group were subjected to the exercise performance test. Our experiments showed that L-Arg supplementation prior to a single bout of eccentric exercise improved subsequent exercise performance capacity tests in RA rats when compared with R, RN and C rats by 37%, 27% and 13%, respectively. This outcome is mediated by L-Arg protection against post-exercise damage of sarcolemma (2.26- and 0.87-fold less than R and RN groups, respectively), reduced numbers of damaged muscle fibers indicated by the reduced loss of desmin content in the muscle (15% and 25% less than R and RN groups, respectively), and diminished µ-calpain mRNA up-regulation (42% and 30% less than R and RN groups, respectively). In conclusion, our study indicates that L-Arg supplementation prior to a single bout of eccentric exercise alleviates muscle fiber damage and preserves exercise performance capacity. PMID:24736629

  12. Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    M Carmen Valero

    Full Text Available Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1 positive, non-hematopoetic (CD45⁻ cells were evaluated in wild type (WT and α7 integrin transgenic (α7Tg mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1⁺CD45⁻ stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1⁺ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1⁺CD45⁻ cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs, predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7⁺ cells and facilitated formation of eMHC⁺DiI⁻ fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy.

  13. Exercise-Induced Bronchoconstriction

    Science.gov (United States)

    ... Conditions & Treatments ▸ Conditions Dictionary ▸ Exercise-Induced Bronchoconstriction Share | Exercise-Induced Bronchoconstriction (EIB) « Back to A to Z Listing Exercise-Induced Bronchoconstriction, (EIB), often known as exercise-induced ...

  14. Eccentric exercise: mechanisms and effects when used as training regime or training adjunct.

    Science.gov (United States)

    Vogt, Michael; Hoppeler, Hans H

    2014-06-01

    The aim of the current review is to discuss applications and mechanism of eccentric exercise in training regimes of competitive sports. Eccentric muscle work is important in most sports. Eccentric muscle contractions enhance the performance during the concentric phase of stretch-shortening cycles, which is important in disciplines like sprinting, jumping, throwing, and running. Muscles activated during lengthening movements can also function as shock absorbers, to decelerate during landing tasks or to precisely deal with high external loading in sports like alpine skiing. The few studies available on trained subjects reveal that eccentric training can further enhance maximal muscle strength and power. It can further optimize muscle length for maximal tension development at a greater degree of extension, and has potential to improve muscle coordination during eccentric tasks. In skeletal muscles, these functional adaptations are based on increases in muscle mass, fascicle length, number of sarcomeres, and cross-sectional area of type II fibers. Identified modalities for eccentric loading in athletic populations involve classical isotonic exercises, accentuated jumping exercises, eccentric overloading exercises, and eccentric cycle ergometry. We conclude that eccentric exercise offers a promising training modality to enhance performance and to prevent injuries in athletes. However, further research is necessary to better understand how the neuromuscular system adapts to eccentric loading in athletes. Copyright © 2014 the American Physiological Society.

  15. Eccentric exercise slows in vivo microvascular reactivity during brief contractions in human skeletal muscle.

    Science.gov (United States)

    Larsen, Ryan G; Hirata, Rogerio P; Madzak, Adnan; Frøkjær, Jens B; Graven-Nielsen, Thomas

    2015-12-01

    Unaccustomed exercise involving eccentric contractions results in muscle soreness and an overall decline in muscle function, however, little is known about the effects of eccentric exercise on microvascular reactivity in human skeletal muscle. Fourteen healthy men and women performed eccentric contractions of the dorsiflexor muscles in one leg, while the contralateral leg served as a control. At baseline, and 24 and 48 h after eccentric exercise, the following were acquired bilaterally in the tibialis anterior muscle: 1) transverse relaxation time (T2)-weighted magnetic resonance images to determine muscle cross-sectional area (mCSA) and T2; 2) blood oxygen level-dependent (BOLD) images during and following brief, maximal voluntary contractions (MVC) to monitor the hyperemic responses with participants positioned supine in a 3T magnet; 3) muscle strength; and 4) pain pressure threshold. Compared with the control leg, eccentric exercise resulted in soreness, decline in strength (∼20%), increased mCSA (∼7%), and prolonged T2 (∼7%) at 24 and 48 h (P eccentric exercise, such that time-to-peak (∼35%, P eccentric exercise may impede rapid adjustments in muscle blood flow at exercise onset and during activities involving brief bursts of muscle activation, which may impair O2 delivery and contribute to reduced muscle function after eccentric exercise. Copyright © 2015 the American Physiological Society.

  16. Motor unit activity after eccentric exercise and muscle damage in humans.

    Science.gov (United States)

    Semmler, J G

    2014-04-01

    It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.

  17. Is eccentric exercise an effective treatment for lateral epicondylitis? A systematic review.

    Science.gov (United States)

    Cullinane, Frances L; Boocock, Mark G; Trevelyan, Fiona C

    2014-01-01

    To establish the effectiveness of eccentric exercise as a treatment intervention for lateral epicondylitis. ProQuest, Medline via EBSCO, AMED, Scopus, Web of Science, CINAHL. A systematic review was undertaken to identify randomized and controlled clinical trials incorporating eccentric exercise as a treatment for patients diagnosed with lateral epicondylitis. Studies were included if: they incorporated eccentric exercise, either in isolation or as part of a multimodal treatment protocol; they assessed at least one functional or disability outcome measure; and the patients had undergone diagnostic testing. The methodological quality of each study was assessed using the Modified Cochrane Musculoskeletal Injuries Group score sheet. Twelve studies met the inclusion criteria. Three were deemed 'high' quality, seven were 'medium' quality, and two were 'low' quality. Eight of the studies were randomized trials investigating a total of 334 subjects. Following treatment, all groups inclusive of eccentric exercise reported decreased pain and improved function and grip strength from baseline. Seven studies reported improvements in pain, function, and/or grip strength for therapy treatments inclusive of eccentric exercise when compared with those excluding eccentric exercise. Only one low-quality study investigated the isolated effects of eccentric exercise for treating lateral epicondylitis and found no significant improvements in pain when compared with other treatments. The majority of consistent findings support the inclusion of eccentric exercise as part of a multimodal therapy programme for improved outcomes in patients with lateral epicondylitis.

  18. Acute Effect of High-Intensity Eccentric Exercise on Vascular Endothelial Function in Young Men.

    Science.gov (United States)

    Choi, Youngju; Akazawa, Nobuhiko; Zempo-Miyaki, Asako; Ra, Song-Gyu; Shiraki, Hitoshi; Ajisaka, Ryuichi; Maeda, Seiji

    2016-08-01

    Choi, Y, Akazawa, N, Zempo-Miyaki, A, Ra, S-G, Shiraki, H, Ajisaka, R, and Maeda, S. Acute effect of high-intensity eccentric exercise on vascular endothelial function in young men. J Strength Cond Res 30(8): 2279-2285, 2016-Increased central arterial stiffness is as an independent risk factor for cardiovascular disease. Evidence regarding the effects of high-intensity resistance exercise on vascular endothelial function and central arterial stiffness is conflicting. The purpose of this study was to examine the effects of acute high-intensity eccentric exercise on vascular endothelial function and central arterial stiffness. We evaluated the acute changes in endothelium-dependent flow-mediated dilation (FMD), low-flow-mediated constriction (L-FMC), and arterial stiffness after high-intensity eccentric exercise. Seven healthy, sedentary men (age, 24 ± 1 year) performed maximal eccentric elbow flexor exercise using their nondominant arm. Before and 45 minutes after eccentric exercise, carotid arterial compliance and brachial artery FMD and L-FMC in the nonexercised arm were measured. Carotid arterial compliance was significantly decreased, and β-stiffness index significantly increased after eccentric exercise. Brachial FMD was significantly reduced after eccentric exercise, whereas there was no significant difference in brachial L-FMC before and after eccentric exercise. A positive correlation was detected between change in arterial compliance and change in FMD (r = 0.779; p ≤ 0.05), and a negative correlation was detected between change in β-stiffness index and change in FMD (r = -0.891; p eccentric exercise. In this study, acute high-intensity eccentric exercise increased central arterial stiffness; this increase was accompanied by a decrease in endothelial function caused by reduced endothelium-dependent vasodilation but not by a change in endothelium-dependent vasoconstriction.

  19. Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise.

    Science.gov (United States)

    Hyldahl, Robert D; Hubal, Monica J

    2014-02-01

    The response of skeletal muscle to unaccustomed eccentric exercise has been studied widely, yet it is incompletely understood. This review is intended to provide an up-to-date overview of our understanding of how skeletal muscle responds to eccentric actions, with particular emphasis on the underlying molecular and cellular mechanisms of damage and recovery. This review begins by addressing the question of whether eccentric actions result in physical damage to muscle fibers and/or connective tissue. We next review the symptomatic manifestations of eccentric exercise (i.e., indirect damage markers, such as delayed onset muscle soreness), with emphasis on their relatively poorly understood molecular underpinnings. We then highlight factors that potentially modify the muscle damage response following eccentric exercise. Finally, we explore the utility of using eccentric training to improve muscle function in populations of healthy and aging individuals, as well as those living with neuromuscular disorders. Copyright © 2013 Wiley Periodicals, Inc.

  20. Intermittent hypobaric hypoxia combined with aerobic exercise improves muscle morphofunctional recovery after eccentric exercise to exhaustion in trained rats.

    Science.gov (United States)

    Rizo-Roca, D; Ríos-Kristjánsson, J G; Núñez-Espinosa, C; Santos-Alves, E; Gonçalves, I O; Magalhães, J; Ascensão, A; Pagès, T; Viscor, G; Torrella, J R

    2017-03-01

    Unaccustomed eccentric exercise leads to muscle morphological and functional alterations, including microvasculature damage, the repair of which is modulated by hypoxia. We present the effects of intermittent hypobaric hypoxia and exercise on recovery from eccentric exercise-induced muscle damage (EEIMD). Soleus muscles from trained rats were excised before (CTRL) and 1, 3, 7, and 14 days after a double session of EEIMD protocol. A recovery treatment consisting of one of the following protocols was applied 1 day after the EEIMD: passive normobaric recovery (PNR), a 4-h daily exposure to passive hypobaric hypoxia at 4,000 m (PHR), or hypobaric hypoxia exposure followed by aerobic exercise (AHR). EEIMD produced an increase in the percentage of abnormal fibers compared with CTRL, and it affected the microvasculature by decreasing capillary density (CD, capillaries per mm(2)) and the capillary-to-fiber ratio (CF). After 14 days, AHR exhibited CD and CF values similar to those of CTRL animals (789 and 3.30 vs. 746 and 3.06) and significantly higher than PNR (575 and 2.62) and PHR (630 and 2.92). Furthermore, VEGF expression showed a significant 43% increase in AHR when compared with PNR. Moreover, after 14 days, the muscle fibers in AHR had a more oxidative phenotype than the other groups, with significantly smaller cross-sectional areas (AHR, 3,745; PNR, 4,502; and PHR, 4,790 µm(2)), higher citrate synthase activity (AHR, 14.8; PNR, 13.1; and PHR, 12 µmol·min(-1)·mg(-1)) and a significant 27% increment in PGC-1α levels compared with PNR. Our data show that hypoxia combined with exercise attenuates or reverses the morphofunctional alterations induced by EEIMD.NEW & NOTEWORTHY Our study provides new insights into the use of intermittent hypobaric hypoxia combined with exercise as a strategy to recover muscle damage induced by eccentric exercise. We analyzed the effects of hypobaric exposure combined with aerobic exercise on histopathological features of muscle

  1. Muscle changes with eccentric exercise: Implications on earth and in space

    Science.gov (United States)

    Hargens, Alan R.; Parazynski, Scott; Aratow, Michael; Friden, Jan

    1989-01-01

    Recent investigations of fluid pressure, morpholo gy, and enzyme activities of skeletal muscle exercised eccentrically or concentrically in normal human subjects are reviewed. Intramuscular pressures were measured before, during, and after submaximal exercise and correlated with subjective muscle soreness, fiber size, water content, and blood indices of muscle enzymes. High intensity eccentric exercise is characterized by post exercise pain, elevated intramuscular pressures, and swelling of both type 1 and 2 fibers as compared to concentric exercise. Thus, long periods of unaccustomed, high level eccentric contraction may cause muscle injury, fiber swelling, fluid accumulation, elevated intramuscular pressure, and delayed muscle soreness. Training regimens of progressively increasing eccentric exercise, however, cause less soreness and are extremely efficacious in increasing muscle mass and strength. It is proposed that on Earth, postural muscles are uniquely adapted to low levels of prolonged eccentric contraction that are absent during weightlessness. The almost complete absence of eccentric exercise in space may be an important contributor to muscle atrophy and therefore equipment should be designed to integrate eccentric contractions into exercise protocols for long-term spaceflight.

  2. Effects of concentric and repeated eccentric exercise on muscle damage and calpain-calpastatin gene expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Vissing, K.; Overgaard, K.; Nedergaard, A.

    2008-01-01

    The purpose of this study was to compare the responsiveness of changes in Ca2+-content and calpain-calpastatin gene expression to concentric and eccentric single-bout and repeated exercise. An exercise group (n = 14) performed two bouts of bench-stepping exercise with 8 weeks between exercise bouts...... for muscle Ca2+-content and mRNA levels for calpain isoforms and calpastatin. Exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P ... eccentric exercise bout (P eccentric exercise 24 h post-exercise (P

  3. Creatine supplementation does not decrease oxidative stress and inflammation in skeletal muscle after eccentric exercise.

    Science.gov (United States)

    Silva, Luciano A; Tromm, Camila B; Da Rosa, Guilherme; Bom, Karoliny; Luciano, Thais F; Tuon, Talita; De Souza, Cláudio T; Pinho, Ricardo A

    2013-01-01

    Thirty-six male rats were used; divided into 6 groups (n = 6): saline; creatine (Cr); eccentric exercise (EE) plus saline 24 h (saline + 24 h); eccentric exercise plus Cr 24 h (Cr + 24 h); eccentric exercise plus saline 48 h (saline + 48 h); and eccentric exercise plus Cr 48 h (Cr + 48 h). Cr supplementation was administered as a solution of 300 mg · kg body weight(-1) · day(-1) in 1 mL water, for two weeks, before the eccentric exercise. The animals were submitted to one downhill run session at 1.0 km · h(-1) until exhaustion. Twenty-four and forty-eight hours after the exercise, the animals were killed, and the quadriceps were removed. Creatine kinase levels, superoxide production, thiobarbituric acid reactive substances (TBARS) level, carbonyl content, total thiol content, superoxide dismutase, catalase, glutathione peroxidase, interleukin-1b (IL-1β), nuclear factor kappa B (NF-kb), and tumour necrosis factor (TNF) were analysed. Cr supplementation neither decreases Cr kinase, superoxide production, lipoperoxidation, carbonylation, total thiol, IL-1β, NF-kb, or TNF nor alters the enzyme activity of superoxide dismutase, catalase, and glutathione peroxides in relation to the saline group, respectively (P eccentric exercise. The present study suggests that Cr supplementation does not decrease oxidative stress and inflammation after eccentric contraction.

  4. Effects of eccentric exercise on systemic concentrations of pro- and anti-inflammatory cytokines and prostaglandin (E2): comparison between young and postmenopausal women.

    Science.gov (United States)

    Conceição, Miguel Soares; Libardi, Cleiton Augusto; Nogueira, Felipe Romano Damas; Bonganha, Valéria; Gáspari, Arthur Fernandes; Chacon-Mikahil, Mara Patrícia Traina; Cavaglieri, Cláudia Regina; Madruga, Vera Aparecida

    2012-09-01

    The present study aimed to analyze the magnitude of muscle damage and inflammatory responses induced by eccentric exercise in young (YW) and postmenopausal women (PMW). Seventeen healthy women (nine YW, 23.89 ± 2.03 years; and eight PMW, 51.13 ± 5.08 years) performed five sets of six maximal eccentric actions of the elbow flexors. Changes in isometric strength, range of motion, muscle soreness, and upper-arm circumference were evaluated pre, post, 24, 48, and 72 h following eccentric exercise. Changes in creatine kinase activity, interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor-α (TNF-α), and prostaglandin E(2) (PGE(2)) were measured pre, 24, 48, and 72 h following eccentric exercise. For intra and inter-group analysis, a two-way repeated measures ANOVA was applied followed by a Tukey's post hoc test. Pearson's correlation was used to analyze the correlations between variables. It was observed no differences between groups for the markers of muscle damage, although significant modifications (p eccentric exercise compared to pre. Further, IL-10 was higher for YW than PMW 72 h post-eccentric exercise. Significant correlations (p eccentric exercise compared to PMW.

  5. Exercise-Induced Asthma

    Science.gov (United States)

    ... management of exercise-induced bronchoconstriction: A practice parameter. Annals of Allergy, Asthma & Immunology. 2010;105:S1. Krafczyk ... up exercise on exercise-induced bronchoconstriction. Medicine and Science in Sports and Exercise. 2012;44:383. Asthma ...

  6. ISOMETRIC EXERCISE VERSUS COMBINED CONCENTRIC-ECCENTRIC EXERCISE TRAINING IN PATIENTS WITH OSTEOARTHRITIS KNEE

    Directory of Open Access Journals (Sweden)

    Nigombam Amit Kumar

    2015-12-01

    Full Text Available Background: Osteoarthritis is a slowly evolving articular disease, which appears to originate in the cartilage and affects the underlying bone and soft tissues. OA results in pain and functional disability. The purpose of this study was to determine the effect of isometric exercises and combined concentric-eccentric exercises in reducing pain and functional disability in patients with osteoarthritis of knee. Methods: Forty individuals who were diagnosed as osteoarthritis by qualified orthopaedics and orthopaedic surgeons were chosen and were randomly divided into 2 groups Group A (N=20 and Group B (N=20. Group A was treated with isometric exercises and Group B was treated with combined concentric-eccentric exercises. The intervention lasted eight weeks and the physical activity was carried out for 3 days a week. Both the groups were assessed for pain and functional disability of knee joint by using WOMAC osteoarthritis index and VAS. Results: Between group analysis of pre and post study data reveals that VAS and WOMAC osteoarthritis index revealed significant findings (P=0.00. Group B performs significantly better on both the scales after the treatment. Conclusion: Both the groups showed significant improvement in decreasing pain and functional disability. But mean scores of Group B showed greater improvement in reducing pain and functional disability as compared to Group A in patients with knee osteoarthritis. Thus the results suggest that a combined concentric-eccentric e

  7. Changes in electrical pain threshold of fascia and muscle after initial and secondary bouts of elbow flexor eccentric exercise.

    Science.gov (United States)

    Lau, Wing Yin; Blazevich, Anthony J; Newton, Michael J; Wu, Sam Shi Xuan; Nosaka, Kazunori

    2015-05-01

    This study investigated changes in electrical pain threshold (EPT) after repeated eccentric exercise bouts to test the hypothesis that fascia would become more sensitive than muscle when greater delayed onset muscle soreness (DOMS) is induced. Ten young men performed two eccentric exercise bouts (ECC1, ECC2) consisting of ten sets of six maximal isokinetic eccentric contractions of the elbow flexors with the same arm separated by 4 weeks. Maximal voluntary isometric contraction torque, range of motion, muscle soreness assessed by a visual analogue scale (VAS) and pressure pain threshold (PPT) were measured before, immediately after and 1-5 days after exercise. EPT was assessed in the biceps brachii fascia (BBF), biceps brachii muscle, and brachialis fascia (BF) 1 day before, immediately after, and 1, 2 and 4 days after exercise. All measures showed smaller changes (P fascia becomes more sensitive than muscle to electrical stimulation after the initial eccentric exercise, suggesting that damage inflammation to fascia than muscle fibres is more associated with DOMS.

  8. Effect of sport massage on pressure pain threshold and tolerance in athletes under eccentric exercise

    Directory of Open Access Journals (Sweden)

    Abdullah Selim KAPLAN

    2014-08-01

    Full Text Available Extensive line of evidence suggest that pain threshold and tolerance alters following exercise, although the mechanisms have not been elucidated yet. In this st udy, we investigated the role of sport massage on pressure pain threshold and tolerance in athletes under eccentric exercise. Ten male athletes aged 23 ± 1 years with 9.67 ± 3.04 years of athletic training were recruited for this study . Following baseline measurements of pressure pain threshold and tolerance from m. biceps brachii and m. triceps brachii muscle and myofascial regions of the dominant upper extremity by using a digital algometer, subjects were underwent an acute bout of eccentric exercise. Par ticipants were completed 4 sets of eccentric exercise each comprising 20 repetitions of lifting 80% of their 1 RM by using a dumbbell. Pressure pain threshold and tolerance tests were repeated 10, 20 and 30 minutes, and 24 and 48 hours following exercise. One week after eccentric exercise, sport massage protocol for 10 minutes was manually administered to the dominant arm immediately after exercise, and all measurements were repeated at the same timeline as eccentric exercise. Results are presented as mean + standart deviation. Data of the same timeline were analyzed by using t test. A level of p<0.05 was accepted statistical significant. Eccentric exercise resulted to increase the pain tolerance from muscle and myofascia regions of m. biceps and triceps br achii, and sport massage was found to decrease the pain tolerance at 10 minutes from muscle regions of m. biceps and triceps brachii, 10, 20 and 30 minutes from myofascial region of biceps brachii, and 20 minutes, 24 and 48 hours from myofascial region of m. triceps brachii following acute bout of eccentric exercise in athletes. We concluded that sport massage reduces the hypoalgesic response during acute and delayed period of recovery after eccentric exercise.

  9. Eccentric exercise training as a countermeasure to non-weight-bearing soleus muscle atrophy

    Science.gov (United States)

    Kirby, Christopher R.; Ryan, Mirelle J.; Booth, Frank W.

    1992-01-01

    This investigation tested whether eccentric resistance training could prevent soleus muscle atrophy during non-weight bearing. Adult female rats were randomly assigned to either weight bearing +/- intramuscular electrodes or non-weight bearing +/- intramuscular electrodes groups. Electrically stimulated maximal eccentric contractions were performed on anesthetized animals at 48-h intervals during the 10-day experiment. Non-weight bearing significantly reduced soleus muscle wet weight (28-31 percent) and noncollagenous protein content (30-31 percent) compared with controls. Eccentric exercise training during non-weight bearing attenuated but did not prevent the loss of soleus muscle wet weight and noncollagenous protein by 77 and 44 percent, respectively. The potential of eccentric exercise training as an effective and highly efficient counter-measure to non-weight-bearing atrophy is demonstrated in the 44 percent attenuation of soleus muscle noncollagenous protein loss by eccentric exercise during only 0.035 percent of the total non-weight-bearing time period.

  10. Eccentric exercise training as a countermeasure to non-weight-bearing soleus muscle atrophy

    Science.gov (United States)

    Kirby, Christopher R.; Ryan, Mirelle J.; Booth, Frank W.

    1992-01-01

    This investigation tested whether eccentric resistance training could prevent soleus muscle atrophy during non-weight bearing. Adult female rats were randomly assigned to either weight bearing +/- intramuscular electrodes or non-weight bearing +/- intramuscular electrodes groups. Electrically stimulated maximal eccentric contractions were performed on anesthetized animals at 48-h intervals during the 10-day experiment. Non-weight bearing significantly reduced soleus muscle wet weight (28-31 percent) and noncollagenous protein content (30-31 percent) compared with controls. Eccentric exercise training during non-weight bearing attenuated but did not prevent the loss of soleus muscle wet weight and noncollagenous protein by 77 and 44 percent, respectively. The potential of eccentric exercise training as an effective and highly efficient counter-measure to non-weight-bearing atrophy is demonstrated in the 44 percent attenuation of soleus muscle noncollagenous protein loss by eccentric exercise during only 0.035 percent of the total non-weight-bearing time period.

  11. The repeated bout effect of eccentric exercise is not associated with changes in voluntary activation.

    Science.gov (United States)

    Kamandulis, Sigitas; Skurvydas, Albertas; Brazaitis, Marius; Skikas, Laimutis; Duchateau, Jacques

    2010-04-01

    The aim of this study was to compare the possible changes in muscle activation level between a first and second bout of damaging eccentric exercise performed at 2 weeks interval (i.e. repeated bout effect). To that purpose, ten physically active males took part in this study. The eccentric exercise consisted of 10 sets of 12 maximal voluntary contractions (MVC) produced by the knee extensors during movements performed at a constant speed of 160 degrees s(-1). Changes in voluntary and electrically evoked torque in concentric and/or isometric conditions were assessed at the following time points: pre-exercise, and 2 min, 1 and 24 h after each eccentric exercise. At the same time points, voluntary activation was quantified by the superimposed electrical stimulation technique. Muscle soreness and plasma CK activity were measured within 48 h after the eccentric exercise. The results showed that the decrease in eccentric peak torque was linear throughout the exercise protocol. At the end of bouts 1 and 2, torque was significantly reduced by 27.7 +/- 9.1 and 23.4 +/- 11.2, respectively, with no difference between bouts (P > 0.05). At 24 h post-exercise, a lower reduction (P eccentric exercise appears to reduce muscle damage, but does not influence the level of voluntary activation.

  12. Influence of acute eccentric exercise on the H:Q ratio.

    Science.gov (United States)

    Thompson, B J; Smith, D B; Sobolewski, E J; Fiddler, R E; Everett, L; Klufa, J L; Ryan, E D

    2011-12-01

    The purpose of the present study was to examine the effects of an acute bout of eccentric exercise on maximal isokinetic concentric peak torque (PT) of the leg flexors and extensors and the hamstrings-to-quadriceps (H:Q) strength ratio. Sixteen male (mean±SD: age=20.9±2 years; stature=177.0±4.4 cm; mass=76.8±10.0 kg) volunteers performed maximal, concentric isokinetic leg extension and flexion muscle actions at 60°·sec - 1 before and after (24-72 h) a bout of eccentric exercise. The eccentric exercise protocol consisted of 4 sets of 10 repetitions for the leg press, leg extension, and leg curl exercises at 120% of the concentric one repetition maximum (1-RM). The results indicated that the acute eccentric exercise protocol resulted in a significant (Pexercise. However, the H:Q ratios were unaltered by the eccentric exercise protocol. These findings suggest that an acute bout of eccentric exercise utilizing both multi - and single - joint dynamic constant external resistance (DCER) exercises results in similar decreases in maximal isokinetic strength of the leg flexors and extensors, but does not alter the H:Q ratio. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Cardiovascular and Muscular Consequences of Work-Matched Interval-Type of Concentric and Eccentric Pedaling Exercise on a Soft Robot

    Science.gov (United States)

    Flück, Martin; Bosshard, Rebekka; Lungarella, Max

    2017-01-01

    reduced after eccentric and concentric exercise. The results highlight that the deployed interval-type of eccentric leg exercise reduces metabolic strain of the cardiovasculature and muscle compared to concentric exercise, to recommended levels for cardio-rehabilitation (i.e., 50–70% of peak heart rate). Increases in blood glucose concentration indicate that resistance to contraction-induced glucose uptake after the deployed eccentric protocol is unrelated to muscle fatigue. PMID:28912726

  14. Cardiovascular and Muscular Consequences of Work-Matched Interval-Type of Concentric and Eccentric Pedaling Exercise on a Soft Robot.

    Science.gov (United States)

    Flück, Martin; Bosshard, Rebekka; Lungarella, Max

    2017-01-01

    after eccentric and concentric exercise. The results highlight that the deployed interval-type of eccentric leg exercise reduces metabolic strain of the cardiovasculature and muscle compared to concentric exercise, to recommended levels for cardio-rehabilitation (i.e., 50-70% of peak heart rate). Increases in blood glucose concentration indicate that resistance to contraction-induced glucose uptake after the deployed eccentric protocol is unrelated to muscle fatigue.

  15. Cardiovascular and Muscular Consequences of Work-Matched Interval-Type of Concentric and Eccentric Pedaling Exercise on a Soft Robot

    Directory of Open Access Journals (Sweden)

    Martin Flück

    2017-08-01

    similarly reduced after eccentric and concentric exercise. The results highlight that the deployed interval-type of eccentric leg exercise reduces metabolic strain of the cardiovasculature and muscle compared to concentric exercise, to recommended levels for cardio-rehabilitation (i.e., 50–70% of peak heart rate. Increases in blood glucose concentration indicate that resistance to contraction-induced glucose uptake after the deployed eccentric protocol is unrelated to muscle fatigue.

  16. Does degree of alteration in effort sense caused by eccentric exercise significantly affect initial exercise hyperpnea in humans?

    Science.gov (United States)

    Hotta, Norio; Yamamoto, Kaoru; Ogata, Hisayoshi; Maher, Patrick; Okumura, Naoya; Ishida, Koji

    2016-08-24

    Previous research has shown an exaggeration in exercise hyperpnea 2 days after eccentric exercise (ECC). Enhancement in central command has been suggested as one candidate to account for this effect given that ECC-induced neuromuscular dysfunction increases relative exercise intensity, thus resulting in reinforcement of effort sense. The purpose of this study was, therefore, to elucidate whether the degree of alteration in effort sense caused by ECC affects exercise hyperpnea. Ten subjects performed 20-s single-arm extension-flexion exercises with weight strapped to the wrist, and ventilatory response was measured before (Pre) and 2 days after ECC (D2). Relative exercise intensity at Pre was 5 % of maximal voluntary contraction (MVC) of Pre, whereas that at D2 was 9 % MVC of D2 because of decline in muscle strength. Ventilatory responses were significantly exaggerated at D2 with a significant increase in effort sense. Although effort sense was significantly reduced during exercise at D2 when wrist weight was subtracted to match relative exercise intensity at Pre (5 % MVC of D2), ventilatory responses were still significantly higher than those of Pre. After the disappearance of post-ECC muscle damage, subjects performed the same exercise with weight added (9 % MVC of Pre) so that effort was equalized to match that of D2; however, no significant increase in ventilatory response was detected. The fact that the extent of change in effort sense caused by ECC-induced neuromuscular dysfunction did not affect ventilatory response at the onset of exercise after ECC may suggest that the exaggeration of ventilatory response after ECC is caused by mechanisms other than alteration of the central command.

  17. Assessment of magnetic resonance techniques to measure muscle damage 24 h after eccentric exercise.

    Science.gov (United States)

    Fulford, J; Eston, R G; Rowlands, A V; Davies, R C

    2015-02-01

    The study examined which of a number of different magnetic resonance (MR) methods were sensitive to detecting muscle damage induced by eccentric exercise. Seventeen healthy, physically active participants, with muscle damage confirmed by non-MR methods were tested 24 h after performing eccentric exercise. Techniques investigated whether damage could be detected within the quadriceps muscle as a whole, and individually within the rectus femoris, vastus lateralis (VL), vastus medialis (VM), and vastus intermedius (VI). Relative to baseline values, significant changes were seen in leg and muscle cross-sectional areas and volumes and the resting inorganic phosphate concentration. Significant time effects over all muscles were also seen in the transverse relaxation time (T2) and apparent diffusion coefficient (ADC) values, with individually significant changes seen in the VL, VM, and VI for T2 and in the VI for ADC. A significant correlation was found between muscle volume and the average T2 change (r = 0.59) but not between T2 and ADC or Pi alterations. There were no significant time effects over all muscles for magnetization transfer contrast images, for baseline pH, phosphocreatine (PCr), phosphodiester, or ATP metabolite concentrations or the time constant describing the rate of PCr recovery following exercise.

  18. Fish oil supplementation reduces markers of oxidative stress but not muscle soreness after eccentric exercise.

    Science.gov (United States)

    Gray, Patrick; Chappell, Andrew; Jenkinson, Alison McE; Thies, Frank; Gray, Stuart R

    2014-04-01

    Due to the potential anti-inflammatory properties of fish-derived long chain n-3 fatty acids, it has been suggested that athletes should regularly consume fish oils-although evidence in support of this recommendation is not clear. While fish oils can positively modulate immune function, it remains possible that, due to their high number of double bonds, there may be concurrent increases in lipid peroxidation. The current study aims to investigate the effect of fish oil supplementation on exercise-induced markers of oxidative stress and muscle damage. Twenty males underwent a 6-week double-blind randomized placebo-controlled supplementation trial involving two groups (fish oil or placebo). After supplementation, participants undertook 200 repetitions of eccentric knee contractions. Blood samples were taken presupplementation, postsupplementation, immediately, 24, 48, and 72 hr postexercise and muscle soreness/maximal voluntary contraction (MVC) assessed. There were no differences in creatine kinase, protein carbonyls, endogenous DNA damage, muscle soreness or MVC between groups. Plasma thiobarbituric acid reactive substances (TBARS) were lower (p < .05) at 48 and 72 hr post exercise and H2O2 stimulated DNA damage was lower (p < .05) immediately postexercise in the fish oil, compared with the control group. The current study demonstrates that fish oil supplementation reduces selected markers of oxidative stress after a single bout of eccentric exercise.

  19. The effects of topical Arnica on performance, pain and muscle damage after intense eccentric exercise.

    Science.gov (United States)

    Pumpa, Kate L; Fallon, Kieran E; Bensoussan, Alan; Papalia, Shona

    2014-01-01

    The aim of the study was to determine if topical Arnica is effective in reducing pain, indicators of inflammation and muscle damage, and in turn improve performance in well-trained males experiencing delayed onset muscle soreness (DOMS). Twenty well-trained males matched by maximal oxygen uptake (V̇O2 Max) completed a double-blind, randomised placebo-controlled trial. Topical Arnica was applied to the skin superficial to the quadriceps and gastrocnemius muscles immediately after a downhill running protocol designed to induce DOMS. Topical Arnica was reapplied every 4 waking hours for the duration of the study. Performance measures (peak torque, countermovement and squat jump), pain assessments (visual analogue scale (VAS) and muscle tenderness) and blood analysis (interleukin-1 beta, interleukin-6, tumour necrosis factor-alpha, C-reactive protein, myoglobin and creatine kinase) were assessed at seven time points over five days (pre-, post-, 4, 24, 48, 72 and 96 hours after the downhill run). Participants in the topical Arnica group reported less pain as assessed through muscle tenderness and VAS 72 hours post-exercise. The application of topical Arnica did not affect any performance assessments or markers of muscle damage or inflammation. Topical Arnica used immediately after intense eccentric exercise and for the following 96 hours did not have an effect on performance or blood markers. It did however demonstrate the possibility of providing pain relief three days post-eccentric exercise.

  20. Ultrasound-Guided Percutaneous Electrolysis and Eccentric Exercises for Subacromial Pain Syndrome: A Randomized Clinical Trial

    Science.gov (United States)

    Arias-Buría, José L.; Truyols-Domínguez, Sebastián; Valero-Alcaide, Raquel; Salom-Moreno, Jaime; Atín-Arratibel, María A.; Fernández-de-las-Peñas, César

    2015-01-01

    Objective. To compare effects of ultrasound- (US-) guided percutaneous electrolysis combined with an eccentric exercise program of the rotator cuff muscles in subacromial pain syndrome. Methods. Thirty-six patients were randomized and assigned into US-guided percutaneous electrolysis (n = 17) group or exercise (n = 19) group. Patients were asked to perform an eccentric exercise program of the rotator cuff muscles twice every day for 4 weeks. Participants assigned to US-guided percutaneous electrolysis group also received the application of galvanic current through acupuncture needle on each session once a week (total 4 sessions). Shoulder pain (NPRS) and disability (DASH) were assessed at baseline, after 2 sessions, and 1 week after the last session. Results. The ANOVA revealed significant Group∗Time interactions for shoulder pain and disability (all, P < 0.01): individuals receiving US-guided percutaneous electrolysis combined with the eccentric exercises experienced greater improvement than those receiving eccentric exercise alone. Conclusions. US-guided percutaneous electrolysis combined with eccentric exercises resulted in small better outcomes at short term compared to when only eccentric exercises were applied in subacromial pain syndrome. The effect was statistically and clinically significant for shoulder pain but below minimal clinical difference for function. Future studies should investigate the long-term effects and potential placebo effect of this intervention. PMID:26649058

  1. Ultrasound-Guided Percutaneous Electrolysis and Eccentric Exercises for Subacromial Pain Syndrome: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    José L. Arias-Buría

    2015-01-01

    Full Text Available Objective. To compare effects of ultrasound- (US- guided percutaneous electrolysis combined with an eccentric exercise program of the rotator cuff muscles in subacromial pain syndrome. Methods. Thirty-six patients were randomized and assigned into US-guided percutaneous electrolysis (n=17 group or exercise (n=19 group. Patients were asked to perform an eccentric exercise program of the rotator cuff muscles twice every day for 4 weeks. Participants assigned to US-guided percutaneous electrolysis group also received the application of galvanic current through acupuncture needle on each session once a week (total 4 sessions. Shoulder pain (NPRS and disability (DASH were assessed at baseline, after 2 sessions, and 1 week after the last session. Results. The ANOVA revealed significant Group∗Time interactions for shoulder pain and disability (all, P<0.01: individuals receiving US-guided percutaneous electrolysis combined with the eccentric exercises experienced greater improvement than those receiving eccentric exercise alone. Conclusions. US-guided percutaneous electrolysis combined with eccentric exercises resulted in small better outcomes at short term compared to when only eccentric exercises were applied in subacromial pain syndrome. The effect was statistically and clinically significant for shoulder pain but below minimal clinical difference for function. Future studies should investigate the long-term effects and potential placebo effect of this intervention.

  2. Investigating the Effects of Knee Flexion during the Eccentric Heel-Drop Exercise

    National Research Council Canada - National Science Library

    Weinert-Aplin, Robert A; Bull, Anthony M J; McGregor, Alison H

    2015-01-01

    .... 19 healthy volunteers provided a group from which optical motion, forceplate and plantar pressure data were recorded while performing both the extended and flexed knee eccentric heel-drop exercises...

  3. The effect of temperature on eccentric contraction-induced isometric force loss in isolated perfused rat medial gastrocnemius muscle

    Directory of Open Access Journals (Sweden)

    Vasaghi Gharamaleki B

    2008-09-01

    Full Text Available "nBackground: The typical features of eccentric exercise-induced muscle damage are delayed-onset muscle soreness (DOMS and prolonged loss of muscle strength. It has been shown that passive warmth is effective in reducing muscle injury. Due to the interaction of different systems in vivo, we used isolated perfused medial gastrocnemius skeletal muscle to study the direct effect of temperature on the eccentric contraction-induced force loss. "nMethods: After femoral artery cannulation of a rat, the left medial gastrocnemius muscle was separated and then the entire lower limb was transferred into a prewarmed (35oC chamber. With the chamber temperature at 31, 35 and 39oC before and during eccentric contraction. Isometric force loss was measured after 15 eccentric contractions (N=7-9. "nResults: Maximum contraction force reduction has been used as an index for eccentric contraction-induced force loss. In this study eccentric contraction caused a significant reduction in maximum isometric tension (p<0.01, but no significant difference was seen in isometric force loss at 31oC and 39oC compared with that at 35oC. "nConclusions: Our results suggest that temperature changes before or during eccentric contractions have no effect on eccentric contraction-induced force loss. "nKeywords: Isolated perfused muscle, skeletal muscle, eccentric contractions, isometric force, gastrocnemius muscle, temperature.

  4. EFFECTS OF ECCENTRIC EXERCISE ON ANAEROBIC POWER, STARTING SPEED AND ANAEROBIC ENDURANCE

    OpenAIRE

    Maciejczyk, Marcin; Szymura, Jadwiga; Wiecek, Magdalena; Szygula, Zbigniew; Kepinska, Magdalena; Ochalek, Katarzyna; Pokrywka, Andrzej

    2015-01-01

    The aim of this study was to evaluate the effects of eccentric exercise on anaerobic power, starting speed and anaerobic endurance. The participants performed the maximum cycling sprint test (MCST) prior to eccentric exercise (ECC), 10 minutes after, as well as one hour, 24 hours, 48 hours, and one week after ECC. The peak and mean power, time to attain peak power, time of maintaining peak power and power decrease were measured in the MCST. Before and after ECC, the myoglobin concentration...

  5. Eccentric exercise in aging and diseased skeletal muscle: good or bad?

    Science.gov (United States)

    Lovering, Richard M; Brooks, Susan V

    2014-06-01

    Evidence is accumulating regarding the benefits of exercise in people who are more susceptible to injury, such as the elderly, or those with a neuromuscular disease, for example Duchenne muscular dystrophy (DMD). There appears to be a consensus that exercise can be safely performed in aging and diseased muscles, but the role of eccentric exercise is not as clear. Eccentric (lengthening) contractions have risks and benefits. Eccentric contractions are commonly performed on a daily basis, and high-force voluntary eccentric contractions are often employed in strength training paradigms with excellent results; however, high-force eccentric contractions are also linked to muscle damage. This minireview examines the benefits and safety issues of using eccentric exercise in at-risk populations. A common recommendation for all individuals is difficult to achieve, and guidelines are still being established. Some form of exercise is generally recommended with aging and even with diseased muscles, but the prescription (frequency, intensity, and duration) and type (resistance vs. aerobic) of exercise requires personal attention, as there is great diversity in the functional level and comorbidities in the elderly and those with neuromuscular disease. Copyright © 2014 the American Physiological Society.

  6. Effects of Low-Level Laser Therapy and Eccentric Exercises in the Treatment of Patellar Tendinopathy

    Directory of Open Access Journals (Sweden)

    Xiao-Guang Liu

    2014-01-01

    Full Text Available The study aims to investigate if low-level laser therapy (LLLT combined with eccentric exercises could more effectively treat patellar tendinopathy than LLLT alone and eccentric exercises alone. Twenty-one patients with patellar tendinopathy were randomized to three groups: laser alone, exercise alone, or laser plus exercise, with seven in each group. Laser irradiations were administered at the inferior pole of the patella and the two acupoints of Extra 36 (Xiyan with the intensity of 1592 mW/cm2. Eccentric training program consisted of three sets of 15 repetitions of unilateral squat on level ground. All patients received six treatments per week for four weeks. Knee pain and function and quadriceps muscle strength and endurance were evaluated at baseline and the end of treatment. After the 4-week intervention, all groups showed significant improvements in all the outcomes (P<0.01. The laser + exercise group had significantly greater improvements in all the outcomes than the other two groups (P<0.05, except nonsignificant difference in pain relief between the laser + exercise group and the laser group. In conclusion, LLLT combined with eccentric exercises is superior to LLLT alone and eccentric exercises alone to reduce pain and improve function in patients with patellar tendinopathy.

  7. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise?

    Science.gov (United States)

    Paulsen, Gøran; Mikkelsen, Ulla Ramer; Raastad, Truls; Peake, Jonathan M

    2012-01-01

    Exercise-induced muscle damage is an important topic in exercise physiology. However several aspects of our understanding of how muscles respond to highly stressful exercise remain unclear In the first section of this review we address the evidence that exercise can cause muscle damage and inflammation in otherwise healthy human skeletal muscles. We approach this concept by comparing changes in muscle function (i.e., the force-generating capacity) with the degree of leucocyte accumulation in muscle following exercise. In the second section, we explore the cytokine response to 'muscle-damaging exercise', primarily eccentric exercise. We review the evidence for the notion that the degree of muscle damage is related to the magnitude of the cytokine response. In the third and final section, we look at the satellite cell response to a single bout of eccentric exercise, as well as the role of the cyclooxygenase enzymes (COX1 and 2). In summary, we propose that muscle damage as evaluated by changes in muscle function is related to leucocyte accumulation in the exercised muscles. 'Extreme' exercise protocols, encompassing unaccustomed maximal eccentric exercise across a large range of motion, generally inflict severe muscle damage, inflammation and prolonged recovery (> 1 week). By contrast, exercise resembling regular athletic training (resistance exercise and downhill running) typically causes mild muscle damage (myofibrillar disruptions) and full recovery normally occurs within a few days. Large variation in individual responses to a given exercise should, however be expected. The link between cytokine and satellite cell responses and exercise-induced muscle damage is not so clear The systemic cytokine response may be linked more closely to the metabolic demands of exercise rather than muscle damage. With the exception of IL-6, the sources of systemic cytokines following exercise remain unclear The satellite cell response to severe muscle damage is related to

  8. Exercise-induced cardiac remodeling.

    Science.gov (United States)

    Weiner, Rory B; Baggish, Aaron L

    2012-01-01

    Early investigations in the late 1890s and early 1900s documented cardiac enlargement in athletes with above-normal exercise capacity and no evidence of cardiovascular disease. Such findings have been reported for more than a century and continue to intrigue scientists and clinicians. It is well recognized that repetitive participation in vigorous physical exercise results in significant changes in myocardial structure and function. This process, termed exercise-induced cardiac remodeling (EICR), is characterized by structural cardiac changes including left ventricular hypertrophy with sport-specific geometry (eccentric vs concentric). Associated alterations in both systolic and diastolic functions are emerging as recognized components of EICR. The increasing popularity of recreational exercise and competitive athletics has led to a growing number of individuals exhibiting these findings in routine clinical practice. This review will provide an overview of EICR in athletes.

  9. Multiarticular isokinetic high-load eccentric training induces large increases in eccentric and concentric strength and jumping performance.

    Science.gov (United States)

    Papadopoulos, Christos; Theodosiou, Konstantinos; Bogdanis, Gregory C; Gkantiraga, Evangelia; Gissis, Ioannis; Sambanis, Michalis; Souglis, Athanasios; Sotiropoulos, Aristomenis

    2014-09-01

    This study investigated the effects of short-term eccentric exercise training using a custom-made isokinetic leg press device, on concentric and eccentric strength and explosiveness as well as jumping performance. Nineteen healthy males were divided into an eccentric (ECC, n = 10) and a control group (CG, n = 9). The ECC group trained twice per week for 8 weeks using an isokinetic hydraulic leg press machine against progressively increasing resistance ranging from 70 to 90% of maximal eccentric force. Jumping performance and maximal force generating capacity were measured before and after eccentric training. In the ECC group, drop jump (DJ) height and maximal power were increased by 13.6 ± 3.2% (p knee, and hip joint angles were also reduced by 33.9 ± 1.1%, 31.1 ± 1.0%, and 32.4 ± 1.6% (all p eccentric and concentric leg press force was increased by 64.9 ± 5.5% (p eccentric force, explosiveness, and DJ performance were markedly increased after only 16 training sessions, possibly because of the high eccentric load attained during the bilateral eccentric leg press exercise performed on this custom-made device.

  10. Effects of Differing Dosages of Pomegranate Juice Supplementation after Eccentric Exercise

    Directory of Open Access Journals (Sweden)

    Daniel R. Machin

    2014-01-01

    Full Text Available Dietary supplementation with pomegranate juice improves isometric strength recovery after unaccustomed eccentric exercise. The purpose of this study was to determine if there is a dose response effect of pomegranate juice supplementation after eccentric exercise isometric strength recovery. Forty-five nonresistance trained, recreationally active men were assigned once-daily pomegranate juice, twice-daily pomegranate juice, or placebo supplementation. On day four of supplementation, 20 min of downhill running and 40 maximal eccentric elbow flexion repetitions were performed. Isometric knee extensor and elbow flexor strength, muscular soreness, and serum myoglobin concentrations were measured prior to exercise and 2, 24, 48, 72, and 96 h after exercise. Throughout the postexercise time period, while isometric knee extensor and elbow flexor strength were similar between once-daily and twice-daily pomegranate juice supplementation groups, isometric strength was significantly higher in pomegranate juice groups than placebo. Knee extensor soreness, elbow flexor soreness, and myoglobin increased in response to exercise but were similar between groups. It is apparent that pomegranate juice supplementation improves strength recovery in leg and arm muscles following eccentric exercise; however, no dose response effect was present. We conclude that once-daily pomegranate juice supplementation is not different from twice-daily supplementation in regards to strength recovery after eccentric exercise.

  11. Exercise-Induced Asthma

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Exercise-Induced Asthma KidsHealth > For Parents > Exercise-Induced Asthma A A ... previous continue Tips for Kids With Exercise-Induced Asthma For the most part, kids with exercise-induced ...

  12. Concentric and eccentric exercise, glycemic responses to a postexercise meal, and inflammation in women with high versus low waist circumference.

    Science.gov (United States)

    Miles, Mary P; Horrigan, Laura C; Jay, Sara E; Brown, Karen M; Porter, Jay W; Steward, Andrea N

    2016-12-01

    Carbohydrate ingestion and level of concentric versus eccentric muscle activity may alter exercise-induced health benefits for individuals who have high waist circumference as a metabolic risk factor. The purpose of this study was to determine whether metabolic and inflammation responses to an exercise recovery meal differ between women with lower (Lo-WC, exercise is primarily concentric (uphill walking; UPHILL) versus primarily eccentric (downhill walking; DOWNHILL). Recreationally active women (age, 18-39 years; body mass index, 19-35.4 m·kg(-2); Lo-WC, n = 13; Hi-WC, n = 10) completed UPHILL, DOWNHILL, and resting (CONTROL) conditions followed 30 min later by a mixed meal tolerance test (MMTT) with carbohydrates to protein ratio of 4:1, and blood glucose, insulin, and inflammation markers were compared across conditions. Compared with Lo-WC, the Hi-WC group had higher (p exercise. However, both concentrically and eccentrically biased exercises offered benefits to insulin responses to a high carbohydrate meal for Hi-WC.

  13. Repeated bouts of fast velocity eccentric contractions induce atrophy of gastrocnemius muscle in rats.

    Science.gov (United States)

    Ochi, Eisuke; Nosaka, Kazunori; Tsutaki, Arata; Kouzaki, Karina; Nakazato, Koichi

    2015-10-01

    One bout of exercise consisting of fast velocity eccentric contractions has been shown to increase muscle protein degradation in rats. The present study tested the hypothesis that muscle atrophy would be induced after four bouts of fast velocity eccentric contractions, but not after four bouts of slow velocity eccentric contractions. Male Wistar rats were randomly placed into 3 groups; fast (180°/s) velocity (180EC, n = 7), slow (30°/s) velocity eccentric exercise (30EC, n = 7), or sham-treatment group (control, n = 7). The 180EC and 30EC groups received 4 sessions of 4 sets of 5 eccentric contractions of triceps surae muscles by extending the ankle joint during evoked electrical stimulation of the muscles, and the control group had torque measures, every 2 days, and all rats were sacrificed 1 day after the fourth session. Medial and lateral gastrocnemius wet mass were 4-6 % smaller, cross-sectional area of medial gastrocnemius was 6-7% smaller, and isometric tetanic torque of triceps surae muscles was 36 % smaller (p contractions.

  14. The Effects of Creatine Supplementation on Exercise-Induced Muscle Damage.

    Science.gov (United States)

    Rawson, Eric S.; Gunn, Bridget; Clarkson, Priscilla M.

    2001-01-01

    Investigated the effects of oral creatine (Cr) supplementation on markers of exercise-induced muscle damage following high-force eccentric exercise in men randomly administered Cr or placebo. Results indicated that 5 days of Cr supplementation did not reduce indirect makers of muscle damage or enhance recovery from high-force eccentric exercise.…

  15. Effects of eccentric exercise on trapezius electromyography during computer work with active and passive pauses

    DEFF Research Database (Denmark)

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen

    2009-01-01

    BACKGROUND: The aim of this laboratory study was to investigate the effects of eccentric exercises on the trapezius muscle spatial electromyographic (EMG) activity during computer work with active and passive pauses. METHODS: Twelve healthy male subjects performed computer work with passive (relax......) and active (30% maximum voluntary contraction of shoulder elevation) pauses given every 40s over 2 days, before, immediately and 24h after eccentric exercise. Surface EMG signals were recorded from four parts of the trapezius during computer work. FINDINGS: EMG amplitude during computer work decreased...... immediately after exercise (Pactive pauses compared with passive ones (P

  16. Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Langberg, H; Helmark, I C

    2009-01-01

    exercise in vivo in human skeletal muscle. Eight young healthy males performed 200 maximal eccentric contractions with each leg. An NSAID was infused via a microdialysis catheter into the vastus lateralis muscle of one leg (NSAID leg) before, during, and for 4.5 h after exercise, with the other leg working...... of satellite cells 8 days after exercise. These results suggest that NSAIDs negatively affect satellite cell activity after unaccustomed eccentric exercise.......Despite the widespread consumption of nonsteroidal anti-inflammatory drugs (NSAIDs), the influence of these drugs on muscle satellite cells is not fully understood. The aim of the present study was to investigate the effect of a local NSAID infusion on satellite cells after unaccustomed eccentric...

  17. Prolonged submaximal eccentric exercise is associated with increased levels of plasma IL-6

    DEFF Research Database (Denmark)

    Rohde, Thomas; MacLean, D A; Richter, Erik

    1997-01-01

    To study the relationship between exercise-related muscle proteolysis and the cytokine response, a prolonged eccentric exercise model of one leg was used. Subjects performed two trials [a branched-chain amino acid (BCAA) supplementation and a control trial]. The release of amino acids from muscle...... during and after the eccentric exercise was decreased in the BCAA trial, suggesting a suppression of net muscle protein degradation. The plasma concentrations of interleukin (IL)-6 increased from 0.75 +/- 0.19 (preexercise) to 5.02 +/- 0.96 pg/ml (2 h postexercise) in the control trial and in the BCAA...... supplementation trial from 1.07 +/- 0.41 to 4.15 +/- 1.21 pg/ml. Eccentric exercise had no effect on the concentrations of neutrophils, lymphocytes, CD16+/CD56+, CD4+, CD8+, CD14+/CD38+, lymphocyte proliferative response, or cytotoxic activities. BCAA supplementation reduced the concentration of CD14+/CD38+ cells...

  18. Comparison of Combined Aerobic and High-Force Eccentric Resistance Exercise With Aerobic Exercise Only for People With Type 2 Diabetes Mellitus

    OpenAIRE

    Marcus, Robin L.; Smith, Sheldon; Morrell, Glen; Addison, Odessa; Dibble, Leland E.; Wahoff-Stice, Donna; LaStayo, Paul C.

    2008-01-01

    Background and Purpose: The purpose of this study was to compare the outcomes between a diabetes exercise training program using combined aerobic and high-force eccentric resistance exercise and a program of aerobic exercise only.

  19. Eccentric exercise affects the upper limbs more than the lower limbs in position sense and reaction angle.

    Science.gov (United States)

    Paschalis, Vassilis; Nikolaidis, Michalis G; Theodorou, Anastasios A; Giakas, Giannis; Jamurtas, Athanasios Z; Koutedakis, Yiannis

    2010-01-01

    In this study, we investigated the effect of eccentric exercise on position sense and reaction angle of the elbow and knee flexors. Twelve males underwent two eccentric exercise sessions involving a randomized crossover design. In the first session participants used their elbow flexors and in the other session their knee flexors. Muscle damage indices, position sense, and joint reaction angle to release of the elbow and knee flexors were measured before, immediately after, and up to 7 days after exercise. Exercise induced greater muscle damage in the elbow flexors than knee flexors. Exercise disturbed position sense of the elbow and knee joint. For both limbs, the participants adopted a more extended position than the reference angle. The elbow and knee joint reaction angles to release increased after exercise for both the elbow and knee flexors. The disturbances in position sense and reaction angle after exercise were greater in the elbow flexors than knee flexors. The elbow flexors remained more accurate and faster than the knee flexors at all time points. These results may be explained by the higher density of muscle spindles and the lower innervation ratio of the elbow flexors compared with the knee flexors, as well as the fact that the arms are more accustomed than the legs to perform fast and accurate movements.

  20. COMPRESSION GARMENTS AND RECOVERY FROM ECCENTRIC EXERCISE: A 31P-MRS STUDY

    Directory of Open Access Journals (Sweden)

    Michael I. Trenell

    2006-03-01

    Full Text Available The low oxidative demand and muscular adaptations accompanying eccentric exercise hold benefits for both healthy and clinical populations. Compression garments have been suggested to reduce muscle damage and maintain muscle function. This study investigated whether compression garments could benefit metabolic recovery from eccentric exercise. Following 30-min of downhill walking participants wore compression garments on one leg (COMP, the other leg was used as an internal, untreated control (CONT. The muscle metabolites phosphomonoester (PME, phosphodiester (PDE, phosphocreatine (PCr, inorganic phosphate (Pi and adenosine triphosphate (ATP were evaluated at baseline, 1-h and 48-h after eccentric exercise using 31P-magnetic resonance spectroscopy. Subjective reports of muscle soreness were recorded at all time points. The pressure of the garment against the thigh was assessed at 1-h and 48-h following exercise. There was a significant increase in perceived muscle soreness from baseline in both the control (CONT and compression (COMP leg at 1-h and 48-h following eccentric exercise (p < 0.05. Relative to baseline, both CONT and COMP showed reduced pH at 1-h (p < 0.05. There was no difference between CONT and COMP pH at 1-h. COMP legs exhibited significantly (p < 0.05 elevated skeletal muscle PDE 1-h following exercise. There was no significant change in PCr/Pi, Mg2+ or PME at any time point or between CONT and COMP legs. Eccentric exercise causes disruption of pH control in skeletal muscle but does not cause disruption to cellular control of free energy. Compression garments may alter potential indices of the repair processes accompanying structural damage to the skeletal muscle following eccentric exercise allowing a faster cellular repair

  1. Aging is not a barrier to muscle and redox adaptations: applying the repeated eccentric exercise model.

    Science.gov (United States)

    Nikolaidis, Michalis G; Kyparos, Antonios; Spanou, Chrysa; Paschalis, Vassilis; Theodorou, Anastasios A; Panayiotou, George; Grivas, Gerasimos V; Zafeiridis, Andreas; Dipla, Konstantina; Vrabas, Ioannis S

    2013-08-01

    Despite the progress of analytic techniques and the refinement of study designs, striking disagreement exists among studies regarding the influence of exercise on muscle function and redox homeostasis in the elderly. The repeated eccentric exercise model was applied to produce long-lasting and extensive changes in redox biomarkers and to reveal more effectively the potential effects of aging on redox homeostasis. Ten young (20.6±0.5 years) and ten elderly men (64.6±1.1 years) underwent an isokinetic eccentric exercise session, which was repeated after three weeks. Muscle function/damage indices (torque, range of movement, muscle soreness and creatine kinase) and redox biomarkers (F2-isoprostanes, protein carbonyls, glutathione, catalase, superoxide dismutase, glutathione peroxidase, glucose-6-phosphate dehydrogenase, uric acid, bilirubin and albumin) were assessed in plasma, erythrocytes or urine pre-exercise, immediately post-exercise and at 2 and 4 days post-exercise. As expected, the elderly group exhibited oxidative stress in baseline compared to the young group. Extensive muscle damage and extensive alterations in redox homeostasis appeared after the first bout of eccentric exercise. Noteworthy, the redox responses were similar between the age groups despite their differences in baseline values. Likewise, both age groups demonstrated blunted alterations in muscle damage and redox homeostasis after the second bout of eccentric exercise indicating adaptations from the first bout of exercise. Elderly individuals seem to be well fitted to participate in demanding physical activities without suffering detrimental effects on skeletal muscle and/or disturbances on redox homeostasis. The repeated eccentric exercise model may be a useful and practical physiological tool to study redox biology in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Short-Wave Diathermy Pretreatment and Inflammatory Myokine Response After High-Intensity Eccentric Exercise.

    Science.gov (United States)

    Vardiman, John P; Moodie, Nicole; Siedlik, Jacob A; Kudrna, Rebecca A; Graham, Zachary; Gallagher, Philip

    2015-06-01

    Various modalities have been used to pretreat skeletal muscle to attenuate inflammation. To determine the effects of short-wave diathermy (SWD) preheating treatment on inflammation and stress markers after eccentric exercise. Controlled laboratory study. University laboratory setting. Fifteen male (age = 22 ± 4.9 years, height = 179.75 ± 9.56 cm, mass = 82.22 ± 12.67 kg) college-aged students. Seven participants were selected randomly to receive 40 minutes of SWD heat treatment (HT), and 8 participants served as the control (CON) group and rested without SWD. Both groups completed 7 sets of 10 repetitions of a high-intensity eccentric exercise protocol (EEP) at 120% of the 1-repetition maximum (1-RM) leg extension. We biopsied muscles on days 1, 3 (24 hours post-EEP), and 4 (48 hours post-EEP) and collected blood samples on days 1, 2 (4 hours post-EEP), 3, and 4. We determined 1-RM on day 2 (24 hours post-SWD) and measured 1-RM on days 3 and 4. We analyzed the muscle samples for interleukin 6 (IL-6), tumor necrosis factor α, and heat shock protein 70 and the blood for serum creatine kinase. We found a group × time interaction for intramuscular IL-6 levels after SWD (F2,26 = 7.13, P = .003). The IL-6 decreased in HT (F1,6 = 17.8, P = .006), whereas CON showed no change (P > .05). We found a group × time interaction for tumor necrosis factor α levels (F2,26 = 3.71, P = .04), which increased in CON (F2,14 = 7.16, P = .007), but saw no changes for HT (P > .05). No group × time interactions were noted for 1-RM, heat shock protein 70, or creatine kinase (P > .05). The SWD preheating treatment provided a treatment effect for intramuscular inflammatory myokines induced through high-intensity eccentric exercise but did not affect other factors associated with intense exercise and inflammation.

  3. Does intermittent pneumatic leg compression enhance muscle recovery after strenuous eccentric exercise?

    Science.gov (United States)

    Cochrane, D J; Booker, H R; Mundel, T; Barnes, M J

    2013-11-01

    Intermittent pneumatic compression (IPC) has gained rapid popularity as a post-exercise recovery modality. Despite its widespread use and anecdotal claims for enhancing muscle recovery there is no scientific evidence to support its use. 10 healthy, active males performed a strenuous bout of eccentric exercise (3 sets of 100 repetitions) followed by IPC treatment or control performed immediately after exercise and at 24 and 48 h post-exercise. Muscular performance measurements were taken prior to exercise and 24, 48 and 72 h post-exercise and included single-leg vertical jump (VJ) and peak and average isometric [knee angle 75º] (ISO), concentric (CON) and eccentric (ECC) contractions performed at slow (30° · s⁻¹) and fast (180° · s⁻¹) velocities. Plasma creatine kinase (CK) samples were taken at pre- and post-exercise 24, 48 and 72 h. Strenuous eccentric exercise resulted in a significant decrease in peak ISO, peak and average CON (30° · s⁻¹) at 24 h compared to pre-exercise for both IPC and control, however VJ performance remained unchanged. There were no significant differences between conditions (IPC and control) or condition-time interactions for any of the contraction types (ISO, CON, ECC) or velocities (CON, ECC 30° · s⁻¹ and 180° · s⁻¹). However, CK was significantly elevated at 24 h compared to pre-exercise in both conditions (IPC and control). IPC did not attenuate muscle force loss following a bout of strenuous eccentric exercise in comparison to a control. While IPC has been used in the clinical setting to treat pathologic conditions, the parameters used to treat muscle damage following strenuous exercise in healthy participants are likely to be very different than those used to treat pathologic conditions.

  4. Investigating the Effects of Knee Flexion during the Eccentric Heel-Drop Exercise.

    Science.gov (United States)

    Weinert-Aplin, Robert A; Bull, Anthony M J; McGregor, Alison H

    2015-06-01

    This study aimed to characterise the biomechanics of the widely practiced eccentric heel-drop exercises used in the management of Achilles tendinosis. Specifically, the aim was to quantify changes in lower limb kinematics, muscle lengths and Achilles tendon force, when performing the exercise with a flexed knee instead of an extended knee. A musculoskeletal modelling approach was used to quantify any differences between these versions of the eccentric heel drop exercises used to treat Achilles tendinosis. 19 healthy volunteers provided a group from which optical motion, forceplate and plantar pressure data were recorded while performing both the extended and flexed knee eccentric heel-drop exercises over a wooden step when barefoot or wearing running shoes. This data was used as inputs into a scaled musculoskeletal model of the lower limb. Range of ankle motion was unaffected by knee flexion. However, knee flexion was found to significantly affect lower limb kinematics, inter-segmental loads and triceps muscle lengths. Peak Achilles load was not influenced despite significantly reduced peak ankle plantarflexion moments (p knee flexion on the relative loading of the triceps muscles during the eccentric heel drop exercises. This finding questions the role of the flexed knee heel drop exercise when specifically treating Achilles tendinosis. Key pointsA more dorsiflexed ankle and a flexing knee are characteristics of performing the flexed knee heel-drop eccentric exercise.Peak ankle plantarflexion moments were reduced with knee flexion, but did not reduce peak Achilles tendon force.Kinematic changes at the knee and ankle affected the triceps muscle length and resulted in a reduction in the amount of Achilles tendon work performed.A version of the heel-drop exercise which reduces the muscle length change will also reduce the amount of tendon stretch, reducing the clinical efficacy of the exercise.

  5. Temporal Pattern of the Repeated Bout Effect of Eccentric Exercise on Delayed-Onset Muscle Soreness

    Science.gov (United States)

    Cleary, Michelle A.; Kimura, Iris F.; Sitler, Michael R.; Kendrick, Zebulon V.

    2002-01-01

    Objective: To determine the temporal pattern of the repeated bout effect of eccentric exercise on perceived pain and muscular tenderness associated with delayed-onset muscle soreness (DOMS). Design and Setting: Subjects completed 2 identical eccentric exercise bouts separated by 6, 7, 8, or 9 weeks. The experiment was conducted in a biokinetics research laboratory. Subjects: Sixteen male and 15 female untrained subjects (age = 24.59 ± 4.42 years, height = 171.71 ± 7.81 cm, weight = 73.00 ± 11.20 kg). Measurements: Two physiologic characteristics of DOMS were measured immediately before and 0, 24, 48, and 72 hours after each eccentric exercise bout. Perceived pain was measured using a visual analog scale (VAS), and muscular tenderness was measured using a punctate tenderness gauge (PTG). Results: Two 4 × 2 × 5 (group × bout × time) analyses of variance with repeated measures on the bout and time factors were performed on the VAS and PTG data. Significant (P < .05) main effects were found for group, bout, and time for the VAS and the PTG data. No significant interactions were detected. Post hoc analysis revealed significantly less perceived pain for the 9-week group than the 8-week group. The 7-week group had significantly less and the 8-week group had significantly more muscular tenderness than any other group. Perceived pain and muscular tenderness were significantly less after exercise bout 2 than after exercise bout 1. All subjects had significantly less perceived pain and muscular tenderness pre-exercise than 0 and 24 hours after the eccentric exercise bouts. Conclusions: An effective prophylaxis for perceived pain and muscular tenderness associated with DOMS is the performance of an eccentric exercise bout 6 to 9 weeks before a similar exercise bout. PMID:12937441

  6. Changes in the number of circulating CD34+cells after eccentric exercise of the elbow flexors in relation to muscle damage

    Institute of Scientific and Technical Information of China (English)

    Ho Seong Lee; Makii Muthalib; Takayuki Akimoto; Kazunori Nosaka

    2015-01-01

    Background:It has been reported that strenuous exercise increases the number of bone marrow-derived progenitor cells such as CD34+cells in the blood, but no previous studies have investigated the changes in circulating CD34+cells following resistance exercise. This study tested the hypothesis that the number of CD34+cells in the blood would increase after eccentric exercise of the elbow flexors, but decrease in recovery, and the magnitude of the changes would be dependent on the magnitude of muscle damage. Methods:Nine men (28.0 ± 6.6 years) performed exercises consisting of 10 sets of six maximal voluntary eccentric contractions of the elbow flexors with their non-dominant arm. Six of them performed the same exercise with the same arm 4 weeks later. Changes in indirect markers of muscle damage were measured before, within 10 min after, and at 24, 48, 72, and 96 h after eccentric exercise. Differential leukocyte counts (total leukocytes, neutrophils, lymphocytes, monocytes) and CD34+cells in the blood were measured before, immediately after, and at 2, 24, 48, 72, and 96 h following the exercises. Results:After eccentric exercise, significant ( p<0.05) decreases in maximal voluntary isometric contraction torque and increases in delayed onset muscle soreness and plasma creatine kinase activity were observed. However, no significant changes in leukocytes and CD34+cells were evident. The changes in muscle damage markers were significantly ( p<0.05) smaller following the second exercise session as compared with the first exercise session, but the changes in leukocytes and CD34+cells were not significantly different between sessions. Conclusion:These results did not support the hypothesis, and showed that eccentric exercise-induced muscle damage to the elbow flexors did not influence the number of circulating CD34+cells.

  7. Electromyographic analysis of an eccentric calf muscle exercise in persons with and without Achilles tendinopathy.

    Science.gov (United States)

    Reid, Duncan; McNair, Peter J; Johnson, Shelley; Potts, Geoff; Witvrouw, Erik; Mahieu, Nele

    2012-08-01

    To compare surface electromyographic (EMG) activity of the gastrocnemius and soleus muscles between persons with and without Achilles tendinopathy (AT) during an eccentric muscle exercise in different knee joint positions. Repeated measures design. Research laboratory. Participants (n = 18) diagnosed with AT and 18 control subjects were recruited. Gastrocnemius and soleus muscle activity was examined by surface (EMG) during extended and flexed knee joint conditions while performing the eccentric training technique. The EMG data were expressed as a percentage of a maximum voluntary contraction (MVC). EMG activity was notably higher (mean difference: 10%, effect size: 0.59) in those subjects with AT. Irrespective of the presence of AT, there was a significant interaction effect between muscle and joint position. The gastrocnemius muscle was significantly more active in the extended knee condition and soleus muscle activity was unchanged across joint positions. The results indicated that the presence of AT influenced calf muscle activity levels during performance of the eccentric exercise. There were differences in muscle activity during the extended and flexed knee conditions. This result does support performing Alfredson, Pietila, Jonsson, and Lorentzon (1998) eccentric exercise in an extended knee position but the specific effects of the knee flexed position on the Achilles tendon during eccentric exercise have yet to be determined, particularly in those with AT. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The influence of eccentric exercise on mRNA expression of skeletal muscle regulators.

    Science.gov (United States)

    Jensky, Nicole E; Sims, Jennifer K; Rice, Judd C; Dreyer, Hans C; Schroeder, E Todd

    2007-11-01

    To evaluate change in myostatin, follistatin, MyoD and SGT mRNA gene expression using eccentric exercise to study mechanisms of skeletal muscle hypertrophy. Young (28+/-5 years) and older (68+/-6 years) men participated in a bout of maximal single-leg eccentric knee extension on an isokinetic dynamometer at 60 degrees /s: six sets, 12-16 maximal eccentric repetitions. Muscle biopsies of the vastus lateralis were obtained from the dominant leg before exercise and 24 h after exercise. Paired t tests were used to compare change (pre versus post-exercise) for normalized gene expression in all variables. Independent t tests were performed to test group differences (young vs. older). A probability level of Peccentric exercise. Similarly, we did not observe significant change in myostatin (-3.83+/-8.8; P=0.23), follistatin (-2.66+/-5.2; P=0.17), MyoD (-0.13+/-3.1; P=0.90), or SGT (-1.6+/-3.5; P=0.19) mRNA expression in older subjects. Furthermore, the non-significant changes in mRNA expression were not different between young and older subjects, P>0.23 for all variables. Our data suggests that a single bout of maximal eccentric exercise does not alter myostatin, follistatin, MyoD or SGT mRNA gene expression in young or older subjects.

  9. Investigating the Effects of Knee Flexion during the Eccentric Heel-Drop Exercise

    Directory of Open Access Journals (Sweden)

    Robert A. Weinert-Aplin, Anthony M.J. Bull, Alison H. McGregor

    2015-06-01

    Full Text Available This study aimed to characterise the biomechanics of the widely practiced eccentric heel-drop exercises used in the management of Achilles tendinosis. Specifically, the aim was to quantify changes in lower limb kinematics, muscle lengths and Achilles tendon force, when performing the exercise with a flexed knee instead of an extended knee. A musculoskeletal modelling approach was used to quantify any differences between these versions of the eccentric heel drop exercises used to treat Achilles tendinosis. 19 healthy volunteers provided a group from which optical motion, forceplate and plantar pressure data were recorded while performing both the extended and flexed knee eccentric heel-drop exercises over a wooden step when barefoot or wearing running shoes. This data was used as inputs into a scaled musculoskeletal model of the lower limb. Range of ankle motion was unaffected by knee flexion. However, knee flexion was found to significantly affect lower limb kinematics, inter-segmental loads and triceps muscle lengths. Peak Achilles load was not influenced despite significantly reduced peak ankle plantarflexion moments (p < 0.001. The combination of reduced triceps lengths and greater ankle dorsiflexion, coupled with reduced ankle plantarflexion moments were used to provide a basis for previously unexplained observations regarding the effect of knee flexion on the relative loading of the triceps muscles during the eccentric heel drop exercises. This finding questions the role of the flexed knee heel drop exercise when specifically treating Achilles tendinosis.

  10. Does eccentric exercise reduce pain and improve strength in physically active adults with symptomatic lower extremity tendinosis? A systematic review.

    Science.gov (United States)

    Wasielewski, Noah J; Kotsko, Kevin M

    2007-01-01

    To critically review evidence for the effectiveness of eccentric exercise to treat lower extremity tendinoses. Databases used to locate randomized controlled trials (RCTs) included PubMed (1980-2006), CINAHL (1982-2006), Web of Science (1995-2006), SPORT Discus (1980-2006), Physiotherapy Evidence Database (PEDro), and the Cochrane Collaboration Database. Key words included tendon, tendonitis, tendinosis, tendinopathy, exercise, eccentric, rehabilitation, and therapy. The criteria for trial selection were (1) the literature was written in English, (2) the research design was an RCT, (3) the study participants were adults with a clinical diagnosis of tendinosis, (4) the outcome measures included pain or strength, and (5) eccentric exercise was used to treat lower extremity tendinosis. Specific data were abstracted from the RCTs, including eccentric exercise protocol, adjunctive treatments, concurrent physical activity, and treatment outcome. The calculated post hoc statistical power of the selected studies (n = 11) was low, and the average methodologic score was 5.3/10 based on PEDro criteria. Eccentric exercise was compared with no treatment (n = 1), concentric exercise (n = 5), an alternative eccentric exercise protocol (n = 1), stretching (n = 2), night splinting (n = 1), and physical agents (n = 1). In most trials, tendinosis-related pain was reduced with eccentric exercise over time, but only in 3 studies did eccentric exercise decrease pain relative to the control treatment. Similarly, the RCTs demonstrated that strength-related measures improved over time, but none revealed significant differences relative to the control treatment. Based on the best evidence available, it appears that eccentric exercise may reduce pain and improve strength in lower extremity tendinoses, but whether eccentric exercise is more effective than other forms of therapeutic exercise for the resolution of tendinosis symptoms remains questionable.

  11. Effect of eccentric versus concentric exercise training on mitochondrial function.

    Science.gov (United States)

    Isner-Horobeti, Marie-Eve; Rasseneur, Laurence; Lonsdorfer-Wolf, Evelyne; Dufour, Stéphane Pascal; Doutreleau, Stéphane; Bouitbir, Jamal; Zoll, Joffrey; Kapchinsky, Sophia; Geny, Bernard; Daussin, Frédéric Nicolas; Burelle, Yan; Richard, Ruddy

    2014-11-01

    The effect of eccentric (ECC) versus concentric (CON) training on metabolic properties in skeletal muscle is understood poorly. We determined the responses in oxidative capacity and mitochondrial H2 O2 production after eccentric (ECC) versus concentric (CON) training performed at similar mechanical power. Forty-eight rats performed 5- or 20-day eccentric (ECC) or concentric (CON) training programs. Mitochondrial respiration, H2 O2 production, citrate synthase activity (CS), and skeletal muscle damage were assessed in gastrocnemius (GAS), soleus (SOL) and vastus intermedius (VI) muscles. Maximal mitochondrial respiration improved only after 20 days of concentric (CON) training in GAS and SOL. H2 O2 production increased specifically after 20 days of eccentric ECC training in VI. Skeletal muscle damage occurred transiently in VI after 5 days of ECC training. Twenty days of ECC versus CON training performed at similar mechanical power output do not increase skeletal muscle oxidative capacities, but it elevates mitochondrial H2 O2 production in VI, presumably linked to transient muscle damage. © 2014 Wiley Periodicals, Inc.

  12. Sonographic evaluation of the immediate effects of eccentric heel drop exercise on Achilles tendon and gastrocnemius muscle stiffness using shear wave elastography.

    Science.gov (United States)

    Leung, Wilson K C; Chu, K L; Lai, Christopher

    2017-01-01

    Mechanical loading is crucial for muscle and tendon tissue remodeling. Eccentric heel drop exercise has been proven to be effective in the management of Achilles tendinopathy, yet its induced change in the mechanical property (i.e., stiffness) of the Achilles tendon (AT), medial and lateral gastrocnemius muscles (MG and LG) was unknown. Given that shear wave elastography has emerged as a powerful tool in assessing soft tissue stiffness with promising intra- and inter-operator reliability, the objective of this study was hence to characterize the stiffness of the AT, MG and LG in response to an acute bout of eccentric heel drop exercise. Forty-five healthy young adults (36 males and nine females) performed 10 sets of 15-repetition heel drop exercise on their dominant leg with fully-extended knee, during which the AT and gastrocnemius muscles, but not soleus, were highly stretched. Before and immediately after the heel drop exercise, elastic moduli of the AT, MG and LG were measured by shear wave elastography. After the heel drop exercise, the stiffness of AT increased significantly by 41.8 + 33.5% (P eccentric heel drop exercise. The findings from this pilot study shed some light on how and to what extent the AT and gastrocnemius muscles mechanically responds to an isolated set of heel drop exercise. Taken together, appropriate eccentric load might potentially benefit mechanical adaptations of the AT and gastrocnemius muscles in the rehabilitation of patients with Achilles tendinopathy.

  13. Supplementation with a whey protein hydrolysate enhances recovery of muscle force-generating capacity following eccentric exercise.

    Science.gov (United States)

    Buckley, Jonathan D; Thomson, Rebecca L; Coates, Alison M; Howe, Peter R C; DeNichilo, Mark O; Rowney, Michelle K

    2010-01-01

    There is evidence that protein hydrolysates can speed tissue repair following damage and may therefore be useful for accelerating recovery from exercise induced muscle damage. The potential for a hydrolysate (WPI(HD)) of whey protein isolate (WPI) to speed recovery following eccentric exercise was evaluated by assessing effects on recovery of peak isometric torque (PIT). In a double-blind randomised parallel trial, 28 sedentary males had muscle soreness (MS), serum creatine kinase (CK) activity, plasma TNFalpha, and PIT assessed at baseline and after 100 maximal eccentric contractions (ECC) of their knee extensors. Participants then consumed 250 ml of flavoured water (FW; n=11), or FW containing 25 g WPI (n=11) or 25 g WPI(HD) (n=6) and the assessments were repeated 1, 2, 6 and 24h later. PIT decreased approximately 23% following ECC, remained suppressed in FW and WPI, but recovered fully in WPI(HD) by 6h (P=0.006, treatment x time interaction). MS increased following ECC (P0.45). WPI(HD) may be a useful supplement for assisting athletes to recover from fatiguing eccentric exercise. Copyright (c) 2008 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Effects of Short-Term Docosahexaenoic Acid Supplementation on Markers of Inflammation after Eccentric Strength Exercise in Women

    Directory of Open Access Journals (Sweden)

    Katherine E. Corder, Katherine R. Newsham, Jennifer L. McDaniel, Uthayashanker R. Ezekiel, Edward P. Weiss

    2016-03-01

    Full Text Available The omega-3 fatty acid docosahexaenoic acid (DHA has anti-inflammatory and anti-nociceptive (pain inhibiting effects. Because strenuous exercise often results in local inflammation and pain, we hypothesized that DHA supplementation attenuates the rise in markers of local muscle inflammation and delayed onset muscle soreness (DOMS that occur after eccentric strength exercise. Twenty-seven, healthy women (33 ± 2 y, BMI 23.1±1.0 kg·m-2 were randomized to receive 9d of 3000 mg/d DHA or placebo in a double-blind fashion. On day 7 of the supplementation period, the participants performed 4 sets of maximal-effort eccentric biceps curl exercise. Before and 48h after the eccentric exercise, markers of inflammation were measured including measures of muscle soreness (10-point visual analog pain scale, VAS, swelling (arm circumference, muscle stiffness (active and passive elbow extension, skin temperature, and salivary C-reactive protein (CRP concentrations. As expected, muscle soreness and arm circumference increased while active and passive elbow extension decreased. The increase in soreness was 23% less in the DHA group (48h increase in VAS soreness ratings: 4.380.4 vs. 5.600.5, p=0.02. Furthermore, the number of subjects who were able to achieve full active elbow extension 48h after eccentric exercise was greater in the DHA group (71% vs. 15%, p = 0.006, indicating significantly less muscle stiffness. No between-group differences were observed for passive elbow extension (p = 0.78 or arm swelling (p = 0.75. Skin temperature and salivary CRP concentrations did not change from baseline to 48h after exercise in either group. These findings indicate that short-term DHA supplementation reduces exercise-induced muscle soreness and stiffness. Therefore, in addition to other health benefits that n-3 fatty acids have been associated with, DHA supplementation could be beneficial for improving tolerance to new and/or strenuous exercise programs and thereby

  15. 离心运动引起骨骼肌过度使用损伤机理研究%The Mechanism of Eccentric Exercise-induced Skeletal Muscle Overuse Injuries

    Institute of Scientific and Technical Information of China (English)

    张学林; 高晓娟; 史冀鹏; 李俊平; 周越; 王瑞元

    2012-01-01

    Objective The purpose of this study was to investigate the mechanisms of skeletal muscle overuse injury induced by chronic eccentric training. Methods Twelve male Sprague—Dawley rats were assigned randomly to control(C) and training(T) groups. Animal model of overuse injury was developed through 4-week low-intensity eccentric exercise (treadmill running,60~90 min/day,-16°slope,5 days/ week). Vastus intermedius muscle was collected 4 weeks after the running. The ultrastructural damage of skeletal muscle was investigated by transmission electron microscope, and collagen structural change of skeletal muscle by scanning electron microscopy. The collagen deposition in skeletal muscle was evaluated by Masson's trichrome, expression of collagen I in collagen fiber was identified by immunohistochemistry and basement membrane of skeletal muscle cells by collagen IV staining. Results (1) Ultrastructural abnormalities in skeletal muscle including Z -band streaming,widened intermyofibrillar spaces, myofibril degradation, congestion of subsarcolemmal mitochondria, and accumulation of mitochondrial degradation products in intermyofibriUar were found in group T when compared to group C. (2) There was intact sarcolemma without sarcolemma disruption in group T. (3) Structure of nerves and blood vessels was damaged, and excessive collagen deposition around nerves and blood vessels were found in group T when compared to group C. (4) There were collagen fibers derangement in perimysium, and excessive collagen I protein deposition in expanded endomysium, particularly in perimysium in group T when compared to group C. Conclusions (1) Chronic eccentric exercise resulted in overuse injuries in skeletal muscle. (2) Ultrastructural damage of skeletal muscle caused the excessive accumulation of perimysium collagen I for protection of sarcolemma from further damage. (3) Continued excessive collagen I deposition in endomysium .particularly in perimysium increased stiffness of connective

  16. Metabolic response to light exercise after exercise-induced rhabdomyolysis.

    Science.gov (United States)

    Sayers, Stephen P; Clarkson, Priscilla; Patel, Jehangir J

    2002-01-01

    Inherent compromises in substrate metabolism, or impaired perfusion of muscle may contribute to the occurrence of exercise-induced rhabdomyolysis. In this study, the lactate response of the elbow flexor muscles to light exercise was examined in eight subjects (five males, three females) who previously demonstrated rhabdomyolysis with extreme swelling (ES; n = 4) or no swelling (NS; n = 4) of the upper arm after eccentric exercise. Subjects performed identical light exercise bouts (45 s of rapid isotonic biceps curls consisting of both concentric and eccentric actions at 25% of maximum voluntary contraction force) using their previously eccentrically exercised arm (E-ARM) and control arm, which was not used previously to perform eccentric exercise (C-ARM). Blood lactate concentration ([La]b) was assessed 1.5, 3, 4.5, 6, and 9 min post-exercise. Peak [La]b and the area under the curve (AUC) were compared between the E-ARM of the ES and NS groups and between the C-ARM and E-ARM of the ES group. The AUC did not differ between the E-ARM of the ES and NS groups (P > 0.05) or between the C-ARM and E-ARM of the ES group (P > 0.05). In the ES group, the increase in [La]b after light exercise with the C-ARM [mean (SD) change, delta: 1.98 (0.7) mmol/l] was not different from the increase after exercising the E-ARM [delta: 2.10 (0.7) mmol/l; P>0.05]. Comparing the response of the E-ARM between groups, the increase in [La]b of the NS group [delta: 1.40 (0.4) mmol/l] was not different than that observed in the ES group [delta: 2.10 (0.7) mmol/l; P>0.05). Thus, subjects who had previously exhibited signs of exercise-induced rhabdomyolysis did not show an abnormal response to low-intensity anaerobic exercise.

  17. Unilateral eccentric exercise of the knee flexors affects muscle activation during gait.

    Science.gov (United States)

    Dover, Geoffrey C; Legge, Laura; St-Onge, Nancy

    2012-05-01

    Uni-lateral muscle soreness is common yet the effects on gait or electromyographic (EMG) activity are unknown. The purpose of our study was to induce delayed onset muscle soreness (DOMS) in the knee flexor group and measure the resultant change in EMG activity and knee motion during gait. Nine healthy subjects participated in the study. Measures of function, evoked tenderness of the biceps femoris, as well as knee angle, and EMG activity during gait were assessed prior and 48 h after an eccentric exercise protocol. DOMS was induced unilaterally in the knee flexors using an isokinetic dynamometer and subjects exercised until they could not generate 50% of their maximal voluntary isometric contraction (MVIC). There was a significant decrease in biceps femoris activity after DOMS during the last phase of gait. Moreover, there was a day × phase interaction for gastrocnemius activity with the last two phases displaying an increase in activity. There was no significant change in knee angle during gait. The decrease in biceps femoris activity as well as the increase in gastrocnemius activity could be evidence of a protective mechanism designed to decrease activity of the sore muscle while increasing the activity of a synergistic muscle. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Effects of mate tea consumption on muscle strength and oxidative stress markers after eccentric exercise.

    Science.gov (United States)

    Panza, Vilma Pereira; Diefenthaeler, Fernando; Tamborindeguy, Aline Cavalheiro; Camargo, Carolina de Quadros; de Moura, Bruno Monteiro; Brunetta, Henver Simionato; Sakugawa, Raphael Luiz; de Oliveira, Marina Vieira; Puel, Emiliana de Oliveira; Nunes, Everson Araújo; da Silva, Edson Luiz

    2016-04-01

    Dietary phytochemical supplementation may improve muscle recovery from exercise. In this study, we investigated the effect of mate tea (MT) consumption - a phenol-rich beverage - on muscle strength and oxidative stress biomarkers after eccentric exercise. In a randomised, cross-over design, twelve men were assigned to drink either MT or water (control; CON) for 11 d. On the 8th day, subjects performed three sets of twenty maximal eccentric elbow flexion exercises. Maximal isometric elbow flexion force was measured before and at 0, 24, 48 and 72 h after exercise. Blood samples were obtained before and at 24, 48 and 72 h after exercise and analysed for total phenolics, GSH, GSSG, GSH:GSSG ratio and lipid hydroperoxides (LOOH). After eccentric exercise, muscle strength was significantly reduced over time, regardless of treatments. However, MT improved the rate of strength recovery by 8·6 % on the 1st day after exercise (Pexercise in both trials (Pexercise in CON (Pexercise. MT also favoured the concentration of blood antioxidant compounds.

  19. Alterations in Whole-Body Insulin Sensitivity Resulting From Repeated Eccentric Exercise of a Single Muscle Group: A Pilot Investigation.

    Science.gov (United States)

    Gonzalez, Javier T; Barwood, Martin J; Goodall, Stuart; Thomas, Kevin; Howatson, Glyn

    2015-08-01

    Unaccustomed eccentric exercise using large muscle groups elicits soreness, decrements in physical function and impairs markers of whole-body insulin sensitivity; although these effects are attenuated with a repeated exposure. Eccentric exercise of a small muscle group (elbow flexors) displays similar soreness and damage profiles in response to repeated exposure. However, it is unknown whether damage to small muscle groups impacts upon whole-body insulin sensitivity. This pilot investigation aimed to characterize whole-body insulin sensitivity in response to repeated bouts of eccentric exercise of the elbow flexors. Nine healthy males completed two bouts of eccentric exercise separated by 2 weeks. Insulin resistance (updated homeostasis model of insulin resistance, HOMA2-IR) and muscle damage profiles (soreness and physical function) were assessed before, and 48 h after exercise. Matsuda insulin sensitivity indices (ISI Matsuda) were also determined in 6 participants at the same time points as HOMA2-IR. Soreness was elevated, and physical function impaired, by both bouts of exercise (both p Eccentric exercise decreased ISI Matsuda after the first but not the second bout of eccentric exercise (time x bout interaction p Eccentric exercise performed with an isolated upper limb impairs whole-body insulin sensitivity after the first, but not the second, bout.

  20. Effects of eccentric exercise on branched-chain amino acid profiles in rat serum and skeletal muscle.

    Science.gov (United States)

    Qun, Z; Xinkai, Y; Jing, W

    2014-04-01

    Supplementation of branched-chain amino acid (BCAA) is often used to attenuate exercise-induced skeletal muscle damage and promote adaptation, but no definitive conclusion on the benefits of BCAA on muscle recovery after injurious exercise can be drawn. Exploration of the systematic BCAA alteration in muscular injury-repair stage per se without any BCAA supplement should provide some useful information in favour of BCAA application in muscle regeneration after injury. One bout of 90-min downhill-running exercise was performed to cause rat skeletal muscle injury. After exercise, myofibrillar BCAA concentrations showed minor changes compared with exercise before, while serum concentrations of BCAA were lower after exercise. Especially, serum leucine, isoleucine and total BCAA concentrations 2 weeks post-run were significantly lower than normal values of exercise before (p = 0.008, p = 0.041, p = 0.015). The data demonstrate that a single eccentric exercise can significantly decrease the serum BCAA concentrations, which mean high utilization of BCAA for myogenesis after injurious exercise.

  1. Combination of eccentric exercise and neuromuscular electrical stimulation to improve quadriceps function post-ACL reconstruction.

    Science.gov (United States)

    Lepley, Lindsey K; Wojtys, Edward M; Palmieri-Smith, Riann M

    2015-06-01

    Neuromuscular electrical stimulation (NMES) has been shown to reduce quadriceps activation failure (QAF), and eccentric exercise has been shown to lessen muscle atrophy post-ACL reconstruction. Given that these are two critical components of quadriceps strength, intervention combining these therapies may be effective at reinstituting quadriceps function post-reconstruction. Thus, the aim of this study was to evaluate the effectiveness of a combined NMES and eccentric exercise intervention to improve the recovery of quadriceps activation and strength post-reconstruction. Thirty-six individuals post-injury were placed into four treatment groups (N&E, NMES and eccentrics; E-only, eccentrics only; N-only, NMES-only; and STND, standard of care) and ten healthy controls participated. N&E and N-only received the NMES protocol 2× per week for the first 6 weeks post-reconstruction. N&E and E-only received the eccentric exercise protocol 2× per week beginning 6 weeks post-reconstruction. Quadriceps activation was assessed via the superimposed burst technique and quantified via the central activation ratio. Quadriceps strength was assessed via maximal voluntary isomeric contractions (Nm/kg). Data was gathered on three occasions: pre-operative, 12-weeks-post-surgery and at return-to-play. No differences in pre-operative measures existed (P>0.05). E-only recovered quadriceps activation better than N-only or STND (P0.05). Eccentric exercise was capable of restoring levels of quadriceps activation and strength that were similar to those of healthy adults and better than NMES alone. Level 3, Parallel longitudinal study. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Adding Fish Oil to Whey Protein, Leucine and Carbohydrate Over a 6 Week Supplementation Period Attenuates Muscle Soreness Following Eccentric Exercise in Competitive Soccer Players.

    Science.gov (United States)

    Philpott, Jordan D; Donnelly, Chris; Walshe, Ian H; Dick, James; Galloway, Stuart D R; Tipton, Kevin D; Witard, Oliver C

    2017-09-05

    Soccer players often experience eccentric exercise-induced muscle damage given the physical demands of soccer match-play. Since long chain n-3 polyunsaturated fatty acids (n-3PUFA) enhance muscle sensitivity to protein supplementation, dietary supplementation with a combination of fish oil-derived n-3PUFA, protein and carbohydrate may promote exercise recovery. This study examined the influence of adding n-3PUFA to a whey protein, leucine and carbohydrate containing beverage over a 6 week supplementation period on physiological markers of recovery measured over 3 days following eccentric exercise. Competitive soccer players were assigned to one of three conditions (2 × 200mL): FO (n=10) contained n-3PUFA (1100mg DHA/EPA - approx. 550mg DHA, 550mg EPA), whey protein (15g), leucine (1.8g) and carbohydrate (20g); PRO (n=10) contained whey protein (15g), leucine (1.8g) and carbohydrate (20g) and CHO (n=10) contained carbohydrate (24g). Eccentric exercise consisted of unilateral knee extension/flexion contractions on both legs separately. Maximal force production was impaired by 22% during the 72 hour recovery period following eccentric exercise (peccentric exercise in competitive soccer players.

  3. Acute postexercise effects of concentric and eccentric exercise on glucose tolerance.

    Science.gov (United States)

    Cook, Matthew David; Myers, Stephen David; Kelly, John Stephen Michael; Willems, Mark Elisabeth Theodorus

    2015-02-01

    Impaired glucose tolerance was shown to be present 48 hr following muscle-damaging eccentric exercise. We examined the acute effect of concentric and muscle-damaging eccentric exercise, matched for intensity, on the responses to a 2-hr 75-g oral glucose tolerance test (OGTT). Ten men (27 ± 9 years, 178 ± 7 cm, 75 ± 11 kg, VO₂max: 52.3 ± 7.3 ml · kg⁻¹ · min⁻¹) underwent three OGTTs after an overnight 12 hr fast: rest (control), 40-min (5 × 8-min with 2-min interbout rest) of concentric (level running, 0%, CON) or eccentric exercise (downhill running, -12%, ECC). Running intensity was matched at 60% of maximal metabolic equivalent. Maximal isometric force of m. quadriceps femoris of both legs was measured before and after the running protocols. Downhill running speed was higher (level: 9.7 ± 2.1, downhill: 13.8 ± 3.2 km · hr⁻¹, p eccentric exercise.

  4. EFFECT OF ECCENTRIC EXERCISE PROGRAMME ON PAIN AND GRIP STRENGTH FOR SUBJECTS WITH MEDIAL EPICONDYLITIS

    Directory of Open Access Journals (Sweden)

    Mishra Prashant Akhilesh

    2014-04-01

    Full Text Available Background and Objective: Therapeutic eccentric exercise may provide both a structural and functional benefit during tendinopathy rehabilitation. The objective is to find the effect of eccentric exercises on improvement of pain and grip strength for subjects with Medial Epicondylitis. Method: Pre to post test experimental study design randomized thirty subjects with medial epicondylitis, 15 each into Group A and Group B. Group B subjects were treated with conventional therapy and Eccentric exercises. Group A subjects were treated with conventional therapy. Results: When means of post intervention were compared using Independent ‘t’ between groups there was no statistically significant difference in improvements obtained in VAS scores and grip strength. There was a statistically significant change in means of VAS score and Grip strength when means were analyzed by using Paired‘t’ test and Wilcoxon signed rank test within the groups with positive percentage of change. Conclusion: It is concluded that four weeks of Eccentric Exercise Programme combined with conventional therapy shown significant effect on improving pain and Grip strength, however the improvement obtained has no difference when compared with control conventional treatment for Subjects with Medial Epicondylitis.

  5. Concentric and eccentric time-under-tension during strengthening exercises: Validity and reliability of stretch-sensor recordings from an elastic exercise-band

    DEFF Research Database (Denmark)

    Rathleff, Michael Skovdal; Thorborg, Kristian; Bandholm, Thomas Quaade

    2013-01-01

    Total, single repetition and contraction-phase specific (concentric and eccentric) time-under-tension (TUT) are important exercise-descriptors, as they are linked to the physiological and clinical response in exercise and rehabilitation.......Total, single repetition and contraction-phase specific (concentric and eccentric) time-under-tension (TUT) are important exercise-descriptors, as they are linked to the physiological and clinical response in exercise and rehabilitation....

  6. Exercise-induced asthma

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000036.htm Exercise-induced asthma To use the sharing features on this page, ... such as running, basketball, or soccer. Use Your Asthma Medicine Before you Exercise Take your short-acting, ...

  7. Increased patellar tendon microcirculation and reduction of tendon stiffness following knee extension eccentric exercises.

    Science.gov (United States)

    Yin, Nai-Hao; Chen, Wen-Shiang; Wu, Ying-Tai; Shih, Tiffany Tingfang; Rolf, Christer; Wang, Hsing-Kuo

    2014-04-01

    Controlled laboratory study. To measure and compare patellar tendon stiffness and microcirculation in college tennis players and nonathletic students when performing eccentric knee extension exercises that do and do not reduce tendon stiffness. Previous studies suggest that tendon microcirculation response during exercises may vary based on the tendon's plastic properties. Methods The study included 3 groups of college-age male students: tennis players who performed 4 sets of either 40 (n = 12) or 80 (n = 13) repetitions of eccentric knee extension exercise and nonathletic students (n = 14) who performed 4 sets of 40 repetitions. Tendon stiffness was measured before and after exercise completion. Changes in total hemoglobin and oxygen saturation (OSat) were analyzed while performing the 4 sets. Comparisons were made within and between the groups. The level of association between tendon microcirculation and stiffness reduction was assessed. The 2 groups (player/4 × 80 and student/4 × 40) exhibiting patellar tendon stiffness reductions (Pexercise levels, in the fourth set compared to the first set of exercises (Pknee extension eccentric exercises that resulted in a reduction in tendon stiffness.

  8. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise.

    Science.gov (United States)

    Farup, Jean; Rahbek, Stine Klejs; Knudsen, Inge Skovgaard; de Paoli, Frank; Mackey, Abigail L; Vissing, Kristian

    2014-11-01

    Human skeletal muscle satellite cells (SCs) are essential for muscle regeneration and remodeling processes in healthy and clinical conditions involving muscle breakdown. However, the potential influence of protein supplementation on post-exercise SC regulation in human skeletal muscle has not been well investigated. In a comparative human study, we investigated the effect of hydrolyzed whey protein supplementation following eccentric exercise on fiber type-specific SC accumulation. Twenty-four young healthy subjects received either hydrolyzed whey protein + carbohydrate (whey, n = 12) or iso-caloric carbohydrate (placebo, n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to and 24, 48 and 168 h post-exercise, muscle biopsies were obtained from the exercise leg and analyzed for fiber type-specific SC content. Maximal voluntary contraction (MVC) and serum creatine kinase (CK) were evaluated as indices of recovery from muscle damage. In type II fiber-associated SCs, the whey group increased SCs/fiber from 0.05 [0.02; 0.07] to 0.09 [0.06; 0.12] (p eccentric exercise.

  9. Warm-up, stretching and massage diminish harmful effects of eccentric exercise.

    Science.gov (United States)

    Rodenburg, J B; Steenbeek, D; Schiereck, P; Bär, P R

    1994-10-01

    The effect of a combination of a warm-up, stretching exercises and massage on subjective scores for delayed onset muscle soreness (DOMS) and objective functional and biochemical measures was studied. Fifty people, randomly divided in a treatment and a control group, performed eccentric exercise with the forearm flexors for 30 min. The treatment group additionally performed a warm-up and underwent a stretching protocol before the eccentric exercise and massage afterwards. Functional and biochemical measures were obtained before, and 1, 24, 48, 72 and 96h after exercise. The median values at the five post-exercise time points differed significantly for DOMS measured when the arm was extended (p = 0.043). Significant main effects for treatment were found on the maximal force (p = 0.026), the flexion angle of the elbow (p = 0.014) and the creatine kinase activity in blood (p = 0.006). No time-by-treatment interactions were found. DOMS on pressure, extension angle and myoglobin concentration in blood did not differ between the groups. This combination of a warm-up, stretching and massage reduces some negative effects of eccentric exercise, but the results are inconsistent, since some parameters were significantly affected by the treatment whereas others were not, despite the expected efficacy of a combination of treatments. The objective measures did not yield more unequivocal results than the subjective DOMS scores.

  10. Influence of estrogen on markers of muscle tissue damage following eccentric exercise.

    Science.gov (United States)

    Carter, A; Dobridge, J; Hackney, A C

    2001-01-01

    This study tested the hypothesis that estrogen levels of women influences the development of a muscle-tissue damage (creatine kinase, CK) marker and delayed onset muscle soreness (DOMS) following eccentric exercise. Seventeen oral contraceptive (OC) users and ten eumenorrheic (EU) subjects completed a 30-min downhill running bout at approximately 60% VO2max. The OC completed the exercise during the mid-luteal phase (day 22.9 +/- 1.5; high estrogen) while the EU did their exercise in the mid-follicular phase (day 9.6 +/- 4.4; low estrogen) of the menstrual cycle, respectively. The CK activity and DOMS were assessed pre-exercise, immediately post-, 24, 48 and 72 h post-exercise. ANOVA results indicated that there was a significant increase in CK activity in response to the downhill run (p exercise than did the EU group. Pre-exercise estrogen levels correlated with the overall mean CK (r = -0.43, p Exercise caused an increase in DOMS in both groups (p estrogen levels have a protective effect on muscle tissue following eccentric exercise. The mechanism of this protective effect is unclear but may be related to the anti-oxidant characteristics and membrane stability properties associated with estrogen and its derivatives.

  11. Neuromuscular responses to mild-muscle damaging eccentric exercise in a low glycogen state.

    Science.gov (United States)

    Gavin, James P; Myers, Stephen D; Willems, Mark E T

    2015-02-01

    The aim of this study was to examine the effect of low muscle glycogen on the neuromuscular responses to maximal eccentric contractions. Fourteen healthy men (22 ± 3 years) performed single-leg cycling (20 min at ~75% maximal oxygen uptake (V̇O2 max); eight 90 s sprints at a 1:1 work-to-rest ratio (5% decrements from 90% to 55% V̇O2 max until exhaustion) the evening before 100 eccentric (1.57 rads(-1)) with reduced (RED) and normal glycogen (NORM). Neuromuscular responses were measured during and up to 48 h after with maximal voluntary and involuntary (twitch, 20 Hz and 50 Hz) isometric contractions. During eccentric contractions, peak torque decreased (RED: -16.1 ± 2.5%; NORM: -6.2 ± 5.1%) and EMG frequency increased according to muscle length. EMG activity decreased for RED only. After eccentric contractions, maximal isometric force was reduced up to 24h for NORM (-13.5 ± 5.8%) and 48 h for RED (-7.4 ± 10.9%). Twelve hours after eccentric contractions, twitch force and the 20:50 Hz ratio were decreased for RED but not for NORM. Immediate involuntary with prolonged voluntary force loss suggests that reduced glycogen is associated with increased susceptibility to mild muscle-damaging eccentric exercise with contributions of peripheral and central mechanisms to be different during recovery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Changes in the mechanical properties of human and amphibian muscle after eccentric exercise.

    Science.gov (United States)

    Jones, C; Allen, T; Talbot, J; Morgan, D L; Proske, U

    1997-01-01

    Following a series of eccentric contractions, that is stretching of the muscle while generating active tension, the length-tension relationship of isolated amphibian muscle has been shown to shift towards longer muscle length (Katz 1939; Wood et al. 1993). Here we report observations of electrically stimulated ankle extensor muscles of nine human subjects, demonstrating a similar shift in optimum angle for torque generation [3.9 (1.5) degrees] following exercise on an inclined treadmill that involved eccentric contractions in one leg. (All values are means with the SEMs in parentheses). The shift in the unexercised, control leg was significantly less [mean 0.4 (0.7) degree P post-exercise, while torque took a week to recover. A similar shift in optimum length [12 (1.3)% of rest length] was obtained for five toad (Bufo marinus) sartorius muscles subjected to 25 eccentric contractions. Isometrically contracted control muscles showed a smaller shift [3.5 (1.6)%, n = 5]. Accompanying the shift was a drop in tension of 46 (3)% after the eccentric contractions [control isometric, 23 (6)%, P < 0.0001]. By 5 h after the eccentric contractions the shift had returned to control values, while tension had not recovered. When viewed with an electron microscope, sartorius muscles fixed immediately after the eccentric contractions exhibited many small, and a few larger, regions of myofilament disruption. In muscles fixed 5 h after the contractions, no small regions of disruption were visible, and the number of large regions was no greater than in those muscles fixed immediately after the eccentric contractions. These disruptions are interpreted as the cause of the shift in length-tension relationship.

  13. Differential Effects of Unilateral Concentric Vs. Eccentric Exercise on the Dominant and Nondominant Forearm Flexors.

    Science.gov (United States)

    Beck, Travis W; Ye, Xin; Wages, Nathan P

    2016-03-01

    The purpose of this study was to compare the electromyographic (EMG) intensity patterns after unilateral concentric vs. eccentric exercise in the dominant (DOM) and nondominant (NONDOM) forearm flexors. Twenty-six men (mean ± SD: age, 24.0 ± 3.7 years) volunteered to perform a maximal isometric muscle action of the DOM and NONDOM forearm flexors before (PRE) and immediately after (POST) a series of maximal concentric isokinetic or maximal eccentric isokinetic muscle actions of the DOM forearm flexors. The concentric isokinetic and eccentric isokinetic muscle actions were performed on separate days that were randomly ordered. However, in both cases, the subjects performed 6 sets of 10 maximal muscle actions. A bipolar surface EMG signal was detected from the biceps brachii of the DOM and NONDOM limbs during the PRE and POST isometric muscle actions. The signals were then analyzed with a wavelet analysis, and the resulting intensity patterns were classified with a paired pattern classification procedure. The results indicated that the EMG intensity patterns could be correctly classified into their respective PRE vs. POST categories with an accuracy rate that was significantly better than random (20 of 26 patterns = 76.9% accuracy) but only for the DOM limb following the eccentric muscle actions. All other classifications were not significantly better than random. These findings indicated that eccentric exercise had a significant influence on the muscle activation pattern for the forearm flexors. It is possible that the muscle damage resulting from eccentric exercise affects muscle spindle or golgi tendon organ or both activity, thereby altering the muscle activation pattern.

  14. Local NSAID infusion does not affect protein synthesis and gene expression in human muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Schjerling, P.; Langberg, Henning

    2011-01-01

    models, and inhibit the exercise-induced satellite cell proliferation and protein synthesis in humans. However, the cellular mechanisms eliciting these responses remain unknown. Eight healthy male volunteers performed 200 maximal eccentric contractions with each leg. To block prostaglandin synthesis......Unaccustomed exercise leads to satellite cell proliferation and increased skeletal muscle protein turnover. Several growth factors and cytokines may be involved in the adaptive responses. Non-steroidal anti-inflammatory drugs (NSAIDs) negatively affect muscle regeneration and adaptation in animal...... locally in the skeletal muscle, indomethacin (NSAID) was infused for 7.5 h via microdialysis catheters into m. vastus lateralis of one leg. Protein synthesis was determined by the incorporation of 1,2-(13) C(2) leucine into muscle protein from 24 to 28 h post-exercise. Furthermore, mRNA expression...

  15. Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals

    Directory of Open Access Journals (Sweden)

    Cribb Paul J

    2009-06-01

    Full Text Available Abstract Background Eccentric exercise-induced damage leads to reductions in muscle force, increased soreness, and impaired muscle function. Creatine monohydrate's (Cr ergogenic potential is well established; however few studies have directly examined the effects of Cr supplementation on recovery after damage. We examined the effects of Cr supplementation on muscle proteins and force recovery after eccentrically-induced muscle damage in healthy individuals. Methods Fourteen untrained male participants (22.1 ± 2.3 yrs, 173 ± 7.7 cm, 76.2 ± 9.3 kg were randomly separated into 2 supplement groups: i Cr and carbohydrate (Cr-CHO; n = 7; or ii carbohydrate (CHO; n = 7. Participants consumed their supplement for a period of 5 days prior to, and 14 days following a resistance exercise session. Participants performed 4 sets of 10 eccentric-only repetitions at 120% of their maximum concentric 1-RM on the leg press, leg extension and leg flexion exercise machine. Plasma creatine kinase (CK and lactate dehydrogenase (LDH activity were assessed as relevant blood markers of muscle damage. Muscle strength was examined by voluntary isokinetic knee extension using a Cybex dynamometer. Data were analyzed using repeated measures ANOVA with an alpha of 0.05. Results The Cr-supplemented group had significantly greater isokinetic (10% higher and isometric (21% higher knee extension strength during recovery from exercise-induced muscle damage. Furthermore, plasma CK activity was significantly lower (by an average of 84% after 48 hrs (P Conclusion The major finding of this investigation was a significant improvement in the rate of recovery of knee extensor muscle function after Cr supplementation following injury.

  16. Therapeutic potential of eccentric exercises for age-related muscle atrophy

    Directory of Open Access Journals (Sweden)

    Jae-Young Lim

    2016-09-01

    Full Text Available Recent studies have focused on evidence-based interventions to prevent mobility decline and enhance physical performance in older adults. Several modalities, in addition to traditional strengthening programs, have been designed to manage age-related functional decline more effectively. In this study, we reviewed the current relevant literatures to assess the therapeutic potential of eccentric exercises for age-related muscle atrophy (sarcopenia. Age-related changes in human skeletal muscle, and their relationship with physical performance, are discussed with reference to in vitro physiologic and human biomechanics studies. An overview of issues relevant to sarcopenia is provided in the context of the recent consensus on the diagnosis and management of the condition. A decline in mobility among the aging population is closely linked with changes in the muscle force–velocity relationship. Interventions based specifically on increasing velocity and eccentric strength can improve function more effectively compared with traditional strengthening programs. Eccentric strengthening programs are introduced as a specific method for improving both muscle force and velocity. To be more effective, exercise interventions for older adults should focus on enhancing the muscle force–velocity relationship. Exercises that can be performed easily, and that utilize eccentric strength (which is relatively spared during the aging process, are needed to improve both muscle force and velocity.

  17. Effects of Short-Term Docosahexaenoic Acid Supplementation on Markers of Inflammation after Eccentric Strength Exercise in Women.

    Science.gov (United States)

    Corder, Katherine E; Newsham, Katherine R; McDaniel, Jennifer L; Ezekiel, Uthayashanker R; Weiss, Edward P

    2016-03-01

    The omega-3 fatty acid docosahexaenoic acid (DHA) has anti-inflammatory and anti-nociceptive (pain inhibiting) effects. Because strenuous exercise often results in local inflammation and pain, we hypothesized that DHA supplementation attenuates the rise in markers of local muscle inflammation and delayed onset muscle soreness (DOMS) that occur after eccentric strength exercise. Twenty-seven, healthy women (33 ± 2 y, BMI 23.1±1.0 kg·m(-2)) were randomized to receive 9d of 3000 mg/d DHA or placebo in a double-blind fashion. On day 7 of the supplementation period, the participants performed 4 sets of maximal-effort eccentric biceps curl exercise. Before and 48h after the eccentric exercise, markers of inflammation were measured including measures of muscle soreness (10-point visual analog pain scale, VAS), swelling (arm circumference), muscle stiffness (active and passive elbow extension), skin temperature, and salivary C-reactive protein (CRP) concentrations. As expected, muscle soreness and arm circumference increased while active and passive elbow extension decreased. The increase in soreness was 23% less in the DHA group (48h increase in VAS soreness ratings: 4.380.4 vs. 5.600.5, p=0.02). Furthermore, the number of subjects who were able to achieve full active elbow extension 48h after eccentric exercise was greater in the DHA group (71% vs. 15%, p = 0.006), indicating significantly less muscle stiffness. No between-group differences were observed for passive elbow extension (p = 0.78) or arm swelling (p = 0.75). Skin temperature and salivary CRP concentrations did not change from baseline to 48h after exercise in either group. These findings indicate that short-term DHA supplementation reduces exercise-induced muscle soreness and stiffness. Therefore, in addition to other health benefits that n-3 fatty acids have been associated with, DHA supplementation could be beneficial for improving tolerance to new and/or strenuous exercise programs and thereby might

  18. Influence of repeated bouts of eccentric exercise on high-intensity aerobic performance.

    Science.gov (United States)

    Higino, Wonder Passoni; Aparecido de Souza, Renato; Cavalcanti, Fabio de Sousa; Cardoso, Anderlei Dos Santos; Vasconcelos, Murilo Victor; Fernandes da Silva, Fabiano; Leme, José Alexandre C A

    2016-08-01

    [Purpose] It is believed that eccentric high-intensity exercise can decrease performance in subsequent exercise. However, with repetition, the deleterious effects can be minimized. Thus, this study evaluated the influence of repeated bouts of eccentric exercise on subsequent high-intensity aerobic performance. [Subjects and Methods] Seven healthy and sedentary male volunteers were recruited. a) Visit 1: determination of maximum oxygen uptake (VO2max) and speed associated with maximum oxygen uptake (vVO2max) in incremental treadmill testing; b) Visit 2: run to exhaustion at vVO2max (Tlim control); c) Visit 3: 10 sets of 10 depth jumps, followed by a run to exhaustion at vVO2max (Tlim 1); d) Visit 4: after 6 weeks without any physical training, the volunteers carried out the same procedures as on the third visit (Tlim 2). Data were analyzed using one-way analysis of variance (ANOVA) with the post-hoc Tukey test. [Results] Significant differences were found between Tlim control and Tlim 1 (283.4 ± 47.7 s vs. 125.2 ± 64.1 s, respectively), these were not different from Tlim 2. [Conclusion] Eccentric exercise showed deleterious effects on subsequent high-intensity aerobic performance. These effects were minimized after the exercise protocol was repeated 6 weeks after the first event.

  19. Muscle damage responses and adaptations to eccentric-overload resistance exercise in men and women.

    Science.gov (United States)

    Fernandez-Gonzalo, Rodrigo; Lundberg, Tommy R; Alvarez-Alvarez, Lucia; de Paz, José A

    2014-05-01

    This study assessed markers of muscle damage and training adaptations to eccentric-overload flywheel resistance exercise (RE) in men and women. Dynamic strength (1 RM), jump performance, maximal power at different percentages of 1 RM, and muscle mass in three different portions of the thigh were assessed in 16 men and 16 women before and after 6 weeks (15 sessions) of flywheel supine squat RE training. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) concentrations were measured before, 24, 48 and 72 h after the first and the last training session. After training, increases in 1 RM were somewhat greater (interaction P < 0.001) in men (25 %) than in women (20 %). Squat and drop jump height and power performance at 50, 60, 70 and 80 % of 1 RM increased after training in both sexes (P < 0.05). Power improvement at 80 % of 1 RM was greater (interaction P < 0.02) in men than women. Muscle mass increased ~5 % in both groups (P < 0.05). CK increased in men after the first training session (P < 0.001), whereas the response in women was unaltered. In both sexes, LDH concentration was greater after the first training session compared with basal values (P < 0.05). After the last session, CK and LDH remained at baseline in both groups. These results suggest that although improvements in maximal strength and power at high loads may be slightly greater for men, eccentric-overload RE training induces comparable and favorable gains in strength, power, and muscle mass in both men and women. Equally important, it appears muscle damage does not interfere with the adaptations triggered by this training paradigm.

  20. The α₇β₁-integrin increases muscle hypertrophy following multiple bouts of eccentric exercise.

    Science.gov (United States)

    Zou, Kai; Meador, Benjamin M; Johnson, Brian; Huntsman, Heather D; Mahmassani, Ziad; Valero, M Carmen; Huey, Kimberly A; Boppart, Marni D

    2011-10-01

    Mechanical stimuli increase skeletal muscle growth in a mammalian target of rapamycin (mTOR)- and p70(S6K)-dependent manner. It has been proposed that costameric proteins at Z bands may sense and transfer tension to these initiators of protein translation, but few candidates have been identified. The purpose of this study was to determine whether a role exists for the α(7)-integrin in the activation of hypertrophic signaling and growth following eccentric exercise training. Five-week-old, wild-type (WT) and α(7)BX2-integrin transgenic (α(7)Tg) mice were randomly assigned to one of two groups: 1) sedentary (SED), or 2) exercise training (EX). Exercise training consisted of downhill running 3 sessions/wk for 4 wk (-20°, 17 m/min, 30 min). Downhill running was used to induce physiological mechanical strain. Twenty-four hours following the final training session, maximal isometric hindlimb plantar flexor force was measured. Gastrocnemius-soleus complexes were collected for further analysis of signaling changes, which included AKT, mTOR and p70(S6K), and muscle growth. Despite increased p70(S6K) activity in WT/EX, no significant changes in cross-sectional area or force were observed in WT/EX compared with WT/SED. AKT, mTOR, and p70(S6K) activation was higher, and whole muscle hypertrophy, relative muscle weight, myofibrillar protein, and force were significantly elevated in α(7)Tg/EX compared with α(7)Tg/SED. A marked increase in average myofiber cross-sectional area was observed in α(7)Tg/EX compared with all groups. Our findings demonstrate that the α(7)β(1)-integrin sensitizes skeletal muscle to mechanical strain and subsequent growth. Thus the α(7)β(1)-integrin may represent a novel molecular therapy for the treatment of disuse muscle atrophy.

  1. THE COMBINATION OF α-LIPOIC ACID INTAKE WITH ECCENTRIC EXERCISE MODULATES ERYTHROPOIETIN RELEASE

    Directory of Open Access Journals (Sweden)

    B. Morawin

    2014-08-01

    Full Text Available The generation of reactive nitrogen/oxygen species (RN/OS represents an important mechanism in erythropoietin (EPO expression and skeletal muscle adaptation to physical and metabolic stress. RN/OS generation can be modulated by intense exercise and nutrition supplements such as α-lipoic acid, which demonstrates both anti- and pro-oxidative action. The study was designed to show the changes in the haematological response through the combination of α-lipoic acid intake with running eccentric exercise. Sixteen healthy young males participated in the randomised and placebo-controlled study. The exercise trial involved a 90-min run followed by a 15-min eccentric phase at 65% VO2max (-10% gradient. It significantly increased serum concentrations of nitric oxide (NO, hydrogen peroxide (H2O2 and pro-oxidative products such as 8-isoprostanes (8-iso, lipid peroxides (LPO and protein carbonyls (PC. α-Lipoic acid intake (Thiogamma: 1200 mg daily for 10 days prior to exercise resulted in a 2-fold elevation of serum H2O2 concentration before exercise, but it prevented the generation of NO, 8-iso, LPO and PC at 20 min, 24 h, and 48 h after exercise. α-Lipoic acid also elevated serum EPO level, which highly correlated with NO/H2O2 ratio (r=0.718, P<0.01. Serum total creatine kinase (CK activity, as a marker of muscle damage, reached a peak at 24 h after exercise (placebo 732 ± 207 IU · L-1, α-lipoic acid 481 ± 103 IU · L-1, and correlated with EPO (r = 0.478, P<0.01 in the α-lipoic acid group. In conclusion, the intake of high α-lipoic acid modulates RN/OS generation, enhances EPO release and reduces muscle damage after running eccentric exercise.

  2. Histomorphometric analysis of the Achilles tendon of Wistar rats treated with laser therapy and eccentric exercise

    Directory of Open Access Journals (Sweden)

    Maria V. de Souza

    2015-12-01

    Full Text Available Abstract: Low-level laser therapy is recommended for the treatment of tendinopathies despite the contradictory results related to the ideal dose of energy, wavelength and time of application. This study aimed to assess the effects of laser therapy and eccentric exercise on tendinopathy of the Achilles tendon of Wistar rats. Forty-eight adult male rats were randomly distributed into four groups (L= laser; E= eccentric exercise; LE = laser and eccentric exercise; and R= rest. Laser therapy (904nm/3J/cm2 and/or eccentric exercise (downhill walking; 15o incline treadmill; 12m/min; 50min/day was started 24h after induction of unilateral tendinopathy and remained for 20 days. At 3, 7, 14 and 21 days after lesion induction, three rats from each group were euthanized and the tendons were collected for histological and morphometric analyses. There was no difference among groups or among times for the characteristics hemorrhage (p=0.4154, fibrinous adhesion formation (p=0.0712, and organization of collagen fibers (p=0.2583 and of the connective tissue (p=0.1046. For these groups, regardless of the time, eccentric exercise led to epitenon thickening (p=0.0204, which was lower in the group treated with laser therapy. Histological analysis revealed differences (p=0.0032 in the number of inflammatory cells over time. They were more numerous in the group that only exercised. This result was confirmed by morphometric analysis, which showed a significant interaction (groups x time for this characteristic. Eccentric exercise increased (p=0.0014 the inflammatory infiltrate over time (3 and 21 days. However, association with laser therapy reduced inflammatory reaction. On the other hand, the combination of the treatments increased angiogenesis in morphometric (p=0.0000 and histological (p=0.0006 analyses compared with the other groups, while the isolated application of low-level laser reduced this characteristic over time. Animals maintained at rest presented the

  3. Low level laser therapy before eccentric exercise reduces muscle damage markers in humans.

    Science.gov (United States)

    Baroni, Bruno Manfredini; Leal Junior, Ernesto Cesar Pinto; De Marchi, Thiago; Lopes, André Luiz; Salvador, Mirian; Vaz, Marco Aurélio

    2010-11-01

    The purpose of the present study was to determine the effect of low level laser therapy (LLLT) treatment before knee extensor eccentric exercise on indirect markers of muscle damage. Thirty-six healthy men were randomized in LLLT group (n = 18) and placebo group (n = 18). After LLLT or placebo treatment, subjects performed 75 maximal knee extensors eccentric contractions (five sets of 15 repetitions; velocity = 60° seg(-1); range of motion = 60°). Muscle soreness (visual analogue scale--VAS), lactate dehydrogenase (LDH) and creatine kinase (CK) levels were measured prior to exercise, and 24 and 48 h after exercise. Muscle function (maximal voluntary contraction--MVC) was measured before exercise, immediately after, and 24 and 48 h post-exercise. Groups had no difference on kineanthropometric characteristics and on eccentric exercise performance. They also presented similar baseline values of VAS (0.00 mm for LLLT and placebo groups), LDH (LLLT = 186 IU/l; placebo = 183 IU/l), CK (LLLT = 145 IU/l; placebo = 155 IU/l) and MVC (LLLT = 293 Nm; placebo = 284 Nm). VAS data did not show group by time interaction (P = 0.066). In the other outcomes, LLLT group presented (1) smaller increase on LDH values 48 h post-exercise (LLLT = 366 IU/l; placebo = 484 IU/l; P = 0.017); (2) smaller increase on CK values 24 h (LLLT = 272 IU/l; placebo = 498 IU/l; P = 0.020) and 48 h (LLLT = 436 IU/l; placebo = 1328 IU/l; P exercise; (3) smaller decrease on MVC immediately after exercise (LLLT = 189 Nm; placebo = 154 Nm; P = 0.011), and 24 h (LLLT = 249 Nm; placebo = 205 Nm; P = 0.004) and 48 h (LLLT = 267 Nm; placebo = 216 Nm; P = 0.001) post-exercise compared with the placebo group. In conclusion, LLLT treatment before eccentric exercise was effective in terms of attenuating the increase of muscle proteins in the blood serum and the decrease in muscle force.

  4. Progressive Resistance Exercise with Eccentric Loading for the Management of Knee Osteoarthritis.

    Science.gov (United States)

    Hernandez, Haniel J; McIntosh, Valerie; Leland, Azadeh; Harris-Love, Michael O

    2015-01-01

    The patient was a 58-year-old African-American male with radiographic evidence of bilateral knee osteoarthritis (OA). He participated in a standardized 12-week eccentric strengthening program within a Veterans Affairs (VA) medical center. The use of an eccentric training paradigm may prove to be beneficial for older adults with knee OA since eccentric muscle actions are involved in the energy absorption at the knee joint during gait and controlled movement during stair descent. Furthermore, in comparison to standard muscle actions, eccentric muscle actions result in higher torque generation and a lower rate of oxygen consumption at a given level of perceived exertion. Therefore, this mode of progressive resistance exercise may be ideal for older adults. The patient completed an eccentric strengthening regimen for the knee flexors and extensors twice per week without an exacerbation of knee pain. Muscle morphology measures of the rectus femoris were measured using diagnostic ultrasound. Isokinetic measures of muscle peak torque were obtained at 60°/s and 180°/s. Functional performance was assessed using a physical performance battery and stair-step performance was assessed from the linear displacement of the center of gravity trajectories obtained with a force plate. Visual analog scale pain ratings and self-reported global disease status were also documented. Post-exercise assessments revealed improvements in sonographic muscle size and tissue composition estimates, peak knee extensor torque (ranging from 60 to 253%), functional performance, and global disease status. The patient exhibited improvements in muscle morphology, muscle strength, functional performance, pain, and global disease status after 12 weeks of an eccentric strengthening regimen. The intervention and outcomes featured in this case were feasible to implement within a VA medical center and merit further investigation.

  5. Progressive Resistance Exercise with Eccentric Loading for the Management of Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Michael O Harris-Love

    2015-07-01

    Full Text Available Introduction: The patient was a 58-year-old African-American male with radiographic evidence of knee osteoarthritis. He participated in a standardized 12-week eccentric strengthening program within a VA medical center. Background: The use of an eccentric training paradigm may prove to be beneficial for older adults with knee osteoarthritis since eccentric muscle actions are involved in the energy absorption at the knee joint during gait and controlled movement during stair descent. Furthermore, in comparison to standard muscle actions, eccentric muscle actions result in higher torque generation and a lower rate of oxygen consumption at a given level of perceived exertion. Therefore, this mode of progressive resistance exercise may be ideal for older adults. Discussion: The patient completed an eccentric strengthening regimen for the knee flexors and extensors twice per week without an exacerbation of knee pain. Muscle morphology measures of the rectus femoris were measured using diagnostic ultrasound. Isokinetic measures of muscle peak torque were be obtained at 60°/s and 180°/s. Functional performance was assessed using a physical performance battery and stair step performance was assessed from the linear displacement of the center of gravity trajectories obtained with a force plate. Visual analogue scale pain ratings and self-reported global disease status were also documented. Post-exercise assessments revealed improvements in sonographic muscle size and tissue composition estimates, peak knee extensor torque (ranging from 60% to 253%, functional performance, and global disease status. Concluding Remarks: The patient exhibited improvements in muscle morphology, muscle strength, functional performance, pain, and global disease status after 12 weeks of an eccentric strengthening regimen. The intervention and outcomes featured in this case were feasible to implement within a VA medical center and merit further investigation.

  6. Avenanthramide supplementation attenuates eccentric exercise-inflicted blood inflammatory markers in women.

    Science.gov (United States)

    Koenig, Ryan T; Dickman, Jonathan R; Kang, Choung-Hun; Zhang, Tianou; Chu, Yi-Fang; Ji, Li Li

    2016-01-01

    Rigorous exercise is known to generate reactive oxygen species (ROS) and inflict inflammatory response. The present study investigated whether dietary supplementation of avenanthramides (AVA) in oats would increase antioxidant protection and reduce inflammation in humans after an acute bout of eccentric exercise. Young women (age 18-30 years, N = 16) were randomly divided into two groups in a double-blinded fashion, receiving two cookies made of oat flour providing 9.2 mg AVA (AVA) or 0.4 mg AVA (Control, C) each day for 8 weeks. Before and after the dietary regimen each group of subjects ran downhill (DR) on a treadmill at -9% grade for 1 h at a speed to elicit 75% of maximal heart rate. Blood samples were collected at rest, immediately and 24 h post-DR. Before dietary supplementation plasma creatine kinase activity and tumor necrosis factor (TNF)-α concentration were increased immediately after DR (P eccentric exercise and AVA in diet. Long-term AVA supplementation can attenuate blood inflammation markers, decrease ROS generation and NFkB activation, and increased antioxidant capacity during an eccentric exercise bout.

  7. Effects of whole-body vibration after eccentric exercise on muscle soreness and muscle strength recovery.

    Science.gov (United States)

    Timon, Rafael; Tejero, Javier; Brazo-Sayavera, Javier; Crespo, Carmen; Olcina, Guillermo

    2016-06-01

    [Purpose] The aim of this study was to investigate whether or not a single whole-body vibration treatment after eccentric exercise can reduce muscle soreness and enhance muscle recovery. [Subjects and Methods] Twenty untrained participants were randomly assigned to two groups: a vibration group (n=10) and control group (n=10). Participants performed eccentric quadriceps training of 4 sets of 5 repetitions at 120% 1RM, with 4 min rest between sets. After that, the vibration group received 3 sets of 1 min whole body vibration (12 Hz, 4 mm) with 30 s of passive recovery between sets. Serum creatine kinase, blood urea nitrogen, muscle soreness (visual analog scale) and muscle strength (peak isometric torque) were assessed. [Results] Creatine kinase was lower in the vibration group than in the control group at 24 h (200.2 ± 8.2 vs. 300.5 ± 26.1 U/L) and at 48 h (175.2 ± 12.5 vs. 285.2 ± 19.7 U/L) post-exercise. Muscle soreness decreased in vibration group compared to control group at 48 h post-exercise (34.1 ± 11.4 vs. 65.2 ± 13.2 mm). [Conclusion] Single whole-body vibration treatment after eccentric exercise reduced delayed onset muscle soreness but it did not affect muscle strength recovery.

  8. Muscle damage of resistance-trained men after two bouts of eccentric bench press exercise.

    Science.gov (United States)

    Meneghel, Adilson J; Verlengia, Rozangela; Crisp, Alex H; Aoki, Marcelo S; Nosaka, Kazunori; da Mota, Gustavo R; Lopes, Charles R

    2014-10-01

    The present study tested the hypothesis that resistance-trained individuals would also show less muscle damage in the second than in the first eccentric exercise bout (i.e., repeated bout effect) as shown in untrained individuals. This study investigated changes in indirect markers of muscle damage after 2 bouts of free weight eccentric exercise performed by 8 resistance-trained men. The participants (24.4 ± 1.2 years) performed 4 sets of 8 eccentric actions (3 seconds for each repetition) at 70% of eccentric 1 repetition maximum (1RM) load in a bench press exercise with 2 minutes of rest between sets, and repeated the same exercise 2 weeks later. Bench press 1RM, delayed onset muscle soreness (DOMS) assessed by a 6-point Likert scale, serum creatine kinase (CK) activity, and plasma prostaglandin E2 concentration (PGE2) were measured before and 24, 48, 72, and 96 hours after the exercise, and the changes were compared between bouts. The changes in the variables were smaller (p ≤ 0.05) after the second than the first bout indicated by a smaller decline in 1RM strength (first bout: -10.2 ± 1.0% vs. second bout: -5.7 ± 1.5%), peak DOMS (3.8 ± 0.4 vs. 1.7 ± 0.5), peak CK (637.3 ± 133.3 vs. 305.4 ± 63.6 IU·L), and peak PGE2 (761.2 ± 171.0 vs. 307.2 ± 48.3 pg·mL). These results show a typical repeated bout effect. Thus, it is concluded that the repeated bout effect occurs in resistance-trained individuals.

  9. Does high muscle temperature accentuate skeletal muscle injury from eccentric exercise?

    Science.gov (United States)

    Castellani, John W; Zambraski, Edward J; Sawka, Michael N; Urso, Maria L

    2016-05-01

    Hyperthermia is suspected of accentuating skeletal muscle injury from novel exercise, but this has not been well studied. This study examined if high muscle temperatures alters skeletal muscle injury induced by eccentric exercise (ECC). Eight volunteers (age, 22.5 ± 4.1 year; height, 169.5 ± 10.8 cm; body mass, 76.2 ± 12.6 kg), serving as their own control, and who were not heat acclimatized, completed two elbow flexor ECC trials; in one trial the biceps were heated >40°C (HEAT) and in the other trial there was no heating (NON). HEAT was applied with shortwave diathermy (100 W) for 15 min immediately before the first ECC bout and for 2 min in between each bout. Individuals were followed for 10 days after each ECC session, with a 6-week washout period between arms. The maximal voluntary isometric contraction decreased by 41 ± 17% and 46 ± 20% in the NON and HEAT trials, respectively. Bicep circumference increased by 0.07 ± 0.08 mm (4%, P = 0.04) and relaxed range of motion decreased by 11.5 ± 8.2° (30%, P 40°C muscle temperature does not alter skeletal muscle injury or functional impairments induced by novel ECC. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. Changes in passive tension after stretch of unexercised and eccentrically exercised human plantarflexor muscles.

    Science.gov (United States)

    Reisman, Simone; Allen, Trevor J; Proske, Uwe

    2009-03-01

    The study measured the effect of stretch on passive mechanical properties in unexercised and eccentrically exercised plantarflexor muscles, to obtain insight into how stretch might serve athletes as a warm-up strategy. Passive torque, voluntary contraction strength and muscle soreness were measured before and after a large amplitude stretch given before and after a period of eccentric exercise and at 0, 1, 2 and 24 h later. Stretch of the unexercised muscle led to a 20% fall in passive torque which recovered within an hour. About 40% of the fall could be recovered immediately with a voluntary contraction. After eccentric exercise there was a rise in passive torque by 20% at 2 h post-exercise. This rise was postulated to result from an injury contracture in muscle fibres damaged by the exercise. It was accompanied by a fall in maximum voluntary torque and the development of muscle soreness at 24 h. Stretch of the exercised muscle led to a fall in passive torque and rise in pain threshold. It is proposed that in response to a stretch there is a fall in passive tension in the muscle due to stable cross-bridges in sarcomeres which could be recovered with a voluntary contraction and an additional component attributable to the elastic filament, titin. The size of the fall was not significantly different between exercised and unexercised muscle. These observations provide a physiological basis for the effects of passive stretches on skeletal muscle and help to explain why they are used as a popular warm-up strategy.

  11. Influence of eccentric actions on the metabolic cost of resistance exercise

    Science.gov (United States)

    Dudley, Gary A.; Golden, Catherine L.; Tesch, Per A.; Harris, Robert T.; Buchanan, Paul

    1991-01-01

    The contributions of concentric (con) and eccentric (ecc) muscle actions are evaluated with respect to increasing the metabolic cost of resistance exercise. Male subjects perform leg exercise with either con and ecc actions or only con actions while the net energy cost of the exercise is measured by oxygen consumption data. In both groups, the con actions require 290 J/kg body weight of total work, with an energy cost of 0.003 cal/J. The energy costs for the con/ecc actions of the second group is increased by 14 percent. The metabolic cost of leg exercise is concluded to be primarily generated by the con leg actions, and ecc leg actions increase the resistance with only a slight increase in required energy. The findings are significant for practical applications that emphasize the conservation of energy expenditure during exercise in spacecraft environments.

  12. Influence of eccentric actions on the metabolic cost of resistance exercise

    Science.gov (United States)

    Dudley, Gary A.; Golden, Catherine L.; Tesch, Per A.; Harris, Robert T.; Buchanan, Paul

    1991-01-01

    The contributions of concentric (con) and eccentric (ecc) muscle actions are evaluated with respect to increasing the metabolic cost of resistance exercise. Male subjects perform leg exercise with either con and ecc actions or only con actions while the net energy cost of the exercise is measured by oxygen consumption data. In both groups, the con actions require 290 J/kg body weight of total work, with an energy cost of 0.003 cal/J. The energy costs for the con/ecc actions of the second group is increased by 14 percent. The metabolic cost of leg exercise is concluded to be primarily generated by the con leg actions, and ecc leg actions increase the resistance with only a slight increase in required energy. The findings are significant for practical applications that emphasize the conservation of energy expenditure during exercise in spacecraft environments.

  13. Whey protein isolate attenuates strength decline after eccentrically-induced muscle damage in healthy individuals

    Directory of Open Access Journals (Sweden)

    Cribb Paul J

    2010-09-01

    Full Text Available Abstract Background We examined the effects of short-term consumption of whey protein isolate on muscle proteins and force recovery after eccentrically-induced muscle damage in healthy individuals. Methods Seventeen untrained male participants (23 ± 5 yr, 180 ± 6 cm, 80 ± 11 kg were randomly separated into two supplement groups: i whey protein isolate (WPH; n = 9; or ii carbohydrate (CHO; n = 8. Participants consumed 1.5 g/kg.bw/day supplement (~30 g consumed immediately, and then once with breakfast, lunch, in the afternoon and after the evening meal for a period of 14 days following a unilateral eccentric contraction-based resistance exercise session, consisting of 4 sets of 10 repetitions at 120% of maximum voluntary contraction on the leg press, leg extension and leg flexion exercise machine. Plasma creatine kinase and lactate dehydrogenase (LDH levels were assessed as blood markers of muscle damage. Muscle strength was examined by voluntary isokinetic knee extension using a Cybex dynamometer. Data were analyzed using repeated measures ANOVA with an alpha of 0.05. Results Isometric knee extension strength was significantly higher following WPH supplementation 3 (P Conclusions The major finding of this investigation was that whey protein isolate supplementation attenuated the impairment in isometric and isokinetic muscle forces during recovery from exercise-induced muscle injury.

  14. Blood flow after contraction and cuff occlusion is reduced in subjects with muscle soreness after eccentric exercise

    DEFF Research Database (Denmark)

    Souza-Silva, Eduardo; Wittrup Christensen, Steffan; Hirata, Rogerio Pessoto

    2017-01-01

    anterior muscle. All measures were done bilaterally at day-0 (pre-exercise), day-2 and day-6 (post-exercise). Subjects scored the muscle soreness on a Likert scale for 6 days. Results: Eccentric exercise increased Likert scores at day-1 and day-2 compared with day-0 (P

  15. Eccentric versus conventional exercise therapy in patients with rotator cuff tendinopathy: a randomized, single blinded, clinical trial

    NARCIS (Netherlands)

    Dejaco, B.; Habets, B.; Loon, C.J.M. van; Grinsven, S. van; Cingel, R.E. van

    2017-01-01

    PURPOSE: To investigate the effectiveness of isolated eccentric versus conventional exercise therapy in patients with rotator cuff tendinopathy. METHODS: Thirty-six patients with rotator cuff tendinopathy, diagnosed by an orthopaedic surgeon, were included and randomly allocated to an isolated

  16. Muscle damage and adaptation after the second bout of eccentric exercise of the knee extensors.

    Science.gov (United States)

    Hassan, E S

    2014-10-01

    This study examined the muscles ability to adapt to eccentric exercise by the changes in serum myoglobin (Mb), creatine kinase (CK) activity and muscle soreness. The study involved 54 healthy young men from the 23± 2yr age group. These were distributed as subjects for three types of experiments with 18 men in each. Subjects performed 300 maximal eccentric exercises. In experiment I, after performing the first bout of exercise, they were split into three subgroups to perform the second bout after a period of 4, 6, and 8 weeks (WK), respectively. In experiment II, performed the second exercise after a period of 2, 3, and 5 wk, respectively. In experiment III, they performed four exercise bouts spaced 1 wk apart. in experiment II a significant (Pexercise bout 2. In experiment III, serum CK, Mb and muscle soreness responses were highest following bout 1. It was concluded that performance of a single exercise bout had a prophylactic effect on muscle soreness and serum protein responses that lasts approximately 2 wk, with the greatest adaptation occurring after one bout.

  17. THE COMBINATION OF α-LIPOIC ACID INTAKE WITH ECCENTRIC EXERCISE MODULATES ERYTHROPOIETIN RELEASE

    OpenAIRE

    Morawin, B.; Turowski, D; M Naczk; Siatkowski, I.; A. Zembron-Lacny

    2014-01-01

    The generation of reactive nitrogen/oxygen species (RN/OS) represents an important mechanism in erythropoietin (EPO) expression and skeletal muscle adaptation to physical and metabolic stress. RN/OS generation can be modulated by intense exercise and nutrition supplements such as α-lipoic acid, which demonstrates both anti- and pro-oxidative action. The study was designed to show the changes in the haematological response through the combination of α-lipoic acid intake with running eccentric ...

  18. Effect of unaccustomed eccentric exercise on proprioception of the knee in weight and non-weight bearing tasks.

    Science.gov (United States)

    Vila-Chã, Carolina; Riis, Simone; Lund, Ditte; Møller, Anders; Farina, Dario; Falla, Deborah

    2011-02-01

    The study investigates the effects of eccentric exercise of the quadriceps on proprioception of the knee in weight and non-weight bearing tasks. Proprioception of the exercised leg was assessed at 120° and 150° of knee extension in 15 healthy adults (age 25.0 ± 3.6 yrs) before, immediately after, and 24h following eccentric exercise of the quadriceps. Three tests of proprioception were performed: 1. matching the position of the exercised leg (right leg) to the reference leg (left leg) in sitting (non-weight bearing matching task); 2. repositioning the exercised leg after active movement in sitting (non-weight bearing repositioning task); 3. repositioning the exercised leg after active movement in standing (weight bearing task). Maximum knee extension force was reduced by 77.0 ± 12.3 % immediately after the exercise, and by 82.7 ± 16.2% 24h post exercise, with respect to baseline (Peccentric exercise (12.3 ± 5.6, Pexercise (8.1 ± 4.5, Pexercise (5.2 ± 3.0°, Peccentric exercise by adopting a more extended knee position of the exercised limb. Furthermore, the subjects showed higher variability in their performance immediately post exercise (Peccentric exercise did not affect the repositioning errors in the weight bearing task. In conclusion, eccentric exercise of the quadriceps impairs proprioception of the knee both immediately after and 24h post exercise, but only in non-weight bearing tasks.

  19. Effects of eccentric exercise in rehabilitation of phasic and tonic muscles after leg immobilization in rats.

    Science.gov (United States)

    Cornachione, Anabelle S; Cação-Benedini, Letícia O; Chesca, Deise Lucia; Martinez, Edson Z; Mattiello-Sverzut, Ana Claudia

    2014-10-01

    Eccentric exercise is an essential resource for skeletal muscle rehabilitation following muscle disuse however, abnormalities linked to the tissue recuperation require further research. Our aim was analyze the adaptation ability of rehabilitated muscular tissue in rats during different periods of eccentric training after 10 days of limb immobilization. Twenty-seven Wistar rats were divided into six groups: immobilized 10 days, immobilized and eccentric trained for 10 days, immobilized and eccentric trained for 21 days, and three age-matched control groups. After sacrifice, soleus and plantaris muscles were frozen, cut and stained for general histology using hematoxylin and eosin and Gomori trichrome methods and immunohistochemical methods for fiber typing (mATPase, NADH2-TR), for capillaries (CD31) and intermediate filaments (desmin, vimentin) and high resolution microscopy of resin embedded material. Immobilization resulted in more intense morphological alterations in soleus muscles such as formation of target fibers, nuclear centralization, a reduction in the number of type I fibers, diameter of type I, IIA, IIAD fibers, and capillaries. After 10 days of eccentric training, increases in the nuclear centralization and the number of lobulated fibers were observed. This period was insufficient to reestablish the capillary/fiber (C/F) ratio and distribution of fiber types as that observed in the control group. However, 21 days of rehabilitation allowed the reversal of all morphological and quantitative abnormalities. For the plantaris muscles, 10-days of training restored their basic characteristics. Despite the fact that immobilization affected soleus and plantaris muscles, 10 days of eccentric training was insufficient to restore the morphological characteristics of soleus muscles, which was not the case observed in plantaris muscle.

  20. The α7β1-integrin accelerates fiber hypertrophy and myogenesis following a single bout of eccentric exercise.

    Science.gov (United States)

    Lueders, Tara N; Zou, Kai; Huntsman, Heather D; Meador, Benjamin; Mahmassani, Ziad; Abel, Megan; Valero, M Carmen; Huey, Kimberly A; Boppart, Marni D

    2011-10-01

    The α(7)β(1)-integrin is a heterodimeric transmembrane protein that adheres to laminin in the extracellular matrix, representing a critical link that maintains structure in skeletal muscle. In addition to preventing exercise-induced skeletal muscle injury, the α(7)-integrin has been proposed to act as an intrinsic mechanosensor, initiating cellular growth in response to mechanical strain. The purpose of this study was to determine the extent to which the α(7)-integrin regulates muscle hypertrophy following eccentric exercise. Wild-type (WT) and α(7)-integrin transgenic (α(7)Tg) mice completed a single bout of downhill running exercise (-20°, 17 m/min, 60 min), and gastrocnemius-soleus complexes were collected 1, 2, 4, and 7 days (D) postexercise (PE). Maximal isometric force was maintained and macrophage accumulation was suppressed in α(7)Tg muscle 1D PE. Mean fiber cross-sectional area was unaltered in WT mice but increased 40% in α(7)Tg mice 7D PE. In addition, a rapid and striking fivefold increase in embryonic myosin heavy chain-positive fibers appeared in α(7)Tg mice 2D PE. Although Pax7-positive satellite cells were increased in α(7)Tg muscle 1D PE, the number of nuclei per myofiber was not altered 7D PE. Phosphorylation of mammalian target of rapamycin (mTOR) was significantly elevated in α(7)Tg 1D PE. This study provides the first demonstration that the presence of the α(7)β(1)-integrin in skeletal muscle increases fiber hypertrophy and new fiber synthesis in the early time course following a single bout of eccentric exercise. Further studies are necessary to elucidate the precise mechanism by which the α(7)-integrin can enhance muscle hypertrophy following exercise.

  1. Isometric contractions combined with eccentric contractions and stretching exercises on patient with subacromial impingement syndrome

    Directory of Open Access Journals (Sweden)

    Efstratiadis Anastasios

    2015-10-01

    Full Text Available Many people with shoulder pain and disability have signs of subacromial impingement syndrome. The subacromial impingement syndrome of the shoulder is a general term, which is often used to describe pain and dysfunction in the area around the shoulder. The aim of the present report is to find the effect of isometric contractions combined with eccentric contractions and stretching exercises on a patient with subacromial impingement syndrome. A patient with subacromial impingement syndrome for 1 year was included in the case report. The patient followed an exercise program consisted of stretching exercises of shoulder muscles extensors, isometric contractions of shoulder extensors and eccentric exercises of shoulder extensors, 4 times per week. The exercise program was individualized according to pain and symptoms of the patient. Outcome measures were pain, pain rest, pain activity, pain night measured on a visual analogue scale (VAS, disability index (DASH score and range of motion (Goniometer. The patient was evaluated at baseline and after 4 weeks. At the end of the program, there was a significant improvement pain, disability and range of motion. In this clinical case the patient was improved significantly in all outcome measures. Further studies based on better design, are needed to investigate the effect of those methods on a random population group with subacromial impingement syndrome.

  2. The effect of prior eccentric exercise on heavy-intensity cycling: the role of gender and oral contraceptives.

    Science.gov (United States)

    Joyce, Sarah; Sabapathy, Surendran; Bulmer, Andrew C; Minahan, Clare

    2014-05-01

    To determine if gender and/or the use of oral contraceptives alter cycling performance with exercise-induced muscle damage (EiMD). Nine male adults (MEN), nine normally menstruating female adults (WomenNM), and nine female adults using oral contraceptives (WomenOC) participated. Gas exchange and time to exhaustion were measured during continuous cycling performed at three distinct power outputs before (pre) and 48 h after (post) 240 maximal effort eccentric contractions of the quadriceps muscles designed to induce muscle damage (i.e., EiMD). The change in muscle damage (i.e., range of motion about the knee joint and serum creatine kinase activity) from pre- compared to post-EiMD was greater in MEN and WomenOC compared to the WomenNM. Time to exhaustion decreased after EiMD in MEN (5.19 ± 4.58 min, p = 0.01) and in WomenOC (2.86 ± 2.83 min, p = 0.02) but did not change in WomenNM (0.98 ± 2.28 min, p = 0.43). Accordingly, the slow component of O2 uptake, expressed relative to time to exhaustion (i.e., % min(-1)), was greater in post- compared to pre-EiMD for MEN (p = 0.02) and the WomenOC (p = 0.03), but not for the WomenNM (p = 0.12). The preservation of exercise tolerance during heavy-intensity cycling performed after intense eccentric exercise is improved in women compared to men. Furthermore, the preservation of exercise tolerance is exclusive to 17β-estradiol and cannot be replicated with an exogenous synthetic estrogen replacement delivered in an oral contraceptive.

  3. Exercise-induced neuromuscular dysfunction under reflex conditions.

    Science.gov (United States)

    Kaufman, T; Burke, J R; Davis, J M; Durstine, J L

    2001-06-01

    The purpose of this research was to describe further the effects of exercise-induced muscle damage on reflex sensitivity. The subjects were eight physically active, but untrained males, between the ages of 18 and 29 years. The effects of eccentric and concentric exercise on patellar tendon reflex responses were determined. The 8 week experiment consisted of two, 5 day, test protocols with a 6 week wash-out period between test protocols. Each 5 day test protocol consisted of the following six test sessions: (1) day 1--baseline, (2) day 2 baseline, (3) day 2--immediate post-exercise, and (4-6) days 3-5: 24, 48, and 72 h post-exercise. On day 2, the subjects made either 100 fatiguing concentric or eccentric isotonic contractions using the right leg at 75% of the corresponding repetition maximum values. During each test session, the electromyogram (EMG) and force-time characteristics of basic and conditioned patellar tendon reflex responses were measured. The reflex amplitudes of basic and conditioned patellar tendon reflex responses were decreased following fatiguing concentric exercise. There were no immediate effects of fatiguing eccentric exercise on the basic and conditioned patellar tendon reflex responses, but the EMG amplitudes of these reflex responses were reduced on the days following eccentric exercise. The amount of conditioned patellar tendon reflex facilitation was decreased following the concentric exercise protocol and at 48 h post-eccentric exercise. Our conditioned reflex data suggest that post-exercise changes to the physiological mechanisms that modulate the recruitment gain of the alpha-motoneuron pool may depend upon the type of fatiguing exercise.

  4. Comparison of oxygen consumption in rats during uphill (concentric) and downhill (eccentric) treadmill exercise tests.

    Science.gov (United States)

    Chavanelle, Vivien; Sirvent, Pascal; Ennequin, Gaël; Caillaud, Kévin; Montaurier, Christophe; Morio, Béatrice; Boisseau, Nathalie; Richard, Ruddy

    2014-09-01

    The study of the physiological adaptations of skeletal muscle in response to eccentric (ECC) contraction is based on protocols in which exercise intensities are determined relative to the concentric (CON) reference exercise (as percentage of the CON maximal oxygen consumption, or VO2max). In order to use similar exercise protocols in rats, we compared the VO2 values during uphill (CON) and downhill (ECC) running tests. VO2 was measured in 15 Wistar rats during incremental treadmill running exercises with different slopes: level (0%), positive (+15% incline: CON+15%) and negative (i15% incline: ECC-15%; and 130% incline: ECC-30%). Similar VO2 values were obtained in the ECC-30% and CON+15% running conditions at the three target speeds (15, 25 and 35 cm/sec). Conversely, VO2 values were lower (p < 0.05) in the ECC-15% than in the CON+15% condition (CON+15% VO2/ECC-15% VO2 ratios ranging from 1.86 to 2.05 at the three target speeds). Thus, doubling the downhill slope gradient in ECC condition leads to an oxygen consumption level that is not significantly different as in CON condition. These findings can be useful for designing animal research protocols to study the effects of ECC and CON exercise in ageing population or subjects suffering from cardiovascular diseases. Key PointsVO2 in rats during treadmill race in eccentric and concentric conditions were measured.A novel breath-by-breath device allowing direct access to the animal was used.THREE DIFFERENT SLOPES: +15%, -15% and -30% were used.VO2 values obtained in the -30% eccentric and the +15% concentric conditions were not significantly different.

  5. Comparison of Oxygen Consumption in Rats During Uphill (Concentric) and Downhill (Eccentric) Treadmill Exercise Tests

    Science.gov (United States)

    Chavanelle, Vivien; Sirvent, Pascal; Ennequin, Gaël; Caillaud, Kévin; Montaurier, Christophe; Morio, Béatrice; Boisseau, Nathalie; Richard, Ruddy

    2014-01-01

    The study of the physiological adaptations of skeletal muscle in response to eccentric (ECC) contraction is based on protocols in which exercise intensities are determined relative to the concentric (CON) reference exercise (as percentage of the CON maximal oxygen consumption, or VO2max). In order to use similar exercise protocols in rats, we compared the VO2 values during uphill (CON) and downhill (ECC) running tests. VO2 was measured in 15 Wistar rats during incremental treadmill running exercises with different slopes: level (0%), positive (+15% incline: CON+15%) and negative (i15% incline: ECC-15%; and 130% incline: ECC-30%). Similar VO2 values were obtained in the ECC-30% and CON+15% running conditions at the three target speeds (15, 25 and 35 cm/sec). Conversely, VO2 values were lower (p VO2/ECC-15% VO2 ratios ranging from 1.86 to 2.05 at the three target speeds). Thus, doubling the downhill slope gradient in ECC condition leads to an oxygen consumption level that is not significantly different as in CON condition. These findings can be useful for designing animal research protocols to study the effects of ECC and CON exercise in ageing population or subjects suffering from cardiovascular diseases. Key Points VO2 in rats during treadmill race in eccentric and concentric conditions were measured. A novel breath-by-breath device allowing direct access to the animal was used. Three different slopes: +15%, -15% and -30% were used. VO2 values obtained in the -30% eccentric and the +15% concentric conditions were not significantly different. PMID:25177200

  6. EFFECTIVENESS OF ECCENTRIC TRAINING, DYNAMIC RANGE OF MOTION EXERCISES AND STATIC STRETCHING ON FLEXIBILITY OF HAMSTRING MUSCLE AMONG FOOTBALL PLAYERS.

    Directory of Open Access Journals (Sweden)

    Askar P.V

    2015-12-01

    Full Text Available Background: Hamstring stretch is an important part of treatment programs aimed at decreasing the likelihood of hamstring injury. Few studies have examine the effect of eccentric training, static stretching and dynamic range of motion(DROM exercise in improving hamstring flexibility this study compares the effect of eccentric training and static stretching in improving hamstring flexibility. The purpose of this study was to determine the effects of Eccentric training, Static stretching and Dynamic range of motion (DROM exercise in improving hamstring flexibility and the second objective is find which technique is more effective in improving hamstring flexibility when compared with a control group. Study design is Experimental pre-test post-test design. Methods: 88 male subjects with limited hamstring flexibility were recruited for this study were assigned to four group. Group1 received eccentric training, group2 received dynamic range of motion exercise, group3 received static stretching and group4 was served as control group. Hamstring length was measured pre intervention and post intervention using a self-monitored active knee extension test. Results: Eccentric training, static stretching and dynamic range of motion exercise showed a significant increase in hamstring length between pre and post intervention. Following a between group analysis done by independent t test revealed a significant difference between group1 group2 and group3 Conclusion: It is concluded that eccentric training, dynamic range of motion (DROM exercise and static stretching groups improved hamstring flexibility.

  7. A randomized controlled trial of eccentric vs. concentric graded exercise in chronic tennis elbow (lateral elbow tendinopathy).

    Science.gov (United States)

    Peterson, Magnus; Butler, Stephen; Eriksson, Margaretha; Svärdsudd, Kurt

    2014-09-01

    To analyse treatment effects of eccentric vs. concentric graded exercise in chronic tennis elbow. Randomized controlled trial. Primary care in Uppsala County, Sweden. A total of 120 subjects with tennis elbow lasting more than three months were recruited from primary care and by advertisement. Eccentric (n = 60) or concentric exercise (n = 60), by lowering or lifting a weight, at home daily, for three months with gradually increasing load. Pain during muscle contraction and muscle elongation, as well as strength, was assessed at baseline and after one, two, three, six, and 12 months. Function and quality of life was assessed at baseline and after three, six and 12 months. The eccentric exercise group had faster regression of pain, with an average of 10% higher responder rate at all levels of pain reduction, both during muscle contraction and elongation, (p eccentric vs. the concentric group and a number-needed-to-treat of 10. The eccentric group also had a greater increase of muscle strength than the concentric (p Eccentric graded exercise reduced pain and increased muscle strength in chronic tennis elbow more effectively than concentric graded exercise. © The Author(s) 2014.

  8. Blood flow after contraction and cuff occlusion is reduced in subjects with muscle soreness after eccentric exercise.

    Science.gov (United States)

    Souza-Silva, E; Christensen, S W; Hirata, R P; Larsen, R G; Graven-Nielsen, T

    2017-04-28

    Delayed onset muscle soreness (DOMS) occurs within 1-2 days after eccentric exercise, but the mechanism mediating hypersensitivity is unclear. This study hypothesized that eccentric exercise reduces the blood flow response following muscle contractions and cuff occlusion, which may result in accumulated algesic substances being a part of the sensitization in DOMS. Twelve healthy subjects (five women) performed dorsiflexion exercise (five sets of 10 repeated eccentric contractions) in one leg, while the contralateral leg was the control. The maximal voluntary contraction (MVC) of the tibialis anterior muscle was recorded. Blood flow was assessed by ultrasound Doppler on the anterior tibialis artery (ATA) and within the anterior tibialis muscle tissue before and immediately after 1-second MVC, 5-seconds MVC, and 5-minutes thigh cuff occlusion. Pressure pain thresholds (PPTs) were recorded on the tibialis anterior muscle. All measures were done bilaterally at day 0 (pre-exercise), day 2, and day 6 (post-exercise). Subjects scored the muscle soreness on a Likert scale for 6 days. Eccentric exercise increased Likert scores at day 1 and day 2 compared with day 0 (Pexercise (day 0), reduced PPT (~25%, Peccentric contractions decreased vessel diameter, impaired the blood flow response, and promoted hyperalgesia. Thus, the results suggest that the blood flow reduction may be involved in the increased pain response after eccentric exercise. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The effects of muscle damage following eccentric exercise on gait biomechanics.

    Science.gov (United States)

    Paschalis, Vassilis; Giakas, Giannis; Baltzopoulos, Vassilios; Jamurtas, Athanasios Z; Theoharis, Vassilios; Kotzamanidis, Christos; Koutedakis, Yiannis

    2007-02-01

    To examine the effects of knee extensors muscle damage on walking and running biomechanics in healthy males. Muscle damage was caused by 60 (6x10) maximal eccentric knee flexions of both legs, selected in a random order, at an angular velocity of 1.05rad/s in 10 volunteers (mean age 20+/-1.0 years). Muscle damage indicators (creatine kinase (CK), lactate dehydrogenase (LDH), delayed onset muscle soreness (DOMS), eccentric and isometric (110 degrees knee flexion) peak torque), pelvic three dimensional (3D) orientation, as well as hip, knee and ankle-joint flexion/extension angles during gait (walking at 1.2m/s and running at 2.8m/s) were assessed pre- and 48h post-eccentric exercise. All muscle damage indicators revealed significant changes post- compared to pre-exercise data (Pknee-joint angle range of movement at the stance and swing phases during walking (Pknee extensors result in changes of treadmill walking and running kinematics at both knee joint and pelvis. The fact that these alterations occur at different gait phases could be attributed to the speed of movement and to a self-protection mechanism to prevent further damage.

  10. DIFFERENCE IN THE MAGNITUDE OF MUSCLE DAMAGE BETWEEN ELBOW FLEXORS AND KNEE EXTENSORS ECCENTRIC EXERCISES

    Directory of Open Access Journals (Sweden)

    Tolga Saka

    2009-03-01

    Full Text Available The aim of this study was to investigate the difference in the magnitude of muscle damage between maximal eccentric exercises of the elbow flexors (EF and knee extensors (KE. Twelve sedentary male volunteers participated in the study. Range of motion (ROM, isometric peak torque (IPT, delayed onset of muscle soreness (DOMS, creatine kinase activity (CK, and myoglobin concentration (Mb were evaluated before, immediately after, and on the 1st , 2nd, 3rd , and 7th days following exercise. Total work (TW during exercises was recorded and corrected by muscle volume (TWc. TWc was greater (p < 0.01 for EF [24 (2 joule·cm-3] than for KE [7 (0.4 joule·cm-3]. Increases in CK on the 2nd , 3rd , and 7th days (p < 0.01 and increases in Mb on the 1st , 2nd , 3rd , and 7th days were significantly (p<0.01 larger for EF than for KE. The decline in IPT was greater (p < 0.05- 0.01 for EF at all test occasions compared with KE. The results of this study demonstrate that the magnitude of muscle damage is greater and the recovery is slower following maximal eccentric exercise of the EF than of the KE for sedentary males

  11. The acute effects of flotation restricted environmental stimulation technique on recovery from maximal eccentric exercise.

    Science.gov (United States)

    Morgan, Paul M; Salacinski, Amanda J; Stults-Kolehmainen, Matthew A

    2013-12-01

    Flotation restricted environmental stimulation technique (REST) involves compromising senses of sound, sight, and touch by creating a quiet dark environment. The individual lies supine in a tank of Epsom salt and water heated to roughly skin temperature (34-35° C). This study was performed to determine if a 1-hour flotation REST session would aid in the recovery process after maximal eccentric knee extensions and flexions. Twenty-four untrained male students (23.29 ± 2.1 years, 184.17 ± 6.85 cm, 85.16 ± 11.54 kg) participated in a randomized, repeated measures crossover study. The participants completed 2 exercise and recovery protocols: a 1-hour flotation REST session and a 1-hour seated control (passive recovery). After isometric muscle strength testing, participants were fatigued with eccentric isokinetic muscle contractions (50 repetitions at 60°·s) of the nondominant knee extensors and flexors. Blood lactate, blood glucose, heart rate, OMNI-rating of perceived exertion for resistance exercise (OMNI-RPE), perceived pain, muscle soreness, and isometric strength were collected before exercise, after treatment, and 24 and 48 hours later. A multivariate analysis of covariance found that treatment had a significant main effect on blood lactate, whereas subsequent univariate analyses of variance found statistical significance with the immediate posttreatment blood lactate measures. The results indicate that flotation REST appears to have a significant impact on blood lactate and perceived pain compared with a 1-hour passive recovery session in untrained healthy men. No difference was found between conditions for muscle strength, blood glucose, muscle soreness, heart rate, or OMNI-RPE. Flotation REST may be used for recreational and professional athletes to help reduce blood lactate levels after eccentric exercise.

  12. Torque loss induced by repetitive maximal eccentric contractions is marginally influenced by work-to-rest ratio.

    Science.gov (United States)

    McNeil, Chris J; Allman, Brian L; Symons, T Brock; Vandervoort, Anthony A; Rice, Charles L

    2004-05-01

    The influence of different work-to-rest (W:R) ratios during fatigue induced by maximal eccentric contractions is unknown. The present study sought to expand the understanding of the task-dependent nature of eccentric contractions, and the associated fatigue, during exercise and acute as well as extended recovery periods. Using a Biodex multi-joint dynamometer, the ankle dorsiflexors of eight men [26 (4) years] were fatigued with 150 maximal eccentric contractions. Set structure was manipulated such that one leg performed 3 sets of 50 repetitions (short rest protocol, SRP), and the other leg performed 15 sets of 10 repetitions (long rest protocol, LRP). A 1-min rest interval separated each set, which resulted in 2 and 14 min of total rest for the SRP and the LRP, respectively. At fatigue, the SRP demonstrated a marginally greater loss of average peak eccentric torque than the LRP ( Ptorque loss and the degree of low-frequency fatigue (LFF) were not recovered ( Ptorque was persistent and equal for each protocol at 96 h of recovery ( Pratio has a modest influence on the fatigue (torque loss) induced by maximal eccentric contractions, but maximal isometric torque during recovery and LFF are insensitive to changes in total rest time.

  13. Estimating Neural Control from Concentric vs. Eccentric Surface Electromyographic Representations during Fatiguing, Cyclic Submaximal Back Extension Exercises

    Science.gov (United States)

    Ebenbichler, Gerold R.; Unterlerchner, Lena; Habenicht, Richard; Bonato, Paolo; Kollmitzer, Josef; Mair, Patrick; Riegler, Sara; Kienbacher, Thomas

    2017-01-01

    Purpose: To investigate the differences in neural control of back muscles activated during the eccentric vs. the concentric portions of a cyclic, submaximal, fatiguing trunk extension exercise via the analysis of amplitude and time-frequency parameters derived from surface electromyographic (SEMG) data. Methods: Using back dynamometers, 87 healthy volunteers performed three maximum voluntary isometric trunk extensions (MVC's), an isometric trunk extension at 80% MVC, and 25 cyclic, dynamic trunk extensions at 50% MVC. Dynamic testing was performed with the trunk angular displacement ranging from 0° to 40° and the trunk angular velocity set at 20°/s. SEMG data was recorded bilaterally from the iliocostalis lumborum at L1, the longissimus dorsi at L2, and the multifidus muscles at L5. The initial value and slope of the root mean square (RMS-SEMG) and the instantaneous median frequency (IMDF-SEMG) estimates derived from the SEMG recorded during each exercise cycle were used to investigate the differences in MU control marking the eccentric vs. the concentric portions of the exercise. Results: During the concentric portions of the exercise, the initial RMS-SEMG values were almost twice those observed during the eccentric portions of the exercise. The RMS-SEMG values generally increased during the concentric portions of the exercise while they mostly remained unchanged during the eccentric portions of the exercise with significant differences between contraction types. Neither the initial IMDF-SEMG values nor the time-course of the IMDF-SEMG values significantly differed between the eccentric and the concentric portions of the exercise. Conclusions: The comparison of the investigated SEMG parameters revealed distinct neural control strategies during the eccentric vs. the concentric portions of the cyclic exercise. We explain these differences by relying upon the principles of orderly recruitment and common drive governing motor unit behavior. PMID:28559851

  14. Estimating Neural Control from Concentric vs. Eccentric Surface Electromyographic Representations during Fatiguing, Cyclic Submaximal Back Extension Exercises

    Directory of Open Access Journals (Sweden)

    Gerold R. Ebenbichler

    2017-05-01

    Full Text Available Purpose: To investigate the differences in neural control of back muscles activated during the eccentric vs. the concentric portions of a cyclic, submaximal, fatiguing trunk extension exercise via the analysis of amplitude and time-frequency parameters derived from surface electromyographic (SEMG data.Methods: Using back dynamometers, 87 healthy volunteers performed three maximum voluntary isometric trunk extensions (MVC's, an isometric trunk extension at 80% MVC, and 25 cyclic, dynamic trunk extensions at 50% MVC. Dynamic testing was performed with the trunk angular displacement ranging from 0° to 40° and the trunk angular velocity set at 20°/s. SEMG data was recorded bilaterally from the iliocostalis lumborum at L1, the longissimus dorsi at L2, and the multifidus muscles at L5. The initial value and slope of the root mean square (RMS-SEMG and the instantaneous median frequency (IMDF-SEMG estimates derived from the SEMG recorded during each exercise cycle were used to investigate the differences in MU control marking the eccentric vs. the concentric portions of the exercise.Results: During the concentric portions of the exercise, the initial RMS-SEMG values were almost twice those observed during the eccentric portions of the exercise. The RMS-SEMG values generally increased during the concentric portions of the exercise while they mostly remained unchanged during the eccentric portions of the exercise with significant differences between contraction types. Neither the initial IMDF-SEMG values nor the time-course of the IMDF-SEMG values significantly differed between the eccentric and the concentric portions of the exercise.Conclusions: The comparison of the investigated SEMG parameters revealed distinct neural control strategies during the eccentric vs. the concentric portions of the cyclic exercise. We explain these differences by relying upon the principles of orderly recruitment and common drive governing motor unit behavior.

  15. Plantar flexor muscle architecture changes as a result of eccentric exercise in patients with Achilles tendinosis.

    Science.gov (United States)

    Crill, Matthew T; Berlet, Gregory; Hyer, Christopher

    2014-12-01

    Eccentric training for Achilles tendinosis (AT) has been reported to significantly improve patient symptoms. There has been no biomechanical explanation on the mechanism for specific rehabilitation technique. The purpose of this study was to determine changes in muscle architecture that occurred as a result of Achilles tendinosis injury and a subsequent eccentric rehabilitation program. Twenty-five patients (age, 53.3 ± 17.5 years) diagnosed with AT participated in 6 weeks of rehabilitation. Specific exercises for the ankle plantar flexors consisted of maximal load eccentric muscle action using 3 sets of 15 repetitions. Patients also completed a protocol for AT, which consisting of traditional rehabilitation. Medial gastrocnemius (GM) and lateral gastrocnemius (GL) muscle fascicle length and thickness were measured with ultrasound at 2-week intervals from initial treatment day to the end of 6 weeks of rehabilitation. Medial gastrocnemius fascicle length increased (45.1 ± 10.5 mm to 51.4 ± 10.5 mm; P = .22) between the initial day of rehabilitation and after 6 weeks of rehabilitation. But, GM thickness (16.3 ± 3.5 mm to 16.8 ± 2.0 mm), GL fascicle length (47.2 ± 10.0 mm to 47.1 ± 7.4 mm), and GL thickness (14.9 ± 5.2 mm to 14.4 ± 2.7 mm) did not change as a result of rehabilitation. A 6-week eccentric-biased exercise increased the GM muscle fascicle length by 12%, but GM thickness, GL fascicle length, and GL thickness did not change as a result of rehabilitation. Eccentric training for the treatment of AT is well recognized, but the mechanism of action has not been previously reported. A 6-week eccentric training protocol increased the GM muscle fascicle length by 12%, and this correlated with improvement in a validated patient outcome scoring system. Further study is warranted to determine a predictive relationship between improvement of GM fascicle length and outcome scores. Therapeutic, Level IV: Case series. © 2014 The Author(s).

  16. Effects of set-repetition configuration in eccentric exercise on muscle damage and the repeated bout effect.

    Science.gov (United States)

    Chan, R; Newton, M; Nosaka, K

    2012-07-01

    The number of eccentric contractions is a factor affecting the magnitude of muscle damage; however, it is unknown whether set-repetition configurations for the same total number of eccentric contractions affect the muscle damage. The present study investigated whether different set-repetition configurations would result in different force output during eccentric exercise and different magnitude of muscle damage following the first and second exercise bouts. Ten non-resistance-trained men (26.1 ± 4.1 years) performed two bouts of eccentric exercise of the elbow flexors of each arm (4 bouts in total). One arm performed 3 sets of 10 maximal eccentric contractions (3 × 10) and the contralateral arm performed 10 sets of 3 maximal eccentric contractions (10 × 3), and each arm performed 20 sets of 3 maximal eccentric contractions (20 × 3) 4 weeks after the first bout. The order of the exercise (3 × 10, 10 × 3) and the use of arm (dominant, non-dominant) were counterbalanced amongst subjects. The torque produced over 30 eccentric contractions was similar between 3 × 10 and 10 × 3, and the changes in torque during 20 × 3 were similar between arms. Maximal voluntary contraction strength, range of motion, biceps brachii cross-sectional area and muscle soreness changed significantly (P exercise without significant differences between 3 × 10 and 10 × 3, and changes in the measures following 20 × 3 were similar between arms, except for range of motion (ROM). No significant difference in the changes in any measures except ROM was evident when compared between the first and second bouts. These results showed that changing the set-repetition configuration had little effect on muscle damage.

  17. Influence of vibration on delayed onset of muscle soreness following eccentric exercise

    Science.gov (United States)

    Bakhtiary, Amir H; Safavi‐Farokhi, Ziaeddin; Aminian‐Far, Atefeh

    2007-01-01

    Delayed onset muscle soreness (DOMS), which may occur after eccentric exercise, may cause some reduction in ability in sport activities. For this reason, several studies have been designed on preventing and controlling DOMS. As vibration training (VT) may improve muscle performance, we designed this study to investigate the effect of VT on controlling and preventing DOMS after eccentric exercise. Methods Fifty healthy non‐athletic volunteers were assigned randomly into two experimental, VT (n = 25) and non‐VT (n = 25) groups. A vibrator was used to apply 50 Hz vibration on the left and right quadriceps, hamstring and calf muscles for 1 min in the VT group, while no vibration was applied in the non‐VT group. Then, both groups walked downhill on a 10° declined treadmill at a speed of 4 km/hour. The measurements included the isometric maximum voluntary contraction force (IMVC) of left and right quadriceps muscles, pressure pain threshold (PPT) 5, 10 and 15 cm above the patella and mid‐line of the calf muscles of both lower limbs before and the day after treadmill walking. After 24 hours, the serum levels of creatine‐kinase (CK), and DOMS level by visual analogue scale were measured. Results The results showed decreased IMVC force (P = 0.006), reduced PPT (P = 0.0001) and significantly increased mean of DOMS and CK levels in the non‐VT group, compared to the VT group (P = 0.001). Conclusion A comparison by experimental groups indicates that VT before eccentric exercise may prevent and control DOMS. Further studies should be undertaken to ascertain the stability and effectiveness of VT in athletics. PMID:17138635

  18. Residual force depression following muscle shortening is exaggerated by prior eccentric drop jump exercise.

    Science.gov (United States)

    Dargeviciute, Gintare; Masiulis, Nerijus; Kamandulis, Sigitas; Skurvydas, Albertas; Westerblad, Håkan

    2013-10-15

    We studied the relation between two common force modifications in skeletal muscle: the prolonged force depression induced by unaccustomed eccentric contractions, and the residual force depression (rFD) observed immediately after active shortening. We hypothesized that rFD originates from distortion within the sarcomeres and the extent of rFD: 1) correlates to the force and work performed during the shortening steps, which depend on sarcomeric integrity; and 2) is increased by sarcomeric disorganization induced by eccentric contractions. Nine healthy untrained men (mean age 26 yr) participated in the study. rFD was studied in electrically stimulated knee extensor muscles. rFD was defined as the reduction in isometric torque after active shortening compared with the torque in a purely isometric contraction. Eccentric contractions were performed as 50 repeated drop jumps with active deceleration to 90° knee angle, immediately followed by a maximal upward jump. rFD was assessed before and 5 min to 72 h after drop jumps. The series of drop jumps caused a prolonged force depression, which was about two times larger at 20-Hz than at 50-Hz stimulation. There was a significant correlation between increasing rFD and increasing mechanical work performed during active shortening both before and after drop jumps. In addition, a given rFD was obtained at a markedly lower mechanical work after drop jumps. In conclusion, the extent of rFD correlates to the mechanical work performed during active shortening. A series of eccentric contractions causes a prolonged reduction of isometric force. In addition, eccentric contractions exaggerate rFD, which further decreases muscle performance during dynamic contractions.

  19. Effect of acute and chronic eccentric exercise on FOXO1 mRNA expression as fiber type transition factor in rat skeletal muscles.

    Science.gov (United States)

    Azad, Milad; Khaledi, Neda; Hedayati, Mehdi

    2016-06-15

    Skeletal muscle is a highly elastic tissue which can respond to various functional demands by altering fiber-type composition. Exercise affects muscle fiber phenotype. One of the transcription factors that induce fiber-type transition is forkhead box O1 (FOXO1). Since eccentric contraction considered an essential part of exercise, so we are interested to see the effects of eccentric exercise (acute/chronic) on FOXO1 as an important factor of fiber-type transition in rat skeletal muscles. Twenty-four Sprague-Dawley rats (190-235g) were divided to 3 groups of 8 rats: 1) chronic eccentric exercise (CEE), 2) acute eccentric exercise (AEE), and 3) control (C). The exercise groups underwent downhill running protocol. CEE was running on treadmill in 3 days of week for 9 weeks, that slope and duration gradually managed from -4° to -16° and 15 to 90 min, respectively. AEE group was running with 16 m/min on -16° slope for 3 consecutive days that included 18 sets of 5 min with rest interval of 2 min in between. Soleus and super vastus lateralis (SVL) muscles mRNA were analyzed by real-time RT-PCR. SVL FOXO1 mRNA levels increased by 3.92-fold in the AEE and decreased 0.56-fold in the CEE group and were not significant in soleus muscle. In soleus muscle, myosin heavy chain (MHC) IIa, IIx, and IIb decreased in the AEE group and MHC IIa and IIx decreased in the CEE group. In SVL muscle, MHC I, IIa, and IIx increased in the AEE group and MHC IIa and IIX increased in the CEE group. In summary, both acute and chronic eccentric exercise could lead to change in FOXO1 mRNA only in fast SVL muscle of rat and so could induce fiber-type transition in both muscles regardless of changes in expression of FOXO1. So, oxidative stress can play important role in change of FOXO1. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The development of a repetition-load scheme for the eccentric-only bench press exercise.

    Science.gov (United States)

    Moir, Gavin L; Erny, Kyle F; Davis, Shala E; Guers, John J; Witmer, Chad A

    2013-01-01

    The purpose of the present study was to develop a repetition-load scheme for the eccentric-only bench press exercise. Nine resistance trained men (age: 21.6 ± 1.0 years; 1-repetition maximum [RM] bench press: 137.7 ± 30.4 kg) attended four testing sessions during a four week period. During the first session each subject's 1-RM bench press load utilizing the stretch-shortening cycle was determined. During the remaining sessions they performed eccentric-only repetitions to failure using supra-maximal loads equivalent to 110%, 120% and 130% of their 1-RM value with a constant cadence (30 reps·min(-1)). Force plates and a three dimensional motion analysis system were used during these final three sessions in order to evaluate kinematic and kinetic variables. More repetitions were completed during the 110% 1-RM condition compared to the 130% 1-RM condition (p=0.01). Mean total work (p=0.046) as well as vertical force (p=0.049), vertical work (p=0.017), and vertical power output (p=0.05) were significantly greater during the 130% 1-RM condition compared to the 110% 1-RM condition. A linear function was fitted to the number of repetitions completed under each load condition that allowed the determination of the maximum number of repetitions that could be completed under other supra-maximal loads. This linear function predicted an eccentric-only 1-RM in the bench press with a load equivalent to 164.8% 1-RM, producing a load of 227.0 ± 50.0 kg. The repetition-load scheme presented here should provide a starting point for researchers to investigate the kinematic, kinetic and metabolic responses to eccentric-only bench press workouts.

  1. A contralateral repeated bout effect attenuates induction of NF-κB DNA binding following eccentric exercise.

    Science.gov (United States)

    Xin, Ling; Hyldahl, Robert D; Chipkin, Stuart R; Clarkson, Priscilla M

    2014-06-01

    We investigated the existence of contralateral repeated bout effect and tested if the attenuation of nuclear factor-kappa B (NF-κB; an important regulator of muscle inflammation) induction following eccentric exercise is a potential mechanism. Thirty-one healthy men performed two bouts of knee extension eccentric exercise, initially with one leg and then with the opposite leg 4 wk later. Vastus lateralis muscle biopsies of both exercised and control legs were taken 3 h postexercise. Knee extension isometric and isokinetic strength (60°/sec and 180°/sec) were measured at baseline, pre-exercise, immediately postexercise, and 1/day for 5 days postexercise. Serum creatine kinase (CK) activity and muscle soreness were assessed at baseline and 1/day for 5 days postexercise. NF-κB (p65) DNA-binding activity was measured in the muscle biopsies. Isometric strength loss was lower in bout 2 than in bout 1 at 24, 72, and 96 h postexercise (P eccentric exercise (compared with the control leg) in bout 1 (122.9% ± 2.6%; P eccentric exercise results in a contralateral repeated bout effect, which could be due to the attenuated increase in NF-κB activity postexercise. Copyright © 2014 the American Physiological Society.

  2. Gas exchange kinetics following concentric-eccentric isokinetic arm and leg exercise.

    Science.gov (United States)

    Drescher, U; Mookerjee, S; Steegmanns, A; Knicker, A; Hoffmann, U

    2017-06-01

    To evaluate the effects of exercise velocity (60, 150, 240deg∙s(-1)) and muscle mass (arm vs leg) on changes in gas exchange and arterio-venous oxygen content difference (avDO2) following high-intensity concentric-eccentric isokinetic exercise. Fourteen subjects (26.9±3.1years) performed a 3×20-repetition isokinetic exercise protocol. Recovery beat-to-beat cardiac output (CO) and breath-by-breath gas exchange were recorded to determine post-exercise half-time (t1/2) for oxygen uptake (V˙O2pulm), carbon dioxide output (V˙CO2pulm), and ventilation (V˙E). Significant differences of the t1/2 values were identified between 60 and 150deg∙s(-1). Significant differences in the t1/2 values were observed between V˙O2pulm and V˙CO2pulm and between V˙CO2pulm and V˙E. The time to attain the first avDO2-peak showed significant differences between arm and leg exercise. The present study illustrates, that V˙O2pulm kinetics are distorted due to non-linear CO dynamics. Therefore, it has to be taken into account, that V˙O2pulm may not be a valuable surrogate for muscular oxygen uptake kinetics in the recovery phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Comparison of Oxygen Consumption in Rats During Uphill (Concentric and Downhill (Eccentric Treadmill Exercise Tests

    Directory of Open Access Journals (Sweden)

    Vivien Chavanelle, Pascal Sirvent, Gaël Ennequin, Kévin Caillaud, Christophe Montaurier, Béatrice Morio, Nathalie Boisseau, Ruddy Richard

    2014-09-01

    Full Text Available The study of the physiological adaptations of skeletal muscle in response to eccentric (ECC contraction is based on protocols in which exercise intensities are determined relative to the concentric (CON reference exercise (as percentage of the CON maximal oxygen consumption, or VO2max. In order to use similar exercise protocols in rats, we compared the VO2 values during uphill (CON and downhill (ECC running tests. VO2 was measured in 15 Wistar rats during incremental treadmill running exercises with different slopes: level (0%, positive (+15% incline: CON+15% and negative (i15% incline: ECC-15%; and 130% incline: ECC-30%. Similar VO2 values were obtained in the ECC-30% and CON+15% running conditions at the three target speeds (15, 25 and 35 cm/sec. Conversely, VO2 values were lower (p < 0.05 in the ECC-15% than in the CON+15% condition (CON+15% VO2/ECC-15% VO2 ratios ranging from 1.86 to 2.05 at the three target speeds. Thus, doubling the downhill slope gradient in ECC condition leads to an oxygen consumption level that is not significantly different as in CON condition. These findings can be useful for designing animal research protocols to study the effects of ECC and CON exercise in ageing population or subjects suffering from cardiovascular diseases.

  4. Functional and morphological changes in the quadriceps muscle induced by eccentric training after ACL reconstruction

    OpenAIRE

    Brasileiro,Jamilson S.; Pinto,Olga M. S. F.; Mariana A. Ávila; Tania F. Salvini

    2011-01-01

    OBJECTIVES: The purpose of this study was to investigate the contributions of functional and morphological factors in the recovery of the quadriceps muscle after anterior cruciate ligament (ACL) reconstruction. METHODS: Nine subjects (31.3±5.8 years) underwent eccentric exercise sessions twice a week for 12 weeks. Quadriceps muscle function was evaluated using an isokinetic dynamometer (isometric and eccentric peak torque) and electromyography (RMS). Morphological changes were measured using ...

  5. Effects of elastic taping, non-elastic taping and static stretching on recovery after intensive eccentric exercise.

    Science.gov (United States)

    Boobphachart, Disaphon; Manimmanakorn, Nuttaset; Manimmanakorn, Apiwan; Thuwakum, Worrawut; Hamlin, Michael J

    2017-01-25

    The purpose of this study was to compare the effect of elastic tape (Kinesio tape) to placebo tape or static stretching on delayed onset muscle soreness. Fifty-one untrained female healthy volunteers were randomly assigned into three groups (n = 17/group), elastic tape, placebo tape and stretching group. Muscle soreness was induced by 4 sets of 25 maximal isokinetic (60°.s(-1)) eccentric contractions of dominant quadriceps on an isokinetic dynamometer. Compared with placebo tape, the elastic tape participants had less muscle soreness at 72 h post-exercise (p = 0.01). The elastic tape also increased isometric strength at 72 h post-exercise compared with the placebo (p = 0.03) and stretching group (p = 0.02). However, there was little effect between groups for changes in thigh circumference, jumping, pressure pain threshold, rate of perceived exertion, creatine kinase activity and joint motion. Elastic taping increased muscle strength recovery and reduced muscle soreness after intensive exercise.

  6. Swimmer’s Shoulder in Athletes: Comparison between Efficacy of Aquatic versus Dry-land Concentric-Eccentric Exercises

    Directory of Open Access Journals (Sweden)

    P.K. Shah

    2016-05-01

    Full Text Available The purpose of the present study was to examine the level of pain gets reduced whether by dry-land based concentric-eccentric exercises or by the equivalent type of aquatic exercises in the elite swimmers complaining of chronic shoulder pain. Elite swimmers from India of both genders with an age group of 16-30 years were chosen having pain rated as ≤7 on visual analog scale with an exception of Bak’s Grade E provided with an absence of past shoulder surgeries and acute injuries. 46 of swimmer’s shoulder athletes were randomly divided in a group of two. 23 in each group were provided with respective sets of dry-land and aquatic concentric-eccentric exercises for 3 times/week for a period of 4 weeks. Outcome was measured using three parameters which included visual analog scale (VAS, 50m freestyle sprint and shoulder pain and disability index (SPADI scoring before and after the treatment in relation to freestyle and backstroke pattern of swimming. In results, the descriptive statistics of swimmers with aquatic and dry-land exercises; for VAS 0 sessions to the 12th session were measured. The swimmers with dry-land exercises had the higher mean values than the swimmers with aquatic exercises, showing statistically significant differences (p≤ 0.05-0.001. Whereas in case of before and after 50 metre sprint, no significant differences were there between these two sets of populations. In case of before and after SPADI scoring, swimmers with aquatic exercises had the lower mean values than those with the dry-land exercises, showing statistically significant differences (p ≤ 0.001. In conclusion, it may be stated that the aquatic concentric-eccentric exercises proved to be efficient for swimmers suffering from swimmer’s shoulder condition and early prognosis can be brought with aquatic rehabilitation as compared to the dry-land concentric-eccentric exercises.

  7. Eccentric versus conventional exercise therapy in patients with rotator cuff tendinopathy: a randomized, single blinded, clinical trial.

    Science.gov (United States)

    Dejaco, Beate; Habets, Bas; van Loon, Corné; van Grinsven, Susan; van Cingel, Robert

    2017-07-01

    To investigate the effectiveness of isolated eccentric versus conventional exercise therapy in patients with rotator cuff tendinopathy. Thirty-six patients with rotator cuff tendinopathy, diagnosed by an orthopaedic surgeon, were included and randomly allocated to an isolated eccentric exercise (EE) group (n = 20, mean age = 50.2 ± 10.8 years) or a conventional exercise (CG) group (n = 16, mean age = 48.6 ± 12.3 years). Both groups fulfilled a 12-week daily home-based exercise programme and received a total amount of nine treatment sessions. The Constant Murley score was used to evaluate both objective (e.g. range of motion and strength) and subjective measures (e.g. pain and activities of daily living). A visual analogue scale (VAS) was used to evaluate pain during daily activities. As secondary outcomes, shoulder range of motion and isometric abduction strength in 45° in the scapular plane were evaluated. All measurements were taken at baseline, at 6, 12 and 26 weeks. After 26 weeks, both groups showed a significant increase in the Constant Murley score and a significant decrease in VAS scores. No difference was found between the groups, for any of the evaluated outcome measures. A 12-week-isolated eccentric training programme of the rotator cuff is beneficial for shoulder function and pain after 26 weeks in patients with rotator cuff tendinopathy. However, it is no more beneficial than a conventional exercise programme for the rotator cuff and scapular muscles. Based on the results, clinicians should take into account that performing two eccentric exercises twice a day is as effective as performing six concentric/eccentric exercises once a day in patients with rotator cuff tendinopathy.

  8. Exercise-Induced Skeletal Muscle Damage.

    Science.gov (United States)

    Evans, William J.

    1987-01-01

    Eccentric exercise, in which the muscles exert force by lengthening, is associated with delayed onset muscle soreness. How soreness occurs, how recovery proceeds, and what precautions athletes should take are described. (Author/MT)

  9. Clinical Applications of Iso-Inertial, Eccentric-Overload (YoYo™) Resistance Exercise

    Science.gov (United States)

    Tesch, Per A.; Fernandez-Gonzalo, Rodrigo; Lundberg, Tommy R.

    2017-01-01

    In the quest for a viable non-gravity dependent method to “lift weights” in space, our laboratory introduced iso-inertial resistance (YoYo™) exercise using spinning flywheel(s), more than 25 years ago. After being thoroughly tested in individuals subjected to various established spaceflight analogs, a multi-mode YoYo™ exercise apparatus was eventually installed on the International Space Station in 2009. The method, applicable to any muscle group, provides accommodated resistance and optimal muscle loading through the full range of motion of concentric actions, and brief episodes of eccentric overload. This exercise intervention has found terrestrial applications and shown success in enhancing sports performance and preventing injury and aiding neurological or orthopedic rehabilitation. Research has proven that this technique offers unique physiological responses not possible with other exercise hardware solutions. This paper provides a brief overview of research that has made use, and explored the efficacy, of this method in healthy sedentary or physically active individuals and populations suffering from muscle wasting, disease or injury. While the collective evidence to date suggests YoYo™ offers a potent stimulus to optimize the benefits of resistance exercise, systematic research to support clinical use of this method has only begun to emerge. Thus, we also offer perspectives on unresolved issues, unexplored applications for clinical conditions, and how this particular exercise paradigm could be implemented in future clinical research and eventually being prescribed. Fields of particular interest are those aimed at promoting muscle health by preventing injury or combating muscle wasting and neurological or metabolic dysfunction due to aging or illness, or those serving in rehabilitation following trauma and/or surgery. PMID:28496410

  10. Clinical Applications of Iso-Inertial, Eccentric-Overload (YoYo™ Resistance Exercise

    Directory of Open Access Journals (Sweden)

    Per A. Tesch

    2017-04-01

    Full Text Available In the quest for a viable non-gravity dependent method to “lift weights” in space, our laboratory introduced iso-inertial resistance (YoYo™ exercise using spinning flywheel(s, more than 25 years ago. After being thoroughly tested in individuals subjected to various established spaceflight analogs, a multi-mode YoYo™ exercise apparatus was eventually installed on the International Space Station in 2009. The method, applicable to any muscle group, provides accommodated resistance and optimal muscle loading through the full range of motion of concentric actions, and brief episodes of eccentric overload. This exercise intervention has found terrestrial applications and shown success in enhancing sports performance and preventing injury and aiding neurological or orthopedic rehabilitation. Research has proven that this technique offers unique physiological responses not possible with other exercise hardware solutions. This paper provides a brief overview of research that has made use, and explored the efficacy, of this method in healthy sedentary or physically active individuals and populations suffering from muscle wasting, disease or injury. While the collective evidence to date suggests YoYo™ offers a potent stimulus to optimize the benefits of resistance exercise, systematic research to support clinical use of this method has only begun to emerge. Thus, we also offer perspectives on unresolved issues, unexplored applications for clinical conditions, and how this particular exercise paradigm could be implemented in future clinical research and eventually being prescribed. Fields of particular interest are those aimed at promoting muscle health by preventing injury or combating muscle wasting and neurological or metabolic dysfunction due to aging or illness, or those serving in rehabilitation following trauma and/or surgery.

  11. A COX-2 inhibitor reduces muscle soreness, but does not influence recovery and adaptation after eccentric exercise

    DEFF Research Database (Denmark)

    Paulsen, G; Egner, I M; Drange, M

    2010-01-01

    The aim of this study was to investigate the effect of a cyclooxygenase (COX)-2 inhibitor on the recovery of muscle function, inflammation, regeneration after, and adaptation to, unaccustomed eccentric exercise. Thirty-three young males and females participated in a double-blind, placebo...... by celecoxib. In summary, celecoxib, a COX-2 inhibitor, did not detectably affect recovery of muscle function or markers of inflammation and regeneration after unaccustomed eccentric exercise, nor did the drug influence the repeated-bout effect. However, it alleviated muscle soreness.......-controlled experiment. Seventy unilateral, voluntary, maximal eccentric actions with the elbow flexors were performed twice (bouts 1 and 2) with the same arm, separated by 3 weeks. The test group participants were administered 400 mg/day of celecoxib for 9 days after bout 1. After both bouts 1 and 2, concentric...

  12. Effect of eccentric exercise with reduced muscle glycogen on plasma interleukin-6 and neuromuscular responses of musculus quadriceps femoris.

    Science.gov (United States)

    Gavin, James P; Myers, Stephen D; Willems, Mark E T

    2016-07-01

    Eccentric exercise can result in muscle damage and interleukin-6 (IL-6) secretion. Glycogen availability is a potent stimulator of IL-6 secretion. We examined effects of eccentric exercise in a low-glycogen state on neuromuscular function and plasma IL-6 secretion. Twelve active men (23 ± 4 yr, 179 ± 5 cm, 77 ± 10 kg, means ± SD) completed two downhill treadmill runs (gradient, -12%, 5 × 8 min; speed, 12.1 ± 1.1 km/h) with normal (NG) and reduced muscle glycogen (RG) in randomized order and at least 6 wk apart. Muscle glycogen was reduced using an established cycling protocol until exhaustion and dietary manipulation the evening before the morning run. Physiological responses were measured up to 48 h after the downhill runs. During recovery, force deficits of musculus quadriceps femoris by maximal isometric contractions were similar. Changes in low-frequency fatigue were larger with RG. Voluntary activation and plasma IL-6 levels were similar in recovery between conditions. It is concluded that unaccustomed, damaging eccentric exercise with low muscle glycogen of the m. quadriceps femoris 1) exacerbated low-frequency fatigue but 2) had no additional effect on IL-6 secretion. Neuromuscular impairment after eccentric exercise with low muscle glycogen appears to have a greater peripheral component in early recovery.

  13. Mechanical, hormonal, and hypertrophic adaptations to 10 weeks of eccentric and stretch-shortening cycle exercise training in old males

    NARCIS (Netherlands)

    Vaczi, Mark; Nagy, Szilvia A.; Koszegi, Tamas; Ambrus, Mira; Bogner, Peter; Perlaki, Gabor; Orsi, Gergely; Toth, Katalin; Hortobagyi, Tibor

    2014-01-01

    The growth promoting effects of eccentric (ECC) contractions are well documented but it is unknown if the rate of stretch per se plays a role in such muscular responses in healthy aging human skeletal muscle. We tested the hypothesis that exercise training of the quadriceps muscle with low rate ECC

  14. Mechanical, hormonal, and hypertrophic adaptations to 10 weeks of eccentric and stretch-shortening cycle exercise training in old males

    NARCIS (Netherlands)

    Vaczi, Mark; Nagy, Szilvia A.; Koszegi, Tamas; Ambrus, Mira; Bogner, Peter; Perlaki, Gabor; Orsi, Gergely; Toth, Katalin; Hortobagyi, Tibor

    2014-01-01

    The growth promoting effects of eccentric (ECC) contractions are well documented but it is unknown if the rate of stretch per se plays a role in such muscular responses in healthy aging human skeletal muscle. We tested the hypothesis that exercise training of the quadriceps muscle with low rate ECC

  15. Effects of submaximal eccentric exercise on muscle activity at different elbow joint angles.

    Science.gov (United States)

    Kisiel-Sajewicz, Katarzyna; Jaskólska, Anna; Janecki, Damian; Andrzejewska, Renata; Marusiak, Jarosław; Jaskólski, Artur

    2014-01-01

    Our study aimed to determine whether electrical and mechanical factors contributing to acute or long-term maximal torque reduction and muscle soreness due to submaximal eccentric exercise (ECC) are elbow-joint-angle specific and to what extent the joint angle affects the contribution of antagonist coactivation to this torque reduction. Maximal isometric torque (MIT), muscle soreness assessment, agonist electromechanical activities, and antagonist coactivation during the maximal voluntary contraction (MVC) were measured at elbow joint angles of 60°, 90°, and 150° before ECC, immediately after exercise, and 24, 48, 72, and 120 hr after exercise. ECC causes an immediate decrease in MIT as well as increased antagonist coactivation at three angles. Antagonist coactivation returned to its baseline level at 24 hr regardless of joint angle. The most rapid torque recovery and the highest force level at which pain occurred were found after ECC at a joint angle of 60°. During the recovery period, no mechanomyographical changes were observed when measuring surface mechanomyography changes at three angles, while the electrical activity differed between angles.

  16. Increased xanthine oxidase-related ROS production and TRPV1 synthesis preceding DOMS post-eccentric exercise in rats.

    Science.gov (United States)

    Retamoso, Leandro T; Silveira, Mauro E P; Lima, Frederico D; Busanello, Guilherme L; Bresciani, Guilherme; Ribeiro, Leandro R; Chagas, Pietro M; Nogueira, Cristina W; Braga, Ana Claudia M; Furian, Ana Flávia; Oliveira, Mauro S; Fighera, Michele R; Royes, Luiz Fernando F

    2016-05-01

    It is well-known that unaccustomed exercise, especially eccentric exercise, is associated to delayed onset muscle soreness (DOMS). Whether DOMS is associated with reactive oxygen species (ROS) and the transient receptor potential vanilloid 1 (TRPV1) is still an open question. Thus, the aim of this study was to investigate the association between TRPV1 and xanthine oxidase-related ROS production in muscle and DOMS after a bout of eccentric exercise. Male Wistar rats performed a downhill running exercise on a treadmill at a -16° tilt and a constant speed for 90min (5min/bout separated by 2min of rest). Mechanical allodynia and grip force tests were performed before and 1, 3, 6, 9, 12, 24, 48 and 72h after the downhill running. Biochemical assays probing oxidative stress, purine degradation, xanthine oxidase activity, Ca(2+) ATPase activity and TRPV1 protein content were performed in gastrocnemius muscle at 12, 24, and 48h after the downhill running. Our statistical analysis showed an increase in mechanical allodynia and a loss of strength after the downhill running. Similarly, an increase in carbonyl, xanthine oxidase activity, uric acid levels and TRPV1 immunoreactivity were found 12h post-exercise. On the other hand, Ca(2+) ATPase activity decreased in all analyzed times. Our results suggest that a possible relationship between xanthine oxidase-related ROS and TRPV1 may exist during the events preceding eccentric exercise-related DOMS. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Soreness-related changes in three-dimensional running biomechanics following eccentric knee extensor exercise.

    Science.gov (United States)

    Paquette, Max R; Peel, Shelby A; Schilling, Brian K; Melcher, Dan A; Bloomer, Richard J

    2017-06-01

    Runners often experience delayed onset muscle soreness (DOMS), especially of the knee extensors, following prolonged running. Sagittal knee joint biomechanics are altered in the presence of knee extensor DOMS but it is unclear how muscle soreness affects lower limb biomechanics in other planes of motion. The purpose of this study was to assess the effects of knee extensor DOMS on three-dimensional (3D) lower limb biomechanics during running. Thirty-three healthy men (25.8 ± 6.8 years; 84.1 ± 9.2 kg; 1.77 ± 0.07 m) completed an isolated eccentric knee extensor damaging protocol to elicit DOMS. Biomechanics of over-ground running at a set speed of 3.35 m s(-1)±5% were measured before eccentric exercise (baseline) and, 24 h and 48 h following exercise in the presence of knee extensor DOMS. Knee flexion ROM was reduced at 48 h (P = 0.01; d = 0.26), and peak knee extensor moment was reduced at 24 h (P = 0.001; d = 0.49) and 48 h (P biomechanics were unaffected by the presence of DOMS (P > 0.05). Peak positive ankle and knee joint powers and, peak negative knee joint power were all reduced from baseline to 24 h and 48 h (P biomechanics during running.

  18. Combination of eccentric exercise and neuromuscular electrical stimulation to improve biomechanical limb symmetry after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Lepley, Lindsey K; Wojtys, Edward M; Palmieri-Smith, Riann M

    2015-08-01

    We have previously reported that an eccentrically-based rehabilitation protocol post-ACLr induced greater quadriceps activation and strength than a neuromuscular electrical stimulation (NMES) intervention and was just as effective as a combined NMES and eccentric intervention. However, the effect an eccentrically-based intervention has on restoring normal knee mechanics during a single-legged landing task remains unknown. Thirty-six individuals post-injury were placed into four treatment groups: NMES and eccentrics, eccentrics-only, NMES-only, standard of care, and healthy controls participated. NMES and eccentrics received a combined NMES and eccentric protocol post-reconstruction (each treatment 2× per week for 6 weeks), whereas groups NMES-only and eccentric-only received only the NMES or eccentric therapy, respectively. To evaluate knee mechanics limb symmetry, the area under the curve for knee flexion angle and extension moment was derived and then normalized to the contralateral limb. Quadriceps strength was evaluated using the quadriceps index. Compared to healthy, reduced sagittal plane knee limb symmetry was found for groups NMES-only, ECC-only and standard of care for knee extension moment (Peccentrics (P>0.06). No difference between groups was detected for knee flexion angle limb symmetry (P>0.05). Greater knee flexion angles and moments over stance were related to quadriceps strength. The NMES and eccentrics group was found to restore biomechanical limb symmetry that was most closely related to healthy individuals following ACL reconstruction. Greater knee flexion angles and moments over stance were related to quadriceps strength. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sonographic evaluation of the immediate effects of eccentric heel drop exercise on Achilles tendon and gastrocnemius muscle stiffness using shear wave elastography

    Directory of Open Access Journals (Sweden)

    Wilson K.C. Leung

    2017-07-01

    Full Text Available Background Mechanical loading is crucial for muscle and tendon tissue remodeling. Eccentric heel drop exercise has been proven to be effective in the management of Achilles tendinopathy, yet its induced change in the mechanical property (i.e., stiffness of the Achilles tendon (AT, medial and lateral gastrocnemius muscles (MG and LG was unknown. Given that shear wave elastography has emerged as a powerful tool in assessing soft tissue stiffness with promising intra- and inter-operator reliability, the objective of this study was hence to characterize the stiffness of the AT, MG and LG in response to an acute bout of eccentric heel drop exercise. Methods Forty-five healthy young adults (36 males and nine females performed 10 sets of 15-repetition heel drop exercise on their dominant leg with fully-extended knee, during which the AT and gastrocnemius muscles, but not soleus, were highly stretched. Before and immediately after the heel drop exercise, elastic moduli of the AT, MG and LG were measured by shear wave elastography. Results After the heel drop exercise, the stiffness of AT increased significantly by 41.8 + 33.5% (P < 0.001, whereas the increases in the MG and LG stiffness were found to be more drastic by 75 + 47.7% (P < 0.001 and 71.7 + 51.8% (P < 0.001, respectively. Regarding the AT, MG and LG stiffness measurements, the inter-operator reliability was 0.940, 0.987 and 0.986, and the intra-operator reliability was 0.916 to 0.978, 0.801 to 0.961 and 0.889 to 0.985, respectively. Discussion The gastrocnemius muscles were shown to bear larger mechanical loads than the AT during an acute bout of eccentric heel drop exercise. The findings from this pilot study shed some light on how and to what extent the AT and gastrocnemius muscles mechanically responds to an isolated set of heel drop exercise. Taken together, appropriate eccentric load might potentially benefit mechanical adaptations of the AT and gastrocnemius muscles in the

  20. The effect of passive stretching on delayed onset muscle soreness, and other detrimental effects following eccentric exercise

    DEFF Research Database (Denmark)

    Lund, Henrik; Vestergaard-Poulsen, P; Kanstrup, I.L.

    1998-01-01

    The aim of this study was to measure if passive stretching would influence delayed onset muscle soreness (DOMS), dynamic muscle strength, plasma creatine kinase concentration (CK) and the ratio of phosphocreatine to inorganic phosphate (PCr/P(i)) following eccentric exercise. Seven healthy......, CK and muscle pain were measured before the eccentric exercise (day 0) and the following 7 d. In the second experiment daily passive stretching (3 times of 30 s duration, with a pause of 30 s in between) of m. quadriceps was included in the protocol. The stretching was performed before...... subjects reported pain in the right m. quadriceps with a peak 48 h after exercise. There was no difference in the reported variables between experiments one and two. It is concluded that passive stretching did not have any significant influence on increased plasma-CK, muscle pain, muscle strength...

  1. Effects of immediate vs. delayed massage-like loading on skeletal muscle viscoelastic properties following eccentric exercise.

    Science.gov (United States)

    Crawford, Scott K; Haas, Caroline; Butterfield, Timothy A; Wang, Qian; Zhang, Xiaoli; Zhao, Yi; Best, Thomas M

    2014-06-01

    This study compared immediate versus delayed massage-like compressive loading on skeletal muscle viscoelastic properties following eccentric exercise. Eighteen rabbits were surgically instrumented with peroneal nerve cuffs for stimulation of the tibialis anterior muscle. Rabbits were randomly assigned to a massage loading protocol applied immediately post exercise (n=6), commencing 48h post exercise (n=6), or exercised no-massage control (n=6). Viscoelastic properties were evaluated in vivo by performing a stress-relaxation test pre- and post-exercise and daily pre- and post-massage for four consecutive days of massage loading. A quasi-linear viscoelastic approach modeled the instantaneous elastic response (AG0), fast (g1(p)) and slow (g2(p)) relaxation coefficients, and the corresponding relaxation time constants τ1 and τ2. Exercise increased AG0 in all groups (Pmassage. However, within-day (pre- to post-massage) analysis revealed a decrease in AG0 in both massage groups. Following exercise, g1(p) increased and g2(p) and τ1 decreased for all groups (P0.05). After four days of massage, there was no significant recovery of the relaxation parameters for either massage loading group compared to the control group. Our findings suggest that massage loading following eccentric exercise has a greater effect on reducing muscle stiffness, estimated by AG0, within-day rather than affecting recovery over multiple days. Massage loading also has little effect on the relaxation response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Progressive Resistance Exercise with Eccentric Loading for the Management of Knee Osteoarthritis

    National Research Council Canada - National Science Library

    Hernandez, Haniel J; McIntosh, Valerie; Leland, Azadeh; Harris-Love, Michael O

    2015-01-01

    .... The use of an eccentric training paradigm may prove to be beneficial for older adults with knee OA since eccentric muscle actions are involved in the energy absorption at the knee joint during gait...

  3. Eccentric contractions do not induce rhabdomyolysis in malignant hyperthermia susceptible mice

    Science.gov (United States)

    Corona, Benjamin T.; Rouviere, Clement; Hamilton, Susan L.; Ingalls, Christopher P.

    2008-01-01

    Recent studies suggest a link between exercise-induced rhabdomyolysis and mutations of the ryanodine receptor (RYR1) associated with malignant hyperthermia (MH). We hypothesized that MH-susceptible mice (RYR1Y522S/wt) would exhibit greater anterior crural muscle [tibialis anterior (TA) and extensor digitorum longus (EDL) muscles] damage and strength deficits following the performance of a single or repeated bouts of eccentric contractions compared with wild-type (WT) mice. After a single injury bout, RYR1Y522S/wt mice produced more isometric torque than WT mice immediately and 3 and 7 days postinjury. Moreover, EDL muscle isometric specific force deficits were fully recovered for RYR1Y522S/wt but not WT mice 14 days postinjury. The percentage of fibers in TA muscle exhibiting signs of muscle damage 7 and 14 days postinjury were at least three times less in RYR1Y522S/wt than in WT mice. Uninjured and injured EDL muscle from RYR1Y522S/wt mice also displayed greater S-glutathionylation of RYR1 than that from WT mice. During the weekly injury bouts, torque production by RYR1Y522S/wt mice was fully recovered before the third and fourth injury bouts, whereas torque was still reduced for WT mice. Three days after multiple injury bouts, there were ∼50% fewer fibers exhibiting signs of muscle damage in RYR1Y522S/wt than in WT TA muscle. These findings indicate that the RYR1Y522S/wt mutation protects skeletal muscle from exercise-induced muscle injury and do not support a direct association between MH susceptibility and contraction-induced rhabdomyolysis when core temperature is maintained at lower physiological temperatures during exercise. PMID:18787086

  4. Acute eccentric resistance exercise decreases matrix metalloproteinase activity in obese elderly women.

    Science.gov (United States)

    Nascimento, Dahan da Cunha; Navalta, James Wilfred; Durigan, João Luiz Quagliotti; Marqueti, Rita de Cassia; Tibana, Ramires Alsamir; Luiz Franco, Octavio; de Almeida, Jesser Alves; Camarço, Nathalia Ferreira; Neto, Ivo Vieira de Sousa; Prestes, Jonato

    2016-03-01

    The association of ageing with obesity commits elderly women and has been correlated with multiple degenerative processes, which could be occasioned by an enhancing in levels of matrix metalloproteinase-2 and metalloproteinase-9 (MMPs) as well by an cytokine unbalance that included an enhancing on interleukin-6 (IL-6). Furthermore, other factors could be also related to degenerative process, as they could be reduced by eccentric resistance exercise (ERE), which seems particularly important to initiate resistance training in obese older adults. In this view, this study aims to determinate the effects of an acute ERE session on serum MMP-2, MMP-9 and IL-6 in elderly obese women. Ten elderly obese women participated in this study and completed a 10 repetitions maximum test (10 RM) utilizing leg extension exercise. Subjects then completed an acute ERE session consisting of seven sets of 10 repetitions at 110% of 10 RM with a rest of 3 min between sets. Blood samples were collected before, immediately after, 3, 24 and 48 h following the ERE session. Zymograms were utilized to measure the MMP-2 and MMP-9 enzymes from all individuals. Moreover, IL-6 concentration was also determinated. After ERE session, MMP-2 and MMP-9 decreased, remaining significantly below baseline values after 48 h (Pelderly obese women, possibly indicating a transient protection against the low grade inflammation present in this specific population.

  5. The Influence of Oral L-Glutamine Supplementation on Muscle Strength Recovery and Soreness Following Unilateral Knee Extension Eccentric Exercise.

    Science.gov (United States)

    Legault, Zachary; Bagnall, Nicholas; Kimmerly, Derek S

    2015-10-01

    The study aimed to examine the effects that L-glutamine supplementation has on quadriceps muscle strength and soreness ratings following eccentric exercise. It was hypothesized that glutamine ingestion would quicken the recovery rate of peak force production and decrease muscle soreness ratings over a 72-hr recovery period. Sixteen healthy participants (8♀/8♂; 22 ± 4 years) volunteered in a double-blind, randomized, placebo-controlled crossover study. Supplement conditions consisted of isoenergetic placebo (maltodextrin, 0.6 g·kg-1·day-1) and L-glutamine (0.3 g·kg-1·day-1 + 0.3 g·kg-1·day-1 maltodextrin) ingestion once per day over 72 hr. Knee extensor peak torque at 0°, 30°, and 180° per second and muscle soreness were measured before, immediately following, 24, 48, and 72 hr posteccentric exercise. Eccentric exercise consisted of 8 sets (10 repetitions/set) of unilateral knee extension at 125% maximum concentric force with 2-min rest intervals. L-glutamine resulted in greater relative peak torque at 180°/sec both immediately after (71 ± 8% vs. 66 ± 9%), and 72 hr (91 ± 8% vs. 86 ± 7%) postexercise (all, p eccentric exercise. The effect of L-glutamine on muscle force recovery may be greater in men than women.

  6. Effects of eccentric cycling exercise on IGF-I splice variant expression in the muscles of young and elderly people

    DEFF Research Database (Denmark)

    Hameed, M.; Toft, A.D.; Harridge, S.D.

    2008-01-01

    growth factor (MGF) were studied in response to 1 h of eccentric cycling exercise in young and old individuals. Subjects (nine young, aged 20-27 years and eight elderly, aged 67-75 years) completed an eccentric exercise protocol that consisted of 60 min of reverse pedal cycling. Workloads were chosen....... No difference was observed between the baseline levels of the two splice variants between the two subject groups. Eccentric cycling exercise resulted in a significant increase in the mean MGF mRNA in both young and old subjects but did not alter IGF-IEa mRNA levels in either age group. As reported previously......Recovery from micro damage resulting from intensive exercise has been shown to take longer in older muscles. To investigate the factors that may contribute to muscle repair, we have studied the expression of two splice variants of the insulin-like growth factor-I (IGF-I) gene. IGF-IEa and mechano...

  7. The effect of gender on force, muscle activity, and frontal plane knee alignment during maximum eccentric leg-press exercise.

    Science.gov (United States)

    Liebensteiner, Michael C; Platzer, Hans-Peter; Burtscher, Martin; Hanser, Friedrich; Raschner, Christian

    2012-03-01

    To investigate for gender differences during eccentric leg-press exercise. Tears of the anterior cruciate ligament (ACL) are considered to be related to eccentric tasks, altered neuromuscular control (e.g., reduced co-contraction of hamstrings), and increased knee abduction (valgus alignment). Based on these observations and the fact that ACL tears are more common in women, it was hypothesized that men and women differ significantly with regard to key parameters of force, knee stabilization, and muscle activity when exposed to maximum eccentric leg extension. Thirteen women and thirteen men were matched for age and physical activity. They performed maximum isokinetic eccentric leg-pressing against footplates of varied stability. The latter was done because earlier studies had shown that perturbational test conditions might be relevant in respect of ACL injuries. Key parameters of force, frontal plane knee stabilization, and muscle recruitment of significant muscles crossing the knee were recorded. The 'force stabilization deficit' (difference between maximum forces under normal and perturbed leg-pressing) did not differ significantly between genders. Likewise, parameters of muscle activity and frontal plane leg stabilization revealed no significant differences between men and women. This study is novel, in that gender differences in parameters of force, muscle activity, and leg kinematic were investigated during functional conditions of eccentric leg-pressing. No gender differences were observed in the measured parameters. However, the conclusion should be viewed with caution because the findings concurred with, but also contrasted, previous research in this field. Diagnostic study, Level III.

  8. Astym treatment vs. eccentric exercise for lateral elbow tendinopathy: a randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Thomas L. Sevier

    2015-05-01

    Full Text Available Introduction. Patients with chronic lateral elbow (LE tendinopathy, commonly known as tennis elbow, often experience prolonged symptoms and frequent relapses. Astym treatment, evidenced in animal studies to promote the healing and regeneration of soft tissues, is hypothesized to improve outcomes in LE tendinopathy patients. This study had two objectives: (1 to compare the efficacy of Astym treatment to an evidence-based eccentric exercise program (EE for patients with chronic LE tendinopathy, and (2 to quantify outcomes of subjects non-responsive to EE who were subsequently treated with Astym treatment.Study Design. Prospective, two group, parallel, randomized controlled trial completed at a large orthopedic center in Indiana. Inclusion criteria: age range of 18–65 years old, with clinical indications of LE tendinopathy greater than 12 weeks, with no recent corticosteriod injection or disease altering comorbidities.Methods. Subjects with chronic LE tendinopathy (107 subjects with 113 affected elbows were randomly assigned using computer-generated random number tables to 4 weeks of Astym treatment (57 elbows or EE treatment (56 elbows. Data collected at baseline, 4, 8, 12 weeks, 6 and 12 months. Primary outcome measure: DASH; secondary outcome measures: pain with activity, maximum grip strength and function. The treating physicians and the rater were blinded; subjects and treating clinicians could not be blinded due to the nature of the treatments.Results. Resolution response rates were 78.3% for the Astym group and 40.9% for the EE group. Astym subjects showed greater gains in DASH scores (p = 0.047 and in maximum grip strength (p = 0.008 than EE subjects. Astym therapy also resolved 20/21 (95.7% of the EE non-responders, who showed improvements in DASH scores (p < 0.005, pain with activity (p = 0.002, and function (p = 0.004 following Astym treatment. Gains continued at 6 and 12 months. No adverse effects were reported.Conclusion. This study

  9. Low-Frequency Fatigue Assessed as Double to Single Twitch Ratio after Two Bouts of Eccentric Exercise of the Elbow Flexors.

    Science.gov (United States)

    Janecki, Damian; Jaskólska, Anna; Marusiak, Jarosław; Jaskólski, Artur

    2016-12-01

    The aim of this study was to assess low-frequency fatigue as a double to single twitch ratio after repeated eccentric exercise of the elbow flexors. Maximal isometric torque, single and double twitch responses and low-frequency fatigue were assessed on the elbow flexors in 16 untrained male volunteers before, immediately after, 24 and 48 hours following two bouts of eccentric exercise consisted of 30 repetitions of lowering a dumbbell adjusted to ~75% of each individual's maximal isometric torque. Maximal isometric torque and electrically evoked responses decreased significantly in all measurements after the first bout of eccentric exercise (p single twitch ratio could be used as a sensitive tool in the evaluation of muscle recovery and adaptation to repeated eccentric exercise.

  10. Eccentric exercise versus Usual-care with older cancer survivors: The impact on muscle and mobility- an exploratory pilot study

    Directory of Open Access Journals (Sweden)

    Smith Sheldon B

    2011-01-01

    Full Text Available Abstract Background Resistance exercise programs with high compliance are needed to counter impaired muscle and mobility in older cancer survivors. To date outcomes have focused on older prostate cancer survivors, though more heterogeneous groups of older survivors are in-need. The purpose of this exploratory pilot study is to examine whether resistance exercise via negative eccentrically-induced work (RENEW improves muscle and mobility in a diverse sample of older cancer survivors. Methods A total of 40 individuals (25 female, 15 male with a mean age of 74 (± 6 years who have survived (8.4 ± 8 years since their cancer diagnosis (breast, prostate, colorectal and lymphoma were assigned to a RENEW group or a non-exercise Usual-care group. RENEW was performed for 12 weeks and measures of muscle size, strength, power and mobility were made pre and post training. Results RENEW induced increases in quadriceps lean tissue average cross sectional area (Pre: 43.2 ± 10.8 cm2; Post: 44.9 ± 10.9 cm2, knee extension peak strength (Pre: 248.3 ± 10.8 N; Post: 275.4 ± 10.9 N, leg extension muscle power (Pre: 198.2 ± 74.7 W; Post 255.5 ± 87.3 W, six minute walk distance (Pre: 417.2 ± 127.1 m; Post 466.9 ± 125.1 m and a decrease on the time to safely descend stairs (Pre: 6.8 ± 4.5 s; Post 5.4 ± 2.5 s. A significant (P Conclusions This exploration of RENEW in a heterogeneous cohort of older cancer survivors demonstrates increases in muscle size, strength and power along with improved mobility. The efficacy of a high-force, low perceived exertion exercise suggests RENEW may be suited to older individuals who are survivors of cancer. Trial Registration ClinicalTrials.gov Identifier: NCT00335491

  11. The effect of eccentric exercise with blood flow restriction on neuromuscular activation, microvascular oxygenation, and the repeated bout effect.

    Science.gov (United States)

    Lauver, Jakob D; Cayot, Trent E; Rotarius, Timothy; Scheuermann, Barry W

    2017-05-01

    To examine the effect of low-intensity eccentric contractions with and without blood flow restriction (BFR) on microvascular oxygenation, neuromuscular activation, and the repeated bout effect (RBE). Participants were randomly assigned to either low-intensity (LI), low-intensity with BFR (LI-BFR), or a control (CON) group. Participants in LI and LI-BFR performed a preconditioning bout of low-intensity eccentric exercise prior to about of maximal eccentric exercise. Participants reported 24, 48, 72, and 96 h later to assess muscle damage and function. Surface electromyography (sEMG) and near-infrared spectroscopy (NIRS) were used to measure neuromuscular activation and microvascular deoxygenation (deoxy-[Hb + Mb]) and [total hemoglobin] ([THC]) during the preconditioning bout, respectively. During set-2, LI-BFR resulted in greater activation of the VM-RMS (47.7 ± 11.5% MVIC) compared to LI (67.0 ± 20.0% MVIC), as well as during set-3 (p exercise (LI 74.2 ± 14.1%, LI-BFR 75 ± 5.1%, CON 53 ± 18.6%). At 24, 48, 72, and 96 h post maximal eccentric exercise, LI and LI-BFR force deficit was not different from baseline. This study suggests that the neuromuscular and deoxygenation (i.e., metabolic stress) responses were considerably different between LI and LI-BFR groups; however, these differences did not lead to improvements in the RBE inferred by performing LI and LI-BFR.

  12. Eccentric Exercise Protocols for Patella Tendinopathy: Should we Really be Withdrawing Athletes from Sport? A Systematic Review

    OpenAIRE

    Saithna, Adnan; Gogna, Rajiv; Baraza, Njalalle; Modi, Chetan; Spencer, Simon

    2012-01-01

    The 2007 review by Visnes and Bahr concluded that athletes with patella tendinopathy should be withdrawn from sport whilst engaging in eccentric exercise (EE) rehabilitation programs. However, deprivation of sport is associated with a number of negative psychological and physiological effects. Withdrawal from sport is therefore a decision that warrants due consideration of the risk/benefit ratio. The aim of this study was to determine whether sufficient evidence exists to warrant withdrawal o...

  13. A novel device using the Nordic hamstring exercise to assess eccentric knee flexor strength: a reliability and retrospective injury study.

    Science.gov (United States)

    Opar, David A; Piatkowski, Timothy; Williams, Morgan D; Shield, Anthony J

    2013-09-01

    Reliability and case-control injury study. To determine if a novel device designed to measure eccentric knee flexor strength via the Nordic hamstring exercise displays acceptable test-retest reliability; to determine normative values for eccentric knee flexor strength derived from the device in individuals without a history of hamstring strain injury (HSI); and to determine if the device can detect weakness in elite athletes with a previous history of unilateral HSI. HSI and reinjury are the most common cause of lost playing time in a number of sports. Eccentric knee flexor weakness is a major modifiable risk factor for future HSI. However, at present, there is a lack of easily accessible equipment to assess eccentric knee flexor strength. Thirty recreationally active males without a history of HSI completed the Nordic hamstring exercise on the device on 2 separate occasions. Intraclass correlation coefficients, typical error, typical error as a coefficient of variation, and minimal detectable change at a 95% confidence level were calculated. Normative strength data were determined using the most reliable measurement. An additional 20 elite athletes with a unilateral history of HSI within the previous 12 months performed the Nordic hamstring exercise on the device to determine if residual eccentric muscle weakness existed in the previously injured limb. The device displayed high to moderate reliability (intraclass correlation coefficient = 0.83-0.90; typical error, 21.7-27.5 N; typical error as a coefficient of variation, 5.8%-8.5%; minimal detectable change at a 95% confidence level, 60.1-76.2 N). Mean ± SD normative eccentric flexor strength in the uninjured group was 344.7 ± 61.1 N for the left and 361.2 ± 65.1 N for the right side. The previously injured limb was 15% weaker than the contralateral uninjured limb (mean difference, 50.3 N; 95% confidence interval: 25.7, 74.9; P<.01), 15% weaker than the normative left limb (mean difference, 50.0 N; 95

  14. Effects of eccentric exercise on optimum length of the knee flexors and extensors during the preseason in professional soccer players.

    Science.gov (United States)

    Brughelli, Matt; Mendiguchia, Jurdan; Nosaka, Ken; Idoate, Fernando; Arcos, Asier Los; Cronin, John

    2010-05-01

    To assess the effects of eccentric exercise on optimum lengths of the knee flexors and extensors during the preseason in professional soccer. Twenty-eight athletes from a professional Spanish soccer team (Division II) were randomly assigned to an eccentric exercise intervention group (EG) or a control group (CG). Over the four-week period two athletes from the control group suffered RF injuries and two athletes were contracted by other clubs. After these exclusions, both groups (EG, n=13; and CG, n=11) performed regular soccer training during the four-week preseason period. After the four weeks, the optimum lengths of the knee flexors were significantly (Pknee extensors were significantly increased only in the EG by 6.5 degrees . Peak torque levels and ratios of quadriceps to hamstring (Q/H ratios) were not significantly altered throughout the study for either group. Eccentric exercise can increase the optimum lengths of both the knee extensors and knee extensors flexors during the preseason in professional soccer.

  15. The Accumulative Effect of Concentric-Biased and Eccentric-Biased Exercise on Cardiorespiratory and Metabolic Responses to Subsequent Low-Intensity Exercise: A Preliminary Study.

    Science.gov (United States)

    Gavin, James Peter; Myers, Stephen; Willems, Mark Elisabeth Theodorus

    2015-12-22

    The study investigated the accumulative effect of concentric-biased and eccentric-biased exercise on cardiorespiratory, metabolic and neuromuscular responses to low-intensity exercise performed hours later. Fourteen young men cycled at low-intensity (~60 rpm at 50% maximal oxygen uptake) for 10 min before, and 12 h after: concentric-biased, single-leg cycling exercise (CON) (performed ~19:30 h) and eccentric-biased, double-leg knee extension exercise (ECC) (~06:30 h the following morning). Respiratory measures were sampled breath-by-breath, with oxidation values derived from stoichiometry equations. Knee extensor neuromuscular function was assessed before and after CON and ECC. Cardiorespiratory responses during low-intensity cycling were unchanged by accumulative CON and ECC. The RER was lower during low-intensity exercise 12 h after CON and ECC (0.88 ± 0.08), when compared to baseline (0.92 ± 0.09; p = 0.02). Fat oxidation increased from baseline (0.24 ± 0.2 g·min(-1)) to 12 h after CON and ECC (0.39 ± 0.2 g·min(-1); p = 0.01). Carbohydrate oxidation decreased from baseline (1.59 ± 0.4 g·min(-1)) to 12 h after CON and ECC (1.36 ± 0.4 g·min(-1); p = 0.03). These were accompanied by knee extensor force loss (right leg: -11.6%, p eccentric-biased exercise led to increased fat oxidation and decreased carbohydrate oxidation, without impairing cardiorespiration, during low-intensity cycling. An accumulation of fatiguing and damaging exercise increases fat utilisation during low intensity exercise performed as little as 12 h later.

  16. The Accumulative Effect of Concentric-Biased and Eccentric-Biased Exercise on Cardiorespiratory and Metabolic Responses to Subsequent Low-Intensity Exercise: A Preliminary Study

    Science.gov (United States)

    Gavin, James Peter; Myers, Stephen; Willems, Mark Elisabeth Theodorus

    2015-01-01

    The study investigated the accumulative effect of concentric-biased and eccentric-biased exercise on cardiorespiratory, metabolic and neuromuscular responses to low-intensity exercise performed hours later. Fourteen young men cycled at low-intensity (~60 rpm at 50% maximal oxygen uptake) for 10 min before, and 12 h after: concentric-biased, single-leg cycling exercise (CON) (performed ~19:30 h) and eccentric-biased, double-leg knee extension exercise (ECC) (~06:30 h the following morning). Respiratory measures were sampled breath-by-breath, with oxidation values derived from stoichiometry equations. Knee extensor neuromuscular function was assessed before and after CON and ECC. Cardiorespiratory responses during low-intensity cycling were unchanged by accumulative CON and ECC. The RER was lower during low-intensity exercise 12 h after CON and ECC (0.88 ± 0.08), when compared to baseline (0.92 ± 0.09; p = 0.02). Fat oxidation increased from baseline (0.24 ± 0.2 g·min−1) to 12 h after CON and ECC (0.39 ± 0.2 g·min−1; p = 0.01). Carbohydrate oxidation decreased from baseline (1.59 ± 0.4 g·min−1) to 12 h after CON and ECC (1.36 ± 0.4 g·min−1; p = 0.03). These were accompanied by knee extensor force loss (right leg: −11.6%, p eccentric-biased exercise led to increased fat oxidation and decreased carbohydrate oxidation, without impairing cardiorespiration, during low-intensity cycling. An accumulation of fatiguing and damaging exercise increases fat utilisation during low intensity exercise performed as little as 12 h later. PMID:26839613

  17. Stress-induced alteration of left ventricular eccentricity: An additional marker of multivessel CAD.

    Science.gov (United States)

    Gimelli, Alessia; Liga, Riccardo; Giorgetti, Assuero; Casagranda, Mirta; Marzullo, Paolo

    2017-03-28

    Abnormal left ventricular (LV) eccentricity index (EI) is a marker of adverse cardiac remodeling. However, the interaction between stress-induced alterations of EI and major cardiac parameters has not been explored. We sought to evaluate the relationship between LV EI and coronary artery disease (CAD) burden in patients submitted to myocardial perfusion imaging (MPI). Three-hundred and forty-three patients underwent MPI and coronary angiography. LV ejection fraction (EF) and EI were computed from gated stress images as measures of stress-induced functional impairment. One-hundred and thirty-six (40%), 122 (35%), and 85 (25%) patients had normal coronary arteries, single-vessel CAD, and multivessel CAD, respectively. Post-stress EI was lower in patients with multivessel CAD than in those with normal coronary arteries and single-vessel CAD (P = 0.001). This relationship was confirmed only in patients undergoing exercise stress test, where a lower post-stress EI predicted the presence of multivessel CAD (P = 0.039). Post-stress alterations of LV EI on MPI may unmask the presence of multivessel CAD.

  18. Swimmer’s Shoulder in Athletes: Comparison between Efficacy of Aquatic versus Dry-land Concentric-Eccentric Exercises

    OpenAIRE

    Shah, P.K.; Koley, S.

    2016-01-01

    The purpose of the present study was to examine the level of pain gets reduced whether by dry-land based concentric-eccentric exercises or by the equivalent type of aquatic exercises in the elite swimmers complaining of chronic shoulder pain. Elite swimmers from India of both genders with an age group of 16-30 years were chosen having pain rated as ≤7 on visual analog scale with an exception of Bak’s Grade E provided with an absence of past shoulder surgeries and acute injuries...

  19. Exercise-Induced Bronchospasm

    Science.gov (United States)

    ... Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans Nutrients and Nutritional Info Sugar and Sugar Substitutes Exercise and Fitness Exercise Basics Sports Safety Injury Rehabilitation Emotional Well- ...

  20. α7β1 Integrin regulation of gene transcription in skeletal muscle following an acute bout of eccentric exercise.

    Science.gov (United States)

    Mahmassani, Ziad S; Son, Kook; Pincu, Yair; Munroe, Michael; Drnevich, Jenny; Chen, Jie; Boppart, Marni D

    2017-05-01

    The α7β1 integrin is concentrated at the costameres of skeletal muscle and provides a critical link between the actin cytoskeleton and laminin in the basement membrane. We previously demonstrated that expression of the α7BX2 integrin subunit (MCK:α7BX2) preserves muscle integrity and enhances myofiber cross-sectional area following eccentric exercise. The purpose of this study was to utilize gene expression profiling to reveal potential mechanisms by which the α7BX2-integrin contributes to improvements in muscle growth after exercise. A microarray analysis was performed using RNA extracted from skeletal muscle of wild-type or transgenic mice under sedentary conditions and 3 h following an acute bout of downhill running. Genes with false discovery rate probability values below the cutoff of P exercise or transgene expression. KEGG pathway analysis detected upregulation of genes involved in endoplasmic reticulum protein processing with integrin overexpression. Targeted analyses verified increased transcription of Rpl13a, Nosip, Ang, Scl7a5, Gys1, Ndrg2, Hspa5, and Hsp40 as a result of integrin overexpression alone or in combination with exercise (P eccentric exercise. Copyright © 2017 the American Physiological Society.

  1. The influence of resistance exercise with emphasis on specific contractions (concentric vs. eccentric on muscle strength and post-exercise autonomic modulation: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Mariana O. Gois

    2014-01-01

    Full Text Available Background: Compared to eccentric contractions, concentric contractions result in higher cardiovascular stress. However, we do not know how these two types of contractions influence cardiac autonomic modulation during the post-exercise recovery period. Objective: to compare the effect of resistance training that is performed with concentric vs. eccentric emphasis on muscle strength and on post-exercise recovery which was assessed by examining heart rate variability (HRV, for the knee extensor muscle group in young healthy adults. Methods: For this study, 105 men between 18 and 30 years of age were randomized into 4 groups: concentric control (CONCC, eccentric control (ECCC, concentric training (CONCT and eccentric training (ECCT. The CONCC and ECCC groups underwent one session of resistance exercise (RE using the knee extensor muscle group (3 sets of 1 repetition at 100% of the maximal repetition [1MR] and the CONCT and ECCT groups performed 10 training sessions. The HRV was analyzed at baseline and across four recovery periods (T1, T2, T3 and T4. Results: The ECCT group exhibited increased muscle strength at the end of the study. Regarding cardiac autonomic modulation, the CONCC and ECCC groups exhibited increases in overall variability (SDNN and SD2 at T1 compared to baseline, and the ECCT group demonstrated increases in variables reflecting vagal modulation and the recovery process (RMSSD, SD1 and HF [ms2] at T1, T2 and T4 compared to baseline. Conclusions: Resistance training with emphasis on eccentric contractions promoted strength gain and an increase in cardiac vagal modulation during recovery compared to baseline.

  2. Interleukin-6 -174G/C gene polymorphism affects muscle damage response to acute eccentric resistance exercise in elderly obese women.

    Science.gov (United States)

    Funghetto, Silvana Schwerz; Prestes, Jonato; Silva, Alessandro de Oliveira; Farias, Darlan L; Teixeira, Tatiane G; Vieira, Denis Cesar Leite; Souza, Vinícius C; Sousa, Nuno M F; Navalta, James W; Melo, Gislane F; Karnikowski, Margô Gomes de Oliveira

    2013-11-01

    The IL-6 gene polymorphism has been associated with disease prevalence and different physiological responses to exercise. Eccentric resistance exercise (ERE) is considered a nonpharmacological tool to prevent the chronic degenerative profile associated with aging and obesity. Consequently, the aim of the present study was to investigate the influence of IL-6 -174G/C polymorphism on acute interleukin-6 (IL-6) and creatine kinase (CK) temporal response to ERE in elderly obese women. Ninety women completed seven sets of ten repetitions (eccentric only) of an acute ERE session at 110% of the ten repetitions maximum (10RM). IL-6 genotypes displayed no difference at baseline. ERE induced changes in CK concentration over time occurred only in the GG group, F(2.619, 136.173)=5.199, p=0.003, with CK activity increased from 106.8±6.9 U/l pre-intervention to 122.7±11.2 U/l at 24 h and 131.9±14.4 U/l at 48 h post-exercise. IL-6 concentration in the GG group was lower than the CC/CG group only at 0 h post-exercise (3.78±0.58 pg/ml versus 6.51±1.91 pg/ml, p=0.030). Only the GG genotype group had higher CK activity 24-48 h following ERE and greater CK integral values, while IL-6 activity over 48 h was higher in the CC/CG genotype group. In conclusion, IL-6 genotype affects CK and IL-6 in response to ERE. It is of interest that the ERE protocol induced an elevation in CK, indicating possible muscle damage without exacerbating IL-6 and CK for the GG genotype. © 2013.

  3. Acute Response of PGC-1α and IGF-1 Isoforms to Maximal Eccentric Exercise in Skeletal Muscle of Postmenopausal Women.

    Science.gov (United States)

    Dieli-Conwright, Christina M; Kiwata, Jacqueline L; Tuzon, Creighton T; Spektor, Tanya M; Sattler, Fred R; Rice, Judd C; Schroeder, Edward Todd

    2016-04-01

    PGC-1α4, a novel isoform of the transcriptional coactivator PGC-1α, was recently postulated to modulate the expression of anabolic and catabolic genes and therefore regulate skeletal muscle hypertrophy. Resting levels of PGC-1α4 messenger RNA (mRNA) expression were found to increase in healthy adults after resistance training. However, the acute effect of resistance exercise (RE) on PGC-1α4 expression in populations prone to progressive muscle loss, such as postmenopausal women, has not been evaluated. Here, we investigated alterations in mRNA expression of PGC-1α4 and PGC-1α1, a regulator of muscle oxidative changes, in postmenopausal women after high-intensity eccentric RE and analyzed these findings with respect to changes in insulin-like growth factor (IGF)-1 and catabolic gene expression. Nine postmenopausal women (age, 57.9 ± 3.2 years) performed 10 sets of 10 maximal eccentric repetitions of single-leg extension with 20-second rest periods between sets. Muscle biopsies were obtained from the vastus lateralis of the exercised leg before and 4 hours after the RE bout with mRNA expression determined by quantitative real-time polymerase chain reaction. No significant changes in the mRNA expression of either PGC-1α isoform were observed after acute eccentric RE (p > 0.05). IGF-1Ea mRNA expression significantly increased (p ≤ 0.05), whereas IGF-1Eb and mechano-growth factor (MGF) did not significantly change (p > 0.05). PGC-1α4 mRNA expression was associated with reduced mRNA expression of the catabolic gene myostatin (R = -0.88, p eccentric exercise with short rest periods in postmenopausal women.

  4. ACUTE RESPONSE OF PGC-1 α AND IGF-1 ISOFORMS TO MAXIMAL ECCENTRIC EXERCISE IN SKELETAL MUSCLE OF POSTMENOPAUSAL WOMEN

    Science.gov (United States)

    Dieli-Conwright, Christina M.; Kiwata, Jacqueline L.; Tuzon, Creighton; Spektor, Tanya M.; Sattler, Fred R.; Rice, Judd C.; Schroeder, E. Todd

    2015-01-01

    PGC-1α4, a novel isoform of the transcriptional coactivator PGC-1α, was recently postulated to modulate the expression of anabolic and catabolic genes and therefore regulate skeletal muscle hypertrophy. Resting levels of PGC-1α4 mRNA expression were found to increase in healthy adults after resistance training. However, the acute effect of resistance exercise (RE) on PGC-1α4 expression in populations prone to progressive muscle loss, such as postmenopausal women, has not been evaluated. Here we investigated alterations in mRNA expression of PGC-1α4 and PGC-1α1, a regulator of muscle oxidative changes, in postmenopausal women following high-intensity eccentric RE, and analyzed these findings with respect to changes in IGF-1 and catabolic gene expression. Nine postmenopausal women (57.9 ± 3.2 yr) performed 10 sets of 10 maximal eccentric repetitions of single-leg extension with 20 second rest periods between sets. Muscle biopsies were obtained from the vastus lateralis of the exercised leg before and 4 hours after the RE bout with mRNA expression determined by qRT-PCR. No significant changes in the mRNA expression of either PGC-1α isoform were observed following acute eccentric RE (P > 0.05). IGF-1Ea mRNA expression significantly increased (P 0.05). PGC-1α4 mRNA expression was associated with reduced mRNA expression of the catabolic gene myostatin (R = −.88, P eccentric exercise with short rest periods in postmenopausal women. PMID:26340467

  5. The impact of a repeated bout of eccentric exercise on muscular strength, muscle soreness and creatine kinase.

    Science.gov (United States)

    Smith, L L; Fulmer, M G; Holbert, D; McCammon, M R; Houmard, J A; Frazer, D D; Nsien, E; Israel, R G

    1994-01-01

    The purpose of this study was to determine if there were any beneficial or detrimental effects regarding delayed onset muscle soreness (DOMS), serum creatine kinase (CK), and maximum concentric strength at 80% of 1-RMconc, if a bout of eccentric exercise was repeated at 48 h after an initial bout. A secondary purpose was to determine whether unaccustomed eccentrics might affect plasma cholesterol (TC). Twenty-six men were randomly assigned to a control (Group 1) or experimental group (Group 2). Both groups performed three sets (12 repetitions per set) of the eccentric phase of a chest press, at 80% of one repetition maximum (1-RMconc); Group 2 repeated this exercise 48 h later. DOMS and CK were measured before, and every 24 h for 8 days after; TC was measured before, and every 24 h for 4 days. Maximum strength during the concentric phase of a chest press (1-RMconc) was measured before and at 48-h intervals after. A repeated measures analysis of variance revealed a significant time effect (P < 0.05) for DOMS, CK and strength, but no significant difference between groups (P < 0.05). An interesting finding was the significant (P < 0.05) reduction in TC at 24, 48 and 72 h, after exercise in both groups, which we hypothesized was associated with cellular repair. From these results we concluded that when a bout of eccentrics is repeated 48 h after an initial bout, there is no change in the characteristic time-course and/or intensity of DOMS, CK or 1-RMconc. PMID:7894959

  6. Knee proprioception after exercise-induced muscle damage.

    Science.gov (United States)

    Torres, R; Vasques, J; Duarte, J A; Cabri, J M H

    2010-06-01

    The purpose of the present study was to investigate whether exercise-induced quadriceps muscle damage affects knee proprioception such as joint position sense (JPS), force sense and the threshold to detect passive movement (TTDPM). Fourteen young men performed sets of eccentric quadriceps contractions at a target of 60% of the maximal concentric peak torque until exhaustion; the exercise was interrupted whenever the subject could not complete two sets. Muscle soreness, JPS, the TTDPM and force sense were examined before the exercise as well as one, 24, 48, 72 and 96 h after exercise. The results were compared using one-way repeated-measure ANOVA. Plasma CK activity, collected at the same times, was analyzed by the Friedman's test to discriminate differences between baseline values and each of the other assessment moments (pknee flexion and force sense were significantly decreased up to 48 h, whereas TTDPM decreased significantly at only one hour and 24 h after exercise, at 30 and 70 degrees of the knee flexion, respectively. The results allow the conclusion that eccentric exercise leading to muscle damage alters joint proprioception, suggesting that there might be impairment in the intrafusal fibres of spindle muscles and in the tendon organs.

  7. Acute effects of concentric and eccentric exercise on glucose metabolism and interleukin-6 concentration in healthy males.

    Science.gov (United States)

    Philippe, M; Krüsmann, P J; Mersa, L; Eder, E M; Gatterer, H; Melmer, A; Ebenbichler, C; Burtscher, M

    2016-06-01

    Acute muscle-damaging eccentric exercise (EE) negatively affects glucose metabolism. On the other hand, long-term eccentric endurance exercise seems to result in equal or superior positive effects on glucose metabolism compared to concentric endurance exercise. However, it is not known if acute non-muscle-damaging EE will have the same positive effects on glucose metabolism as acute concentric exercise (CE). Interleukin-6 (IL-6) released from the exercising muscles may be involved in the acute adaptations of glucose metabolism after CE and non-muscle-damaging EE. The aim of this study was to assess acute effects of uphill walking (CE) and non-muscle-damaging downhill walking (EE) on glucose metabolism and IL-6 secretion. Seven sedentary non-smoking, healthy males participated in a crossover trial consisting of a 1 h uphill (CE) and a 1 h downhill (EE) walking block on a treadmill. Venous blood samples were drawn before (pre), directly after (acute) and 24 h after (post) exercise. An oral glucose tolerance test (OGTT) was performed before and 24 h after exercise. Glucose tolerance after 1 and 2 hours significantly improved 24 hours after CE (-10.12±3.22%: P=0.039; -13.40±8.24%: P=0.028). After EE only the 1-hour value was improved (-5.03±5.48%: P=0.043). Acute IL-6 concentration rose significantly after CE but not after EE. We conclude that both a single bout of CE and a single bout of non-muscle-damaging EE elicit positive changes in glucose tolerance even in young, healthy subjects. Our experiment indicates that the overall metabolic cost is a major trigger for acute adaptations of glucose tolerance after exercise, but only the IL-6 production during EE was closely related to changes in glycaemic control.

  8. A randomised controlled feasibility study investigating the use of eccentric and concentric strengthening exercises in the treatment of rotator cuff tendinopathy

    Directory of Open Access Journals (Sweden)

    Marcus Bateman

    2014-01-01

    Full Text Available Objectives: To conduct a feasibility study to compare concentric and eccentric rotator cuff strengthening exercises for rotator cuff tendinopathy. Methods: A total of 11 patients with rotator cuff tendinopathy who were on the waiting list for arthroscopic subacromial decompression surgery were randomised to perform eccentric rotator cuff strengthening exercises, concentric strengthening exercises or no exercises. Patients were evaluated in terms of levels of pain and function using the Oxford Shoulder Score and a Visual Analogue Scale initially, at 4 weeks and at 8 weeks. Results: The study design was found to be acceptable to patients and achieved a high level of 86% compliance. The drop-out rate was 0%. Two patients performing eccentric strengthening exercises improved sufficiently to cancel their planned surgery. Conclusion: Further research in this area is recommended. The study design was feasible and power calculations have been conducted to aid future research planning.

  9. Resistance training using eccentric overload induces early adaptations in skeletal muscle size.

    Science.gov (United States)

    Norrbrand, Lena; Fluckey, James D; Pozzo, Marco; Tesch, Per A

    2008-02-01

    Fifteen healthy men performed a 5-week training program comprising four sets of seven unilateral, coupled concentric-eccentric knee extensions 2-3 times weekly. While eight men were assigned to training using a weight stack (WS) machine, seven men trained using a flywheel (FW) device, which inherently provides variable resistance and allows for eccentric overload. The design of these apparatuses ensured similar knee extensor muscle use and range of motion. Before and after training, maximal isometric force (MVC) was measured in tasks non-specific to the training modes. Volume of all individual quadriceps muscles was determined by magnetic resonance imaging. Performance across the 12 exercise sessions was measured using the inherent features of the devices. Whereas MVC increased (P hypertrophy evident in FW (6.2%) was not statistically greater than that shown in WS (3.0%), all four individual quadriceps muscles of FW showed increased (P exercise supporting the idea that eccentric overload offers a potent stimuli essential to optimize the benefits of resistance exercise.

  10. Identification of high responders for interleukin-6 and creatine kinase following acute eccentric resistance exercise in elderly obese women.

    Science.gov (United States)

    Tajra, Vitor; Tibana, Ramires Alsamir; Vieira, Denis Cesar Leite; de Farias, Darlan Lopes; Teixeira, Tatiane Gomes; Funghetto, Silvana Schwerz; Silva, Alessandro Oliveira; de Sousa, Nuno Manuel Frade; Willardson, Jeffrey; Karnikowski, Margô Gomes Oliveira; Prestes, Jonato

    2014-11-01

    Resistance exercise is used as a non-pharmacological tool to elicit both gains in and maintenance of physical function in the elderly. Thus, the present study examined the acute response of creatine kinase and interleukin-6 following an eccentric resistance exercise session in elderly obese women classified as high responders or normal responders. Cross-sectional field study. Ninety elderly obese women (69.4 ± 6.01 years) were tested for a 10 repetition maximum on the leg extension exercise and then completed an acute eccentric resistance exercise session consisting of seven sets of 10 repetitions at 110% of 10 repetition maximum with a rest of 3 min between sets. Subjects were divided into normal response or high response on the basis of the peak serum interleukin-6 (NR = 59 and HR = 7) and creatine kinase (NR = 81 and HR = 9) concentration being greater than (HR) or less than (NR) the 90th percentile. Creatine kinase was higher at 0 h, 3h, 24h and 48 h following the ERE for the HR group. The peak creatine kinase was significantly higher in HR group versus the normal response group. The average increase in the serum interleukin-6 Δ for the HR group (∼ 850%) was significantly higher versus the normal response group (∼ 55%). Serum interleukin-6 was significantly higher at 0 h and 24h following eccentric resistance exercise only for the high response group, while peak levels were significantly higher in high response group versus the normal response group (p ≤ 0.005). Only one subject met the criteria to be classified as high response for both creatine kinase and interleukin-6 responsiveness. Elderly individuals classified as high response experienced greater creatine kinase and interleukin-6 responses to ERE. Thus, a prudent approach for eccentric resistance exercise prescription might be programming additional recovery days and/or lower intensity training, especially in the beginning stages of a program. Copyright © 2013 Sports Medicine Australia

  11. Effects of Inertial Setting on Power, Force, Work, and Eccentric Overload During Flywheel Resistance Exercise in Women and Men.

    Science.gov (United States)

    Martinez-Aranda, Luis M; Fernandez-Gonzalo, Rodrigo

    2017-06-01

    Exercise load is a key component in determining end-point adaptations to resistance exercise. Yet, there is no information regarding the use of different inertia (i.e., loads) during isoinertial flywheel resistance exercise, a very popular high-intensity training model. Thus, this study examined power, work, force, and eccentric overload produced during flywheel resistance exercise with different inertial settings in men and women. Twenty-two women (n = 11) and men (n = 11) performed unilateral (in both legs) isolated concentric (CON) and coupled CON and eccentric (ECC) exercise in a flywheel knee extension device employing 6 inertias (0.0125, 0.025, 0.0375, 0.05, 0.075, 0.1 kg·m). Power decreased as higher inertias were used, with men showing greater (p ≤ 0.05) decrements than women (-36 vs. -29% from lowest to highest inertia). In contrast, work increased as higher inertias were employed, independent of sex (p ≤ 0.05; ∼48% from lowest to highest inertia). Women increased CON and ECC mean force (46-55%, respectively) more (p ≤ 0.05) than men (34-50%, respectively) from the lowest to the highest inertia evaluated, although the opposite was found for peak force data (i.e., peak force increased more in men than in women as inertia was increased). Men, but not women, increased ECC overload from inertia 0.0125 to 0.0375 kg·m2. Although estimated stretch-shorting cycle use during flywheel exercise was higher (p ≤ 0.05) in men (6.6%) than women (4.9%), values were greater for both sexes when using low-to-medium inertias. The information gained in this study could help athletes and sport and health professionals to better understand the impact of different inertial settings on skeletal muscle responses to flywheel resistance exercise.

  12. Velocity-specific strength recovery after a second bout of eccentric exercise.

    Science.gov (United States)

    Barss, Trevor S; Magnus, Charlene R A; Clarke, Nick; Lanovaz, Joel L; Chilibeck, Philip D; Kontulainen, Saija A; Arnold, Bart E; Farthing, Jonathan P

    2014-02-01

    A bout of eccentric exercise (ECC) has the protective effect of reducing muscle damage during a subsequent bout of ECC known as the "repeated bout effect" (RBE). The purpose of this study was to determine if the RBE is greater when both bouts of ECC are performed using the same vs. different velocity of contraction. Thirty-one right-handed participants were randomly assigned to perform an initial bout of either fast (3.14 rad·s [180°·s]) or slow (0.52 rad·s [30°·s]) maximal isokinetic ECCs of the elbow flexors. Three weeks later, the participants completed another bout of ECC at the same velocity (n = 16), or at a different velocity (n = 15). Indirect muscle damage markers were measured before, immediately after, and at 24, 48, and 72 hours postexercise. Measures included maximal voluntary isometric contraction (MVC) strength (dynamometer), muscle thickness (MT; ultrasound), delayed onset muscle soreness (DOMS; visual analog scale), biceps and triceps muscle activation amplitude (electromyography), voluntary activation (interpolated twitch), and twitch torque. After the repeated bout, MVC strength recovered faster compared with the same time points after the initial bout for only the same velocity group (p = 0.017), with no differences for all the other variables. Irrespective of velocity, MT and DOMS were reduced after the repeated bout compared with that of the initial bout at 24, 48, and 72 hours with a corresponding increase in TT at 72 hours (p effects contribute to the RBE. The current findings support the idea of multiple mechanisms contributing to the RBE.

  13. Residual force enhancement following eccentric induced muscle damage.

    Science.gov (United States)

    Power, Geoffrey A; Rice, Charles L; Vandervoort, Anthony A

    2012-06-26

    During lengthening of an activated skeletal muscle, the force maintained following the stretch is greater than the isometric force at the same muscle length. This is termed residual force enhancement (RFE), but it is unknown how muscle damage following repeated eccentric contractions affects RFE. Using the dorsiflexors, we hypothesised muscle damage will impair the force generating sarcomeric structures leading to a reduction in RFE. Following reference maximal voluntary isometric contractions (MVC) in 8 young men (26.5±2.8y) a stretch was performed at 30°/s over a 30° ankle excursion ending at the same muscle length as the reference MVCs (30° plantar flexion). Surface electromyography (EMG) of the tibialis anterior and soleus muscles was recorded during all tasks. The damage protocol involved 4 sets of 25 isokinetic (30°/s) lengthening contractions. The same measures were collected at baseline and immediately post lengthening contractions, and for up to 10min recovery. Following the lengthening contraction task, there was a 30.3±6.4% decrease in eccentric torque (Pmuscle damage (Pmuscle function compared to isometric actions succeeding damage. Thus, active force of cross-bridges is decreased because of impaired excitation-contraction coupling but force generated during stretch remains intact because force contribution from stretched sarcomeric structures is less impaired.

  14. A STUDY TO COMPARE THE EFFICACY OF ULTRASOUND WITH ECCENTRIC EXERCISES AND ULTRASOUND WITH CONCENTRIC EXERCISES ON TENDO ACHILLES TENDINITIS IN ATHELETES

    Directory of Open Access Journals (Sweden)

    Ravish

    2014-02-01

    Full Text Available In a previous uncontrolled pilot study we demonstrated very good clinical results with eccentric calf muscle training on patients with painful chronic Achilles tendinosis located at the 2-6 cm level in the tendon. In the present prospective study patients with painful chronic Achilles tendinosis at the 2-6 cm level in the tendon were randomized to treatment with either an eccentric or a concentric training regimen for the calf muscles with therapeutic ultrasound. The study included 60 patients, with 30 in each group mean age 30 years in each treatment group. The amount of pain during activity (jogging or walking was recorded by the patients on a visual analogue scale, and patient satisfaction was assessed before and after treatment. The patients were instructed to perform their eccentric or concentric training regimen on a daily basis for 12 weeks. In both types of treatment regimen the patients were told to do their exercises despite experiencing pain or discomfort in the tendon during exercise. The results showed that after the eccentric training regimen 80% of the patients (24/30 were satisfied and had resumed their previous activity level (before injury, compared to 63% of the patients (19/30 who were treated with the concentric training regimen with therapeutic ultrasound as the common modality. The results of means of pain is (0.902 is significant, for range of motion is (0.042 which is not significant and foot ankle ability measure is (0.311 is significant after treatment with eccentric training was significantly better than after concentric training.

  15. Effect of concentric and eccentric velocity during heavy-load non-ballistic elbow flexion resistance exercise.

    Science.gov (United States)

    Sampson, John A; Donohoe, Alison; Groeller, Herbert

    2014-05-01

    Mechanical and neuromuscular benefits arise during ballistic stretch-shortening cycle muscle activation, yet resistance training regimens are typically non-ballistic, and in contrast to ballistic movement, require a concentric deceleration phase. Twelve healthy males performed a unilateral, six repetition maximum non-ballistic elbow flexion-extension task during; (i) rapid shortening (RS), (ii) stretch-shortening cycle (SSC) and (iii) a 2-s eccentric and 2-s concentric control (C). A load cell and shaft encoder recorded respectively force and velocity. Surface electromyographic root mean square amplitude (EMGRMS) was recorded in the biceps and triceps brachii, and is reported as the relative (%) difference, normalised to control (C). The average lengthening and shortening velocity of SSC (0.57 ± 0.03 ms(-1); 0.43 ± 0.02 ms(-1)) was significantly greater than RS (0.22 ± 0.01 ms(-1); 0.35 ± 0.01 ms(-1)), and C (0.17 ± 0.00 ms(-1), 0.20 ± 0.00 ms(-1)). Peak eccentric force was increased (PEccentric EMGRMS in the biceps brachii was significantly increased during the first three and final repetitions of SSC (31.9 ± 10.9%, 46.7 ± 12.4, 69.3 ± 13.6%, 92.0 ± 16.4%), and the third and last repetitions of RS (35.9 ± 7.4%, 50.3 ± 10.9%), compared to C (0.00%, 15.8 ± 4.0%, 23.7 ± 4.1%, 39.2 ± 8.6%). In the current study, eccentric limb velocity potentiated eccentric and concentric force, concentric velocity, and eccentric EMG amplitude during non-ballistic exercise. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  16. Time Course Change of IGF1/Akt/mTOR/p70s6k Pathway Activation in Rat Gastrocnemius Muscle During Repeated Bouts of Eccentric Exercise

    OpenAIRE

    Eisuke Ochi; Naokata Ishii; Koichi Nakazato

    2010-01-01

    The purpose of this study was to examine whether insulin-like growth factor (IGF-1) and Akt/mTOR/p70S6K pathway activity is altered by chronic eccentric exercise in rat medial gastrocnemius muscle. Male Wistar rats (n = 24) were randomly assigned to 1 of the 2 groups: eccentric exercise (ECC) group or sham-operated control (CON) group. Rats in the ECC group were trained every second day for 10 days (5 sessions in total) or 20 days (10 sessions in total). After either 5 or 10 exercise sessions...

  17. Eccentric rehabilitation exercise increases peritendinous type I collagen synthesis in humans with Achilles tendinosis

    DEFF Research Database (Denmark)

    Langberg, Henning; Ellingsgaard, H; Madsen, T

    2007-01-01

    It has been shown that 12 weeks of eccentric heavy resistance training can reduce pain in runners suffering from chronic Achilles tendinosis, but the mechanism behind the effectiveness of this treatment is unknown. The present study investigates the local effect of an eccentric training regime...... of heavy-resistance eccentric training apart from their regular training and soccer activity. Before and after the training period the tissue concentration of indicators of collagen turnover was measured by the use of the microdialysis technique. After training, collagen synthesis was increased...... in the healthy tendons. The clinical effect of the 12 weeks of eccentric training was determined by using a standardized loading procedure of the Achilles tendons showing a decrease in pain in all the chronic injured tendons (VAS before 44+/-9, after 13+/-9; P...

  18. The heat shock protein response following eccentric exercise in human skeletal muscle is unaffected by local NSAID infusion

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Paulsen, G; Schjerling, P

    2013-01-01

    in muscle subjected to stress, and in several cell types including cardiac myocytes prostaglandins are important in induction of the HSP response. This study aimed to determine the influence of NSAIDs on the HSP response to eccentric exercise in human skeletal muscle. Healthy males performed 200 maximal...... eccentric contractions with each leg with intramuscular infusion of the NSAID indomethacin or placebo. Biopsies were obtained from m. vastus lateralis before and after (5, 28 hrs and 8 days) the exercise bout from both legs (NSAID vs unblocked leg) and analysed for expression of the HSPs HSP70, HSP27 and a......B-crystallin (mRNA and protein). NSAID did not affect the mRNA expression of any of the HSPs. Compared to pre values, the mRNA expression of all HSPs was increased; aB-crystallin, 3.6- and 5.4-fold; HSP70, 26- and 3.4-fold; and HSP27: 4.8- and 6.5-fold at 5 and 28 hrs post-exercise, respectively (all p ...

  19. Subcellular fractionation reveals HSP72 does not associate with SERCA in human skeletal muscle following damaging eccentric and concentric exercise.

    Science.gov (United States)

    Frankenberg, Noni T; Lamb, Graham D; Vissing, Kristian; Murphy, Robyn M

    2014-06-01

    Through its upregulation and/or translocation, heat shock protein 72 (HSP72) is involved in protection and repair of key proteins after physiological stress. In human skeletal muscle we investigated HSP72 protein after eccentric (ECC1) and concentric (CONC) exercise and repeated eccentric exercise (ECC2; 8 wk later) and whether it translocated from its normal cytosolic location to membranes/myofibrils. HSP72 protein increased ~2-fold 24 h after ECC1, with no apparent change after CONC or ECC2. In resting (nonstressed) human skeletal muscle the total pool of HSP72 protein was present almost exclusively in the cytosolic fraction, and after each exercise protocol the distribution of HSP72 protein remained unaltered. Overall, the amount of HSP72 protein in the cytosol increased 24 h after ECC1, matching the fold increase that was measured in total HSP72 protein. To better ascertain the capabilities and limitations of HSP72, using quantitative Western blotting we determined the HSP72 protein content to be 11.4 μmol/kg wet weight in resting human vastus lateralis muscle, which is comprised of Type I (slow-twitch) and Type II (fast-twitch) fibers. HSP72 protein content was similar in individual Type I or II fiber segments. After physiological stress, HSP72 content can increase and, although the functional consequences of increased amounts of HSP72 protein are poorly understood, it has been shown to bind to and protect protein pumps like SERCA and Na(+)-K(+)-ATPase. Given no translocation of cytosolic HSP72, these findings suggest eccentric contractions, unlike other forms of stress such as heat, do not trigger tight binding of HSP72 to its primary membrane-bound target proteins, in particular SERCA. Copyright © 2014 the American Physiological Society.

  20. Effectiveness of a Home-Based Eccentric-Exercise Program on the Torque-Angle Relationship of the Shoulder External Rotators: A Pilot Study.

    Science.gov (United States)

    Uhl, Timothy L; Rice, Thomas; Papotto, Brianna; Butterfield, Timothy A

    2017-04-01

    The role of the rotator cuff is to provide dynamic stability to the glenohumeral joint. Human and animal studies have identified sarcomerogenesis as an outcome of eccentric training indicated by more torque generation with the muscle in a lengthened position. The authors hypothesized that a home-based eccentric-exercise program could increase the shoulder external rotators' eccentric strength at terminal internal rotation (IR). Prospective case series. Clinical laboratory and home exercising. 10 healthy subjects (age 30 ± 10 y). All participants performed 2 eccentric exercises targeting the posterior shoulder for 6 wk using a home-based intervention program using side-lying external rotation (ER) and horizontal abduction. Dynamic eccentric shoulder strength measured at 60°/s through a 100° arc divided into 4 equal 25° arcs (ER 50-25°, ER 25-0°, IR 0-25°, IR 25-50°) to measure angular impulse to represent the work performed. In addition, isometric shoulder ER was measured at 5 points throughout the arc of motion (45° IR, 30° IR, 15° IR, 0°, and 15° ER). Comparison of isometric and dynamic strength from pre- to posttesting was evaluated with a repeated-measure ANOVA using time and arc or positions as within factors. The isometric force measures revealed no significant differences between the 5 positions (P = .56). Analysis of the dynamic eccentric data revealed a significant difference between arcs (P = .02). The percentage-change score of the arc of IR 25-50° was found to be significantly greater than that of the arc of IR 0-25° (P = .007). After eccentric training the only arc of motion that had a positive improvement in the capacity to absorb eccentric loads was the arc of motion that represented eccentric contractions at the longest muscle length.

  1. Low-Frequency Fatigue Assessed as Double to Single Twitch Ratio after Two Bouts of Eccentric Exercise of the Elbow Flexors

    Directory of Open Access Journals (Sweden)

    Damian Janecki, Anna Jaskólska, Jarosław Marusiak, Artur Jaskólski

    2016-12-01

    Full Text Available The aim of this study was to assess low-frequency fatigue as a double to single twitch ratio after repeated eccentric exercise of the elbow flexors. Maximal isometric torque, single and double twitch responses and low-frequency fatigue were assessed on the elbow flexors in 16 untrained male volunteers before, immediately after, 24 and 48 hours following two bouts of eccentric exercise consisted of 30 repetitions of lowering a dumbbell adjusted to ~75% of each individual’s maximal isometric torque. Maximal isometric torque and electrically evoked responses decreased significantly in all measurements after the first bout of eccentric exercise (p < 0.05. In measurements performed at 24 and 48 hours after the second bout both maximal voluntary isometric torque and electrically evoked contractions were significantly higher than in measurements performed after the first bout (p < 0.05. Although low-frequency fatigue significantly increased up to 48 hours after each bout of eccentric exercise, its values at 24 and 48 hours after the second bout were significantly lower than at respective time points after the first bout (p < 0.05. Double to single twitch ratio could be used as a sensitive tool in the evaluation of muscle recovery and adaptation to repeated eccentric exercise.

  2. Effects of concentric and eccentric control exercise on gross motor function and balance ability of paretic leg in children with spastic hemiplegia

    OpenAIRE

    Park, Su-Ik; Kim, Mi-sun; Choi, Jong-Duk

    2016-01-01

    [Purpose] This study examines the effect of concentric and eccentric control training of the paretic leg on balance and gross motor function in children with spastic hemiplegia. [Subjects and Methods] Thirty children with spastic hemiplegia were randomly divided into experimental and control groups. In the experimental group, 20 min of neurodevelopmental therapy and 20 min of concentric and eccentric control exercise were applied to the paretic leg. In the control group, 40 min of neurodevelo...

  3. Comparative study of two protocols of eccentric exercise on knee pain and function in athletes with patellar tendinopathy: randomized controlled study

    OpenAIRE

    Ronaldo Alves da Cunha; Andreia Natacha Dias; Marcelo Bannwart Santos; Alexandre Dias Lopes

    2012-01-01

    INTRODUCTION: The eccentric squat on a slope has been proved effective in conservative treatment of patellar tendinopathy, especially in the athletic population. However, several aspects such as intensity and pain during therapy still differ among authors. OBJECTIVES: To compare the effectiveness of two protocols of eccentric exercise (performed with and without pain), in the improvement of knee function and pain intensity in athletes with patellar tendinopathy. METHODS: 7 athletes of both ge...

  4. Taurine supplementation attenuates delayed increase in exercise-induced arterial stiffness.

    Science.gov (United States)

    Ra, Song-Gyu; Choi, Youngju; Akazawa, Nobuhiko; Ohmori, Hajime; Maeda, Seiji

    2016-06-01

    There is a delayed increase in arterial stiffness after eccentric exercise that is possibly mediated by the concurrent delayed increase in circulating oxidative stress. Taurine has anti-oxidant action, and taurine supplementation may be able to attenuate the increase in oxidative stress after exercise. The purpose of the present study was to investigate whether taurine supplementation attenuates the delayed increase in arterial stiffness after eccentric exercise. In the present double-blind, randomized, and placebo-controlled trial, we divided 29 young, healthy men into 2 groups. Subjects received either 2.0 g of placebo (n = 14) or taurine (n = 15) 3 times per day for 14 days prior to the exercise, on the day of exercise, and the following 3 days. The exercise consisted of 2 sets of 20 maximal-effort eccentric repetitions with the nondominant arm only. On the morning of exercise and for 4 days thereafter, we measured serum malondialdehyde (MDA) and carotid-femoral pulse wave velocity (cfPWV) as indices of oxidative stress and arterial stiffness, respectively. On the third and fourth days after exercise, both MDA and cfPWV significantly increased in the placebo group. However, these elevations were significantly attenuated in the taurine group. The increase in MDA was associated with an increase in cfPWV from before exercise to 4 days after exercise (r = 0.597, p taurine group. Our results suggest that delayed increase in arterial stiffness after eccentric exercise was probably affected by the exercise-induced oxidative stress and was attenuated by the taurine supplementation.

  5. Effectiveness of daily eccentric contractions induced via kilohertz frequency transcutaneous electrical stimulation on muscle atrophy.

    Science.gov (United States)

    Tanaka, Minoru; Nakanishi, Ryosuke; Murakami, Shinichiro; Fujita, Naoto; Kondo, Hiroyo; Ishihara, Akihiko; Roy, Roland R; Fujino, Hidemi

    2016-01-01

    The effects of daily repeated bouts of concentric, isometric, or eccentric contractions induced by high frequency (kilohertz) transcutaneous electrical stimulation in ameliorating atrophy of the soleus muscle in hindlimb unloaded rats were determined. Five groups of male rats were studied: control, hindlimb unloaded for 2 weeks (HU), or HU plus two daily bouts of concentric, isometric, or eccentric high-frequency electrical stimulation-induced contractions of the calf musculature. Soleus mass and fiber size were smaller, the levels of phosphorylated Akt1 and FoxO3a lower, and atrogin-1 and ubiquitinated proteins higher in the HU, and the HU plus concentric or isometric contraction groups than in the control group. In contrast, daily bouts of eccentric contractions maintained these values at near control levels and all measures were significantly different from all other HU groups. These results indicate that daily bouts of eccentric contractions induced by high-frequency stimulation inhibited the ubiquitin-proteasome catabolic pathway and enhanced the Akt1/FoxO3a anabolic pathway that resulted in a prevention of the atrophic response of the soleus muscle to chronic unloading.

  6. Improvements in multi-joint leg function following chronic eccentric exercise.

    Science.gov (United States)

    Elmer, S; Hahn, S; McAllister, P; Leong, C; Martin, J

    2012-10-01

    Previous authors have reported that chronic eccentric cycling facilitates greater changes in multi-joint leg function (hopping frequency, maximum jumping height) compared with concentric cycling. Our purpose was to evaluate changes in leg spring stiffness and maximum power following eccentric and concentric cycling training. Twelve individuals performed either eccentric (n=6) or concentric (n=6) cycling for 7 weeks (3 sessions/week) while training duration progressively increased. Participants performed trials of submaximal hopping, maximal counter movement jumps, and maximal concentric cycling to evaluate leg spring stiffness, maximum jumping power, and maximum concentric cycling power respectively, before and 1 week following training. Total work during training did not differ between eccentric and concentric cycling (126 ± 15-728 ± 91 kJ vs 125 ± 10-787 ± 76 kJ). Following training, eccentric cycling exhibited greater changes in k(leg) and jumping P(max) compared with CON(cyc) (10 ± 3% vs -2 ± 4% and 7 ± 2% vs -2 ± 3%, respectively, P=0.05). Alterations in CON(cyc) P(max) did not differ between ECC(cyc) (1035 ± 142 vs 1030 ± 133 W) and CON(cyc) (1072 ± 98 vs 1081 ± 85 W). These data demonstrate that eccentric cycling is an effective method for improving leg spring stiffness and maximum power during multi-joint tasks that include stretch-shortening cycles. Improvements in leg spring stiffness and maximum power would be beneficial for both aging and athletic populations.

  7. The Impact of Adding an Eccentric-Exercise Component to the Rehabilitation Program of Patients With Shoulder Impingement: A Critically Appraised Topic.

    Science.gov (United States)

    Valier, Alison R; Averett, Ryan S; Anderson, Barton E; Welch Bacon, Cailee E

    2016-05-01

    Shoulder pain is a common musculoskeletal complaint and is often associated with shoulder impingement. The annual incidence of shoulder pain is estimated to be 7% of all injuries, and is the third-most-common type of musculoskeletal pain. Initial treatment of shoulder impingement follows a conservative plan and emphasizes rehabilitation programs as opposed to surgical interventions. Shoulder rehabilitation programs commonly focus on strengthening the muscles of the shoulder complex and, more specifically, the rotator cuff. The rotator cuff is a primary dynamic stabilizer of the glenohumeral joint, using both eccentric and concentric contractions. The posterior rotator cuff, including teres minor and infraspinatus, works eccentrically to decelerate the arm during overhead throwing. Exercises to strengthen the rotator cuff and the surrounding dynamic stabilizers of the shoulder girdle vary and include activities such as internal and external rotation, full-can lifts, and rhythmic stabilizations. Traditionally, shoulder rehabilitation programs have focused on isotonic concentric contractions. Common strengthening exercises typically involve movements that result in shortening the muscle length while simultaneously loading the muscles. However, recent attention has been given to eccentric exercises, which involve lengthening of the muscle during loading, for the treatment of a variety of different tendinopathies including those of the Achilles and patellar tendons. The eccentric, or lengthening, motion is thought to be beneficial for people who are involved in activities that place eccentric stress on their shoulder, such as overhead throwers. Based on studies related to the Achilles tendon, eccentric exercise may positively influence the tendon structure by increasing collagen production and decreasing neovascularization. The changes that occur as a result of eccentric exercises may improve function, strength, and performance and decrease pain more than concentric

  8. Influence of Omega-3 (N3 Index on Performance and Wellbeing in Young Adults after Heavy Eccentric Exercise

    Directory of Open Access Journals (Sweden)

    Peter Lembke

    2014-03-01

    Full Text Available A clinical study was undertaken to evaluate the associations between the tissue levels of omega-3 (N3, also known as the Omega-3 Index (N3 Index, on various clinical and quality of life outcomes in healthy young adults after heavy eccentric exercise.. To ensure an adequate number of participants with an elevated N3 index would be available for comparison to those with a lower N3 Index, a subgroup of the study participants received N3 dietary supplementation (2.7 g·d-1 for 30 days prior to the performance of the heavy eccentric exercise. The remaining participants received a placebo supplement for the same 30-day period. After 30 days of supplementation, participants performed an eccentric exercise routine and were then measured at baseline (time 0, 24-, 48-, 72-, and 96 hours respectively on the following outcomes; C-reactive protein (CRP and creatine kinase. Blood lactate levels were analyzed immediately after the exercise. Functional measurements of delayed onset of muscle soreness (DOMS, extension and torque were also analyzed. Quality of life (QOL was measured by the quantitative questionnaire, the Profile of Mood States Questionnaire (POMS. Safety monitoring and analysis of adverse events was continuous throughout the study. Differences as demonstrated by a reduction in pain following eccentric exercise was experienced at both 72 and 96 hour time points in subjects with a higher N3 Index however there were no differences in extension or strength between the two groups. There was a significant difference in blood lactate levels (p = 0.0309 and improved emotional stability, reflected by the POMS questionnaire, in subjects with a higher N3 Index level. There was a statistically significant difference in CRP levels in subjects with a higher N3 Index level at 24 hours and a trend toward significance over 96 hours. There were no significant differences in creatine kinase levels and no reported adverse events. Subjects with a higher Omega-3 (N3

  9. BounceBack™ capsules for reduction of DOMS after eccentric exercise: a randomized, double-blind, placebo-controlled, crossover pilot study

    Directory of Open Access Journals (Sweden)

    Singh Betsy B

    2009-06-01

    Full Text Available Abstract Background Delayed onset muscle soreness (DOMS is muscle pain and discomfort experienced approximately one to three days after exercise. DOMS is thought to be a result of microscopic muscle fiber tears that occur more commonly after eccentric exercise rather than concentric exercise. This study sought to test the efficacy of a proprietary dietary supplement, BounceBack™, to alleviate the severity of DOMS after standardized eccentric exercise. Methods The study was a randomized, double-blind, placebo-controlled, crossover study. Ten healthy community-dwelling untrained subjects, ranging in age from 18–45 years, were enrolled. Mean differences within and between groups were assessed inferentially at each data collection time-point using t-tests for all outcome measures. Results In this controlled pilot study, intake of BounceBack™ capsules for 30 days resulted in a significant reduction in standardized measures of pain and tenderness post-eccentric exercise compared to the placebo group. There were trends towards reductions in plasma indicators of inflammation (high sensitivity C-reactive protein and muscle damage (creatine phosphokinase and myoglobin. Conclusion BounceBack™ capsules were able to significantly reduce standardized measures of pain and tenderness at several post-eccentric exercise time points in comparison to placebo. The differences in the serological markers of DOMS, while not statistically significant, appear to support the clinical findings. The product appears to have a good safety profile and further study with a larger sample size is warranted based on the current results.

  10. Eccentric Exercise Protocols for Patella Tendinopathy: Should we Really be Withdrawing Athletes from Sport? A Systematic Review

    Science.gov (United States)

    Saithna, Adnan; Gogna, Rajiv; Baraza, Njalalle; Modi, Chetan; Spencer, Simon

    2012-01-01

    The 2007 review by Visnes and Bahr concluded that athletes with patella tendinopathy should be withdrawn from sport whilst engaging in eccentric exercise (EE) rehabilitation programs. However, deprivation of sport is associated with a number of negative psychological and physiological effects. Withdrawal from sport is therefore a decision that warrants due consideration of the risk/benefit ratio. The aim of this study was to determine whether sufficient evidence exists to warrant withdrawal of athletes from sport during an eccentric exercise rehabilitation program. A systematic review of the literature was performed to identify relevant randomised trials. Data was extracted to determine whether athletes were withdrawn from sport, what evidence was presented to support the chosen strategy and whether this affected the clinical outcome. Seven studies were included. None of these reported high quality evidence to support withdrawal. In addition, three studies were identified in which athletes were not withdrawn from sport and still benefited from EE. This review has demonstrated that there is no high quality evidence to support a strategy of withdrawal from sport in the management of patella tendinopathy. PMID:23248727

  11. Effect of L-Glutamine Supplementation on Electromyographic Activity of the Quadriceps Muscle Injured By Eccentric Exercise

    Directory of Open Access Journals (Sweden)

    Farhad Rahmani Nia

    2013-06-01

    Full Text Available   Objective(s: The purpose of the present study was to examine the effects of L-glutamine on electromyographic (EMG activity of the quadriceps muscle injured by eccentric exercise (EE.   Materials and Methods: Seventeen healthy men (age: 22.35±2.27 yr; body mass: 69.91±9.78 kg; height: 177.08±4.32 cm were randomly and double-blind study with subjects assigned to either an L-glutamine supplementation (n=9 or placebo (n=8 group. The subjects in two groups were asked to take three times during a week for 4 weeks. Each subject was screened for dietary habits before inclusion into the study. Participants performed 6 set to exhaustion eccentric leg extensions at 75% of 1RM and rest intervals were 3 min among sets. Pain Assessment Scale (PAS, EMG activity and range of motion (ROM measurements were taken before exercise protocol and 24 and 48 hr afterwards. Results: There was no statistically significant difference between groups in perceived muscle soreness (SOR, ROM and EMG activity (P < 0.05. Conclusion: The results indicate that L-glutamine supplementation has no significant effect on muscle injury markers in between groups, although glutamine supplementation attenuated delayed onset muscle soreness (DOMS effects in sup group.

  12. Effectiveness of the eccentric exercise therapy in physically active adults with symptomatic shoulder impingement or lateral epicondylar tendinopathy: A systematic review.

    Science.gov (United States)

    Ortega-Castillo, Miguel; Medina-Porqueres, Ivan

    2016-06-01

    To identify and criticize the evidence for the effectiveness of the eccentric exercise to treat upper limb tendinopathies. Systematic review. Relevant randomized controlled trials (RCTs) were sourced using MEDLINE, SPORT Discus, Physiotherapy Evidence Database (PEDro) and CINAHL databases. Inclusion criteria were: (1) studies in English or Spanish; (2) adult participants with clinical diagnosis of tendinopathy; (3) RCT study design; (4) results regarding pain or strength were assessed; and (5) eccentric exercise was employed to treat upper extremity tendinopathies. Two blinded reviewers independently extracted data concerning trial methods, quality and outcomes. PEDro scale was employed to assess methodological quality. Results were summarized in a best evidence synthesis. The selected studies (n=12) scored an average of 6/10 based on the PEDro score. In 11 studies, pain decreased significantly with eccentric exercise, but only in five studies, the reduction was significantly better than in the non-eccentric group (in all or some of the parameters). Strength was assessed in nine studies; within-group evaluations show that strength significantly improved in the eccentric-group in seven studies, whereas inter-group changes were only significantly better in the eccentric-group in three studies for all the parameters and in two studies for some of the parameters. Eccentric exercise may reduce pain and improve strength in upper limb tendinopathies, but whether its effectiveness is much better than other forms of treatment remains questionable. Further investigations are needed, not only focused on shoulder impingement or epicondylar tendinopathy, but on tendinopathies in other areas of the upper limb. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Metabolic demand and muscle damage induced by eccentric cycling of knee extensor and flexor muscles.

    Science.gov (United States)

    Peñailillo, Luis; Guzmán, Nicolás; Cangas, José; Reyes, Alvaro; Zbinden-Foncea, Hermann

    2017-03-01

    The aim of this study was to examine the metabolic demand and extent of muscle damage of eccentric cycling targeting knee flexor (FLEX) and knee extensor (EXT) muscles. Eight sedentary men (23.3 ± 0.7 y) underwent two eccentric cycling sessions (EXT and FLEX) of 30 min each, at 60% of the maximum power output. Oxygen consumption (VO2), heart rate (HR) and rated perceived exertion (RPE) were measured during cycling. Countermovement and squat jumps (CMJ and SJ), muscle flexibility, muscle soreness and pain pressure threshold (PPT) of knee extensor and flexor muscles were measured before, immediately after and 1-4 days after cycling. FLEX showed greater VO2 (+23%), HR (+14%) and RPE (+18%) than EXT. CMJ and SJ performance decreased similarly after cycling. Muscle soreness increased more after EXT than FLEX and PPT decreased in knee extensor muscles after EXT and decreased in knee flexor muscles after FLEX. Greater loss of muscle flexibility in knee flexor muscles after FLEX was observed. Eccentric cycling of knee flexor muscles is metabolically more demanding than that of knee extensors, however muscle damage induced is similar. Knee flexors experienced greater loss of muscle flexibility possibly due to increased muscle stiffness following eccentric contractions.

  14. Exercise induced rhabdomyolysis

    Directory of Open Access Journals (Sweden)

    Ružič Maja

    2009-01-01

    Full Text Available Introduction. Rhabdomyolysis is a potentially life threatening disease, characterized by the release of intracellular calcium from skeletal muscles and can result in acute renal failure. Case report. A nineteen year old boy was admitted to the Clinic for Infective Diseases of Clinical Center Novi Sad. The disease was developing gradually and the symptoms were dizziness, muscle pain and dark color of urine. Due to the pathological level of aminotransferase he was hospitalized on the fourth day of the disease beginning with a suspicious diagnosis of acute viral hepatitis. In the hospital course of the disease, a further elevation of serum aminotransferases, creatine kinase and lactate dehydrogenase were registered. Additional serological analyses were done to exclude other possible causes of acute liver lesion. In the neurological status prolonged decontraction of quadriceps muscle was detected and the electromyography was suspicious on neuromyositis. Conclusion. Excessive muscular activity with the strenuous exercise is the leading, but very frequently overlooked, cause of rhabdomyolysis in healthy people. Excessive physical exercise may lead to elevation of the serum activity of aminotransferases and to suspicion of hepatitis.

  15. Adolescents and Exercise Induced Asthma

    Science.gov (United States)

    Hansen, Pamela; Bickanse, Shanna; Bogenreif, Mike; VanSickle, Kyle

    2008-01-01

    This article defines asthma and exercise induced asthma, and provides information on the triggers, signs, and symptoms of an attack. It also gives treatments for these conditions, along with prevention guidelines on how to handle an attack in the classroom or on the practice field. (Contains 2 tables and 1 figure.)

  16. ACUTE EXERCISE-INDUCED MUSCLE INJURY

    Directory of Open Access Journals (Sweden)

    Andrew J McKune

    2012-03-01

    Full Text Available While much research has recently been focussing on the chronic effects of overtraining, the acute damaging effects of individual eccentric exercise bouts on muscle remain of interest and underlie long-term training effects. Systemic markers of muscle damage are limited in terms of sensitivity and reliability. A clearer insight into the extent of the damage and mechanisms involved are being obtained from ultrastructural, functional and molecular examination of the muscle. There are currently indications that while the initial muscle damage may appear to have negative consequences in the short term, intense eccentric exercise appears to initiate a remodelling process and promote favourable adaptation of muscle following training, which has applications for promoting health, rehabilitation and sports performance.

  17. FKBP12 deficiency reduces strength deficits after eccentric contraction-induced muscle injury

    Science.gov (United States)

    Corona, Benjamin T.; Rouviere, Clement; Hamilton, Susan L.; Ingalls, Christopher P.

    2008-01-01

    Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from excitation-contraction uncoupling. FKBP12 is a 12-kDa binding protein known to bind to the skeletal muscle sarcoplasmic reticulum Ca2+ release channel [ryanodine receptor (RyR1)] and plays an important role in excitation-contraction coupling. To assess the effects of FKBP12 deficiency on muscle injury and recovery, we measured anterior crural muscle (tibialis anterior and extensor digitorum longus muscles) strength in skeletal muscle-specific FKBP12-deficient and wild-type (WT) mice before and after a single bout of 150 eccentric contractions, as well as before and after the performance of six injury bouts. Histological damage of the tibialis anterior muscle was assessed after injury. Body weight and peak isometric and eccentric torques were lower in FKBP12-deficient mice compared with WT mice. There were no differences between FKBP12-deficient and WT mice in preinjury peak isometric and eccentric torques when normalized to body weight, and no differences in the relative decreases in eccentric torque with a single or multiple injury bouts. After a single injury bout, FKBP12-deficient mice had less initial strength deficits and recovered faster (especially females) than WT mice, despite no differences in the degree of histological damage. After multiple injury bouts, FKBP12-deficient mice recovered muscle strength faster than WT mice and exhibited significantly less histological muscle damage than WT mice. In summary, FKBP12 deficiency results in less initial strength deficits and enhanced recovery from single (especially females) and repeated bouts of injury than WT mice. PMID:18511525

  18. ACUTE EXERCISE-INDUCED MUSCLE INJURY

    OpenAIRE

    Mckune, Andrew J; Stuart J Semple; Edith M Peters-Futre

    2012-01-01

    While much research has recently been focussing on the chronic effects of overtraining, the acute damaging effects of individual eccentric exercise bouts on muscle remain of interest and underlie long-term training effects. Systemic markers of muscle damage are limited in terms of sensitivity and reliability. A clearer insight into the extent of the damage and mechanisms involved are being obtained from ultrastructural, functional and molecular examination of the muscle. There are currently i...

  19. Including the Copenhagen Adduction Exercise in the FIFA 11+ Provides Missing Eccentric Hip Adduction Strength Effect in Male Soccer Players: A Randomized Controlled Trial.

    Science.gov (United States)

    Harøy, Joar; Thorborg, Kristian; Serner, Andreas; Bjørkheim, André; Rolstad, Linn E; Hölmich, Per; Bahr, Roald; Andersen, Thor Einar

    2017-08-01

    The FIFA 11+ was developed as a complete warm-up program to prevent injuries in soccer players. Although reduced hip adduction strength is associated with groin injuries, none of the exercises included in the FIFA 11+ seem to specifically target hip adduction strength. To investigate the effect on eccentric hip adduction strength of the FIFA 11+ warm-up program with or without the Copenhagen adduction exercise. Randomized controlled trial; Level of evidence, 1. We recruited 45 eligible players from 2 U19 elite male soccer teams. Players were randomized into 2 groups; 1 group carried out the standard FIFA 11+ program, while the other carried out the FIFA 11+ but replaced the Nordic hamstring exercise with the Copenhagen adduction exercise. Both groups performed the intervention 3 times weekly for 8 weeks. Players completed eccentric strength and sprint testing before and after the intervention. Per-protocol analyses were performed, and 12 players were excluded due to low compliance (<67% of sessions completed). The main outcome was eccentric hip adduction strength (N·m/kg). Between-group analyses revealed a significantly greater increase in eccentric hip adduction strength of 0.29 Nm/kg (8.9%; P = .01) in favor of the group performing the Copenhagen adduction exercise, whereas no within-group change was noted in the group that used the standard FIFA 11+ program (-0.02 N·m/kg [-0.7%]; P = .69). Including the Copenhagen adduction exercise in the FIFA 11+ program increases eccentric hip adduction strength, while the standard FIFA 11+ program does not. Registration: Registration: ISRCTN13731446 (International Standard Randomised Controlled Trial Number registry).

  20. Effect of creatine supplementation on muscle damage and repair following eccentrically-induced damage to the elbow flexor muscles.

    Science.gov (United States)

    McKinnon, Neal B; Graham, Mitchell T; Tiidus, Peter M

    2012-01-01

    We investigated effects of creatine (Cr) supplementation (CrS) on exercise-induced muscle damage. Untrained males and females (N = 27) ages 18-25, with no CrS history in the past 4 months, were randomly assigned to CrS (creatine and carbohydrate) (n = 9), placebo (P) (carbohydrate only) (n = 9), or control (C) (no supplements) groups (n = 9). Participants followed a 5-day Cr loading protocol of 40 g·day(-1), divided for 5 days prior to exercise, reduced to 10 g g·day(-1) for 5 days following exercise. Testing consisted of 5 maximal isometric contractions at 90 arm flexion with the preferred arm on a CYBEX NORM dynamometer, assessed prior to, immediately following, and 24, 48, 72, and 96 hours post muscle-damaging procedures. Damage was induced to the elbow flexor muscles using 6 sets of 10 eccentric contractions at 75 °/sec, 90 °/sec and 120 °/sec. Participants were asked to rate their muscle soreness on a scale of 1-10. Data was analyzed using repeated-measures ANOVA, with an alpha of 0.05. No significant differences were found between muscle force loss and rate of recovery or muscle soreness between groups over the 96 hr recovery period (p > 0.05). Across all 3 experimental groups an initial decrease in force was observed, followed by a gradual recovery. Significant differences were found between baseline and all others times (p = 0.031,0 .022, 0.012, 0.001 respectively), and between the 48 hour and 96 hour time periods (p = 0.034). A weak negative correlation between subjectively rated muscle soreness and mean peak isometric force loss (R(2) = 0.0374 at 96 hours), suggested that muscle soreness and muscle force loss may not be directly related. In conclusion, 5 days of Cr loading, followed by a Cr maintenance protocol did not reduce indices of muscle damage or speed recovery of upper body muscles following eccentrically induced muscle damage.

  1. EFFECT OF CREATINE SUPPLEMENTATION ON MUSCLE DAMAGE AND REPAIR FOLLOWING ECCENTRICALLY-INDUCED DAMAGE TO THE ELBOW FLEXOR MUSCLES

    Directory of Open Access Journals (Sweden)

    Neal B. McKinnon

    2012-12-01

    Full Text Available We investigated effects of creatine (Cr supplementation (CrS on exercise-induced muscle damage. Untrained males and females (N = 27 ages 18-25, with no CrS history in the past 4 months, were randomly assigned to CrS (creatine and carbohydrate (n = 9, placebo (P (carbohydrate only (n = 9, or control (C (no supplements groups (n = 9. Participants followed a 5-day Cr loading protocol of 40 g·day-1, divided for 5 days prior to exercise, reduced to 10 g g·day-1 for 5 days following exercise. Testing consisted of 5 maximal isometric contractions at 90 arm flexion with the preferred arm on a CYBEX NORM dynamometer, assessed prior to, immediately following, and 24, 48, 72, and 96 hours post muscle-damaging procedures. Damage was induced to the elbow flexor muscles using 6 sets of 10 eccentric contractions at 75 °/sec, 90 °/sec and 120 °/sec. Participants were asked to rate their muscle soreness on a scale of 1-10. Data was analyzed using repeated-measures ANOVA, with an alpha of 0.05. No significant differences were found between muscle force loss and rate of recovery or muscle soreness between groups over the 96 hr recovery period (p > 0.05. Across all 3 experimental groups an initial decrease in force was observed, followed by a gradual recovery. Significant differences were found between baseline and all others times (p = 0.031,0 .022, 0.012, 0.001 respectively, and between the 48 hour and 96 hour time periods (p = 0.034. A weak negative correlation between subjectively rated muscle soreness and mean peak isometric force loss (R2 = 0.0374 at 96 hours, suggested that muscle soreness and muscle force loss may not be directly related. In conclusion, 5 days of Cr loading, followed by a Cr maintenance protocol did not reduce indices of muscle damage or speed recovery of upper body muscles following eccentrically induced muscle damage

  2. Effect of eccentric exercise velocity on akt/mtor/p70(s6k) signaling in human skeletal muscle.

    Science.gov (United States)

    Roschel, Hamilton; Ugrinowistch, Carlos; Barroso, Renato; Batista, Mauro A B; Souza, Eduardo O; Aoki, Marcelo S; Siqueira-Filho, Mario A; Zanuto, Ricardo; Carvalho, Carla R O; Neves, Manoel; Mello, Marco T; Tricoli, Valmor

    2011-04-01

    It has been suggested that muscle tension plays a major role in the activation of intracellular pathways for skeletal muscle hypertrophy via an increase in mechano growth factor (MGF) and other downstream targets. Eccentric exercise (EE) imposes a greater amount of tension on the active muscle. In particular, high-speed EE seems to exert an additional effect on muscle tension and, thus, on muscle hypertrophy. However, little is known about the effect of EE velocity on hypertrophy signaling. This study investigated the effect of acute EE-velocity manipulation on the Akt/mTORCI/p70(S6K) hypertrophy pathway. Twenty subjects were assigned to either a slow (20°·s(-1); ES) or fast EE (210°·s(-1); EF) group. Biopsies were taken from vastus lateralis at baseline (B), immediately after (T1), and 2 h after (T2) the completion of 5 sets of 8 repetitions of eccentric knee extensions. Akt, mTOR, and p70(S6K) total protein were similar between groups, and did not change postintervention. Further, Akt and p70(S6K) protein phosphorylation were higher at T2 than at B for ES and EF. MGF messenger RNA was similar between groups, and only significantly higher at T2 than at B in ES. The acute manipulation of EE velocity does not seem to differently influence intracellular hypertrophy signaling through the Akt/mTORCI/p70S6K pathway.

  3. One-year follow-up of a randomised controlled trial on added splinting to eccentric exercises in chronic midportion Achilles tendinopathy

    NARCIS (Netherlands)

    S. de Jonge (Suzan); R.J. de Vos (Robert-Jan); J.T.M. van Schie (Hans); J.A.N. Verhaar (Jan); A. Weir (Adam); J.L. Tol (Johannes)

    2010-01-01

    textabstractOBJECTIVE: The study examined whether the addition of a night splint to eccentric exercises is beneficial for functional outcome in chronic mid-portion Achilles tendinopathy. DESIGN: One-year follow-up of a randomised controlled single blinded clinical trial. SETTING: Sports medicine

  4. One-year follow-up of a randomised controlled trial on added splinting to eccentric exercises in chronic midportion Achilles tendinopathy

    NARCIS (Netherlands)

    S. de Jonge (Suzan); R.J. de Vos (Robert-Jan); J.T.M. van Schie (Hans); J.A.N. Verhaar (Jan); A. Weir (Adam); J.L. Tol (Johannes)

    2010-01-01

    textabstractOBJECTIVE: The study examined whether the addition of a night splint to eccentric exercises is beneficial for functional outcome in chronic mid-portion Achilles tendinopathy. DESIGN: One-year follow-up of a randomised controlled single blinded clinical trial. SETTING: Sports medicine dep

  5. SOD mRNA and MDA expression in rectus femoris muscle of rats with different eccentric exercise programs and time points.

    Science.gov (United States)

    Zhao, Heng; Liu, Jiani; Pan, Shinong; Sun, Yingwei; Li, Qi; Li, Fei; Ma, Li; Guo, Qiyong

    2013-01-01

    Although superoxide dismutase (SOD) and malondialdehyde (MDA) affect Delayed Onset Muscle Soreness (DOMS), their effects are unclear in rectus femoris muscles (RFM) of rats with different eccentric exercise programs and time points. The purpose of this study is to investigate the effects of the various eccentric exercise programs at different time points on the SOD mRNA expression and MDA using rat as the animal model. 248 male rats were randomly divided into 4 groups: control group (CTL, n = 8), once-only exercise group (OEG, n = 80), continuous exercise group (CEG, n = 80), and intermittent exercise group (IEG, n = 80). Each exercise group was divided into 10 subgroups that exercised 0.5 h, 6 h, 12 h, 24 h, 48 h, 72 h, 96 h, 120 h, 144 h, or 168 h. Rats were sacrificed and their SOD mRNA expression, and MDA concentrations of skeletal muscle tissue were measured. The specimen in all eccentric exercise programs showed increased RFM SOD1 mRNA expression levels at 0.5 h (Peccentric exercise (CE) significantly enhanced muscle SOD2 mRNA level at 0.5 h (Peccentric exercise (OE), SOD1, SOD2, and SOD3 mRNA expression significantly increased at 96 h, whereas MDA concentrations decreased at 96 h. After CE, the correlation coefficients of SOD1, SOD2, SOD3 mRNA expression levels and MDA concentrations were -0.814, -0.763, -0.845 (all Peccentric exercise, especially CE could enhance SOD1 and SOD2 mRNA expression in acute stage and the SOD2 mRNA expression correlates to MDA concentration in vivo, which may improve the oxidative adaption ability of skeletal muscles.

  6. Eccentric contraction-induced myofiber growth in tumor-bearing mice.

    Science.gov (United States)

    Hardee, Justin P; Mangum, Joshua E; Gao, Song; Sato, Shuichi; Hetzler, Kimbell L; Puppa, Melissa J; Fix, Dennis K; Carson, James A

    2016-01-01

    Cancer cachexia is characterized by the progressive loss of skeletal muscle mass. While mouse skeletal muscle's response to an acute bout of stimulated low-frequency concentric muscle contractions is disrupted by cachexia, gaps remain in our understanding of cachexia's effects on eccentric contraction-induced muscle growth. The purpose of this study was to determine whether repeated bouts of stimulated high-frequency eccentric muscle contractions [high-frequency electrical muscle stimulation (HFES)] could stimulate myofiber growth during cancer cachexia progression, and whether this training disrupted muscle signaling associated with wasting. Male Apc(Min/+) mice initiating cachexia (N = 9) performed seven bouts of HFES-induced eccentric contractions of the left tibialis anterior muscle over 2 wk. The right tibialis anterior served as the control, and mice were killed 48 h after the last stimulation. Age-matched C57BL/6 mice (N = 9) served as wild-type controls. Apc(Min/+) mice lost body weight, muscle mass, and type IIA, IIX, and IIB myofiber cross-sectional area. HFES increased myofiber cross-sectional area of all fiber types, regardless of cachexia. Cachexia increased muscle noncontractile tissue, which was attenuated by HFES. Cachexia decreased the percentage of high succinate dehydrogenase activity myofibers, which was increased by HFES, regardless of cachexia. While cachexia activated AMP kinase, STAT3, and ERK1/2 signaling, HFES decreased AMP kinase phosphorylation, independent of the suppression of STAT3. These results demonstrate that cachectic skeletal muscle can initiate a growth response to repeated eccentric muscle contractions, despite the presence of a systemic cachectic environment.

  7. Exercise-induced rhabdomyolysis mechanisms and prevention: A literature review

    Directory of Open Access Journals (Sweden)

    Jooyoung Kim

    2016-09-01

    Full Text Available Exercise-induced rhabdomyolysis (exRML, a pathophysiological condition of skeletal muscle cell damage that may cause acute renal failure and in some cases death. Increased Ca2+ level in cells along with functional degradation of cell signaling system and cell matrix have been suggested as the major pathological mechanisms associated with exRML. The onset of exRML may be exhibited in athletes as well as in general population. Previous studies have reported that possible causes of exRML were associated with excessive eccentric contractions in high temperature, abnormal electrolytes balance, and nutritional deficiencies possible genetic defects. However, the underlying mechanisms of exRML have not been clearly established among health professionals or sports medicine personnel. Therefore, we reviewed the possible mechanisms and correlated prevention of exRML, while providing useful and practical information for the athlete and general exercising population.

  8. Chaotic micromixer utilizing electro-osmosis and induced charge electro-osmosis in eccentric annulus

    Science.gov (United States)

    Feng, Huicheng; Wong, Teck Neng; Che, Zhizhao; Marcos

    2016-06-01

    Efficient mixing is of significant importance in numerous chemical and biomedical applications but difficult to realize rapidly in microgeometries due to the lack of turbulence. We propose to enhance mixing by introducing Lagrangian chaos through electro-osmosis (EO) or induced charge electro-osmosis (ICEO) in an eccentric annulus. The analysis reveals that the created Lagrangian chaos can achieve a homogeneous mixing much more rapidly than either the pure EO or the pure ICEO. Our systematic investigations on the key parameters, ranging from the eccentricity, the alternating time period, the number of flow patterns in one time period, to the specific flow patterns utilized for the Lagrangian chaos creation, present that the Lagrangian chaos is considerably robust. The system can obtain a good mixing effect with wide ranges of eccentricity, alternating time period, and specific flow patterns utilized for the Lagrangian chaos creation as long as the number of flow patterns in one time period is two. As the electric field increases, the time consumption for homogenous mixing is reduced more remarkably for the Lagrangian chaos of the ICEO than that of the EO.

  9. Chaotic micromixer utilizing electro-osmosis and induced charge electro-osmosis in eccentric annulus

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Huicheng; Wong, Teck Neng, E-mail: mtnwong@ntu.edu.sg; Marcos [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Che, Zhizhao [State Key Laboratory of Engines, Tianjin University, Tianjin 300072 (China)

    2016-06-15

    Efficient mixing is of significant importance in numerous chemical and biomedical applications but difficult to realize rapidly in microgeometries due to the lack of turbulence. We propose to enhance mixing by introducing Lagrangian chaos through electro-osmosis (EO) or induced charge electro-osmosis (ICEO) in an eccentric annulus. The analysis reveals that the created Lagrangian chaos can achieve a homogeneous mixing much more rapidly than either the pure EO or the pure ICEO. Our systematic investigations on the key parameters, ranging from the eccentricity, the alternating time period, the number of flow patterns in one time period, to the specific flow patterns utilized for the Lagrangian chaos creation, present that the Lagrangian chaos is considerably robust. The system can obtain a good mixing effect with wide ranges of eccentricity, alternating time period, and specific flow patterns utilized for the Lagrangian chaos creation as long as the number of flow patterns in one time period is two. As the electric field increases, the time consumption for homogenous mixing is reduced more remarkably for the Lagrangian chaos of the ICEO than that of the EO.

  10. SHORT AND LONGER-TERM EFFECTS OF CREATINE SUPPLEMENTATION ON EXERCISE INDUCED MUSCLE DAMAGE

    Directory of Open Access Journals (Sweden)

    John Rosene

    2009-03-01

    Full Text Available The purpose of this investigation was to determine if creatine supplementation assisted with reducing the amount of exercise induced muscle damage and if creatine supplementation aided in recovery from exercise induced muscle damage. Two groups of subjects (group 1 = creatine; group 2 = placebo participated in an eccentric exercise protocol following 7 and 30 days of creatine or placebo supplementation (20 g.d-1 for 7 d followed by 6g.d-1 for 23 d = 30 d. Prior to the supplementation period, measurements were obtained for maximal dynamic strength, maximal isometric force, knee range of motion, muscle soreness, and serum levels of creatine kinase (CK and lactate dehydrogenase (LDH. Following 7 days of creatine supplementation, on day 8, subjects began consuming 6 g.d-1 of creatine for 23 days. Additionally on days 8 and 31, subjects performed an eccentric exercise protocol using the knee extensors to induce muscle damage. Indirect markers of muscle damage, including maximal isometric force, knee range of motion, muscle soreness, and serum levels of CK and LDH, were collected at 12, 24, and 48 hours following each exercise bout. The results indicated that acute bouts of creatine have no effect on indirect markers of muscle damage for the acute (7 days bout. However, maximal isometric force was greater for the creatine group versus placebo for the chronic (30 days bout. This suggests that the ergogenic effect of creatine following 30 days of supplementation may have a positive impact on exercise induced muscle damage

  11. Finite Element Analysis of Residual Stress and Distortion in an Eccentric Ring Induced by Quenching

    Institute of Scientific and Technical Information of China (English)

    YAOXin; ZHULi-hua; LIM.Victor

    2004-01-01

    The residual stresses and distortion induced by quenching in an eccentric ring were investigated in this study with finite element method. The ring was made of AISI 52100 steel. A fully coupled 3D temperature-displacement analysis was performed to simulate heat transfer, phase transformations, and mechanical stresses and strains during the heating and subsequent quenching processes. Commercial FEA package ABAQUS/Standard 6.4 was used for the analyses along with user subroutines developed by the authors to model the thermal and mechanical constitutive behavior. The simulation results show that transformation plasticity plays an important role on the residual stress distribution.

  12. Bronchial or Laryngeal Obstruction Induced by Exercise?

    Directory of Open Access Journals (Sweden)

    Ayoub Bey

    2017-06-01

    Full Text Available A child suspected of exercise-induced laryngeal obstruction and asthma is examined by laryngoscopy and respiratory resistance (Rrs after exercise challenge. Immediately at exercise cessation, the visualized adduction of the larynx in inspiration is reflected in a paroxystic increase in Rrs. While normal breathing has apparently resumed later on during recovery from exercise, the pattern of Rrs in inspiration is observed to reoccur following a deep breath or swallowing. The procedure may thus help diagnosing the site of exercise-induced obstruction when laryngoscopy is not available and identify re-inducers of laryngeal dysfunction.

  13. Bronchial or Laryngeal Obstruction Induced by Exercise?

    Science.gov (United States)

    Bey, Ayoub; Botti, Sophie; Coutier-Marie, Laurianne; Bonabel, Claude; Metche, Stéphanie; Demoulin-Alexikova, Silvia; Schweitzer, Cyril Etienne; Marchal, François; Coffinet, Laurent; Ioan, Iulia

    2017-01-01

    A child suspected of exercise-induced laryngeal obstruction and asthma is examined by laryngoscopy and respiratory resistance (Rrs) after exercise challenge. Immediately at exercise cessation, the visualized adduction of the larynx in inspiration is reflected in a paroxystic increase in Rrs. While normal breathing has apparently resumed later on during recovery from exercise, the pattern of Rrs in inspiration is observed to reoccur following a deep breath or swallowing. The procedure may thus help diagnosing the site of exercise-induced obstruction when laryngoscopy is not available and identify re-inducers of laryngeal dysfunction.

  14. Role of oxidative stress in impaired insulin signaling associated with exercise-induced muscle damage.

    Science.gov (United States)

    Aoi, Wataru; Naito, Yuji; Yoshikawa, Toshikazu

    2013-12-01

    Skeletal muscle is a major tissue that utilizes blood glucose. A single bout of exercise improves glucose uptake in skeletal muscle through insulin-dependent and insulin-independent signal transduction mechanisms. However, glucose utilization is decreased in muscle damage induced by acute, unaccustomed, or eccentric exercise. The decrease in glucose utilization is caused by decreased insulin-stimulated glucose uptake in damaged muscles with inhibition of the membrane translocation of glucose transporter 4 through phosphatidyl 3-kinase/Akt signaling. In addition to inflammatory cytokines, reactive oxygen species including 4-hydroxy-2-nonenal and peroxynitrate can induce degradation or inactivation of signaling proteins through posttranslational modification, thereby resulting in a disturbance in insulin signal transduction. In contrast, treatment with factors that attenuate oxidative stress in damaged muscle suppresses the impairment of insulin sensitivity. Muscle-damaging exercise may thus lead to decreased endurance capacity and muscle fatigue in exercise, and it may decrease the efficiency of exercise therapy for metabolic improvement.

  15. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Knudsen, Inge Skovgaard

    2014-01-01

    Human skeletal muscle satellite cells (SCs) are essential for muscle regeneration and remodeling processes in healthy and clinical conditions involving muscle breakdown. However, the potential influence of protein supplementation on post-exercise SC regulation in human skeletal muscle has not bee...

  16. Large eccentric strength increase using the Copenhagen Adduction exercise in football

    DEFF Research Database (Denmark)

    Ishøi, L; Sørensen, C N; Kaae, N M

    2016-01-01

    Hip adductor injuries are frequent in football, and players with low adductor strength appear to be at increased risk of injury. High adductor muscle activity has been shown in the Copenhagen Adduction exercise (CA); however, an associated strength gain has not been investigated. This study aims ...

  17. Regulatory light chain phosphorylation increases eccentric contraction-induced injury in skinned fast-twitch fibers.

    Science.gov (United States)

    Childers, Martin K; McDonald, Kerry S

    2004-02-01

    During contraction, activation of Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) results in phosphorylation of myosin's regulatory light chain (RLC), which potentiates force and increases speed of force development over a wide range of [Ca(2+)]. We tested the hypothesis that RLC phosphorylation by MLCK mediates the extent of eccentric contraction-induced injury as measured by force deficit in skinned fast-twitch skeletal muscle fibers. Results indicated that RLC phosphorylation in single skinned rat psoas fibers significantly increased Ca(2+) sensitivity of isometric force; isometric force from 50 +/- 16 to 59 +/- 18 kN/m(2) during maximal Ca(2+) activation; peak absolute power output from 38 +/- 15 to 48 +/- 14 nW during maximal Ca(2+) activation; and the magnitude of contraction-induced force deficit during maximal (pCa 4.5) activation from 26 +/- 9.8 to 35 +/- 9.6%. We conclude that RLC phosphorylation increases force deficits following eccentric contractions, perhaps by increasing the number of force-generating cross-bridges.

  18. Exercise-induced muscle pain, soreness, and cramps.

    Science.gov (United States)

    Miles, M P; Clarkson, P M

    1994-09-01

    The three types of pain related to exercise are 1) pain experienced during or immediately following exercise, 2) delayed onset muscle soreness, and 3) pain induced by muscle cramps. Each is characterized by a different time course and different etiology. Pain perceived during exercise is considered to result from a combination of factors including acids, ions, proteins, and hormones. Although it is commonly believed that lactic acid is responsible for this pain, evidence suggests that it is not the only factor. However, no single factor has ever been identified. Delayed onset muscle soreness develops 24-48 hours after strenuous exercise biased toward eccentric (muscle lengthening) muscle actions or strenuous endurance events like a marathon. Soreness is accompanied by a prolonged strength loss, a reduced range of motion, and elevated levels of creatine kinase in the blood. These are taken as indirect indicators of muscle damage, and biopsy analysis has documented damage to the contractile elements. The exact cause of the soreness response is not known but thought to involve an inflammatory reaction to the damage. Muscle cramps are sudden, intense, electrically active contractions elicited by motor neuron hyperexcitability. Although it is commonly assumed that cramps during exercise are the result of fluid electrolyte imbalance induced by sweating, two studies have not supported this. Moreover, participants in occupations that require chronic use of a muscle but do not elicit profuse sweating, such as musicians, often experience cramps. Fluid electrolyte imbalance may cause cramps if there is profuse prolonged sweating such as that found in working in a hot environment. Thus, despite the common occurrence of pain associated with exercise, the exact cause of these pains remains a mystery.

  19. Exercise-induced muscle cramp. Proposed mechanisms and management.

    Science.gov (United States)

    Bentley, S

    1996-06-01

    Muscle cramp is a common, painful, physiological disturbance of skeletal muscle. Many athletes are regularly frustrated by exercise-induced muscle cramp yet the pathogenesis remains speculative with little scientific research on the subject. This has resulted in a perpetuation of myths as to the cause and treatment of it. There is a need for scientifically based protocols for the management of athletes who suffer exercise-related muscle cramp. This article reviews the literature and neurophysiology of muscle cramp occurring during exercise. Disturbances at various levels of the central and peripheral nervous system and skeletal muscle are likely to be involved in the mechanism of cramp and may explain the diverse range of conditions in which cramp occurs. The activity of the motor neuron is subject to a multitude of influences including peripheral receptor sensory input, spinal reflexes, inhibitory interneurons in the spinal cord, synaptic and neurotransmitter modulation and descending CNS input. The muscle spindle and golgi tendon organ proprioceptors are fundamental to the control of muscle length and tone and the maintenance of posture. Disturbance in the activity of these receptors may occur through faulty posture, shortened muscle length, intense exercise and exercise to fatigue, resulting in increased motor neuron activity and motor unit recruitment. The relaxation phase of muscle contraction is prolonged in a fatigued muscle, raising the likelihood of fused summation of action potentials if motor neuron activity delivers a sustained high firing frequency. Treatment of cramp is directed at reducing muscle spindle and motor neuron activity by reflex inhibition and afferent stimulation. There are no proven strategies for the prevention of exercise-induced muscle cramp but regular muscle stretching using post-isometric relaxation techniques, correction of muscle balance and posture, adequate conditioning for the activity, mental preparation for competition and

  20. No differential effects of divergent isocaloric supplements on signaling for muscle protein turnover during recovery from muscle-damaging eccentric exercise.

    Science.gov (United States)

    Rahbek, Stine Klejs; Farup, Jean; de Paoli, Frank; Vissing, Kristian

    2015-04-01

    Unaccustomed high-intensity eccentric exercise (ECC) can provoke muscle damage including several days of muscle force loss. Post-exercise dietary supplementation may provide a strategy to accelerate rate of force regain by affecting mechanisms related to muscle protein turnover. The aim of the current study was to investigate if protein signaling mechanisms involved in muscle protein turnover would be differentially affected by supplementation with either whey protein hydrolysate and carbohydrate (WPH+CHO) versus isocaloric carbohydrate (CHO) after muscle-damaging ECC. Twenty-four young healthy participants received either WPH+CHO (n = 12) or CHO supplements (n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to, at 3 h and at 24, 48, 96 and/or 168 h post-exercise, muscle strength, muscle soreness, and Akt-mTOR and FOXO signaling proteins, were measured in an ECC exercising leg and in the contralateral non-exercise control leg (CON). After ECC, muscle force decreased by 23-27 % at 24 h post-exercise, which was followed by gradual, although not full recovery at 168 h post-exercise, with no differences between supplement groups. Phosphorylation of mTOR, p70S6K and rpS6 increased and phosphorylation of FOXO1 and FOXO3 decreased in the ECC leg, with no differences between supplement groups. Phosphorylation changes were also observed for rpS6, FOXO1 and FOXO3a in the CON leg, suggesting occurrence of remote tissue effects. In conclusion, divergent dietary supplementation types did not produce differences in signaling for muscle turnover during recovery from muscle-damaging exercise.

  1. The Use of Session RPE to Monitor the Intensity of Weight Training in Older Women: Acute Responses to Eccentric, Concentric, and Dynamic Exercises

    Directory of Open Access Journals (Sweden)

    Sandro S. Ferreira

    2014-01-01

    Full Text Available The rating of perceived exertion (RPE is ability to detect and interpret organic sensations while performing exercises. This method has been used to measure the level of effort that is felt during weight-training at a given intensity. The purpose of this investigation was to compare session RPE values with those of traditional RPE measurements for different weight-training muscle actions, performed together or separately. Fourteen women with no former weight-training experience were recruited for the investigation. All participants completed five sessions of exercise: familiarization, maximum force, concentric-only (CONC-only, eccentric-only (ECC-only, and dynamic (DYN = CONC + ECC. The traditional RPE method was measured after each series of exercises, and the session RPE was measured 30 min after the end of the training session. The statistical analyses used were the paired t-test, one-way analysis of variance, and repeated measures analysis of variance. Significant differences between traditional RPE and session RPE for DYN, CONC, and ECC exercises were not found. This investigation demonstrated that session RPE is similar to traditional RPE in terms of weight-training involving concentric, eccentric, or dynamic muscle exercises, and that it can be used to prescribe and monitor weight-training sessions in older subjects.

  2. Stretch-induced enhancement of mechanical power output in human multijoint exercise with countermovement.

    Science.gov (United States)

    Takarada, Y; Hirano, Y; Ishige, Y; Ishii, N

    1997-11-01

    The relation between the eccentric force developed during a countermovement and the mechanical power output was studied in squatting exercises under nominally isotonic load (50% of 1-repetition maximum). The subjects (n = 5) performed squatting exercises with a countermovement at varied deceleration rates before lifting the load. The ground reaction force and video images were recorded to obtain the power output of the body. Net muscle moments acting at hip, knee, and ankle joints were calculated from video recordings by using inverse dynamics. When an intense deceleration was taken at the end of downward movement, large eccentric force was developed, and the mechanical power subsequently produced during the lifting movement was consistently larger than that produced without the countermovement. Both maximal and mean power outputs during concentric actions increased initially with the eccentric force, whereas they began to decline when the eccentric force exceeded approximately 1.4 times the sum of load and body weight. Video-image analysis showed that this characteristic relation was predominantly determined by the torque around the knee joint. Electromyographic analyses showed no consistent increase in time-averaged integrated electromyograph from vastus lateralis with the power output, suggesting that the enhancement of power output is primarily caused by the prestretch-induced improvement of an intrinsic force-generating capability of the agonist muscle.

  3. Detection and characterization of exercise induced muscle damage (EIMD) via thermography and image processing

    DEFF Research Database (Denmark)

    Avdelidis, Nicolas; Kappatos, Vassilios; Georgoulas, George

    2017-01-01

    Exercise induced muscle damage (EIMD), is usually experienced in i) humans who have been physically inactive for prolonged periods of time and then begin with sudden training trials and ii) athletes who train over their normal limits. EIMD is not so easy to be detected and quantified, by means of...... and 72 hours after an acute bout of eccentric exercise (5 sets of 15 maximum repetitions), on males and females (20-30 year-old). Results indicate that the semi-automated approach provides an excellent bench-mark that can be used as a clinical reliable tool....

  4. Impaired neuromuscular function during isometric, shortening, and lengthening contractions after exercise-induced damage to elbow flexor muscles.

    Science.gov (United States)

    Turner, Tanya S; Tucker, Kylie J; Rogasch, Nigel C; Semmler, John G

    2008-08-01

    The purpose of this study was to examine the effect of exercise-induced damage of the elbow flexor muscles on steady motor performance during isometric, shortening, and lengthening contractions. Ten healthy individuals (age 22+/-4 yr) performed four tasks with the elbow flexor muscles: a maximum voluntary contraction, a one repetition maximum (1 RM), an isometric task at three joint angles (short, intermediate, and long muscle lengths), and a constant-load task during slow (approximately 7 degrees/s) shortening and lengthening contractions. Task performance was quantified as the fluctuations in wrist acceleration (steadiness), and electromyography was obtained from the biceps and triceps brachii muscles at loads of 10, 20, and 40% of 1 RM. Tasks were performed before, immediately after, and 24 h after eccentric exercise that resulted in indicators of muscle damage. Maximum voluntary contraction force and 1-RM load declined by approximately 45% immediately after exercise and remained lower at 24 h ( approximately 30% decrease). Eccentric exercise resulted in reduced steadiness and increased biceps and triceps brachii electromyography for all tasks. For the isometric task, steadiness was impaired at the short compared with the long muscle length immediately after exercise (Pshortening compared with the lengthening contractions after exercise (P=0.01), and steadiness remained impaired for shortening contractions 24 h later (P=0.01). These findings suggest that there are profound effects for the performance of these types of fine motor tasks when recovering from a bout of eccentric exercise.

  5. Effects of concentric and eccentric control exercise on gross motor function and balance ability of paretic leg in children with spastic hemiplegia.

    Science.gov (United States)

    Park, Su-Ik; Kim, Mi-Sun; Choi, Jong-Duk

    2016-07-01

    [Purpose] This study examines the effect of concentric and eccentric control training of the paretic leg on balance and gross motor function in children with spastic hemiplegia. [Subjects and Methods] Thirty children with spastic hemiplegia were randomly divided into experimental and control groups. In the experimental group, 20 min of neurodevelopmental therapy and 20 min of concentric and eccentric control exercise were applied to the paretic leg. In the control group, 40 min of neurodevelopmental therapy was applied. The Pediatric Balance Scale test and standing and gait items of the Gross Motor Function Measure were evaluated before and after intervention. [Results] In the experimental group, Gross Motor Function Measure and Pediatric Balance Scale scores statistically significantly increased after the intervention. The control group showed no statistically significant difference in either score after the intervention. [Conclusion] Concentric and eccentric control exercise therapy in children with spastic hemiplegia can be effective in improving gross motor function and balance ability, and can be used to solve functional problems in a paretic leg.

  6. Research progress of exercise-induced fatigue

    Directory of Open Access Journals (Sweden)

    Peng-yi DAI

    2016-12-01

    Full Text Available Exercise-induced fatigue is a comprehensive response to a variety of physiological and biochemical changes in the body, and can affect people's quality of life to different extents. If no timely recovery after occurrence of fatigue, accumulated gradually, it can lead to "burnout", a "overtraining syndrome", "chronic fatigue syndrome", etc., which will cause endocrine disturbance, immune suppression, even physical illness. Exercise-induced fatigue becomes an important factor endangering human health. In recent years, many experts and scholars at home and abroad are committed to the research of exercise-induced fatigue, and have put forward a variety of hypothesis to explain the cause of exercise-induced fatigue. They expect to find out the methods for preventing and eliminating exercise-induced fatigue. This article discusses mainly the pathogenesis, model building, elimination/ relief, etc. of exercise-induced fatigue to point out the research achievements of exercise-induced fatigue and its existing problems. DOI: 10.11855/j.issn.0577-7402.2016.11.14

  7. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Science.gov (United States)

    Baumert, Philipp; Lake, Mark J; Stewart, Claire E; Drust, Barry; Erskine, Robert M

    2016-09-01

    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage.

  8. Effects of the homeopathic remedy arnica on attenuating symptoms of exercise-induced muscle soreness

    Science.gov (United States)

    Plezbert, Julie A.; Burke, Jeanmarie R.

    2005-01-01

    Abstract Objective To evaluate the clinical efficacy of Arnica at a high potency (200c), on moderating delayed onset muscle soreness and accompanying symptoms of muscle dysfunction. Methods Twenty subjects completed a maximal eccentric exercise protocol with the non-dominate elbow flexors to induce delayed onset muscle soreness. Either Arnica or placebo tablets were administered in a random, double- blinded fashion immediately after exercise and at 24 hours and 72 hours after exercise. Before exercise, immediately post-exercise, and at 24, 48, 72, and 96 hours post-exercise, assessments of delayed onset muscle soreness and muscle function included: 1) muscle soreness and functional impairment; 2) maximum voluntary contraction torque; 3) muscle swelling; and 4) range of motion tests to document spontaneous muscle shortening and muscle shortening ability. Blood samples drawn before exercise and at 24, 48, and 96 hours after exercise were used to measure muscle enzymes as indirect indices of muscle damage. Results Regardless of the intervention, the extent of delayed onset muscle soreness and elevations in muscle enzymes were similar on the days following the eccentric exercise protocol. The post-exercise time profiles of decreases in maximum voluntary contraction torque and muscle shortening ability and increases in muscle swelling and spontaneous muscle shortening were similar for each treatment intervention. Conclusions The results of this study did not substantiate the clinical efficacy of Arnica at a high potency on moderating delayed onset muscle soreness and accompanying symptoms of muscle dysfunction. Despite the findings of this study, future investigations on the clinical efficacy of homeopathic interventions should consider incorporating research strategies that emphasize differential therapeutics for each patient rather than treating a specific disease or symptom complex, such as DOMS, with a single homeopathic remedy. PMID:19674657

  9. 热应激预处理对离心运动大鼠骨骼肌自由基代谢的影响%Effects of pretreatment with heat stress on free radical metabolism in skeletal muscle of rats after eccentric exercise

    Institute of Scientific and Technical Information of China (English)

    单劲松; 任秋君; 高前进

    2011-01-01

    thiobarbituricacid method. Superoxide dismutase activities were measured by xanthine oxidase method.RESULTS AND CONCLUSION: Compared with control group, malondialdehyde content was significantly increased in rat gastrocnemius muscle in eccentric exercise group (P < 0.05), and gradually increased over time after exercise. Superoxide dismutase activities were significantly decreased over time after exercise (P < 0.05). Compared with eccentric exercise group,superoxide dismutase activities were significantly increased (P < 0.05), but malondialdehyde content (P < 0.05) was significantly decreased in rat gastrocnemius muscle of heat stress+eccentric exercise group. These indicate that heat stress can enhance superoxide dismutase activities, reduce malondialdehyde content, and protect skeletal muscle from eccentric exercise induced injury.

  10. Age-related functional changes and susceptibility to eccentric contraction-induced damage in skeletal muscle cell

    Directory of Open Access Journals (Sweden)

    Seung-Jun Choi

    2016-09-01

    Full Text Available Depending upon external loading conditions, skeletal muscles can either shorten, lengthen, or remain at a fixed length as they produce force. Fixed-end or isometric contractions stabilize joints and allow muscles to act as active struts during locomotion. Active muscles dissipate energy when they are lengthened by an external force that exceeds their current force producing capacity. These unaccustomed eccentric activities often lead to muscle weakness, soreness, and inflammation. During aging, the ability to produce force under these conditions is reduced and appears to be due to not only reductions in muscle mass but also to alterations in the basic mechanisms of contraction. These alterations include impairments in the excitation–contraction process, and the action of the cross-bridges. Also, it is well known that age-related skeletal muscle atrophy is characterized by a preferential atrophy of fast fibers, and increased susceptibility to fast muscle fiber when aged muscles are exposed to eccentric contraction followed by the impaired recovery process has been reported. Taken together, the selective loss of fast muscle fiber in aged muscle could be affected by eccentric-induced muscle damage, which has significant implication to identify the etiology of the age-related functional changes. Therefore, in this review the alteration of age-related muscle function and its impact to/of eccentric induced muscle damage and recovery will be addressed in detail.

  11. Time Course Change of IGF1/Akt/mTOR/p70s6k Pathway Activation in Rat Gastrocnemius Muscle During Repeated Bouts of Eccentric Exercise.

    Science.gov (United States)

    Ochi, Eisuke; Ishii, Naokata; Nakazato, Koichi

    2010-01-01

    The purpose of this study was to examine whether insulin-like growth factor (IGF-1) and Akt/mTOR/p70S6K pathway activity is altered by chronic eccentric exercise in rat medial gastrocnemius muscle. Male Wistar rats (n = 24) were randomly assigned to 1 of the 2 groups: eccentric exercise (ECC) group or sham-operated control (CON) group. Rats in the ECC group were trained every second day for 10 days (5 sessions in total) or 20 days (10 sessions in total). After either 5 or 10 exercise sessions, muscle specimens were dissected and weighed. The mRNA expression of IGF-1 and its variant, mechano growth factor (MGF), was evaluated using real time reverse transcriptase-polymerase chain reaction (RT-PCR). Tissue concentrations of Akt (P), mTOR (P), and p70S6K (P) were measured by using western blot analysis. The medial gastrocnemius muscle mass of the ECC group did not show any significant difference after 5 exercise sessions, whereas the muscle mass increased significantly after 10 exercise sessions with a concomitant increase in the cross-sectional area of muscle fibers (p exercise sessions was significantly higher than those of the age-matched controls and the rats that received 5 exercise sessions. The expression of MGF mRNA in both ECC5S and ECC10S were significantly higher than that in each period-matched control (p exercise, when significant muscular hypertrophy is observed. Key pointsWe confirmed that the rat muscular exercise model using originally-developed equipment increased the wet mass of the medial gastrocnemius muscle and cross-sectional areas of muscle fibres in 10 sessions (20 days) but not in 5 sessions (10days).We clarified that the increases of muscle mass and CSA of muscle fibers were accompanied by IGF-1 mRNA expression, the phosphorylated Akt, mTOR, and p70S6K.These results suggest that muscular hypertrophy in our model was achieved after 10 sessions of exercise and associated with the activation of IGF-1/Akt/mTOR/p70S6K signal pathway.

  12. Exercise-induced pulmonary syndromes.

    Science.gov (United States)

    Kyle, J M

    1994-03-01

    When respiratory distress occurs in the exercise arena, the clinician must differentiate between a potential serious bout of EIA or the commoner EIB. The physician's game day medical kit should include epinephrine for initial treatment in suspected EIA. Sports medicine personnel need to maintain a high index of suspicion for EIB in athletes at risk and confirm the diagnosis with a treadmill exercise challenge test. Initial pharmacologic management should consist of a trial of albuterol inhaler use 15 minutes before exercise. Early identification and treatment of EIB may enhance sports performance as well as enjoyment.

  13. Functional and morphological effects of resistance exercise on disuse-induced skeletal muscle atrophy.

    Science.gov (United States)

    Nicastro, H; Zanchi, N E; Luz, C R da; Lancha, A H

    2011-11-01

    Abstract quality of life. Since there is no currently effective and safe treatment available for skeletal muscle atrophy, the search for new alternatives is necessary. Resistance exercise (RE) seems to be an important tool in the treatment of disuse-induced skeletal muscle atrophy by promoting positive functional (strength and power) and structural (hypertrophy and phenotypic changes) adaptive responses. Human and animal studies using different types of resistance exercise (flywheel, vascular occlusion, dynamic, isometric, and eccentric) have obtained results of great importance. However, since RE is a complex phenomenon, lack of strict control of its variables (volume, frequency, intensity, muscle action, rest intervals) limits the interpretation of the impact of the manipulation on skeletal muscle remodeling and function under disuse. The aim of this review is to critically describe the functional and morphological role of resistance exercise in disuse-induced skeletal muscle atrophy with emphasis on the principles of training.

  14. Effects of a Strength Training Session After an Exercise Inducing Muscle Damage on Recovery Kinetics.

    Science.gov (United States)

    Abaïdia, Abd-Elbasset; Delecroix, Barthélémy; Leduc, Cédric; Lamblin, Julien; McCall, Alan; Baquet, Georges; Dupont, Grégory

    2017-01-01

    Abaïdia, A-E, Delecroix, B, Leduc, C, Lamblin, J, McCall, A, Baquet, G, and Dupont, G. Effects of a strength training session after an exercise inducing muscle damage on recovery kinetics. J Strength Cond Res 31(1): 115-125, 2017-The purpose of this study was to investigate the effects of an upper-limb strength training session the day after an exercise inducing muscle damage on recovery of performance. In a randomized crossover design, subjects performed the day after the exercise, on 2 separate occasions (passive vs. active recovery conditions) a single-leg exercise (dominant in one condition and nondominant in the other condition) consisting of 5 sets of 15 eccentric contractions of the knee flexors. Active recovery consisted of performing an upper-body strength training session the day after the exercise. Creatine kinase, hamstring strength, and muscle soreness were assessed immediately and 20, 24, and 48 hours after exercise-induced muscle damage. The upper-body strength session, after muscle-damaging exercise accelerated the recovery of slow concentric force (effect size = 0.65; 90% confidence interval = -0.06 to 1.32), but did not affect the recovery kinetics for the other outcomes. The addition of an upper-body strength training session the day after muscle-damaging activity does not negatively affect the recovery kinetics. Upper-body strength training may be programmed the day after a competition.

  15. TIME COURSE CHANGE OF IGF1/AKT/MTOR/P70S6K PATHWAY ACTIVATION IN RAT GASTROCNEMIUS MUSCLE DURING REPEATED BOUTS OF ECCENTRIC EXERCISE

    Directory of Open Access Journals (Sweden)

    Eisuke Ochi

    2010-06-01

    Full Text Available The purpose of this study was to examine whether insulin-like growth factor (IGF-1 and Akt/mTOR/p70S6K pathway activity is altered by chronic eccentric exercise in rat medial gastrocnemius muscle. Male Wistar rats (n = 24 were randomly assigned to 1 of the 2 groups: eccentric exercise (ECC group or sham-operated control (CON group. Rats in the ECC group were trained every second day for 10 days (5 sessions in total or 20 days (10 sessions in total. After either 5 or 10 exercise sessions, muscle specimens were dissected and weighed. The mRNA expression of IGF-1 and its variant, mechano growth factor (MGF, was evaluated using real time reverse transcriptase-polymerase chain reaction (RT-PCR. Tissue concentrations of Akt (P, mTOR (P, and p70S6K (P were measured by using western blot analysis. The medial gastrocnemius muscle mass of the ECC group did not show any significant difference after 5 exercise sessions, whereas the muscle mass increased significantly after 10 exercise sessions with a concomitant increase in the cross-sectional area of muscle fibers (p < 0.05. The expression of IGF-1 mRNA and the tissue concentrations of Akt (P and p70S6K (P after 10 exercise sessions was significantly higher than those of the age-matched controls and the rats that received 5 exercise sessions. The expression of MGF mRNA in both ECC5S and ECC10S were significantly higher than that in each period-matched control (p < 0.01. The tissue concentration of mTOR (P after 10 sessions showed a significant increase when compared with period-matched controls (p < 0.01. These results suggest that activation of the IGF-1/Akt/mTOR/p70S6K signaling pathway becomes dominant in the later phase of chronic exercise, when significant muscular hypertrophy is observed

  16. Adaptations to exercise training and contraction-induced muscle injury in animal models of muscular dystrophy.

    Science.gov (United States)

    Carter, Gregory T; Abresch, R Ted; Fowler, William M

    2002-11-01

    This article reviews the current status of exercise training and contraction-induced muscle-injury investigations in animal models of muscular dystrophy. Most exercise-training studies have compared the adaptations of normal and dystrophic muscles with exercise. Adaptation of diseased muscle to exercise occurs at many levels, starting with the extracellular matrix, but also involves cytoskeletal architecture, muscle contractility, repair mechanisms, and gene regulation. The majority of exercise-injury investigations have attempted to determine the susceptibility of dystrophin-deficient muscles to contraction-induced injury. There is some evidence in animal models that diseased muscle can adapt and respond to mechanical stress. However, exercise-injury studies show that dystrophic muscles have an increased susceptibility to high mechanical forces. Most of the studies involving exercise training have shown that muscle adaptations in dystrophic animals were qualitatively similar to the adaptations observed in control muscle. Deleterious effects of the dystrophy usually occur only in older animals with advanced muscle fiber degeneration or after high-resistive eccentric training. The main limitations in applying these conclusions to humans are the differences in phenotypic expression between humans and genetically homologous animal models and in the significant biomechanical differences between humans and these animal models.

  17. Neuromuscular adaptations to isoload versus isokinetic eccentric resistance training.

    Science.gov (United States)

    Guilhem, Gaël; Cornu, Christophe; Maffiuletti, Nicola A; Guével, Arnaud

    2013-02-01

    The purpose of this study was to compare neuromuscular adaptations induced by work-matched isoload (IL) versus isokinetic (IK) eccentric resistance training. A total of 31 healthy subjects completed a 9-wk IL (n = 11) or IK (n = 10) training program for the knee extensors or did not train (control group; n = 10). The IL and IK programs consisted of 20 training sessions, which entailed three to five sets of eight repetitions in the respective modalities. The amount of work and the mean angular velocity were strictly matched between IL and IK conditions. Neuromuscular tests were performed before and after training and consisted of the assessment of quadriceps muscle strength, muscle architecture (vastus lateralis), EMG activity, and antagonist coactivation. IL, but not IK, eccentric resistance training enhanced eccentric strength at short muscle length (+20%), high-velocity eccentric strength (+15%), muscle thickness (+10%), and fascicle angle measured at rest (+11%; P eccentric movements (i.e., at short muscle lengths), which results in greater torque and angular velocities compared with IK actions, is the main determinant of strength and neuromuscular adaptations to eccentric training. These findings have important consequences for the optimization of IL and IK eccentric exercise for resistance training and rehabilitation purposes.

  18. Impact of family hypertension history on exercise-induced cardiac remodeling.

    Science.gov (United States)

    Baggish, Aaron L; Weiner, Rory B; Yared, Kibar; Wang, Francis; Kupperman, Eli; Hutter, Adolph M; Picard, Michael H; Wood, Malissa J

    2009-07-01

    Left ventricular (LV) hypertrophy is a well-established, but highly variable, finding among exercise-trained persons. The causes for the variability in LV remodeling in response to exercise training remain incompletely understood. The present study sought to determine whether a family history of hypertension is a determinant of the cardiac response to exercise training. The cardiac parameters in 60 collegiate rowers (30 men/30 women; age 19.8 +/- 1.1 years) with (family history positive [FH+], n = 22) and without (family history negative [FH-], n = 38) a FH of hypertension were studied with echocardiography before and after 90 days of rowing training. The LV mass increased significantly in both groups. However, the LV mass increased significantly more in FH- persons (Delta 17 +/- 5 g/m(2)) than in FH+ persons (Delta 9 +/- 6 g/m(2), p hypertrophy between the 2 groups. FH- athletes experienced eccentric LV hypertrophy (relative wall thickness index 0.39 +/- 0.4) characterized by LV dilation. In contrast, FH+ athletes developed concentric LV hypertrophy (relative wall thickness index 0.44 +/- 0.3; p eccentric LV remodeling in FH- athletes was associated with a more robust enhancement of LV diastolic function than the concentric LV remodeling that occurred in FH+ athletes. In conclusion, these findings suggest that patterns of exercise-induced LV remodeling are strongly associated with FH history status.

  19. Molecular Mechanisms in Exercise-Induced Cardioprotection

    Directory of Open Access Journals (Sweden)

    Saeid Golbidi

    2011-01-01

    Full Text Available Physical inactivity is increasingly recognized as modifiable behavioral risk factor for cardiovascular diseases. A partial list of proposed mechanisms for exercise-induced cardioprotection include induction of heat shock proteins, increase in cardiac antioxidant capacity, expression of endoplasmic reticulum stress proteins, anatomical and physiological changes in the coronary arteries, changes in nitric oxide production, adaptational changes in cardiac mitochondria, increased autophagy, and improved function of sarcolemmal and/or mitochondrial ATP-sensitive potassium channels. It is currently unclear which of these protective mechanisms are essential for exercise-induced cardioprotection. However, most investigations focus on sarcolemmal KATP channels, NO production, and mitochondrial changes although it is very likely that other mechanisms may also exist. This paper discusses current information about these aforementioned topics and does not consider potentially important adaptations within blood or the autonomic nervous system. A better understanding of the molecular basis of exercise-induced cardioprotection will help to develop better therapeutic strategies.

  20. Use of post-exercise laryngoscopy to evaluate exercise induced dyspnea.

    LENUS (Irish Health Repository)

    McNally, P

    2010-10-01

    We present the case of a child with asthma who continued to have marked exercise induced dyspnea despite appropriate treatment, and in the face of adequate control of all other asthma symptoms. Spirometry showed a marked truncation of inspiratory flow, and laryngoscopy performed immediately after exercise showed laryngomalacia with dynamic, partial inspiratory obstruction. Exercise induced laryngomalacia (EIL) is a rare cause of exercise induced dyspnea which is diagnosed by post exercise flexible laryngoscopy and may require supraglottoplasty.

  1. Exercise-induced muscle damage is not attenuated by beta-hydroxy-beta-methylbutyrate and alpha-ketoisocaproic acid supplementation.

    Science.gov (United States)

    Nunan, David; Howatson, Glyn; van Someren, Ken A

    2010-02-01

    The purpose of this study was to examine the effects of combined oral beta-hydroxy-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) supplementation on indices of exercise-induced muscle damage (EIMD) after an acute bout of eccentric-biased exercise. Fourteen male subjects were allocated to 2 groups: a placebo group (3 g.d corn flour, N = 7) or an HMB + KIC group (3 g.d HMB and 0.3 g.d KIC, N = 7). Supplementation commenced 11 days before a 40-minute bout of downhill running and continued for 3 days post-exercise. Delayed-onset muscle soreness, mid-thigh girth, knee extensor range of motion, serum creatine kinase (CK) activity, and isometric and concentric torque were assessed pre-exercise and at 24, 48, and 72 hours post-exercise. Delayed-onset muscle soreness, CK activity, and isometric and concentric torque all changed over the 72-hour period (p < 0.05); however, HMB + KIC had no significant effect on any of the indices of muscle damage. Although 14 days HMB and KIC supplementation did not attenuate indices of EIMD after an acute bout of unaccustomed eccentric-biased exercise, there was a trend for a more rapid rate of recovery in isometric and isokinetic muscle function. beta-hydroxy-beta-methylbutyrate and KIC may therefore provide limited benefit in the recovery of muscle function after EIMD in untrained subjects or after unaccustomed exercise.

  2. AMPKα in Exercise-Induced Substrate Metabolism and Exercise Training-Induced Metabolic and Mitochondrial Adaptations

    DEFF Research Database (Denmark)

    Fentz, Joachim

    in response to 4 weeks of voluntary running wheel exercise training. However, the acute exercise-induced increase in mRNA expression of several metabolic and mitochondrial marker genes is impaired in the mice lacking AMPKα1 and α2. In addition to the two studies and some currently unpublished data this thesis...

  3. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    Science.gov (United States)

    de Wit, Julien; Lewis, Nikole K.; Knutson, Heather A.; Fuller, Jim; Antoci, Victoria; Fulton, Benjamin J.; Laughlin, Gregory; Deming, Drake; Shporer, Avi; Batygin, Konstantin; Cowan, Nicolas B.; Agol, Eric; Burrows, Adam S.; Fortney, Jonathan J.; Langton, Jonathan; Showman, Adam P.

    2017-02-01

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μm observations with the Spitzer Space Telescope. The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μm photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  4. Exercise-induced muscle vasodilatation and treadmill exercise test responses in individuals without overt heart disease.

    Science.gov (United States)

    Nunes, Rafael Amorim Belo; Giampaoli, Viviana; de Freitas, Humberto Felício Gonçalves; da Costa Pereira, Alexandre; Araújo, Fernando; Correia, Gustavo Ferreira; Rondon, Maria Urbana Pinto Brandão; Negrão, Carlos Eduardo; Mansur, Alfredo José

    2014-01-01

    The beneficial effects of exercise on cardiovascular health may be related to the improvement in several physiologic pathways, including peripheral vascular function. The aim of this study was to evaluate the relationship between cardiovascular responses during the treadmill exercise test and exercise-induced muscle vasodilatation in individuals without overt heart disease. The study included 796 asymptomatic subjects (431 females and 365 males) without overt heart disease. We evaluated the heart rate (chronotropic reserve and heart rate recovery), blood pressure (maximum systolic and diastolic blood pressure as well as systolic blood pressure recovery) and exercise capacity during symptom-limited treadmill exercise testing. Exercise-induced muscle vasodilatation was studied with venous occlusion plethysmography and estimated by forearm blood flow and vascular conductance responses during a 3-min handgrip maneuver. Forearm blood flow increase during the handgrip exercise was positively associated with heart rate recovery during treadmill exercise testing (p exercise was inversely associated with exercise diastolic blood pressure during exercise treadmill testing (p = 0.038). No significant association was found between exercise capacity and exercise-induced muscle vasodilation. In a sample of individuals without overt heart disease, exercise-induced muscle vasodilatation was associated with heart rate and blood pressure responses during treadmill exercise testing, but was not associated with exercise capacity. These findings suggest that favorable hemodynamic and chronotropic responses are associated with better vasodilator capacity, but exercise capacity does not predict muscle vasodilatation.

  5. Effect of warm-up exercise on delayed-onset muscle soreness

    OpenAIRE

    Takizawa, Kazuki; Soma, Toshio; Nosaka, Kazunori; Ishikawa, Tomoji; Ishii, Kojiro

    2011-01-01

    This study investigated whether a warm-up exercise consisting of 100 submaximal concentric contractions would attenuate delayed-onset muscle soreness (DOMS) and decreases in muscle strength associated with eccentric exercise-induced muscle damage. Ten male students performed two bouts of the elbow flexor exercise consisting of 12 maximal eccentric contractions with a warm-up exercise for one arm (WU) and without warm-up for the other arm (control: CON) in a randomised, counterbalanced order s...

  6. Effects of exercise-induced muscle damage on resting metabolic rate, sub-maximal running and post-exercise oxygen consumption.

    Science.gov (United States)

    Burt, Dean Gareth; Lamb, Kevin; Nicholas, Ceri; Twist, Craig

    2014-01-01

    Exercise-induced muscle damage (EIMD), described as the acute weakness of the musculature after unaccustomed eccentric exercise, increases oxidative metabolism at rest and during endurance exercise. However, it is not known whether oxygen uptake during recovery from endurance exercise is increased when experiencing symptoms of EIMD. Therefore, the purpose of this study was to investigate the effects of EIMD on physiological and metabolic responses before, during and after sub-maximal running. After a 12 h fast, eight healthy male participants completed baseline measurements comprising resting metabolic rate (RMR), indirect markers of EIMD, 10 min of sub-maximal running and 30 min of recovery to ascertain excess post-exercise oxygen consumption (EPOC). Measurements were then repeated at 24 and 48 h after 100 Smith-machine squats. Data analysis revealed significant (PEPOC were increased in the two days after squatting exercise (PEPOC. Individuals engaging in unaccustomed resistance exercise that results in muscle damage should be mindful of the increases in resting energy expenditure and increased metabolic demand to exercise in the days that follow.

  7. Effect of various ratios of carbohydrate-protein supplementation on resistance exercise-induced muscle damage.

    Science.gov (United States)

    Samadi, A; Gaeini, A A; Kordi, M R; Rahimi, M; Rahnama, N; Bambaeichi, E

    2012-04-01

    Previous studies have indicated that exercise-induced muscle damage might be attenuated by coingestion of protein and carbohydrate supplement. The purpose of this study was to compare the effect of three various ratios of carbohydrate-protein (CHO+PRO) supplements on resistance exercise-induced muscle damage indices. Twenty-eight untrained male students voluntarily participated in this study and were randomly assigned to one of the four groups: 1) CHO+PRO 2:1 ratio, N.=7; 2) CHO+PRO 3:1 ratio, N.=8; 3) CHO+PRO 4:1 ratio, N.=7; 4) placebo group, N.=6. They performed a single bout of resistance exercise (whole body: 3 set×8-10 reps with 70-75% 1RM), with eccentric concentration. Every group consumed prepared CHO/PRO beverages (9% concentration, 10 mL/kg/bw-1 at different ratios) or the same amount of placebo beverage before and in 15 min intervals during exercise. Blood samples were taken before the exercise bout and also at 1 and 24 h post-exercise. In addition, muscle soreness scores were recorded before and 1, 24, and 48 h postexercise. Repeated measures ANOVA (between-within design) and Bonferroni post hoc test were used to analyze dependent measures (α=0.05). Serum creatine kinase (CK) and myoglobin (Mb) increased in all groups compared with pre-exercise but the significant difference among groups was observed in 24 h postexercise, in a way that both CK and Mb levels were higher in placebo group. Muscle soreness increased for all groups from pre to postexercise, but there was not any significant difference among groups at any time point. Findings of this study showed that CHO+PRO decreased serum CK and Mb at 24 h post exercise, but did not affect muscle soreness at any time points after exercise. Moreover, there were no significant differences between various ratios of CHO-PRO supplementation.

  8. Muscle Damage following Maximal Eccentric Knee Extensions in Males and Females.

    Directory of Open Access Journals (Sweden)

    K M Hicks

    Full Text Available To investigate whether there is a sex difference in exercise induced muscle damage.Vastus Lateralis and patella tendon properties were measured in males and females using ultrasonography. During maximal voluntary eccentric knee extensions (12 reps x 6 sets, Vastus Lateralis fascicle lengthening and maximal voluntary eccentric knee extensions torque were recorded every 10° of knee joint angle (20-90°. Isometric torque, Creatine Kinase and muscle soreness were measured pre, post, 48, 96 and 168 hours post damage as markers of exercise induced muscle damage.Patella tendon stiffness and Vastus Lateralis fascicle lengthening were significantly higher in males compared to females (p0.05. Creatine Kinase levels post exercise induced muscle damage were higher in males compared to females (p<0.05, and remained higher when maximal voluntary eccentric knee extension torque, relative to estimated quadriceps anatomical cross sectional area, was taken as a covariate (p<0.05.Based on isometric torque loss, there is no sex difference in exercise induced muscle damage. The higher Creatine Kinase in males could not be explained by differences in maximal voluntary eccentric knee extension torque, Vastus Lateralis fascicle lengthening and patella tendon stiffness. Further research is required to understand the significant sex differences in Creatine Kinase levels following exercise induced muscle damage.

  9. Muscle stiffness, strength loss, swelling and soreness following exercise-induced injury in humans.

    Science.gov (United States)

    Howell, J N; Chleboun, G; Conatser, R

    1993-01-01

    1. In order to study injury-related changes in muscle stiffness, injury to the elbow flexors of thirteen human subjects was induced by a regimen of eccentric exercise. 2. Passive stiffness over an intermediate range of elbow angles was measured with a device which held the relaxed arm of the subject in the horizontal plane and stepped it through the range of elbow angles from 90 deg to near full extension at 180 deg. The relation between static torque and elbow angle was quite linear over the first 50 deg and was taken as stiffness. 3. Stiffness over this range of angles more than doubled immediately after exercise and remained elevated for about 4 days, and may result from low level myofibrillar activation induced by muscle stretch. 4. Arm swelling was biphasic; arm circumference increased by about 3% immediately after exercise, fell back toward normal, then increased by as much as 9% and remained elevated for as long as 9 days. 5. Ultrasound imaging showed most of the swelling immediately following the exercise to be localized to the flexor muscle compartment; subsequent swelling involved other tissue compartments as well. 6. Muscle strength declined by almost 40% after the exercise and recovery was only slight 10 days later; the half-time of recovery appeared to be as long as 5-6 weeks. PMID:8229798

  10. Hydrogen-rich water inhibits mitochondrial oxidative stress and inflammation in the skeletal muscle after eccentric exercise%富氢水抑制离心运动后骨骼肌线粒体氧化应激和炎症反应

    Institute of Scientific and Technical Information of China (English)

    王磊; 刘子泉; 侯伊玲; 葛耀君

    2015-01-01

    背景:富氢水能否用于离心运动肌损伤的防护及其相关机制尚不清楚。目的:观察富氢水对离心运动大鼠骨骼肌线粒体氧化应激及炎症反应的影响,并探讨富氢水作用的相关信号通路。方法:将40只 SD 大鼠随机分为对照组、离心运动组、离心运动+生理盐水组和离心运动+富氢水组。后3组大鼠连续5 d进行下坡跑,跑台速度为16-18 m/min,坡度-16°,90 min/d,共5 d。离心运动+富氢水组大鼠在每次运动后即刻腹腔注射饱和富氢水(10 mL/kg);离心运动+生理盐水组大鼠注射生理盐水。结果与结论:离心运动同时给予富氢水显著上调Sirtuin-3(Sirt3)表达,提高线粒体膜电位和锰超氧化物歧化酶活性,抑制线粒体活性氧生成和线粒体DNA氧化损伤,降低炎性因子NOD样受体热蛋白结构域相关蛋白3和白细胞介素1β表达。表明富氢水除可直接清除活性氧外,还可通过上调SIRT3表达,提高线粒体能量代谢和抗氧化能力,从而抑制离心运动诱导的线粒体氧化应激和继发的炎症反应,实现骨骼肌保护效应。%BACKGROUND:It is unclear whether hydrogen-rich water can be used to protect skeletal muscle injury induced by eccentric exercise, as wel as the relative mechanism. OBJECTIVE:To observe the effect of hydrogen-rich water on the mitochondrial oxidative stress and inflammation in rat skeletal muscle after eccentric exercise, and to investigate the relative signaling pathway of hydrogen-rich water. METHODS:Forty Sprague Dawley rats were randomly divided into four groups: control group, eccentric exercise group, eccentric exercise+saline group, and eccentric exercise+hydrogen-rich water group. Rats in three eccentric exercise groups were exercised on a motor-driven rodent treadmil at a speed of 16-18 m/min and a slope of-16° for 90 minutes per day. Rats in the eccentric exercise+hydrogen-rich water group were subjected to

  11. The effects of estrogen on indices of skeletal muscle tissue damage after eccentric exercise in postmenopausal women.

    Science.gov (United States)

    Dobridge, J D; Hackney, A C

    2004-01-01

    This study examined if estrogen (E) usage (in the form of hormone replacement therapy [HRT]) has a protective effect on skeletal muscle damage in postmenopausal women. Nine postmenopausal women (age 55.2 +/- 9.9 [mean +/- SD]) performed two exercise sessions at 70% of their maximal heart rate on HRT (E-HI) and without HRT (E-LO; following a 28-45 day HRT washout). All subjects followed a condition order of E-HI then E-LO with at least 42 days between exercise sessions. Serum creatine kinase (CK), perceived delayed onset muscle soreness (DOMS), and maximal quadriceps isometric force (MIF) were taken pre-exercise, 24, 48 and 72-hr post exercise. E-HI and E-LO conditions produced a rise in CK (p exercise; but CK after E-HI was greater than in E-LO (p exercise session (p exercise session (p effect to skeletal muscle; however, design limitations (i.e., condition order) confound the present data. Interestingly, an association between peak-CK during the E-LO condition and the number of washout days (r = +0.707, p effects on skeletal muscle. These findings suggest that more work correcting for the present design limitations is warranted on this topic.

  12. Exercise-induced rhabdomyolysis mechanisms and prevention:A literature review

    Institute of Scientific and Technical Information of China (English)

    Jooyoung Kim; Joohyung Lee; Sojung Kim; Ho Young Ryu; Kwang Suk Cha; Dong Jun Sung

    2016-01-01

    Exercise-induced rhabdomyolysis (exRML), a pathophysiological condition of skeletal muscle cell damage that may cause acute renal failure and in some cases death. Increased Ca2+ level in cells along with functional degradation of cell signaling system and cell matrix have been suggested as the major pathological mechanisms associated with exRML. The onset of exRML may be exhibited in athletes as well as in general population. Previous studies have reported that possible causes of exRML were associated with excessive eccentric contractions in high temperature, abnormal electrolytes balance, and nutritional deficiencies possible genetic defects. However, the underlying mechanisms of exRML have not been clearly established among health professionals or sports medicine personnel. Therefore, we reviewed the possible mechanisms and correlated prevention of exRML, while providing useful and practical information for the athlete and general exercising population.

  13. Divergent endothelial function but similar platelet microvesicle responses following eccentric and concentric cycling at a similar aerobic power output.

    Science.gov (United States)

    Rakobowchuk, Mark; Ritter, Ophélie; Wilhelm, Eurico Nestor; Isacco, Laurie; Bouhaddi, Malika; Degano, Bruno; Tordi, Nicolas; Mourot, Laurent

    2017-04-01

    Endothelial function and microvesicle concentration changes after acute bouts of continuous eccentric exercise have not been assessed previously nor compared with concentric exercise at similar aerobic power outputs. This method of training may be useful among some clinical populations, but acute responses are not well described. As such, 12 healthy males completed 2 experimental sessions of either 45 min of eccentric or concentric cycling at a matched aerobic power output below the ventilatory threshold. Brachial artery vascular function was assessed throughout 5 min of forearm ischemia and 3 min thereafter, before and at 5 and 40 min of recovery following each exercise session [flow-mediated dilation (FMD)]. Venous blood samples were acquired before each vascular function assessment. FMD significantly decreased after eccentric cycling by 40 min of recovery (P exercise. No differences in peak hyperemic blood flow velocity occurred neither between modalities nor at any time point (P > 0.05). Platelet-derived microvesicles increased by ~20% after both exercise modalities (P 0.05). Moderate relationships with cardiac output, a surrogate for shear stress, and norepinephrine were apparent (P eccentric endurance exercise induced macrovascular endothelial dysfunction; however, endothelial activation determined by endothelial microvesicles did not occur suggesting that this modality may induce oxidative stress but no significant endothelial damage. In addition, the increase in platelet microvesicle concentrations may induce beneficial microvascular adaptations as suggested by previous research.NEW & NOTEWORTHY Continuous eccentric cycling exercise induces substantial skeletal muscle, tendon, and bone strain providing a potentially beneficial stimulus among clinical populations. This modality also induces temporary endothelial dysfunction but no apparent damage or activation of the endothelium indicated by microvesicle production, whereas proangiogenic platelet

  14. REPEATED ABDOMINAL EXERCISE INDUCES RESPIRATORY MUSCLE FATIGUE

    Directory of Open Access Journals (Sweden)

    J. Richard Coast

    2009-12-01

    Full Text Available Prolonged bouts of hyperpnea or resisted breathing are known to result in respiratory muscle fatigue, as are primarily non respiratory exercises such as maximal running and cycling. These exercises have a large ventilatory component, though, and can still be argued to be respiratory activities. Sit-up training has been used to increase respiratory muscle strength, but no studies have been done to determine whether this type of non-respiratory activity can lead to respiratory fatigue. The purpose of the study was to test the effect of sit-ups on various respiratory muscle strength and endurance parameters. Eight subjects performed pulmonary function, maximum inspiratory pressure (MIP and maximum expiratory pressure (MEP measurements, and an incremental breathing test before and after completing a one-time fatiguing exercise bout of sit-ups. Each subject acted as their own control performing the same measurements 3-5 days following the exercise bout, substituting rest for exercise. Following sit-up induced fatigue, significant decreases were measured in MIP [121.6 ± 26 to 113.8 ± 23 cmH2O (P <0.025], and incremental breathing test duration [9.6 ± 1.5 to 8.5 ± 0.7 minutes (P <0.05]. No significant decreases were observed from control pre-test to control post-test measurements. We conclude that after a one-time fatiguing sit-up exercise bout there is a reduction in respiratory muscle strength (MIP, MEP and endurance (incremental breathing test duration but not spirometric pulmonary function

  15. IGF-1 response to arm exercise with eccentric and concentric muscle contractions in resistance-trained athletes with left ventricular hypertrophy.

    Science.gov (United States)

    Żebrowska, A; Waśkiewicz, Z; Zając, A; Gąsior, Z; Galbo, H; Langfort, J

    2013-02-01

    The study aimed at evaluating changes in plasma levels of insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3), testosterone, growth hormone (GH), cortisol, and insulin in resistance-trained male athletes with (n=9) and without (n=9) left ventricular hypertrophy (LVH) in response to eccentric (ECC) and concentric (CON) arm exercise. 10 age-matched healthy non-trained subjects served as controls. M-mode and 2D Doppler echocardiography were used to estimate LV mass.Resting IGF-1 concentration was higher in LVH athletes compared to controls (52 ± 5 nM vs. 46 ± 7 nM, pexercise resulted in higher (pexercise resulted in higher serum IGFBP-3 levels in LVH athletes compared to controls (242 ± 57 and 274 ± 58, athletes, vs. 215 ± 63 and 244 ± 67, controls, nM, pexercise, GH concentrations were lower in LVH than in non-LVH athletes (4.7 ± 2.1 vs. 6.1 ± 1.8 ng  mL(-1), peccentric arm exercise. These findings suggest a role of IGF-1, possibly released from contracting muscle, in stimulating LV hypertrophy in resistance training.

  16. 一次和重复大强度离心运动前后大鼠骨骼肌超微结构变化%The Ultrastructural Changes in Skeletal Muscle of Rat after Acute and Repeated Eccentric Exercise

    Institute of Scientific and Technical Information of China (English)

    董贵俊; 吕晨曦; 葛新发; 李可峰; 潘卫东

    2013-01-01

    Objective To study the ultrastructural changes in skeletal muscle of rat after acute and repeated eccentric exercise. Methods 72 rats were randomly assigned to normal control group,acute eccentric exercise group and repeated eccentric exercise group. Rats in acute eccentric exercise group ran on a downhill treadmill(-16° slope) twice at a speed of 18m/min for 30 minutes with an interval of 5 minutes. Rats in repeated eccentric exercise group underwent the protocol as rats in acute eccentric exercise group twice with an interval of 1 week. The ultrastructural changes in skeletal muscle were observed 24 hours,48 hours,72 hours and 168 hours after the acute or repeated exercises. Results Disordered or disappeared sarcomere,fractured Z-line,and decomposed myofilament occurred 48 hours after acute exercise,and partially restored within 72 hours. Mitochondria was severely damaged 24 hours after repeated exercise,and restored within 72 hours,whereas mitochondrial number,structure and function did not completely recovered. Conclusions Compared to the acute eccentric exercise, repeated eccentric exercise causes less ultrastructural changes in skeletal muscle.%目的:探讨一次和重复离心运动后大鼠骨骼肌超微结构的改变.方法:72只Wistar大鼠分为正常对照组、一次离心运动组和重复离心运动组.一次大强度运动组采用速度18 m/min、坡度-16°的下坡跑运动,大鼠先运动30 min休息5 min,再运动30 min.重复运动在一次运动结束一周后进行(运动2次),观察一次和重复运动后即刻、24 h、48 h、72 h和168 h大鼠股四头肌超微结构变化.结果:一次运动后48 h肌节损伤情况最严重,肌节紊乱甚至消失,Z线断裂,肌丝溶解,72 h出现部分恢复.重复运动后24 h,线粒体严重破坏,48 h线粒体结构逐渐恢复,72 h肌纤维已经重建,但线粒体数量、结构和功能尚未完全恢复.结论:重复运动较一次大强度离心运动促进肌纤维再生及骨骼

  17. Exercise-Induced Bronchospasm and Allergy

    Directory of Open Access Journals (Sweden)

    Serena Caggiano

    2017-06-01

    Full Text Available Sport is an essential part of childhood, with precious and acknowledged positive health effects but the impact of exercise-induced bronchoconstriction (EIB significantly reduces participation in physical activity. It is important to recognize EIB, differentiating EIB with or without asthma if the transient narrowing of the airways after exercise is associated with asthmatic symptoms or not, in the way to select the most appropriate treatment among the many treatment options available today. Therapy is prescribed based on symptoms severity but diagnosis of EIB is established by changes in lung function provoked by exercise evaluating by direct and indirect tests. Sometimes, in younger children it is difficult to obtain the registration of difference between the preexercise forced expiratory volume in the first second (FEV1 value and the lowest FEV1 value recorded within 30 min after exercise, defined as the gold standard, but interrupter resistance, in association with spirometry, has been showed to be a valid alternative in preschool age. Atopy is the main risk factor, as demonstrated by epidemiologic data showing that among the estimated pediatric population with EIB up to 40% of them have allergic rhinitis and 30% of these patients may develop adult asthma, according with atopic march. Adopting the right treatment and prevention, selecting sports with no marked hyperventilation and excessive cooling of the airways, children with EIB can be able to take part in physical activity like all others.

  18. Muscle Damage following Maximal Eccentric Knee Extensions in Males and Females

    Science.gov (United States)

    2016-01-01

    Aim To investigate whether there is a sex difference in exercise induced muscle damage. Materials and Method Vastus Lateralis and patella tendon properties were measured in males and females using ultrasonography. During maximal voluntary eccentric knee extensions (12 reps x 6 sets), Vastus Lateralis fascicle lengthening and maximal voluntary eccentric knee extensions torque were recorded every 10° of knee joint angle (20–90°). Isometric torque, Creatine Kinase and muscle soreness were measured pre, post, 48, 96 and 168 hours post damage as markers of exercise induced muscle damage. Results Patella tendon stiffness and Vastus Lateralis fascicle lengthening were significantly higher in males compared to females (ptorque loss and muscle soreness post exercise induced muscle damage (p>0.05). Creatine Kinase levels post exercise induced muscle damage were higher in males compared to females (pknee extension torque, relative to estimated quadriceps anatomical cross sectional area, was taken as a covariate (ptorque loss, there is no sex difference in exercise induced muscle damage. The higher Creatine Kinase in males could not be explained by differences in maximal voluntary eccentric knee extension torque, Vastus Lateralis fascicle lengthening and patella tendon stiffness. Further research is required to understand the significant sex differences in Creatine Kinase levels following exercise induced muscle damage. PMID:26986066

  19. [Changes of perimysial junctional plates induced by excessive eccentric training and the effects of acupuncture intervention].

    Science.gov (United States)

    Kong, Mei; Zhang, Xiang; Ye, Mei-Ling; Zhang, Xue-Lin

    2017-02-25

    This study aimed to investigate the effects of acupuncture intervention on excessive eccentric training-induced changes of perimysial junctional plates (PJPs) domain. Thirty healthy male Wistar rats were randomly assigned to 5 groups: control group, four-week training group, four-week training + 1-week recovery group and four-week training + 1-week acupuncture group. Rats were subjected to continuous excessive eccentric training for 4 weeks (incline -16°, speed 16-20 m/min, 60-90 min/d, 5 day per week), and then were subjected to one-week spontaneous recovery or one-week recovery with acupuncture intervention (a piece of filiform needle for 4 min every day). The PJPs domain changes were observed under transmission electron microscopy, and the perimysial collagen network structural changes were examined by scanning electron microscopy with or without a digestion technique (NaOH). The following results were obtained: (1) Compared with control group, PJPs domain of four-week training group showed excessive shortening of sarcomere (P < 0.001), serious damage of sarcomere structure, and altered mitochondria morphology in intermyofibria and subsarcolemma; 54% degradation of sarcolemma, and increased number of caveolae (P < 0.01); reduced number of PJPs (P < 0.001). (2) In comparison with four-week training group, PJPs domain was slightly changed in four-week training + 1-week recovery group, i.e., partial recovery of sarcomere length and structure (accounting for 85.23% of control group), and recovery of intermyofibrial and subsarcolemmal mitochondria morphology; decreased sarcolemmal degradation (P < 0.001), and increased number of caveolae (P < 0.05); increased PJPs number (P < 0.001). (3) PJPs domain changed in four-week training + 1-week acupuncture group compared with four-week training + 1-week recovery group, which were substantial recovery of sarcomere length (accounting for 94.51% of control group), increased subsarcolemmal mitochondrial fusion (P

  20. Exercise-Induced Asthma in Asthmatic Children of Southern Iran

    OpenAIRE

    Fayezi, Abbas; Amin, Reza; Kashef, Sara; Yasin, Soheila Al; Bahadoram, Mohammad

    2014-01-01

    Background: Asthma is a common illness, especially among children. Exercise-induced asthma is an important consideration, both as a factor, limiting physical activity of patients, and also as an indicator of poor long term control. We investigated pre-Valence of exercise-induced asthma in a group of asthmatic children living in southern Iran. Methods: We conducted treadmill exercise challenge test in 40 young asthmatic patients aged 6 to 18. After 8 minutes exercise to achieve 80% of maximum ...

  1. Asthma Bronchiale and Exercise-Induced Bronchoconstriction.

    Science.gov (United States)

    Jayasinghe, Harshani; Kopsaftis, Zoe; Carson, Kristin

    2015-01-01

    Exercising regularly has a wide range of beneficial health effects; in particular, it has been well documented to help in the management of chronic illnesses including asthma. However, in some individuals, exertion can also trigger an exacerbation of asthmatic episodes and subsequent acute attacks of breathlessness, coughing, tightness of the chest and wheezing. This physiological process is called exercise-induced bronchoconstriction (EIB) whereby post-exercise forced expiratory volume in 1 s is reduced by 10-15% from baseline. While EIB is highly prevalent in asthmatics and presents with similar respiratory symptoms, asthma and EIB are not mutually exclusive. The aim of this review is to present a broad overview of both conditions in order to enhance the understanding of the similarities and differences distinguishing them as two separate entities. The pathophysiology and mechanisms underlying asthma are well described with research now focussing on defining phenotypes for targeted management strategies. Conversely, the mechanistic understanding of EIB remains largely under-described. Diagnostic pathways for both are established and similar, as are pharmacologic and non-pharmacologic treatments and management approaches, which have enhanced success with early detection. Given the potential for exacerbation of asthma, exercise avoidance is common but counterproductive as current evidence indicates that it is well tolerated and improves quality of life. Literature supporting the benefit of exercise for EIB sufferers is at present favourable, yet extremely limited; therefore, future research should be directed in this area as well as towards further developing the understanding of the pathophysiology and mechanisms underpinning both EIB and asthma.

  2. Downhill exercise training in monocrotaline-injected rats: Effects on echocardiographic and haemodynamic variables and survival.

    Science.gov (United States)

    Enache, Irina; Favret, Fabrice; Doutreleau, Stéphane; Goette Di Marco, Paola; Charles, Anne-Laure; Geny, Bernard; Charloux, Anne

    2017-02-01

    Eccentric exercise training has been shown to improve muscle force strength without excessive cardiovascular stress. Such an exercise modality deserves to be tested in pulmonary arterial hypertension. We aimed to assess the effects of an eccentric training modality on cardiac function and survival in an experimental monocrotaline-induced model of pulmonary arterial hypertension with right ventricular dysfunction. Forty rats were randomly assigned to one of four groups: 40mg/kg monocrotaline-injected sedentary rats; 40mg/kg monocrotaline-injected eccentric-trained rats; sedentary control rats; or eccentric-trained control rats. Eccentric exercise training consisted of downhill running on a treadmill with a -15° slope for 30minutes, 5 days a week for 4 weeks. Training tolerance was assessed by echocardiography, right ventricle catheterization and the rats' maximal eccentric speed. Survival in monocrotaline-injected eccentric-trained rats was not different from that in monocrotaline-injected sedentary rats. Monocrotaline-injected eccentric-trained rats tolerated this training modality well, and haemodynamic status did not deteriorate further compared with monocrotaline-injected sedentary rats. The eccentric maximal speed decline was less pronounced in trained compared with sedentary pulmonary arterial hypertension rats. Eccentric exercise training had no detrimental effects on right heart pressure, cardiac function and survival in rats with stable monocrotaline-induced pulmonary hypertension. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Downhill walking training with and without exercise-induced muscle damage similarly increase knee extensor strength.

    Science.gov (United States)

    Maeo, Sumiaki; Yamamoto, Masayoshi; Kanehisa, Hiroaki

    2016-11-01

    This study examined whether avoiding or experiencing exercise-induced muscle damage (EIMD) influences strength gain after downhill walking training. Healthy young males performed treadmill downhill walking (gradient: -28%, velocity: 5 km · h(-1) and load: 10% of body mass) 1 session per week for four weeks using either a ramp-up protocol (n = 16), where exercise duration was gradually increased from 10 to 30, 50 and 70 min over four sessions, or a constant protocol (n = 14), where exercise duration was 40 min for all four sessions. Indirect markers of EIMD were measured throughout the training period. Maximal knee extension torque in eccentric (-1.05 rad·s(-1)), isometric and concentric (1.05 rad·s(-1)) conditions were measured at pre- and post-training. The ramp-up group showed no indications of EIMD throughout the training period (e.g., plasma creatine kinase (CK) activity: always <185 U · L(-1)) while EIMD was evident after the first session in the constant group (CK: peak 485 U · L(-1)). Both groups significantly increased maximal knee extension torque in all conditions with greater gains in eccentric (ramp-up: +19%, constant: +21%) than isometric (+16%, +15%) and concentric (+12%, +10%) strength without any significant group-difference. The current results suggest that EIMD can be avoided by the ramp-up protocol and is not a major determinant of training-induced strength gain.

  4. Exercise-induced asthma and the asthmatic athlete.

    Science.gov (United States)

    Enright, T

    1996-06-01

    Almost all asthmatics involved in moderate to heavy exercise will experience exercise-induced asthma (EIA). Up to 14% of athletes exhibit EIA, symptoms of which include dyspnea, coughing, chest tightness and wheezing. Education, warm-up exercises and pre-treatment with the appropriate medications can enable an athlete to excel and even win a gold medal in the 1996 Olympic games.

  5. Exercise induces autophagy in peripheral tissues and in the brain.

    Science.gov (United States)

    He, Congcong; Sumpter, Rhea; Levine, Beth

    2012-10-01

    We recently identified physical exercise as a newly defined inducer of autophagy in vivo. Exercise induced autophagy in multiple organs involved in metabolic regulation, such as muscle, liver, pancreas and adipose tissue. To study the physiological role of exercise-induced autophagy, we generated mice with a knock-in nonphosphorylatable mutation in BCL2 (Thr69Ala, Ser70Ala and Ser84Ala) (BCL2 AAA) that are defective in exercise- and starvation-induced autophagy but not in basal autophagy. We found that BCL2 AAA mice could not run on a treadmill as long as wild-type mice, and did not undergo exercise-mediated increases in skeletal glucose muscle uptake. Unlike wild-type mice, the BCL2 AAA mice failed to reverse high-fat diet-induced glucose intolerance after 8 weeks of exercise training, possibly due to defects in signaling pathways that regulate muscle glucose uptake and metabolism during exercise. Together, these findings suggested a hitherto unknown important role of autophagy in mediating exercise-induced metabolic benefits. In the present addendum, we show that treadmill exercise also induces autophagy in the cerebral cortex of adult mice. This observation raises the intriguing question of whether autophagy may in part mediate the beneficial effects of exercise in neurodegeneration, adult neurogenesis and improved cognitive function.

  6. IMPACT OF EXERCISE INDUCED MUSCLE DAMAGE ON SPRINT AND AGILITY PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Şengül AKDENİZ

    2012-08-01

    Full Text Available Purpose: The purpose of this study was to investigate the impact of exercise induced muscle damage on sprint and agility performance.Methods: Eleven healthy male soccer players [( ±SD age: 21.63 ± 1.91 years; stature: 176.63 ± 5.31cm; body mass: 70.36 ± 3.72kg] who did not perform any high intensity physical training during last 3 months volunteered to participate in this study. Agility and sprint running times were measured, following determination of athletes muscle soreness level using visual analog scale (VAS, before (baseline and at 1st, 24th, 48th, 72nd and 96th hours after muscle damaging exercise protocol. Five sets of 20 repetitions drop jumps were performed as a muscle damage exercise protocol. Repeated measure ANOVA was used for statistical analysis.Results: Repeated measures ANOVA showed significant changes in muscle soreness [F(5-50= 196.65, p≤0.01], agility [F(5-50= 32.034, p≤0.01] and sprint running times [F(5-50= 9.28, p≤0.01] relevant with time intervals. Muscle soreness and agility test times were significantly (p≤0.05 higher than baseline values at all time intervals (1st, 24th, 48th, 72nd and 96th hours. Sprint running time was significantly (p≤0.05 increased at 1st, 24th, and 48th hours compared to baseline values.Conclusion: Consequently, results of the study revealed that exercise induced muscle damage affect agility and sprint performance negatively. The respondents should be careful in including unfamiliar exercises and exercises including intense eccentric contractions during the process of training planning for sports branches, where agility and sprint are important features.

  7. Hamstring Architectural and Functional Adaptations Following Long vs. Short Muscle Length Eccentric Training

    Science.gov (United States)

    Guex, Kenny; Degache, Francis; Morisod, Cynthia; Sailly, Matthieu; Millet, Gregoire P.

    2016-01-01

    Most common preventive eccentric-based exercises, such as Nordic hamstring do not include any hip flexion. So, the elongation stress reached is lower than during the late swing phase of sprinting. The aim of this study was to assess the evolution of hamstring architectural (fascicle length and pennation angle) and functional (concentric and eccentric optimum angles and concentric and eccentric peak torques) parameters following a 3-week eccentric resistance program performed at long (LML) vs. short muscle length (SML). Both groups performed eight sessions of 3–5 × 8 slow maximal eccentric knee extensions on an isokinetic dynamometer: the SML group at 0° and the LML group at 80° of hip flexion. Architectural parameters were measured using ultrasound imaging and functional parameters using the isokinetic dynamometer. The fascicle length increased by 4.9% (p torque did not change in the SML (p = 0.37) and the LML (p = 0.23) groups, whereas eccentric peak torque increased by 12.9% (p < 0.01, small effect size) and 17.9% (p < 0.001, small effect size) in the SML and the LML group, respectively. No group-by-time interaction was found for any parameters. A correlation was found between the training-induced change in fascicle length and the change in concentric optimum angle (r = −0.57, p < 0.01). These results suggest that performing eccentric exercises lead to several architectural and functional adaptations. However, further investigations are required to confirm the hypothesis that performing eccentric exercises at LML may lead to greater adaptations than a similar training performed at SML. PMID:27536252

  8. Susceptibility to Exercise-Induced Muscle Damage: a Cluster Analysis with a Large Sample.

    Science.gov (United States)

    Damas, F; Nosaka, K; Libardi, C A; Chen, T C; Ugrinowitsch, C

    2016-07-01

    We investigated the responses of indirect markers of exercise-induced muscle damage (EIMD) among a large number of young men (N=286) stratified in clusters based on the largest decrease in maximal voluntary contraction torque (MVC) after an unaccustomed maximal eccentric exercise bout of the elbow flexors. Changes in MVC, muscle soreness (SOR), creatine kinase (CK) activity, range of motion (ROM) and upper-arm circumference (CIR) before and for several days after exercise were compared between 3 clusters established based on MVC decrease (low, moderate, and high responders; LR, MR and HR). Participants were allocated to LR (n=61), MR (n=152) and HR (n=73) clusters, which depicted significantly different cluster centers of 82%, 61% and 42% of baseline MVC, respectively. Once stratified by MVC decrease, all muscle damage markers were significantly different between clusters following the same pattern: small changes for LR, larger changes for MR, and the largest changes for HR. Stratification of individuals based on the magnitude of MVC decrease post-exercise greatly increases the precision in estimating changes in EIMD by proxy markers such as SOR, CK activity, ROM and CIR. This indicates that the most commonly used markers are valid and MVC orchestrates their responses, consolidating the role of MVC as the best EIMD indirect marker.

  9. Panax ginseng and Salvia miltiorrhiza supplementation during eccentric resistance training in middle-aged and older adults: A double-blind randomized control trial.

    Science.gov (United States)

    Lin, Hsin-Fu; Chou, Chun-Chung; Chao, Hsiao-Han; Tanaka, Hirofumi

    2016-12-01

    Muscle damage induced by an acute bout of eccentric exercise results in transient arterial stiffening. In this study, we sought to determine the effects of progressive eccentric resistance exercise training on vascular functions, and whether herb supplementation would enhance training adaptation by ameliorating the arterial stiffening effects. By using a double-blinded randomized placebo-controlled design, older adults were randomly assigned to either the Panax ginseng and Salvia miltiorrhiza supplementation group (N=12) or the placebo group (N=11). After pre-training testing, all subjects underwent 12 weeks of unilateral eccentric-only exercise training on knee extensor. Maximal leg strength and muscle quality increased in both groups (PEccentric exercise training did not elicit any significant changes in muscle damage, oxidative and inflammatory biomarkers. There were no significant changes in blood pressure or endothelium-dependent vasodilation. None of the measures of arterial stiffness changed significantly with eccentric resistance training in both groups. These results suggest that Chinese herb supplementation does not appear to modulate vascular, and inflammatory adaptations to eccentric exercise training in middle-aged and older adults. However, Chinese herb supplementation abolished the increase in muscle mass induced by eccentric resistance training. (Trial registration: ClinicalTrials.gov: NCT02007304. Registered Dec. 5, 2013). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of Massage on Muscular Strength and Proprioception After Exercise-Induced Muscle Damage.

    Science.gov (United States)

    Shin, Mal-Soon; Sung, Yun-Hee

    2015-08-01

    Exercise-induced muscle damage (EIMD), which is commonly associated with eccentric exercise, unaccustomed exercise, and resistance training, may lead to delayed onset muscle soreness, swelling, decreased muscle strength, and range of motion. Many researchers have evaluated various interventions to treat the signs and symptoms of EIMD. However, the effects of massage after EIMD are unclear. Here, we investigated the effect of massage on muscle strength and proprioception after EIMD. All subjects randomly were divided into an EIMD-treated control group (n = 10) and a massage-treated after EIMD experimental group (n = 11). Exercise-induced muscle damage was induced by repeated exercise. Massage treatment was provided by physiotherapist for 15 minutes. It consists of light stroking, milking, friction, and skin rolling. Lactate was evaluated by Lactate Pro analyzer in pre- and postexercise. Surface electromyography (muscle activity) and sonography (muscle thickness) were used to confirm the muscular characteristics. Proprioception was investigated by dual inclinometer. As a result, massage treatment on the gastrocnemius after EIMD increased activation of the medial gastrocnemius during contraction (p ≤ 0.05). In the lateral and medial gastrocnemius, the θs, which is the angle between muscle fibers and superficial aponeurosis, showed a significant change (p ≤ 0.05). However, there are no differences in the θd, which is the angle between muscle fibers and deep aponeurosis. We also found that proprioceptive acuity in the ankle joint was significantly greater in the massage-treated experimental group compared with that in the control group (p ≤ 0.05). These findings suggest that massage of the gastrocnemius after EIMD can improve muscle strength and proprioception by influencing the superficial layer of the gastrocnemius.

  11. Exercise-induced respiratory symptoms not due to asthma.

    Science.gov (United States)

    Pandit, Chetan A; Batterby, Eugenie; Van Asperen, Peter; Cooper, Peter; Selvadurai, Hiran; Fitzgerald, Dominic A

    2014-10-01

    This manuscript describes two interesting patients who had exercise-induced symptoms that unmasked an alternative underlying diagnosis. The first is an 8-year-old boy who was treated for asthma all his life but really had exercise-induced stridor (labelled as wheeze) causing significant exercise limitation, which was due to a double aortic arch with the right arch compressing the trachea. The second case describes the diagnosis of vocal cord dysfunction in a 13-year-old anxious high achiever. He also initially had exercise-induced symptoms treated as exercise-induced wheeze but again had a stridor due to vocal cord dysfunction. Both these cases demonstrate the importance of detailed history including during exercise, which can unmask alternative diagnosis. Another important message is that if there is no response to bronchodilator treatment with absence of typical signs and symptoms of asthma, alternative diagnosis should be considered.

  12. Molecular Aspects of Exercise-induced Cardiac Remodeling.

    Science.gov (United States)

    Bernardo, Bianca C; McMullen, Julie R

    2016-11-01

    Exercise-induced cardiac remodeling is typically an adaptive response associated with cardiac myocyte hypertrophy and renewal, increased cardiac myocyte contractility, sarcomeric remodeling, cell survival, metabolic and mitochondrial adaptations, electrical remodeling, and angiogenesis. Initiating stimuli/triggers of cardiac remodeling include increased hemodynamic load, increased sympathetic activity, and the release of hormones and growth factors. Prolonged and strenuous exercise may lead to maladaptive exercise-induced cardiac remodeling including cardiac dysfunction and arrhythmia. In addition, this article describes novel therapeutic approaches for the treatment of heart failure that target mechanisms responsible for adaptive exercise-induced cardiac remodeling, which are being developed and tested in preclinical models.

  13. Functional and morphological effects of resistance exercise on disuse-induced skeletal muscle atrophy

    Directory of Open Access Journals (Sweden)

    H. Nicastro

    2011-11-01

    Full Text Available Abstract The reduction of skeletal muscle loss in pathological states, such as muscle disuse, has considerable effects in terms of rehabilitation and quality of life. Since there is no currently effective and safe treatment available for skeletal muscle atrophy, the search for new alternatives is necessary. Resistance exercise (RE seems to be an important tool in the treatment of disuse-induced skeletal muscle atrophy by promoting positive functional (strength and power and structural (hypertrophy and phenotypic changes adaptive responses. Human and animal studies using different types of resistance exercise (flywheel, vascular occlusion, dynamic, isometric, and eccentric have obtained results of great importance. However, since RE is a complex phenomenon, lack of strict control of its variables (volume, frequency, intensity, muscle action, rest intervals limits the interpretation of the impact of the manipulation on skeletal muscle remodeling and function under disuse. The aim of this review is to critically describe the functional and morphological role of resistance exercise in disuse-induced skeletal muscle atrophy with emphasis on the principles of training.

  14. Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy?

    Science.gov (United States)

    Schoenfeld, Brad J

    2012-05-01

    Exercise-induced muscle damage (EIMD) occurs primarily from the performance of unaccustomed exercise, and its severity is modulated by the type, intensity, and duration of training. Although concentric and isometric actions contribute to EIMD, the greatest damage to muscle tissue is seen with eccentric exercise, where muscles are forcibly lengthened. Damage can be specific to just a few macromolecules of tissue or result in large tears in the sarcolemma, basal lamina, and supportive connective tissue, and inducing injury to contractile elements and the cytoskeleton. Although EIMD can have detrimental short-term effects on markers of performance and pain, it has been hypothesized that the associated skeletal muscle inflammation and increased protein turnover are necessary for long-term hypertrophic adaptations. A theoretical basis for this belief has been proposed, whereby the structural changes associated with EIMD influence gene expression, resulting in a strengthening of the tissue and thus protection of the muscle against further injury. Other researchers, however, have questioned this hypothesis, noting that hypertrophy can occur in the relative absence of muscle damage. Therefore, the purpose of this article will be twofold: (a) to extensively review the literature and attempt to determine what, if any, role EIMD plays in promoting skeletal muscle hypertrophy and (b) to make applicable recommendations for resistance training program design.

  15. THE ROLE AND IMPLEMENTATION OF ECCENTRIC TRAINING IN ATHLETIC REHABILITATION: TENDINOPATHY, HAMSTRING STRAINS, AND ACL RECONSTRUCTION

    Science.gov (United States)

    Reiman, Michael

    2011-01-01

    The benefits and proposed physiological mechanisms of eccentric exercise have previously been elucidated and eccentric exercise has been used for well over seventy years. Traditionally, eccentric exercise has been used as a regular component of strength training. However, in recent years, eccentric exercise has been used in rehabilitation to manage a host of conditions. Of note, there is evidence in the literature supporting eccentric exercise for the rehabilitation of tendinopathies, muscle strains, and in anterior cruciate ligament (ACL) rehabilitation. The purpose of this Clinical Commentary is to discuss the physiologic mechanism of eccentric exercise as well as to review the literature regarding the utilization of eccentric training during rehabilitation. A secondary purpose of this commentary is to provide the reader with a framework for the implementation of eccentric training during rehabilitation of tendinopathies, muscle strains, and after ACL reconstruction. PMID:21655455

  16. Antioxidative Effect of Total Flavonoids of Hedysarum Polybotry on Skeletal Muscle of Rats after Eccentric Exercise%红芪总黄酮对离心运动大鼠骨骼肌的抗氧化作用

    Institute of Scientific and Technical Information of China (English)

    马玉德; 杨雅丽; 卢翠莲; 郭超; 彭志辉; 王楠; 黄彩云; 陈彻

    2015-01-01

    Objective:To investigate the antioxidative effect of total flavonoids of Hedysarum polybotry on skeletal muscle of rats after eccentric exercise.Methods:Wistar rats were randomly divided into a control group,an eccentric exercise group,a drug pretreatment plus eccentric exercise group.All groups were then randomized into 1h subgroup before exer-cise,1h,24h and 48 h subgroups after exercise respectively,with 6 rats in each subgroup.Rats in the drug pretreatment plus eccentric exercise group were administered by oral total flavonoids of Hedysarum polybotry ( 0 .2 mg/kg ) , once a day.Rats,gastrocnemius muscles in all groups were obtained at different time points.Lactate dehydrogenase ( LDH) , malondialdehyde ( MDA) , reactive oxygen species ( ROS) and superoxide dismutase ( SOD) in the gastrocnemius mus-cles were measured by spectroscopy, respectively.Results: After eccentric exercise, the contents of LDH, MDA and ROS were significantly increased in rats,gastrocnemius muscles (P<0.05), and gradually increased over time after ex-ercise.SOD was significantly decreased over time after exercise (P<0.05).Total flavonoids of Hedysarum polybotry could decrease the accumulation of LDH, MDA and ROS, and enhance activity of SOD in rats,gastrocnemius muscles. Conclusion:Total flavonoids of Hedysarum polybotry could prevent skeletal muscle injury caused by oxidative stress after high intensity exercise.%目的:研究红芪总黄酮对大鼠离心运动后骨骼肌抗氧化能力的影响。方法:72只Wistar大鼠随机分为安静对照组( Control group,CG)、离心运动组( Eccentric Group,EG)和离心运动+药物预处理组(Drug pretreatment group,DPR)。依据运动后时间点不同再次分为运动前1 h和运动后1,24,48 h 4个亚组,每组6只。离心运动前3天,药物预处理组大鼠每日定时给予0.2mg/kg红芪总黄酮灌胃,其余各组大鼠给予等量生理盐水灌胃。力竭运动后,取各组大鼠腓肠

  17. High Prevalence of Exercise-Induced Laryngeal Obstruction in Athletes

    DEFF Research Database (Denmark)

    Walsted Nielsen, Emil; Hull, James H; Backer, Vibeke

    2013-01-01

    INTRODUCTION: Unexplained respiratory symptoms reported by athletes are often incorrectly considered secondary to exercise-induced asthma. We hypothesised that this may be related to exercise induced laryngeal obstruction (EILO). This study evaluates the prevalence of EILO in an unselected cohort...

  18. The Changes of HSP70 in Skeletal Muscle after an Exhaustive Eccentric Exercise and the Effects of Acupuncture%一次力竭离心运动后大鼠骨骼肌HSP70的变化及针刺对其影响

    Institute of Scientific and Technical Information of China (English)

    李俊平; 马延超; 张炜

    2011-01-01

    Purpose:The purpose of this study was to observe the changes of HSP70 expression in rat gastrocnemius muscle after an exhaustive eccentric exercise,and to explore the effects of acupuncture on HSP70 expression in skeletal muscle after exercise.Method:Male SD rats were randomly divided into four groups: control group,non-acupuncture group and acupuncture group after an exhaustive eccentric exercise.The rats of non-acupuncture and acupuncture group were carried out an exhaustive eccentric exercise.After the exercise,the rats of acupuncture group were handled acupuncture on the gastrocnemius vertically from the further side(the angle of the needle was 30 degree) and through the belly of gastrocnemius where the needle stayed for 5 minutes.Then the gastrocnemius was obtained from rats of different groups.The expression of HSP70 of gastrocnemius was detected by western blot and immunofluorescence histochemical method.Results:1)The expression of HSP70 of gastrocnemius in non-acupuncture group were increased markedly immediately,12 hours and 24 hours after exhaustive eccentric exercise(P0.05).2)The expression of HSP70 of gastrocnemius in acupuncture group were increased markedly only 12 hours after exhaustive eccentric exercise(P0.05).3)The expression of HSP70 of gastrocnemius in acupuncture group was significantly lower than non-acupuncture group immediately and 24 hours after exhaustive eccentric exercise(P0.05).4)The expression of HSP70 of gastrocnemius in non-acupuncture group mainly located in cytoplasm.The expression of HSP70 of gastrocnemius in acupuncture group mainly located in nucleus immediately after exhaustive eccentric exercise,and then transferred to cytoplasm gradually.Conclusions:1)Immediately after an exhaustive eccentric exercise,HSP70 expression of rat gastrocnemius were induced markedly,and then decreased gradually.2) HSP70 expression of rat gastrocnemius induced by an exhaustive eccentric exercise might be

  19. Fluctuation induced symmetry breaking and the equality of multi-particle eccentricities for four or more particles

    CERN Document Server

    Bzdak, Adam; McLerran, Larry

    2013-01-01

    We discuss eccentricities (ellipticity and triangularity) generated in nucleus-nucleus and proton-nucleus collisions. We define multi-particle eccentricities $\\epsilon_n\\{m\\}$ which are associated with the $n'th$ angular multipole moment for $m$ particles. We show that in the limit of fluctuation dominance all of the $\\epsilon_n\\{m\\}$'s are approximately equal for $m \\ge 4$. For dynamics linearly responding to these eccentricities such as hydrodynamics or proposed in this paper weakly interacting field theory, these relations among eccentricities are translated into relations among flow moments $v_n\\{m\\}$. We argue that these eccentricities are generated by a two dimension Gaussian integral distribution whose width controls the magnitude of fluctuations and whose center gives $\\epsilon_n\\{m\\}$ for $m \\ge 4$. This center value breaks the rotational symmetry for an underlying random distribution.

  20. Intense and exhaustive exercise induce oxidative stress in skeletal muscle

    Directory of Open Access Journals (Sweden)

    T Thirumalai

    2011-03-01

    Full Text Available Objective: To assess the oxidative stress and antioxidant defense system in the skeletal muscle of male albino rats subjected to strenuous exercise programme. Methods: Wistar strain albino rats were subjected to exhaustive swimming exercise programme daily for a period of five days. The thiobarbituric acid reactive substances (TBARS, conjugated dienes, superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase were measured in the gastrocnemius muscle of the exercised animals. Results: The elevated levels of TBARS and conjugated dienes indicated the oxidative stress in the gastrocemius muscle of the exercised animals. The depleted activity levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase in the exercise animals indicated the increased oxidative stress and decreased antioxidative defense system in the muscle. Conclusions: The study suggests that prolonged strenuous exercise programme can induce oxidative stress and therefore an optimal level of exercise schedule should be advocated to obtain the maximum benefit of exercise programme.

  1. PERSONALITY DOES NOT INFLUENCE EXERCISE-INDUCED MOOD ENHANCEMENT AMONG FEMALE EXERCISERS

    Directory of Open Access Journals (Sweden)

    Andrew M. Lane

    2005-09-01

    Full Text Available The present study investigated the influence of personality on exercise-induced mood changes. It was hypothesised that (a exercise would be associated with significant mood enhancement across all personality types, (b extroversion would be associated with positive mood and neuroticism with negative mood both pre- and post-exercise, and (c personality measures would interact with exercise-induced mood changes. Participants were 90 female exercisers (M = 25.8 yr, SD = 9.0 yr who completed the Eysenck Personality Inventory (EPI once and the Brunel Mood Scale (BRUMS before and after a 60-minute exercise session. Median splits were used to group participants into four personality types: stable introverts (n = 25, stable extroverts (n = 20, neurotic introverts (n = 26, and neurotic extroverts (n = 19. Repeated measures MANOVA showed significant mood enhancement following exercise across all personality types. Neuroticism was associated with negative mood scores pre- and post-exercise but the effect of extroversion on reported mood was relatively weak. There was no significant interaction effect between exercise-induced mood enhancement and personality. In conclusion, findings lend support to the notion that exercise is associated with improved mood. However, findings show that personality did not influence this effect, although neuroticism was associated with negative mood

  2. Exercise-induced cardiac fatigue in low handicap polo horses

    Directory of Open Access Journals (Sweden)

    CAO Bello

    2014-01-01

    Full Text Available Physical exercise leads to several changes in the cardiovascular system of horses and may induce abnormalities that are not observed at rest. Little is known about the cardiac effects of intense physical exercise performed by horses in polo competitions. This study aimed at identifying if exercise-induced cardiac fatigue is observed in healthy polo ponies. We examined 25 equine athletes before and after a training match. The results demonstrated post-exercise electrocardiographic alteration such as cardiac arrhythmia, QTc prolongation, abnormal T waves and ST-segment elevation. The post-exercise echocardiogram showed interventricular septum and left ventricle free wall thickness reduction, systolic volume decreased and ejection fraction decreased. These results suggest that polo causes exercise-induced cardiac fatigue. It was not possible to establish accurately the etiology of this abnormality, nor its long-term consequences.

  3. Astragalus membranaceus Improves Exercise Performance and Ameliorates Exercise-Induced Fatigue in Trained Mice

    Directory of Open Access Journals (Sweden)

    Tzu-Shao Yeh

    2014-03-01

    Full Text Available Astragalus membranaceus (AM is a popular “Qi-tonifying” herb with a long history of use as a Traditional Chinese Medicine with multiple biological functions. However, evidence for the effects of AM on exercise performance and physical fatigue is limited. We evaluated the potential beneficial effects of AM on ergogenic and anti-fatigue functions following physiological challenge. Male ICR strain mice were randomly assigned to four groups (n = 10 per group for treatment: (1 sedentary control and vehicle treatment (vehicle control; (2 exercise training with vehicle treatment (exercise control; and (3 exercise training with AM treatment at 0.615 g/kg/day (Ex-AM1 or (4 3.075 g/kg/day (Ex-AM5. Both the vehicle and AM were orally administered for 6 weeks. Exercise performance and anti-fatigue function were evaluated by forelimb grip strength, exhaustive swimming time, and levels of serum lactate, ammonia, glucose, and creatine kinase after 15-min swimming exercise. Exercise training combined with AM supplementation increased endurance exercise capacity and increased hepatic and muscle glycogen content. AM reduced exercise-induced accumulation of the byproducts blood lactate and ammonia with acute exercise challenge. Moreover, we found no deleterious effects from AM treatment. Therefore, AM supplementation improved exercise performance and had anti-fatigue effects in mice. It may be an effective ergogenic aid in exercise training.

  4. Muscle Damage following Maximal Eccentric Knee Extensions in Males and Females.

    Science.gov (United States)

    Hicks, K M; Onambélé, G L; Winwood, K; Morse, C I

    2016-01-01

    To investigate whether there is a sex difference in exercise induced muscle damage. Vastus Lateralis and patella tendon properties were measured in males and females using ultrasonography. During maximal voluntary eccentric knee extensions (12 reps x 6 sets), Vastus Lateralis fascicle lengthening and maximal voluntary eccentric knee extensions torque were recorded every 10° of knee joint angle (20-90°). Isometric torque, Creatine Kinase and muscle soreness were measured pre, post, 48, 96 and 168 hours post damage as markers of exercise induced muscle damage. Patella tendon stiffness and Vastus Lateralis fascicle lengthening were significantly higher in males compared to females (pexercise induced muscle damage (p>0.05). Creatine Kinase levels post exercise induced muscle damage were higher in males compared to females (peccentric knee extension torque, relative to estimated quadriceps anatomical cross sectional area, was taken as a covariate (pexercise induced muscle damage. The higher Creatine Kinase in males could not be explained by differences in maximal voluntary eccentric knee extension torque, Vastus Lateralis fascicle lengthening and patella tendon stiffness. Further research is required to understand the significant sex differences in Creatine Kinase levels following exercise induced muscle damage.

  5. The Effect of Eccentric exercise to LDH and SDH on Skeletal Muscle of Developing Rats%不同持续时间离心运动对大鼠骨骼肌LDH和SDH的影响

    Institute of Scientific and Technical Information of China (English)

    陶霞; 张宇

    2013-01-01

    Objective: To explore the developmental period of eccentric exercise on skeletal muscle aerobic metabolism and glycolytic capacity. Methods: The developmental stages and adult rats were randomly divided into control group (NC group), 3W training group (T3 group), 6W training group (T6 group), 9W training group (T9 group), reference to the exercise load Bedford program. UV spectrophotometric determination of SDH activity, using semi-automatic biochemical analyzer determination of LDH activity. The results showed that eccentric exercise can cause developmental stages of rat SDH first and then decrease, LDH increased after the first reduction. Eccentric exercise on the developmental stages of rat SDH, LDH is greater than the impact of adult rats, and when the greatest difference in sports 6W.%目的:探讨离心运动对发育期大鼠骨骼肌有氧代谢和糖酵解能力的影响。方法:将发育期与成年大鼠随机分为对照组( NC组)、3W训练组(T3组)、6W训练组(T6组)、9W训练组(T9组),参照Bedford的运动负荷方案。采用紫外分光光度法测定 SDH活性,采用半自动生化分析仪测定中LDH活性。结果发现离心运动可引起发育期大鼠SDH先升高后降低,LDH先降低后升高。离心运动对发育期大鼠 SDH、LDH的影响大于成年大鼠,且在运动6W时差异最大。

  6. Exercise-induced endocannabinoid signaling is modulated by intensity.

    Science.gov (United States)

    Raichlen, David A; Foster, Adam D; Seillier, Alexandre; Giuffrida, Andrea; Gerdeman, Gregory L

    2013-04-01

    Endocannabinoids (eCB) are endogenous ligands for cannabinoid receptors that are densely expressed in brain networks responsible for reward. Recent work shows that exercise activates the eCB system in humans and other mammals, suggesting eCBs are partly responsible for the reported improvements in mood and affect following aerobic exercise in humans. However, exercise-induced psychological changes reported by runners are known to be dependent on exercise intensity, suggesting that any underlying molecular mechanism should also change with varying levels of exercise intensity. Here, we examine circulating levels of eCBs following aerobic exercise (treadmill running) in recreationally fit human runners at four different intensities. We show that eCB signaling is indeed intensity dependent, with significant changes in circulating eCBs observed following moderate intensities only (very high and very low intensity exercises do not significantly alter circulating eCB levels). Our results are consistent with intensity-dependent psychological state changes with exercise and therefore support the hypothesis that eCB activity is related to neurobiological effects of exercise. Thus, future studies examining the role of exercise-induced eCB signaling on neurobiology or physiology must take exercise intensity into account.

  7. Exercise excess pressure and exercise-induced albuminuria in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Climie, Rachel E D; Srikanth, Velandai; Keith, Laura J; Davies, Justin E; Sharman, James E

    2015-05-01

    Exercise-induced albuminuria is common in patients with type 2 diabetes mellitus (T2DM) in response to maximal exercise, but the response to light-moderate exercise is unclear. Patients with T2DM have abnormal central hemodynamics and greater propensity for exercise hypertension. This study sought to determine the relationship between light-moderate exercise central hemodynamics (including aortic reservoir and excess pressure) and exercise-induced albuminuria. Thirty-nine T2DM (62 ± 9 yr; 49% male) and 39 nondiabetic controls (53 ± 9 yr; 51% male) were examined at rest and during 20 min of light-moderate cycle exercise (30 W; 50 revolutions/min). Albuminuria was assessed by the albumin-creatinine ratio (ACR) at rest and 30 min postexercise. Hemodynamics recorded included brachial and central blood pressure (BP), aortic stiffness, augmented pressure (AP), aortic reservoir pressure, and excess pressure integral (Pexcess). There was no difference in ACR between groups before exercise (P > 0.05). Exercise induced a significant rise in ACR in T2DM but not controls (1.73 ± 1.43 vs. 0.53 ± 1.0 mg/mol, P = 0.002). All central hemodynamic variables were significantly higher during exercise in T2DM (i.e., Pexcess, systolic BP and AP; P exercise Pexcess was associated with postexercise ACR (r = 0.51, P = 0.002), and this relationship was independent of age, sex, body mass index, heart rate, aortic stiffness, antihypertensive medication, and ambulatory daytime systolic BP (β = 0.003, P = 0.003). Light-moderate exercise induced a significant rise in ACR in T2DM, and this was independently associated with Pexcess, a potential marker of vascular dysfunction. These novel findings suggest that Pexcess could be important for appropriate renal function in T2DM. Copyright © 2015 the American Physiological Society.

  8. 急性离心运动后骨骼肌超微结构、钙依赖性蛋白酶和泛素的动态变化%Dynamic Changes in Ultrastructure, Calpains and Ubiquitin in Skeletal Muscle after Acute Eccentric Exercise

    Institute of Scientific and Technical Information of China (English)

    金其贯; 刘霞; 李淑艳; 刘瑜

    2011-01-01

    Objective To investigate the dynamic changes in ultrastructure, calpains and ubiquitin in skeletal muscle after single bout of eccentric exercise. Methods Thirty male SD rats were randomly divided into control group, immediate post-exercise group, 24-hour post-exercise group and 7-day post-exercise group. Rats in exercise groups performed single bout of downhill running (16 m/ min, -16 degree) for 200 minutes. Quadriceps were drawn immediately 24 hours and 7 days after the eccentric exercise, respectively, and the changes in ultrastructure, serum LDH and CK activity, and calpain-1, calpain-2, and ubiquitin concentration quadriceps were observed. Results ① In quadriceps, mixed arrangement and curled filaments appeared immediately after eccentric exercise; mild dissolution, fracture, Z-line irregular, and partial disappearance of Z lines occurred 24 hours after eccentric exercise; there were no significant changes in control group 7 days aftereccentric exercise; the activities of serum CK and LDH changed consistently with the alteration of ultrastructures. ② As compared with the control group, the concentrations of calpain-1, calpain-2 and ubiquitin in quadriceps decreased immediately after exercise without significant statistical difference. The concentrations of calpain-1, calpain-2 and ubiquitin in quadriceps 24 hours post-exercise were significantly higher than that in control group and immediate post-exercise group. As compared with immediate post-exercise and 24-hour post-exercise, the contents of calpain-1, calpain-2 and ubiquitin in quadriceps significantly decreased 7 days post-exercise, whereas no significant statistical difference was found as compared with the control group. Conclusion ① The skeletal muscle damage induced by eccentric exercise appeared most seriously 24 hours after exercise and restored basically 7 days after exercise; ② The changes in calpain and ubiquitin contents in skeletal muscle were basically the same as the dynamic changes

  9. Eccentric-exercise induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    Paine, N.J.; Ring, C.; Aldred, S.; Bosch, J.A.; Wadley, A.J.; Veldhuijzen van Zanten, J.J.C.S.

    2013-01-01

    Mental stress has been identified as a trigger of myocardial infarction (MI), with inflammation and vascular responses to mental stress independently implicated as contributing factors. This study examined whether inflammation moderates the vascular responses to mental stress. Eighteen healthy male

  10. Eccentric-exercise induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    Paine, N.J.; Ring, C.; Aldred, S.; Bosch, J.A.; Wadley, A.J.; Veldhuijzen van Zanten, J.J.C.S.

    2013-01-01

    Mental stress has been identified as a trigger of myocardial infarction (MI), with inflammation and vascular responses to mental stress independently implicated as contributing factors. This study examined whether inflammation moderates the vascular responses to mental stress. Eighteen healthy male

  11. Cellular infiltrates in human skeletal muscle: exercise induced damage as a model for inflammatory muscle disease?

    Science.gov (United States)

    Round, J M; Jones, D A; Cambridge, G

    1987-12-01

    The type and distribution of mononuclear cell infiltrates in muscle biopsies taken from 9 subjects at differing times after exercise in which the muscle is stretched (eccentric exercise) has been characterised. The appearances are compared to those seen in muscle from patients with inflammatory muscle disease. After exercise infiltrating cells were seen in perivascular, perimysial and endomysial regions, the extent being greater in the later biopsies (9-14 days). The predominant cell type was the macrophage (46-100% of all infiltrating cells), the remainder were T lymphocytes with a predominance of the CD4 positive helper/inducer subset. Approximately one third of the T cells expressed DA2 (class 2) antigen indicating that they were activated. Very few B lymphocytes and no Leu7 positive cells were seen. There was evidence of class 1 expression on some of the damaged muscle fibres. The appearance of the experimentally damaged muscle in normal subjects was very similar to untreated polymyositis suggesting that a proportion of the infiltrating cells seen in this disease may be present as part of a natural response to damage rather than being its cause.

  12. Adaptive control of functional neuromuscular stimulation-induced knee extension exercise.

    Science.gov (United States)

    Ezenwa, B N; Glaser, R M; Couch, W; Figoni, S F; Rodgers, M M

    1991-01-01

    An automated system for exercising the paralyzed quadriceps muscles of spinal cord injured patients using functional neuromuscular stimulation (FNS) has been developed. It induces smooth concentric and eccentric contractions in both limbs to enable bilateral 70 degree knee extensions in an asynchronous pattern. External load resistance is applied at the ankle level to "overload" the muscles and bring about training effects. The system uses adaptive control methods to adjust FNS current output (threshold level and the ramp slope) to the quadriceps muscles to maintain performance as the muscles fatigue. Feedback control signals for limb movement and knee extension angle are used to continuously adjust the FNS current parameters so that the external load is moved through the preset zero to 70 degree angle range. Typically, the threshold current level and the FNS current increase as the muscles fatigue to maintain performance with repetitive contractions. Fatigue is defined as the inability to extend the knee to 50 percent of the 70 degree target angle. When this occurs, FNS is automatically terminated for the fatigued leg, while the functioning leg continues to exercise. The automated nature of this system appears to be advantageous as compared to a manually operated system for subject safety, convenience, and uniformity of exercise bouts. Simulated safety problems, such as hyperextension of the knee joint, open circuitry, muscle spasms, and low battery power, were successfully detected by the logic circuitry, and the system followed appropriate safety procedures to minimize risk.

  13. Exercise-induced metallothionein expression in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Pernille; Keller, Charlotte;

    2005-01-01

    in both type I and II muscle fibres. This is the first report demonstrating that MT-I + II are significantly induced in human skeletal muscle fibres following exercise. As MT-I + II are antioxidant factors that protect various tissues during pathological conditions, the MT-I + II increases post exercise......Exercise induces free oxygen radicals that cause oxidative stress, and metallothioneins (MTs) are increased in states of oxidative stress and possess anti-apoptotic effects. We therefore studied expression of the antioxidant factors metallothionein I and II (MT-I + II) in muscle biopsies obtained...... in response to 3 h of bicycle exercise performed by healthy men and in resting controls. Both MT-I + II proteins and MT-II mRNA expression increased significantly in both type I and II muscle fibres after exercise. Moreover, 24 h after exercise the levels of MT-II mRNA and MT-I + II proteins were still highly...

  14. Clinical application of neuromuscular electrical stimulation induced cardiovascular exercise.

    Science.gov (United States)

    Caulfield, Brian; Crowe, Louis; Coughlan, Garrett; Minogue, Conor

    2011-01-01

    We need to find novel ways of increasing exercise participation, particularly in those populations who find it difficult to participate in voluntary exercise. In recent years researchers have started to investigate the potential for using electrical stimulation to artificially stimulate a pattern of muscle activity that would induce a physiological response consistent with cardiovascular exercise. Work to date has indicated that this is best achieved by using a stimulation protocol that results in rapid rhythmical isometric contractions of the large leg muscle groups at sub tetanic frequencies. Studies completed by our group indicate that this technique can serve as a viable alternative to voluntary cardiovascular exercise. Apart from being able to induce a cardiovascular exercise effect in patient populations (e.g. heart failure, COPD, spinal cord injury, obesity), this approach may also have value in promotion of exercise activity in a microgravity environment.

  15. PGC-1alpha in exercise- and exercise training-induced metabolic adaptations

    DEFF Research Database (Denmark)

    Jørgensen, Stine Ringholm

    and interferes with the exercise-induced adaptive response in human skeletal muscle. Study II demonstrates that mouse liver glucose-6-phosphatase (G6Pase) mRNA content increased in recovery from acute exercise in both wildtype (WT) and PGC-1α knockout (KO) mice, while phosphoenolpyruvate carboxykinase (PEPCK...... content in WT, but not in PGC-1α KO mice. This shows that exercise training increases UCP1, COXIV and CD31 protein in mouse iWAT, likely as a cumulative effect of transient increases in mRNA expression after each exercise bout, and that PGC-1α is required for these adaptations. Study IV demonstrates...