WorldWideScience

Sample records for ebro river basin

  1. Pesticides in the Ebro River basin: Occurrence and risk assessment.

    Science.gov (United States)

    Ccanccapa, Alexander; Masiá, Ana; Navarro-Ortega, Alícia; Picó, Yolanda; Barceló, Damià

    2016-04-01

    In this study, 50 pesticides were analyzed in the Ebro River basin in 2010 and 2011 to assess their impact in water, sediment and biota. A special emphasis was placed on the potential effects of both, individual pesticides and their mixtures, in three trophic levels (algae, daphnia and fish) using Risk Quotients (RQs) and Toxic Units (TUs) for water and sediments. Chlorpyrifos, diazinon and carbendazim were the most frequent in water (95, 95 and 70% of the samples, respectively). Imazalil (409.73 ng/L) and diuron (150 ng/L) were at the highest concentrations. Sediment and biota were less contaminated. Chlorpyrifos, diazinon and diclofenthion were the most frequent in sediments (82, 45 and 21% of the samples, respectively). The only pesticide detected in biota was chlorpyrifos (up to 840.2 ng g(-1)). Ecotoxicological risk assessment through RQs showed that organophosphorus and azol presented high risk for algae; organophosphorus, benzimidazoles, carbamates, juvenile hormone mimic and other pesticides for daphnia, and organophosphorus, azol and juvenile hormone mimics for fish. The sum TUsite for water and sediments showed values pesticide residues present.

  2. Distribution of extreme rainfall events over Ebro River basin

    Science.gov (United States)

    Saa, Antonio; Tarquis, Ana Maria; Valencia, Jose Luis; Gascó, Jose Maria

    2010-05-01

    The purpose of this work is to provide a description of the heavy rainfall phenomenon on statistical tools from a Spanish region. We want to quantify the effect of the climate change to verify the rapidity of its evolution across the variation of the probability distributions. Our conclusions have special interest for the agrarian insurances, which may make estimates of costs more realistically. In this work, the analysis mainly focuses on: The distribution of consecutive days without rain for each gauge stations and season. We estimate density Kernel functions and Generalized Pareto Distribution (GPD) for a network of station from the Ebro River basin until a threshold value u. We can establish a relation between distributional parameters and regional characteristics. Moreover we analyze especially the tail of the probability distribution. These tails are governed by law of power means that the number of events n can be expressed as the power of another quantity x : n(x) = x? . ? can be estimated as the slope of log-log plot the number of events and the size. The most convenient way to analyze n(x) is using the empirical probability distribution. Pr(X > x) ∞ x-?. The distribution of rainfall over percentile of order 0.95 from wet days at the seasonal scale and in a yearly scale with the same treatment of tails than in the previous section. The evolution of the distribution in the second XXth century and the impact on the extreme values model. After realized the analyses it does not appreciate difference in the distribution throughout the time which suggests that this region does not appreciate increase of the extreme values both for the number of dry consecutive days and for the value of the rainfall References: Coles, Stuart (2001). An Introduction to Statistical Modeling of Extreme Values,. Springer-Verlag Krishnamoorthy K. (2006), Handbook of Statistical Distributions with Applications, Chapman & Hall/CRC. Bodini A., Cossu A. (2010). Vulnerability assessment

  3. Ca isotopes in the Ebro River Basin: mixing and lithological tracer

    Science.gov (United States)

    Guerrot, C.; Negrel, P. J.; Millot, R.; Petelet-Giraud, E.; Brenot, A.

    2012-12-01

    A large investigation of the Ebro River catchment was done in the past years regarding hydrogen, oxygen, lithium, boron, sulphur and oxygen from SO4 and strontium isotope measurements together with major and trace elements in the dissolved load of 25 river samples collected within the Ebro River Basin in Spain (Millot et al., Geophysical Research Abstracts, Vol. 14, EGU2012-2062, 2012). The Ebro River (928 km long, 85,530 km2 drainage basin) located in North-Eastern Spain rises near the Atlantic coast in the Cantabrian Mountains and flows into the western Mediterranean Sea through several large cities and agricultural, mining and industrial areas. The river is one of the largest contributors of freshwater in the Mediterranean Sea and ends in the Ebro delta, one of the most important wetlands in Europe. Bedrocks of the Ebro River Basin are mainly dominated by carbonates and evaporites from the Paleozoic and Mesozoic terrains. The Ebro river mainstream was sampled at Amposta one time per month between June 2005 and May 2006 and secondly, the Ebro River along its main course and its main tributaries were sampled during one field campaign in April 2006. The behaviour of Ca and its isotopes during water/rock interactions at the scale of a large river basin having various lithologies will be investigated in addition with Sr, S (SO4) and O (SO4) isotopes. One objective is to characterize the processes controlling the isotope signatures of a large river draining predominantly sedimentary bedrocks. The δ44Ca ratio (δ44/40 normalised to Seawater) ranged between -0.87 and -1.09‰ along the Ebro main stream, increasing towards the delta as the Ca content increase. In Amposta, the δ44Ca ratio ranged between -0.66 and -1.04‰ and tends to decrease with the increasing discharge. These variations are very similar to those given by the 87Sr/86Sr ratios and Sr contents. For the tributaries, the δ44Ca ratio ranged between -0.43 and -1.04‰ whereas the anhydrite-gypsum bedrock

  4. Recent Trends in the Ebro River Basin: Is It All "Just" Climate Change?

    Science.gov (United States)

    Lutz, Stefanie; Merz, Ralf

    2016-04-01

    Water resources are under pressure from a variety of stressors such as industry, agriculture, water abstraction or pollution. Changing climate can potentially enhance the impact of these stressors, especially under water scarcity conditions. The aim of the GLOBAQUA project ("Managing the effects of multiple stressors on aquatic ecosystems under water scarcity") is, therefore, to analyze the combined effect of multiple stressors in the context of increasing water scarcity. As part of the GLOBAQUA project, this study examines recent trends in climate, water quantity and quality parameters in the Ebro River Basin in Northern Spain to identify stressors and determine their joint impact on water resources. Mann-Kendall trend analyses of temperature, precipitation, streamflow, groundwater level, streamwater and groundwater quality data (spanning between 15 and 40 years) were performed. Moreover, anthropogenic pressures such as land use and alteration of natural flow by reservoirs were considered. Climate data indicate increasing temperatures in the Ebro River Basin especially in summer and autumn, and decreasing precipitation particularly in summer. In contrast, precipitation mostly shows upwards trends in autumn, but these are counterbalanced by greater evapotranspiration due to higher temperatures. Overall, this results in annual and seasonal streamflow decreases at the majority of gauging stations. Declining trends in streamflow are most pronounced during summer and are also observed in subbasins without reservoirs. Diminishing water resources become also apparent in generally decreasing groundwater levels in the Ebro River Basin. This decrease is most pronounced in areas where groundwater serves as main origin for irrigation water, which demonstrates how land use acts as a local rather than regional driver of change. Increasing air temperatures correlate with increasing water temperatures over the past 30 years, which indicates the effect of changing climate on water

  5. Natural and artificial radioactivity in surface waters of the Ebro river basin (Northeast Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Pujol, Ll.; Sanchez-Cabeza, J.A

    2000-11-01

    A radiological characterisation of surface waters of the Ebro river basin was carried out during November 1994. For this purpose, 75 water samples were collected from points distributed throughout the Ebro river basin. Analysis included gross alpha and gross beta activities, relevant natural radionuclides ({sup 40}K, {sup 226}Ra, {sup 234,238}U -uranium total-) and several artificial radionuclides ({sup 3}H, {sup 90}Sr and radiocaesium). Mean gross alpha and gross beta activities in surface waters of the river's main course were 0.095{+-}0.004 and 0.213{+-}0.012 Bq l{sup -1}, respectively. Mean activities of {sup 40}K, {sup 226}Ra and uranium (total) were 0.132{+-}0.009, 0.0282{+-}0.0008 and 0.053{+-}0.006 Bq l{sup -1}, respectively. Regarding artificial radionuclides, the mean {sup 90}Sr activity was 6.6{+-}0.3 mBq l{sup -1}, {sup 3}H was detected in 8% of the samples, and radiocaesium was not detected in any sample. It is estimated that almost 100% of gross alpha and 97% of gross beta activities of surface waters in the Ebro river came from natural sources. Furthermore, results showed that the geological setting, large cities, agricultural areas and dams strongly influence the occurrence of natural radionuclides. Contamination from nuclear power plants located along the river was not detected. Finally, we estimated that the annual dose equivalent due to the hypothetical ingestion of Ebro river waters was 7.59 {mu}Sv y{sup -1}, which represented only 0.3% of the average annual effective dose attributable to natural background radiation in the area.

  6. Integrated flood damage modelling in the Ebro river basin under hydrodynamic, socio-economic and environmental factors

    Science.gov (United States)

    Foudi, S.; Galarraga, I.; Osés, N.

    2012-04-01

    This paper presents a model of flood damage measurement. It studies the socio-economic and environmental potential damage of floods in the Ebro river basin. We estimate the damage to the urban, rural and environmental sectors. In these sectors, we make distinctions between residential, non residential, cultural, agricultural, public facilities and utilities, environmental and human subsectors. We focus on both the direct, indirect, tangible and intangible impacts. The residential damages refer to the damages on housing, costs of repair and cleaning as direct effects and the re-housing costs as an indirect effect. The non residential and agricultural impacts concern the losses to the economic sectors (industry, business, agricultural): production, capital losses, costs of cleaning and repairs for the direct costs and the consequences of the suspension of activities for the indirect costs. For the human sector, we refer to the physical impacts (injuries and death) in the direct tangible effects and to the posttraumatic stress as indirect intangible impact. The environmental impacts focus on a site of Community Interests (pSCIs) in the case study area. The case study is located the Ebro river basin, Spain. The Ebro river basin is the larger river basin in term of surface and water discharge. The Ebro river system is subject to Atlantic and Mediterranean climatic influences. It gathers most of its water from the north of Spain (in the Pyrenees Mountains) and is the most important river basin of Spain in term of water resources. Most of the flooding occurs during the winter period. Between 1900- 2010, the National Catalogue of Historical Floods identifies 372 events: meanly 33 events every 10 years and up to 58 during the 1990-2000. Natural floods have two origins: (i) persistent rainfalls in large sub basins raised up by high temperature giving rise to a rapid thaw in the Pyrenees, (ii) local rainfalls of short duration and high intensity that gives rise to rapid and

  7. Nitrogen and salt loads in the irrigation return flows of the Ebro River Basin (Spain)

    Science.gov (United States)

    Isidoro, Daniel; Balcells, Maria; Clavería, Ignacio; Dechmi, Farida; Quílez, Dolores; Aragüés, Ramón

    2013-04-01

    The conservation of the quality of surface waters demanded by the European Water Framework Directive requires, among others, an assessment of the irrigation-induced pollution. The contribution of the irrigation return flows (IRF) to the pollution of the receiving water bodies is given by its pollutant load, since this load determines the quality status or pollutant concentration in these water bodies. The aim of this work was to quantify the annual nitrogen and salt loads in the IRF of four irrigated catchments within the Ebro River Basin: Violada (2006-10), Alcanadre (2008-10), Valcuerna (2010), and Clamor Amarga (2010). The daily flow (Q), salt (EC) and nitrate concentration (NO3) were measured in the drainage outlets of each basin. The net irrigation-induced salt and nitrogen loads were obtained from these measurements after discounting the salt and nitrogen inputs from outside the catchments and the non-irrigated areas. The N-fertilizer applications were obtained from farmer surveys and animal farming statistical sources. Irrigation water salinity was very low in all catchments (EC corn-dominated Valcuerna in 2010 to 63 kg/ha in 2008 in Violada, when farmers barely applied fertilizers due to the irrigation modernization works in progress that year. The highest N applications derived from pig slurry applications by farmers that used their lands as disposal sites for their farm residues. The highest NO3 concentrations (mean of 113 mg/L) and annual N loads (mean of 38 kg/ha) were found in Valcuerna, the most intense corn sprinkler-irrigated catchment. The lowest NO3 concentrations (21 mg/L; 5 times lower than Valcuerna) were measured in the Alcanadre flood-irrigated catchment. In contrast, Alcanadre N loads (21 kg/ha) were only about two times lower than in Valcuerna, due to the higher IRF volumes in Alcanadre (353 mm versus 132 mm in Valcuerna). Irrigation modernization in Violada decreased N loads from 20 to 5 kg N/ha (four times lower) due to the sharp

  8. Reservoir impacts downstream in highly regulated river basins: the Ebro delta and the Guadalquivir estuary in Spain

    Science.gov (United States)

    Polo, María J.; Rovira, Albert; García-Contreras, Darío; Contreras, Eva; Millares, Agustín; Aguilar, Cristina; Losada, Miguel A.

    2016-05-01

    Regulation by reservoirs affects both the freshwater regime and the sediment delivery at the area downstream, and may have a significant impact on water quality in the final transitional water bodies. Spain is one the countries with more water storage capacity by reservoirs in the world. Dense reservoir networks can be found in most of the hydrographic basins, especially in the central and southern regions. The spatial redistribution of the seasonal and annual water storage in reservoirs for irrigation and urban supply, mainly, has resulted in significant changes of water flow and sediment load regimes, together with a fostered development of soil and water uses, with environmental impacts downstream and higher vulnerability of these areas to the sea level rise and drought occurrence. This work shows these effects in the Guadalquivir and the Ebro River basins, two of the largest regulated areas in Spain. The results show a 71 % decrease of the annual freshwater input to the Guadalquivir River estuary during 1930-2014, an increase of 420 % of the irrigated area upstream the estuary, and suspended sediment loads up to 1000 % the initial levels. In the Ebro River delta, the annual water yield has decreased over a 30 % but, on the contrary, the big reservoirs are located in the main stream, and the sediment load has decreased a 99 %, resulting in a delta coastal regression up to 10 m per year and the massive presence of macrophytes in the lower river. Adaptive actions proposed to face these impacts in a sea level rise scenario are also analyzed.

  9. Implementing Integrated Water Resources Management in the Ebro River Basin: From Theory to Facts

    Directory of Open Access Journals (Sweden)

    Jorge Bielsa

    2014-12-01

    Full Text Available In this article, we analyze how successful the implementation of Integrated Water Resource Management (IWRM in the Ebro river catchment (in Spain has been. Our main aim is to show some gaps between theory and practice. This implies analyzing the political dimensions of governance and their change and reflecting on the interface between governance and technical knowledge about water. We highlight problems, such as the lack of institutional coordination, blind spots in technical information and path dependences. Actual water management has led to plans for further irrigation even though water availability is, and is expected to continue, shrinking due to climate change and other local factors. To overcome these mismatches, we propose further synchronization, innovative ways of public participation and knowledge sharing between institutions and researchers. As a showcase, we portray a practical real example of a desirable institutional arrangement in one sub-catchment.

  10. The socioeconomic impacts of the 2004-2008 drought in the Ebro river basin (Spain): A comprehensive and critical assessment

    Science.gov (United States)

    Hernández-Mora, N.; Garrido, A.; Gil, M.

    2012-04-01

    Water scarcity and drought are particularly relevant phenomena in Spain, a country with a Mediterranean climate and intense pressure on existing water resources. Spain's drought management policies have evolved significantly over time, and today Spain is at the forefront of drought management and mitigation planning in Europe. However, drought management policies are not informed by comprehensive or accurate estimations of the socioeconomic impacts of drought, nor by the efficiency or efficacy of drought management and mitigation measures. Previous studies attempting to estimate on the impacts of drought are based on direct economic users of water, primarily irrigated agriculture and hydropower. Existing analyses do not take into consideration the impacts on other economic sectors, such as recreational uses, which have a growing importance from a socioeconomic perspective. Additionally, the intangible or non-market impacts (on social welfare and wellbeing and on the environment) are not considered or measured, although they can be significant. This paper presents the mid-point results of the PREEMPT project (Policy relevant assessment of the socioeconomic effects of droughts and floods, ECHO - grant agreement # 070401/2010/579119/SUB/C4), an effort to provide a comprehensive assessment of the socioeconomic impacts of the 2004-2008 drought in the Ebro river basin. The study gathers existing information on direct and indirect economic impacts of drought on different sectors, completing existing gaps and comparing the results of studies that use different methodologies. It also estimates the welfare losses resulting from domestic water use restrictions and environmental degradation as a result of the drought using a value transfer approach from results derived from value choice experiments developed for other Spanish and international river basins. Results indicate that there is a clear need to improve our knowledge of the direct and indirect impacts of drought and to

  11. Impact of halite dissolution subsidence on Quaternary fluvial terrace development: Case study of the Huerva River, Ebro Basin, NE Spain

    Science.gov (United States)

    Guerrero, Jesús; Gutiérrez, Francisco; Lucha, Pedro

    2008-08-01

    This paper analyses the control of evaporite dissolution subsidence on the evolution of the lower 30 km-long reach of the Huerva River up to its confluence with the Ebro River. In the study area the Huerva River flows across different interfingered lithofacies of the subhorizontally lying Ebro Basin fill: (1) shales and sandstones upstream of Cadrete; (2) evaporites dominated by gypsum between Cadrete and Cuarte; (3) gypsum with glauberite and halite units in the subsurface downstream of Cuarte. The halite shows a marked downvalley increase in thickness. Twelve terrace levels and seven pediment levels correlative to some of the terraces have been mapped in the studied area. Upstream of Cadrete, the terrace deposits, with a relatively constant thickness less than 4 m and overlying unsoluble bedrock, remain undeformed. Between Cadrete and Cuarte the deposits of some terraces show local thickening ( 60 m-thick terrace alluvium that fills a 5 km-long trough generated by synsedimentary subsidence phenomena caused primarily by the interstratal dissolution of halite. The older terraces (T1 to T4) show slight thickening (> 18 m) and locally truncate paleocollapse structures ascribed to the interstratal karstification of halite beds. The intermediate terraces (T5 to T7) correspond to degradation surfaces that grade downstream of Cuarte into aggradation flights underlain by the abruptly thickened deposits that fill this 5 km-long dissolution trough. Subsidence migrated episodically downstream during the generation of these terraces and the subsidence/aggradation rate was probably large enough to induce a base-level drop and knickpoint migration upstream generating strath terraces with convergent longitudinal profiles. The sedimentological changes that show the thickened terrace deposits in the subsidence area (high proportion of overbank fines (> 60%) including palustrine facies, gravel channels with lower width/depth ratio, multiple fining-upward cycles, decrease in the

  12. Spatial Modeling of Rainfall Patterns over the Ebro River Basin Using Multifractality and Non-Parametric Statistical Techniques

    Directory of Open Access Journals (Sweden)

    José L. Valencia

    2015-11-01

    Full Text Available Rainfall, one of the most important climate variables, is commonly studied due to its great heterogeneity, which occasionally causes negative economic, social, and environmental consequences. Modeling the spatial distributions of rainfall patterns over watersheds has become a major challenge for water resources management. Multifractal analysis can be used to reproduce the scale invariance and intermittency of rainfall processes. To identify which factors are the most influential on the variability of multifractal parameters and, consequently, on the spatial distribution of rainfall patterns for different time scales in this study, universal multifractal (UM analysis—C1, α, and γs UM parameters—was combined with non-parametric statistical techniques that allow spatial-temporal comparisons of distributions by gradients. The proposed combined approach was applied to a daily rainfall dataset of 132 time-series from 1931 to 2009, homogeneously spatially-distributed across a 25 km × 25 km grid covering the Ebro River Basin. A homogeneous increase in C1 over the watershed and a decrease in α mainly in the western regions, were detected, suggesting an increase in the frequency of dry periods at different scales and an increase in the occurrence of rainfall process variability over the last decades.

  13. Salinity trends in the Ebro River (Spain)

    Science.gov (United States)

    Lorenzo-Gonzalez, M.° Angeles; Isidoro, Daniel; Quilez, Dolores

    2016-04-01

    In the Ebro River Basin (Spain), the increase in water diversion for irrigation (following the increase in irrigated area) and the recovery of natural vegetation in the upper reaches, along with climate change have induced changes in the river flow and its associated salt loads. This study was supported by the Ebro River Basin Administration (CHE) and aimed to establish the trends in the salt concentrations and loads of the Ebro River at Tortosa (no 027, the extreme downstream gauging station). The CHE databases from 1972-73 to 2011-12, including mean monthly flows (Q) and concentration readings (electrical conductivity converted to total dissolved solids -TDS- by regression) from monthly grab samples, have been used. The trends were established by (i) harmonic regression analysis; (ii) linear regression by month; and (iii) the non-parametric Mann-Kendall method. Additionally, (iv) the regressions of TDS on Q in the current and previous months were established, allowing for analyzing separately the trends in TDS linked to- (TDSq) and independent of- (TDSaj) the observed changes in flow. In all cases, the trends were analyzed for different periods within the full span 1973-2012 (1973 to 2012, 1981 to 2012, 1990-2012 and 2001-2012), trying to account for periods with sensibly similar patterns of land use change. An increase in TDS was found for all the periods analyzed that was lower as shorter periods were used, suggesting that lower salinity changes might be taking place in the last years, possibly due to the reduction in the rate of irrigation development and to the on-going irrigation modernization process. The higher seasonal TDS increases were found in autumn and winter months and the increase in TDS was linked both to intrinsic changes in salinity (TDSaj) and to the observed decrease in flow (TDSq). On the other hand, the salt loads decreased, especially in autumn, as a result of the observed flow decrease. These results are based on the observed evolution of

  14. Global change impacts on river ecosystems: A high-resolution watershed study of Ebro river metabolism.

    Science.gov (United States)

    Val, Jonatan; Chinarro, David; Pino, María Rosa; Navarro, Enrique

    2016-11-01

    Global change is transforming freshwater ecosystems, mainly through changes in basin flow dynamics. This study assessed how the combination of climate change and human management of river flow impacts metabolism of the Ebro River (the largest river basin in Spain, 86,100km(2)), assessed as gross primary production-GPP-and ecosystem respiration-ER. In order to investigate the influence of global change on freshwater ecosystems, an analysis of trends and frequencies from 25 sampling sites of the Ebro river basin was conducted. For this purpose, we examined the effect of anthropogenic flow control on river metabolism with a Granger causality study; simultaneously, took into account the effects of climate change, a period of extraordinary drought (largest in past 140years). We identified periods of sudden flow changes resulting from both human management and global climate effects. From 1998 to 2012, the Ebro River basin was trending toward a more autotrophic condition indicated by P/R ratio. Particularly, the results show that floods that occurred after long periods of low flows had a dramatic impact on the respiration (i.e., mineralization) capacity of the river. This approach allowed for a detailed characterization of the relationships between river metabolism and drought impacts at the watershed level. These findings may allow for a better understanding of the ecological impacts provoked by flow management, thus contributing to maintain the health of freshwater communities and ecosystem services that rely on their integrity.

  15. Organochlorine compounds in European catfish (Silurus glanis) living in river areas under the influence of a chlor-alkali plant (Ebro River basin).

    Science.gov (United States)

    Huertas, David; Grimalt, Joan O; Benito, Josep; Benejam, Lluís; García-Berthou, Emili

    2016-01-01

    European catfish, Silurus glanis, were used as sentinel organisms of the influence of recent and past discharges of organochlorine compounds (OCs) from a chlor-alkali plant located in the Ebro River. The fish concentrations of hexachlorobenzene (HCB), polychlorobiphenyls (PCBs) and DDTs were very high along the last 100 km of the river, including the irrigation channels, e.g. 1.2-27 ng/g wet weight of HCB, 6.3-100 ng/g ww of PCBs and 1-270 ng/g ww of total DDT compounds. These concentrations were much higher than those found upstream from the chlor-alkali discharge site, 0.2 ng/g ww for HCB, 5.6 ng/g ww for PCBs and 7.5 ng/g for DDT compounds. These concentrations were also standing out among those previously described in this fish species. The European catfish collected in sites under lower water flows, Ribarroja reservoir and irrigation channels, showed higher muscle lipid content, 1.09-7.2%, than those from sites of higher current intensities, river bed, 0.27%-0.67%. In these lower water current areas catfish exhibited OC ww concentrations that were correlated to % lipids. These differences suggest that normalization to lipid content is necessary for comparison of the OC accumulation in specimens from riverine systems living under different flow intensities. Accordingly, OC concentrations referred to lipid content showed more uniform downriver distribution which was consistent with a single focal point as main source of these compounds for the European catfish collected in the last 100 km of river stretch. This geographic distribution was also consistent with the uniform composition of PCB congeners in the studied European catfish. The distribution of DDT compounds was predominated by 4,4'-DDE which is common in most currently examined fish from aquatic environments. However, it included a high proportion of 4,4'-DDD and 2,4'-DDD which was consistent with the high contribution of benthic organisms from anoxic environments in the diet of these fish.

  16. Sediment transport during flushing flows in the lower River Ebro

    Science.gov (United States)

    Batalla, R. J.; Vericat, D.; Palau, A.

    2009-04-01

    This study describes the sediment transport which occurred during several flushing flows between 2002 and 2008 in the impounded lower River Ebro (Northeast Spain). The experimental releases were designed and undertaken to control the excess of aquatic vegetation and enhance sediment-related processes in the river channel downstream the lowermost dams in the basin. Macrophytes cause problems to water users, especially to the hydroelectric and the nuclear power plants located in the vicinity of the river. Sediment transport results from flushing flows are compared with those observed during natural floods. Observations show distinct patterns of sediment transport owing to the particular channel conditions (i.e. exhaustion of fine sediment and removal of the surface layer). Flushing flows depict notably higher suspended sediment concentrations in relation to natural floods. Bed load rates during flushing flows are typically low and, because the flood duration is short, no incision is observed in the river bed. In spite of that, large quantities of macrophytes were removed. The combination of hydraulic and sedimentary parameters during the designed floods maximizes the ecological and management benefits of the experimental releases without significant adverse geomorphological impacts on the river channel.

  17. Alterations of River Flow Caused By Dams. The Ebro River (ne Spain)

    Science.gov (United States)

    Batalla, R. J.; Kondolf, G. M.

    The Ebro River drains 85,530 km2 of the Cantabrian Range, Pyrenees, and Iberian Massif in northeastern Spain, with a mean annual runoff of 13,400 106 m3 at Tortosa, where it debouches into the Mediterranean Sea, about 180 km south of Barcelona. One hundred eighty-seven reservoirs (two-thirds built between 1950 and 1975) built for hydroelectric production, irrigation, cooling water, and industrial and domestic uses, have a total capacity equivalent to 57% of the Ebro River's mean annual runoff. Gauging records are available from the Confederación Hidrográfica del Ebro (CHE), a government agency established in 1926 to manage the water resources in the Ebro River basin. We analyzed 38 gauging records from 22 rivers that, by virtue of their location within the drainage network and period of record, would reflect hydrological changes from reservoir construction and operation. From pre- and post-dam records, we analyzed changes in flood peaks, mean annual runoff, mean daily flows, and mean monthly flows for four distinct climatic zones. Most rivers showed reduction in flood magnitude, with average reduction of over 30% for Q2 and Q10. Greater reductions were associated with higher values of the Impounded Runoff index (IR, calculated as reservoir capacity divided by mean annual runoff). Despite similar values of IR, floods in the low-rainfall Mediterranean tributaries in the southeast part of the basin were more affected by reservoirs than those in the high-rainfall humid Atlantic tributaries in the western part of the basin, with a given percentage of regulation producing twice the flood reduction as in the humid Atlantic zone. Annual runoff did not show strong trends, but the variability of mean daily flows was reduced in most cases due to storing of winter floods and increased baseflows in summer for irrigation. Monthly flows ranged from virtually no change post-dam to complete inversion in seasonal pattern, the latter due to releases for irrigation in the summer

  18. Impact of climate evolution and land use changes on water yield in the Ebro basin

    Directory of Open Access Journals (Sweden)

    J. I. López-Moreno

    2010-04-01

    Full Text Available In this study the climatic and hydrological trends across 88 sub-basins of the Ebro River basin were analyzed for the period 1950–2006. A new database of climate information and river flows for the entire basin facilitated a spatially distributed assessment of climate-runoff relationships. It constitutes the first assessment of water yield evolution across the whole Ebro basin, a very representative example of large Mediterranean rivers. The results revealed a marked decrease in river discharges in most of the sub-basins. Moreover, a number of changes in the seasonality of the river regime was found, resulting from dam regulation and a decrease in snowpack in the headwaters. Significant and positive trends in temperature were observed across most of the basin, whereas most of the precipitation series showed negative coefficients, although the decrease in magnitude was low. The time evolution of the residuals from empirical models that relate climate and runoff in each sub-basin provided evidence that climate alone does not explain the observed decrease in river discharge. Thus, changes in water yield are associated with an increase in evapotranspiration rates in natural vegetation, growth of which has expanded as a consequence of land abandonment in areas where agricultural activities and livestock pressure have decreased. In the lowlands of the basin the decrease in water yield has been exacerbated by increased water consumption for domestic, industrial and agricultural uses. Climate projections for the end of the 21st century suggest a reduced capacity for runoff generation because of increasing temperature and less precipitation. Thus, the maintenance of water supply under conditions of increasing demand presents a challenging issue requiring appropriate coordination amongst politicians and managers.

  19. Impact of climate evolution and land use changes on water yield in the ebro basin

    Directory of Open Access Journals (Sweden)

    J. I. López-Moreno

    2011-01-01

    Full Text Available In this study the climatic and hydrological trends across 88 sub-basins of the Ebro River basin were analyzed for the period 1950–2006. A new database of climate information and river flows for the entire basin facilitated a spatially distributed assessment of climate-runoff relationships. It constitutes the first assessment of water yield evolution across the whole Ebro basin, a very representative example of large Mediterranean rivers. The results revealed a marked decrease in river discharges in most of the sub-basins. Moreover, a number of changes in the seasonality of the river regime was found, resulting from dam regulation and a decrease in snowpack in the headwaters. Significant and positive trends in temperature were observed across most of the basin, whereas most of the precipitation series showed negative coefficients, although the decrease in magnitude was low. The time evolution of the residuals from empirical models that relate climate and runoff in each sub-basin provided evidence that climate alone does not explain the observed decrease in river discharge. Thus, changes in water yield are associated with an increase in evapotranspiration rates in natural vegetation, growth of which has expanded as a consequence of land abandonment in areas where agricultural activities and livestock pressure have decreased. In the lowlands of the basin the decrease in water yield has been exacerbated by increased water consumption for domestic, industrial and agricultural uses. Climate projections for the end of the 21st century suggest a reduced capacity for runoff generation because of increasing temperature and less precipitation. Thus, the maintenance of water supply under conditions of increasing demand presents a challenging issue requiring appropriate coordination amongst politicians and managers.

  20. Flow regime patterns and their controlling factors in the Ebro basin (Spain)

    Science.gov (United States)

    Bejarano, M. Dolores; Marchamalo, Miguel; García de Jalón, Diego; González del Tánago, Marta

    2010-05-01

    SummaryNatural intra-annual flow fluctuations vary between rivers, being a determining factor for aquatic insects, fish and riparian communities which are adapted to the habitat conditions and different flows throughout the seasons. Moreover, restoration of seasonal flow patterns plays an important role in achieving good ecological status of rivers, through the preservation and/or recovery of components and processes of natural river ecosystems. In this work we: (a) classify fluvial segments in the Ebro basin (North-Eastern Spain) according to the intra-annual variability of flows under natural conditions using statistical cluster analysis of monthly mean flow data; (b) characterise the resulting flow typologies according to several ecologically important hydrological variables; (c) analyse the relationships between flow regimes of fluvial segments and physical variables from their catchments; and finally (d) predict the most probable natural flow regime using logistic models based on the most determinant physical characteristics. Fifteen natural flow typologies were described in the Ebro basin, which were characterised in terms of flow fluctuation through the year as well as timing, flow ratio and duration of the maximum and minimum flows. Precipitation, biogeography and geology of catchments showed the highest correlations with flow regimes. Basin size, mean elevation and slope were also correlated. The logistic model we developed had a prediction success of 72% in the Ebro basin. The definition of the natural hydrological conditions (to which the biological communities are tailored), even when flow data are not available, is an important support in the management of river ecosystems. It is especially suitable for setting goals in aquatic ecosystem conservation or restoration projects.

  1. Notas sobre la presencia de siálidos (Insecta: Sialidae en la cuenca del río Ebro (España = Notes on the presence of Sialidae (Insecta: Sialidae in the Ebro River Basin (Spain

    Directory of Open Access Journals (Sweden)

    J. Oscoz, A. Agorreta, C. Durán

    2005-01-01

    Full Text Available Muestreos de macroinvertebrados en diferentes ríos de la cuenca del Ebro (España aportaron capturas de larvas de siálidos (Insecta: Megaloptera: Sialidae que fueron clasificadas como tres especies (Sialis fuliginosa, Sialis lutaria y Sialis nigripes de las cuales se muestra el mapa de presencia en la cuenca del Ebro. Las tres especies se encontraron en general en tramos de cabecera o ríos de montaña con aguas de calidad "Muy Buena" o "Buena" según el índice biótico IBMWP, si bien dicha distribución podría estar influida por otros factores limitantes diferentes a la necesidad de una alta calidad en las aguas.

  2. The economic value of drought information for water management under climate change: a case study in the Ebro basin

    Directory of Open Access Journals (Sweden)

    S. Quiroga

    2011-03-01

    Full Text Available Drought events in the Mediterranean are likely to increase in frequency, duration and intensity due to climate change, thereby affecting crop production. Information about drought is valuable for river basin authorities and the farmers affected by their decisions. The economic value of this information and the resulting decisions are of interest to these two stakeholder groups and to the information providers. Understanding the dynamics of extreme events, including droughts, in future climate scenarios for the Mediterranean is being improved continuously. This paper analyses the economic value of information on drought events taking into account the risk aversion of water managers. We consider the effects of drought management plans on rice production in the Ebro river basin. This enables us to compute the willingness to compensate the river basin authority for more accurate information allowing for better decision-making. If runoff is reduced, river basin planners can consider the reduction of water allocation for irrigation in order to eliminate the risk of water scarcity. Alternately, river basin planners may decide to maintain water allocation and accept a reduction of water supply reliability, leaving farmers exposed to drought events. These two alternatives offer different risk levels for crop production and farmers' incomes which determine the value of this information to the river basin authority. The information is relevant for the revision of River Basin Management Plans of the Water Framework Directive (WFD within the context of climate change.

  3. Hydrologic and land-use change influence landscape diversity in the Ebro River (NE Spain)

    Science.gov (United States)

    Cabezas, A.; Comin, F. A.; Begueria, S.; Trabucchi, M.

    2008-09-01

    The landscape dynamics (1927 2003) of one reach at the Middle Ebro River (NE Spain) was examined using aerial pictures and GIS techniques. Moreover, changes in the natural flow regime and anthropic activities within the river-floodplain system were investigated. Our results indicate that hydrological and landscape patterns have been dramatically changed during the last century as a consequence of human alteration of the fluvial dynamics within the studied reach, as well as the overall basin. The magnitude and variability of river discharge events have decreased, especially since 1981, and flood protection structures have disrupted the river floodplain connectivity. As a result, the succesional pathways of riparian ecotopes have been heavily modified because natural rejuvenation no longer takes place, resulting in decreased landscape diversity. It is apparent from these data that floodplain restoration must be incorporated as a significant factor into river management plans if a more natural functioning wants to be retrieved. The ecotope structure and dynamics of the 1927 1957 should be adopted as the guiding image, whereas hydrologic and landscape (dykes, raised surfaces) patters should be considered. Under the current socio-economic context, the more realistic option seems to create a dynamic river corridor reallocating dykes and lowering floodplain heights. The extent of this river corridor should adapt to the restored flow regime, although periodic economic investments could be an option if the desired self-sustained dynamism is not reached.

  4. Meganodular anhydritization in the Tertiary Ebro basin (Spain)

    Science.gov (United States)

    Orti, Federico; Rosell, Laura; Playà, Elisabet; Salvany, Josep Maria

    2010-05-01

    A number of gypsiferous units in the Tertiary Ebro Basin (Spain) are located along their southern margins. These units, aged Paleogene to Miocene, were accumulated in small shallow saline lakes of low ionic concentration, in which Ca-sulphates (gypsum/anhydrite) precipitated. The lakes were nourished by groundwater from deep regional aquifers, which had the recharge areas in the bounding chains and recycled sulphates/chlorides from the Mesozoic (Triassic, Liassic) evaporites. Some of these units graded laterally to the thick, highly-saline (halite, glauberite, polyhalite) evaporite units developed coevally in the basin centre. In the gypsiferous marginal units, meganodules and large irregular masses (from 0.5 m to >5 m in diameter/length) of secondary gypsum are present in outcrop. These particular features originated as anhydrite, which displaced/replaced the host-gypsum rocks. Although these features mainly display stratiform arrangements, also vertical disposals are found locally suggesting the circulation of ascending flows. The isotopic values (δ34S and δ18O; 87Sr/86Sr) of these features are the same than those of the gypsum host-rocks, suggesting that the precursor anhydrite derived from the in situ replacement of the depositional sulphates. Commonly, the host-rock of the meganodules has been preserved as primary gypsum in the Miocene units. The common characteristics of the meganodules/irregular masses suggest that the anhydrite growth happened in burial conditions from shallow to moderate depths. The anhydritization was caused mainly by the same hydraulic systems feeding the marginal saline lakes. With progressive burial of the gypsiferous units, the gypsum-to-anhydrite conversion initiated in few nucleation points and progressed slowly and to variable depths. At such depths (from some metres to few hundred metres?), the regional ascending flows probably had temperatures (>25°C) and solute contents higher than today. Additionally, compaction brines

  5. Reservoir impacts downstream in highly regulated river basins: the Ebro delta and the Guadalquivir estuary in Spain

    OpenAIRE

    2016-01-01

    Regulation by reservoirs affects both the freshwater regime and the sediment delivery at the area downstream, and may have a significant impact on water quality in the final transitional water bodies. Spain is one the countries with more water storage capacity by reservoirs in the world. Dense reservoir networks can be found in most of the hydrographic basins, especially in the central and southern regions. The spatial redistribution of the seasonal and annual water storage ...

  6. Automatic control of pollutant on a shallow river using surface water systems: application to the Ebro River.

    Science.gov (United States)

    Puig, V; Romera, J; Quevedo, J; Sarrate, R; Morales-Hernandez, M; Gonzalez-Sanchis, M; Garcia-Navarro, P

    2014-01-01

    In this paper, the problem of automatic control of pollutant on a shallow river using surface water systems is addressed using a benchmark test case based in the Ebro River. The Ebro River presents flooding episodes in the city of Zaragoza in Spring when snow melts in the Pyrenees. To avoid flooding and high pollutant levels in living areas, some lands outside the city are prepared to be flooded. Going one step further, this paper is focused on the pollutant level control at a certain point downstream of the river under flooding episodes, and several control strategies for that purpose are presented and tested.

  7. Exploitation of the nuclear plant Asco and the benthic community of the river Ebro; Explotacion de la central nuclear Asco y la comunidad bentonica del rio Ebro

    Energy Technology Data Exchange (ETDEWEB)

    Esparza Martin

    2015-07-01

    The Ebro river passing through the town of Asco in the province of Tarragona, provides the necessary water for the operation of the nuclear plant. water of circulation flows and service components are returned completely to the river, or if operation of cooling towers, decreased in a small part. Evaporative losses account for approximately 1% of the total flow used for two nuclear groups. (Author)

  8. RiverFlow2D numerical simulation of flood mitigation solutions in the Ebro River

    Directory of Open Access Journals (Sweden)

    I. Echeverribar

    2017-01-01

    Full Text Available A study of measures oriented to flood mitigation in the mid reach of the Ebro river is presented: elimination of vegetation in the riverbed, use of controlled flooding areas and construction or re-adaptation of levees. The software used is RiverFlow2D which solves the conservative free-surface flow equations with a finite volume method running on GPU. The results are compared with measurements at gauge stations and aerial views. The most effective measure has turned out to be the elimination of vegetation in the riverbed. It is demonstrated that not only the maximum flooded area is narrower but also it reduces the water depth up to 1 m. The other measures have local consequences when the peak discharge is relatively high although they could be useful in case the discharge is lower.

  9. Distribution of naturally occurring radioactive materials in sediments from the Ebro river reservoir in Flix (Southern Catalonia, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Mola, M.; Palomo, M.; Penalver, A.; Aguilar, C. [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili, Marcelli Domingo s/n, 43007 Tarragona (Spain); Unitat de Radioquimica Ambiental i Sanitaria (URAIS), Consorci d' Aiguees de Tarragona (CAT), Ctra Nacional 340, km 1094, 43895 L' Ampolla (Spain); Borrull, F., E-mail: francesc.borrull@urv.cat [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili, Marcelli Domingo s/n, 43007 Tarragona (Spain); Unitat de Radioquimica Ambiental i Sanitaria (URAIS), Consorci d' Aiguees de Tarragona (CAT), Ctra Nacional 340, km 1094, 43895 L' Ampolla (Spain)

    2011-12-30

    Industrial waste containing radioactive isotopes (from U-decay series) was released into Ebro river basin due to the activity of a dicalcium phosphate (DCP) plant for a period of more than two decades. Gross alpha, gross beta, {sup 40}K, {sup 226}Ra and {sup 210}Pb activities were determined in several sludge samples taken at different depths from different points in the area of influence of the DCP plant located in Flix. Samples were collected from two different zones: one in front of the DCP plant and the second in front of a wastewater treatment plant installed several years after the DCP plant. The data obtained verify the influence of industrial DCP production on radioactivity levels present in the area.

  10. Distribution of naturally occurring radioactive materials in sediments from the Ebro river reservoir in Flix (Southern Catalonia, Spain).

    Science.gov (United States)

    Mola, M; Palomo, M; Peñalver, A; Aguilar, C; Borrull, F

    2011-12-30

    Industrial waste containing radioactive isotopes (from U-decay series) was released into Ebro river basin due to the activity of a dicalcium phosphate (DCP) plant for a period of more than two decades. Gross alpha, gross beta, (40)K, (226)Ra and (210)Pb activities were determined in several sludge samples taken at different depths from different points in the area of influence of the DCP plant located in Flix. Samples were collected from two different zones: one in front of the DCP plant and the second in front of a wastewater treatment plant installed several years after the DCP plant. The data obtained verify the influence of industrial DCP production on radioactivity levels present in the area.

  11. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Alicia [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain)], E-mail: anoqam@iiqab.csic.es; Endo, Satoshi; Gocht, Tilman [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Barth, Johannes A.C. [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Lehrstuhl fuer Angewandte Geologie, GeoZentrum Nordbayern, Universitaet Erlangen-Nuernberg, Schlossgarten 5, 91054 Erlangen (Germany); Lacorte, Silvia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Barcelo, Damia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Institut Catala de Recerca de l' Aigua (ICRA), Parc Cientific i Tecnologic de la Universitat de Girona, Pic de Peguera, 15, 17003 Girona (Spain); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany)

    2009-02-15

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f{sub OC}) ranging from 0.0035 to 0.082 g{sub OC} g{sup -1}. All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements.

  12. Triangular facets of slope in the region of Tudela (Ebro Basin, Navarra, Spain); Facetas triangulares de ladera en la region de Tudela (Depresion del Ebro, Navarra, Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Marin, C.; Desir, G.; Gutierrez, M.

    2009-07-01

    Some triangular slope facets are localized to the south of Bardenas Reales (central-west of Ebro Basin), elaborated on Tudela Formation deposits, Aragonian in age. Three of them have been dated by OSL resulting on ages of 35,588{+-}2,488 yr. BP, 35,355{+-}2,446 yr. BP and 40.185{+-}2,411 yr. BP. The origin of these facets is ought to an alternation between accumulation and incision phases produced by vegetation cover variation percentage. Those vegetation cover changes are estimated to be due to climatic changes. (Author) 21 refs.

  13. Risk of water scarcity and water policy implications for crop production in the Ebro Basin in Spain

    Directory of Open Access Journals (Sweden)

    S. Quiroga

    2010-08-01

    Full Text Available The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro River Basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  14. Driver detection of water quality trends across Mediterranean river basins

    Science.gov (United States)

    Diamantini, Elena; Lutz, Stefanie; Mallucci, Stefano; Majone, Bruno; Merz, Ralf; Bellin, Alberto

    2017-04-01

    In this study, thirteen physicochemical surficial water variables and four drivers (i.e. monthly aggregated air temperature and streamflow, population density and percentage of agricultural land use) were analysed in three large Mediterranean river basins (i.e. Adige, Ebro, Sava). In particular, the purpose of the analysis is to identify how indicators of water quality and drivers of change coevolve in three large river basins representing the diversity of climatic, soil and water uses conditions observed in southern Europe. Spearman rank correlation, principal component analysis, Mann-Kendall trend test and Sen's Slope estimator were performed in order to (i) analyse long-term time series of water quality data during the period 1990-2015, (ii) detect links between variables patterns and drivers and (iii) compare the river basins under investigation with respect to their vulnerability and resilience to the identified drivers of change. Results show that air temperature, considered as a proxy of climate change, has a significant impact in all basins but in particular in the Adige and Ebro: positive trends of water temperature and negative for dissolved oxygen are found to be correlated with upward trends of air temperatures. The aquatic ecosystems of these rivers are therefore experiencing a reduction in oxygen, which may further worsen in the future given the projected increase of temperature for this century. At the same time, monthly streamflow has been shown to reduce in the Ebro River, thereby decreasing the beneficial effect of dilution, as appears evident from the observed upward patterns of chloride concentration and electrical conductivity. Upward trends of chloride and biological oxygen demand in the Adige and Sava and positive trends of phosphate in the Adige are related to the increase of population and finally phosphates in the Sava and biological oxygen demand in the Ebro are highly correlated with agricultural land use. The study showed the complex

  15. Hydrologic and landscape changes in the Middle Ebro River (NE Spain): implications for restoration and management

    Science.gov (United States)

    Cabezas, A.; Comín, F. A.; Beguería, S.; Trabucchi, M.

    2009-02-01

    The changes of landscape (1927-2003), discharge regime and anthropic activities with the river-floodplain of one reach at the Middle Ebro River (NE Spain) were investigated with the objective to identify the factors that best explain the natural ecotope succession and propose a realistic restoration option with consideration of the landscape dynamics during the last century and the socio-economic context. Our results indicate that hydrological and landscape patterns have been dramatically changed during the last century as a consequence of human alteration of the fluvial dynamics within the studied reach. The magnitude and variability of river discharge events have decreased at the end of the last century, and flood protection structures have disrupted the river floodplain connectivity. As a result, the succesional pathways of riparian ecotopes have been heavily modified because natural rejuvenation no longer takes place, resulting in decreased landscape diversity. It is apparent from these data that floodplain restoration must be incorporated as a significant factor into river management plans if a more natural functioning wants to be retrieved. The ecotope structure and dynamics of the 1927-1957 period should be adopted as the guiding image, whereas current hydrologic and landscape (dykes, raised surfaces) patterns should be considered. Under the current socio-economic context, the more realistic option seems to create a dynamic river corridor reallocating dykes and lowering floodplain heights. The extent of this river corridor should adapt to the restored flow regime, although periodic economic investments could be an option if the desired self-sustained dynamism is not reached.

  16. Hydrologic and landscape changes in the Middle Ebro River (NE Spain: implications for restoration and management

    Directory of Open Access Journals (Sweden)

    A. Cabezas

    2009-02-01

    Full Text Available The changes of landscape (1927–2003, discharge regime and anthropic activities with the river-floodplain of one reach at the Middle Ebro River (NE Spain were investigated with the objective to identify the factors that best explain the natural ecotope succession and propose a realistic restoration option with consideration of the landscape dynamics during the last century and the socio-economic context. Our results indicate that hydrological and landscape patterns have been dramatically changed during the last century as a consequence of human alteration of the fluvial dynamics within the studied reach. The magnitude and variability of river discharge events have decreased at the end of the last century, and flood protection structures have disrupted the river floodplain connectivity. As a result, the succesional pathways of riparian ecotopes have been heavily modified because natural rejuvenation no longer takes place, resulting in decreased landscape diversity. It is apparent from these data that floodplain restoration must be incorporated as a significant factor into river management plans if a more natural functioning wants to be retrieved. The ecotope structure and dynamics of the 1927–1957 period should be adopted as the guiding image, whereas current hydrologic and landscape (dykes, raised surfaces patterns should be considered. Under the current socio-economic context, the more realistic option seems to create a dynamic river corridor reallocating dykes and lowering floodplain heights. The extent of this river corridor should adapt to the restored flow regime, although periodic economic investments could be an option if the desired self-sustained dynamism is not reached.

  17. Orbital forcing in the early Miocene alluvial sediments of the western Ebro Basin, Northeast Spain

    Science.gov (United States)

    Garces, M.; Larrasoaña, J. C.; Muñoz, A.; Margalef, O.; Murelaga, X.

    2009-04-01

    Paleoclimatic reconstructions from terrestrial records are crucial to assess the regional variability of past climates. Despite the apparent direct connection between continental sedimentary environments and climate, interpreting the climatic signature in ancient non-marine sedimentary sequences is often overprinted by source-area related signals. In this regard, foreland basins appear as non-ideal targets as tectonically-driven subsidence and uplift play a major control on the distribution and evolution of sedimentary environments and facies. Foreland basins, however, often yield among the thickest and most continuous stratigraphic records available on continents. The Ebro Basin (north-eastern Spain) is of particular interest among the circum-mediterranean alpine foreland basins because it evolved into a land-locked closed basin since the late Eocene, leading to the accumulation of an exceptionally thick (>5500 m) and continuous sequence of alluvial-lacustrine sediments over a period of about 25 Myr. In this paper we present a detailed cyclostratigraphic study of a 115 m thick section in the Bardenas Reales de Navarra region (western Ebro Basin) in order to test orbital forcing in the Milankovitch frequency band. The study section corresponds to the distal alluvial-playa mud flats which developed in the central sector of the western Ebro Basin, with sediments sourced from both the Pyrenean and Iberian Ranges. Sediments consist of brown-red alluvial clay packages containing minor fine-grained laminated sandstones sheet-beds and channels, grey marls and thin bedded lacustrine limestones arranged in 10 to 20 m thick fining-upwards sequences. Red clayed intervals contain abundant nodular gypsum interpreted as representing a phase of arid and low lake level conditions, while grey marls and limestones indicate wetter intervals recording the expansion of the inner shallow lakes. A magnetostratigraphy-based chronology indicates that the Peñarroya section represents a

  18. Carbon Sequestration in Mediterranean Tidal Wetlands: San Francisco Bay and the Ebro River Delta (Invited)

    Science.gov (United States)

    Callaway, J.; Fennessy, S.; Ibanez, C.

    2013-12-01

    Tidal wetlands accumulate soil carbon at relatively rapid rates, in large part because they build soil to counteract increases in sea-level rise. Because of the rapid rates of carbon sequestration, there is growing interest in evaluating carbon dynamics in tidal wetlands around the world; however, few measurements have been completed for mediterranean-type tidal wetlands, which tend to have relatively high levels of soil salinity, likely affecting both plant productivity and decomposition rates. We measured sediment accretion and carbon sequestration rates at tidal wetlands in two mediterranean regions: the San Francisco Bay Estuary (California, USA) and the Ebro River Delta (Catalonia, Spain). Sampling sites within each region represented a range of conditions in terms of soil salinity and plant communities, and these sites serve as potential analogs for long-term carbon sequestration in restored wetlands, which could receive credits under emerging policies for carbon management. Within San Francisco Bay, we collected six sediment cores per site at four salt marshes and two brackish tidal wetlands (two transects with three stations per transect at each site) in order to identify spatial variation both within and among wetlands in the Estuary. At the Ebro Delta, individual sediment cores were collected across 14 tidal wetland sites, including salt and brackish marshes from impounded areas, river mouths, coastal lagoon, and open bay settings. Cores were collected to 50 cm, and cores were dated using 137Cs and 210Pb. Most sites within San Francisco accreted 0.3-0.5 cm/yr, with slightly higher rates of accretion at low marsh stations; accretions rates based on 137Cs were slightly higher than those based on 210Pb, likely because of the shorter time frame covered by 137Cs dating. Accretion rates from the Ebro Delta sites were similar although more variable, with rates based on 137Cs ranging from 0.1 to 0.9 cm/yr and reflecting the wide range of conditions and management

  19. [Phage count in the waters of the Canal Imperial de Aragón and the Ebro River in Saragossa].

    Science.gov (United States)

    Lafarga, M A; Ezquerra, J; Ferrández, A; Grasa, B; Alejandre, M C; Marcen, J J

    1993-04-01

    Saragossa city supply channel and the river Ebro (up and downstream urban sewage) were studied for the presence of coliphages and B. fragilis phages and their relationship with the bacterian faecal indicators. In the supply channel the coliphages geometric mean was of 130 ufp/100 ml, and showed no correlation with faecal and total coliforms, but it showed indirect correlation with ambient temperature. In the river Ebro the coliphages geometric mean ranged from 290 to 8,000 ufp/100 ml; the relationship with total and faecal coliforms and faecal streptococci was high, but they were temperature independent. With the methodology utilized B. fragilis phages only were recovered in samples with faecal coliforms levels > 1 x 10(4) ufc/100 ml.

  20. Anticipation of drought impacts in the Ebro basin using remote sensing data

    Science.gov (United States)

    Lines, Clara; Werner, Micha; Bastiaanssen, Wim

    2017-04-01

    For an effective mitigation of drought impacts, managers should be able to detect drought processes that will lead to impacts with enough anticipation to allow the necessary measures to be undertaken. Drought indicators and thresholds are commonly used to detect and classify drought conditions and trigger mitigation actions. However, the indicators and thresholds selected as triggers are only rarely connected to the specific impacts that need to be avoided. The aim of this research is to identify global earth observation data sets that can anticipate drought impacts at basin scale and therefore be used as indicators of early stages of drought. The performance of a broad range of parameters was assessed in the Ebro basin for the period 2000-2012. These were the Standard Precipitation Index (SPI), the Normalized Difference Vegetation Index (NDVI), Evapotranspiration (ET), Soil Moisture (SM), Land Surface Temperature (LST), Gross Primary Production (GPP) and the in situ hydrologic indicators currently used in the basin. Since impact data at a suitable temporal and spatial scale was not available to be used as benchmark for the tests, a data set of drought and impact occurrence was compiled by a comprehensive review of local news records. In addition annual crop yield data was used as alternative benchmark data. Early signs of drought impact were detected up to 6 months in advance with respect to the impacts reported in the newspaper, with SPI, NDVI and ET showing the best correlation-anticipation relationships. SM and LST offer also good anticipation, but with weaker correlations, while GPP presents moderate positive correlations only for some of the rainfed areas. Although water levels and flows from in situ stations provided better anticipation than remote sensing indicators in most of the areas, correlations were found to be weaker. The indicators show a consistent behaviour with respect to the different levels of crop yield in rainfed areas among the analysed

  1. Underground CO{sub 2} Storage: Approach for Favourable Formations in Ebro Basin; AGP de CO{sub 2}: Seleccion de Formaciones Favorables en la Cuenca del Ebro

    Energy Technology Data Exchange (ETDEWEB)

    Campos, R.; Perucha, A.; Recreo, F.

    2008-04-10

    The study of the possibilities of conducting Deep Geological CO{sub 2} Storage inside Spanish territory is being performed through the Strategic Singular Project PS-120000-2005-2 of the National Program of Energy from the Education and Science Ministry, and called CO{sub 2} generation, sequestration and storage advanced technologies, sub project N3 CO{sub 2} Geological Storage This report studies the possibilities the Ebro basin offers for definitive CO{sub 2} storage as one of the Spanish selected areas from previous studies. The study and reinterpretation of the information obtained from the hydrocarbon exploration accomplished in the area has lead to the selection of a series of geological formations. These formations have been chosen attending certain characteristics such as their disposition, extension, depth and porosity. The study has also been conducted considering the characteristics of the geological formations above the CO{sub 2} storage formations so as to guarantee the sealing of the storage. The study includes the approximate estimation of the storage capacity for each of the formations in Megatons of CO{sub 2}, which can be useful in future decision making. Deep geological storage is one of the more relevant international initiatives in order to eliminate or reduce the anthropogenic CO{sub 2} emissions to the atmosphere. (Author) 68 refs.

  2. The predictability of reported drought events and impacts in the Ebro Basin using six different remote sensing data sets

    Science.gov (United States)

    Linés, Clara; Werner, Micha; Bastiaanssen, Wim

    2017-09-01

    The implementation of drought management plans contributes to reduce the wide range of adverse impacts caused by water shortage. A crucial element of the development of drought management plans is the selection of appropriate indicators and their associated thresholds to detect drought events and monitor the evolution. Drought indicators should be able to detect emerging drought processes that will lead to impacts with sufficient anticipation to allow measures to be undertaken effectively. However, in the selection of appropriate drought indicators, the connection to the final impacts is often disregarded. This paper explores the utility of remotely sensed data sets to detect early stages of drought at the river basin scale and determine how much time can be gained to inform operational land and water management practices. Six different remote sensing data sets with different spectral origins and measurement frequencies are considered, complemented by a group of classical in situ hydrologic indicators. Their predictive power to detect past drought events is tested in the Ebro Basin. Qualitative (binary information based on media records) and quantitative (crop yields) data of drought events and impacts spanning a period of 12 years are used as a benchmark in the analysis. Results show that early signs of drought impacts can be detected up to 6 months before impacts are reported in newspapers, with the best correlation-anticipation relationships for the standard precipitation index (SPI), the normalised difference vegetation index (NDVI) and evapotranspiration (ET). Soil moisture (SM) and land surface temperature (LST) offer also good anticipation but with weaker correlations, while gross primary production (GPP) presents moderate positive correlations only for some of the rain-fed areas. Although classical hydrological information from water levels and water flows provided better anticipation than remote sensing indicators in most of the areas, correlations were

  3. Nutrient sources and dynamics in a mediterranean fluvial regime (Ebro river, NE Spain) and their implications for water management

    Science.gov (United States)

    Torrecilla, Néstor J.; Galve, Jorge P.; Zaera, Lidia G.; Retamar, Javier F.; Álvarez, Alejandro N. A.

    2005-03-01

    Nonpoint source and point source nutrient loads (N, PO 4-P, COD) to the Ebro River in its central sector were estimated using hydrogeological and socioeconomical data. Their impacts on eutrophication and nutrient dynamics in the river were analyzed through a review of the public administration's historical data and the interpretation of two sampling profiles in September 02 (low flows season) and April 03 (high flows season). A marked seasonality was found in nutrient concentrations, nutrient loads and eutrophication indicators (O 2, Turbidity), appearing symptoms of eutrophication during the summer related to both NPS and PS Nutrient loads within the study area. Agricultural NPS account for 64% of NO 3 loads generated within the study area while urban and industrial PS are responsible of 88% PO 4-P and 71% COD loads. Biological reactions within the river ecosystem (including denitrification in the most eutrophic branches) were found to be a key factor in nutrient content and dynamics. Improvements in urban and industrial wastewater treatment facilities, land use planning and restoration of river-side wetlands, seem to be adequate policies for the improvement of the nutrient water quality in the studied sector of the Ebro River. Flow and temperature seasonality related to Mediterranean fluvial regime imposes significant limitations to nutrient PS in order to accomplish the combined approach proposed in European Water Framework Directive (WFD), based upon Emission Limit Values (ELV) and Environmental Quality Standards (EQS).

  4. Thermal shock and splash effects on burned gypseous soils from the Ebro Basin (NE Spain)

    NARCIS (Netherlands)

    Leon, J.; Seeger, M.; Badia, D.; Peters, P.; Echeverria, M.T.

    2014-01-01

    Fire is a natural factor of landscape evolution in Mediterranean ecosystems. The middle Ebro Valley has extreme aridity, which results in a low plant cover and high soil erodibility, especially on gypseous substrates. The aim of this research is to analyze the effects of moderate heating on physical

  5. Origin and evolution of Sariñena Lake (central Ebro Basin): A piping-based model

    Science.gov (United States)

    Castañeda, Carmen; Javier Gracia, F.; Rodríguez-Ochoa, Rafael; Zarroca, Mario; Roqué, Carles; Linares, Rogelio; Desir, Gloria

    2017-08-01

    The origin and nature of the numerous lakes in the central Ebro Basin have been interpreted according to the prevailing arid or semiarid conditions, the easily-eroded materials and the solubility of the gypsum- and/or carbonate-rich Tertiary/Cenozoic substratum, involving important dissolution (karstic) and/or aeolian deflation. However, the origin of Sariñena Lake, the largest in the central Ebro Basin, remains unknown since the typical lake-generating processes in the region are not applicable. This work provides significant clues to the genesis and evolution of Sariñena Lake in a regional context. The combination of geomorphological mapping and high resolution LiDAR data together with sedimentological observations, the characterisation of soils and sediments around the lake, and the application of high-resolution geophysical techniques suggest that piping is the major genetic process driving the evolution of the Sariñena depression and lake. Field evidence demonstrates that piping is, at present, the most important erosive process in the region, generating significant collapse and surface lowering. Sariñena Lake is located within a deep endorheic depression excavated from Na-rich Tertiary materials. This work hypothesises that once an early, fluvially-originated palustrine area had developed, the progressive lowering of the regional water table linked to regional fluvial incision favoured the establishment of a hydrological gradient high enough to trigger piping processes within the claystones and siltstones underlying the original palustrine area. The Quaternary evolution of the Sariñena lacustrine basin was then controlled by successive water table fluctuations, linked to different phases of incision and alluvial deposition in the surrounding fluvial systems. All the evidence supporting a piping-related origin for this lake, together with examples of lakes generated by similar processes in different contexts, is used to propose a new genetic type of

  6. Potential siliceous sources during Prehistory: Results of prospecting in the East margin of the Ebro Basin (NE Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    María Soto

    2014-03-01

    Full Text Available We present the results of prospecting in the NE of the Iberian Peninsula, with the aim of identifying the  siliceous sources potentially used by the populations that occupied the marginal basins of the Ebro depression during the Middle and Upper Palaeolithic.We intend to define the main characteristics of the cherts in the region studied, taking into account the palaeoenvironment in which silicifications are mainly formed, and the premise that siliceous rocks acquire the attributes of enclosing rocks.The cherts studied are the products of early diagenesis by replacement of carbonate and evaporite sediments. Petrological analyses show that they are made up of microquartz, with high proportion of fibrous forms silica, carbonates, ferric oxides and evaporite relicts. In the future, these characteristics will be useful for ascribing archaeological materials in both geological and geographical terms.

  7. Erosion processes acting in semi-arid climate zone of the Ebro Basin (Bardenas Reales, NE of Spain); Procesos de erosion actuantes en una zona de clima semiarido de la Depresion del Ebro (Bardenas Reales, NE de Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Marin, C.; Desir, G.

    2009-07-01

    Bardenas Reales is an erosive depression located in the central-western part of the Ebro Depression. May different erosion processes act on this zone: gullying, piping, mud slides and armoured mud balls among others that contribute to export great quantity of material outside the basin. Depending on lithology and physico-chemical properties erosion acting processes differ. The knowledge of that processes help us to understand the great amount of soil loss that take place on the studied zone, bigger than those recommended. (Author) 8 refs.

  8. On the origin of crevasse-splay amalgamation in the Huesca fluvial fan (Ebro Basin, Spain): Implications for connectivity in low net-to-gross fluvial deposits

    Science.gov (United States)

    van Toorenenburg, K. A.; Donselaar, M. E.; Noordijk, N. A.; Weltje, G. J.

    2016-08-01

    Floodplain deposits are abundant in low-gradient dryland river systems, but their contribution to connected reservoir volumes has not yet been fully acknowledged due to their poor detectability with typical wireline log suites and relatively-lower reservoir quality. This study presents an analysis of stacked crevasse splays in the distal part of the Miocene Huesca fluvial fan (Ebro Basin, Spain). Vertical stacking of crevasse splays implies local aggradation of the active channel belt. Lateral amalgamation of crevasse splays created an elevated rim around their feeder channel, raising its bankfull height. Subsequent crevasse splays were deposited on top of their predecessors, creating sand-on-sand contact through incision and further raising the active channel belt. This process of channel-belt super-elevation repeated until an upstream avulsion occurred. Amalgamated crevasse splays constitute connected reservoir volumes up to 107 m3. Despite their lower reservoir quality, they effectively connect channel deposits in low net-to-gross fluvial stratigraphy, and hence, their contribution to producible volumes should be considered. Unswept intervals of amalgamated crevasse splays may constitute a secondary source of natural gas. Their interval thickness can serve as a proxy for feeder-channel dimensions, which can in turn be used to estimate the degree of stratigraphic connectivity.

  9. Density and population structure of the natural regeneration of Scots pine (Pinus sylvestris L.) in the High Ebro Basin (Northern Spain)

    OpenAIRE

    González-Martínez, Santiago; Bravo, Felipe

    2001-01-01

    International audience; This paper presents the analysis of 11 natural regenerated stands in native Scots pine forests located in the High Ebro Basin (Northern Spain). The natural regeneration showed a continuous age distribution, early height differentiation and a high stability in the height position of seedlings. Total density and main crop (trees selected for future commercial harvest) density models were developed to study the relationship between natural regeneration and site variables....

  10. Prevalence and sequence comparison of Phyllodistomum folium from zebra mussel and from freshwater fish in the Ebro River.

    Science.gov (United States)

    Peribáñez, Miguel A; Ordovás, Laura; Benito, Josep; Benejam, Lluís; Gracia, María J; Rodellar, Clementina

    2011-01-01

    We utilised DNA analysis to detect the presence of the digenean Phyllodistomum folium in three cyprinid species, Scardinius erythrophthalmus, Cyprinus carpio and Rutilus rutilus. DNA sequencing of the region containing the genes ITS1-5.8S-ITS2 revealed 100% sequence identity between DNA from the sporocysts found in zebra mussels and DNA from adults located in the urinary system of 29 cyprinid fish. A second genetically different (variation=1.6%) sequence was observed in two samples from R. rutilus. In our opinion, the existence of a complex of species reported as P. folium is supported by recent genetic studies, including our own results. The overall prevalence of P. folium in mussels from the Ebro River was 4.67% in 2006, although during the summer months the rates frequently exceeded 10%.

  11. Morphology and micro-fabrics of weathering features on gyprock exposures in a semiarid environment (Ebro Tertiary Basin, NE Spain)

    Science.gov (United States)

    Artieda, O.

    2013-08-01

    Gyprock is a common rock in evaporitic formations, which have a wide distribution across all continents. However, outcrops of gyprock are rather limited, occurring mainly in low rainfall areas (i.e. southwest of USA, Italy, Spain). Gyprock is one of the most common lithology in the Ebro Tertiary Basin. Here, semiarid conditions propitiate the development of specific weathering processes and landforms with significant implications for understanding the genesis of soils and the geomorphological evolution of these areas. Gypsum crystallization within the pores and fissures of gyprock close to the surface leads to volume increase and pressures, with the consequent weathering of this rock. As a result, considerable porosity develops producing peculiar morphologies on gyprock outcrops (domes and decimetre-scale blisters), specific microscopic features (voids with plain walls, horse-shoe pores and serrated pores), as well as microscopic fabrics (grating fabric, skeletal fabric, fan fabric and botryoidal fabric). This paper presents a morphological characterization of the material forming the various types of weathering features, from microscopic to mesoscopic scale. The macromorphology and micromorphology of those features were used to interpret their genesis.

  12. Analysis of micronucleated erythrocytes in heron nestlings from reference and impacted sites in the Ebro basin (N.E. Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Quiros, Laia [Institute of Molecular Biology (IBMB-CSIC), Jordi Girona, 18, 08034 Barcelona (Spain); Ruiz, Xavier; Sanpera, Carolina [Departament de Biologia Animal, Universitat de Barcelona, Avgda. Diagonal 645, 08028 Barcelona (Spain); Jover, Lluis [Departament de Salut Publica (Bioestadistica), Universitat de Barcelona, Casanova 143, 08036 Barcelona (Spain); Pina, Benjamin [Institute of Molecular Biology (IBMB-CSIC), Jordi Girona, 18, 08034 Barcelona (Spain)], E-mail: bpcbmc@cid.csic.es

    2008-09-15

    The frequency of micronuclei (MN) in peripheral erythrocytes was tested for 59 heron nestlings (Ardea purpurea, Egretta garzetta and Bubulcus ibis) sampled at two areas (polluted and reference) on the River Ebro (NE Spain) and at its Delta during Spring 2006. Flow-cytometry analysis revealed higher (three- to six-fold) MN counts in samples from the most polluted site relative to samples from the reference area. Samples from the Delta showed intermediate values. Age, morphometric parameters (weight, tarsus size and bill-head length) and maturation status showed no significant differences among the different populations for each species; nor were they correlated with MN levels. The data suggest that elevated levels of MN in chicks in impacted areas reflected the chemical pollution of their nesting sites. The use of nestlings for this assay appears to be a convenient, non-destructive method to assess the impact of pollution in natural bird populations. - Frequency of micronucleated erythrocytes in peripheral blood of waterbird nestlings correlates with chemical pollution loads in their nesting sites.

  13. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ... Bureau of Reclamation Yakima River Basin Conservation Advisory Group; Yakima River Basin Water... on the structure, implementation, and oversight of the Yakima River Basin Water Conservation Program... of the Water Conservation Program, including the applicable water conservation guidelines of...

  14. Breakup and reestablishment of the armour layer in a large gravel-bed river below dams: The lower Ebro

    Science.gov (United States)

    Vericat, Damia; Batalla, Ramon J.; Garcia, Celso

    2006-06-01

    Changes in armour layer during floods under supply limited conditions are little known. This paper describes the breakup and the reestablishment of the bed armour layer in the regulated gravel-bed Ebro River during a flooding period. The study was conducted over a 28-km study reach from 2002 to 2004. The surface, subsurface and bed load grain size distribution constitute the bases for the analysis of bed-armouring dynamics. The results indicate that the magnitude of floods controlled the degree of armouring of the river bed. The initial mean armouring ratio was 2.3, with maximum values reaching 4.4. Floods in the winter of 2002-2003 ( Q8) caused the breakup of the armour layer in several sections. This resulted in the erratic bed load pattern observed during the December 2002 flushing flow and in the increase in bed load transport during successive events. Most grain size classes were entrained and transported, causing river bed incision. The mean armouring ratio decreased to 1.9. In contrast, during low magnitude floods in 2003-2004 ( Q2), the coarsest fractions (64 mm) did not take part in the bed load while finer particles were winnowed, thus surface deposits coarsened. As a result, the armour layer was reestablished (i.e., the mean armouring ratio increased to 2.3), and the supply of subsurface sediment decreased. The supply and transport of bed material appear to be in balance in the river reach immediately below the dam. In contrast, the transport of medium and finer size classes in the downstream reaches was higher than their supply from upstream, a phenomenon that progressively reduced their availability in the river bed surface, hence the armour layer reworking.

  15. The use of partial thickness method and zero wet bulb temperature for discriminating precipitation type during winter months at the Ebro basin in Spain

    Science.gov (United States)

    Buisan, S.; Revuelto, J.

    2010-09-01

    The forecast office of the State Meteorological Agency of Spain (AEMET) which is located in the city of Zaragoza provides weather forecast, warnings and aviation forecast products for Aragón, Navarra and La Rioja regions. This area of Spain lies mainly on the Ebro river basin. Although the likelihood of snowfall in this territory is low, a forecasting of snow-depth higher than 5cm for low elevations activates the orange warning which must be issued to local emergency management and civil protection authorities. Zero wet bulb temperature has been historically the main tool for forecasting the altitude of snow-rain boundary at the forecast office; it shows the freezing level limit due to evaporational cooling when lower troposphere is saturated from aloft. This work adds two new parameters, the 1000-850 mb and the 850-700 mb thickness in order to characterize the thermal structure of surface based cold air and atmospheric mid-levels. The three main airports in this area Zaragoza-Aragón, Logroño-La Rioja and Pamplona-Navarra are located at altitudes below 500 m. They are thus suitable for this study. In addition, more than 16 years of meteorological observations every hour, known as METAR (Meteorological Aerodrome Report), are available at these locations. These observations were analysed and the predominant precipitation type during a six-hour period was characterized. The 00h, 06h, 12h and 18h analysis time of the ECMWF Forecast model were employed in order to get the parameters at the day and time when the precipitation took place. The most representative grid point of the model for each airport was chosen in order to illustrate the atmospheric conditions. A correlation between precipitation type and zero wet bulb temperature, 1000-850 mb and the 850-700 mb thickness was done for more than 230 different situations during a 16 year period. As a result, we plotted a series of site specific charts for each airport based on these parameters, in order to describe the

  16. Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, Carmelo [Politecnico di Milano, Dept. of Architecture, Built environment and Construction engineering (ABC), Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Luzi, Guido [Centre Tecnòlogic de Telecomunicacions de Catalunya (CTTC), Division of Geomatics, Av. Gauss, 7 E-08860 Castelldefels (Barcelona) (Spain)

    2014-05-27

    Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions, with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points.

  17. {sup 210}Pb atmospheric flux and growth rates of a microbial mat from the northwestern Mediterranean Sea (Ebro River Delta)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cabeza, J.A.; Masque, P.; Martinez-Alonso, M.; Mir, J.; Esteve, I.

    1999-11-01

    Environmental archives are needed to study the variability of natural systems and the impact of man on them. Microbial mats, modern homologues of stromatolites, can be found in extreme environments such as the Ebro River Delta and were studied as potential environmental archives of atmospheric deposition. {sup 210}Pb, a radiotracer widely used in geochronology studies, was used both to determine the growth rates of a microbial mat from this environment and to estimate the {sup 210}Pb atmospheric flux in the northwestern Mediterranean Sea. The {sup 210}Pb profile showed the presence of three distinct peaks related to low growth-rate periods. This variability indicted the sensitivity of the system to external forcing. The annual atmospheric flux of {sup 210}Pb was 81.2 {+-} 1.4 B1 m{sup {minus}2}yr{sup {minus}1}, which is similar to other values found in the literature. The age profile showed two layers of differing growth rates, being 0.99 {+-} 0.10 mm yr{sup {minus}1} from the surface down to 10 mm depth. The accumulated mass profile showed a change at about 9 mm depth, corresponding to year 1983 {+-} 1. It is noteworthy that this is coincident with a strong El Nino Southern Oscillation event during 1982--1983, which has been shown to affect other ecosystems, including some in the Mediterranean area.

  18. Uncertainty of the peak flow reconstruction of the 1907 flood in the Ebro River in Xerta (NE Iberian Peninsula)

    Science.gov (United States)

    Ruiz-Bellet, Josep Lluís; Castelltort, Xavier; Balasch, J. Carles; Tuset, Jordi

    2017-02-01

    There is no clear, unified and accepted method to estimate the uncertainty of hydraulic modelling results. In historical floods reconstruction, due to the lower precision of input data, the magnitude of this uncertainty could reach a high value. With the objectives of giving an estimate of the peak flow error of a typical historical flood reconstruction with the model HEC-RAS and of providing a quick, simple uncertainty assessment that an end user could easily apply, the uncertainty of the reconstructed peak flow of a major flood in the Ebro River (NE Iberian Peninsula) was calculated with a set of local sensitivity analyses on six input variables. The peak flow total error was estimated at ±31% and water height was found to be the most influential variable on peak flow, followed by Manning's n. However, the latter, due to its large uncertainty, was the greatest contributor to peak flow total error. Besides, the HEC-RAS resulting peak flow was compared to the ones obtained with the 2D model Iber and with Manning's equation; all three methods gave similar peak flows. Manning's equation gave almost the same result than HEC-RAS. The main conclusion is that, to ensure the lowest peak flow error, the reliability and precision of the flood mark should be thoroughly assessed.

  19. Design of adaptation actions to compensate the hydrological impact of the river regulation by dams on the Ebro Delta (Spain): combining modeling and field work.

    Science.gov (United States)

    Contreras, Darío; Jurado, Alicia; Carpintero, Miriam; Rovira, Albert; Polo, María J.

    2016-04-01

    River regulation by dams for both flood control and water storage has allowed to decrease both uncertainty and risks associated to extreme hydrological events. However, the alteration of the natural river flow regime and the detraction of high water volumes usually lead to significant effects downstream on the morphology, water quality, ecological status of water… and this is particularly relevant in the transitional waters since the sea level rise poses an additional threat on such conditions. The Ebro River, in northeastern Spain, is one of the highly regulated rivers in Spain with the dams located in the mainstream. Besides an estimated decrease of a 30% of the freshwater inputs, the sediment delivery to the final delta in the Mediterranean has dramatically been decreased up to a 99%, with environmental risks associated to the reduction of the emerged areas from the loss of sediment supply, the impact on the subsidence dynamics, and the sea level rise. The Ebro Delta suffers a mean regression of 10 m per year, and the persistence of macrophyte development in the final reach of the river due to the low water mean flow regime. The project LIFE EBRO-ADMICLIM (ENV/ES/001182), coordinated by the IRTA in Catalonia (Spain), puts forwards pilot actions for adaptation to and mitigation of climate change in the Ebro Delta. An integrated approach is proposed for managing water, sediment and habitats (rice fields and wetlands), with the multiple aim of optimizing ground elevation, reducing coastal erosion, increasing the accumulation (sequestration) of carbon in the soil, reducing emissions of greenhouse gases (GHG), and improving water quality. This work presents the pilot actions included in the project to mitigate the loss of water flow and sediment supply to the delta. Sediment injections at different points upstream have been designed to calibrate and validate a sediment transport model coupled to a 2D-hydrodinamic model of the river. The combination of an a

  20. Dynamics of suspended sediment borne persistent organic pollutants in a large regulated Mediterranean river (Ebro, NE Spain).

    Science.gov (United States)

    Quesada, S; Tena, A; Guillén, D; Ginebreda, A; Vericat, D; Martínez, E; Navarro-Ortega, A; Batalla, R J; Barceló, D

    2014-03-01

    Mediterranean rivers are characterized by highly variable hydrological regimes that are strongly dependent on the seasonal rainfall. Sediment transport is closely related to the occurrence of flash-floods capable to deliver enough kinetic energy to mobilize the bed and channel sediments. Contaminants accumulated in the sediments are likely to be mobilized as well during such events. However, whereas there are many studies characterizing contaminants in steady sediments, those devoted to the transport dynamics of suspended-sediment borne pollution are lacking. Here we examined the occurrence and transport of persistent organic microcontaminants present in the circulating suspended sediments during a controlled flushing flow in the low part of the River Ebro (NE Spain) 12 km downstream of a well-known contaminated hot-spot associated to a nearby chloro-alkali industry. Polycyclic aromatic hydrocarbons (PAHs) and semi-volatile organochlorine pollutants (DDT and related compounds, DDX; polychlorinated byphenils, PCBs; and other organochlorine compound, OCs) were measured in the particulate material by GC-MS and GC-MS/MS, using previously developed analytical methods. The concentration levels observed were compared to previously reported values in steady sediments in the same river and discussed on a regulatory perspective. Hydrographs and sedigraphs recorded showed a peak-flow of 1,300 m(3)s(-1) and a corresponding peak of suspended sediments of 315 mg L(-1). Combination of flow discharge, suspended sediments and pollutants' concentrations data allowed for quantifying the mass flows (mass per unit of time) and setting the load budgets (weight amount) of the different pollutants transported by the river during the monitored event. Mean mass-flows and total load values found were 20.2 mg s(-1) (400 g) for PAHs, 38 mg s(-1) (940 g) for DDX, 44 mg s(-1) (1,038 g) for PCBs and 8 mg s(-1) (200 g) for OCs. The dynamic pattern behavior of PAHs differs substantially to that of

  1. Ecological River Basin Management.

    Science.gov (United States)

    Smith, Anthony Wayne

    Addressing the Seventh American Water Resources Conference, Washington, D. C., October, 1971, Anthony Wayne Smith, President, National Parks and Conservation Association, presents an expose on how rivers should be managed by methods which restores and preserve the natural life balances of the localities and regions through which they flow. The…

  2. High spatial patchiness of methane concentrations over the flat landscape of the Ebro River Delta (NW Mediterranean)

    Science.gov (United States)

    Morguí, J.-A.; Rodó, X.; Curcoll, R.; Agueda, A.; Sánchez, L.; Occhipinti, P.; Nofuentes, M.; Arias, R.; Batet, O.

    2012-04-01

    With the aim of evaluate the role of a different water management on greenhouse gases (GHGs) at each side of the Ebro River Delta, five points were chosen to be sampled for GHGs for studying their spatial variability along diurnal cycles. The daily schedule for sampling was starting one day at the evening/sunset, followed by the next day dawn sampling, and eventually closing the cycle at the evening/sunset. Samples are been taken along the seasonal cycle to cope with the main rice works: seeding, growing, flourishing, maturation, harvesting, fields flooding and soil aeration before new seeding. The Ebre River Delta terrain is covered in its 200 km2 with the same agroecosystem (paddy fields) at the two riversides, and natural lagoons and marshes are found along the shoreline. The five spots to be sampled were selected to represent all these habitats at each side of the Delta; one is close to paddy fields, another one to the lagoons, and the fifth one to the river embankments up the river, with a pentagonal shape. Continuous measurements (CO2, CH4, H2O) following radial paths transects of the pentagon were performed with a Cavity Ring-Down Spectroscopy (CRDS) analyser mounted on a car. The air inlet was held in front of the car, at forty cm above ground, with a little buffer to filter particles. Due to the constraints imposed by this buffer, every measurement was copying for a track of 30 m, for a 60 km/hour car speed. Flasks for GHGs (CO2, CH4, CO, N20) analyses by Gas Chromatography were taken at every spot with the car engine stopped while the CRDS analyzer was measuring yet, in order to compare results. Ebre River Delta rice cultures management is usually characterized for maintaining the paddies flooded after the harvesting of rice to giving enough aquatic life for feeding the migratory birds. Only during the previous time to seed the rice, the fields are dried. Nevertheless, two years ago, the left side of the riversides is being dried during winter to prevent

  3. The chemistry of playa-lake-sediments as a tool for the reconstruction of Holocene environmental conditions - a case study from the central Ebro basin

    Science.gov (United States)

    Schütt, Brigitta

    The focus of the presented study is the reconstruction of the Holocene limnic and drainage basin conditions of the Laguna de Jabonera, a today playa-lake-system in the Desierto de Calanda, central Ebro Basin, using the inorganic characters of the lacustrine sediments. Mineralogical fabric helped to reconstruct the overall geomorphic processes and gives clues to the synsedimentary limnic environment (paleosalinity). The chemical composition of the lacustrine sediments largely reflects the mineralogical composition, but the higher resolution of the geochemical data compared to the mineralogical data enables to stratigraphically split the extracted core profile into three stratigraphic units. Supplementally, it is demonstrated that Statistics between chemical compounds point to the synsedimentary intensity of weathering and soil forming processes. As for the lacustrine sediments investigated there are no data yet available a preliminary chronological framework is derived by comparison with results from neighbouring areas. Based on this the hypothesis is put forward that during the socalled Little Ice Age subhumid to dry-subhumid environmental conditions occurred. Also possibly during the late Subboreal distinct wetter environmental conditions than today prevailed. Additionally, it is demonstrated that in the most recent past human impact is causing increased erosion rates and, thus, increased deposition of detritals in the most recent lacustrine sediments.

  4. How integrated is river basin management?

    Science.gov (United States)

    Downs, Peter W.; Gregory, Kenneth J.; Brookes, Andrew

    1991-05-01

    Land and water management is increasingly focused upon the drainage basin. Thirty-six terms recently used for schemes of “integrated basin management” include reference to the subject or area and to the aims of integrated river basin management, often without allusion to the multiobjective nature. Diversity in usage of terms has occurred because of the involvement of different disciplines, of the increasing coherence of the drainage basin approach, and the problems posed in particular parts of the world. The components included in 21 different approaches are analyzed, and, in addition to showing that components related broadly to water supply, river channel, land, and leisure aspects, it is concluded that there are essentially five interrelated facets of integrated basin management that involved water, channel, land, ecology, and human activity. Two aspects not fully included in many previous schemes concern river channel changes and the dynamic integrity of the fluvial system. To clarify the terminology used, it is suggested that the term comprehensive river basin management should be used where a wide range of components is involved, whereas integrated basin management can signify the interactions of components and the dominance of certain components in the particular area. Holistic river basin management is advocated as a term representing an approach that is both fully comprehensive and integrated but also embraces the energetics of the river system and consideration of changes of river channels and of human impacts throughout the river system. The paradigm of working with the river can be extended to one of working with the river in the holistic basin context.

  5. First record of the mangrove palm Nypa from the northeastern Ebro Basin, Spain: with taphonomic criteria to evaluate the drifting duration

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Dominguez, R.; Cascales-Minana, B.; Ferrer, J.; Diez, J.B.

    2016-07-01

    Fossil fruits pertaining to the mangrove palm genus Nypa Steck, (Arecaceae, Arecales) were collected from a new plant-bearing assemblage in the Arguis Formation (Fm.), northeastern Ebro Basin (Arguis, Huesca Province, Spain). This formation is Bartonian to early Priabonian in age and comprises pro-delta and carbonate platform deposits. The new assemblage consists of nine specimens of fossil Nypa fruits and one monocotyledon leaf fragment. Over half of these fossil fruits are nearly-complete (i.e. with preserved mesocarps) while the other represent endocarps. From the point of view of morphology and size they resemble other European records of this genus. The type of remain preserved (fruits or endocarps), presence of abrasion, Teredo borings and sedimentary facies provide criteria to infer contrasting lengths of transport (drifting). However, they indicate in all cases that these fossil fruits were afloat in seawater for a considerable time. The discovery of Nypa fruits suggests a tropical-subtropical climate in the area, as well as the presence of a coastal environment and littoral forests during deposition. This interpretation corroborates previous findings from the nearby Eocene outcrops of the Catalan Central Depression (Eastern Pyrenees range). (Author)

  6. River Basin Standards Interoperability Pilot

    Science.gov (United States)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture

  7. Simulating long-term past changes in the balance between water demand and availability and assessing their main drivers at the river basin management scale

    Directory of Open Access Journals (Sweden)

    J. Fabre

    2014-11-01

    Full Text Available The aim of this study was to assess the balance between water demand and availability and its spatial and temporal variability from 1971 to 2009 in the Herault (2500 km2, France and the Ebro (85 000 km2, Spain catchments. Natural streamflow was evaluated using a conceptual hydrological model. The regulation of river flow was accounted for through a widely applicable demand-driven reservoir management model applied to the largest dam in the Herault basin and to 11 major dams in the Ebro basin. Urban water demand was estimated from population and monthly unit water consumption data. Water demand for irrigation was computed from irrigated area, crop and soil data, and climatic forcing. Finally, a series of indicators comparing water supply and water demand at strategic resource and demand nodes were computed at a 10 day time step. Variations in water stress in each catchment over the past 40 years were successfully modeled, taking into account climatic and anthropogenic pressures and changes in water management strategies over time. Observed changes in discharge were explained by separating human and hydro-climatic pressures on water resources: respectively 20 and 3% of the decrease in the Ebro and the Herault discharges were linked to human-induced changes. Although key areas of the Herault basin were shown to be highly sensitive to hydro-climatic variability, the balance between water uses and availability in the Ebro basin appears to be more critical, owing to high agricultural pressure on water resources. The proposed modeling framework is currently being used to assess water stress under climatic and socio-economic prospective scenarios. Further research will investigate the effectiveness of adaptation policies aimed at maintaining the balance between water use and availability.

  8. Simulating long-term past changes in the balance between water demand and availability and assessing their main drivers at the river basin management scale

    Science.gov (United States)

    Fabre, J.; Ruelland, D.; Dezetter, A.; Grouillet, B.

    2014-11-01

    The aim of this study was to assess the balance between water demand and availability and its spatial and temporal variability from 1971 to 2009 in the Herault (2500 km2, France) and the Ebro (85 000 km2, Spain) catchments. Natural streamflow was evaluated using a conceptual hydrological model. The regulation of river flow was accounted for through a widely applicable demand-driven reservoir management model applied to the largest dam in the Herault basin and to 11 major dams in the Ebro basin. Urban water demand was estimated from population and monthly unit water consumption data. Water demand for irrigation was computed from irrigated area, crop and soil data, and climatic forcing. Finally, a series of indicators comparing water supply and water demand at strategic resource and demand nodes were computed at a 10 day time step. Variations in water stress in each catchment over the past 40 years were successfully modeled, taking into account climatic and anthropogenic pressures and changes in water management strategies over time. Observed changes in discharge were explained by separating human and hydro-climatic pressures on water resources: respectively 20 and 3% of the decrease in the Ebro and the Herault discharges were linked to human-induced changes. Although key areas of the Herault basin were shown to be highly sensitive to hydro-climatic variability, the balance between water uses and availability in the Ebro basin appears to be more critical, owing to high agricultural pressure on water resources. The proposed modeling framework is currently being used to assess water stress under climatic and socio-economic prospective scenarios. Further research will investigate the effectiveness of adaptation policies aimed at maintaining the balance between water use and availability.

  9. Large-scale coastal and fluvial models constrain the late Holocene evolution of the Ebro Delta

    Science.gov (United States)

    Nienhuis, Jaap H.; Ashton, Andrew D.; Kettner, Albert J.; Giosan, Liviu

    2017-09-01

    The distinctive plan-view shape of the Ebro Delta coast reveals a rich morphologic history. The degree to which the form and depositional history of the Ebro and other deltas represent autogenic (internal) dynamics or allogenic (external) forcing remains a prominent challenge for paleo-environmental reconstructions. Here we use simple coastal and fluvial morphodynamic models to quantify paleo-environmental changes affecting the Ebro Delta over the late Holocene. Our findings show that these models are able to broadly reproduce the Ebro Delta morphology, with simple fluvial and wave climate histories. Based on numerical model experiments and the preserved and modern shape of the Ebro Delta plain, we estimate that a phase of rapid shoreline progradation began approximately 2100 years BP, requiring approximately a doubling in coarse-grained fluvial sediment supply to the delta. River profile simulations suggest that an instantaneous and sustained increase in coarse-grained sediment supply to the delta requires a combined increase in both flood discharge and sediment supply from the drainage basin. The persistence of rapid delta progradation throughout the last 2100 years suggests an anthropogenic control on sediment supply and flood intensity. Using proxy records of the North Atlantic Oscillation, we do not find evidence that changes in wave climate aided this delta expansion. Our findings highlight how scenario-based investigations of deltaic systems using simple models can assist first-order quantitative paleo-environmental reconstructions, elucidating the effects of past human influence and climate change, and allowing a better understanding of the future of deltaic landforms.

  10. Water scarcity in the Jordan River basin.

    Science.gov (United States)

    Civic, M A

    1999-03-01

    This article reports the problem on water scarcity in the Jordan River basin. In the Jordan River basin, freshwater scarcity results from multiple factors and most severely affects Israel, Jordan, the West Bank, and the Gaza Strip. One of these multiple factors is the duration of rainfall in the region that only occurs in a small area of highlands in the northwest section. The varying method of water use parallels that of Israel that utilizes an estimated 2000 million cu. m. The national patterns of water usage and politically charged territorial assertions compound the competition over freshwater resources in the region. The combination of political strife, resource overuse, and contaminated sources means that freshwater scarcity in the Jordan River basin will reach a critical level in the near future. History revealed that the misallocation/mismanagement of freshwater from the Jordan River basin was the result of centuries of distinct local cultural and religious practices combined with historical influences. Each state occupying near the river basin form their respective national water development schemes. It was not until the mid-1990s that a shared-use approach was considered. Therefore, the critical nature of water resource, the ever-dwindling supply of freshwater in the Jordan River basin, and the irrevocability of inappropriate policy measures requires unified, definitive, and ecologically sound changes to the existing policies and practices to insure an adequate water supply for all people in the region.

  11. South Fork Holston River basin 1988 biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  12. Hotspots within the Transboundary Selenga River Basin

    Science.gov (United States)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  13. Radioactivity evaluation of Ebro river water and sludge treated in a potable water treatment plant located in the South of Catalonia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, M.; Penalver, A.; Aguilar, C. [Unitat de Radioquimica Ambiental i Sanitaria, Universitat Rovira i Virgili, Consorci d' Aigues de Tarragona (CAT), Ctra. Nacional 340 Km. 1094, Ap. correus n.7, 43895 L' Ampolla Tarragona (Spain); Borrull, F. [Unitat de Radioquimica Ambiental i Sanitaria, Universitat Rovira i Virgili, Consorci d' Aigues de Tarragona (CAT), Ctra. Nacional 340 Km. 1094, Ap. correus n.7, 43895 L' Ampolla Tarragona (Spain)], E-mail: francesc.borrull@urv.cat

    2010-03-15

    A potable water treatment plant with an average production rate of 4.3 m{sup 3}/s, providing several cities in the south of Catalonia (Spain) with drinking water, has been studied for a period of six years (2002-2007) regarding its capacity to remove several natural and anthropogenic radionuclides. First, gross alpha, gross beta and tritium activities were determined in ingoing and outgoing water samples. The values for all these parameters were below the Spanish normative limits established for waters for human consumption. For the sludge samples generated in the plant, we quantified some gamma emitting radioisotopes: natural ({sup 40}K, {sup 214}Pb, etc.) and artificial ({sup 60}Co, {sup 110m}Ag, etc.) which may be related to the geological or/and industrial activities (such as a nuclear power plant) located upstream of the PWTP on the Ebro River. Finally, when the sludge samples were compared with those from other water treatment plants, the influence of the industrial activities on the radioisotopes found in the analysed samples was confirmed since the activity levels for some of the isotopes quantified were 10 times higher.

  14. Impact of industries in the accumulation of radionuclides in the lower part of Ebro river (Catalonia, Spain); Impact des industries dans l'accumulation de radionucleides dans le cours inferieur de l'Ebre (Catalogne, Espagne)

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, M.; Penalver, A.; Aguilar, C.; Borrull, F. [Unitat de Radioquimica Ambiental i Sanitaria, Universitat Rovira i Virgili, Consorci d' Aigues de Tarragona (CAT), L' Ampolla Tarragona (Spain)

    2010-10-15

    Ebro River extends over almost 930 km and is the main Spanish river entering the Mediterranean Sea. There are several industries located along this river course including a di-calcium phosphate factory (DCP) and two nuclear power reactors. These installations, together with other factors such as the geology, can contribute to the radiological content of the river. Therefore, this study was performed to determine some natural and also some anthropogenic radionuclide concentrations in the Ebro River ecosystem. We analysed water samples, solid samples (rice field sludge and surface marine sediment samples), and also biota samples (Cladophora glomerata and Cynodon dactylon). For water samples, gross alpha, gross beta, tritium, uranium, thorium and also a group of gamma-emitting isotopes' activities were determined. The main contribution to radioactivity for these samples was due to some isotopes from the uranium and thorium chain. For the solid samples, we quantified some natural and artificial gamma radioisotopes, which may be related to the geological and/or industrial activities located in this zone. In the case of biota, the results indicate that the presence of the DCP has a significant influence, since the highest activity was observed in the surroundings of this industry (Flix), where isotopes such as {sup 214}Bi and {sup 214}Pb presented activity values of 105 {+-} 43 Bq/kg and 100 {+-} 58 Bq/kg, respectively. (authors)

  15. Some previous ABL measurements in the Duero and Ebro valleys

    Science.gov (United States)

    Cuxart, Joan

    2017-04-01

    Evapotranspiration in semi-arid regimes needs improved understanding and representation in numerical models. Most of the Iberian Peninsula (IP) upper soil in summer becomes dry which makes of it a good area for field campaigning and numerical modeling. The two large basins at the northern IP, Duero (essentially non-irrigated cereals) and Ebro (large irrigated areas surrounded by typical mediterranean vegetation), have already seen some ABL research efforts in the last decades. The CIBA site is located over a plateau in the centre of the Duero basin. The plateau has shallow soil over karstic rock, contrarily to the lower areas that are essentially sedimentary. There radiation and fluxes of biogenic gases have been measured during decades by the University of Valladolid. Since 1998 the renovated 100m tower has been used to study the ABL, focusing essentially in the nocturnal stably stratified regime, the mesoscale low-level jets, the effet of surface heterogeneities and fog events. Studies have been supplemented with use of satellital information and high-resolution mesoscale simulations. The center of the Ebro basin was the site of ABL measurements between 2008 and 2011, when a surface energy budget (SEB) station and a WindRASS were operating in the middle of a large vineyard, occasionally irrigated during the summer season, keeping the soil always with enough water content to sustain the needs of the vines. Similar topics as for the Duero basin were inspected, here supplemented by the effect of the surrounding topography and the wet-dry terrain heterogeneities, both contributing to intensify the strength of low-level circulations. The SEB imbalance was quantified and the terms compared to the ones from the ECMWF model, finding very significant differences. The SEB and WindRASS were installed in 2015 in the large Pyrenean valley of La Cerdanya, through which the Segre river (a main tributary of the Ebro) flows. The soil in this area usually retains enough water

  16. Field comparison of sardine post-flexion larval growth and biochemical composition from three sites in the W Mediterranean (Ebro river coast, bays of Almería and Málaga

    Directory of Open Access Journals (Sweden)

    Alberto Garcia

    2006-10-01

    Full Text Available Late larval stages of sardine (16-23 mm were sampled during the 2003 spawning season in their nursery grounds located off the Ebro river mouth, on the Catalan coast, and in two bays of the Alborán Sea coasts, the Bay of Almería and the Bay of Málaga. The daily growth analysis of each sampled population revealed faster growth in the Ebro sardine larvae than in both of the Alboran Sea larval populations. This fact is supported by their greater content with age of DNA, RNA and protein. However, the significantly higher carbohydrate content of the Bay of Almería sardine larvae and a higher Fulton’s index, indicative of energy storage of individuals, in both of the sardine populations sampled in the Bays of Almería and Málaga show evident differences in the daily growth of the Alborán Sea larvae from those originating in the Ebro region. Late larval growth in the Alborán Sea sardine tends to favour an increase in body mass rather than in body length. This study hypothesises that the productivity pulses off the Alboran Sea coasts induced by the north and northwestern wind regimes may be responsible for the growth pulses observed in the otolith microstructure.

  17. Large depressions, thickened terraces, and gravitational deformation in the Ebro River valley (Zaragoza area, NE Spain): Evidence of glauberite and halite interstratal karstification

    Science.gov (United States)

    Guerrero, Jesús; Gutiérrez, Francisco; Galve, Jorge P.

    2013-08-01

    In the studied reach of the Ebro Valley, the terrace and pediment sediments deposited over glauberite- and halite-bearing evaporites show local thickenings (> 50 m) recording dissolution-induced synsedimentary subsidence. Recent data on the lithostratigraphy of the evaporite sequence allow relating the alluvium thickenings with either halite or glauberite dissolution. The alluvium-filled dissolution basin underlying the youngest terraces (T8-T11) is ascribed to halite karstification; the top of a halite unit approximately 75 m thick is situated 40-15 m below the valley bottom. The thickenings of terrace (T1-T7) and pediment sediments are attributed to interstratal glauberite karstification: (1) Coincidence between the elevation range of the terraces and that of the glauberite-rich unit. Glauberite beds reach 30 and 100 m in single-bed and cumulative thickness, respectively. (2) The exposed bedrock underlying thickened alluvium shows abundant subsidence features indicative of interstratal karstification. The most common structure corresponds to hectometer-scale sag basins with superimposed collapses in the central sector of each basin. The subsided bedrock is frequently transformed into dissolution-collapse breccias showing a complete textural gradation, from crackle packbreccias to chaotic floatbreccias and karstic residues. (3) Paleokarst exposures show evidence of karstification confined to specific beds made up of secondary gypsum after precursory glauberite, partly dissolved and partly replaced. Despite the magnitude of the subsidence recorded by the thickened alluvium and unlike nearby tributaries, the terraces show a continuous and parallel arrangement indicating that the fluvial system was able to counterbalance subsidence by aggradation. A number of kilometer-size flat-bottom depressions have been developed in the valley margin, typically next to and inset into thickened terrace and pediment deposits. The subsidence structures exposed in artificial

  18. 76 FR 61382 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2011-10-04

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. ] SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  19. 75 FR 25877 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2010-05-10

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control ] Act of 1974...

  20. 78 FR 70574 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2013-11-26

    ....20350010.REG0000, RR04084000] Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  1. 77 FR 23508 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2012-04-19

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  2. 75 FR 27360 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2010-05-14

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  3. 75 FR 66389 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2010-10-28

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  4. 76 FR 24515 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2011-05-02

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of... Committee Act, the Bureau of Reclamation announces that the Colorado River Basin Salinity Control Advisory...) 524-3826; e-mail at: kjacobson@usbr.gov . SUPPLEMENTARY INFORMATION: The Colorado River Basin...

  5. 77 FR 61784 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2012-10-11

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  6. 78 FR 23784 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2013-04-22

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974...

  7. The "normal" elongation of river basins

    Science.gov (United States)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  8. 伊比利亚河共生的当年生鳟和埃布罗河鳟的夏季摄食关系%Summer feeding relationships of the co-occurring hatchling brown trout Salmo trutta and Ebro minnows Phoxinus bigrri in an Iberian river

    Institute of Scientific and Technical Information of China (English)

    Javier OSCOZ; Pedro M.LEUNDA; María C.ESCALA; Rafael MIRANDA

    2008-01-01

    The stomach content composition of 306 Ebro minnows and 185 hatchling brown trout captured in August (1996-1998) in the Larraun River (Ebro River Basin, Northern Spain) is described and compared in order to determine interspecific dietary overlap. Both species fed mainly on aquatic invertebrates. Feeding strategy plots showed that both species are generalist feeders with a heterogeneous diet. Additionally, the comparison between the stomach content and the benthic macroinvertebrate community revealed that both hatchling brown trout and Ebro minnows avoided Elmidae, Gammaridae, Caenidae, Baetidae and Leuctridae, instead showing a preference for Chironomidae, Heptageniidae and Trichoptera. Even though a two species was significant in the Larraun River, differential habitat use and diet plasticity could be minimizing the interspecific competition in river reaches where both species were co-dominant, allowing co-occurrence of these species in relatively high numbers. However, this adaptability and plasticity in Ebro minnows could be a threat to allopatric brown trout populations in rivers with limited trophic resources and limited habitat availability%1996-1998年8月在Larraun河(埃布罗河流域,西班牙北部)共捕获306尾埃布罗河(鱼岁)和185尾0龄的鳟,分析比较了胃含物组成,并测定了种间的食物重叠.食物的个数百分比组成表明两种都主要摄食水生无脊椎动物.摄食策略图显示两种都是摄食不同食物 种类的广食性种类.另外,比较胃含物和底栖大型无脊椎动物群落表明,0龄的鳟和埃布罗河(鱼岁)不摄食光螺科、钩虾科、细蜉科、 四节蜉科和卷襀科的物种,而喜食摇蚊科、五节蜉科和毛翅目物种.尽管简化的Morisitas指数表明Larraun河中这两种鱼之间的食物重叠是显著的,但由于栖息地不同和摄食的可塑性可以降低种间的竞争,使得该水域的这两种鱼能以相对较大的数量共存.然而,在食物资源和

  9. Soil catena along gypseous woodland in the middle Ebro Basin: soil properties and micromorphology relationships Propiedades del suelo y relaciones micromorfológicas de suelos yesosos forestales en el Valle medio del Ebro Propriedades do solo e relações micromorfológicas dos solos florestais gessosos no Vale do Ebro

    Directory of Open Access Journals (Sweden)

    Javier M Aznar

    2013-03-01

    Full Text Available Gypsisols, mainly distributed in arid lands, support a key economic activity and have attracted a lot of scientific interest due to their particular physical and chemical properties. For example, Gypsisols show a high erodibility, low fertility and a variable water holding capacity that can be attributed to different gypsum particle sizes. This study aims to describe some representative Gypsisols from the middle Ebro Basin. Five representative soil profiles (mainly Gypsisols by WRB were selected and sampled at different positions along a hillside where soils where developed on gyprock. Furthemore, it links micromorphological properties with soil water retention. Soils have a dominant loamy texture, more rarely stoney. Gypsum is abundant in all soil profiles, ranging from 6 to 84% with minimum values in Ah horizons and maximum in By and Cy. The soils have a low level of salinity and a very low cation exchange capacity (CEC. The soil organic matter (SOM is medium or abundant in the Ah horizons, otherwise it is low. Soil aggregate stability (SAS is related significantly and positively with SOM and porosity, which is also positively related with moisture retention at field capacity and saturation humidity. However, there is no significant correlation between porosity and permanent wilting point (PWP. Soil water retention is dependant on the gypsum percentage and textural class. Low levels of gypsum have no influence on water retention, but high gypsum levels (> 60% enhance the field capacity (FC and decrease PWP, especially when the gypsum is microcrystalline. Gypsum levels between 40 and 60% also increase available water contents (AWC due to a decrease in PWP. There is a positive and significant correlation between PWP and FC in Gypsisols, except for those which are loamy and have gypsum values over 40%. The higher available water capacity (AWC than expected is related to microcrystalline gypsum, predominant in the studied soils. These high AWC

  10. Analytical framework for River Basin Management Planning

    DEFF Research Database (Denmark)

    Nielsen, Helle Ørsted; Pedersen, Anders Branth; Frederiksen, Pia

    This paper proposes a framework for the analysis of the planning approach, and the processes and procedures, which have been followed in the preparation of the River Basin District Management Plans (RBMPs). Different countries have different policy and planning traditions and -styles. Developed o...

  11. SEA of river basin management plans

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone

    2009-01-01

    In, 2000 the European Parliament and the European Council passed the Water Framework Directive (WFD) to be implemented in all Member States. The consequence of the directive is that river basin management plans (RBMPs) shall be prepared which are legally subject to a strategic environmental...

  12. Patterns of mercury and methylmercury bioaccumulation in fish species downstream of a long-term mercury-contaminated site in the lower Ebro River (NE Spain).

    Science.gov (United States)

    Carrasco, Luis; Barata, Carlos; García-Berthou, Emili; Tobias, Aurelio; Bayona, Josep M; Díez, Sergi

    2011-09-01

    Since the 19th century, large amounts of industrial waste were dumped in a reservoir adjacent to a chlor-alkali plant in the lower Ebro River (NE Spain). Previous toxicological analysis of carp populations inhabiting the surveyed area have shown that the highest biological impact attributable to mercury pollution occurred downstream of the discharge site. However, mercury speciation in fish from this polluted area has not been addressed yet. Thus, in the present study, piscivorous European catfish (Silurus glanis) and non-piscivorous common carp (Cyprinus carpio) were selected, to investigate the bioavailability and bioaccumulation capacities of both total mercury (THg) and methylmercury (MeHg) at the discharge site and downstream points. Multiple Correspondence Analysis (MCA) was applied to reduce the dimensionality of the data set, and Multiple Linear Regression (MLR) models were fitted in order to assess the relationship between both Hg species in fish and different variables of interest. Mercury levels in fish inhabiting the dam at the discharge site were found to be approximately 2-fold higher than those from an upstream site; while mercury pollution progressively increased downstream of the hot spot. In fact, both THg and MeHg levels at the farthest downstream point were 3 times greater than those close to the waste dump. This result clearly indicates downstream transport and increased mercury bioavailability as a function of distance downstream from the contamination source. A number of factors may affect both the downstream transport and increased Hg bioavailability associated with suspended particulate matter (SPM) and dissolved organic carbon (DOC).

  13. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins.

    Science.gov (United States)

    Gampe, David; Nikulin, Grigory; Ludwig, Ralf

    2016-12-15

    Climate change will likely increase pressure on the water balances of Mediterranean basins due to decreasing precipitation and rising temperatures. To overcome the issue of data scarcity the hydrological relevant variables total runoff, surface evaporation, precipitation and air temperature are taken from climate model simulations. The ensemble applied in this study consists of 22 simulations, derived from different combinations of four General Circulation Models (GCMs) forcing different Regional Climate Models (RCMs) and two Representative Concentration Pathways (RCPs) at ~12km horizontal resolution provided through the EURO-CORDEX initiative. Four river basins (Adige, Ebro, Evrotas and Sava) are selected and climate change signals for the future period 2035-2065 as compared to the reference period 1981-2010 are investigated. Decreased runoff and evaporation indicate increased water scarcity over the Ebro and the Evrotas, as well as the southern parts of the Adige and the Sava, resulting from a temperature increase of 1-3° and precipitation decrease of up to 30%. Most severe changes are projected for the summer months indicating further pressure on the river basins already at least partly characterized by flow intermittency. The widely used Falkenmark indicator is presented and confirms this tendency and shows the necessity for spatially distributed analysis and high resolution projections. Related uncertainties are addressed by the means of a variance decomposition and model agreement to determine the robustness of the projections. The study highlights the importance of high resolution climate projections and represents a feasible approach to assess climate impacts on water scarcity also in regions that suffer from data scarcity.

  14. Single-grain OSL dating of Early Middle Palaeolithic deposits at Cuesta de la Bajada, Ebro Basin, Spain

    Science.gov (United States)

    Arnold, Lee; Demuro, Martina; Santonja, Manuel; Perez-Gonzalez, Alfredo; Pares, Josep

    2013-04-01

    The open-air site of Cuesta de la Bajada comprises a 2-2.5 m-thick sequence of fluvial-lacustrine sediments inset into the +50-60 m terrace deposits preserved along the south-eastern margins of the Alfambra river valley, Teruel, Spain. The main archaeological horizons lie ~20 m above the present-day river level and consists of an upward-fining sequence of massive fluvial silts and fine sands with dispersed gravels, detritic marls and shales that collectively overlie a series of planar bedded fluvial gravels. These units have yielded ~3000 lithic artefacts displaying reduction techniques characteristic of an early Middle Palaeolithic techno-complex, as well as a multitude of faunal remains indicative of a late Middle Pleistocene origin. The paucity of open-air Palaeolithic sites in the interior eastern sector of the Iberian Peninsula, and the relatively low number of documented early Middle Palaeolithic archives in this region, means that Cuesta de la Bajada is of key importance for understanding the coexistence/transition of Iberian Acheulean and Mousterian techno-complexes during the Middle Pleistocene period. Establishing reliable absolute chronologies at Cuesta de la Bajada remains essential for understanding the regional significance of this site. In an attempt to redress the existing chronological uncertainty we are undertaking an interdisciplinary dating study of the Middle Palaeolithic deposits using OSL dating, ESR/U-series dating of teeth and ESR dating of sedimentary quartz. Here we present results obtained using quartz single-grain OSL dating of 4 samples collected from a 7 m vertical profile bracketing the archaeological horizons. 2 samples were collected from the archaeology-bearing silt and fine sand horizons, while the remaining samples were obtained from well-bedded fine-sands and silts 3.5 m above and 3 m below the main excavation. The measured quartz grains are characterised by relatively bright OSL signals and typically display dose

  15. Strengthening river basin institutions: The Global Environment Facility and the Danube River Basin

    Science.gov (United States)

    Gerlak, Andrea K.

    2004-08-01

    Increased international attention to water resource management has resulted in the creation of new institutional arrangements and funding mechanisms as well as international initiatives designed to strengthen river basin institutions. The Global Environment Facility's (GEF) International Waters Program is at the heart of such novel collaborative regional approaches to the management of transboundary water resources. This paper assesses GEF-led efforts in the Danube River Basin, GEF's most mature and ambitious projects to date. It finds that GEF has been quite successful in building scientific knowledge and strengthening regional governance bodies. However, challenges of coordinating across expanding participants and demonstrating clear ecological improvements remain. GEF-led collaborative activities in the Danube River Basin reveal three critical lessons that can inform future river basin institution building and decision making, including the importance of appropriately creating and disseminating scientific data pertaining to the river system, the need for regional governance bodies for integrated river basin management, and the necessity to address coordination issues throughout project planning and implementation.

  16. Digital spatial data as support for river basin management: The case of Sotla river basin

    Directory of Open Access Journals (Sweden)

    Prah Klemen

    2013-01-01

    Full Text Available Many real-world spatially related problems, including river-basin planning and management, give rise to geographical information system based decision making, since the performance of spatial policy alternatives were traditionally and are still often represented by thematic maps. Advanced technologies and approaches, such as geographical information systems (GIS, offer a unique opportunity to tackle spatial problems traditionally associated with more efficient and effective data collection, analysis, and alternative evaluation. This paper discusses the advantages and challenges of the use of digital spatial data and geographical information systems in river basis management. Spatial data on social, environmental and other spatial conditions for the study area of 451.77 km2, the Slovenian part of the Sotla river basin, are used to study the GIS capabilities of supporting spatial decisions in the framework of river basin management.

  17. Strategies to reduce water stress in Euro-Mediterranean river basins.

    Science.gov (United States)

    Garrote, Luis; Granados, Alfredo; Iglesias, Ana

    2016-02-01

    A portfolio of water management strategies now exists to contribute to reach water demand and supply targets. Among them, integrated water resource management has a large potential for reducing water disagreement in water scarcity regions. Many of the strategies are based on well tested choices and technical know-how, with proven benefits for users and environment. This paper considers water management practices that may contribute to reduce disagreement in water scarcity areas, evaluating the management alternatives in the Mediterranean basins of Europe, a region that exemplifies other water scarcity regions in the world. First, we use a model to compute water availability taking into account water management, temporal heterogeneity, spatial heterogeneity and policy options, and then apply this model across 396 river basins. Second, we use a wedge approach to illustrate policy choices for selected river basins: Thrace (Greece), Guadalquivir, Ebro, Tagus and Duero (Spain), Po (Italy) and Rhone (France). At the wide geographical level, the results show the multi-determinant complexities of climate change impacts and adaptation measures and the geographic nature of water resources and vulnerability metrics. At the local level, the results show that optimisation of water management is the dominating strategy for defining adaptation pathways. Results also show great sensitivity to ecological flow provision, suggesting that better attention should be paid to defining methods to estimate minimum ecological flows in water scarcity regions. For all scales, average water resource vulnerability computed by traditional vulnerability indicators may not be the most appropriate measure to inform climate change adaptation policy. This has large implications to applied water resource studies aiming to derive policy choices, and it is especially interesting in basins facing water scarcity. Our research aims to contribute to shape realistic water management options at the regional

  18. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies

  19. Damming the rivers of the Amazon basin

    Science.gov (United States)

    Latrubesse, Edgardo M.; Arima, Eugenio Y.; Dunne, Thomas; Park, Edward; Baker, Victor R.; D'Horta, Fernando M.; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A.; Ribas, Camila C.; Norgaard, Richard B.; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C.

    2017-06-01

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin’s floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

  20. Effective Monitoring of Small River Basins

    Directory of Open Access Journals (Sweden)

    W. Symader

    2002-01-01

    Full Text Available As the transport of many pollutants occurs during high floods monitoring programs must focus on these intermittent events. In small rivers the pollutants start their travel as short pulses often associated with fine particles, but disperse on their way downstreams. Therefore the chemical data of a flood event are only representative of a small part of the basin adjacent to the monitoring station. This is usually not taken into account by evaluating water quality data.

  1. Effective Monitoring of Small River Basins

    OpenAIRE

    2002-01-01

    As the transport of many pollutants occurs during high floods monitoring programs must focus on these intermittent events. In small rivers the pollutants start their travel as short pulses often associated with fine particles, but disperse on their way downstreams. Therefore the chemical data of a flood event are only representative of a small part of the basin adjacent to the monitoring station. This is usually not taken into account by evaluating water quality data.

  2. Simulating past changes in the balance between water demand and availability and assessing their main drivers at the river basin scale

    Science.gov (United States)

    Fabre, J.; Ruelland, D.; Dezetter, A.; Grouillet, B.

    2015-03-01

    In this study we present an integrative modeling framework aimed at assessing the balance between water demand and availability and its spatial and temporal variability over long time periods. The model was developed and tested over the period 1971-2009 in the Hérault (2500 km2, France) and the Ebro (85 000 km2, Spain) catchments. Natural streamflow was simulated using a conceptual hydrological model. The regulation of river flow was accounted for through a widely applicable demand-driven reservoir management model applied to the largest dam in the Hérault Basin and to 11 major dams in the Ebro Basin. Urban water demand was estimated from population and monthly unit water demand data. Water demand for irrigation was computed from irrigated area, crop and soil data, and climatic forcing. Water shortage was assessed at a 10-day time step by comparing water demand and availability through indicators calculated at strategic resource and demand nodes. The outcome of this study is twofold. First, we were able to correctly simulate variations in influenced streamflow, reservoir levels and water shortage between 1971 and 2009 in both basins, taking into account climatic and anthropogenic pressures and changes in water management strategies over time. Second, we provided information not available through simple data analysis on the influence of withdrawals and consumptive use on streamflow and on the drivers of imbalance between demand and availability. Observed past variations in discharge were explained by separating anthropogenic and climatic pressures in our simulations: 3% (20%) of the decrease in the Hérault (Ebro) discharge were linked to anthropogenic changes. Although key areas of the Hérault Basin were shown to be highly sensitive to hydro-climatic variability, the balance between water demand and availability in the Ebro Basin appears to be more critical, owing to high agricultural pressure on water resources. The modeling framework developed and tested in

  3. Genetic and phenoptypic differentiation of zebra mussel populations colonizing Spanish river basins.

    Science.gov (United States)

    Navarro, Anna; Sánchez-Fontenla, Javier; Cordero, David; Faria, Melisa; Peña, Juan B; Saavedra, Carlos; Blázquez, Mercedes; Ruíz, Olga; Ureña, Rocío; Torreblanca, Amparo; Barata, Carlos; Piña, Benjamin

    2013-07-01

    Zebra mussel populations in Ebro and Mijares Rivers (northern Spain) were analyzed to study the mechanisms by which this aquatic species deals with pollution. Variability analyses of mitochondrial cytochrome oxidase I gene and of one nuclear microsatellite were performed for ten populations from the Ebro River and one from the Mijares River. Comparison of these results with those from five additional European populations indicated that the Spanish populations constitute a homogeneous gene pool. Transcriptome analyses of gill samples from a subset of the Spanish populations showed changes on expression levels that correlated with variations in general fitness and loads of heavy metals. The less polluted upstream Ebro populations showed overexpression of mitochondrial and cell proliferation-related genes compared to the more polluted, downstream Ebro populations. Our data indicate that heavy metals were the main factors explaining these transcriptomic patterns, and that zebra mussel is resilient to pollutants (like mercury and organochlorine compounds) proved to be extremely toxic to vertebrates. We propose that zebra mussel populations sharing a common gene pool may acclimate to different levels and forms of pollution through modulations in their transcriptomic profile, although direct selection on genes showing differential expression patterns cannot be ruled out.

  4. Operational river discharge forecasting in poorly gauged basins: the Kavango River basin case study

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Jensen, Iris Hedegaard; Guzinski, R.;

    2015-01-01

    Operational probabilistic forecasts of river discharge are essential for effective water resources management. Many studies have addressed this topic using different approaches ranging from purely statistical black-box approaches to physically based and distributed modeling schemes employing data...... assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. The objective of this study is to develop open-source software tools to support hydrologic forecasting and integrated water resources management...

  5. Scaling issues in sustainable river basin management

    Science.gov (United States)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting

  6. Spatial Preference Heterogeneity for Integrated River Basin Management: The Case of the Shiyang River Basin, China

    Directory of Open Access Journals (Sweden)

    Fanus Asefaw Aregay

    2016-09-01

    Full Text Available Integrated river basin management (IRBM programs have been launched in most parts of China to ease escalating environmental degradation. Meanwhile, little is known about the benefits from and the support for these programs. This paper presents a case study of the preference heterogeneity for IRBM in the Shiyang River Basin, China, as measured by the Willingness to Pay (WTP, for a set of major restoration attributes. A discrete choice analysis of relevant restoration attributes was conducted. The results based on a sample of 1012 households in the whole basin show that, on average, there is significant support for integrated ecological restoration as indicated by significant WTP for all ecological attributes. However, residential location induced preference heterogeneities are prevalent. Generally, compared to upper-basin residents, middle sub-basin residents have lower mean WTP while lower sub-basin residents express higher mean WTP. The disparity in utility is partially explained by the difference in ecological and socio-economic status of the residents. In conclusion, estimating welfare benefit of IRBM projects based on sample responses from a specific sub-section of the basin only may either understate or overstate the welfare estimate.

  7. Frost risks in the Mantaro river basin

    Directory of Open Access Journals (Sweden)

    G. Trasmonte

    2008-04-01

    Full Text Available As part of the study on the Mantaro river basin's (central Andes of Perú current vulnerability to climate change, the temporal and spatial characteristics of frosts were analysed. These characteristics included intensity, frequency, duration, frost-free periods, area distribution and historical trends. Maps of frost risk were determined for the entire river basin, by means of mathematical algorithms and GIS (Geographic Information Systems tools, using minimum temperature – 1960 to 2002 period, geomorphology, slope, land-use, types of soils, vegetation and life zones, emphasizing the rainy season (September to April, when the impacts of frost on agriculture are most severe. We recognized four categories of frost risks: low, moderate, high and critical. The critical risks (with a very high probability of occurrence were related to high altitudes on the basin (altitudes higher than 3800 m a.s.l., while the low (or null probability of occurring risks were found in the lower zones (less than 2500 m a.s.l.. Because of the very intense agricultural activity and the high sensitivity of the main crops (Maize, potato, artichoke in the Mantaro valley (altitudes between 3100 and 3300 m a.s.l., moderate to high frost risks can be expected, with a low to moderate probability of occurrence. Another significant result was a positive trend of 8 days per decade in the number of frost days during the rainy season.

  8. Quality of water, Quillayute River basin, Washington

    Science.gov (United States)

    Fretwell, M.O.

    1984-01-01

    Groundwater in Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses. River-water quality was generally excellent, as evaluated against Washington State water-use and water-quality criteria. Fecal coliform concentrations in all major tributaries met State water-quality criteria; water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow. Nutrient concentrations were generally low to very low. The four largest lakes in the basin were temperature-stratified in summer and one had an algal bloom. The Quillayute estuary had salt-wedge mixing characteristics; pollutants entering the salt wedge tended to spread to the toe of the wedge. Upwelling ocean water was the major cause of the low dissolved-oxygen concentrations observed in the estuary; ammonia concentrations in the estuary, however, were increased by the upwelling ocean waters. As in the rivers, total-coliform bacteria concentrations in the estuary were greater than fecal-coliform concentrations, indicating that many of the bacteria were of nonfecal origin and probably originated from soils. (USGS)

  9. Social Learning in European River-Basin Management: Barriers and Fostering Mechanisms from 10 River Basins

    NARCIS (Netherlands)

    Mostert, E.; Pahl-Wostl, C.; Rees, Y.; Searle, B.; Tabara, D.; Tippett, J.

    2007-01-01

    We present and analyze 10 case studies of participatory river-basin management that were conducted as part of the European HarmoniCOP project. The main theme was social learning, which emphasizes the importance of collaboration, organization, and learning. The case studies show that social learning

  10. Research on runoff forecast approaches to the Aksu River basin

    Institute of Scientific and Technical Information of China (English)

    OUYANG RuLin; CHENG WeiMing; WANG WeiSheng; JIANG Yan; ZHANG YiChi; WANG YongQin

    2007-01-01

    The Aksu River (the international river between China and Kirghiz) has become the main water source for the Tarim River. It significantly influences the Tarim River's formation, development and evolution.Along with the western region development strategy and the Tarim River basin comprehensive development and implementation, the research is now focused on the Aksu River basin hydrologic characteristic and hydrologic forecast. Moreover, the Aksu River is representative of rivers supplied with glacier and snow melt in middle-high altitude arid district. As a result, the research on predicting the river flow of the Aksu River basin has theoretical and practical significance. In this paper, considering the limited hydrometeorological data for the Aksu River basin, we have constructed four hydrologic forecast approaches using the daily scale to simulate and forecast daily runoff of two big branches of the Aksu River basin. The four approaches are the upper air temperature and the daily runoff correlation method, AR(p) runoff forecast model, temperature and precipitation revised AR(p) model and the NAM rainfall-runoff model. After comparatively analyzing the simulation results of the four approaches, we discovered that the temperature and precipitation revised AR(p) model, which needs less hydrological and meteorological data and is more predictive, is suitable for the short-term runoff forecast of the Aksu River basin. This research not only offers a foundation for the Aksu River and Tarim Rivers' hydrologic forecast, flood prevention, control and the entire basin water collocation, but also provides the hydrologic forecast reference approach for other arid ungauged basins.

  11. Water balance of the Lepenci river basin, Kosova

    Science.gov (United States)

    Osmanaj, L.; Avdullahi, S.

    2009-04-01

    Republic of Kosova lines on the highlands (500-600 m above sea level) surrounded by the mountains reaching the altitude of more than 2000m. Lower mountains divide the highland plain into four watershed areas, from where waters flow to there different seas, namely to the Adriatic Sea, the Aegean Sea and the Black Sea. Kosova has four water basins, such as the Basin of river Drini i Bardhe, Ibri, Morava e Binqes and Lepenci. The Basin of river Lepenci is located in South-eastern part of Kosova with surface of 650 km2, belongs to Axios river basin discharging into Aegean Sea. The annual rainfall is 670-1.000 mm and specific runoff 8 - 20 l/s/km2. There are also steep mountains in this area. In this case study we have calculate the water balance of the river Lepenc Basin. The Basin of river Lepenc we have divided in to 3 catchments: of Nerodima river, and upper and lower part of river Lepenci. This basin is covered by three municipalities such as municipality of Ferizaj, Kaçanik and Shterpc. The data on precipitation are obtained from three metering stations, such as the metering station of Ferizaj, Kaçanik and Jazhnice. The obtained records are elaborated. For evapotranspiration measurement we have applied four methods: the method of BLANEY - CRIDDLE, radiation, SCHENDELE and Turk. In a basin of river Lepenci we have four stations for measuring the discharges and levels: in Ferizaj, and Kaçanik - Nerodime river and in Hani i Elezit - Lepenc river. The river basin Lepenc has two inflowing points, where are Lepenci river in the border with the FYR of Macedonia and Sazli village near Ferizaj. Key works: precipitation, evaporation, flow, river, discharges,

  12. Morphometric analysis of Suketi river basin, Himachal Himalaya, India

    Indian Academy of Sciences (India)

    Anil M Pophare; Umesh S Balpande

    2014-10-01

    Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order subbasins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the subsurface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the

  13. River basin management plans for the European Water Framework Directive

    NARCIS (Netherlands)

    Kronvang, B.; Bechmann, M.; Behrendt, H.; Ruboek, G.H.; Schoumans, O.F.

    2004-01-01

    The newly adopted EU water framework directive aims at protecting different water bodies by performing impact analysis and developing river basin management plans before 2009. The adoption of management measures in river basins demands that catchment managers are able to quantify the importance of d

  14. SEA of river basin management plans

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone

    2009-01-01

    In, 2000 the European Parliament and the European Council passed the Water Framework Directive (WFD) to be implemented in all Member States. The consequence of the directive is that river basin management plans (RBMPs) shall be prepared which are legally subject to a strategic environmental asses...... in their SEAs of RBMPs is weak. In this paper the connections between climate change and water are reviewed. As a result, it is suggested that climate change needs to be considered in three ways: mitigation, adaptation and baseline adaptation. Udgivelsesdato: December......In, 2000 the European Parliament and the European Council passed the Water Framework Directive (WFD) to be implemented in all Member States. The consequence of the directive is that river basin management plans (RBMPs) shall be prepared which are legally subject to a strategic environmental...... assessment (SEA). An important environmental factor for the water sector is climate change, especially the changes it causes to the water environment. However, based on an argument of an inadequate knowledge base regarding climate change impacts, the prospect of Danish authorities including climate change...

  15. Long lasting dynamic disequilibrium in river basins

    Science.gov (United States)

    Goren, Liran; Willett, Sean D.; McCoy, Scott W.; Perron, J. Taylor; Chen, Chia-Yu

    2014-05-01

    The river basins of ancient landscapes such as the southeastern United States exhibit disequilibrium in the form of migrating divides and stream capture. This observation is surprising in light of the relatively short theoretical fluvial response time, which is controlled by the celerity of the erosional wave that propagates upstream the fluvial channels. The response time is believed to determine the time required for fluvial landscapes to adjust to tectonic, climatic, and base-level perturbations, and its global estimations range between 0.1 Myr and 10s Myr. To address this discrepancy, we develop a framework for mapping continuous dynamic reorganization of natural river basins, and demonstrate the longevity of disequilibrium along the river basins in the southeastern United States that are reorganizing in response to escarpment retreat and coastal advance. The mapping of disequilibrium is based on a proxy for steady-state elevation, Ξ, that can be easily calculated from digital elevation models. Disequilibrium is inferred from differences in the value of Ξ across water divides. These differences indicate that with the present day drainage area distribution and river topology the steady-state channels elevation across the divides differs, and therefore divides are expected to migrate in the direction of the higher Ξ value. We further use the landscape evolution model DAC to explore the source of the longevity of disequilibrium in fluvial landscapes. DAC solves accurately for the location of water divides, using a combination of an analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC simulations demonstrate topological, geometrical, and topographical adjustments that persist much longer than the theoretical response time, and consequently, extend the time needed to diminish disequilibrium in the landscape and to reach topological and topographical steady-state. This behavior is interpreted

  16. Morphometric analyses of the river basins in Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Wagle, B.G.

    to satisfy Horton's Laws. The bifurcation ratios show the maturity of the dissected basins. Except for the basins of Mandovi and Zuvari rivers which are more elongated and less circular, the other five basins are more circular and less elongated. The high...

  17. Reserves in western basins: Part 1, Greater Green River basin

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  18. Monitoring micropollutants in the Swist river basin.

    Science.gov (United States)

    Christoffels, Ekkehard; Brunsch, Andrea; Wunderlich-Pfeiffer, Jens; Mertens, Franz Michael

    2016-11-01

    Micropollutant pathways were studied for the Swist river basin (Western Germany). The aim was to verify the effectiveness of a monitoring approach to detect micropollutants entering the river. In a separate sewer system, water was frequently found to be contaminated with micropollutants. Improper connections of sewage canals to the stormwater network seemed to be the cause of pollution. Wastewater treatment plants (WWTPs) exerted the largest influence on micropollutants for the receiving river. During a flu outbreak, antibiotics in the Swist stemming from WWTPs increased remarkably. Elevated levels of pharmaceuticals were measured in discharges from a combined sewer overflow (CSO). The study showed that the pharmaceutical load of a CSO was significantly reduced by advanced treatment with a retention soil filter. Painkillers, an anticonvulsant and beta blockers were the most often detected pharmaceuticals in the sewage of urban areas. Herbicides, flame retardants and industrial compounds were also observed frequently. On cropland, Chloridazon and Terbuthylazine compounds were often found in landscape runoff. Fungicides and insecticides were the most frequent positive findings in runoff from orchards. The paper shows that a coherent approach to collecting valid information regarding micropollutants and to addressing relevant pathways as a basis for appropriate management strategies could be established.

  19. Use of the RHS method in Golijska Moravica river basin

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available River Habitat Survey (RHS is terrain method developed in UK in 1994. for determination of physical character of rivers and river basin. This method is applied for the first time in Golijska Moravica river basin. Two indices which broadly describe the diversity of river habitat and landscape features (Habitat Quality Assessment (HQA and extent and severity of artificial modification to the channel (Habitat Modification Class (HMC has been developed for reporting purposes. These are based on simple scoring systems which have been agreed by technical experts.

  20. Social Learning in European River-Basin Management: Barriers and Fostering Mechanisms from 10 River Basins

    Directory of Open Access Journals (Sweden)

    Erik Mostert

    2007-06-01

    Full Text Available We present and analyze 10 case studies of participatory river-basin management that were conducted as part of the European HarmoniCOP project. The main theme was social learning, which emphasizes the importance of collaboration, organization, and learning. The case studies show that social learning in river-basin management is not an unrealistic ideal. Resistance to social learning was encountered, but many instances of social learning were found, and several positive results were identified. Moreover, 71 factors fostering or hindering social learning were identified; these could be grouped into eight themes: the role of stakeholder involvement, politics and institutions, opportunities for interaction, motivation and skills of leaders and facilitators, openness and transparency, representativeness, framing and reframing, and adequate resources. Promising topics for further research include the facilitation of the social learning processes, the role of power, and interactions in political and institutional contexts.

  1. Floods in the Skagit River basin, Washington

    Science.gov (United States)

    Stewart, James E.; Bodhaine, George Lawrence

    1961-01-01

    According to Indian tradition, floods of unusually great magnitude harassed the Skagit River basin about 1815 and 1856. The heights of these floods were not recorded at the time; so they are called historical floods. Since the arrival of white men about 1863, a number of large and damaging floods have been witnessed and recorded. Data concerning and verifying the early floods, including those of 1815 and 1856, were collected prior to 1923 by James E. Stewart. He talked with many of the early settlers in the valley who had listened to Indians tell about the terrible floods. Some of these settlers had referenced the maximum stages of floods they had witnessed by cutting notches at or measuring to high-water marks on trees. In order to verify flood stages Stewart spent many weeks finding and levelling to high-water marks such as drift deposits, sand layers in coves, and silt in the bark of certain types of trees. Gaging stations have been in operation at various locations on the Skagit River and its tributaries since 1909, so recorded peak stages are available at certain sites for floods occurring since that date. All peak discharge data available for both historical and recorded floods have been listed in this report. The types of floods as to winter and summer, the duration of peaks, and the effect of reservoirs are discussed. In 1899 Sterling Dam was constructed at the head of Gages Slough near Sedro Woolley. This was the beginning of major diking in the lower reaches of the Skagit River. Maps included in the report show the location of most of the dike failures that have occurred during the last 73 years and the area probably inundated by major floods. The damage resulting from certain floods is briefly discussed. The report is concluded with a brief discussion of the U.S. Geological Survey method of computing flood-frequency curves as applied to the Skagit River basin. The treatment of single-station records and a means of combining these records for expressing

  2. Analytical framework for River Basin Management Planning

    DEFF Research Database (Denmark)

    Nielsen, Helle Ørsted; Pedersen, Anders Branth; Frederiksen, Pia

    This paper proposes a framework for the analysis of the planning approach, and the processes and procedures, which have been followed in the preparation of the River Basin District Management Plans (RBMPs). Different countries have different policy and planning traditions and -styles. Developed...... over a range of years, institutional set-up and procedures have been adapted to these. The Water Framework Directive imposes a specific ecosystem oriented management approach, which directs planning to the fulfilment of objectives linked to specific water bodies, and an emphasis on the involvement...... of stakeholders and citizens. Institutional scholars point out that such an eco-system based approach superimposed on an existing institutional set-up for spatial planning and environmental management may create implementation problems due to institutional misfit (Moss 2004). A need for adaptation of procedures...

  3. Birds of the Shatan River Basin, Mongolia

    Directory of Open Access Journals (Sweden)

    Onolragchaa Ganbold

    2015-06-01

    Full Text Available In our study we recorded 149 species of birds belonging to 97 genera and 36 families in 15 orders. These bird species compose 32% of Mongolian registered bird fauna. Of these 149 species, 54% are passeriformes. Our observation was held in three different habitats: mountains ranging with rocks and forest (88 species, river basins (45 species, and an area around human habitation, specifically train stations outside towns (16 species. Of our studied bird species, 11 are enlisted in the International Union for Conservation of Nature red list as endangered, vulnerable, or near threatened species, and 144 are known as least concerned. Also 20 species are listed in Annexes I and II of the Convention on International Trade in Endangered Species, and 15 species are listed in Annexes I and II of the Convention on the Conservation of Migratory Species.

  4. Identification of compounds bound to suspended solids causing sub-lethal toxic effects in Daphnia magna. A field study on re-suspended particles during river floods in Ebro River.

    Science.gov (United States)

    Rivetti, Claudia; Gómez-Canela, Cristian; Lacorte, Silvia; Díez, Sergi; Lázaro, Wilkinson L; Barata, Carlos

    2015-04-01

    Identifying chemicals causing adverse effects in organisms present in water remains a challenge in environmental risk assessment. This study aimed to assess and identify toxic compounds bound to suspended solids re-suspended during a prolonged period of flushing flows in the lower part of Ebro River (NE, Spain). This area is contaminated with high amounts of organochlorine and mercury sediment wastes. Chemical characterization of suspended material was performed by solid phase extraction using a battery of non-polar and polar solvents and analyzed by GC-MS/MS and LC-MS/MS. Mercury content was also determined for all sites. Post-exposure feeding rates of Daphnia magna were used to assess toxic effects of whole and filtered water samples and of re-constituted laboratory water with re-suspended solid fractions. Organochlorine and mercury residues in the water samples increased from upstream to downstream locations. Conversely, toxic effects were greater at the upstream site than downstream of the superfund Flix reservoir. A further analysis of the suspended solid fraction identified a toxic component eluted within the 80:20 methanol:water fraction. Characterization of that toxic component fraction by LC-MS/MS identified the phytotoxin anatoxin-a, whose residue levels were correlated with observed feeding inhibition responses. Further feeding inhibition assays conducted in the lab using anatoxin-a produced from Planktothrix agardhii, a filamentous cyanobacteria, confirmed field results. This study provides evidence that in real field situation measured contaminant residues do not always agree with toxic effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Serving wine. Some comments on the adoption of the oinochoe in the lower Ebro basin (7th and 6th centuries BC

    Directory of Open Access Journals (Sweden)

    Sardà Seuma, Samuel

    2008-12-01

    Full Text Available Traditionally, in the northeastern peninsula, the introduction of the first indicators of Mediterranean influence in relation to the consumption of wine, is dated to the second half of the sixth century BC (ionian cups, Attic kylix, Attic black-figure. Nevertheless, in the lower Ebro valley, the exceptional frequency of Phoenician trade shows clear evolution of the ceramic repertoire during the sixth and seventh centuries BC, a fact that makes it possible to evaluate the occurrence of certain ceramic products that show the existence of significant changes in the portfolio of objects associated with the ritual practices of community consumption. In this article we evaluate the adoption of oinochoe in relation to the first signs of renewal being experienced by the indigenous materials associated with drinking. The goal is to represent a stage of fundamental social changes during which ideology shows a significant increase in importance.

    Tradicionalmente, en el noreste peninsular, la introducción de los primeros parámetros de influencia mediterránea en relación al consumo del vino, se han situado en la segunda mitad del siglo VI aC (copas jonias, kylix áticas, cerámica ática de figuras negras. No obstante, en el curso inferior del Ebro, la incidencia destacada del comercio fenicio conlleva una clara evolución del repertorio cerámico a lo largo de los siglos VII y VI aC, un hecho que permite evaluar la aparición de ciertas producciones de vajilla que evidencian la existencia de modificaciones importantes en el repertorio de instrumentos vinculados a las prácticas rituales de consumo comunitario. En el presente artículo se valora la adopción del oinochoe en relación a los primeros síntomas de renovación que experimenta el instrumental indígena asociado a la bebida. El objetivo es aproximarnos a una etapa de cambios sociales fundamentales durante la cual los aspectos ideológicos evidencian un aumento

  6. 76 FR 18780 - Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project, Benton...

    Science.gov (United States)

    2011-04-05

    ... Bureau of Reclamation Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement... Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project. The Washington State...; and (4) identify a comprehensive approach for efficient management of basin water supplies....

  7. Wind River Basin boundary, 1999 Coal Resource Assessment

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shape file contains a polygon representing the extent of the Wind River coal basin boundary. This theme was created specifically for the National Coal...

  8. Snake River Plain Basin-fill aquifer system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the Snake River Plain aquifer system, which includes both the basaltic and basin-fill aquifers. This dataset does not...

  9. Landslide Inventory for the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geodatabase is an inventory of existing landslides in the Little North Santiam River Basin, Oregon (2009). Each landslide feature shown has been classified...

  10. 2012 Water Levels - Mojave River and the Morongo Groundwater Basins

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — During 2012, the U.S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and Morongo groundwater basins....

  11. Organic Acid Concentrations in Rivers Within the Amazon River Drainage Basin

    Science.gov (United States)

    Skoog, A.

    2007-12-01

    The composition of the dissolved organic matter pool in both fresh and marine waters is largely unknown. Concentrations of low-molecular-weight organic acids (oxalate, citrate, glycolate, formate, acetate, succinate) have been determined in Brasilian (18 rivers sampled) and Peruvian (19 rivers sampled) rivers within the Amazon River drainage basin. Succinate concentrations were below the detection limit in all rivers. The dominant acid varied among the sampled rivers, indicating that organic acid concentrations depend on river basin characteristics. Organic-acid carbon comprised a highly significant, but variable, fraction of total dissolved carbon, with a range of 3-90%, indicating that organic-acid-derived carbon may be an important source of biologically labile carbon within the Amazon River drainage basin.

  12. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    Science.gov (United States)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  13. [Upper Steele Bayou Projects : Yazoo River Basin, Mississippi

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a collection of documents related to four projects which were proposed by the U.S. Army, Corps of Engineers in the Yazoo River Basin. The Upper Yazoo Basin...

  14. Sedimentation Study on Upstream Reach of Selected Rivers in Pahang River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Khairul Amri Kamarudin

    2017-02-01

    Full Text Available The sedimentation study on the upstream reach of Pahang River is located in the Bentong River Basin. The detail hydrographic survey for each river in the Bentong River Basin was carried out in May 2016. Nine stations were selected to represent the sediment concentration at Bentong River, Pahang, Malaysia. Bentong River Basin is one of the river catchment in Pahang River Basin, Malaysia. Before this, Bentong River deterioration in water quality, resulting from the sedimentation problems and unsustainable development management around the river basin. This study was implemented to prove the sedimentation problem, especially the formation of Total  Suspended Solid (TSS in the Bentong River. There are two important parameters were quantified in this study such as the concentration of suspended solid (mg/L and the river discharge (Q values (m³/s. The method used in this study to analysis the concentration of TSS using Gravimetric Method. The result showed the sedimentation in the Bentong River was unstable and the highest of TSS up to 367.6 mg/L that is categorized under the class V which > 300 mg/L based on the National Water Quality Standard (NWQS result showed the coefficient correlation between the observed Q and the TSS concentration in the Bentong River is significant R² = 0.919, there are strong positive relationship between TSS concentration production and the river discharge value in the Bentong River. The study found that the contributors to the high sedimentation problems resulting from the sediments generated from the unsustainable land use, which effectively trapping the bed sediments, rainfall intensity, backflow that carries out high sediments as well as sedimentation produced due to the river bank erosion.

  15. Colorado River Basin Hover Dam - Review of Flood Control Regulation.

    Science.gov (United States)

    1982-07-01

    Percichthyidae Striped bass 1ile sxiiis Pocilldae Mosquito fish Cainbusia affnus Sailfin mollie Poecilia latipin a Mexican mollie Poecila mexicana Salmonidae...Colorado River Basin Progress Report No. 8, 195 pp. Vitt, L.J. and R.D. Ohmart, 1978. Herpetofauna of the Lower Colorado River: Davis Dam to the

  16. river basin, north eastern nigeria, using swat model *ejieji

    African Journals Online (AJOL)

    USER

    2016-03-29

    Mar 29, 2016 ... Hade ia-:ama are-Komadugu-Yobe River basin (H:KYRB) is one of the ma or .... Prediction of the Streamflow of Hadejia-Jama are-Komadugu-Yobe-River. ..... Assessment Tool Input/Output documentation version 2009. Texas.

  17. SLIDE INVENTORY IN DUBRACINA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Aleksandar Toševski

    2013-12-01

    Full Text Available he slide inventory in Dubračina river basin consists of 39 slides. They have been detected by field geomorphological mapping and visual analysis of 1 meter digital elevation model. The slides detected using elevation model are validated by the field checking as well. The outline of all slides is generated using digital elevation model. The total area affected by sliding is 81873 m2 which is 0,44% of researched area. The area, volume, total lenght, width of displaced mass, dip angle of slope on the slide location and dip direction of sliding have been defined for each slide. Slides areas are ranging from 150 to 12956 m2. Minimal total slide lenght from the crown to the tip is 20 m and maximal is 226 m. Angles of slope dip on slide locations are ranging from 10,1° to 28,6° focusing that 76,7% total area affected by sliding has slope dip angle on slide location up to 20°. According to weighting factor calculations lithological unit flysch (E2,3 is marked as the most significant lithological factor of the sliding. All slides are located in the flysch weathering zone where zone crop out. It has been shown that terrain tendency for excessive erosion is very limitative factor in using digital elevation model for the remote slide mapping (the paper is published in Croatian.

  18. Problems of Syrdarya river basin management

    Institute of Scientific and Technical Information of China (English)

    Serdar EYEBERENOV; Baijing CAO; Fengting LI

    2009-01-01

    Prior to independence, Central Asian countries were closely interconnected through the regional management incorporating water, energy, and food sectors. This approach, supported by the central government of Union of Soviet Socialist Republics (USSR), functioned effectively - meeting the needs of both upstream and downstream countries. However, after independence, Central Asian countries started prioritizing their own economic development policies without due account to regional concerns such as joint use of water resources, leading to instability.In this study, the case of Syrdarya basin was investigated to show how,such strategies create tension in the region, since primary focus is given to national interests, without consideration for regional problems. To address this issue, an integrated approach to incorporating water,energy, and agriculture is needed. It is suggested that a single sector approach on water alone does not lead to stability, and a multi-sectoral approach is necessary to ensure sustainable development. Countries sharing benefits from the river have to be responsible for costs of operation and maintenance of the water facilities.

  19. River monitoring from satellite radar altimetry in the Zambezi River basin

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; McEnnis, S.; Berry, P. A. M.;

    2012-01-01

    Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study...... is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements...

  20. Emergence, concept, and understanding of Pan-River-Basin (PRB

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2015-12-01

    Full Text Available In this study, the concept of Pan-River-Basin (PRB for water resource management is proposed with a discussion on the emergence, concept, and application of PRB. The formation and application of PRB is also discussed, including perspectives on the river contribution rates, harmonious levels of watershed systems, and water resource availability in PRB system. Understanding PRB is helpful for reconsidering river development and categorizing river studies by the influences from human projects. The sustainable development of water resources and the harmonization between humans and rivers also requires PRB.

  1. Spatial and temporal variability of nutrient retention in river basins: A global inventory

    NARCIS (Netherlands)

    Tysmans, D.J.J.; Löhr, A.J.; Kroeze, C.; Ivens, W.P.M.F.; Wijnen, van T.K.

    2013-01-01

    Nutrient export by rivers may cause coastal eutrophication. Some river basins, however, export more nutrients than others. We model the Basin-Wide Nutrient Export (BWNE) Index, defined as nutrient export by rivers as percentage of external nutrient inputs in the basins. We present results for rivers

  2. Water and Benefit Sharing in Transboundary River Basins

    Science.gov (United States)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  3. Implication of drainage basin parameters of a tropical river basin of South India

    Science.gov (United States)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2016-03-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  4. Direct and indirect economic impacts of drought in the agri-food sector in the Ebro River basin (Spain)

    Science.gov (United States)

    Gil, M.; Garrido, A.; Hernández-Mora, N.

    2013-10-01

    The economic evaluation of drought impacts is essential in order to define efficient and sustainable management and mitigation strategies. The aim of this study is to evaluate the economic impacts of a drought event on the agricultural sector and measure how they are transmitted from primary production to industrial output and related employment. We fit econometric models to determine the magnitude of the economic loss attributable to water storage. The direct impacts of drought on agricultural productivity are measured through a direct attribution model. Indirect impacts on agricultural employment and the agri-food industry are evaluated through a nested indirect attribution model. The transmission of water scarcity effects from agricultural production to macroeconomic variables is measured through chained elasticities. The models allow for differentiating the impacts deriving from water scarcity from other sources of economic losses. Results show that the importance of drought impacts are less relevant at the macroeconomic level, but are more significant for those activities directly dependent on water abstractions and precipitation. From a management perspective, implications of these findings are important to develop effective mitigation strategies to reduce drought risk exposure.

  5. Hydroclimatological changes in the Bagmati River Basin, Nepal

    Institute of Scientific and Technical Information of China (English)

    Yam Prasad DHITAL; TANG Qiuhong; SHI Jiancheng

    2013-01-01

    Study on hydroclimatological changes in the mountainous river basins has attracted great interest in recent years.Changes in temperature,precipitation and river discharge pattern could be considered as indicators of hydroclimatological changes of the river basins.In this study,the temperatures (maximum and minimum),precipitation,and discharge data from 1980 to 2009 were used to detect the hydroclimatological changes in the Bagmati River Basin,Nepal.Simple linear regression and Mann-Kendall test statistic were used to examine the significant trend of temperature,precipitation,and discharge.Increasing trend of temperature was found in all seasons,although the change rate was different in different seasons for both minimum and maximum temperatures.However,stronger warming trend was found in maximum temperature in comparison to the minimum in the whole basin.Both precipitation and discharge trend were increasing in the pre-monsoon season,but decreasing in the post-monsoon season.The significant trend of precipitation could not be observed in winter,although discharge trend was decreasing.Furthermore,the intensity of peak discharge was increasing,though there was not an obvious change in the intensity of maximum precipitation events.It is expected that all these changes have effects on agriculture,hydropower plant,and natural biodiversity in the mountainous river basin of Nepal.

  6. Drought in the Klamath River Basin

    Science.gov (United States)

    2002-01-01

    For more than 100 years groups in the western United States have fought over water. During the 1880s, sheep ranchers and cattle ranchers argued over drinking water for their livestock on the high plains. In 1913, the city of Los Angeles began to draw water away from small agricultural communities in the Owen Valley, leaving a dusty dry lake bed. In the late 1950s, construction of the Glen Canyon Dam catalyzed the American environmental movement. Today, farmers are fighting fishermen, environmentalists, and Native American tribes over the water in the Upper Klamath River Basin. A below-average winter snowpack and low rainfall throughout the year have caused an extreme drought in the area along the California/Oregon border. In April 2001 a U.S. District Court stopped water deliveries to farms in the Klamath Irrigation District to preserve adequate water levels in Upper Klamath Lake to protect two endangered species of Mullet fish (called suckers). Water was also reserved for the threatened Coho Salmon which need enough water to swim downstream from their spawning grounds to the ocean. In addition, several Native American tribes have rights to Klamath River water. Further complicating the situation are a handful of wildlife refuges which usually receive enough irrigation wastewater to support upwards of a million migratory birds and 900 Bald Eagles. This year, however, several of the refuges may not have enough water for the birds which begin arriving in early fall. The severity of this year's drought is underscored by the town of Bonanza, Oregon. Famous for its natural springs, and entirely dependent on wells for drinking water, the town's water supply is now contaminated with pesticides, fertilizer, and manure. The water quality is so bad it's not even safe to bathe in, much less drink. The problem stems from a very low water table. The drop in underground water levels is caused directly by the drought, and indirectly from the increased irrigation from underground

  7. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    Science.gov (United States)

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge

  8. Sustainable development indicators: Case study for South Morava river basin

    Directory of Open Access Journals (Sweden)

    Veljković Nebojša D.

    2013-01-01

    Full Text Available The subject of research is elaboration and evaluation of indicators of sustainable development in the field of river basin management. Aggregate indicator entitled Ecoregion Sustainable Development Index is identified by calculation of average value by the procedure of leveling of proportion changes of three key indicators (demographic emission index, water quality index, industrial production index. Developed aggregate indicator of sustainable development is calculated and analyzed for South Morava river basin in Serbia, for the period from 1980 to 2010. The beneficiaries of these indicators are the experts from the field of environmental protection and water management who should use it for elaboration of reports directed towards the creators of economic development policy and river basin management planning. Elaborated according to the given methodology, the indicator Ecoregion Sustainable Development Index is available for the decision makers on the national level, internationally comparative and it provides the conditions for further elaboration and application.

  9. The coordination of regional interest in developing river basin

    Institute of Scientific and Technical Information of China (English)

    Chen Xiangman

    2006-01-01

    River basin is a special region with the characteristics of entirety and relation, regionality and diversity,gradation and network, openness and dissipation etc. It is an important unit that organizes and governs national economy as well as a natural region. In river basin, all natural essential factors relate closely each other, and there is remarkable influence between inter-regions. In the process of developing river basin, the multiplex main interest body,the diverse interest demand and the multi-ways of interest realization constitute a complicated interest network, and result in various contradictions and conflicts. Therefore, effective regional interest coordination mechanism should be established to coordinate various regional interest relations. They are the public interest realization mechanism, the fair interest assignment mechanism, the effective interest integration mechanism, the expedited interest expression mechanism and the reasonable interest compensative mechanism.

  10. Backwater effects in the Amazon River basin of Brazil

    Science.gov (United States)

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  11. Operational river discharge forecasting in poorly gauged basins: the Kavango River Basin case study

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Jensen, Iris Hedegaard; Guzinski, R.

    2014-01-01

    assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. This study is funded by the European Space Agency under the TIGER-NET project. The objective of TIGER-NET is to develop open-source software tools...... to support integrated water resources management in Africa and to facilitate the use of satellite earth observation data in water management. We present an operational probabilistic forecasting approach which uses public-domain climate forcing data and a hydrologic–hydrodynamic model which is entirely based...... on open-source software. Data assimilation techniques are used to inform the forecasts with the latest available observations. Forecasts are produced in real time for lead times of 0 to 7 days. The operational probabilistic forecasts are evaluated using a selection of performance statistics and indicators...

  12. An integrated multiscale river basin observing system in the Heihe River Basin, northwest China

    Science.gov (United States)

    Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.

    2015-12-01

    Using the watershed as the unit to establish an integrated watershed observing system has been an important trend in integrated eco-hydrologic studies in the past ten years. Thus far, a relatively comprehensive watershed observing system has been established in the Heihe River Basin, northwest China. In addition, two comprehensive remote sensing hydrology experiments have been conducted sequentially in the Heihe River Basin, including the Watershed Allied Telemetry Experimental Research (WATER) (2007-2010) and the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (2012-2015). Among these two experiments, an important result of WATER has been the generation of some multi-scale, high-quality comprehensive datasets, which have greatly supported the development, improvement and validation of a series of ecological, hydrological and quantitative remote-sensing models. The goal of a breakthrough for solving the "data bottleneck" problem has been achieved. HiWATER was initiated in 2012. This project has established a world-class hydrological and meteorological observation network, a flux measurement matrix and an eco-hydrological wireless sensor network. A set of super high-resolution airborne remote-sensing data has also been obtained. In addition, there has been important progress with regard to the scaling research. Furthermore, the automatic acquisition, transmission, quality control and remote control of the observational data has been realized through the use of wireless sensor network technology. The observation and information systems have been highly integrated, which will provide a solid foundation for establishing a research platform that integrates observation, data management, model simulation, scenario analysis and decision-making support to foster 21st-century watershed science in China.

  13. Dynamic water accounting in heavily committed river basins

    Science.gov (United States)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  14. Towards the assessment of climate change and human activities impacts on the water resources of the Ebro catchment (Spain)

    Science.gov (United States)

    Milano, M.; Ruelland, D.; Dezetter, A.; Ardoin-Bardin, S.; Thivet, G.; Servat, E.

    2012-04-01

    Worldwide studies modelling the hydrological response to global changes have proven the Mediterranean area as one of the most vulnerable region to water crisis. It is characterised by limited and unequally distributed water resources, as well as by important development of its human activities. Since the late 1950s, water demand in the Mediterranean basin has doubled due to a significant expansion of irrigated land and urban areas, and has maintained on a constant upward curve. The Ebro catchment, third largest Mediterranean basin, is very representative of this context. Since the late 1970s, a negative trend in mean rainfall has been observed as well as an increase in mean temperature. Meanwhile, the Ebro River discharge has decreased by about 40%. However, climate alone cannot explain this downward trend. Another factor is the increase in water consumption for agricultural and domestic uses. Indeed, the Ebro catchment is a key element in the Spanish agricultural production with respectively 30% and 60% of the meat and fruit production of the country. Moreover, population has increased by 20% over the catchment since 1970 and the number of inhabitant doubles each summer due to tourism attraction. Finally, more than 250 storage dams have been built over the Ebro River for hydropower production and irrigation water supply purposes, hence regulating river discharge. In order to better understand the respective influence of climatic and anthropogenic pressures on the Ebro hydrological regime, an integrated water resources modelling framework was developed. This model is driven by water supplies, generated by a conceptual rainfall-runoff model and by a storage dam module that accounts for water demands and environmental flow requirements. Water demands were evaluated for the most water-demanding sector, i.e. irrigated agriculture (5 670 Hm3/year), and the domestic sector (252 Hm3/year), often defined as being of prior importance for water supply. A water allocation

  15. Water resources of Wisconsin: lower Wisconsin River basin

    Science.gov (United States)

    Hindall, S.M.; Borman, Ronald G.

    1974-01-01

    This report describes the physical environment, availability, distribution, movement, quality, and use of water in the upper Wisconsin River basin as an aid in planning and water management. The report presents general information on the basin derived from data obtained from Federal, State, and local agencies, New field data were collected in areas where information was lacking. More detailed studies of problem areas may be required in the future, as water needs and related development increase.

  16. Transforming River Basin Management In South Africa: Lessons from the Lower Komati River

    NARCIS (Netherlands)

    Waalewijn, P.; Wester, P.; Straaten, van K.

    2005-01-01

    This paper analyzes the transformation of river basin management in South Africa by focusing on the political processes involved in the creation of new water management bodies and irrigation infrastructure in the Lower Komati sub-basin. Institutional reform is described and analyzed in terms of the

  17. Ecotoxicological risk assessment of chemical pollution in four Iberian river basins and its relationship with the aquatic macroinvertebrate community status.

    Science.gov (United States)

    Kuzmanović, Maja; López-Doval, Julio C; De Castro-Català, Núria; Guasch, Helena; Petrović, Mira; Muñoz, Isabel; Ginebreda, Antoni; Barceló, Damià

    2016-01-01

    Ecotoxicological risk assessment of chemical pollution in four Iberian river basins (Llobregat, Ebro, Júcar and Guadalquivir) was performed. The data set included more than 200 emerging and priority compounds measured at 77 sampling sites along four river basins studied. The toxic units (TU) approach was used to assess the risk of individual compounds and the concentration addition model (CA) to assess the site specific risk. Link between chemical pollution and aquatic macroinvertebrate communities in situ was examined by using four biological indexes; SPEAR ("Species at Risk Index") as the indicator of decline of sensitive species in relation to general organic (SPEARorganic) and pesticides (SPEARpesticides) pollution; and Shannon and Margalef biodiversity indexes. The results of the study suggested that organic chemicals posed the risk of acute effects at 42% of the sampling sites and the risk of chronic effects at all the sites. Metals posed the acute risk at 44% of the sites. The main drivers of the risk were mainly pesticides and metals. However, several emerging contaminants (e.g. the antidepressant drug sertraline and the disinfectant triclosan) were contributing to the chronic effects risk. When risk associated with metals and organic chemicals was compared, the latter dominated in 2010, mainly due to the presence of highly toxic pesticides, while metals did in 2011. Compounds that are not regulated on the European level were posing the risk of chronic effects at 23% of the sites. The decline of sensitive macroinvertebrate taxa expressed in terms of SPEAR index was correlated with the increase of toxic stress related to organic compounds Biodiversity indexes were negatively correlated with the metals and the urban land use type in the catchment. Copyright © 2015. Published by Elsevier B.V.

  18. Interlinking feasibility of five river basins of Rajasthan in India

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Vyas

    2016-09-01

    Annual surplus water of about 1437 MCM in the river Chambal is going waste and ultimately reaches to sea after creating flood situations in various places in India including Rajasthan, while on the other hand 1077 MCM water is a requirement in the four other basins in Rajasthan i.e. Banas, Banganga, Gambhir and Parbati at 75% dependability. Interlinking and water transfer from Chambal to these four river basins is the prime solution for which 372 km link channel including 9 km tunnel of design capacity of 300 cumec with 64 m lift is required.

  19. 76 FR 13438 - Amended Columbia River Basin Fish and Wildlife Program

    Science.gov (United States)

    2011-03-11

    ... POWER AND CONSERVATION PLANNING COUNCIL Amended Columbia River Basin Fish and Wildlife Program AGENCY... Council's Columbia River Basin Fish and Wildlife Program. SUMMARY: Pursuant to Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and Wildlife Program to add...

  20. 76 FR 13676 - Amended Columbia River Basin Fish and Wildlife Program

    Science.gov (United States)

    2011-03-14

    ... POWER AND CONSERVATION PLANNING COUNCIL Amended Columbia River Basin Fish and Wildlife Program AGENCY... Council's Columbia River Basin Fish and Wildlife Program. SUMMARY: Pursuant to Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and Wildlife Program to add...

  1. Morphometric Characters of a Himalayan River Basin-Pindari river of Pindari Glacier

    Science.gov (United States)

    Patel, L. K.; Pillai, J.

    2011-12-01

    Himalayan region consist many glaciers and glacier-fed rivers. About 17% of the Indian Himalayan Region (IHR) is under permanent cover of Ice and snow and have more than 9000 glaciers and high altitude fresh water lakes. Stream runoff originating from the glaciers has direct implication in geomorphology of the region. Present study is an attempt to find out the stages in the geomorphic development of a higher altitudinal river basin, Pindari river basin. Development of a landscape is equal to the some total of the development of each individual drainage basin of which it is composed. Morphometric parameters of the river basin had been identified viz. linear, areal and relief aspect and examined. Pindari river basin is a 5th order high altitudinal, sub-dendratic, parallel and perennial tributary of Alaknanda River, formed by three main tributaries (Sunderdhunga, Pindari and Kafini). It has the catchment area above 557.63 Km2. This river originates from combined action of rain and snow fall from Pindari glacier which is part of Nanda Devi Biosphere Reserve (a world heritage site). Pindari river basin is located between 1600 m to 6880 m elevation ,and 300 03' 23" -300 19' 04" N Latitude and 790 45' 59" - 80 0 04' 13"E Longitude. Due to microclimatic conditions Pindari river basin generally dry with low annual precipitation. There is heavy rainfall during monsoon season. The approximate variation in the precipitation is from 750 mm to 2000 mm. For estimating the Morphometric parameter SOI toposheet on 1:50000 scale and Landsat data (ETM+) having 15m resolution were georectified in RS and GIS environment. SRTM data was used in analysis of elevation and slope range of the study area. Extensive field study was held on during the year 2010. Morphometric parameters (linear, aerial and relief) of the study area had been estimated. It is observed that Pindari river basin is a sub-dendratic, higher relief, youth, fine texture; elongated basin has peak flow, high discharge, and

  2. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  3. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  4. THE VOLTA RIVER BASIN OF GHANA

    African Journals Online (AJOL)

    - ... Variables that are considered include the absolute population, population den- ... Concept and theories of the population—natural resource nexus are ... White Volta sub~basin is located in the north of Ghana, extending southwards to.

  5. Palaeoclimatological perspective on river basin hydrometeorology: case of the Mekong Basin

    Science.gov (United States)

    Räsänen, T. A.; Lehr, C.; Mellin, I.; Ward, P. J.; Kummu, M.

    2013-05-01

    Globally, there have been many extreme weather events in recent decades. A challenge has been to determine whether these extreme weather events have increased in number and intensity compared to the past. This challenge is made more difficult due to the lack of long-term instrumental data, particularly in terms of river discharge, in many regions including Southeast Asia. Thus our main aim in this paper is to develop a river basin scale approach for assessing interannual hydrometeorological and discharge variability on long, palaeological, time scales. For the development of the basin-wide approach, we used the Mekong River basin as a case study area, although the approach is also intended to be applicable to other basins. Firstly, we derived a basin-wide Palmer Drought Severity Index (PDSI) from the Monsoon Asia Drought Atlas (MADA). Secondly, we compared the basin-wide PDSI with measured discharge to validate our approach. Thirdly, we used basin-wide PDSI to analyse the hydrometeorology and discharge of the case study area over the study period of 1300-2005. For the discharge-MADA comparison and hydrometeorological analyses, we used methods such as linear correlations, smoothing, moving window variances, Levene type tests for variances, and wavelet analyses. We found that the developed basin-wide approach based on MADA can be used for assessing long-term average conditions and interannual variability for river basin hydrometeorology and discharge. It provides a tool for studying interannual discharge variability on a palaeological time scale, and therefore the approach contributes to a better understanding of discharge variability during the most recent decades. Our case study revealed that the Mekong has experienced exceptional levels of interannual variability during the post-1950 period, which could not be observed in any other part of the study period. The increased variability was found to be at least partly associated with increased El Niño Southern

  6. Long-term tritium monitoring to study river basin dynamics: case of the Danube River basin

    Science.gov (United States)

    Aggarwal, Pradeep; Araguas, Luis; Groening, Manfred; Newman, Brent; Kurttas, Turker; Papesch, Wolfgang; Rank, Dieter; Suckow, Axel; Vitvar, Tomas

    2010-05-01

    During the last five decades, isotope concentrations (O-18, D, tritium) have been extensively measured in precipitation, surface- and ground-waters to derive information on residence times of water in aquifers and rivers, recharge processes, and groundwater dynamics. The unique properties of the isotopes of the water molecule as tracers are especially useful for understanding the retention of water in river basins, which is a key parameter for assessing water resources availability, addressing quality issues, investigating interconnections between surface- and ground-waters, and for predicting possible hydrological shifts related to human activities and climate change. Detailed information of the spatial and temporal changes of isotope contents in precipitation at a global scale was one of the initial aims of the Global Network of Isotopes in Precipitation (GNIP), which has provided a detailed chronicle of tritium and stable isotope contents in precipitation since the 1960s. Accurate information of tritium contents resulting of the thermonuclear atmospheric tests in the 1950s and 1960s is available in GNIP for stations distributed world-wide. Use of this dataset for hydrological dating or as an indicator of recent recharge has been extensive in shallow groundwaters. However, its use has been more limited in surface waters, due to the absence of specific monitoring programmes of tritium and stable isotopes in rivers, lakes and other surface water bodies. The IAEA has recently been compiling new and archival isotope data measured in groundwaters, rivers, lakes and other water bodies as part of its web based Water Isotope System for Data Analysis, Visualization and Electronic Retrieval (WISER). Recent additions to the Global Network of Isotopes in Rivers (GNIR) contained within WISER now make detailed studies in rivers possible. For this study, we are re-examining residence time estimates for the Danube in central Europe. Tritium data are available in GNIR from 15

  7. Numerical representation of rainfall field in the Yarmouk River Basin

    Science.gov (United States)

    Shentsis, Isabella; Inbar, Nimrod; Magri, Fabien; Rosenthal, Eliyahu

    2017-04-01

    Rainfall is the decisive factors in evaluating the water balance of river basins and aquifers. Accepted methods rely on interpolation and extrapolation of gauged rain to regular grid with high dependence on the density and regularity of network, considering the relief complexity. We propose an alternative method that makes up to those restrictions by taking into account additional physical features of the rain field. The method applies to areas with (i) complex plain- and mountainous topography, which means inhomogeneity of the rainfall field and (ii) non-uniform distribution of a rain gauge network with partial lack of observations. The rain model is implemented in two steps: 1. Study of the rainfall field, based on the climatic data (mean annual precipitation), its description by the function of elevation and other factors, and estimation of model parameters (normalized coefficients of the Taylor series); 2. Estimation of rainfall in each historical year using the available data (less complete and irregular versus climatic data) as well as the a-priori known parameters (by the basic hypothesis on inter-annual stability of the model parameters). The proposed method was developed by Shentsis (1990) for hydrological forecasting in Central Asia and was later adapted to the Lake Kinneret Basin. Here this model (the first step) is applied to the Yarmouk River Basin. The Yarmouk River is the largest tributary of the Jordan River. Its transboundary basin (6,833 sq. km) extends over Syria (5,257 sq.km), Jordan (1,379 sq. km) and Israel (197 sq. km). Altitude varies from 1800 m (and more) to -235 m asl. The total number of rain stations in use is 36 (17 in Syria, 19 in Jordan). There is evidently lack and non-uniform distribution of a rain gauge network in Syria. The Yarmouk Basin was divided into five regions considering typical relationship between mean annual rain and elevation for each region. Generally, the borders of regions correspond to the common topographic

  8. Integrated river basin management of Južna Morava River

    Directory of Open Access Journals (Sweden)

    Borisavljević Ana

    2012-01-01

    Full Text Available In the last decade in particular, Serbia encountered the problems of drinking water supply, which influenced the perception of professional public about the water crisis but also started more intensive work on water resource perseverance as well as the implementation of European Water Directive. One of the main demands of the Directive focuses on integrated river basin management (IRBM, which is a complex and a large task. The need to collect data on water quality and quantity, specific and key issues of water management in Južna Morava river basin, pressures on river ecosystem, flood risks and erosion problems, cross-border issues, socioeconomic processes, agricultural development as well as protected areas, and also to give the measures for solving problems and pressures recognized in the basin, is undisputable. This paper focuses on detailed analysis of specific pressures on river ecosystem and composition of recommendations for integrated management of Južna Morava river basin as cross-border river basin, taking into the account European experiences in IRBM. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Istraživanje klimatskih promena na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje, podprojekat br. 9: Učestalost bujičnih poplava, degradacija zemljišta i voda kao posledica globalnih promena

  9. Integrated geographical research in the Khovd River basin (Mongolia)

    Science.gov (United States)

    Mukhanova, Mariia; Syromyatina, Margarita; Kurochkin, Yuriy; Chistyakov, Kirill

    2017-04-01

    Khovd River located in the endorheic basin of Grate Lakes Depression is a main river of western Mongolia. It has more than 500 km length and runs from the glaciers of the Tavan Bogd Mountains through different vegetation zones to the terminal Khar-Us lake. The main purpose of the study is to estimate the current state and dynamics of the geosystems in this river basin as it plays a critical part in the water supply of submontane desert steppe plains of western Mongolia. One of the objectives is to understand the formation and regime of water discharge in this inland river basin with glaciation. The results are mostly based on the 2013-2016 integrated field research including glaciological, meteorological, hydrological and dendrochronological measurements as well as hydrometeorological stations' data analysis and remote sensing data acquired from satellites. Last year the main attention was given to hydrological and hydrochemical research. In summer we measured TDS concentration in 71 points throughout the stream course of Khovd River and its tributaries. TDS is changing from 0-1 ppm at glaciers to 67 ppm at river mouth and 93 ppm at Khar-Us lake. The hydrochemical analysis shows that the water type is changing from hydrocarbonate-calcium at the beginning of the river to the sulfate-calcium at the mouth. Glaciers play a crucial role in feeding the river only in its upper part. Glaciological study revealed that the areas of the main glaciers were not much changed since 1989, while the glacier tongue regression was fixed. The total glacier area decreased approximately by 4.5 % in the Tsagaan-Gol basin and by 6.9 % in the Tsagaan-Us basin from 1989 to 2013. Large glaciers were retreating at an average rate of 28-34 m/year between 2001 and 2014. The hydrometeorological data analysis shows that most of the catchment area is characterized by aridization tendency for the last 10 years. This fact is well confirmed by the dendrochronological streamflow reconstruction of the

  10. Plant biomass in the Tanana River Basin, Alaska.

    Science.gov (United States)

    Bert R. Mead

    1995-01-01

    Vegetation biomass tables are presented for the Tanana River basin. Average biomass for each species of tree, shrub, grass, forb, lichen, and moss in the 13 forest and 30 nonforest vegetation types is shown. These data combined with area estimates for each vegetation type provide a tool for estimating habitat carrying capacity for many wildlife species. Tree biomass is...

  11. Digital Atlas of the Upper Washita River Basin, Southwestern Oklahoma

    Science.gov (United States)

    Becker, Carol J.; Masoner, Jason R.; Scott, Jonathon C.

    2008-01-01

    Numerous types of environmental data have been collected in the upper Washita River basin in southwestern Oklahoma. However, to date these data have not been compiled into a format that can be comprehensively queried for the purpose of evaluating the effects of various conservation practices implemented to reduce agricultural runoff and erosion in parts of the upper Washita River basin. This U.S. Geological Survey publication, 'Digital atlas of the upper Washita River basin, southwestern Oklahoma' was created to assist with environmental analysis. This atlas contains 30 spatial data sets that can be used in environmental assessment and decision making for the upper Washita River basin. This digital atlas includes U.S. Geological Survey sampling sites and associated water-quality, biological, water-level, and streamflow data collected from 1903 to 2005. The data were retrieved from the U.S. Geological Survey National Water Information System database on September 29, 2005. Data sets are from the Geology, Geography, and Water disciplines of the U.S. Geological Survey and cover parts of Beckham, Caddo, Canadian, Comanche, Custer, Dewey, Grady, Kiowa, and Washita Counties in southwestern Oklahoma. A bibliography of past reports from the U.S. Geological Survey and other State and Federal agencies from 1949 to 2004 is included in the atlas. Additionally, reports by Becker (2001), Martin (2002), Fairchild and others (2004), and Miller and Stanley (2005) are provided in electronic format.

  12. An urban flood in the kashio river basin

    OpenAIRE

    Matsuda, Iware

    1987-01-01

    An urban flood is one of knotty problems derived from land development. Taking the Kashio River basin of Kanagawa Prefecture as an example, the relationships between urbanization and flood hazards were historically discussed. It was explained that a flood prevention work in one area affects other areas. The historical change in conditions for flood hazards can be divided into six stages.

  13. Placentation in dolphins from the Amazon River Basin

    DEFF Research Database (Denmark)

    da Silva, Vera M F; Carter, Anthony M; Ambrosio, Carlos E

    2007-01-01

    A recent reassessment of the phylogenetic affinities of cetaceans makes it timely to compare their placentation with that of the artiodactyls. We studied the placentae of two sympatric species of dolphin from the Amazon River Basin, representing two distinct families. The umbilical cord branched...

  14. Appropriate models in decision support systems for river basin management

    NARCIS (Netherlands)

    Xu, YuePing; Booij, Martijn J.; Morell, M.; Todorovik, O.; Dimitrov, D.; Selenica, A.; Spirkovski, Z.

    2004-01-01

    In recent years, new ideas and techniques appear very quickly, like sustainability, adaptive management, Geographic Information System, Remote Sensing and participations of new stakeholders, which contribute a lot to the development of decision support systems in river basin management. However, the

  15. An ecosystem services approach in the Tisza river basin

    NARCIS (Netherlands)

    Minca, E.L.; Petz, K.; Werners, S.E.

    2008-01-01

    The Tisza River Basin in Hungary and Romania is increasingly impacted by floods and droughts. Ecosystems have the capacity to mitigate the effect of these weather extremes. The provision of ecosystem services – the benefits people obtain from ecosystems – is strongly affected by the way in which eco

  16. Pyomyositis in the upper Negro river basin, Brazilian Amazonia

    DEFF Research Database (Denmark)

    Borges, Alvaro Humberto Diniz; Faragher, Brian; Lalloo, David G

    2012-01-01

    Pyomyositis remains poorly documented in tropical Latin America. We therefore performed a retrospective review of cases admitted to a hospital in the upper Negro river basin during 2002-2006. Seasonality was assessed by the cosinor model and independent predictors of outcome were identified...

  17. Work plan for the Sangamon River basin, Illinois

    Science.gov (United States)

    Stamer, J.K.; Mades, Dean M.

    1983-01-01

    The U.S. Geological Survey, in cooperation with the Division of Water Resources of the Illinois Department of Transportation and other State agencies, recognizes the need for basin-type assessments in Illinois. This report describes a plan of study for a water-resource assessment of the Sangamon River basin in central Illinois. The purpose of the study would be to provide information to basin planners and regulators on the quantity, quality, and use of water to guide management decisions regarding basin development. Water quality and quantity problems in the Sangamon River basin are associated primarily with agricultural and urban activities, which have contributed high concentrations of suspended sediment, nitrogen, phosphorus, and organic matter to the streams. The impact has resulted in eutrophic lakes, diminished capacity of lakes to store water, low concentrations of dissolved oxygen, and turbid stream and lake waters. The four elements of the plan of study include: (1) determining suspended sediment and nutrient transport, (2) determining the distribution of selected inorganic and organic residues in streambed sediments, (3) determining the waste-load assimilative capacity of the Sangamon River, and (4) applying a hydraulic model to high streamflows. (USGS)

  18. Sharing water and benefits in transboundary river basins

    Science.gov (United States)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-06-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may

  19. Case study of the Sarawak River Basin

    African Journals Online (AJOL)

    2012-12-20

    Dec 20, 2012 ... (World Weather and Climate Information, 2010–2011) .... Batu Kitang Water Treatment Plant to form the Sarawak River, before flowing into the South China .... current study, and areas shaded in light blue are the flood-prone.

  20. A Water Resources Planning Tool for the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Christopher Bonzi

    2011-06-01

    Full Text Available The Jordan River basin is subject to extreme and increasing water scarcity. Management of transboundary water resources in the basin is closely intertwined with political conflicts in the region. We have jointly developed with stakeholders and experts from the riparian countries, a new dynamic consensus database and—supported by hydro-climatological model simulations and participatory scenario exercises in the GLOWA (Global Change and the Hydrological Cycle Jordan River project—a basin-wide Water Evaluation and Planning (WEAP tool, which will allow testing of various unilateral and multilateral adaptation options under climate and socio-economic change. We present its validation and initial (climate and socio-economic scenario analyses with this budget and allocation tool, and invite further adaptation and application of the tool for specific Integrated Water Resources Management (IWRM problems.

  1. Priority targets for environmental research in the Sinos River basin.

    Science.gov (United States)

    Spilki, F R; Tundisi, J G

    2010-12-01

    The Sinos River Basin is often mentioned as a highly degraded watershed. A series of impacts on water quality, soil and air has been reported in this environment on a recurring basis over the years. This situation of environmental degradation has its origins in a process of huge economic development uncoupled from environmental conservation concerns. The intense consequent urbanization observed for the municipalities within the watershed was not preceded by urban planning proper zoning. The time has arrived for initiatives in scientific research in the Sinos River basin that are applicable to a more efficient and integrated management and recovery of the basin. In this article, a set of targets for research is suggested which the authors consider as the main priorities for the next few years, aiming for better knowledge and better management of the watershed. Some are still in course, while others have to be initiated as soon as possible.

  2. Priority targets for environmental research in the Sinos River basin

    Directory of Open Access Journals (Sweden)

    FR. Spilki

    Full Text Available The Sinos River Basin is often mentioned as a highly degraded watershed. A series of impacts on water quality, soil and air has been reported in this environment on a recurring basis over the years. This situation of environmental degradation has its origins in a process of huge economic development uncoupled from environmental conservation concerns. The intense consequent urbanization observed for the municipalities within the watershed was not preceded by urban planning proper zoning. The time has arrived for initiatives in scientific research in the Sinos River basin that are applicable to a more efficient and integrated management and recovery of the basin. In this article, a set of targets for research is suggested which the authors consider as the main priorities for the next few years, aiming for better knowledge and better management of the watershed. Some are still in course, while others have to be initiated as soon as possible.

  3. RUNOFF POTENTIAL OF MUREŞ RIVER UPPER BASIN TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    V. SOROCOVSCHI

    2012-03-01

    Full Text Available Runoff Potential of Mureş River Upper Basin Tributaries. The upper basin of the Mureş River includes a significant area of the Eastern Carpathians central western part with different runoff formation conditions. In assessing the average annual runoff potential we used data from six gauging stations and made assessments on three distinct periods. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on geographical units. The potential average runoff is also assessed on altitude intervals of the mentioned areas. The runoff potential analysis on hydrographic basins, geographical units and altitude intervals highlights the variant spatial distribution of this general water resources indicator in the different studied areas.

  4. Analysis of drought determinants for the Colorado River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Balling Jr, R.C. [Department of Geography, Arizona State University, Tempe, AZ 85287 (United States); Goodrich, G.B. [Department of Geography and Geology, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2007-05-15

    Ongoing drought in the Colorado River Basin, unprecedented urban growth in the watershed, and numerical model simulations showing higher temperatures and lower precipitation totals in the future have all combined to heighten interest in drought in this region. In this investigation, we use principal components analysis (PCA) to independently assess the influence of various teleconnections on Basin-wide and sub-regional winter season Palmer Hydrological Drought Index (PHDI) and precipitation variations in the Basin. We find that the Pacific Decadal Oscillation (PDO) explains more variance in PHDI than El Nino-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), and the planetary temperature combined for the Basin as a whole. When rotated PCA is used to separate the Basin into two regions, the lower portion of the Basin is similar to the Basin as a whole while the upper portion, which contains the high-elevation locations important to hydrologic yield for the watershed, demonstrates poorly defined relationships with the teleconnections. The PHDI for the two portions of the Basin are shown to have been out of synch for much of the twentieth century. In general, teleconnection indices account for 19% of the variance in PHDI leaving large uncertainties in drought forecasting.

  5. Estimation of Continental-Basin-Scale Sublimation in the Lena River Basin, Siberia

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Suzuki

    2015-01-01

    Full Text Available The Lena River basin in Siberia produces one of the largest river inflows into the Arctic Ocean. One of the most important sources of runoff to the river is spring snowmelt and therefore snow ablation processes have great importance for this basin. In this study, we simulated these processes with fine resolution at basin scale using MicroMet/SnowModel and SnowAssim. To assimilate snow water equivalent (SWE data in SnowAssim, we used routine daily snow depth data and Sturm’s method. Following the verification of this method for SWE estimation in the basin, we evaluated the impact of snow data assimilation on basin-scale snow ablation. Through validation against MODIS snow coverage data and in situ snow survey observations, we found that SnowAssim could not improve on the original simulation by MicroMet/SnowModel because of estimation errors within the SWE data. Vegetation and accumulated snowfall control the spatial distribution of sublimation and we established that sublimation has an important effect on snow ablation. We found that the ratio of sublimation to snowfall in forests was around 26% and that interannual variation of sublimation modulated spring river runoff.

  6. Fishes of the Taquari-Antas river basin (Patos Lagoon basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    FG. Becker

    Full Text Available The aquatic habitats of the Taquari-Antas river basin (in the Patos Lagoon basin, southern Brazil are under marked environmental transformation because of river damming for hydropower production. In order to provide an information baseline on the fish fauna of the Taquari-Antas basin, we provide a comprehensive survey of fish species based on primary and secondary data. We found 5,299 valid records of fish species in the basin, representing 119 species and 519 sampling sites. There are 13 non-native species, six of which are native to other Neotropical river basins. About 24% of the total native species are still lacking a taxonomic description at the species level. Three native long-distance migratory species were recorded (Leporinus obtusidens, Prochilodus lineatus, Salminus brasiliensis, as well as two potential mid-distance migrators (Parapimelodus nigribarbis and Pimelodus pintado. Although there is only one officially endangered species in the basin (S. brasiliensis, restricted range species (21.7% of total species should be considered in conservation efforts.

  7. Flood forecasting and alert system for Arda River basin

    Science.gov (United States)

    Artinyan, Eram; Vincendon, Beatrice; Kroumova, Kamelia; Nedkov, Nikolai; Tsarev, Petko; Balabanova, Snezhanka; Koshinchanov, Georgy

    2016-10-01

    The paper presents the set-up and functioning of a flood alert system based on SURFEX-TOPODYN platform for the cross-border Arda River basin. The system was built within a Bulgarian-Greek project funded by the European Territorial Cooperation (ETC) Programme and is in operational use since April 2014. The basin is strongly influenced by Mediterranean cyclones during the autumn-winter period and experiences dangerous rapid floods, mainly after intensive rain, often combined with snow melt events. The steep mountainous terrain leads to floods with short concentration time and high river speed causing damage to settlements and infrastructure. The main challenge was to correctly simulate the riverflow in near-real time and to timely forecast peak floods for small drainage basins below 100 km2 but also for larger ones of about 1900 km2 using the same technology. To better account for that variability, a modification of the original hydrological model parameterisation is proposed. Here we present the first results of a new model variant which uses dynamically adjusted TOPODYN river velocity as function of the computed partial streamflow discharge. Based on historical flooding data, river sections along endangered settlements were included in the river flow forecasting. A continuous hydrological forecast for 5 days ahead was developed for 18 settlements in Bulgaria and for the border with Greece, thus giving enough reaction time in case of high floods. The paper discusses the practical implementation of models for the Arda basin, the method used to calibrate the models' parameters, the results of the calibration-validation procedure and the way the information system is organised. A real case of forecasted rapid floods that occurred after the system's finalisation is analysed. One of the important achievements of the project is the on-line presentation of the forecasts that takes into account their temporal variability and uncertainty. The web presentation includes a

  8. Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China

    NARCIS (Netherlands)

    Zeng, Z; Liu, J.; Koeneman, P.H.; Zarate, E.; Hoekstra, A.Y.

    2012-01-01

    Increasing water scarcity places considerable importance on the quantification of water footprint (WF) at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this stu

  9. Assessing water footprint at river basin level: a case study for the Heihe River Basin in Northwest China

    NARCIS (Netherlands)

    Zheng, Z.; Liu, J.; Koeneman, P.H.; Zarate, E.; Hoekstra, A.Y.

    2012-01-01

    Increasing water scarcity places considerable importance on the quantification of water footprint (WF) at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this stu

  10. Multiple Time Scale Analysis of River Runoff Using Wavelet Transform for Dagujia River Basin, Yantai, China

    Institute of Scientific and Technical Information of China (English)

    LIU Delin; LIU Xianzhao; LI Bicheng; ZHAO Shiwei; LI Xiguo

    2009-01-01

    Based on monOdy river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoffin the Dagnjia River Basin, Yantai City, Shandong Province. The results showed that the total annual river runoff in the Dagujia River Basin decreased significantly from 1966 to 2004, and the rate of decrease was 48×106m3/10yr, which was higher than the mean value of most rivers in China. Multiple time scale characteristics existed, which accounted for different aspects of the changes in annual river runoff, and the major periods of the runoff time series were identified as about 28 years, 14 years and 4 years with decreasing levels of fluctuation. The river runoff evolution process was controlled by changes in precipitation to a certain extent, but it was also greatly influenced by human activities. Also, for different time periods and scales, the impacts of climate changes and human activities on annual river runoff evolution occurred at the same time. Changes in the annual river runoffwere mainly associated with climate change before the 1980s and with human activities after 1981.

  11. Coho Salmon Master Plan, Clearwater River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these

  12. Geohydrologic summary of the Pearl River basin, Mississippi and Louisiana

    Science.gov (United States)

    Lang, Joseph W.

    1972-01-01

    Fresh water in abundance is contained in large artesian reservoirs in sand and gravel deposits of Tertiary and Quaternary ages in the Pearl River basin, a watershed of 8,760 square miles. Shallow, water-table reservoirs occur in Quarternary deposits (Pleistocene and Holocene) that blanket most of the uplands in .the southern half of the basin and that are present in smaller upland areas and along streams elsewhere. The shallow reservoirs contribute substantially to dry-weather flow of the Strong River and Bogue Chitto and of Holiday, Lower Little, Silver, and Whitesand Creeks, among others. About 3 billion acre-feet of ground water is in storage in the fresh-water section, which extends from the surface to depths ranging from about sea level in the extreme northern part of the basin to more than 3,000 feet below sea level in the southern part of the basin. Variations in low flow for different parts of the river basin are closely related to geologic terrane and occurrence of ground water. The upland terrace belt that crosses the south-central part of the basin is underlain by permeable sand and gravel deposits and yields more than 0.20 cubic feet per second per square mile of drainage area to streamflow, whereas the northern part of the basin, underlain by clay, marl, and fine to medium sand, yields less than 0.05 cubic feet per second per square mile of drainage area (based on 7-day Q2 minimum flow computed from records). Overall, the potential surface-water supplies are large. Because water is available at shallow depths, most of the deeper aquifers have not been developed anywhere in the basin. At many places in the south, seven or more aquifers could be developed either by tapping one sand in each well or by screening two or more sands in a single well. Well fields each capable, of producing several million gallons of water a day are feasible nearly anywhere in the Pearl River basin. Water in nearly all the aquifers is of good to excellent quality and requires

  13. The Portland Basin: A (big) river runs through it

    Science.gov (United States)

    Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.

    2009-01-01

    Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.

  14. Updating river basin models with radar altimetry

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.

    response of a catchment to meteorological forcing. While river discharge cannot be directly measured from space, radar altimetry (RA) can measure water level variations in rivers at the locations where the satellite ground track and river network intersect called virtual stations or VS. In this PhD study...... been between 10 and 35 days for altimetry missions until now. The location of the VS is also not necessarily the point at which measurements are needed. On the other hand, one of the main strengths of the dataset is its availability in near-real time. These characteristics make radar altimetry ideally...... suited for use in data assimilation frameworks which combine the information content from models and current observations to produce improved forecasts and reduce prediction uncertainty. The focus of the second and third papers of this thesis was therefore the use of radar altimetry as update data...

  15. Information technology and decision support tools for stakeholder-driven river basin salinity management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T; Cozad, D.B.; Lee, G.

    2010-01-01

    Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

  16. River basin closure: Processes, implications and responses

    NARCIS (Netherlands)

    Molle, F.; Wester, P.; Hirsch, P.

    2010-01-01

    Increasing water withdrawals for urban, industrial, and agricultural use have profoundly altered the hydrology of many major rivers worldwide. Coupled with degradation of water quality, low flows have induced severe environmental degradation and water has been rendered unusable by downstream users.

  17. Nuevos datos estratigráficos y paleontológicos sobre el Terciario del borde meridional de la Depresión del Ebro (provincia de Zaragoza

    Directory of Open Access Journals (Sweden)

    Pérez, A.

    1985-12-01

    Full Text Available Three new vertebrate localities have been studied in the southem part of the Ebro Basin: Las Torcas (Upper Oligocene, Villanueva de Huerva (Upper Aragonien, Middle Miocene and El Artigazo.
    Three Tertiary TectosedimentaIy Units (T.S.U. are stablished in this part of Huerva river, between the dam of Las Torcas and Villanueva de Huerva. Some further remarks concerning the chronostratigraphic meaning of these T.S.U. are made in base of the stratigraphic distribution of vertebrates. Finally, a stratigraphic correlation is also outlined with the T.S.U. previously characterized at Montalbán and Alloza basins.

    Se dan a conocer tres nuevos yacimientos de vertebrados en el borde meridional de la depresión del Ebro: Las Torcas (Oligoceno superior, Villanueva de Huerva (Aragoniense superior y El Artigazo, al tiempo que se caracterizan tres unidades tectosedimentarias en el Terciario del sector del río Huerva comprendido entre el pantano de las Torcas y Villanueva.
    La situación de los yacimientos dentro de las unidades definidas, permite establecer precisiones sobre el significado cronoestratigráfico de las mismas , así como su correlación con las U.T.S. caracterizadas anteriormente en las cubetas Ibéricas de Montalbán y Alloza.

  18. UV filters bioaccumulation in fish from Iberian river basins

    Energy Technology Data Exchange (ETDEWEB)

    Gago-Ferrero, Pablo [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens (Greece); Díaz-Cruz, M. Silvia, E-mail: sdcqam@cid.csic.es [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Barceló, Damià [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, C/ Emili Grahit, 101 Edifici H2O, E-17003 Girona (Spain)

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification.

  19. Decapod crustaceans of the Sinu River Basin, Cordoba, Colombia

    Directory of Open Access Journals (Sweden)

    Jorge Alexander Quirós Rodríguez

    2016-09-01

    Full Text Available To review the composition, abundance and distribution of decapod crustaceans in the Sinu river basin, Department of Cordoba (Colombia eight locations were studied: four on the Sinu River and four in the Low Complex Swampy Sinu. For that, six samplings between April 2005 and May 2006 were made. In total 458 decapod crustaceans were recorded distributed into three families, six genus and eight species. The family best represented was Trichodactylidae with four genus and four species, followed by Palaemonidae with one genus and three species, while family Atyidae recorded only one species. Species such as Macrobrachium carcinus and M. acanthurus presented the wider range of distribution for both the Sinu River as the  Low Complex Swampy Sinu.  Among the identified species Atya crassa in the Sinu River and Trichodactylus quinquedentatus in the Low Complex Swampy Sinu are new records for the Department of Cordoba.

  20. Groundwater quality in the Mohawk River Basin, New York, 2011

    Science.gov (United States)

    Nystrom, Elizabeth A.; Scott, Tia-Marie

    2013-01-01

    Water samples were collected from 21 production and domestic wells in the Mohawk River Basin in New York in July 2011 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Mohawk River Basin covers 3,500 square miles in New York and is underlain by shale, sandstone, carbonate, and crystalline bedrock. The bedrock is overlain by till in much of the basin, but surficial deposits of saturated sand and gravel are present in some areas. Nine of the wells sampled in the Mohawk River Basin are completed in sand and gravel deposits, and 12 are completed in bedrock. Groundwater in the Mohawk River Basin was typically neutral or slightly basic; the water typically was very hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 15 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Four pesticides, all herbicides or their degradates, were detected in four samples at trace levels; three VOCs, including chloroform and two solvents, were detected in four samples. The greatest radon-222 activity, 2,300 picocuries per liter, was measured in a sample from a bedrock well, but the median radon activity was higher in samples from sand and gravel wells than in samples from bedrock wells. Coliform bacteria were detected in five samples with a maximum of 92 colony-forming units per 100 milliliters. Water quality in the Mohawk River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards

  1. River Sinuosity Classification - Case study in the Pannonian Basin

    Science.gov (United States)

    Petrovszki, J.; Székely, B.; Timár, G.

    2012-04-01

    A new evaluation method is proposed to classify the multiple window-size based sinuosity spectrum, in order to minimize the possible human interpretation error. If the river is long enough for the analysis, the classification could be similarly useful as the sinuosity spectrum is, but sometimes it is more straightforward. Furthermore, for the classification, we did not need the main parameters of the river, e.g. the bankfull discharge. The river sinuosity values were studied in the Pannonian Basin in order to reveal neotectonic influence on their abrupt changes. The map sheets of the Second Military Survey of the Habsburg Empire were used to digitize the natural, pre-regulation meandering river thalwegs. 28 rivers were studied, and the connection between the known fault lines and the river sinuosity changes was detected in 36 points, along 26 structural lines. An unsupervised ISOCLASS classification was carried out on these data, and the sinuosity values were divided into 5 classes. Because of the sinuosity calculation method, 25 kilometer-long river sections are missing at the two endpoints of the channel. So sometimes the displayed section of the river does not cross to the faults represented on the neotectonic map. In the other cases, where the faults are crossing the rivers, the results are corresponding with the results of the sinuosity spectrum: the river-points on the two sides of the faults belong to different classes. The connection between these fault lines and the change of river sinuosity classes was detected in 23 points, along 16 structural lines The research is made in the frame of project OTKA-NK83400 (SourceSink Hungary). The European Union and the European Social Fund also have provided financial support to the project under the grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003.

  2. A Heuristic Dynamically Dimensioned Search with Sensitivity Information (HDDS-S) and Application to River Basin Management

    OpenAIRE

    Jinggang Chu; Yong Peng; Wei Ding; Yu Li

    2015-01-01

    River basin simulation and multi-reservoir optimal operation have been critical for river basin management. Due to the intense interaction between human activities and river basin systems, the river basin model and multi-reservoir operation model are complicated with a large number of parameters. Therefore, fast and stable optimization algorithms are required for river basin management under the changing conditions of climate and current human activities. This study presents a new global opti...

  3. Coho Salmon Master Plan, Clearwater River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these

  4. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    Science.gov (United States)

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  5. Incentive compatibility and conflict resolution in international river basins: A case study of the Nile Basin

    Science.gov (United States)

    Wu, Xun; Whittington, Dale

    2006-02-01

    Nation-states rarely go to war over water, but it is equally rare that water conflicts in an international river basin are resolved through cooperation among the riparian countries that use the shared resources. Gains from cooperation will mean little to individual riparians unless the required cooperative behaviors are incentive compatible. Cooperative game theory offers useful insights for assessing cooperative solutions for water conflicts in international river basins. Applying cooperative game theory concepts such as core, nucleolus, and Shapley value to Nile water conflicts, we examine the incentive structure of both cooperative and noncooperative strategies for different riparian countries and establish some baseline conditions for incentive-compatible cooperation in the Nile basin.

  6. A Review of Integrated River Basin Management for Sarawak River

    Directory of Open Access Journals (Sweden)

    Kuok K. Kuok

    2011-01-01

    Full Text Available Problem statement: Sarawak River was a life-sustaining water source for the residents in Kuching City and surrounding areas. Raw water is treated at Batu Kitang Water Treatment Plant (BKWTP that supplies more than 98% of the total water production in Kuching City. The raw water supply to BKWTP is not adequate to meet the ever increasing water demand. In order to overcome this problem, four projects had been implemented along Sarawak River for managing and securing water supply to BKWTP. Approach: These four projects are construction of 1.5m height storage weir across Sungai Sarawak Kiri river channel, Kuching Barrage and Shiplock, Bengoh Dam and Kuching Centralized Wastewater Management System (KCWMS. In 2005, 1.5 m height submersible weir was constructed across Sungai Sarawak Kiri channel for increasing the safe yield that can last until year 2010. Kuching Barrage and Shiplock were commissioned in 2000 as barrier to avoid the saline intrusion reaching upper catchment. 24 telemetry stations were installed along Sarawak River for monitoring and regulating the water level. This will preserve high quality water storage at upper catchment of Sarawak River. In year 2010, Bengoh Dam was constructed to ensure adequate raw water will be supplied to BKWTP for meeting the increasing water demand from 2010-2030. This reservoir will store 144 million m3 of fresh water covering reservoir area of 8.77km2. Beyond 2030, the water supply shall not depend solely on fresh water. Results: Black and grey water in Sarawak Catchment was treated through Kuching Centralized Wastewater Management System (KCWMS and recycled for daily used. Conclusion: The treated water that comply Standard A water quality, can distribute for domestic, industrial and irrigation used in nearest future. This will reduce the water demand solely on raw water and create a sustainable living in Kuching City. Beyond 2030, a few alternatives are also proposed for conserving and

  7. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  8. Integrated water resources management in the Ruhr River Basin, Germany.

    Science.gov (United States)

    Bode, H; Evers, P; Albrecht, D R

    2003-01-01

    The Ruhr, with an average flow of 80.5 m3/s at its mouth, is a comparatively small tributary to the Rhine River that has to perform an important task: to secure the water supply of more than 5 million people and of the industry in the densely populated region north of the river. The complex water management system and network applied by the Ruhrverband in the natural Ruhr River Basin has been developed step by step, over decades since 1913. And from the beginning, its major goal has been to achieve optimal conditions for the people living in the region. For this purpose, a functional water supply and wastewater disposal infrastructure has been built up. The development of these structures required and still requires multi-dimensional planning and performance. Since the river serves as receiving water and at the same time as a source of drinking water, the above-standard efforts of Ruhrverband for cleaner water also help to conserve nature and wildlife. Ruhrverband has summed up its environmental awareness in the slogan: "For the people and for the environment". This basic water philosophy, successfully applied to the Ruhr for more than 80 years, will be continued in accordance with the new European Water Framework Directive, enacted in 2000, which demands integrated water resources management in natural river basins, by including the good ecological status of surface waterbodies as an additional goal.

  9. CHEMICAL WEATHERING PROCESSES AND ATMOSPHERIC CO2 CONSUMPTION OF HUANGHE RIVER AND CHANGJIANG RIVER BASINS

    Institute of Scientific and Technical Information of China (English)

    LI Jing-ying; ZHANG Jing

    2005-01-01

    Rock weathering plays an important role in studying the long-term carbon cycles and global climaticchange. According to the statistics analysis, the Huanghe (Yellow) River water chemistry was mainly controlled byevaporite and carbonate weathering, which were responsible for over 90% of total dissolved ions. As compared withthe Huanghe River basin, dissolved load of the Changjiang (Yangtze) River was mainly originated from the carbonate dissolution.The chemical weathering rates were estimated to be 39.29t/(km2·a)and 61.58t/(km2·a)by deduting the HCO3- derived from atmosphere in the Huanghe River and Changjiang River watersheds, respectively. The CO2 con-sumption rates by rock weathering were calculated to be 120.84 × 103mol/km2 and 452.46 × 103mol/km2 annually in thetwo basins, respectively. The total CO2 consumption of the two basins amounted to 918.51 × 109mol/a, accounting for3.83% of the world gross. In contrast to other world watersheds, the stronger evaporite reaction and infirm silicateweathering can explain such feature that CO2 consumption rates were lower than a global average, suggesting that thesequential weathering may be go on in the two Chinese drainage basins.

  10. Evolución geomorfológica, cambios ambientales e intervención humana durante el holoceno en la cuenca alta del Ebro: las tobas de los valles del Purón y Molinar

    Directory of Open Access Journals (Sweden)

    González Amuchastegui, María José

    2007-12-01

    Full Text Available Geomorphologic evolution, environmental changes and human activity during Holocene in Upper Ebro Basin: tufa complexes in Purón and Molinar rivers.

    Pleistocene to Holocene transition was accompanied by a very intense environmental change, from cold conditions to warmer. During this time, the karst processes made a very intense work on calcareous places of Upper Ebro Basin and tufa sedimentation rates in the valleys were also high. During the Holocene, coinciding with first human settlement occupation, tufa sedimentation stopped and the down cutting processes on in filled valley deposits started on. The erosion process on tufa building may be caused both human activity and complex responses of the natural system. In this paper Holocene geomorphic evolution of Purón and Molinar rivers is studied, the chronology of tufaceous deposits is established and the incidence of human activity on the geomorphic evolution is considered.

    Evolución geomorfológica, cambios ambientales e intervención humana durante el Holoceno en la cuenca alta del Ebro: las tobas de los valles del Purón y Molinar.

    El paso del Pleistoceno al Holoceno supuso un cambio ambiental muy marcado de unas condiciones muy frías a otras cálidas, que en las zonas calizas de la cuenca alta del Ebro fueron acompañadas de una intensa karstificación y el relleno tobáceo de los principales afluentes del río Ebro. Posteriormente y coincidiendo con el inicio de la ocupación antrópica del territorio, cesó la precipitación tobácea y los ríos comenzaron a incidir sus cauces hasta generar importantes terrazas. En este trabajo se analiza la evolución de los valles de los ríos Purón y Molinar, se establece su cronología y se plantea la incidencia que la ocupación antrópica del territorio ha tenido en su evolución.

  11. Seepage Investigation for Selected River Reaches in the Chehalis River Basin, Washington

    Science.gov (United States)

    Ely, D. Matthew; Frasl, Kenneth E.; Marshall, Cameron A.; Reed, Fred

    2008-01-01

    A study was completed in September 2007 in the Chehalis River basin to determine gain or loss of streamflow by measuring discharge at selected intervals within various reaches along the Chehalis River and its tributaries. Discharge was measured at 68 new and existing streamflow sites, where gains and losses were determined for 36 stream reaches. Streamflow gains were measured for 22 reaches and losses were measured for 13 reaches. No gain or loss was measured at the Chehalis River between the Newaukum and Skookumchuck Rivers. The Chehalis River exhibited a pattern of alternating gains and losses as it entered the area of wide, gentle relief known as the Grand Mound Prairie. The general pattern of tributary ground- and surface-water interaction was discharge to streams (gaining reaches) in the upper reaches and discharge to the ground-water system (losing reaches) as the tributaries entered the broad, flat Chehalis River valley.

  12. Morphometric analysis of the Marmara Sea river basins, Turkey

    Science.gov (United States)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems

  13. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia

    Science.gov (United States)

    Zuliziana, S.; Tanuma, K.; Yoshimura, C.; Saavedra, O. C.

    2015-07-01

    Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2). In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2) and the Mekong River Basin (795 000 km2). The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash-Sutcliffe efficiency (NSE) and average correlation coefficient (r) between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k) in the Chao Phraya River Basin and to soil detachability over land (Kf) in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.

  14. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia

    Directory of Open Access Journals (Sweden)

    S. Zuliziana

    2015-07-01

    Full Text Available Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2. In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2 and the Mekong River Basin (795 000 km2. The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash–Sutcliffe efficiency (NSE and average correlation coefficient (r between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k in the Chao Phraya River Basin and to soil detachability over land (Kf in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.

  15. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    NARCIS (Netherlands)

    Sluis, van der T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is d

  16. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    NARCIS (Netherlands)

    Sluis, van der T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is

  17. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    NARCIS (Netherlands)

    Sluis, van der T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is d

  18. Nutrient attenuation in rivers and streams, Puget Sound Basin, Washington

    Science.gov (United States)

    Sheibley, Rich W.; Konrad, Christopher P.; Black, Robert W.

    2015-01-01

    Nutrients such as nitrogen and phosphorus are important for aquatic ecosystem health. Excessive amounts of nutrients, however, can make aquatic ecosystems harmful for biota because enhanced growth and decay cycles of aquatic algae can reduce dissolved oxygen in the water. In Puget Sound marine waters, low dissolved oxygen concentrations are observed in a number of marine nearshore areas, and nutrients have been identified as a major stressor to the local ecosystem. Delivery of nutrients from major rivers in the Puget Sound Basin to the marine environment can be large. Therefore, it is important to identify factors related to how nutrients are retained (attenuated) within streams and rivers in the Puget Sound Basin. Physical, chemical, and biological factors related to nutrient attenuation were identified through a review of related scientific literature.

  19. River Basin Management Plans - Institutional framework and planning process

    DEFF Research Database (Denmark)

    Frederiksen, Pia; Nielsen, Helle Ørsted; Pedersen, Anders Branth

    2011-01-01

    The report it a deliverable to the Waterpraxis project, based on research carried out in WP3. It is based on country reports from analyses of water planning in one river basin district in each of the countries Sweden, Finland, Latvia, Lithuania, Poland, Germany and Denmark, and it compares...... the institutional set-up, the public participation and the potentials and barriers for implementing the water plans....

  20. Sediment balances in the Blue Nile River Basin

    Institute of Scientific and Technical Information of China (English)

    Yasir SAALI; Alessandra CROSATO; Yasir AMOHAMED; Seifeldin HABDALLA; Nigel GWRIGHT

    2014-01-01

    Rapid population growth in the upper Blue Nile basin has led to fast land-use changes from natural forest to agricultural land. This resulted in speeding up the soil erosion process in the highlands and increasing sedimentation further downstream in reservoirs and irrigation canals. At present, several dams are planned across the Blue Nile River in Ethiopia and the Grand Ethiopian Renaissance Dam is currently under construction near the border with Sudan. This will be the largest hydroelectric power plant in Africa. The objective of this paper is to quantify the river flows and sediment loads along the Blue Nile River network. The Soil and Water Assessment Tool was used to estimate the water flows from un-gauged sub-basins. To assess model performance, the estimated sediment loads were compared to the measured ones at selected locations. For the gauged sub-basins, water flows and sediment loads were derived from the available flow and sediment data. To fill in knowledge gaps, this study included a field survey in which new data on suspended solids and flow discharge were collected along the Blue Nile and on a number of tributaries. The comparison between the results of this study and previous estimates of the sediment load of the Blue Nile River at El Deim, near the Ethiopian Sudanese border, show that the sediment budgets have the right order of magnitude, although some uncertainties remain. This gives confidence in the results of this study providing the first sediment balance of the entire Blue Nile catchment at the sub-basin scale.

  1. River Basin Management Plans - Institutional framework and planning process

    DEFF Research Database (Denmark)

    Frederiksen, Pia; Nielsen, Helle Ørsted; Pedersen, Anders Branth;

    2011-01-01

    The report it a deliverable to the Waterpraxis project, based on research carried out in WP3. It is based on country reports from analyses of water planning in one river basin district in each of the countries Sweden, Finland, Latvia, Lithuania, Poland, Germany and Denmark, and it compares...... the institutional set-up, the public participation and the potentials and barriers for implementing the water plans....

  2. Impact of climate change and agricultural developments in the Taquari River basin, Brazil

    NARCIS (Netherlands)

    Querner, E.P.; Jonker, R.N.J.; Padovani, C.; Soriano, B.; Galdino, S.

    2005-01-01

    The Pantanal wetland is part of the Upper Paraguay River basin. The major driving force of the wetland system is the annual oscillation between dry and wet seasons. This study focussed on the Taquari basin, a tributary of the Paraguay River, where erosion takes place and parts of the river silt up,

  3. Range extension of Moenkhausia oligolepis (Günther,1864 to the Pindaré river drainage, of Mearim river basin, and Itapecuru river basin of northeastern Brazil (Characiformes: Characidae

    Directory of Open Access Journals (Sweden)

    Erick Cristofore Guimarães

    2016-08-01

    Full Text Available The present study reports range extansion of Moenkhausia oligolepis to the Pindaré river drainage, of the Mearim river basin, and Itapecuru river basin, Maranhão state, northeastern Brazil. This species was previously known only from Venezuela, Guianas, and the Amazon River basins. In addition, we present some meristic and morphometric data of the specimens herein examined and discuss on its diagnostic characters.

  4. Flood tracking chart for the Illinois River basin

    Science.gov (United States)

    Avery, Charles F.; Holmes, Jr., Robert R.; Sharpe, Jennifer B.

    1998-01-01

    This Flood Tracking Chart for the Illinois River Basin in Illinois can be used to record and compare the predicted or current flood-crest stage to past flood-crest information. This information can then be used by residents and emergency-response personnel to make informed decisions concerning the threat of flooding to life and property. The chart shows a map of the Illinois River Basin (see below), the location of real-time streamflow-gaging stations in the basin, graphs of selected historical recorded flood-crest stages at each of the stations, and sea-level conversion (SLC) factors that allow conversion of the current or predicted flood-crest stage to elevation above sea level. Each graph represents a streamflow-gaging station and has a space to record the most current river stage reported for that station by the U.S. Geological Survey (USGS). The National Weather Service (NWS) predicts flood crests for many of the stations shown on this chart.

  5. Quality of ground water in the Payette River basin, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1986-01-01

    As part of a study to obtain groundwater quality data in areas of Idaho were land- and water-resource development is expected to increase, water quality, geologic, and hydrologic data were collected for 74 wells in the Payette River basin, west-central Idaho, from July to October 1982. Historical (pre-1982) data from 13 wells were compiled with more recent (1982) data to define, on a reconnaissance level, water quality conditions in major aquifers and to identify factors that may have affected groundwater quality. Water from the major aquifers generally contains predominantly calcium, magnesium, and bicarbonate plus carbonate ions. Sodium and bicarbonate or sulfate are the predominant ions in groundwater from 25% of the 1982 samples. Areally, groundwater from the upper Payette River basin has proportionately lower ion concentrations than water from the lower Payette River basin. Water samples from wells 100 ft deep. Variations in groundwater quality probably are most affected by differences in aquifer composition and proximity to source(s) of recharge. Groundwater in the study area is generally suitable for most uses. In localized areas, pH and concentrations of hardness, alkalinity, dissolved solids, or dissolved nitrite plus nitrate as nitrogen, sulfate, fluoride, iron, or manganese exceed Federal drinking water limits and may restrict some uses of the water.

  6. Knowledge-based approaches for river basin management

    Directory of Open Access Journals (Sweden)

    P. Mikulecký

    2007-06-01

    Full Text Available Rare attempts to use knowledge technologies and other relevant approaches are found in the river basin management. Some applications of expert systems as well as utilization of soft computing techniques (as neural networks or genetic algorithms are known in an experimental level. Knowledge management approaches still have not been used at all. In this paper we discuss knowledge-based approaches in the river basin management as a difficult yet important direction which could be proven to be helpful. We summarize the research done in the scope of the AQUIN project, one of first Czech knowledge management projects in the river basin management. The project was initiated by the water management company in Pilsen, where dispatchers make decisions about manipulations on the reservoir Nýrsko, the strategic source of drinking water for inhabitants of Pilsen. The project aim was to support dispatchers' decision making under a high degree of uncertainty or data shortage. The research is continued in the scope of a new project AQUINpro, planned for the period of 2006 to 2008.

  7. Sustainable Land Management in the Lim River Basin

    Science.gov (United States)

    Grujic, Gordana; Petkovic, Sava; Tatomir, Uros

    2017-04-01

    In the cross-border belt between Serbia and Montenegro are located more than one hundred torrential water flows that belong to the Lim River Basin. Under extreme climate events they turned into floods of destructive power and great energy causing enormous damage on the environment and socio-economic development in the wider region of the Western Balkans. In addition, anthropogenic factors influence the land instability, erosion of river beds and loss of topsoil. Consequently, this whole area is affected by pluvial and fluvial erosion of various types and intensity. Terrain on the slopes over 5% is affected by intensive degree of erosion, while strong to medium degree covers 70% of the area. Moreover, in the Lim River Basin were built several hydro-energetic systems and accumulations which may to a certain extent successfully regulate the water regime downstream and to reduce the negative impact on the processes of water erosion. However, siltation of accumulation reduces their useful volume and threatens the basic functions (water reservoirs), especially those ones for water supply, irrigation and energy production that have lost a significant part of the usable volume due to accumulated sediments. Facing the negative impacts of climate change and human activities on the process of land degradation in the Lim River basin imposes urgent need of adequate preventive and protective measures at the local and regional level, which can be effectively applied only through enhanced cross-border cooperation among affected communities in the region. The following set of activities were analyzed to improve the actual management of river catchment: Identifying priorities in the spatial planning, land use and water resources management while respecting the needs of local people and the communities in the cross border region; development of cooperation and partnership between the local population, owners and users of real estate (pastures, agricultural land, forests, fisheries

  8. Environmental Impact of Eu Policies On Acheloos River Basin, Greece

    Science.gov (United States)

    Skoulikidis, N.; Nikolaidis, N. P.; Oikonomopoulou, A.; Batzias, F.

    The environmental impact of EU policies aiming at protecting surface and ground wa- ters are being assessed in the Acheloos River Basin, Greece as part of a Joint Research Centre (JRC) / DG Environment (DG Env) funded project. The basin offers the possi- bility of studying the impact of EU policies on a multitude of aquatic ecosystems: four artificial and four natural lakes and a large estuary with important hydrotops (lagoons, coastal salt lacustrine and freshwater marshes, etc.) that belong to the NATURA 2000 sites or are protected by the RAMSAR Convention. A database has been developed that includes all available information on sources, fluxes, and concentration levels of nutrients and selected heavy metals from prior and current research programs at the Acheloos River Basin and coastal environment. This information has been used to identify the environmental pressures and develop nutrient budgets for each sub-basin of the watershed to assess the relative contributions of nutrients from various land uses. The mathematical model HSPF is being used to model the hydrology and nitro- gen fate and transport in the watershed. Management scenarios will be developed and modelling exercises will be carried out to assess the impacts of the scenarios. Eco- nomic analysis of the nutrient management scenarios will be conducted to evaluate the costs associated with management practices for reaching acceptable water quality status.

  9. Efects of Crop Growth on Hydrological Processes in River Basins and on Regional Climate in China

    Institute of Scientific and Technical Information of China (English)

    QIN; Pei-Hua; CHEN; Feng; XIE; Zheng-Hui

    2013-01-01

    The regional climate model RegCM3 incorporating the crop model CERES,called the RegCM3CERES model,was used to study the efects of crop growth and development on regional climate and hydrological processes over seven river basins in China.A 20-year numerical simulation showed that incorporating the crop growth and development processes improved the simulation of precipitation over the Haihe River Basin,Songhuajiang River Basin and Pearl River Basin.When compared with the RegCM3 control run,RegCM3CERES reduced the negative biases of monthly mean temperature over most of the seven basins in summer,especially the Haihe River Basin and Huaihe River Basin.The simulated maximum monthly evapotranspiration for summer(JJA)was around 100 mm in the basins of the Yangtze,Haihe,Huaihe and Pearl Rivers.The seasonal and annual variations of water balance components(runof,evapotranspiration and total precipitation)over all seven basins indicate that changes of evapotranspiration agree well with total precipitation.Compared to the RegCM3,RegCM3CERES simulations indicate reduced local water recycling rate over most of the seven basins due to lower evapotranspiration and greater water flux into these basins and an increased precipitation in the Heihe River Basin and Yellow River Basin,but reduced precipitation in the other five basins.Furthermore,a lower summer leaf area index(1.20 m2m 2),greater root soil moisture(0.01 m3m 3),lower latent heat flux(1.34 W m 2),and greater sensible heat flux(2.04 W m 2)are simulated for the Yangtze River Basin.

  10. A comparative study of institutional adaptive capacity : South Saskatchewan River Basin, Canada, and Elqui River Basin, Northern Chile

    Energy Technology Data Exchange (ETDEWEB)

    Sauchyn, D.; Diaz, P.; Gauthier, D. [Regina Univ., SK (Canada)

    2005-07-01

    This presentation discussed the strategies and materials developed for a five-year study of the capacity of institutions in two dryland regions (the South Saskatchewan River Basin in western Canada and the Elqui River Basin of north-central Chile) to adapt to the impacts of climate change. The purpose of the project was to obtain a systematic and comprehensive understanding of the capacities of regional institutions to formulate and implement strategies of adaptation to climate change risks and the forecasted impacts of climate change on the supply and management of water resources in dryland environments. Both regions are at different stages of social and environmental vulnerability and yet have a dry climate adjacent to a major mountain system and landscapes at risk of desertification, as well as an agricultural economy dependent on irrigation water derived from mountain snow and glaciers. tabs., figs.

  11. Selected hydrologic data, Yampa River basin and parts of the White River basin, northwestern Colorado and south-central Wyoming

    Science.gov (United States)

    Giles, T.F.; Brogden, Robert E.

    1978-01-01

    Selected hydrologic data are presented from four energy-related projects conducted by the U.S. Geological Survey in the Yampa River basin and parts of the White River basin in northwestern Colorado and south-central Wyoming. Water-quality data during 1974 and 1975 and parts of 1976 for 129 ground-water sites and 119 surface-water sites are tabulated. For most samples, major cations, anions, and trace metals were analyzed. For the same time period, field measurements of specific conductance, temperature, and pH were made on 252 springs and wells. These samplings sites, as well as the locations of 20 climatological stations, 18 snow-course sites, and 43 surface-water gaging stations, are shown on maps. Geologic units that contain coal deposits or supply much of the water used for stock and domestic purposes in the area also are shown on a map. (Woodard-USGS)

  12. Integrated Basin Scale Hydropower and Environmental Opportunity Assessment in the Deschutes River Basin, Oregon

    Science.gov (United States)

    Voisin, N.; Geerlofs, S. H.; Vail, L. W.; Ham, K. D.; Tagestad, J. D.; Hanrahan, T. P.; Seiple, T. E.; Coleman, A. M.; Stewart, K.

    2012-04-01

    The Deschutes River Basin in Oregon, USA, is home to a number of diverse groups of stakeholders that rely upon the complex snowmelt and groundwater-dominated river system to support their needs, livelihoods, and interests. Basin system operations that vary across various temporal and spatial scales often must balance an array of competing demands including maintaining adequate municipal water supply, recreation, hydropower generation, regulations related to environmental flows, mitigation programs for salmon returns, and in-stream and storage rights for irrigation water supplied by surface water diversions and groundwater pumping. The U.S. Department of Energy's Integrated Basin-scale Opportunity Assessment initiative is taking a system-wide approach to identifying opportunities and actions to increase hydropower and enhance environmental conditions while sustaining reliable supply for other uses. Opportunity scenarios are analyzed in collaboration with stakeholders, through nested integrated modeling and visualization software to assess tradeoffs and system-scale effects. Opportunity assessments are not intended to produce decisional documents or substitute for basin planning processes; assessments are instead intended to provide tools, information, and a forum for catalyzing conversation about scenarios where both environmental and hydropower gains can be realized within a given basin. We present the results of the nested integrated modeling approach and the modeling scenarios in order to identify and explore opportunities for the system.

  13. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiquí River Basin, Costa Rica

    Science.gov (United States)

    Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.

    2008-01-01

    Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiquí River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiquí River Basin.Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiquí River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9 km) and Lower Montane Rain Forest (168.2 km).Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  14. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  15. Sediment budget in the Ucayali River basin, an Andean tributary of the Amazon River

    Directory of Open Access Journals (Sweden)

    W. Santini

    2015-03-01

    Full Text Available Formation of mountain ranges results from complex coupling between lithospheric deformation, mechanisms linked to subduction and surface processes: weathering, erosion, and climate. Today, erosion of the eastern Andean cordillera and sub-Andean foothills supplies over 99% of the sediment load passing through the Amazon Basin. Denudation rates in the upper Ucayali basin are rapid, favoured by a marked seasonality in this region and extreme precipitation cells above sedimentary strata, uplifted during Neogene times by a still active sub-Andean tectonic thrust. Around 40% of those sediments are trapped in the Ucayali retro-foreland basin system. Recent advances in remote sensing for Amazonian large rivers now allow us to complete the ground hydrological data. In this work, we propose a first estimation of the erosion and sedimentation budget of the Ucayali River catchment, based on spatial and conventional HYBAM Observatory network.

  16. XXI Century Climatology of Snow Cover for the Western River Basins of the Indus River System

    CERN Document Server

    Hasson, Shabeh ul; Lucarini, Valerio

    2012-01-01

    Under changing climate, freshwater resources of Hindu Kush-Karakoram-Himalaya (HKH) region can be affected by changes in temperature and in amount, type and distribution of precipitation. This can have serious implications for the water supply and in turn threaten the food security and economic wellbeing of Indus basin. Using MODIS daily snow products (Terra & Aqua), this study focuses on the assessment of the 2000-2010 snow cover dynamics on seasonal/annual basis against geophysical parameters (aspect, elevation and slope) for the so called western river basins of Indus River System (IRS), namely Indus, Kabul, Jhelum, Astore, Gilgit, Hunza, Swat, Shigar and Shyok basins. Results show that inputs from MODIS instrument provide unprecedented better opportunity to study by using GIS techniques the snow cover dynamics in the remote areas like HKH region at such hyper-temporal and finer planar resolution. Adapted non-spectral cloud filtering techniques have significantly reduced cloud coverage and improved sno...

  17. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  18. Predicted riparian vegetation - Potential for Habitat Improvement in the Columbia River Basin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basin-wide analysis of potential to improve tributary habitats in the Columbia River basin through restoration of habitat-forming processes. Identification of...

  19. Predicted channel types - Potential for Habitat Improvement in the Columbia River Basin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basin-wide analysis of potential to improve tributary habitats in the Columbia River basin through restoration of habitat-forming processes. Identification of...

  20. 2009-2012 Indiana Statewide Imagery and LiDAR Program: Maumee River Basin Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The counties comprised in this dataset have been chosen based on the relation to the Maumee River basin, a portion of the Lake Erie basin and correlated with the...

  1. 2009-2012 Indiana Statewide Imagery and LiDAR Program: Maumee River Basin Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The counties comprised in this dataset have been chosen based on the relation to the Maumee River basin, a portion of the Lake Erie basin and correlated with the...

  2. Fluvial bar dynamics in large meandering rivers with different sediment supply in the Amazon River basin

    Science.gov (United States)

    Monegaglia, Federico; Zolezzi, Guido; Tubino, Marco; Henshaw, Alex

    2017-04-01

    Sediments in the large meandering rivers of the Amazon basin are known to be supplied by sources providing highly different magnitudes of sediment input and storage, ranging from the sediment-rich Andean region to the sediment-poor Central Trough. Recent observations have highlighted how such differences in sediment supply have an important, net effect on the rates of planform activity of meandering rivers in the basin, in terms of meander migration and frequency of cutoffs. In this work we quantify and discuss the effect of sediment supply on the organization of macroscale sediment bedforms on several large meandering rivers in the Amazon basin, and we link our findings with those regarding the rates of planform activity. Our analysis is conducted through the newly developed software PyRIS, which enables us to perform extensive multitemporal analysis of river morphodynamics from multispectral remotely sensed Landsat imagery in a fully automated fashion. We show that large rivers with low sediment supply tend to develop alternate bars that consistently migrate through long reaches, characterized at the same time by limited planform development. On the contrary, high sediment supply is associated with the development of point bars that are well-attached to the evolving meander bends and that follow temporal oscillations around the bend apexes, which in turn show rapid evlution towards complex meander shapes. Finally, rivers with intermediate rates of sediment supply develop rather steady point bars associated with slowly migrating, regular meanders. We finally discuss the results of the image analysis in the light of the properties of river planform metrics (like channel curvature and width) for the examined classes of river reaches with different sediment supply rates.

  3. The future of the reservoirs in the Siret River Basin considering the sediment transport of rivers (ROMANIA)

    OpenAIRE

    Petru OLARIU; Gianina Maria COJOC; Alina TIRNOVAN; Obreja, Florin

    2015-01-01

    The Siret River Basin is characterized by an important use of hydro potential, resulted in the number of reservoirs constructed and operational. The cascade power stage of the reservoirs on Bistrita and Siret rivers indicate the anthropic interventions with different purposes (hydro energy, water supply, irrigation etc.) in the Siret River Basin. In terms of the capacity in the Siret River Basin there is a dominance of the small capacity reservoirs, which is given by the less than 20 mil m³ v...

  4. Surface waters of Illinois River basin in Arkansas and Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1959-01-01

    The estimated runoff from the Illinois River basin of 1,660 square miles has averaged 1,160,000 acre-feet per year during the water years 1938-56, equivalent to an average annual runoff depth of 13.1 inches. About 47 percent of the streamflow is contributed from drainage in Arkansas, where an average of 550,000 acre-ft per year runs off from 755 square miles, 45.5 percent of the total drainage area. The streamflow is highly variable. Twenty-two years of record for Illinois River near Tahlequah, Okla., shows a variation in runoff for the water year 1945 in comparison with 1954 in a ratio of almost 10 to 1. Runoff in 1927 may have exceeded that of 1945, according to records for White River at Beaver, Ark., the drainage basin just east of the Illinois River basin. Variation in daily discharge is suggested by a frequency analysis of low flows at the gaging station near Tahlequah, Okla. The mean flow at that site is 901 cfs (cubic feet per second), the median daily flow is 350 cfs, and the lowest 30-day mean flow in a year probably will be less than 130 cfs half of the time and less than 20 cfs every 10 years on the average. The higher runoff tends to occur in the spring months, March to May, a 3-month period that, on the average, accounts for almost half of the annual flow. High runoff may occur during any month in the year, but in general, the streamflow is the lowest in the summer. The mean monthly flow of Illinois River near Tahlequah, Okla., for September is about 11 percent of that for May. Records show that there is flow throughout the year in Illinois River and its principal tributaries Osage Creek, Flint Creek and Barren Fork. The high variability in streamflow in this region requires the development of storage by impoundment if maximum utilization of the available water supplies is to be attained. For example, a 120-day average low flow of 22 cfs occurred in 1954 at Illinois River near Tahlequah, Okla. To have maintained the flow at 350 cfs, the median daily

  5. The evolution and performance of river basin management in the Murray-Darling Basin

    Directory of Open Access Journals (Sweden)

    Andrew Ross

    2016-09-01

    Full Text Available We explore bioregional management in the Murray-Darling Basin (MDB in Australia through the institutional design characteristics of the MDB River Basin Organization (RBO, the actors and organizations who supported and resisted the establishment of the RBO, and the effectiveness of the RBO. During the last 25 years, there has been a major structural reform in the MDB RBO, which has changed from an interstate coordinating body to an Australian government agency. Responsibility for basin management has been centralized under the leadership of the Australian government, and a comprehensive integrated Basin plan has been adopted. The driving forces for this centralization include national policy to restore river basins to sustainable levels of extraction, state government difficulties in reversing overallocation of water entitlements, the millennium drought and its effects, political expediency on the part of the Australian government and state governments, and a major injection of Australian government funding. The increasing hierarchy and centralization of the MDB RBO does not follow a general trend toward multilevel participative governance of RBOs, but decentralization should not be overstated because of the special circumstances at the time of the centralization and the continuing existence of some decentralized elements, such as catchment water plans, land use planning, and water quality. Further swings in the centralization-decentralization pendulum could occur. The MDB reform has succeeded in rebalancing Basin water allocations, including an allocation for the environment and reduced diversion limits. There are some longer term risks to the implementation of reform, including lack of cooperation by state governments, vertical coordination difficulties, and perceived reductions in the accountability and legitimacy of reform at the local level. If implementation of the Basin plan is diverted or delayed, a new institution, the Commonwealth

  6. Emergy-based energy and material metabolism of the Yellow River basin

    Science.gov (United States)

    Chen, B.; Chen, G. Q.

    2009-03-01

    The Yellow River basin is an opening ecosystem exchanging energy and materials with the surrounding environment. Based on emergy as embodied solar energy, the social energy and materials metabolism of the Yellow River basin is aggregated into emergetic equivalent to assess the level of resource depletion, environmental impact and local sustainability. A set of emergy indices are also established to manifest the ecological status of the total river basin ecosystem.

  7. Development of streamflow projections under changing climate conditions over Colorado River basin headwaters

    OpenAIRE

    Miller, W. P.; T. C. Piechota; Gangopadhyay, S.; T. Pruitt

    2011-01-01

    The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month) forecasts determined by the Colorado Basin River Forecast Center (CBRFC) using the National Weather Service (NWS) River Forecasting Syste...

  8. Episodic Emplacement of Sediment + Carbon within Large Tropical River Basins

    Science.gov (United States)

    Aalto, R.; Aufdenkampe, A.

    2012-04-01

    Application of advanced methods for imaging (sub-bottom sonar and ERGI), dating (high resolution 210-Pb and 14-C from deep cores), and biogeochemical analysis have facilitated the characterization and inter-comparison of floodplain sedimentation rates, styles, and carbon loading across disparate large river basins. Two examples explored here are the near-pristine 72,000 km2 Beni River basin in northern Bolivia and the similarly natural 36,000 km2 Strickland River basin in Papua New Guinea - that are located on either side of the Equatorial Pacific warm pool that drives the ENSO phenomenon. Our published research suggests that large, rapid-rise, cold-phase ENSO floods account for the preponderance of sediment accumulation within these two tropical systems. New results to be presented at EGU further clarify the extent of modern deposits (~100 yrs) within both systems and add a deeper perspective into how these extensive floodplains developed over the Holocene, both in response to external forcing (climate and base level) and internal system morphodynamics. The vast scale of these temporally discrete deposits (typically 100s of millions of tonnes over relatively short time periods) involved equate to high burial rates, which in turn support the high carbon loadings sequestered within the resulting sedimentary deposits. We have identified the principal source of this carbon and sedimentary material to be extensive landslides throughout the high-relief headwaters - failures that deliver huge charges of pulverized rock and soil directly into canyons (in both the Bolivian Andes and the PNG Highlands), where raging floodwaters provide efficient transport to lowland depocentres. We present recent results from our research in these basins, providing insight into the details of such enormous mass budgets that result in a signicant carbon sink within the floodplains. Processes, timing, and rates are compared between the two systems, providing insight into the nature of

  9. Dissolved Organic Matter in the Yukon River Basin

    Science.gov (United States)

    Aiken, G.; Striegl, R.; Schuster, P.

    2004-12-01

    Source materials, watershed geochemistry, oxidative processes and hydrology exert strong influences on the nature and reactivity of dissolved organic matter (DOM) in aquatic systems. At present, a critical question in carbon cycling is how climate change could alter the fate and chemical nature of dissolved organic carbon (DOC) released from watersheds, particularly those underlain by permafrost, and transported to rivers, lakes, estuaries and coastal waters. The spatial and temporal variability of DOM in surface waters associated with the Yukon River are being studied to better define processes controlling DOM in this system. Like many northern ecosystems, the Yukon River Basin is experiencing melting permafrost, drying of upland soils and changing wetland environments. Study results indicate that the transport of DOM in the river and its major tributaries is strongly seasonally dependent. Specific ultraviolet absorbance (SUVA) data, an excellent indicator of aromatic carbon content of DOM, also indicate a large variation in the chemical nature of the organic matter transported by the river. Lowest DOC concentrations and SUVA values were observed for samples collected in the winter under low flow conditions and for tributaries dominated by ground water inputs. Greatest DOC concentrations and SUVA values were measured on samples collected during the spring on the leading part of the hydrograph. High SUVA values are indicative of greater amounts of organic material originating from higher plants that are present in upper soil horizons and wetlands of the watershed. Aquatic humic substances collected from the Yukon River during the snowmelt period were found to have low nitrogen contents and greater amounts of aromatic C relative to samples from other aquatic environments. Low N content and high aromaticity are indicative of humic substances evolved from higher plant sources with little alteration resulting from microbial degradation or soil interactions. In addition

  10. Climate and basin drivers of seasonal river water temperature dynamics

    Science.gov (United States)

    Laizé, Cédric L. R.; Bruna Meredith, Cristian; Dunbar, Michael J.; Hannah, David M.

    2017-06-01

    Stream water temperature is a key control of many river processes (e.g. ecology, biogeochemistry, hydraulics) and services (e.g. power plant cooling, recreational use). Consequently, the effect of climate change and variability on stream temperature is a major scientific and practical concern. This paper aims (1) to improve the understanding of large-scale spatial and temporal variability in climate-water temperature associations, and (2) to assess explicitly the influence of basin properties as modifiers of these relationships. A dataset was assembled including six distinct modelled climatic variables (air temperature, downward short-wave and long-wave radiation, wind speed, specific humidity, and precipitation) and observed stream temperatures for the period 1984-2007 at 35 sites located on 21 rivers within 16 basins (Great Britain geographical extent); the study focuses on broad spatio-temporal patterns, and hence was based on 3-month-averaged data (i.e. seasonal). A wide range of basin properties was derived. Five models were fitted (all seasons, winter, spring, summer, and autumn). Both site and national spatial scales were investigated at once by using multi-level modelling with linear multiple regressions. Model selection used multi-model inference, which provides more robust models, based on sets of good models, rather than a single best model. Broad climate-water temperature associations common to all sites were obtained from the analysis of the fixed coefficients, while site-specific responses, i.e. random coefficients, were assessed against basin properties with analysis of variance (ANOVA). All six climate predictors investigated play a role as a control of water temperature. Air temperature and short-wave radiation are important for all models/seasons, while the other predictors are important for some models/seasons only. The form and strength of the climate-stream temperature association vary depending on season and on water temperature. The

  11. Resilience in Transboundary Water Governance: the Okavango River Basin

    Directory of Open Access Journals (Sweden)

    Olivia O. Green

    2013-06-01

    Full Text Available When the availability of a vital resource varies between times of overabundance and extreme scarcity, management regimes must manifest flexibility and authority to adapt while maintaining legitimacy. Unfortunately, the need for adaptability often conflicts with the desire for certainty in legal and regulatory regimes, and laws that fail to account for variability often result in conflict when the inevitable disturbance occurs. Additional keys to resilience are collaboration among physical scientists, political actors, local leaders, and other stakeholders, and, when the commons is shared among sovereign states, collaboration between and among institutions with authority to act at different scales or with respect to different aspects of an ecological system. At the scale of transboundary river basins, where treaties govern water utilization, particular treaty mechanisms can reduce conflict potential by fostering collaboration and accounting for change. One necessary element is a mechanism for coordination and collaboration at the scale of the basin. This could be satisfied by mechanisms ranging from informal networks to the establishment of an international commission to jointly manage water, but a mechanism for collaboration at the basin scale alone does not ensure sound water management. To better guide resource management, study of applied resilience theory has revealed a number of management practices that are integral for adaptive governance. Here, we describe key resilience principles for treaty design and adaptive governance and then apply the principles to a case study of one transboundary basin where the need and willingness to manage collaboratively and iteratively is high - the Okavango River Basin of southwest Africa. This descriptive and applied approach should be particularly instructive for treaty negotiators, transboundary resource managers, and should aid program developers.

  12. Floods of April 1952 in the Missouri River basin

    Science.gov (United States)

    Wells, J.V.B.

    1955-01-01

    The floods of April 1952 in the Milk River basin, along the Missouri River from the mouth of the Little Missouri River to the mouth of the Kansas River, and for scattered tributaries of the Missouri River in North and South Dakota were the greatest ever observed. The damage amounted to an estimated $179 million. The outstanding featur6 of the floods was the extraordinary peak discharge generated in the Missouri River at and downstream from Bismarck, N. Dak., on April 6 when a large ice jam upstream from the city was suddenly released. Inflow from flooding tributaries maintained the peak discharge at approximately the same magnitude in the transit of the flood across South Dakota; downstream from Yankton, S. Dak., attenuation of the peak discharge was continuous because of natural storage in the wide flood plains. The outstanding characteristic of floods in the Milk River basin was their duration--the flood crested at Havre, Mont., on April 3 and at Nashua, Mont.. on April 18. The floods were caused by an abnormally heavy accumulation of snow that was converted into runoff in a few days of very warm weather at the end of March. The heaviest water content of the snow pack at breakup was in a narrow arc extending through Aberdeen, S. Dak., Pierre, S. Dak.. and northwestward toward the southwest corner of North Dakota. The water content in part of this concentrated cover exceeded 6 inches. The winter of 1951-52, which followed a wet cold fall that made the ground impervious, was one of the most severe ever experienced in South Dakota and northern Montana. Depths of snow and low temperatures combined to produce, at the end of March, one of the heaviest snow covers in the history of the Great Plains. The Missouri River ice was intact upstream from Chamberlain, S. Dak., at the end of March, and the breakup of the ice with inflow of local runoff was one of the spectacular features of the flood. Runoff from the Yellowstone River combining with the flood pouring from the

  13. Assessing water deprivation at the sub-river basin scale in LCA integrating downstream cascade effects.

    Science.gov (United States)

    Loubet, Philippe; Roux, Philippe; Núñez, Montserrat; Belaud, Gilles; Bellon-Maurel, Véronique

    2013-12-17

    Physical water deprivation at the midpoint level is assessed in water-related LCIA methods using water scarcity indicators (e.g., withdrawal-to-availability and consumption-to-availability) at the river basin scale. Although these indicators represent a great step forward in the assessment of water-use-related impacts in LCA, significant challenges still remain in improving their accuracy and relevance. This paper presents a methodology that can be used to derive midpoint characterization factors for water deprivation taking into account downstream cascade effects within a single river basin. This effect is considered at a finer scale because a river basin must be split into different subunits. The proposed framework is based on a two-step approach. First, water scarcity is defined at the sub-river basin scale with the consumption-to-availability (CTA) ratio, and second, characterization factors for water deprivation (CFWD) are calculated, integrating the effects on downstream sub-river basins. The sub-river basin CTA and CFWD were computed based on runoff data, water consumption data and a water balance for two different river basins. The results show significant differences between the CFWD in a given river basin, depending on the upstream or downstream position. Finally, an illustrative example is presented, in which different land planning scenarios, taking into account additional water consumption in a city, are assessed. Our work demonstrates how crucial it is to localize the withdrawal and release positions within a river basin.

  14. Historical Heliophysical Series of the Ebro Observatory

    Science.gov (United States)

    Curto, J. J.; Solé, J. G.; Genescà, M.; Blanca, M. J.; Vaquero, J. M.

    2016-11-01

    We present the contents of the historical heliophysical series collected at the Ebro Observatory, as well as the actions carried out to restore and save these data and to conserve the physical media containing the data and the telescopes that helped to obtain them. We also discuss the results obtained with these measurements, describe how we disseminated them, and report on the investigations that we have carried out with this information. We show the evolution of the local solar indices such as the Ebro Sunspot Number (ESN), the Ebro Group Sunspot Number (EGSN), or the Ebro Sunspot Area (ESA), which are derived directly from our data. For verification purposes, these local solar indices have been compared to the international sunspot numbers published by SILSO. Our data are reliable and correlate well with the respective international series. Finally, as an example of the possibilities that the Ebro series offer, we explain the use of these data to elucidate one of the recent problems in solar physics: the discontinuity in international data known as the Waldmeier discontinuity and, in general, the ratio between sunspots and sunspot groups. In the Ebro Observatory series, no discontinuity such as this is detected. We instead observe a rather stable ratio in the spot or group rates. This result is in agreement with the hypothesis of Svalgaard (2010, ASP CS-428, 297) that the Waldmeier discontinuity is produced only on a procedural level, perhaps by a change in the criteria used in Zürich by Waldmeier or by changing external conditions.

  15. Human impacts on river ice regime in the Carpathian Basin

    Science.gov (United States)

    Takács, Katalin; Nagy, Balázs; Kern, Zoltán

    2014-05-01

    examples from the Carpathian Basin represent some of the most common human impacts (engineering regulation, hydropower usage, water pollution), disturbing natural river ice regimes of mid-latitude rivers with densely populated or dynamically growing urban areas along their courses. In addition simple tests are also introduced to detect not only the climatic, but also the effect of anthropogenic impacts on river ice regime. As a result of river regulation on River Danube at Budapest a vanishing trend in river ice phenomena could be detected in the Danube records. The average ice-affected season shortened from 40 to 27 days, the average ice-covered season reduced greatly, from 27 to 7 days. In historical times the ice jams on the River Danube caused many times ice floods. The relative frequency of the break-up jam also decreased; moreover no ice flood occurred over the past 50 years. The changes due to hydropower usage are different upstream and downstream to the damming along the river. On Raba River upstream of the Nick dam at Ragyogóhíd, the ice-affected and ice-covered seasons were lengthened by 4 and 9 days, in contrast, downstream of the dam, the length of the ice-covered season was shortened by 7 days, and the number of ice-affected days decreased by 8 days at Árpás. During the observation period at Budapest on Danube River, the temperature requirements for river ice phenomena occurrence changed. Nowadays, much lower temperatures are needed to create the same ice phenomena compared to the start of the observations. For ice appearance, the mean winter air temperature requirements decreased from +2.39 °C to +1.71 °C. This investigation focused on anthropogenic effects on river ice regime, eliminating the impact of climatic conditions. Different forms of anthropogenic effects cause in most cases, a shorter length of ice-affected seasons and decreasing frequency of ice phenomena occurrence. Rising winter temperatures result the same changes in river ice regime

  16. Integrated resource assessment of the Drina River Basin

    Science.gov (United States)

    Almulla, Youssef; Ramos, Eunice; Gardumi, Francesco; Howells, Mark

    2017-04-01

    The integrated assessment and management of resources: water, energy, food and environment is of fundamental importance, yet it is a very challenging task especially when it is carried out on the transboundary level. This study focuses on the Drina River Basin (DRB) which is a transboundary basin in South East Europe spreading across Bosnia and Herzegovina, Serbia and Montenegro with a total surface area of 19,982 km2. Water resources from the Drina River Basin are shared among many activities in the basin: domestic water supply, electricity generation, fishery, tourism and, to a lesser extent, irrigation, industry and mining. The region has recently experienced repeated events of floods and droughts causing significant damage to the economy, showing a high vulnerability of the area to the effects of climate change. The assessment of the Drina River Basin is carried out in the framework of the project "Water food energy ecosystems nexus in transboundary river basins" under the UNECE Water Convention. This study aims to: 1) Improve the cooperation in the operation of dams and hydropower plants in the DRB for optimized production; 2) Explore the opportunities generated by electricity trade between the DRB countries as a mechanism to enhance cooperation and as an enabler for the synchronised operation of hydropower plants; 3) Motivate the implementation of energy efficiency measures to reduce the electricity production requirement from hydro and thermal power. In order to achieve that, a multi-country electricity system model was developed for the three countries of Drina river basin using the Open Source energy MOdelling SYStem (OSeMOSYS). The model represents the whole electricity system of each country, with special cascade representation of hydropower plants along Drina river and its tributaries. The results show that, in a scenario of synchronised operation of all power plants along Drina and its tributaries, those downstream can significantly increase their

  17. THE DEGREE OF SILTING AND THE IMPACT ON ALLUVIAL DEPOSITS IN THE RIVER BEDS OF BISTRIŢA RIVER BASIN

    OpenAIRE

    COJOC MARIA GEANINA; ROMANESCU GH.; TIRNOVAN ALINA

    2014-01-01

    Since 1960 the Bistriţa River basin came under the profound influence of anthropic incidence. This river basin represents a pattern of use for hydropower potential: reservoirs (9); channels (61 km); water dams; transfers of flows; protection structures works for banks and slopes; relocation of human settlements (13 villages); gravel pits; galleries; viaducts; communication paths, etc. Bistriţa River development has led to significant changes in the structure of the hydrological regime, throug...

  18. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  19. Regional scale groundwater modelling study for Ganga River basin

    Science.gov (United States)

    Maheswaran, R.; Khosa, R.; Gosain, A. K.; Lahari, S.; Sinha, S. K.; Chahar, B. R.; Dhanya, C. T.

    2016-10-01

    Subsurface movement of water within the alluvial formations of Ganga Basin System of North and East India, extending over an area of 1 million km2, was simulated using Visual MODFLOW based transient numerical model. The study incorporates historical groundwater developments as recorded by various concerned agencies and also accommodates the role of some of the major tributaries of River Ganga as geo-hydrological boundaries. Geo-stratigraphic structures, along with corresponding hydrological parameters,were obtained from Central Groundwater Board, India,and used in the study which was carried out over a time horizon of 4.5 years. The model parameters were fine tuned for calibration using Parameter Estimation (PEST) simulations. Analyses of the stream aquifer interaction using Zone Budget has allowed demarcation of the losing and gaining stretches along the main stem of River Ganga as well as some of its principal tributaries. From a management perspective,and entirely consistent with general understanding, it is seen that unabated long term groundwater extraction within the study basin has induced a sharp decrease in critical dry weather base flow contributions. In view of a surge in demand for dry season irrigation water for agriculture in the area, numerical models can be a useful tool to generate not only an understanding of the underlying groundwater system but also facilitate development of basin-wide detailed impact scenarios as inputs for management and policy action.

  20. A study on drought trend in Han River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hung-Soo [Sun Moon University, Chonan(Korea); Moon, Jang-Won; Kim, Jae-Hyung; Kim, Joong-Hoon [Korea Univ., Seoul(Korea)

    2000-08-31

    The drought analysis is performed by applications of truncation level method and conditional probability concept for hydrologic time series in Han river basin. The distributed trend of conditional probability is determined using kriging method for the time series. This study uses daily flowrate, monthly rainfall, and daily high temperature data sets. The daily flowrate data of 12 years(1986-1997) is used for the analysis. Also, the 14 years' data sets(1986-1999) for monthly rainfall and daily high temperature obtained from the National Weather Service of Korea are used in this study. In the cases of flowrate and rainfall data sets, the estimated value corresponding to the truncation level is decreased as the truncation level is increased but in the high temperature data, the value is increased as the truncation level is increased. The conditional probability varies according to the observations and sites. However, the distributed trend of drought is similar over the basin. As a result, the possibility of the drought is high in the middle and lower parts of Han river basin and thus it is recommended the distributed trend of drought be considered when the plan or measures for drought are established. (author). 10 refs., 9 tabs., 5 figs.

  1. Oxygen-18 in different waters in Urumqi River Basin

    Institute of Scientific and Technical Information of China (English)

    ZHANGXinping; YAOTandong; LIUJingmiao

    2003-01-01

    The variations of the stable oxygen isotope in different water mediums in Urumqi River Basin, China, are analyzed. The stable oxygen isotope in precipitation has marked temperature effect either under synoptic or seasonal scale at the head of Urumqi River. The linear regression equations of δ18O against temperature are δ18O=-0.94T-12.38 and δ18O=1.29T-13.05 under the two time scales, respectively. The relatively large δ18O/temperature slopes show the strong sensitivity of δ18O in precipitation to temperature variation at the head of Urumqi River. According to the analyses on the δ18O in precipitation sampled at three stations with different altitudes along Urumqi River, altitude effect is notable in the drainage basin. The δ18O/altitude gradients have distinct differences: the gradient from Urumqi to Yuejinqiao is merely -0.054‰/hm, but -0.192‰/hm from Yuejinqiao to Daxigou, almost increasing by 2.6 times over the former. No altitude effect is found in surface firn the east branch of Glacier No. 1 at the head of Urumqi River, showing that precipitation in the glacier is from the cloud cluster with the same condensation level. Influenced by strong ablation and evaporation, the δ18O in surface firn increases with increasing altitude sometimes. Survey has found that the δ18O in meltwater at the terminus of Glacier No. 1 and in stream water at Total Control have the similar change trend with the former all smaller than the latter, which displays the different runoff recharges, and all mirror the regime of temperature in the same term basicallv.

  2. Water resources of the Ipswich River basin, Massachusetts

    Science.gov (United States)

    Sammel, Edward A.; Baker, John Augustus; Brackley, Richard A.

    1966-01-01

    Water resources of the Ipswich River basin are at resent {1960) used principally for municipal supply to about 379,000 person's in 16 towns and cities in or near the river basin. By the year 2000 municipal use of water in this region will probably be more than twice the current use, and subsidiary uses of water, especially for recreation, also will have increased greatly. To meet the projected needs, annual pumpage of water from the Ipswich River could be increased from current maximums of about 12 mgd (million galleons a day) to about 45 mgd without reducing average base flows in the river, provided that the increased withdrawals would be restricted to periods of high streamflow. In addition, considerably more pumpage could be derived from streamflow by utilizing base-flow discharge; however, the magnitude of such use could be determined only in relation to factors such as concurrent ground-water use, the disposal of waste water, and the amount of streamflow required to dilute the pollution load to acceptable levels. Under present conditions, little or no increase in diversion of streamflow would be warranted in the upstream rafts of the basin during the summer and early fall of each year, and only a moderate increase could be made in the lower reaches of the stream during the same period. Annual rainfall in the basin averages about 42.5 inches, and represents the water initially available for use. Of this amount, an average of about 20.5 inches is returned to the a.tmosphere by evapotranspiration. The remainder, about 22 inches, runs off as streamflow in the Ipswich River or is diverted from the basin by pumpage. The average annual stream runoff, amounting to about 47 billion gallons, is a measure of the water actually available for man's use. The amounts of water used by municipalities in recent years are less than 10 percent of the available supply. Large supplies of ground water may be obtained under water-table conditions from the stratified glacial drift

  3. Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China

    Directory of Open Access Journals (Sweden)

    Z. Zeng

    2012-05-01

    Full Text Available Increasing water scarcity places considerable importance on the quantification of water footprint (WF at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this study is to quantify WF within the Heihe River Basin (HRB, a basin located in the arid and semi-arid northwest of China. The findings show that the WF was 1768 million m3 yr−1 in the HRB over 2004–2006. Agricultural production was the largest water consumer, accounting for 96% of the WF (92% for crop production and 4% for livestock production. The remaining 4% was for the industrial and domestic sectors. The "blue" component of WF was 811 million m3 yr−1. This indicates a blue water proportion of 46%, which is much higher than the world average and China's average, which is mainly due to the aridness of the HRB and a high dependence on irrigation for crop production. However, even in such a river basin, blue WF was still smaller than green WF, indicating the importance of green water. We find that blue WF exceeded blue water availability during eight months per year and also on an annual basis. This indicates that WF of human activities was achieved at a cost of violating environmental flows of natural freshwater ecosystems, and such a WF pattern is not sustainable. Considering the large WF of crop production, optimizing the crop planting pattern is often a key to achieving more sustainable water use in arid and semi-arid regions.

  4. Present Situation and Future Trends of River-Basin Cascade Hydropower Dispatch in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Hydropower resources in river basins are typically developed in a cascade manner. The cascade hydropower stations use water from the same river; in a sense, they form a cluster of hydropower stations which are linked together by the river stream. The dispatch and management of the cascade hydropower stations in a river basin differ from those of an ordinary single hydropower station. Without doubt, unified dispatch can facilitate the full harnessing of hydraulic resources and is in a better position to fulf...

  5. Water Cycle Dynamics in the Snake River Basin, Alaska

    Science.gov (United States)

    Busey, R.; Hinzman, L. D.

    2009-12-01

    Alaska’s Seward Peninsula is underlain in the south by areas of near-freezing, continuous and discontinuous permafrost. These conditions make it susceptible to changing climatic conditions such as acceleration of the hydrologic cycle or general atmospheric warming. This study looks at the hydrologic record of the Snake River over the mid-twentieth century through present. The Snake River basin drains an area of about 22 square kilometers into Norton Sound near the Bering Strait, off the western coast of Alaska. Climate for this area is maritime in summer and somewhat continental in winter once the sea ice forms. Hydrometeorological parameters have been measured locally for more than fifty years with temperature being measured regularly over the last 100 years. Discharge has been measured in the Snake River intermittently over that time period as well. This study looks closely at drivers of inter-annual variations in soil moisture in the basin over the observational record using a physically based numerical hydrological model. Unlike many areas of Alaska, the meteorological record at Nome, located at the mouth of the watershed, shows no statistically significant increase in precipitation over either the last 30 years or the last 100 years. However, there has been a small increase in temperature over the 100 year time period.

  6. Watershed modelling in the Iguazú river basin

    Science.gov (United States)

    Venencio, M.; Garcia, N. O.

    2006-12-01

    This paper tries to associate the temporal and spatial climatic variability to the variability of streamflow. Therefore, the objective is to obtain tools in order to forsee the hydrologic variability in the context of the climatic variability from Iguazú river flows. The data at the gauging stations are supposed to be affected only by natural causes (climatic variability), because all flow data series were naturalised. A monthly water balance model used by Arnell [1] was applied to the whole Iguazu river basin, which extends approximately over 65000 km2. The area was not divided in subbasins because a homogeneous monthly mean precipitation was used as input to the model over this region. Monthly average temperature series for evapotranspiration (ET) calculations were generated by averaging recorded temperatures at several climatological gauging stations. Streamflows data at Capanema gauging station, upstream of the Iguazú falls, were used to analyse model results. Calculated and observed streamflows were compared. It can be said that the fitting is good, and the model reproduces the monthly flow pattern adequately. The correlation coefficient between the simulated and the observed monthly mean flows can be considered satisfactory in the Iguazú river basin.

  7. Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina

    Science.gov (United States)

    Reid, Jeffrey C.; Milici, Robert C.

    2008-01-01

    This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data

  8. Studies on heavy metal contamination in Godavari river basin

    Science.gov (United States)

    Hussain, Jakir; Husain, Ikbal; Arif, Mohammed; Gupta, Nidhi

    2017-09-01

    Surface water samples from Godavari river basin was analyzed quantitatively for the concentration of eight heavy metals such as arsenic, cadmium, chromium, copper, iron, lead, nickel and zinc using atomic absorption spectrophotometer. The analyzed data revealed that iron and zinc metals were found to be the most abundant metals in the river Godavari and its tributaries. Iron (Fe) recorded the highest, while cadmium (Cd) had the least concentration. Arsenic, cadmium, chromium, iron and zinc metals are within the acceptable limit of BIS (Bureau of Indian Standards (BIS) 1050 (2012) Specification for drinking water, pp 1-5). The analysis of Godavari river and its tributary's water samples reveals that the water is contaminated at selected points which are not suitable for drinking. Nickel and Copper concentration is above acceptable limit and other metal concentration is within the acceptable limit. Comprehensive study of the results reveals that out of 18 water quality stations monitored, water samples collected at 7 water quality stations are found to be within the permissible limit for all purposes. While Rajegaon, Tekra, Nandgaon, P. G. Bridge, Bhatpalli, Kumhari, Pauni, Hivra, Ashti, Bamini, and Jagda stations were beyond the desirable limit due to presence of copper and nickel metals. The contents of copper metal ions were higher at some water quality stations on Wunna river (Nandgaon); Wardha river (Hivra) and Wainganga river (Kumhari, Pauni, Ashti) during Feb. 2012, while nickel concentration during Feb. 2012, June 2012, March 2013 and Aug. 2013 at some water quality stations on rivers Bagh, Indravati, Pranhita, Wunna, Penganga, Peddavagu, Wainganga and Wardha. It can be concluded that rapid population growth and industrialization have brought about resource degradation and a decline in environmental quality.

  9. Facies architecture within a regional glaciolacustrine basin: Copper River, Alaska

    Science.gov (United States)

    Bennett, Matthew R.; Huddart, David; Thomas, Geoffrey S. P.

    2002-11-01

    This paper defines the principal architectural elements present within the Pleistocene, glaciolacustrine basin-fill of the Copper River Basin in Alaska. The Copper River drains an intermontane basin via a single deeply incised trench through the Chugach Mountains to the Gulf of Alaska. This trench was blocked by ice during the last glacial cycle and a large ice-dammed lake, referred to as Lake Atna, filled much of the Copper Basin. Facies analysis within the basin floor allows a series of associations to be defined consistent with the basinward transport of sediment deposited along calving ice margins and at the basin edge. Basinward transport involves a continuum of gravity driven processes, including slumping, cohesive debris flow, hyperconcentrated/concentrated density flows, and turbidity currents. This basinward transport results in the deposition of a series of subaqueous fans, of which two main types are recognised. (1) Large, stratified, basin floor fans, which extend over at least 5 km and are exposed in the basin centre. These fans are composed of multiple lobes, incised by large mega-channels, giving fan architectures that are dominated by horizontal strata and large, cross-cutting channel-fills. Individual lobes and channel-fills consist of combinations of: diamict derived from iceberg rainout and the ice-marginal release of subglacial sediment; multiple units of fining upward gravels which grade vertically into parallel laminated and rippled fine sands and silts, deposited by a range of density flows and currents derived from the subaqueous discharge of meltwater; and rhythmites grading vertically into diamicts deposited from a range of sediment-density flows re-mobilising sediment deposited by either iceberg rainout or the ice-marginal release of sediment. (2) Small, complex, proximal fans, which extend over less than 2 km, and are exposed in the southern part of the basin. These fans are composed of coalescing and prograding lobes of diamict and

  10. Hydroclimatological Aspects of the Extreme 2011 Assiniboine River Basin Flood

    Science.gov (United States)

    Brimelow, J.; Szeto, K.; Bonsal, B. R.; Hanesiak, J.; Kochtubajda, B.; Stewart, R. E.

    2014-12-01

    In the spring and early summer of 2011, the Assiniboine River Basin in Canada experienced an extreme flood that was unprecedented in terms of duration and volume of water. The flood had significant socioeconomic impacts and caused over one billion dollars in damage. Contrary to what one might expect for such an extreme flood, individual precipitation events before and during the 2011 flood were not extreme; instead, it was the cumulative impact and timing of precipitation events going back to the summer of 2010 that played a key role in the 2011 flood. The summer and fall of 2010 were exceptionally wet, resulting in soil moisture levels being much above normal at the time of freeze up. This was followed by above-average precipitation during the winter of 2010-2011, and record-breaking basin-averaged snow-water equivalent values in March and April 2011. Abnormally cold temperatures in March delayed the spring melt by about two weeks, with the result that the above-average seasonal melt freshet occurred close to the onset of abnormally heavy rains in May and June. The large-scale atmospheric flow during May and June 2011 favoured increased cyclone activity over the central and northern U.S., which produced an anomalously large number of heavy rainfall events over the basin. All of these factors combined to generate extreme surface runoff and flooding. We used JRA-55 reanalysis data to quantify the relative importance of snowmelt, soil moisture and spring precipitation in contributing to the unprecedented flood and to demonstrate how the 2011 flood was unique compared to previous floods in the basin. Data and research from this study can be used to validate and improve flood forecasting techniques over this important basin; our findings also raise important questions regarding the impact of climate change on basins that experience pluvial and nival flooding.

  11. Collaboration in River Basin Management: The Great Rivers Project

    Science.gov (United States)

    Crowther, S.; Vridhachalam, M.; Tomala-Reyes, A.; Guerra, A.; Chu, H.; Eckman, B.

    2008-12-01

    The health of the world's freshwater ecosystems is fundamental to the health of people, plants and animals around the world. The sustainable use of the world's freshwater resources is recognized as one of the most urgent challenges facing society today. An estimated 1.3 billion people currently lack access to safe drinking water, an issue the United Nations specifically includes in its recently published Millennium Development Goals. IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Collaboration Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish and wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration efforts. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the collaboration aspects of the DSS. The DSS is an open environment tool that allows scientists, policy makers, politicians, land owners, and anyone who desires to take ownership of their actions in support of the environment to work together to that end. The DSS supports a range of features that empower such a community to collaboratively work together. Supported collaboration mediums include peer reviews, live chat, static comments, and Web 2.0 functionality such as tagging. In addition, we are building a 3-D virtual world component which will allow users to experience and share system results, first-hand. Models and simulation results may be annotated with free-text comments and tags, whether unique or

  12. The Politics of Model Maintenance: The Murray Darling and Brantas River Basins Compared

    Directory of Open Access Journals (Sweden)

    Anjali Bhat

    2008-10-01

    Full Text Available This paper explores river basin management in two highly developed basins whose basin governance arrangements are currently undergoing transition: the Murray-Darling basin of Australia and the Brantas basin of Indonesia. Though basin-scale management has been longstanding in both of these cases and the respective models for carrying out integrated river basin management have been considered noteworthy for other countries looking to develop basin institutions, these basin-level arrangements are under flux. This paper indicates some of the difficulties that exist for even widely favoured 'textbook' cases to maintain institutional efficacy within their given shifting contexts. This paper explores drivers behind policy reform and change in scale at which authority is held, concluding with a discussion of the nature of institutional transition given political realities in these basins.

  13. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Yuekui Ding

    2015-09-01

    Full Text Available We applied a river habitat quality (RHQ assessment method to the Hai River Basin (HRB; an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m; lower coverage of riparian vegetation (≤40%; artificial land use patterns (public and industrial land; frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3; single flow channels; and rare aquatic plants (≤1 category. At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01 and urban land (r = 0.998; p < 0.05; and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01. Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56; caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  14. The cost of noncooperation in international river basins

    Science.gov (United States)

    Tilmant, A.; Kinzelbach, W.

    2012-01-01

    In recent years there has been a renewed interest for water supply enhancement strategies in order to deal with the exploding demand for water in some regions, particularly in Asia and Africa. Within such strategies, reservoirs, especially multipurpose ones, are expected to play a key role in enhancing water security. This renewed impetus for the traditional supply-side approach to water management may indeed contribute to socioeconomic development and poverty reduction if the planning process considers the lessons learned from the past, which led to the recommendations by the World Commission on Dams and other relevant policy initiatives. More specifically, the issues dealing with benefit sharing within an efficient and equitable utilization of water resources are key elements toward the successful development of those river basins. Hence, there is a need for improved coordination and cooperation among water users, sectors, and riparian countries. However, few studies have explicitly tried to quantify, in monetary terms, the economic costs of noncooperation, which we believe to be important information for water managers and policy makers, especially at a time when major developments are planned. In this paper we propose a methodology to assess the economic costs of noncooperation when managing large-scale water resources systems involving multiple reservoirs, and where the dominant uses are hydropower generation and irrigated agriculture. An analysis of the Zambezi River basin, one of the largest river basins in Africa that is likely to see major developments in the coming decades, is carried out. This valuation exercise reveals that the yearly average cost of noncooperation would reach 350 million US$/a, which is 10% of the annual benefits derived from the system.

  15. Residential building thermal performance energy efficiency in Yangtze River basin

    Institute of Scientific and Technical Information of China (English)

    王厚华; 庄燕燕; 吴伟伟

    2009-01-01

    Using energy consumption software VisualDOE4.0,simulation was carried out on the energy consumption of a typical residential building in Yangtze River basin,with a focus on thermal performance of envelope each component and application of total heating recovery equipment. The effects of thermal performance of building envelope each component on energy efficiency ratio were analyzed. Comprehensive measures schemes of energy saving were designed by the orthogonal experiment. The energy efficiency ratios of different envelopes combination schemes were gained. Finally,the optimize combination scheme was confirmed. With the measurement dates,the correctness of the simulation dates was completely verified.

  16. EXPLORATION AND DEVELOPMENT IN PEARL RIVER MOUTH BASIN UPSURGING

    Institute of Scientific and Technical Information of China (English)

    Cheng Changmin

    1997-01-01

    @@ Exploration and development in the Pearl River Mouth Basin of the northern South China Sea is rising.Petroleum contracts with foreign oil companies have been signed for five block, i.e. block 15/23 (with Shell China Petroleum Development B.V.), block 15/26 and 15/35 (with Cairn Energy PLC), block 15/34 (with Santa Fe Energy Resources, inc.) and block 27/11 (with Kerr-McGee Corp.). The oil output has been increasing by million tons each year with a yield of 11.83 million tons in 1996.

  17. How different institutional arrangements promote integrated river basin management

    DEFF Research Database (Denmark)

    Nielsen, Helle Ørsted; Frederiksen, Pia; Saarikoski, Heli;

    2013-01-01

    Management Planning processes in six countries around the Baltic Sea. We use theories on multi-level governance, regime interplay and institutional effectiveness. We find that, in most cases, central governments have played a dominant role in the formulation of river basin management plans, while local...... influence has been somewhat limited. The tight procedural deadlines of the di-rective appear to have pushed for more centralisation than originally intended by the countries. But the analysis also shows that interplay mechanisms such as norms, ideas and incentives do promote effective institutional...

  18. Environmental information document: Savannah River Laboratory Seepage Basins

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, B.F.; Looney, B.B.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    This document provides environmental information on postulated closure options for the Savannah River Laboratory Seepage Basins at the Savannah River Plant and was developed as background technical documentation for the Department of Energy`s proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (CFR, 1986). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations.

  19. Water resources of the Penobscot River basin, Maine

    Science.gov (United States)

    Barrows, Harold Kilbrith; Babb, Cyrus Cates

    1912-01-01

    This report on the Penobscot River drainage system, the largest and one of the most important in Maine, has been compiled chiefly from the records, reports, and maps of the United States Geological Survey and from the results of surveys made in cooperation with the Maine State Survey Commission. The report includes all data on precipitation, stream flow, water storage, and water power that were available at the end of the calendar year 1909 and is accompanied by plans and profiles of the principal rivers, lakes, and ponds in the basin (Pis. XIII-XIX, at end of volume). Stream-flow data for 1910 and 1911 will be published in Water-Supply Papers 281 and 301, respectively.

  20. FLOODS AND DROUGHT - HYDROCLIMATIC RISKS IN SUHA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    TÎRNOVAN ALINA

    2014-03-01

    Full Text Available Suha is a right tributary of Moldova River, and presents a typical discharge for the geographical unit of Obcinele Bucovinei. Data used in the paper have been taken from Siret Basin Water Administration, Bacău, and represent a time sequence of 40 years. The most significant floods occurred in 1975, 1981, 1984, 1991, 2005, 2006, 2007 and 2008. The most obvious droughts occurred in 1969, 1974, 1978, 1983, 1987 and 2001. It was observed that the evolution of hydrological risk phenomena is closely linked to climatic changes. Increasing population and the need to extend the building design must take into account the extreme values of river flow over time, water resources also being important. Because extreme events occur more often, considering preventive plans against floods is needed. For this reason are analyzed the temperatures, rainfalls and discharge rates.

  1. Artisanal fisheries of the Xingu River basin in Brazilian Amazon.

    Science.gov (United States)

    Isaac, V J; Almeida, M C; Cruz, R E A; Nunes, L G

    2015-08-01

    The present study characterises the commercial fisheries of the basin of the Xingu River, a major tributary of the Amazon River, between the towns of Gurupá (at the mouth of the Amazon) and São Félix do Xingu. Between April, 2012, and March, 2014, a total of 23,939 fishing trips were recorded, yielding a total production of 1,484 tons of fish, harvested by almost three thousand fishers. The analysis of the catches emphasizes the small-scale and artisanal nature of the region's fisheries, with emphasis on the contribution of the motorised canoes powered by "long-tail" outboard motors. Larger motorboats operate only at the mouth of the Xingu and on the Amazon. Peacock bass (Cichla spp.), croakers (Plagioscion spp.), pacu (a group containing numerous serrasalmid species), aracu (various anostomids), and curimatã (Prochilodus nigricans) together contributed more than 60% of the total catch. Mean catch per unit effort was 18 kg/fisher-1.day-1, which varied among fishing methods (type of vessel and fishing equipment used), river sections, and time of the year. In most cases, yields varied little between years (2012 and 2013). The technical database provided by this study constitutes an important resource for the regulation of the region's fisheries, as well as for the evaluation of future changes resulting from the construction of the Belo Monte dam on the Xingu River.

  2. Updated streamflow reconstructions for the Upper Colorado River Basin

    Science.gov (United States)

    Woodhouse, C.A.; Gray, S.T.; Meko, D.M.

    2006-01-01

    Updated proxy reconstructions of water year (October-September) streamflow for four key gauges in the Upper Colorado River Basin were generated using an expanded tree ring network and longer calibration records than in previous efforts. Reconstructed gauges include the Green River at Green River, Utah; Colorado near Cisco, Utah; San Juan near Bluff, Utah; and Colorado at Lees Ferry, Arizona. The reconstructions explain 72-81% of the variance in the gauge records, and results are robust across several reconstruction approaches. Time series plots as well as results of cross-spectral analysis indicate strong spatial coherence in runoff variations across the subbasins. The Lees Ferry reconstruction suggests a higher long-term mean than previous reconstructions but strongly supports earlier findings that Colorado River allocations were based on one of the wettest periods in the past 5 centuries and that droughts more severe than any 20th to 21st century event occurred in the past. Copyright 2006 by the American Geophysical Union.

  3. Mercury in the Carson and Truckee River basins of Nevada

    Science.gov (United States)

    Van Denburgh, A.S.

    1973-01-01

    Upstream from major pre-1900 ore milling in the Carson and Truckee River basins, "background" concentrations of total mercury in the upper 1 to 3 inches of sand- to clay-sized stream-bottom sediment are less than 0.1 ug/g (microgram per gram). Downstream, measured concentrations were as much as 200 times the background level. Greatest concentrations were encountered in the Carson River basin within and immediately upstream from Lahontan Reservoir. Data from for the Carson River near Fort Churchill suggest that most of the mercury in the sampled bottom sediment may be present as mercuric sulfide or as a component of one of more non-methyl organic compounds or complexes, rather than existing in the metallic state. Regardless of state, this reservoir of mercury is of concern because of its possible availability to the aquatic food chain and, ultimately, to man. Among 48 samples of surface water from 29 sites in the two basins, the maximum measured total-mercury concentration was 6.3 ug/1 (micrograms per liter), for a sample from the Carson River near Fort Churchill. Except downstream from Lahontan Reservoir, most other measured values were less than 1 ug/1. (The U.S> Environmental Protection Agency interim limit for drinking water is 5 ug/1.) The total-mercury content of stream water is related to the mercury content of bottom sediments and the rate of streamflow, because the latter affects the suspended-sediment transporting capability of the stream,. Near Fort Churchill, total-mercury concentrations that might be expected at streamflows greater than those of 1971-72 are: as much as 10-15 ug/1 or more at 2,000 cfs (cubic feet per second), and as much as 10-20 ug/1 or more at 3,000 cfs. Elsewhere, expectable concentrations are much less because the bottom sediment contains much less mercury. The mercury contents of water samples from 36 wells in the Carson and Truckee basins were all less than 1 ug/1, indicating that mercury is not a problem in ground water, even

  4. Potamodromous migrations in the Magdalena River basin: bimodal reproductive patterns in neotropical rivers.

    Science.gov (United States)

    López-Casas, S; Jiménez-Segura, L F; Agostinho, A A; Pérez, C M

    2016-07-01

    Magdalena River basin potamodromous fishes have two annual reproductive seasons: the subienda in the first half of the year and the mitaca in the second. Both upstream migrations are c. 30-45 days long; after that, with the onset of the rainy season, fishes spawn and remain in the river (resident individuals) or start a downstream movement (the bajanza) to return to the Magdalena floodplain lakes (nursery, shelter and feeding grounds). Due to their particular gonad development the bocachico Prochilodus magdalenae and probably the comelón Leporinus muyscorum are physiologically able to undertake two annual basin migrations. In the presence of dams or hydropower structures, fishes are able to find alternative migration routes. Some species should be re-classified in their migratory behaviour. © 2016 The Fisheries Society of the British Isles.

  5. Hack's relation and optimal channel networks: The elongation of river basins as a consequence of energy minimization

    Science.gov (United States)

    Ijjasz-Vasquez, Ede J.; Bras, Rafael L.; Rodriguez-Iturbe, Ignacio

    1993-08-01

    As pointed by Hack (1957), river basins tend to become longer and narrower as their size increases. This work shows that this property may be partially regarded as the consequence of competition and minimization of energy expenditure in river basins.

  6. The influence of frozen soil change on water balance in the upper Yellow River Basin, China

    Science.gov (United States)

    Cuo, L.; Zhao, L.; Zhou, B.

    2013-12-01

    Yellow River supports 30% of China's population and 13% of China's total cultivated area. About 35% of the Yellow River discharge comes from the upper Yellow River Basin. Seasonally frozen, continuous and isolated permafrost soils coexist and cover the entire upper Yellow River Basin. The spatial distribution of various frozen soisl is primarily determined by the elevation in the basin. Since the past five decades, air temperature has increased by a rate of 0.03 C/year in the upper Yellow River Basin. Many studies reported the conversions of continuous to isolated permafrost soil, permafrost soil to seasonally frozen soil and the thickening of the active layer due to rising temperature in the basin. However, very few studies reported the impact of the change of frozen soil on the water balance in the basin. In this study, the Variable Infiltration Capacity (VIC) model is applied in the upper Yellow River Basin to study the change of frozen soil and its impact on the water balance. Soil temperature and soil liquid content measured up to 3 m below ground surface at a number of sites in the upper Yellow River Basin and the surroundings are used to evaluate the model simulation. Streamflow is also calibrated and validated using historical streamflow records. The validated VIC model is then used to investigate the frozen soil change and the impact of the change on water balance terms including surface runoff, baseflow, evapotranspiration, soil water content, and streamflow in the basin.

  7. Supplementary report on surface-water and ground-water surveys, Nueces River Basin, Texas

    Science.gov (United States)

    Broadhurst, W.L.; Ellsworth, C.E.

    1950-01-01

    A report on the ground-water and surface-water surveys of the Nueces River Basin was included in a report by the Bureau of Reclamation, entitled "Comprehensive plan for water-resources development of the Nueces River Basin project planning report number 5-14.04-3, February 1946".

  8. Boundaries of Consent: Stakeholder Representation in River Basin Management in Mexico and South Africa

    NARCIS (Netherlands)

    Wester, P.; Merrey, D.J.; Lange, M.

    2003-01-01

    Increasing the capacity of water users to influence decision-making is crucial in river basin management reforms. This article assesses emerging forums for river basin management in Mexico and South Africa and concludes that the pace of democratization of water management in both is slow. Mexico is

  9. Water stress in global transboundary river basins : Significance of upstream water use on downstream stress

    NARCIS (Netherlands)

    Munia, H.; Guillaume, J. H A; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has n

  10. Power-law tail probabilities of drainage areas in river basins

    Science.gov (United States)

    Veitzer, S.A.; Troutman, B.M.; Gupta, V.K.

    2003-01-01

    The significance of power-law tail probabilities of drainage areas in river basins was discussed. The convergence to a power law was not observed for all underlying distributions, but for a large class of statistical distributions with specific limiting properties. The article also discussed about the scaling properties of topologic and geometric network properties in river basins.

  11. Water vapor transport in the Pearl River basin and its influence on NDVI

    Directory of Open Access Journals (Sweden)

    Wang Yin-Xia

    2016-01-01

    Full Text Available Using NECP/NCAR monthly average data and 216 months average monthly precipitation data of the University of Delaware during 1982-1999. Analyzed the precipitation vapour transport process affects precipitation in the Pearl River Basin in different seasons. On this basis, the seasonal differences NDVI changes in climate-driven factors in the Pearl River Basin.

  12. A comparison of integrated river basin management strategies: A global perspective

    Science.gov (United States)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  13. Water stress in global transboundary river basins : Significance of upstream water use on downstream stress

    NARCIS (Netherlands)

    Munia, H.; Guillaume, J. H A; Mirumachi, N.; Porkka, M.; Wada, Y.|info:eu-repo/dai/nl/341387819; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has

  14. Use of remote sensing data in distributed hydrological models: Applications in the Senegal river basin

    DEFF Research Database (Denmark)

    Sandholt, Inge; Andersen, Jens; Dybkjær, Gorm Ibsen;

    1999-01-01

    Earth observation, remote sensing, hydrology, distributed hydrological modelling, West Africa, Senegal river basin, land cover, soil moisture, NOAA AVHRR, SPOT, Mike-she......Earth observation, remote sensing, hydrology, distributed hydrological modelling, West Africa, Senegal river basin, land cover, soil moisture, NOAA AVHRR, SPOT, Mike-she...

  15. Hydrological effects of water management measures in the Dovine River basin, Lithuania

    NARCIS (Netherlands)

    Querner, E.P.; Povilaitis, A.

    2009-01-01

    Lake Žuvintas, located in southern Lithuania in the Dovine River basin, is one of the largest lakes and oldest nature reserves in the country. However, changes in the hydrology of the Dovine River basin, caused by large-scale land reclamation and water management works carried out in the 20th centur

  16. Water resources of the Waccasassa River Basin and adjacent areas, Florida

    Science.gov (United States)

    Taylor, G.F.; Snell, L.J.

    1978-01-01

    This map report was prepared in cooperation with the Southwest Florida Water Management District which, with the Waccasassa River Basin Board, had jurisdiction over waters within the Waccasassa River basin, the coastal areas adjacent to the basin, and other adjacent areas outside the basin. New water management district boundaries, effective January 1977, place most of the Waccasassa River basin in the Suwannee River Water Management District. The purpose of the report is to provide water information for consideration in land-use and water development which is accelerating, especially in the northeastern part of the study area. It is based largely on existing data in the relatively undeveloped area. Of the total area included in the topographic drainage basin for the Waccasassa River about 72 percent is in Levy County, 18 percent in Alachua County, 9 percent in Gilchrist County, and 1 percent in Marion County. The elongated north-south drainage basin is approximately 50 mi in length, averages 13 mi in width, and lies between the Suwannee River, the St. Johns River, and the Withlacoochee River basins. (Woodard-USGS)

  17. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    Science.gov (United States)

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.

  18. Spatial and temporal variations of river nitrogen exports from major basins in China.

    Science.gov (United States)

    Ti, Chaopu; Yan, Xiaoyuan

    2013-09-01

    Provincial-level data for population, livestock, land use, economic growth, development of sewage systems, and wastewater treatment rates were used to construct a river nitrogen (N) export model in this paper. Despite uncertainties, our results indicated that river N export to coastal waters increased from 531 to 1,244 kg N km(-2) year(-1) in the Changjiang River basin, 107 to 223 kg N km(-2) year(-1) in the Huanghe River basin, and 412 to 1,219 kg N km(-2) year(-1) in the Zhujiang River basin from 1980 to 2010 as a result of rapid population and economic growth. Significant temporal changes in water N sources showed that as the percentage of runoff from croplands increased, contributions of natural system runoff and rural human and livestock excreta decreased in the three basins from 1980 to 2010. Moreover, the nonpoint source N decreased from 72 to 58 % in the Changjiang River basin, 80 to 67 % in the Huanghe River basin, and 69 to 51 % in the Zhujiang River basin, while the contributions of point sources increased greatly during the same period. Estimated results indicated that the N concentrations in the Changjiang, Huanghe, and Zhujiang rivers during 1980-2004 were higher than those in the St. Lawrence River in Canada and lower than those in the Thames, Donau, Rhine, Seine, and Han rivers during the same period. River N export will reduce by 58, 54, and 57 % for the Changjiang River, Huanghe River, and Zhujiang River in the control scenario in 2050 compared with the basic scenario.

  19. Range maps of terrestrial species in the interior Columbia River basin and northern portions of the Klamath and Great Basins.

    Science.gov (United States)

    Bruce G. Marcot; Barbara C. Wales; Rick. Demmer

    2003-01-01

    Current range distribution maps are presented for 14 invertebrate, 26 amphibian, 26 reptile, 339 bird, and 125 mammal species and selected subspecies (530 total taxa) of the interior Columbia River basin and northern portions of the Klamath and Great Basins in the United States. Also presented are maps of historical ranges of 3 bird and 10 mammal species, and 6 maps of...

  20. Estimation of nutrient contributions from the ocean across a river basin using stable isotope analysis

    Science.gov (United States)

    Nakayama, K.; Maruya, Y.; Matsumoto, K.; Komata, M.; Komai, K.; Kuwae, T.

    2015-11-01

    Total nitrogen (TN), which consists of total particulate nitrogen (TPN) and total dissolved nitrogen (TDN), is transported with not only in river channels but also across the entire river basin, including via ground water and migratory animals. In general, TPN export from an entire river basin to the ocean is larger than TDN in a mountainous region. Since marine derived nutrients (MDN) are hypothesized to be mainly transported as suspended matters from the ground surface, it is necessary to investigate the contribution of MDN to the forest floor (soils) in order to quantify the true role of MDN at the river ecosystem scale. This study investigated TN export from an entire river basin, and also we estimated the contribution of pink (Oncorhynchus gorbuscha) and chum salmon (O. keta) to total oceanic nitrogen input across a river basin. The maximum potential contribution of TN entering the river basin by salmon was found to be 23.8 % relative to the total amount of TN exported from the river basin. The contribution of particulate nitrogen based on suspended sediment from the ocean to the river basin soils was 22.9 % with SD of 3.6 % by using stable isotope analysis (SIA) of nitrogen (δ15N).

  1. Remote Sensing of Water Quality in the Niger River Basin

    Science.gov (United States)

    Mueller, C.; Palacios, S. L.; Milesi, C.; Schmidt, C.; Baney, O. N.; Mitchell, Å. R.; Kislik, E.; Palmer-Moloney, L. J.

    2015-12-01

    An overarching goal of the National Geospatial Intelligence Agency (NGA) Anticipatory Analytics- -GEOnarrative program is to establish water linkages with energy, food, and climate and to understand how these linkages relate to national security and stability. Recognizing that geopolitical stability is tied to human health, agricultural productivity, and natural ecosystems' vitality, NGA partnered with NASA Ames Research Center to use satellite remote sensing to assess water quality in West Africa, specifically the Niger River Basin. Researchers from NASA Ames used MODIS and Landsat imagery to apply two water quality indices-- the Floating Algal Index (FAI) and the Turbidity Index (TI)--to large rivers, lakes and reservoirs within the Niger Basin. These indices were selected to evaluate which observations were most suitable for monitoring water quality in a region where coincident in situ measurements are not available. In addition, the FAI and TI indices were derived using data from the Hyperspectral Imagery for the Coastal Ocean (HICO) sensor for Lake Erie in the United States to determine how increased spectral resolution and in-situ measurements would improve the ability to measure the spatio-temporal variations in water quality. Results included the comparison of outputs from sensors with different spectral and spatial resolution characteristics for water quality monitoring. Approaches, such as the GEOnarrative, that incorporate water quality will enable analysts and decision-makers to recognize the current and potentially future impacts of changing water quality on regional security and stability.

  2. Reliability and Validity Test of Questionnaire on the Adaptation Strategy of Cryosphere Changes in Arid Inland River Basin

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to test the reliability and validity of questionnaire on the adaptation strategy of cryosphere changes in arid inland river basin. [Method] A questionnaire on "the adaptation strategy of cryosphere changes in arid inland river basin" was carried out in Urumchi River basin and Aksu River basin, and its reliability and validity were tested by means of statistical method, so as to investigate the stability and accuracy of questionnaire. [Result] Reliability analysis of questionnaire sho...

  3. [Variation characteristics of runoff coefficient of Taizi River basin in 1967-2006].

    Science.gov (United States)

    Deng, Jun-Li; Zhang, Yong-Fang; Wang, An-Zhi; Guan, De-Xin; Jin, Chang-Jie; Wu, Jia-Bing

    2011-06-01

    Based on the daily precipitation and runoff data of six main embranchments (Haicheng River, Nansha River, Beisha River, Lanhe River, Xihe River, and Taizi River south embranchment) of Taizi River basin in 1967-2006, this paper analyzed the variation trend of runoff coefficient of the embranchments as well as the relationship between this variation trend and precipitation. In 1967-2006, the Taizi River south embranchment located in alpine hilly area had the largest mean annual runoff coefficient, while the Haicheng River located in plain area had the relatively small one. The annual runoff coefficient of the embranchments except Nansha River showed a decreasing trend, being more apparent for Taizi River south embranchment and Lanhe River. All the embranchments except Xihe River had an obvious abrupt change in the annual runoff coefficient, and the beginning year of the abrupt change differed with embranchment. Annual precipitation had significant effects on the annual runoff coefficient.

  4. Modelling hydrological responses of Nerbioi River Basin to Climate Change

    Science.gov (United States)

    Mendizabal, Maddalen; Moncho, Roberto; Chust, Guillem; Torp, Peter

    2010-05-01

    Future climate change will affect aquatic systems on various pathways. Regarding the hydrological cycle, which is a very important pathway, changes in hydrometeorological variables (air temperature, precipitation, evapotranspiration) in first order impact discharges. The fourth report assessment of the Intergovernmental Panel for Climate Change indicates there is evidence that the recent warming of the climate system would result in more frequent extreme precipitation events, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. Available research and climate model outputs indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99%). For example, it is likely that up to 20% of the world population will live in areas where river flood potential could increase by the 2080s. In Spain, within the Atlantic basin, the hydrological variability will increase in the future due to the intensification of the positive phase of the North Atlantic Oscillation (NAO) index. This might cause flood frequency decreases, but its magnitude does not decrease. The generation of flood, its duration and magnitude are closely linked to changes in winter precipitation. The climatic conditions and relief of the Iberian Peninsula favour the generation of floods. In Spain, floods had historically strong socio-economic impacts, with more than 1525 victims in the past five decades. This upward trend of hydrological variability is expected to remain in the coming decades (medium uncertainty) when the intensification of the positive phase of the NAO index (MMA, 2006) is considered. In order to adapt or minimize climate change impacts in water resources, it is necessary to use climate projections as well as hydrological modelling tools. The main objective of this paper is to evaluate and assess the hydrological response to climate changes in flow conditions in Nerbioi river

  5. [Spatiotemporal variation analysis and identification of water pollution sources in the Zhangweinan River basin].

    Science.gov (United States)

    Xu, Hua-Shan; Xu, Zong-Xue; Tang, Fang-Fang; Yu, Wei-Dong; Cheng, Yan-Ping

    2012-02-01

    In this study, several statistical methods including cluster analysis, seasonal Kendall test, factor analysis/principal component analysis and principal component regression were used to evaluate the spatiotemporal variation of water quality and identify the sources of water pollution in the Zhangweinan River basin. Results of spatial cluster analysis and principal component analysis indicated that the Zhangweinan River basin can be classified into two regions. One is the Zhang River upstream located in the northwest of the Zhangweinan River basin where water quality is good. The other one covers the Wei River and eastern plain of the Zhangweinan River basin, where water is seriously polluted. In this region, pollutants from point sources flow into the river and the water quality changes greatly. Results of temporal cluster analysis and seasonal Kendall test indicated that the study periods may be classified into three periods and two different trends were detected during the period of 2002-2009. The first period was the year of 2002-2003, during which water quality had deteriorated and serious pollution was observed in the Wei river basin and eastern plain of the Zhangweinan River basin. The second period was the year of 2004-2006, during which water quality became better. The year of 2007-2009 is the third period, during which water quality had been improved greatly. Despite that water quality in the Zhangweinan River basin had been improved during the period of 2004-2009, the water quality in the Wei River (southwestern part of the basin), the Wei Canal River and the Zhangweixin River (eastern plain of the basin) is still poor. Principal component analysis and multi-linear regression of the absolute principal component scores showed that the main pollutants of the Zhangweinan River basin came from point source discharge such as heavy industrial wastewater, municipal sewage, chemical industries wasterwater and mine drainage in upstream. Non-point source pollution

  6. Hydrological forecast of maximal water level in Lepenica river basin and flood control measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available Lepenica river basin territory has became axis of economic and urban development of Šumadija district. However, considering Lepenica River with its tributaries, and their disordered river regime, there is insufficient of water for water supply and irrigation, while on the other hand, this area is suffering big flood and torrent damages (especially Kragujevac basin. The paper presents flood problems in the river basin, maximum water level forecasts, and flood control measures carried out until now. Some of the potential solutions, aiming to achieve the effective flood control, are suggested as well.

  7. Study on snowmelt runoff simulation in the Kaidu River basin

    Institute of Scientific and Technical Information of China (English)

    ZHANG YiChi; LI BaoLin; BAO AnMing; ZHOU ChengHu; CHEN Xi; ZHANG XueRen

    2007-01-01

    Alpine snowmelt is an important generation mode for runoff in the source region of the Tarim River basin, which covers four subbasins characterized by large area, sparse gauge stations, mixed runoff supplied by snowmelt and rainfall, and remarkably spatially heterogeneous precipitation. Taking the Kaidu River basin as a research area, this study analyzes the influence of these characteristics on the variables and parameters of the Snow Runoff Model and discusses the corresponding determination strategy to improve the accuracy of snowmelt simulation and forecast. The results show that: (i) The temperature controls the overall tendency of simulated runoff and is dominant to simulation accuracy,as the measured daily mean temperature cannot represent the average level of the same elevation in the basin and that directly inputting it to model leads to inaccurate simulations. Based on the analysis of remote sensing snow maps and simulation results, it is reasonable to approximate the mean temperature with 0.5 time daily maximum temperature. (ii) For the conflict between the limited gauge station and remarkably spatial heterogeneity of rainfall, it is not realistic to compute rainfall for each elevation zone. After the measured rainfall is multiplied by a proper coefficient and adjusted with runoff coefficient for rainfall, the measured rainfall data can satisfy the model demands. (iii) Adjusting time lag according to the variation of snowmelt and rainfall position can improve the simulation precision of the flood peak process. (iv) Along with temperature, the rainfall increases but cannot be completely monitored by limited gauge stations, which results in precision deterioration.

  8. Groundwater quality in the Genesee River Basin, New York, 2010

    Science.gov (United States)

    Reddy, James E.

    2012-01-01

    Water samples collected from eight production wells and eight private residential wells in the Genesee River Basin from September through December 2010 were analyzed to characterize the groundwater quality in the basin. Eight of the wells were completed in sand and gravel aquifers, and eight were finished in bedrock aquifers. Three of the 16 wells were sampled in the first Genesee River Basin study during 2005-2006. Water samples from the 2010 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although concentrations of the following constituents exceeded current or proposed Federal or New York State drinking-water standards at each of the 16 wells sampled: color (one sample), sodium (three samples), sulfate (three samples), total dissolved solids (four samples), aluminum (one sample), arsenic (two samples), copper (one sample), iron (nine samples), manganese (eight samples), radon-222 (nine samples), and total coliform bacteria (six samples). Existing drinking-water standards for pH, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides and VOCs analyzed exceeded existing drinking-water standards.

  9. 78 FR 17643 - Greater Mississippi River Basin Water Management Board; Engineer Regulation No. 15-2-13

    Science.gov (United States)

    2013-03-22

    ... Department of the Army, U.S. Army Corps of Engineers Greater Mississippi River Basin Water Management Board... Corps Greater Mississippi River Basin Water Management Board. It is applicable to all Corps offices involved with water management within the Greater Mississippi River Basin. The Board consists of the...

  10. Modeling Water-Quality Loads to the Reservoirs of the Upper Trinity River Basin, Texas, USA

    OpenAIRE

    Taesoo Lee; Xiuying Wang; Michael White; Pushpa Tuppad; Raghavan Srinivasan; Balaji Narasimhan; Darrel Andrews

    2015-01-01

    The Upper Trinity River Basin (TRB) is the most populated river basin and one of the largest water suppliers in Texas. However, sediment and nutrient loads are reducing the capacity of reservoirs and degrading water quality. The objectives of this study are to calibrate and validate the Soil and Water Assessment Tool (SWAT) model for ten study watersheds within the Upper TRB in order to assess nutrient loads into major reservoirs in the basin and to predict the effects of point source elimina...

  11. Beyond Lees Ferry: Assessing the Long-term Hydrologic Variability of the Lower Colorado River Basin

    Science.gov (United States)

    Wade, L. C.; Rajagopalan, B.; Lukas, J. J.; Kanzer, D.

    2011-12-01

    The future reliability of Colorado River Basin water supplies depends on natural hydrologic variability, climate change impacts and other human factors. Natural variability is the dominant component at annual to decadal time scales and thus, capturing and understanding the full range of such variability is critical to assessing risks to near- and mid-term water supplies. Paleohydrologic reconstructions of annual flow using tree rings provide much longer (400+ years) records of annual flow than do historical gage records, and thus a more complete representation of potential flow sequences. While the long-term natural variability of the Upper Colorado River Basin has been well-captured by high-quality multi-century reconstructions of the annual flow of the Colorado River at Lees Ferry, AZ, there has been no equivalent effort for the whole of the Lower Colorado River Basin, including the Gila River. The contribution of the Lower Basin to overall basin flows is estimated to be 15% on average, but this percentage varies significantly from year to year, potentially impacting water supply risk and management for the entire basin. We present preliminary results from an ongoing effort to assess the hydroclimatic variability of the Lower Basin and to develop reconstructions of annual streamflows for the Gila River and Lower Colorado River near Yuma, AZ, commensurate with the existing Lees Ferry reconstructions. We model the flow of the Gila at the confluence with the Colorado River using Generalized Pareto Distribution (GPD) and a generalized linear model (GLM) using Lower Basin tributaries, including the upper Gila River and its tributaries (e.g., Salt, Tonto, and Verde Rivers). We also present preliminary reconstructions of Lower Basin streamflows from tree-ring data using different modeling approaches, including GLM and non-parametric k-nearest-neighbor (KNN). These reconstructions of the Lower Basin flows should facilitate more robust estimation of water supply risk to

  12. Present Situation and Future Trends of River Basin Cascade Hydropower Dispatch China

    Institute of Scientific and Technical Information of China (English)

    Cao Guangjing; Cai Zhiguo

    2010-01-01

    @@ Hydropower resources in river basins are typically developed in a cascade manner.The cascade hydropower stations use water from the same river;in a sense,they form a cluster of hydropower stations which are linked together by the river stream.The dispatch and management of the cascade hydropower stations in a river basin differ from those of an ordinary single hydropower station.Without doubt,unified dispatch can facilitate the full harnessing of hydraulic resources and is in a better position to fulfill the objectives in the development of river basin.As a result,more and more river-basin cascade power stations around the world implement unified dispatching.

  13. Soil-landscape relationships in the Wind River Basin, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Nettleton, W.D. (USDA-SCS, Lincoln, NE (United States)); Chadwick, O.A. (California Inst. of Tech., Pasadena (United States))

    Seven soils were sampled and analyzed as part of the Soil Survey of the Riverton area of the Wind River Basin. The Lava Creek ash was used to divide the surfaces on which the soils were sampled into two sets: (1) surfaces older than the lower Sacagawea Ridge glaciation, and (2) surfaces of Bull Lake glacial age and younger. Surfaces of set two were further divided into either Pinedale and Holocene, those that either flood in today's environment or grade to the floodplains of the Wind River system, or into Bull Lake, those that are intermediate in position between the pre-lower Sacagawea Ridge and the Pinedale and Holocene surfaces. Griffy soils, Haplargids with greater than 18% clay in horizons of clay accumulation are on the pre-lower Sacagawea Ridge surface. Enos soils, Haplargids with less than 18% clay in horizons of clay accumulation, and Ethete soils, Haplargids formed in finer textured alluvium, are on the Bull Lake surface. Apron and Glenton soils, Torriorthents formed in calcareous alluvium with less than 18% clay are on the Pinedale and Holocene surfaces. Smectites have formed in the soils on Pleistocene surfaces whereas moderate amounts of allogenic kaolinite occur in Holocene soils. Carbonate has accumulated at or near the base of the argillic horizon in the soils on the Pleistocene surfaces. The soils on the lower Sacagawea Ridge surface, in contrast to the others, accumulate silt (desert loess) in upper horizons. These observations suggest that effective moisture during the Pleistocene in the lower part of the Wind River Basin was not appreciably different from that at present.

  14. River discharge estimation at daily resolution from satellite altimetry over an entire river basin

    Science.gov (United States)

    Tourian, M. J.; Schwatke, C.; Sneeuw, N.

    2017-03-01

    One of the main challenges of hydrological modeling is the poor spatiotemporal coverage of in situ discharge databases which have steadily been declining over the past few decades. It has been demonstrated that water heights over rivers from satellite altimetry can sensibly be used to deal with the growing lack of in situ discharge data. However, the altimetric discharge is often estimated from a single virtual station suffering from coarse temporal resolution, sometimes with data outages, poor modeling and inconsistent sampling. In this study, we propose a method to estimate daily river discharge using altimetric time series of an entire river basin including its tributaries. Here, we implement a linear dynamic model to (1) provide a scheme for data assimilation of multiple altimetric discharge along a river; (2) estimate daily discharge; (3) deal with data outages, and (4) smooth the estimated discharge. The model consists of a stochastic process model that benefits from the cyclostationary behavior of discharge. Our process model comprises the covariance and cross-covariance information of river discharge at different gauges. Combined with altimetric discharge time series, we solve the linear dynamic system using the Kalman filter and smoother providing unbiased discharge with minimum variance. We evaluate our method over the Niger basin, where we generate altimetric discharge using water level time series derived from missions ENVISAT, SARAL/AltiKa, and Jason-2. Validation against in situ discharge shows that our method provides daily river discharge with an average correlation of 0.95, relative RMS error of 12%, relative bias of 10% and NSE coefficient of 0.7. Using a modified NSE-metric, that assesses the non-cyclostationary behavior, we show that our estimated discharge outperforms available legacy mean daily discharge.

  15. River monitoring from satellite radar altimetry in the Zambezi River basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-07-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied, the accuracies of the different methods were found to be comparable, with RMSE values ranging from 4.1 to 6.5% of the mean annual in situ gauged amplitude for the first method and from 6.9 to 13.8% for the second and third methods. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 5.7 and 7.2% of the mean annual in situ gauged amplitude for the first method and from 8.7 to 13.0% for the second and third methods.

  16. Pawcatuck River and Narragansett Bay Drainage Basins. Water and Related Land Resources Study. Blackstone River Watershed. Appendices.

    Science.gov (United States)

    1981-08-01

    weee ir noww md Id I b Wock number) --The eight appendices to the main report provides descriptive material abbut the Blackstone River Basin. Appendices...PNB area). The team concentrated on water supply, water quality, recreation, marine management, flooding and erosion, minerals extraction and the...basin consists of gently rolling wooded hills. Peters River originates in Bellingham, Massachusetts, just north of Silver Lake. It flows southwesterly

  17. Hydrology of the Upper Malad River basin, southeastern Idaho

    Science.gov (United States)

    Pluhowski, Edward J.

    1970-01-01

    The report area comprises 485 square miles in the Basin and Range physiographic province. It includes most of eastern' Oneida County and parts of Franklin, Bannock, and Power Counties of southeastern Idaho. Relief is about 5,000 feet; the floor of the Malad Valley is at an average altitude of about 4,400 feet. Agriculture is, by far, ,the principal economic .activity. In 1960 the population of the upper Malad River basin was about 3,600, of which about 60 percent resided in Malad City, the county seat of Oneida County. The climate is semiarid throughout the Malad Valley and its principal tributary valleys; ,above 6,500 feet the climate is subhumid. Annual precipitation ranges from about 13 inches in the lower Malad Valley to more than 30 inches on the highest peaks of the Bannock and Malad ranges. Owing to ,the normally clear atmospheric conditions, large daily and seasonal temperature fluctuations are common. Topography, distance from the Pacific Ocean, .and the general atmospheric circulation are the principal factors governing the climate of the Malad River basin. The westerlies transport moisture from the P.acific Ocean toward southeastern Idaho. The north-south tren4ing mountains flanking the basin are oriented orthogonally to the moisture flux so that they are very effective in removing precipitable water from the air. A minimum uplift of 6,000 feet is required to transport moisture from the Pacific source region; accordingly, most air masses are desiccated long before they reach the Malad basin. Heaviest precipitation is generally associated with steep pressure gradients in the midtroposphere that are so oriented as to cause a deep landward penetration of moisture from the Pacific Ocean. Annual water yields in the project area range from about 0.8 inch in the, lower Malad Valley to more than 19 inches on the high peaks north and east of Malad City. The mean annual water yield for the entire basin is 4 inches, or about 115,000 acre-feet. Evaporation is

  18. Environmental settings of the South Fork Iowa River basin, Iowa, and the Bogue Phalia basin, Mississippi, 2006-10

    Science.gov (United States)

    McCarthy, Kathleen A.; Rose, Claire E.; Kalkhoff, Stephen J.

    2012-01-01

    Studies of the transport and fate of agricultural chemicals in different environmental settings were conducted by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program's Agricultural Chemicals Team (ACT) at seven sites across the Nation, including the South Fork Iowa River basin in central Iowa and the Bogue Phalia basin in northwestern Mississippi. The South Fork Iowa River basin is representative of midwestern agriculture, where corn and soybeans are the predominant crops and a large percentage of the cultivated land is underlain by artificial drainage. The Bogue Phalia basin is representative of corn, soybean, cotton, and rice cropping in the humid, subtropical southeastern United States. Details of the environmental settings of these basins and the data-collection activities conducted by the USGS ACT over the 2006-10 study period are described in this report.

  19. Hydrological effects of cropland and climatic changes in arid and semi-arid river basins: A case study from the Yellow River basin, China

    Science.gov (United States)

    Li, Huazhen; Zhang, Qiang; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2017-06-01

    The Yellow River basin is a typical semi-arid river basin in northern China. Serious water shortages have negative impacts on regional socioeconomic development. Recent years have witnessed changes in streamflow processes due to increasing human activities, such as agricultural activities and construction of dams and water reservoirs, and climatic changes, e.g. precipitation and temperature. This study attempts to investigate factors potentially driving changes in different streamflow components defined by different quantiles. The data used were daily streamflow data for the 1959-2005 period from 5 hydrological stations, daily precipitation and temperature data from 77 meteorological stations and data pertaining to cropland and large reservoirs. Results indicate a general decrease in streamflow across the Yellow River basin. Moreover significant decreasing streamflow has been observed in the middle and lower Yellow River basin with change points during the mid-1980s till the mid-1990s. The changes of cropland affect the streamflow components and also the cumulative effects on streamflow variations. Recent years have witnessed moderate cropland variations which result in moderate streamflow changes. Further, precipitation also plays a critical role in changes of streamflow components and human activities, i.e. cropland changes, temperature changes and building of water reservoirs, tend to have increasing impacts on hydrological processes across the Yellow River basin. This study provides a theoretical framework for the study of the hydrological effects of human activities and climatic changes on basins over the globe.

  20. Paleoenvironmental reconstruction of the Early Eocene Wind River Formation in the Wind River Basin, Wyoming

    Science.gov (United States)

    Hyland, E.; Fan, M.; Sheldon, N. D.

    2011-12-01

    Terrestrial basin systems provide important information on paleoclimatic, paleoecological, and paleoenvironmental factors and how they control and respond to global changes and spatio-temporal heterogeneity. Examining these dynamics is crucial for times of major global change like the broad-scale climatic trends (warm/wet/high-CO2 conditions) of the Early Eocene Climatic Optimum (EECO). As most climatic records of such events are derived from global marine datasets, regional terrestrial studies such as these provide a better model for understanding ecological responses and the localized effects of events like the EECO. The formation of the Wind River Basin (northwestern Wyoming) has been studied for decades, but its regional climatic, environmental, and ecological dynamics have been largely overlooked. Recent work in other contemporaneous sites in the Green River Basin has suggested that the dynamics and rapidity of climate change in terrestrial interiors during the EECO may have been significantly different than what is indicated by the marine record, so to address these issues on a more regional scale we examined paleosols preserved in the fluvial, basin-margin Wind River Formation preserved near Dubois, Wyoming. Field identification of the paleosols indicated a suite that includes primarily Inceptisols and Alfisols; most exhibited significant redoximorphic features and Bg horizons that indicate a ponded floodplain paleoenvironment, while others contained deep Bk horizons (>100 cm) consistent with more well-drained, but still sub-humid to humid conditions. Based on the identification of these well-developed soil features, along with distinct horizonation and root development, paleosols were robustly correlated and sampled throughout the Formation, and environmental descriptors were assigned. To further examine the question of regional terrestrial climate/environmental change, whole rock geochemistry (XRF) samples from paleosol depth profiles were analyzed for use

  1. Glof Study in Tawang River Basin, Arunachal Pradesh, India

    Science.gov (United States)

    Panda, R.; Padhee, S. K.; Dutta, S.

    2014-11-01

    Glacial lake outburst flood (GLOF) is one of the major unexpected hazards in the high mountain regions susceptible to climate change. The Tawang river basin in Arunachal Pradesh is an unexplored region in the Eastern Himalayas, which is impending to produce several upcoming hydro-electric projects (HEP). The main source of the river system is the snow melt in the Eastern Himalayas, which is composed of several lakes located at the snout of the glacier dammed by the lateral or end moraine. These lakes might prove as potential threat to the future scenario as they have a tendency to produce flash flood with large quantity of sediment load during outbursts. This study provides a methodology to detect the potential lakes as a danger to the HEP sites in the basin, followed by quantification of volume of discharge from the potential lake and prediction of hydrograph at the lake site. The remote location of present lakes induced the use of remote sensing data, which was fulfilled by Landsat-8 satellite imagery with least cloud coverage. Suitable reflectance bands on the basis of spectral responses were used to produce informational layers (NDWI, Potential snow cover map, supervised classification map) in GIS environment for discriminating different land features. The product obtained from vector overlay operation of these layers; representing possible water area, was further utilized in combination with Google earth to identify the lakes within the watershed. Finally those identified lakes were detected as potentially dangerous lakes based on the criteria of elevation, area, proximity from streamline, slope and volume of water held. HEC-RAS simulation model was used with cross sections from Google Earth and field survey as input to simulate dam break like situation; hydrodynamic channel routing of the outburst hydrograph along river reach was carried out to get the GLOF hydrograph at the project sites. It was concluded from the results that, the assessed GLOF would be a

  2. Variations of hydrological characteristics at the rivers of different size in the Lena river basin

    Science.gov (United States)

    Semenova, Olga; Tananaev, Nikita; Lebedeva, Luidmila; Popova, Evdokiya

    2016-04-01

    There are many speculations about possible impact of climate change at hydrological regime of Northern Eurasia, and permafrost basins in particular. Though the changes of flow of large rivers are relatively well described, the trends for small and middle-size watersheds are unknown. After the papers by Shiklomanov et al. (2007) and Smith et al. (2007) examining the variations of maximum and minimum flow in Northern Russia by 2001 there was no much update in this issue. In this study we compiled the database of continuous daily runoff for about 110 gauges within the Lena River basin with the order of basin area from 10 to 100000 sq.km. All currently functioning flow gauges with continuous observations not less than 35 years were selected for the database which contains the data up to 2013. For chosen gauges the parameters of row-correlation, cyclic recurrence and the stationarity of main runoff characteristics (mean, maximum and minimum flow) were estimated. The conclusions are drawn about the evidence of unsteadiness and/or internal correlation in runoff series; the robust indicators of the intensity of detected changes are evaluated; the duration of water cycles and evaluation the spatial correlation between water cycles are explored. The study is supported by Russian Foundation for Basic Research (project 15-35-21146 mol_a).

  3. Preliminary study on land surface characteristics over Huaihe River Basin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The analysis of the flux observation dada from the Huaihe River Basin Experiment (HUBEX) shows that, in semi-humid monsoon regions, latent heat flux is as important as sensible heat flux in most situations. Moreover, it can even dominate the sensible heat flux in cropland and paddy field. This is distinct from that for arid and semi-arid regions where the sensible heat flux is dominant. Under clear sky conditions, the soil temperatures in different vertical layers all exhibit certain diurnal variations, and the magnitude decreases with depth to less than 1℃ at a depth of 60 cm. This depth is considered as the transition layer for the soil moisture variation. On the other hand, the vertical profile of soil water content varies with the soil texture and even weather conditions, and the layer with maximum soil water content can also be found in Jiangji station during June 1998.

  4. Incorporating safety into surface haulage in the Powder River basin

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, W.; Jennings, C.

    1996-12-31

    The Powder River Basin (PRB) coal deposit extends from southeast Montana to northeast Wyoming. This paper describes a number of haulage practices and tools in use at several mines of the southern PRB and the way in which safety has been designed into and implemented for surface haulage of coal and overburden. Experiences described herein focus on the northeastern corner of Wyoming. All the mines in this area rely on safe and efficient movement of enormous volumes of material, and the results achieved in safety underscore the planning and attention to detail present in the PRB. There are currently 12 large surface mines (those greater than 10.0MM tons/year) operating in this area. In 1995, these mines produced over 230.0MM tons of coal.

  5. FLORISTIC STUDY IN THE LOWER PAPAGAYO RIVER BASIN, GUERRERO, MEXICO

    Directory of Open Access Journals (Sweden)

    Blanca Estela Carreto-Pérez

    2015-11-01

    Full Text Available We present the floristic composition of the Papagayo river basin, Guerrero, México.Field work was carried out from June 2011 to June 2012. We identified a total of 204 species of vascular plants, including 73 families and 163 genus. Families Fabaceae,Poaceae, Asteraceae, Euphorbiaceae and Rubiaceae represented 41% of all species and 38% of the genus in the study area. The herbaceous plant life form was the best represented with 81 species (40%. Were determined 10 vegetation types, of which the tropical deciduous forest covers the largest area and has the richest flora. Eleven species were recorded under the category of threatened by NOM-059-SEMARNAT-2010, of which one is endemic to Mexico (Rhizophora mangle.

  6. Mercury pollution in the upper Beni River, Amazonian Basin: Bolivia

    Energy Technology Data Exchange (ETDEWEB)

    Maurice-Bourgoin, L. [ORSTOM, French Scientific Research Inst. for Development by Cooperation, La Paz (Bolivia); Quiroga, Irma [Univ. Mayor de San Andres, La Paz (Bolivia). Chemical Research Inst.; Guyot, J.L. [ORSTOM, French Scientific Research Inst. for Development by Cooperation, Brasilia, DF (Brazil); Malm, O. [Univ. Federal do Rio de Janeiro, RJ (Brazil). Inst. de Biofisica

    1999-06-01

    Mercury contamination caused by the amalgamation of gold in small-scale gold mining is an environmental problem of increasing concern, particularly in tropical regions like the Amazon, where a new boom of such gold mining started in the 1970s. In Brazil, research into these problems has been carried out for many years, but there is no available data for Bolivia. The present paper surveys mercury contamination of a Bolivian river system in the Amazon drainage basin, measured in water, fish, and human hair. High concentrations in fish and human hair from consumers of carnivorous fish species are reported. The potential health risk from fish consumption was evident in people living downstream of gold-mining activities, but not in the mining population itself 24 refs, 3 figs, 2 tabs

  7. Problems of riverbed evolution in the basin of the Ural River

    Science.gov (United States)

    Padalko, Yu. A.; Chibilyov, A. A.

    2017-08-01

    Aspects of riverbed evolution including bank erosion in the Ural River basin have been considered in this paper. The natural morphodynamic types of riverbeds have been described. The spatial features of their genesis have been characterized within the Ural River basin. To study the riverbed processes, decoding of remote sensing data of the water surface has been used. The risks for the infrastructure facilities and for the residential districts have been analyzed in terms of the bank erosion in the Ural River basin. The issues concerning the border between the Russian Federation and the Republic of Kazakhstan due to riverbed reconfiguration of the Ural River have been outlined. Maps of the development of bank erosion in the Ural River basin have been created. A way to solve the problem of riverbed evolution along the border area has been proposed by organizing an Intergovernmental Specially Protected Natural Zone.

  8. Distribution of chironomidae (Insecta: Diptera) in polluted rivers of the Juru River Basin, Penang, Malaysia.

    Science.gov (United States)

    Al-Shami, Salman A; Rawi, Che Salmah Md; HassanAhmad, Abu; Nor, Siti Azizah Mohd

    2010-01-01

    The influence of physical and chemical parameters on the abundance and diversity of chironomids was studied in six rivers with moderate to highly polluted water in the Juru River Basin. The rivers: Ceruk Tok Kun (CTKR) as reference site, and polluted rivers of Pasir (PR), Juru (JR), Permatang Rawa (PRR), Ara (AR) and Kilang Ubi (KUR) were sampled over a period of five months (November 2007-March 2008). Nine chirnomid species: Chironimus kiiensis, C. javanus, Polypedilum trigonus, Microchironomus sp., Dicrotendipes sp., Tanytarsus formosanus, Clinotanypus sp., Tanypus punctipennis and Fittkauimyia sp. were identified. Assessment of their relationships with several environmental parameters was performed using the canonical correspondence analysis (CCA). Tanytarsus formosanus was the most dominant in the relatively clean CTKR and moderately polluted JR with mean densities of 19.66 and 25.32 m(-2), respectively while C. kiiensis was abundant in more polluted rivers. Tanytarsus formosanus, Dicrotendipes sp. and Microchironomus sp. were grouped under moderate to high water temperature, total organic matter (TOM), total suspended solids (TSS), velocity, pH, phosphates and sulphates. However, Tanypus punctipennis, Fittkauimyia sp., and Clinotanypus sp. were associated with high contents of river sediment such as TOM, Zn and Mn and water ammonium-N and nitrate-N and they were associated with higher dissolved oxygen (DO) content in the water. Chironomus kiiensis, C. javanus and P. trigonus showed positive relationships with TOM, ammonium-N and nitrate-N as well as trace metals of Zn, Cu and Mn. These three species could be considered as tolerant species since they have the ability to survive in extreme environmental conditions with low DO and high concentrations of pollutants. Based on the water parameter scores in all rivers, the highest diversity of chironomid larvae was reported in CTKR. With higher concentrations of organic and/or inorganic pollutants as reported in PPR

  9. Impact of climate change on river discharge in the Teteriv River basin (Ukraine)

    Science.gov (United States)

    Didovets, Iulii; Lobanova, Anastasia; Krysanova, Valentina; Snizhko, Sergiy; Bronstert, Axel

    2016-04-01

    The problem of water resources availability in the climate change context arises now in many countries. Ukraine is characterized by a relatively low availability of water resources compared to other countries. It is the 111th among 152 countries by the amount of domestic water resources available per capita. To ensure socio-economic development of the region and to adapt to climate change, a comprehensive assessment of potential changes in qualitative and quantitative characteristics of water resources in the region is needed. The focus of our study is the Teteriv River basin located in northern Ukraine within three administrative districts covering the area of 15,300 km2. The Teteriv is the right largest tributary of the Dnipro River, which is the fourth longest river in Europe. The water resources in the region are intensively used in industry, communal infrastructure, and agriculture. This is evidenced by a large number of dams and industrial objects which have been constructed from the early 20th century. For success of the study, it was necessary to apply a comprehensive hydrological model, tested in similar natural conditions. Therefore, an eco-hydrological model SWIM with the daily time step was applied, as this model was used previously for climate impact assessment in many similar river basins on the European territory. The model was set up, calibrated and validated for the gauge Ivankiv located close to the outlet of the Teteriv River. The Nash-Sutcliffe efficiency coefficient for the calibration period is 0.79 (0.86), and percent bias is 4,9% (-3.6%) with the daily (monthly) time step. The future climate scenarios were selected from the IMPRESSIONS (Impacts and Risks from High-End Scenarios: Strategies for Innovative Solutions, www.impressions-project.eu) project, which developed 7 climate scenarios under RCP4.5 and RCP8.5 based on GCMs and downscaled using RCMs. The results of climate impact assessment for the Teteriv River basin will be presented.

  10. Estimation of nutrient contributions from the ocean across a river basin using stable isotope analysis

    Directory of Open Access Journals (Sweden)

    K. Nakayama

    2015-04-01

    Full Text Available Since marine derived nutrients (MDN are transported not only in river channels but also across the entire river basin, including via ground water and migratory animals, it is necessary to investigate the contribution of MDN to the forest floor (soils in order to quantify the true role of MDN at the river ecosystem scale. This study investigated the contribution of pink (Oncorhynchus gorbuscha and chum salmon (O. keta to total oceanic nitrogen (TN input across a river basin using stable isotope analysis (SIA of nitrogen (δ15N. The contribution of TN entering the river basin by salmon was 23.8 % relative to the total amount of TN exported from the river basin, providing a first estimate of MDN export for a river basin. The contribution of nitrogen from the ocean to the river basin soils was between 22.9 and 23.8 %. Furthermore, SIA showed that the transport of oceanic TN by sea eagles (Haliaeetus spp. was greater than that by bears (Ursus arctos, which had previously been that bears are thought to be the major animal transporter of nutrients in the northern part of Japan.

  11. Hydrogeologic data for the lower Housatonic River basin, Connecticut

    Science.gov (United States)

    Grossman, I.G.; Wilson, William E.

    1970-01-01

    This report contains hydrologic and geologic data collected for an investigation of the lower Housatonic River basin by the U.S. Geological Survey in financial cooperation with the Connecticut Water Resources Commission. The report also summarizes data that are available in other publications. The towns within the 557 square mile area of the basin in western Connecticut include all of Beacon Falls, Middlebury, Naugatuck, Oxford, Seymour, Thomaston, Waterbury, Watertown, and Woodbury; and parts of Ansonia, Bethany, Bethlehem, Bristol, Burlington, Cheshire, Derby, Easton, Goshen, Narwinton, Litchfield, Milford, Monroe, Morris, New Hartford, Newtown, Norfolk, Orange, Plymouth, Prospect, Roxbury, Shelton, Southbury, Stratford, Torrington, Trumbull, Washington, Winchester, Wolcott, and Woodbridge. The factual information on the following pages was the basis for a companion interpretive report, Connecticut Water Resources Bulletin No. 19 (Wilson, W. E., and others, in preparation, 1970). The basic-data report can be used alone for detailed information needed in planning water resources development at specific sites or it can be used to supplement the interpretive report.

  12. Hydrologic investigations in the Araguaia-Tocantins River basin (Brazil)

    Science.gov (United States)

    Snell, Leonard J.

    1979-01-01

    The Araguaia-Tocantins River basin system of central and northern Brazil drains an area of about 770,000 square kilometers and has the potential for supporting large-scale developments. During a short visit to the headquarters of the Interstate Commission for the Araguaia-Tocantins Valley and to several stream-gaging stations in June 1964, the author reviewed the status of the streamflow and meteorological data-collection programs in relation to the streamflow and meteorological data-collection programs in relation to the pressing needs of development project studies. To provide data for areal and project-site studies and for main-stream sites, an initial network of 33 stream gaging stations was proposed, including the 7 stations then in operation. Suggestions were made in regard to operations, staffing and equipment. Organizational responsibilities for operations were found to be divided uncertainly. The Brazilian Meteorological Service had 15 synoptic stations in operation in and near the basin, some in need of reconditioning. Plans were at hand for the addition of 15 sites to the synoptic network and for limited data collection at 27 other sites. The author proposed collection of precipitation data at about 50 other locations to achieve a more representative areal distribution. Temperature, evaporation, and upper-air data sites were suggested to enhance the prospective hydrometeorological studies. (USGS)

  13. GRACE-based estimates of water discharge over the Yellow River basin

    Institute of Scientific and Technical Information of China (English)

    Qiong Li; BO Zhong; Zhicai Luo; Chaolong Yao

    2016-01-01

    As critical component of hydrologic cycle,basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles.Combining GRACE gravity field models with ET from GLDAS models and precipitation from GPCP,discharge of the Yellow River basin are estimated from the water balance equation.While comparing the results with discharge from GLDAS model and in situ measurements,the results reveal that discharge from Mosaic and CLM GLDAS model can partially represent the river discharge and the discharge estimation from water balance equation could reflect the discharge from precipitation over the Yellow River basin.

  14. Alternative Water Allocation in Kyrgyzstan: Lessons from the Lower Colorado River Basin and New South Wales

    Directory of Open Access Journals (Sweden)

    Nazir Mirzaev

    2010-08-01

    Full Text Available Focus group discussions and a modeling approach were applied to determine policy and regulatory refinements for current water allocation practices in Kyrgyzstan. Lessons from the Lower Colorado River basin, Texas and New South Wales, Australia were taken into consideration. The paper analyzes the impact of adopting some of these interventions within the socio-environmental context that currently prevails in Kyrgyzstan. The optimization model for water distribution at the river-basin scale was developed using GAMS 2.25 software. Application of the model to the Akbura River basin indicated efficiencies in the proposed institutional rules especially in low water years.

  15. Providing peak river flow statistics and forecasting in the Niger River basin

    Science.gov (United States)

    Andersson, Jafet C. M.; Ali, Abdou; Arheimer, Berit; Gustafsson, David; Minoungou, Bernard

    2017-08-01

    Flooding is a growing concern in West Africa. Improved quantification of discharge extremes and associated uncertainties is needed to improve infrastructure design, and operational forecasting is needed to provide timely warnings. In this study, we use discharge observations, a hydrological model (Niger-HYPE) and extreme value analysis to estimate peak river flow statistics (e.g. the discharge magnitude with a 100-year return period) across the Niger River basin. To test the model's capacity of predicting peak flows, we compared 30-year maximum discharge and peak flow statistics derived from the model vs. derived from nine observation stations. The results indicate that the model simulates peak discharge reasonably well (on average + 20%). However, the peak flow statistics have a large uncertainty range, which ought to be considered in infrastructure design. We then applied the methodology to derive basin-wide maps of peak flow statistics and their associated uncertainty. The results indicate that the method is applicable across the hydrologically active part of the river basin, and that the uncertainty varies substantially depending on location. Subsequently, we used the most recent bias-corrected climate projections to analyze potential changes in peak flow statistics in a changed climate. The results are generally ambiguous, with consistent changes only in very few areas. To test the forecasting capacity, we ran Niger-HYPE with a combination of meteorological data sets for the 2008 high-flow season and compared with observations. The results indicate reasonable forecasting capacity (on average 17% deviation), but additional years should also be evaluated. We finish by presenting a strategy and pilot project which will develop an operational flood monitoring and forecasting system based in-situ data, earth observations, modelling, and extreme statistics. In this way we aim to build capacity to ultimately improve resilience toward floods, protecting lives and

  16. Yakima River Basin Phase II Fish Screen Evaluations, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Jessica A.; McMichael, Geoffrey A.; Chamness, Mickie A.

    2003-03-01

    In 2002, the Pacific Northwest National Laboratory evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. Pacific Northwest National Laboratory collected data to determine whether velocities in front of the screens and in the bypasses met National Marine Fisheries Service criteria to promote safe and timely fish passage and whether bypass outfall conditions allowed fish to safely return to the river. In addition, Pacific Northwest National Laboratory conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2002, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by the National Marine Fisheries Service. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Conditions at some facilities indicate that operation and/or maintenance should be modified to increase safe juvenile fish passage. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well greased and operative. (5) Removal of sediment buildup and accumulated leafy and woody debris should be improved at some sites.

  17. Economic Peculiarities of the Romanian Tisa River Basin

    Directory of Open Access Journals (Sweden)

    ANA-MARIA POP

    2010-01-01

    Full Text Available A possible answer to the current challenges of the Tisa catchment area, correlated with water management, social and economic development, environmental conservation, is the transnational initiative of the five countries drained by the tributaries of the Tisa River. In this context, the spatial development has a major impact on the Romanian Tisa catchment area by providing the economic cohesion. The purpose of the present paper is to define the current status of economy in the Romanian Tisa River Basin, through the filter of achieving the level of competitiveness claimed by the national, European, or global authorities. By setting several quantitative indicators, analyzed for a standard territorial level (NUTS 3, for a definite time interval (2002-2007, those more or less competitive economic branches, activities or aspects of the analyzed territory were identified, and, at the same time, the elements that “hinder” development, the traditional remnants, or the existing entrepreneurial initiatives. On the basis of relevant indicators, the calculation of an index of competitiveness was proposed at territorial level, the results certifying a certain level of competitiveness for the region under consideration.

  18. Floods simulation in the Crişul Alb River Basin using hydrological model CONSUL

    Science.gov (United States)

    Mic, Rodica Paula; Corbus, Ciprian; Matreata, Marius

    2016-04-01

    For the simulation of floods, in the Crişul Alb River Basin, Romanian hydrological model CONSUL with lumped parameters was used. This deterministic mathematical rainfall-runoff model compute discharge hydrographs on configured river sub-basins, their channel routing and composition on the main river and tributaries and finally their routing and mitigation through reservoirs, according to the schematic representation (topological modelling) of how water flows and integrate in a river basin. After topological modelling 42 sub-basins and 19 river reaches resulted for the Crişul Alb River Basin model configuration, established according to the position of tributaries, hydrometric stations and reservoirs that influence flow. The CONSUL model used as input data, for each sub-basin, average values of precipitation and air temperature determined based on the measured values of weather stations in the basin. Calculation of average values was performed using a pre-processing program of meteorological data from rectangular grid nodes corresponding to Crişul Alb River Basin, averaging being achieved as weighted values based on the representativeness of these nodes for each analyzed sub-basin. Calibration of model parameters was performed by the simulation of 25 rainfall-runoff events from the period 1975 - 2010, chosen to cover a wide range of possible situations in the case of floods formation. By simulating floods from the hydrometric stations located in the closing sections of river sub-basins were determined the infiltration and unit hydrograph parameters and by simulating floods from the hydrometric stations located in the downstream sections of the river reaches hydrometrically controlled were determined the routing equation parameters. The parameters thus determined allow building some generalization relationships of these parameters according to the morphometric characteristics of the river sub-basins (surface, slope) or river reaches (length, slope). Based on these

  19. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Basin Characteristics, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents basin characteristics for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and...

  20. The use of remote sensing and geographic information systems for the evaluation of river basins: a case study for Turkey, Marmara River Basin and Istanbul.

    Science.gov (United States)

    Ulugtekin, Necla; Balcik, Filiz Bektas; Dogru, Ahmet O; Goksel, Cigdem; Alaton, Idil Arslan; Orhon, Derin

    2009-03-01

    The aim of this study was to determine sensitive river basins and specific areas that urgently need planning activities for sustainable resource and environmental management. In this context, a combination of remote sensing (RS) and geographic information systems (GIS) were employed. For that purpose, a comprehensive overview of the current situation of Turkish river basins in terms of existing spatial data was provided and all tabular data gathered from the national authorities on regional basis was assessed in combination with the geometric data of Turkish river basins in a GIS environment. Considering the GIS studies that covered all 26 Turkish basins, the Marmara River Basin was selected as the model sensitive region and was studied in more detail by using 2000 dated Landsat 7 ETM mosaic satellite image. Results of this comprehensive study indicated that Istanbul, which is located in the basin under study and the largest metropolitan of Turkey, was determined as the most populated and urbanized area of the region. Istanbul was further examined to determine the expansion of urban areas over a time period of 16 years using Landsat images dated 1984, 1992 and 2000. Finally, interpretations were done by combining the demographic and statistical data on urban wastewater treatment plants to present the prevailing situation of the water treatment facilities in Istanbul. Our study not only delineated the importance of applying environmental policies correctly for the efficient installation and operation of urban wastewater treatment plants in Istanbul but also demonstrated that effective urban wastewater management is a nationwide problem in Turkey.

  1. Hydrogeologic Framework of the Yakima River Basin Aquifer System, Washington

    Science.gov (United States)

    Vaccaro, J.J.; Jones, M.A.; Ely, D.M.; Keys, M.E.; Olsen, T.D.; Welch, W.B.; Cox, S.E.

    2009-01-01

    The Yakima River basin aquifer system underlies about 6,200 square miles in south-central Washington. The aquifer system consists of basin-fill deposits occurring in six structural-sedimentary basins, the Columbia River Basalt Group (CRBG), and generally older bedrock. The basin-fill deposits were divided into 19 hydrogeologic units, the CRBG was divided into three units separated by two interbed units, and the bedrock was divided into four units (the Paleozoic, the Mesozoic, the Tertiary, and the Quaternary bedrock units). The thickness of the basin-fill units and the depth to the top of each unit and interbed of the CRBG were mapped. Only the surficial extent of the bedrock units was mapped due to insufficient data. Average mapped thickness of the different units ranged from 10 to 600 feet. Lateral hydraulic conductivity (Kh) of the units varies widely indicating the heterogeneity of the aquifer system. Average or effective Kh values of the water-producing zones of the basin-fill units are on the order of 1 to 800 ft/d and are about 1 to 10 ft/d for the CRBG units as a whole. Effective or average Kh values for the different rock types of the Paleozoic, Mesozoic, and Tertiary units appear to be about 0.0001 to 3 ft/d. The more permeable Quaternary bedrock unit may have Kh values that range from 1 to 7,000 ft/d. Vertical hydraulic conductivity (Kv) of the units is largely unknown. Kv values have been estimated to range from about 0.009 to 2 ft/d for the basin-fill units and Kv values for the clay-to-shale parts of the units may be as small as 10-10 to 10-7 ft/d. Reported Kv values for the CRBG units ranged from 4x10-7 to 4 ft/d. Variations in the concentrations of geochemical solutes and the concentrations and ratios of the isotopes of hydrogen, oxygen, and carbon in groundwater provided information on the hydrogeologic framework and groundwater movement. Stable isotope ratios of water (deuterium and oxygen-18) indicated dispersed sources of groundwater recharge to

  2. Assessment of Wetland Ecosystem Health in the Yangtze and Amazon River Basins

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2017-03-01

    Full Text Available As “kidneys of the earth”, wetlands play an important role in ameliorating weather conditions, flood storage, and the control and reduction of environmental pollution. With the development of local economies, the wetlands in both the Amazon and Yangtze River Basins have been affected and threatened by human activities, such as urban expansion, reclamation of land from lakes, land degradation, and large-scale agricultural development. It is necessary and important to develop a wetland ecosystem health evaluation model and to quantitatively evaluate the wetland ecosystem health in these two basins. In this paper, GlobeLand30 land cover maps and socio-economic and climate data from 2000 and 2010 were adopted to assess the wetland ecosystem health of the Yangtze and Amazon River Basins on the basis of a pressure-state-response (PSR model. A total of 13 indicators were selected to build the wetland health assessment system. Weights of these indicators and PSR model components, as well as normalized wetland health scores, were assigned and calculated based on the analytic hierarchy process method. The results showed that from 2000 to 2010, the value of the mean wetland ecosystem health index in the Yangtze River Basin decreased from 0.482 to 0.481, while it increased from 0.582 to 0.593 in the Amazon River Basin. This indicated that the average status of wetland ecosystem health in the Amazon River Basin is better than that in the Yangtze River Basin, and that wetland health improved over time in the Amazon River Basin but worsened in the Yangtze River Basin.

  3. Institutional Arrangements for River Basin Management: A Case Study of Comparison between the United States and China

    Institute of Scientific and Technical Information of China (English)

    ZHOU Gang-yan

    2007-01-01

    This note compares institutional arrangements for water resources management in two river basins, namely, those of the Susquehanna River in the United States and the Yangtze River in China. The Susquehanna River Basin Commission is composed of the US federal government and the three states of New York, Pennsylvania, and Maryland through which the Susquehanna River passes. Under the authority of the Susquehanna River Basin Compact, the Commission deals with water resources problems throughout its vast drainage area. In contrast, the Changjiang(Yangtze River) Water Resources Commission (CWRC) lacks relative effectiveness in mobilizing provincial governments in transboundary water resources management.

  4. River monitoring from satellite radar altimetry in the Zambezi River Basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-03-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. In this study, retracked Envisat altimetry data was extracted over the Zambezi River Basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied the accuracies of the different methods were found to be comparable, with RMSE values ranging from 5.5 to 7.4 % terms of high flow estimation relative to in situ gauge measurements. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 8.2 and 25.8 % of the high flow estimates.

  5. Downstream ecosystem responses to middle reach regulation of river discharge in the Heihe River Basin, China

    Science.gov (United States)

    Zhao, Yan; Wei, Yongping; Li, Shoubo; Wu, Bingfang

    2016-11-01

    Understanding the oasis ecosystem responses to upstream regulation is a challenge for catchment management in the context of ecological restoration. This empirical study aimed to understand how oasis ecosystems, including water, natural vegetation and cultivated land, responded to the implementation of the Ecological Water Diversion Project (EWDP) in the Heihe River in China. The annual Landsat images from 1987 to 2015 were firstly used to characterize the spatial extent, frequency index and fractional coverage (for vegetation only) of these three oasis ecosystems and their relationships with hydrological (river discharge) and climatic variables (regional temperature and precipitation) were explored with linear regression models. The results show that river regulation of the middle reaches identified by the discharge allocation to the downstream basin experiences three stages, namely decreasing inflow (1987-1999), increasing inflow (2000-2007) and relative stable inflow (2008-2015). Both the current and previous years' combined inflow determines the surface area of the terminal lake (R2 = 0.841). Temperature has the most significant role in determining broad vegetation distribution, whereas hydrological variables had a significant effect only in near-river-channel regions. Agricultural development since the execution of the EWDP might have curtailed further vegetation recovery. These findings are important for the catchment managers' decisions about future water allocation plans.

  6. Studies on water resources carrying capacity in Tuhai river basin based on ecological footprint

    Science.gov (United States)

    Wang, Chengshuai; Xu, Lirong; Fu, Xin

    2017-05-01

    In this paper, the method of the water ecological footprint (WEF) was used to evaluate water resources carrying capacity and water resources sustainability of Tuhai River Basin in Shandong Province. The results show that: (1) The WEF had a downward trend in overall volatility in Tuhai River Basin from 2003 to 2011. Agricultural water occupies high proportion, which was a major contributor to the WEF, and about 86.9% of agricultural WEF was used for farmland irrigation; (2) The water resources carrying capacity had a downward trend in general, which was mostly affected by some natural factors in this basin such as hydrology and meteorology in Tuhai River Basin; (3) Based on analysis of water resources ecological deficit, it can be concluded that the water resources utilization mode was in an unhealthy pattern and it was necessary to improve the utilization efficiency of water resources in Tuhai River Basin; (4) In view of water resources utilization problems in the studied area, well irrigation should be greatly developed at the head of Yellow River Irrigation Area(YRIA), however, water from Yellow River should be utilized for irrigation as much as possible, combined with agricultural water-saving measures and controlled exploiting groundwater at the tail of YRIA. Therefore, the combined usage of surface water and ground water of YRIA is an important way to realize agricultural water saving and sustainable utilization of water resources in Tuhai River Basin.

  7. Transport and Retention of Nitrogen, Phosphorus and Carbon in North America’s Largest River Swamp Basin, the Atchafalaya River Basin

    Directory of Open Access Journals (Sweden)

    Y. Jun Xu

    2013-04-01

    Full Text Available Floodplains and river corridor wetlands may be effectively managed for reducing nutrients and carbon. However, our understanding is limited to the reduction potential of these natural riverine systems. This study utilized the long-term (1978–2004 river discharge and water quality records from an upriver and a downriver location of the Atchafalaya River to quantify the inflow, outflow, and inflow–outflow mass balance of total Kjeldahl nitrogen (TKN = organic nitrogen + ammonia nitrogen, nitrate + nitrite nitrogen (NO3 + NO2, total phosphorous (TP, and total organic carbon (TOC through the largest river swamp basin in North America. The study found that, over the past 27 years, the Atchafalaya River Basin (ARB acted as a significant sink for TKN (annual retention: 24%, TP (41%, and TOC (12%, but a source for NO3 + NO2 nitrogen (6%. On an annual basis, ARB retained 48,500 t TKN, 16,900 t TP, and 167,100 t TOC from the river water. The retention rates were closely and positively related to the river discharge with highs during the winter and spring and lows in the late summer. The higher NO3 + NO2 mass outflow occurred throughout spring and summer, indicating an active role of biological processes on nitrogen as water and air temperatures in the basin rise.

  8. The politics of water payments and stakeholder participation in the Limpopo river basin, Mozambique

    Directory of Open Access Journals (Sweden)

    Rossella Alba

    2016-10-01

    Full Text Available Drawing from the experience of the Limpopo River Basin in Mozambique, the paper analyses the articulation of a water rights framework in the context of decentralised river basin governance and IWRM-inspired reforms. The nexus between financial autonomy, service provision, stakeholder participation and the resultant allocation of water within the river basin is explored by scrutinising the newly instituted system of water permits and payments. Three cases are examined: (1 parastatal agencies managing large perimeters of irrigated land; (2 large-scale commercial companies irrigating land; and (3 so-called focal points representing groups of smallholder irrigators. The three presented cases show that structural challenges, local geographies and power relations shape the final outcome of water reforms in relation to decentralised river basin management, stakeholdersʼ participation and accountability. Rather than improving accountability to users and securing the financial basis for sustainable infrastructure operation and maintenance, the permit system in place reinforces existing inequalities.

  9. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Slack Lineaments

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Slack, P. B., 1981, Paleotectonics and hydrocarbon...

  10. Mineral Occurrence data for the Eocene Green River Formation in the Piceance and Uinta Basins

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This legacy database lists occurrences of minerals identified in the Green River Formation in the Uinta and Piceance Basins, Utah and Colorado using X-ray...

  11. Thickness of the lower Fort Union aquifer in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the lower Fort Union aquifer in the Powder River basin. The data are presented as ASCII text files that can be...

  12. Thickness of the Upper Hell Creek hydrogeologic unit in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the Upper Hell Creek hydrogeologic unit in the Powder River basin. The data are presented as ASCII text files that...

  13. Altitude of the top of the lower Fort Union aquifer in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the lower Fort Union aquifer in the Powder River basin. The data...

  14. Thickness of the upper Fort Union aquifer in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the upper Fort Union aquifer in the Powder River basin. The data are presented as ASCII text files that can be...

  15. 1:250,000-scale geology of the Carson River Basin, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital continuous geologic data for the Carson River Basin, Nevada and California. It was compiled from individual county 1:250,000-scale...

  16. Mapping the Soil Texture in the Heihe River Basin Based on Fuzzy Logic and Data Fusion

    National Research Council Canada - National Science Library

    Ling Lu; Chao Liu; Xin Li; Youhua Ran

    2017-01-01

    .... Here, we used an integrated method based on fuzzy logic theory and data fusion to map the soil texture in the Heihe River basin in an arid region of Northwest China, by combining in situ soil texture...

  17. Location of Photographs Showing Landslide Features in the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Data points represent locations of photographs taken of landslides in the Little North Santiam River Basin, Oregon. Photos were taken in spring of 2010 during field...

  18. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Anna Lineaments

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following U.S. Geological Survey Professional Paper: Anna, L.O., 1986, Geologic...

  19. Thickness of the middle Fort Union hydrogeologic unit in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the middle Fort Union hydrogeologic unit in the Powder River basin. The data are presented as ASCII text files that...

  20. Organochlorine pesticides in fishes and sediments from the Tensas River Basin, Lousiana

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The aquatic habitats of the Tensas River Basin in northeastern Louisiana have been heavily impacted by sediment and agrichemical runoff due to intensive drainage,...

  1. 2011 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Quinault River Basin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Quinault River Basin survey area for the Puget Sound LiDAR Consortium and...

  2. Timber Harvest Change in the Little North Santiam River Basin, Oregon, 1995 to 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Using available aerial photos from approximately a 15-year period, changes in timber harvest were mapped in the Little North Santiam River Basin, Oregon. Timber...

  3. Landslide Deposit Boundaries for the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This layer is an inventory of existing landslides deposits in the Little North Santiam River Basin, Oregon (2009). Each landslide deposit shown on this map has been...

  4. Head Scarp Boundary for the Landslides in the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Polygons represent head scarps and flank scarps associated with landslide deposits in the Little North Santiam River Basin, Oregon. This work was completed as part...

  5. Mapping Water Vulnerability of the Yangtze River Basin: 1994-2013

    Science.gov (United States)

    Sun, Fengyun; Kuang, Wenhui; Xiang, Weining; Che, Yue

    2016-11-01

    A holistic understanding of the magnitude and long-term trend of water vulnerability is essential for making management decisions in a given river basin. Existing procedures to assess the spatiotemporal dynamic of water vulnerability in complex mega-scale river basins are inadequate; a new method named ensemble hydrologic assessment was proposed in this study, which allows collection of data and knowledge about many aspects of water resources to be synthesized in a useful way for vulnerability assessment. The objective of this study is to illustrate the practical utility of such an integrated approach in examining water vulnerability in the Yangtze River Basin. Overall, the results demonstrated that the ensemble hydrologic assessment model could largely explain the spatiotemporal evolution of water vulnerability. This paper improves understanding of the status and trends of water resources in the Yangtze River Basin.

  6. Biodiversity and conservation status of fish of Ceyhan River basin in Osmaniye, Turkey

    Directory of Open Access Journals (Sweden)

    Mahmut Dağlı

    2015-11-01

    The conservation measures suggested in this river basin must include strict regulation and control over removal of sand, controlling pollution and minimizing the threats caused by the increasing number of exotic species.

  7. Wyodak-Anderson clinker in the Powder River Basin, Wyoming and Montana (prbclkg.shp)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a polygon representation of the Wyodak-Anderson clinker in the Powder River Basin, Wyoming and Montana. This theme was created...

  8. Point of Rocks, Black Butte faults, Green River Basin, Wyoming (grbfltg.shp)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a line representation of faults in a portion of the the Green River Basin. The fault data are part of the National Coal Resource...

  9. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Structural Features

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Anna, L.O., 1986, Geologic framework of the ground water...

  10. Drainage areas for selected stream-sampling stations, Missouri River Basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — As part of the U.S. Geological Survey's (USGS) National Water-Quality Assessment Program (NAWQA), an investigation of the Missouri River Basin is being conducted to...

  11. Relationship of Rainfall Distribution and Water Level on Major Flood 2014 in Pahang River Basin, Malaysia

    National Research Council Canada - National Science Library

    Nur Hishaam Sulaiman; Mohd Khairul Amri Kamarudin; Mohd Ekhwan Toriman; Hafizan Juahir; Frankie Marcus Ata; Azman Azid; Noor Jima Abd Wahab; Roslan Umar; Saiful iskandar Khalit; Mokhairi Makhtar; Amal Arfan; Uca Sideng

    2017-01-01

    .... This article discusses about the relationship of rainfall distribution and water level on major flood 2014 in Pahang River Basin, Malaysia in helping decision makers to flood management system...

  12. Altitude of the top of the basal confining unit in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the basal confining unit in the Powder River basin. The data are...

  13. Aerial photo mosaic of the Wilson and Kilchis Rivers, Tillamook basin, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  14. River Basin Development and Human Rights in Eastern Africa — A Policy Crossroads

    National Research Council Canada - National Science Library

    Carr, Claudia J

    2017-01-01

    .... It examines major river basin development underway in the semi-arid borderlands of Ethiopia, Kenya and South Sudan and its disastrous human rights consequences for a half-million indigenous people...

  15. Aerial photo mosaic of the Miami River, Tillamook basin, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  16. Aerial photo mosaic of the Tillamook and Trask Rivers, Tillamook basin, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  17. Spatio-Temporal Variation in Water Quality of Orle River Basin, S.W. ...

    African Journals Online (AJOL)

    User

    2011-04-19

    Apr 19, 2011 ... activity of fertilizer applications and bush clearing and subsequent leaf litter .... River Basin, Management Science Review (MSR), Benin City, ... Reservoir”, Unpublished Ph.D. Thesis, Department of Botany, ... Techniques-A.

  18. Geospatial Dataset of Agricultural Lands in the Upper Colorado River Basin, 2007 - 10

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents the extent and spatial distribution of irrigated agricultural lands in the Upper Colorado River Basin for 2007-10. The boundaries in this...

  19. Altitude of the top of the upper Fort Union aquifer in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the upper Fort Union aquifer in the Powder River basin. The data...

  20. Precipitation Frequency for Ohio River Basin, USA - NOAA Atlas 14 Volume 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This GIS grid atlas contains precipitation frequency estimates for the Ohio River Basin and Surrounding states is based on precipitation data collected between...

  1. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Maughan and Perry Lineaments

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Maughan, E.K., and Perry, W.J., Jr., 1986, Lineaments and...

  2. Water resources inventory of Connecticut Part 8: Quinnipiac River basin

    Science.gov (United States)

    Mazzaferro, David L.; Handman, Elinor H.; Thomas, Mendall P.

    1978-01-01

    The Quinnipiac River basin area in southcentral Connecticut covers 363 square miles, and includes all drainage basins that enter Long Island Sound from the Branford to the Wepawaug Rivers. Its population in 1970 was estimated at 535,000. Precipitation averages 47 inches per year and provides an abundant supply of water. Twenty-one inches returns to the atmosphere as evapotranspiration; the remainder flows directly to streams or percolates to the water table and discharges to Long Island Sound. Small amounts of water are exported from the basin by the New Britain Water Department, and small amounts are imported to the basin by the New Haven Water Company. The amount of water that can be developed at a given place depends upon precipitation, variability of streamflow, hydraulic properties and areal extent of the aquifers, and hydraulic connection between the aquifers and major streams. The quality of the water is determined by the physical environment and the effects of man. Stratified drift is the only aquifer capable of large sustained yields of water to individual wells. Yields of 64 screened wells tapping stratified drift range from 17 to 2,000 gpm (gallons per minute); their median yield is 500 gpm. Till is widespread and generally provides only small amounts of water. Wells in till normally yield only a few hundred gallons of water daily and commonly are inadequate during dry periods. Till is generally used only as an emergency or secondary source of water. Bedrock aquifers underlie the entire report area and include sedimentary, igneous, and metamorphic rock types. These aquifers supply small but reliable quantities of water to wells throughout the basin and are the chief source for many nonurban homes and farms. About 90 percent of the wells tapping bedrock yield at least 2 pgm, and much larger yields are occasionally reported. Maximum well yields of 305 gpm for sedimentary, 75 gpm for igneous, and 200 gpm for metamorphic bedrock have been reported. Water

  3. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    Science.gov (United States)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  4. Assessing the Resilience of a River Management Regime: Informal Learning in a Shadow Network in the Tisza River Basin

    Directory of Open Access Journals (Sweden)

    Jan Sendzimir

    2008-06-01

    Full Text Available Global sources of change offer unprecedented challenges to conventional river management strategies, which no longer appear capable of credibly addressing a trap: the failure of conventional river defense engineering to manage rising trends of disordering extreme events, including frequency and intensity of floods, droughts, and water stagnation in the Hungarian reaches of the Tisza River Basin. Extreme events punctuate trends of stagnation or decline in the ecosystems, economies, and societies of this river basin that extend back decades, and perhaps, centuries. These trends may be the long-term results of defensive strategies of the historical river management regime that reflect a paradigm dating back to the Industrial Revolution: "Protect the Landscape from the River." Since then all policies have defaulted to the imperatives of this paradigm such that it became the convention underlying the current river management regime. As an exponent of this convention the current river management regimes' methods, concepts, infrastructure, and paradigms that reinforce one another in setting the basin's development trajectory, have proven resilient to change from wars, political, and social upheaval for centuries. Failure to address the trap makes the current river management regime's resilience appear detrimental to the region's future development prospects and prompts demand for transformation to a more adaptive river management regime. Starting before transition to democracy, a shadow network has generated multiple dialogues in Hungary, informally exploring the roots of this trap as part of a search for ideas and methods to revitalize the region. We report on how international scientists joined one dialogue, applying system dynamics modeling tools to explore barriers and bridges to transformation of the current river management regime and develop the capacity for participatory science to expand the range of perspectives that inform, monitor, and

  5. Post conflict water management: learning from the past for recovery planning in the Orontes River basin

    OpenAIRE

    Saadé-Sbeih, Myriam; Zwahlen, François; Haj Asaad, Ahmed; Gonzalez, Raoul; Jaubert, Ronald

    2016-01-01

    Water management is a fundamental issue in post-conflict planning in Syria. Based on historical water balance assessment, this study identifies the drivers of the profound changes that took place in the Lebanese and Syrian parts of the Orontes River basin since the 1930s. Both drastic effects of the conflict on the hydro-system and the strong uncontrolled anthropization of the river basin prior to the crisis have to be considered in the design of recovery interventions.

  6. Neural network approach to stream-aquifer modeling for improved river basin management

    Science.gov (United States)

    Triana, Enrique; Labadie, John W.; Gates, Timothy K.; Anderson, Charles W.

    2010-09-01

    SummaryArtificial neural networks (ANNs) are applied to efficient modeling of stream-aquifer responses in an intensively irrigated river basin under a variety of water management alternatives for improving irrigation efficiency, reducing soil water salinity, increasing crop yields, controlling nonbeneficial consumptive use, and decreasing salt loadings to the river. Two ANNs for the main stem river and the tributary regime are trained and tested using solution datasets from a high resolution, finite difference MODFLOW-MT3DMS groundwater flow and contaminant transport model of a representative subregion within the river basin. Stream-aquifer modeling in the subregion is supported by a dense field data collection network with the ultimate goal of extending knowledge gained from the subregion modeling to the sparsely monitored remainder of the river basin where data insufficiency precludes application of MODFLOW-MT3DMS at the desired spatial resolution. The trained and tested ANNs capture the MODFLOW-MT3DMS modeled subregion stream-aquifer responses to system stresses using geographic information system (GIS) processed explanatory variables correlated with irrigation return flow quantity and quality for basin-wide application. The methodology is applied to the Lower Arkansas River basin in Colorado by training and testing ANNs derived from a MODFLOW-MT3DMS modeled subregion of the Lower Arkansas River basin in Colorado, which includes detailed unsaturated and saturated zone modeling and calibration to the extensive field data monitoring network in the subregion. Testing and validation of the trained ANNs shows good performance in predicting return flow quantities and salinity concentrations. The ANNs are linked with the GeoMODSIM river basin network flow model for basin-wide evaluation of water management alternatives.

  7. Implementing integrated catchment management in the Limpopo River Basin Phase 1: Situational assessment

    CSIR Research Space (South Africa)

    Mwenge Kahinda, Jean-Marc

    2012-10-01

    Full Text Available integrated catchment management in the Limpopo River Basin Phase 1: Situational assessment J MWENGE KAHINDA, E KAPANGAZIWIRI, FA ENGELBRECHT, R MEISSNER AND PJ ASHTON CSIR Natural Resources and the Environment, PO Box 395, Pretoria, South Africa, 0001... Email: jmwengekahinda@csir.co.za ? www.csir.co.za BACKGROUND The project aims to promote Integrated Catchment Management approaches in the Limpopo River Basin (Figure 1) in three phases: 1) Situational assessment: develop a sound spatial...

  8. Post conflict water management: learning from the past for recovery planning in the Orontes River basin

    Science.gov (United States)

    Saadé-Sbeih, Myriam; Zwahlen, François; Haj Asaad, Ahmed; Gonzalez, Raoul; Jaubert, Ronald

    2016-10-01

    Water management is a fundamental issue in post-conflict planning in Syria. Based on historical water balance assessment, this study identifies the drivers of the profound changes that took place in the Lebanese and Syrian parts of the Orontes River basin since the 1930s. Both drastic effects of the conflict on the hydro-system and the strong uncontrolled anthropization of the river basin prior to the crisis have to be considered in the design of recovery interventions.

  9. Hypothesis of historical effects from selenium on endangered fish in the Colorado River basin

    Science.gov (United States)

    Hamilton, S.J.

    1999-01-01

    Anthropogenic selenium contamination of aquatic ecosystems was first associated with cooling reservoirs of coal-fired power plants in the late 1970s, and later with drainage water from agricultural irrigation activities in the 1980s. In the 1990s, selenium contamination has been raised as a concern in the recovery of currently endangered fish in the Colorado River system. Widespread contamination from seleniferous drain waters from agriculture has been documented in the upper and lower Colorado River basins. Historically, irrigation started in the upper Colorado River basin in the late 1880s. In the 1930s, selenium concentrations in various drains, tributaries, and major rivers in the upper and lower Colorado River basins were in the 100s and 1000s of ??g/L. Native fish inhabiting large rivers such as the Colorado pikeminnow and razorback sucker were abundant before 1890, but became rare after 1910 to 1920, before the influence of mainstem reservoirs in the upper and lower Colorado River. A hypothesis is presented that selenium contamination of the tributaries and major rivers of the Colorado River basin in the 1890 to 1910 period caused the decline of the endangered fish and continues to inhibit their recovery. ?? 1999 by ASP.

  10. Assessing Future Hydrological Changes in the Tana River Basin, Kenya

    Science.gov (United States)

    Jenkins, Rhosanna

    2017-04-01

    Changes in precipitation will be one of the most significant factors in determining the overall impact of global climate change but are also one of the most uncertain and difficult to project. The reliability of global climate models (GCMs) for predicting changes in rainfall is particularly concerning for East Africa. This research focuses on Kenya's Tana River Basin and aims to project the impacts of climate change upon the hydrology in order to inform national climate change adaptation plans. The Tana basin has been identified as crucial for Kenya's development, with increased irrigated agriculture and additional dams planned. The area is also important for biodiversity and contains already-threatened ecosystems and endemic species. Kenya is already a water-scarce country and demand for water is expected to increase in the future as the country develops. Therefore, examining changes to precipitation with climate change is vital. The WaterWorld Policy Support System (http://www.policysupport.org/waterworld), a physically-based hydrological model, has been used to determine annual and monthly changes in hydrology. WaterWorld utilises the WorldClim (Hijmans et al., 2005) climate projections for the latest generation of climate models from the Coupled Model Intercomparison Project, phase 5 (CMIP5) to characterise the temperature and precipitation changes. In order to better understand the high uncertainties in projections of climate change, the full range of latest emissions scenarios (the representative concentration pathways or RCPs) were used to force the WaterWorld model. The WorldClim baseline values were evaluated by comparing them to observations and were found to correctly represent the annual cycle of precipitation. In addition, the CRU TS3.22 data (Harris et al., 2014) have also been examined and provide a valuable comparison to the WorldClim dataset. These simulations encompass a broad range of climate projections, but show a general trend towards

  11. Review and analysis of existing Alberta data on drinking water quality and treatment facilities for the Northern River basins study. Northern River Basins Study project report No. 55

    Energy Technology Data Exchange (ETDEWEB)

    Prince, D.S.; Smith, D.W.; Stanley, S.J.

    1995-12-31

    This report summarizes the results of a project conducted to gather existing information about drinking water quality, drinking water facilities, and water treatment effectiveness in the area covered by the Northern River Basins Study (Peace, Slave, and Athabasca River basins in northern Alberta). The report includes a comparison of water treatment performance to the Canada Drinking Water Quality Guidelines. The appendices contain summaries of parameters in the treated water survey, of the comparisons between raw and treated water, and of samples not meeting the Guidelines, as well as an inventory of treatment facilities giving facility name and location, water source, community population, treatment method used, raw storage capacity, and treated volumes.

  12. Drought forecasting in Luanhe River basin involving climatic indices

    Science.gov (United States)

    Ren, Weinan; Wang, Yixuan; Li, Jianzhu; Feng, Ping; Smith, Ronald J.

    2016-09-01

    Drought is regarded as one of the most severe natural disasters globally. This is especially the case in Tianjin City, Northern China, where drought can affect economic development and people's livelihoods. Drought forecasting, the basis of drought management, is an important mitigation strategy. In this paper, we evolve a probabilistic forecasting model, which forecasts transition probabilities from a current Standardized Precipitation Index (SPI) value to a future SPI class, based on conditional distribution of multivariate normal distribution to involve two large-scale climatic indices at the same time, and apply the forecasting model to 26 rain gauges in the Luanhe River basin in North China. The establishment of the model and the derivation of the SPI are based on the hypothesis of aggregated monthly precipitation that is normally distributed. Pearson correlation and Shapiro-Wilk normality tests are used to select appropriate SPI time scale and large-scale climatic indices. Findings indicated that longer-term aggregated monthly precipitation, in general, was more likely to be considered normally distributed and forecasting models should be applied to each gauge, respectively, rather than to the whole basin. Taking Liying Gauge as an example, we illustrate the impact of the SPI time scale and lead time on transition probabilities. Then, the controlled climatic indices of every gauge are selected by Pearson correlation test and the multivariate normality of SPI, corresponding climatic indices for current month and SPI 1, 2, and 3 months later are demonstrated using Shapiro-Wilk normality test. Subsequently, we illustrate the impact of large-scale oceanic-atmospheric circulation patterns on transition probabilities. Finally, we use a score method to evaluate and compare the performance of the three forecasting models and compare them with two traditional models which forecast transition probabilities from a current to a future SPI class. The results show that the

  13. Long-term accumulation and transport of anthropogenic phosphorus in three river basins

    Science.gov (United States)

    Powers, Stephen M.; Bruulsema, Thomas W.; Burt, Tim P.; Chan, Neng Iong; Elser, James J.; Haygarth, Philip M.; Howden, Nicholas J. K.; Jarvie, Helen P.; Lyu, Yang; Peterson, Heidi M.; Sharpley, Andrew N.; Shen, Jianbo; Worrall, Fred; Zhang, Fusuo

    2016-05-01

    Global food production depends on phosphorus. Phosphorus is broadly applied as fertilizer, but excess phosphorus contributes to eutrophication of surface water bodies and coastal ecosystems. Here we present an analysis of phosphorus fluxes in three large river basins, including published data on fertilizer, harvested crops, sewage, food waste and river fluxes. Our analyses reveal that the magnitude of phosphorus accumulation has varied greatly over the past 30-70 years in mixed agricultural-urban landscapes of the Thames Basin, UK, the Yangtze Basin, China, and the rural Maumee Basin, USA. Fluxes of phosphorus in fertilizer, harvested crops, food waste and sewage dominate over the river fluxes. Since the late 1990s, net exports from the Thames and Maumee Basins have exceeded inputs, suggesting net mobilization of the phosphorus pool accumulated in earlier decades. In contrast, the Yangtze Basin has consistently accumulated phosphorus since 1980. Infrastructure modifications such as sewage treatment and dams may explain more recent declines in total phosphorus fluxes from the Thames and Yangtze Rivers. We conclude that human-dominated river basins may undergo a prolonged but finite accumulation phase when phosphorus inputs exceed agricultural demand, and this accumulated phosphorus may continue to mobilize long after inputs decline.

  14. Morpho-structure and sedimentology of the Holocene Ebro prodelta mud belt (northwestern Mediterranean Sea)

    Science.gov (United States)

    Diaz, J.I.; Palanques, A.; Nelson, C.H.; Guillen, J.

    1996-01-01

    The Ebro "mud belt" is a Holocene prodeltaic deposit which has developed around, and southwestward from, the present Ebro Delta plain, covering most of the inner and middle Ebro continental shelf. Seismic-reflection profiles of this mud belt exhibit a complex sigmoid-oblique configuration. Top-set strata dip gently seaward to the 20 m isobath, and overly the fore-set beds which are exposed in up to 40-60 m water depth. Top-set and fore-set beds have mostly parallel and high continuity reflectors. Thin, acoustically transparent bottom-set beds are present at the base of the fore-set beds and extend to the distal edge of the prodelta (60-80 m water depth), where they overly relict transgressive sand deposits. There is no evidence of mass movement. The suspended load discharged by the river is mainly transported alongshelf by advective processes. This dynamics produces thin clinoform deposits that extend alongshelf for tens of kilometres. Mud belt deposition began about 10,000-11,000 years BP. Accumulation rate ranges from less than 0.5 mm y-1 on the seaward and southern edges of the deposit to about 2.5 mm y-1 near the present river mouth. Copyright ?? 1995 Elsevier Science Ltd. All rights reserved.

  15. A dynamic analysis of water footprint of Jinghe River basin

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Water footprint in a region is defined as the volume of water needed for the production of goods and services consumed by the local people. Ecosystem services are a kind of important services, so ecological water use is one necessary component in water footprint. Water footprint is divided into green water footprint and blue water footprint but the former one is often ignored. In this paper water footprint includes blue water needed by agricultural irrigation, industrial and domestic water demand, and green water needed by crops, economic forests, livestock products, forestlands and grasslands. The study calculates the footprint of the Jinghe River basin in 1990,1995, 2000 and 2005 with quarto methods. Results of research show that water footprints reached 164.1 × 108m3, 175.69×108m3 and 178.45×108m3 respectively in 1990, 1995 and 2000 including that of ecological water use, but reached 77.68×108m3, 94.24×108m3, 92.92×108m3 and 111.36×108m3 respectively excluding that of ecological water use. Green water footprint is much more than blue water footprint: thereby, green water plays an important role in economic development and ecological construction. The dynamic change of water footprints stows that blue water use increases rapidly and that the ecological water use is occupied by economic and domestic water use. The change also shows that water use is transferred from primary industry to secondary industry. In primary industry, it is transferred from crops farming to forestry and animal agriculture. The factors impelling the change include development anticipation on economy, government policies, readjustment of the industrial structure, population growth, the raise of urbanization level, and structural change of consumption, low level of water-saving and poor ability of waste water treatment. With blue water use per unit, green water use per unit, blue water use structure and green water use structure, we analyzed the difference of the six ecological

  16. A new species of Hyphessobrycon (Characiformes, Characidae) from the upper Guaviare River, Orinoco River Basin, Colombia

    Science.gov (United States)

    García-Alzate, Carlos A.; Urbano-Bonilla, Alexander; Taphorn, Donald C.

    2017-01-01

    Abstract Hyphessobrycon klausanni sp. n. is described from small drainages of the upper Guaviare River (Orinoco River Basin) in Colombia. It differs from all congeners by having a wide, conspicuous, dark lateral stripe extending from the anterior margin of the eye across the body and continued through the middle caudal-fin rays, and that covers (vertically) three or four horizontal scale rows. It also differs by having an orange-yellow stripe extending from the anterosuperior margin of the eye to the caudal peduncle above the lateral line in life. It differs from all other species of Hyphessobrycon that have a similar dark lateral stripe: H. cyanotaenia, H. loretoensis, H. melanostichos, H. nigricinctus, H. herbertaxelrodi, H. eschwartzae, H. montogoi, H. psittacus, H. metae, H. margitae, H. vanzolinii, and H. peruvianus in having only three or four pored scales in the lateral line, 21 to 24 lateral scales and six teeth in the inner premaxillary row. Hyphessobrycon klausanni differs from H. loretoensis in having seven to eight maxillary teeth (vs. three to four) and in having a longer caudal peduncle (12.4–17.0% SL vs. 4.6–8.0% SL). Additionally Hyphessobrycon klausanni can be distinguished from the other species of Hyphessobrycon with a dark lateral stripe from the Orinoco River Basin (H. metae and H. acaciae) in having two teeth in the outer premaxillary row (vs. three to four) and 10 branched pectoral–fin rays (vs. 11 to 12). It further differs from H. metae by the length of the snout (17.6–22.8% HL vs. 9.9–15.2% HL) and by the length of the caudal peduncle (12.4–17.0% SL vs. 7.3–11.8% SL). PMID:28769647

  17. A new species of Hyphessobrycon (Characiformes, Characidae) from the upper Guaviare River, Orinoco River Basin, Colombia.

    Science.gov (United States)

    García-Alzate, Carlos A; Urbano-Bonilla, Alexander; Taphorn, Donald C

    2017-01-01

    Hyphessobrycon klausannisp. n. is described from small drainages of the upper Guaviare River (Orinoco River Basin) in Colombia. It differs from all congeners by having a wide, conspicuous, dark lateral stripe extending from the anterior margin of the eye across the body and continued through the middle caudal-fin rays, and that covers (vertically) three or four horizontal scale rows. It also differs by having an orange-yellow stripe extending from the anterosuperior margin of the eye to the caudal peduncle above the lateral line in life. It differs from all other species of Hyphessobrycon that have a similar dark lateral stripe: H. cyanotaenia, H. loretoensis, H. melanostichos, H. nigricinctus, H. herbertaxelrodi, H. eschwartzae, H. montogoi, H. psittacus, H. metae, H. margitae, H. vanzolinii, and H. peruvianus in having only three or four pored scales in the lateral line, 21 to 24 lateral scales and six teeth in the inner premaxillary row. Hyphessobrycon klausanni differs from H. loretoensis in having seven to eight maxillary teeth (vs. three to four) and in having a longer caudal peduncle (12.4-17.0% SL vs. 4.6-8.0% SL). Additionally Hyphessobrycon klausanni can be distinguished from the other species of Hyphessobrycon with a dark lateral stripe from the Orinoco River Basin (H. metae and H. acaciae) in having two teeth in the outer premaxillary row (vs. three to four) and 10 branched pectoral-fin rays (vs. 11 to 12). It further differs from H. metae by the length of the snout (17.6-22.8% HL vs. 9.9-15.2% HL) and by the length of the caudal peduncle (12.4-17.0% SL vs. 7.3-11.8% SL).

  18. Human-induced erosion and sedimentation during the Holocene in the central Ebro depression, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Constante, A.; Pena-Monne, J. L.

    2009-07-01

    Small secondary valleys in the Central Ebro Depression in northeast Spain have tended to be infield with sediment, and record a complex sequence of accumulations and incisions of Holocebe age. Level N3, the main accumulation level based on extent and depth, is characterized by a long period of sedimentation (from the Late Epipaleolithic to the end of the Late Roman period), the dominance of gypsiferous silt resulting from hill slope erosion, and a thickness up to 15 m. This deposit does not connect directly to the fluvial terraces of the Ebro River, and it accumulated over a long period of climate fluctuations. Thus, its evolution appears to have been largely independent of climate variability, but is closely related to human activities (deforestation, forest fires, farming development), particularly those associated with the main human settlements. (Author) 8 refs.

  19. Water-Energy-Food Nexus in Large Asian River Basins

    Directory of Open Access Journals (Sweden)

    Marko Keskinen

    2016-10-01

    Full Text Available The water-energy-food nexus (“nexus” is promoted as an approach to look at the linkages between water, energy and food. The articles of Water’s Special Issue “Water-Energy-Food Nexus in Large Asian River Basins” look at the applicability of the nexus approach in different regions and rivers basins in Asia. The articles provide practical examples of the various roles and importance of water-energy-food linkages, but also discuss the theoretical aspects related to the nexus. While it is evident that any application of the nexus must be case-specific, some general lessons can be learnt as well. Firstly, there are a variety of interpretations for the nexus. These include three complementary perspectives that see nexus as an analytical approach, governance framework and emerging discourse. Secondly, nexus is—despite its name—a predominantly water-sector driven and water-centered concept. While this brings some benefits by, e.g., setting systemic boundaries, it is also the nexus’ biggest challenge: If the nexus is not able to ensure buy-in from food and energy sector actors, its added value will stay limited. Ultimately, however, what really matters is not the approach itself but the processes it helps to establish and outcomes it helps to create. Through its focus on water-energy-food linkages—rather than on those themes separately—the nexus is well positioned to help us to take a more systemic view on water, energy and food and, hence, to advance sustainable development.

  20. Radon Concentration in the Cataniapo-Autana River Basin, Amazonas State, Venezuela

    Science.gov (United States)

    Sajo-Bohus, L.; Greaves, E. D.; Alvarez, H.; Liendo, J.; Vásquez, G.

    2007-10-01

    Radon activity concentration is measured in rivers of the Autana-Cataniapo hydrologic basin. The region experiments mining and it is forecasted that the basin will be perturbed. Radon activity monitoring is one of the methods to measure environmental changes. Values of radon concentration in water range between 0.4 and 30 Bq L-1.

  1. OVERVIEW OF THE MARK TWAIN LAKE/SALT RIVER BASIN CONSERVATION EFFECTS ASSESSMENT PROJECT

    Science.gov (United States)

    The Mark Twain Lake/Salt River Basin was selected as one of 12 USDA-Agricultural Research Service benchmark watersheds for the Conservation Effects Assessment Project (CEAP) because of documented soil and water quality problems and broad stakeholder interest. The basin is located in northeastern Mis...

  2. Response surfaces of vulnerability to climate change: The Colorado River Basin, the High Plains, and California

    Science.gov (United States)

    Romano Foti; Jorge A. Ramirez; Thomas C. Brown

    2014-01-01

    We quantify the vulnerability of water supply to shortage for the Colorado River Basin and basins of the High Plains and California and assess the sensitivity of their water supply system to future changes in the statistical variability of supply and demand. We do so for current conditions and future socio-economic scenarios within a probabilistic framework that...

  3. Degradation and damages from utilizing ecosystem services in a river basin

    Science.gov (United States)

    Travis W. Warziniack

    2012-01-01

    We examine the tradeoffs between utilizing multiple ecosystem services in an economic model of the Lower Mississippi-Atchafalaya River Basin. We show how economic development in the basin degraded the ecosystem, but diversified the economy. A degraded ecosystem and more employment opportunities elsewhere reduced the region's reliance on agriculture and other...

  4. An Ecologic Characterization and Landscape Assessment of the Humboldt River Basin

    Science.gov (United States)

    The Humboldt River Basin covers a large part of northern Nevada. Very little is known about the water quality of the entire Basin. The people living in this area depend on clean water. Not knowing about water quality is a concern because people will need to manage the negative...

  5. Dynamics of dissolved inorganic carbon and aquatic metabolism in the Tana River basin, Kenya

    NARCIS (Netherlands)

    Tamooh, F.; Borges, A.V.; Meysman, F.J.R.; Van Den Meersche, K.; Dehairs, F.; Merckx, R.; Bouillon, S.

    2013-01-01

    A basin-wide study was conducted in the Tana River basin (Kenya) in February 2008 (dry season), September–November 2009 (wet season) and June–July 2010 (end of the wet season) to assess the dynamics and sources of dissolved inorganic carbon (DIC) as well as to quantify CO2 fluxes, community respirat

  6. Hydrologic sensitivity of Indian sub-continental river basins to climate change

    Science.gov (United States)

    Mishra, Vimal; Lilhare, Rajtantra

    2016-04-01

    Climate change may pose profound implications for hydrologic processes in Indian sub-continental river basins. Using downscaled and bias corrected future climate projections and the Soil Water Assessment Tool (SWAT), we show that a majority of the Indian sub-continental river basins are projected to shift towards warmer and wetter climate in the future. During the monsoon (June to September) season, under the representative concentration pathways (RCP) 4.5 (8.5), the ensemble mean air temperature is projected to increase by more than 0.5 (0.8), 1.0 (2.0), and 1.5 (3.5) °C in the Near (2010-2039), Mid (2040-2069), and End (2070-2099) term climate, respectively. Moreover, the sub-continental river basins may face an increase of 3-5 °C in the post-monsoon season under the projected future climate. While there is a large intermodel uncertainty, robust increases in precipitation are projected in many sub-continental river basins under the projected future climate especially in the Mid and End term climate. A sensitivity analysis for the Ganges and Godavari river basins shows that surface runoff is more sensitive to change in precipitation and temperature than that of evapotranspiration (ET). An intensification of the hydrologic cycle in the Indian sub-continental basins is evident in the projected future climate. For instance, for Mid and End term climate, ET is projected to increase up to 10% for the majority of the river basins under both RCP 4.5 and 8.5 scenarios. During the monsoon season, ensemble mean surface runoff is projected to increase more than 40% in 11 (15) basins under the RCP 4.5 (8.5) scenarios by the end of the 21st century. Moreover, streamflow is projected to increase more than 40% in 8 (9) basins during the monsoon season under the RCP 4.5 (8.5) scenarios. Results show that water availability in the sub-continental river basins is more sensitive towards changes in the monsoon season precipitation rather than air temperature. While in the majority

  7. Dissolved-oxygen and algal conditions in selected locations of the Willamette River basin, Oregon

    Science.gov (United States)

    Rinella, F.A.; McKenzie, S.W.; Wille, S.A.

    1981-01-01

    During July and August 1978, the U.S. Geological Survey, in cooperation with the Oregon Department of Enviromental Quality, made three intensive river-quality dissolved-oxygen studies in the upper Willamette River basin. Two studies were made on the upper Willamette River and one was made on the Santiam River, a Willamette River tributary. Nitrification, occurring in both the upper Willamette and South Santiam Rivers, accounted for about 62% and 92% of the DO sag in the rivers, respectively. Rates of nitrification were found to be dependent on ammonia concentrations in the rivers. Periphyton and phytoplankton algal samples were collected on the main stem Willamette River and selected tributaries during August 1978. Diatoms were the dominant group in both the periphyton and phytoplankton samples. The most common diatom genera were Melosira, Stephanodiscus, Cymbella, Achnanthes, and Nitzschia. Comparisons with historical data indicate no significant difference from previous years in the total abundance or diversity of the algae. (USGS)

  8. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon

    Science.gov (United States)

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.

    2015-01-01

    This study provides information on channel and flood-plain processes and historical trends to guide effective restoration and monitoring strategies for the Sprague River Basin, a primary tributary (via the lower Williamson River) of Upper Klamath Lake, Oregon. The study area covered the lower, alluvial segments of the Sprague River system, including the lower parts of the Sycan River, North Fork Sprague River, South Fork Sprague River, and the entire main-stem Sprague River between the confluence of the North Fork Sprague and the South Fork Sprague Rivers and its confluence with the Williamson River at Chiloquin, Oregon. The study included mapping and stratigraphic analysis of flood-plain deposits and flanking features; evaluation of historical records, maps and photographs; mapping and analysis of flood-plain and channel characteristics (including morphologic and vegetation conditions); and a 2006 survey of depositional features left by high flows during the winter and spring of 2005–06.

  9. Hydrogeochemical and isotopic investigations of the Han River basin, South Korea

    Science.gov (United States)

    Ryu, Jong-Sik; Lee, Kwang-Sik; Chang, Ho-Wan

    2007-10-01

    SummaryThe Han River, the largest river in South Korea draining approximately 26,000 km 2, comprises two major tributaries: the North and the South Han Rivers. Seasonal and spatial variations in the major ion chemistry and isotope compositions of the Han River were monitored for one year at 14-23 locations, covering about 80% of the entire drainage basin. Compared to the South Han River (SHR), the North Han River (NHR) was much lower in total dissolved solids (TDS), Sr, and major ion concentrations, but higher in Si concentration, δ 34S SO 4 values, and 87Sr/ 86Sr ratios. These observations suggest strong influence of prevailing rock types in the drainage basins on the chemical and isotopic compositions of the river waters. These are silicate rocks in the NHR basin and carbonate rocks in the SHR basin. The headwaters of the NHR basin, where several flood control dams have been constructed, show enrichment in deuterium and oxygen-18, indicating evaporative loss. The δ 34S SO 4 data suggest dissolved sulfates in the NHR and SHR are mostly derived from atmospheric deposition, and variable mixtures of atmospheric deposition and sulfide oxidation, respectively. The 87Sr/ 86Sr ratios are much higher in the NHR (0.71793-0.72722) than in the SHR (0.71495-0.71785) with one exception, indicating weathering of Precambrian and Mesozoic granitic rocks and marine carbonates, respectively.

  10. Spatio-temporal distribution of fecal indicators in three rivers of the Haihe River Basin, China.

    Science.gov (United States)

    Wang, Yawei; Chen, Yanan; Zheng, Xiang; Gui, Chengmin; Wei, Yuansong

    2017-04-01

    Because of their significant impact on public health, waterborne pathogens, especially bacteria and viruses, are frequently monitored in surface water to assess microbial quality of water bodies. However, more than one billion people worldwide currently lack access to safe drinking water, and a diversity of waterborne outbreaks caused by pathogens is reported in nations at all levels of economic development. Spatio-temporal distribution of conventional pollutants and five pathogenic microorganisms were discussed for the Haihe River Basin. Land use and socio-economic assessments were coupled with comprehensive water quality monitoring. Physical, chemical, and biological parameters were measured at 20 different sites in the watershed for 1 year, including pH, temperature, conductivity, dissolved oxygen, turbidity, chemical oxygen demand, ammonia-N, total and fecal coliforms, E. coli, and Enterococcus. The results highlighted the high spatio-temporal variability in pathogen distribution at watershed scale: high concentration of somatic coliphages and fecal indicator bacteria in March and December and their very low concentration in June and September. All pathogens were positively correlated to urban/rural residential/industrial land and negatively correlated to other four land use types. Microbial pollution was greatly correlated with population density, urbanization rate, and percentage of the tertiary industry in the gross domestic product. In the future, river microbial risk control strategy should focus more on the effective management of secondary effluent of wastewater treatment plant and land around rivers.

  11. The effects of Thailand's Great Flood of 2011 on river sediment discharge in the upper Chao Phraya River basin, Thailand

    Institute of Scientific and Technical Information of China (English)

    Butsawan Bidorn; Seree Chanyotha; Stephen A. Kish; Joseph F. Donoghue; Komkrit Bidorn; Ruetaitip Mama

    2015-01-01

    Severe flooding that occurred during the 2011 monsoon season in Thailand was the heaviest flooding in the past 50 yr. The rainfall over the northern part of Thailand, especially during July–August 2011, was 150% higher than average. During the flooding period, river flows of the four major Chao Phraya River tributaries (Ping, Wang, Yom, and Nan rivers) increased in the range of 1.4–5 times the average discharge. This study examined the river sediment discharge of the four major rivers in the upper Chao Phraya River basin in Thailand. The four rivers are considered the main sources of sediment supply to the Chao Phraya Estuary. River surveys of the Ping, Wang, Yom, and Nan rivers were carried out in October 2011 (during the Great Flood) and October 2012 (one year after the flood). Survey data included river cross sections, flow velocities, suspended sediment concentrations, and bed load transport in each river. Analyses of these data indicated that total sediment transport rates for the four main rivers during the flooding of 2011 were 2.3–5.6 times higher than the average sediment discharge over 60 yr. The flood of 2011 sig-nificantly affected the sediment characteristics including the proportions of suspended and bed sediment loads in each river though in different ways. The rates of sediment transport per unit discharge for the Ping and Wang rivers dramatically increased during the 2011 flood, but the flooding had minimal effects on the sediment characteristics in the Yom and Nan rivers. The amount of total sediment discharge in each river caused by the 2011 flooding varied between 0.3 and 1.6 Mt. Additionally, the bed load transport in these rivers varied between ? 0%and 26%of the suspended sediment discharge.

  12. Groundwater quality in the Chemung River, Eastern Lake Ontario, and Lower Hudson River Basins, New York, 2013

    Science.gov (United States)

    Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.

    2015-11-10

    In a study conducted by the U.S. Geological Survey (USGS) in cooperation with the New York State Department of Environmental Conservation, water samples were collected from 4 production wells and 4 domestic wells in the Chemung River Basin, 8 production wells and 7 domestic wells in the Eastern Lake Ontario Basin, and 12 production wells and 13 domestic wells in the Lower Hudson River Basin (south of the Federal Lock and Dam at Troy) in New York. All samples were collected in June, July, and August 2013 to characterize groundwater quality in these basins. The samples were collected and processed using standard USGS procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds, radionuclides, and indicator bacteria.

  13. Effects of Crop Growth on Hydrological Pro cesses in River Basins and on Regional Climate in China

    Institute of Scientific and Technical Information of China (English)

    QIN Pei-Hua; CHEN Feng; XIE Zheng-Hui

    2013-01-01

    The regional climate model RegCM3 incorporating the crop model CERES, called the RegCM3−CERES model, was used to study the effects of crop growth and development on regional climate and hydrological processes over seven river basins in China. A 20-year numerical simulation showed that incorporating the crop growth and development processes improved the simulation of precipitation over the Haihe River Basin, Songhua jiang River Basin and Pearl River Basin. When compared with the RegCM3 control run, RegCM3−CERES reduced the negative biases of monthly mean temper-ature over most of the seven basins in summer, especially the Haihe River Basin and Huaihe River Basin. The simulated maximum monthly evapotranspiration for summer (JJA) was around 100 mm in the basins of the Yangtze, Haihe, Huaihe and Pearl Rivers. The seasonal and annual variations of water balance components (runoff, evapotranspiration and to-tal precipitation) over all seven basins indicate that changes of evapotranspiration agree well with total precipitation. Compared to the RegCM3, RegCM3−CERES simulations indicate reduced local water recycling rate over most of the seven basins due to lower evapotranspiration and greater water flux into these basins and an increased precipitation in the Heihe River Basin and Yellow River Basin, but reduced precipitation in the other five basins. Furthermore, a lower summer leaf area index (1.20 m2 m−2), greater root soil moisture (0.01 m3 m−3), lower latent heat flux (1.34 W m−2), and greater sensible heat flux (2.04 W m−2 ) are simulated for the Yangtze River Basin.

  14. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  15. Morphotectonics of the Jamini River basin, Bundelkhand Craton, Central India; using remote sensing and GIS technique

    Science.gov (United States)

    Prakash, K.; Mohanty, T.; Pati, J. K.; Singh, S.; Chaubey, K.

    2016-12-01

    Morphological and morphotectonic analyses have been used to obtain information that influence hydrographic basins, predominantly these are modifications of tectonic elements and the quantitative description of landforms. Discrimination of morphotectonic indices of active tectonics of the Jamini river basin consists the analyses of asymmetry factor, ruggedness number, basin relief, gradient, basin elongation ratio, drainage density analysis, and drainage pattern analysis, which have been completed for each drainage basin using remote sensing and GIS techniques. The Jamini river is one of the major tributaries of the Betwa river in central India. The Jamini river basin is divided into five subwatersheds viz. Jamrar, Onri, Sainam, Shahzad and Baragl subwatershed. The quantitative approach of watershed development of the Jamini river basin, and its four sixth (SW1-SW4) and one fifth (SW5) order subwatersheds, was carried out using Survey of India toposheets (parts of 54I, 54K, 54L, 54O, and 54P), Landsat 7 ETM+, ASTER (GDEM) data, and field data. The Jamini river has low bifurcation index which is a positive marker of tectonic imprint on the hydrographic network. The analyses show that the geomorphological progression of the study area was robustly influenced by tectonics. The analysis demonstrates to extensional tectonics system with the following alignments: NE-SW, NW-SE, NNE-SSW, ENE-WSW, E-W, and N-S. Three major trends are followed by lower order streams viz. NE-SW, NW-SE, and E-W directions which advocate that these tectonic trends were active at least up to the Late Pleistocene. The assessment of morphotectonic indices may be used to evaluate the control of active faults on the hydrographic system. The analysis points out westward tilting of the drainage basins with strong asymmetry in some reaches, marked elongation ratio of subwatersheds, and lower order streams having close alignment with lineaments (active faults). The study facilitated to considerate the

  16. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  17. Washington Phase II Fish Diversion Screen Evaluations in the Yakima River Basin, 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, S.L.; McMichael, Geoffrey A.; Neitzel, D.A.

    1999-12-01

    Pacific Northwest National Laboratory (PNNL) evaluated 19 Phase II screen sites in the Yakima River Basin as part of a multi-year study for the Bonneville Power Administration (BPA) on the effectiveness of fish screening devices. The sites were examined to determine if they were being effectively operated and maintained to provide fish a safe, efficient return to the Yakima River.

  18. Metagenome Sequencing of Prokaryotic Microbiota Collected from Rivers in the Upper Amazon Basin

    Science.gov (United States)

    Santos-Júnior, Célio Dias; Kishi, Luciano Takeshi; Toyama, Danyelle; Soares-Costa, Andrea; Oliveira, Tereza Cristina Souza; de Miranda, Fernando Pellon

    2017-01-01

    ABSTRACT Tropical freshwater environments, like rivers, are important reservoirs of microbial life. This study employed metagenomic sequencing to survey prokaryotic microbiota in the Solimões, Purus, and Urucu Rivers of the Amazon Basin in Brazil. We report a rich and diverse microbial community. PMID:28082494

  19. Thallium distribution in sediments from the Pearl river basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan [Guangzhou University, Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou (China); Forschungszentrum Dresden-Rossendorf (FZD), Institute of Radiochemistry, Research Site Leipzig, Leipzig (Germany); Wang, Jin; Chen, Yongheng [Guangzhou University, Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou (China); Qi, Jianying [Department of Environmental Science and Engineering, Guangzhou University, Guangzhou (China); Lippold, Holger [Forschungszentrum Dresden-Rossendorf (FZD), Institute of Radiochemistry, Research Site Leipzig, Leipzig (Germany); Wang, Chunlin [Guangdong Provincial Academy of Environmental Science, Guangzhou (China)

    2010-10-15

    Thallium (Tl) is a rare element of high toxicity. Sediments sampled in three representative locations near industries utilizing Tl-containing raw materials from the Pearl River Basin, China were analyzed for their total Tl contents and the Tl contents in four sequentially extracted fractions (i.e., weak acid exchangeable, reducible, oxidizable, and residual fraction). The results reveal that the total Tl contents (1.25-19.1 {mu}g/g) in the studied sediments were slightly high to quite high compared with those in the Chinese background sediments. This indicates the apparent Tl contamination of the investigated sediments. However, with respect to the chemical fractions, Tl is mainly associated with the residual fraction (>60%) of the sediments, especially of those from the mining area of Tl-bearing pyrite minerals, indicating the relatively low mobility, and low bioavailability of Tl in these sediments. This obviously contrasts with the previous findings that Tl is mainly entrapped in the first three labile fractions of the contaminated samples. Possible reasons were given for the dominating association of Tl with the residual fraction (>95%) of the mining area sediments. The significant role of certain K-containing silicates or minerals of these sediments on retaining Tl in the residual fraction, discovered by this study, provides a special field of research opportunity for the Tl-containing wastewater treatment. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Precipitation variability assessment of northeast China: Songhua River basin

    Indian Academy of Sciences (India)

    Muhammad Imran Khan; Dong Liu; Qiang Fu; Muhammad Azmat; Mingjie Luo; Yuxiang Hu; Yongjia Zhang; Faiz M Abrar

    2016-07-01

    Variability in precipitation is critical for the management of water resources. In this study, the researchentropy base concept was applied to investigate spatial and temporal variability of the precipitationduring 1964–2013 in the Songhua River basin of Heilongjiang Province in China. Sample entropy wasapplied on precipitation data on a monthly, seasonally, annually, decade scale and the number of rainydays for each selected station. Intensity entropy and apportionment entropy were used to calculate thevariability over individual year and decade, respectively. Subsequently, Spearman’s Rho and Mann–Kendall tests were applied to observe for trends in the precipitation time series. The statistics of sampledisorder index showed that the precipitation during February (mean 1.09, max. 1.26 and min. 0.80),April (mean 1.12, max. 1.29 and min. 0.99) and July (mean 1.10, max. 1.20 and min. 0.98) contributedsignificantly higher than those of other months. Overall, the contribution of the winter season wasconsiderably high with a standard deviation of 0.10. The precipitation variability on decade basis wasobserved to increase from decade 1964–1973 and 1994–2003 with a mean value of decadal apportionmentdisorder index 0.023 and 0.053, respectively. In addition, the Mann–Kendall test value (1.90) showed asignificant positive trend only at the Shangzhi station.

  1. Biodegradation of carbofuran in soils within Nzoia River Basin, Kenya.

    Science.gov (United States)

    Onunga, Daniel O; Kowino, Isaac O; Ngigi, Anastasiah N; Osogo, Aggrey; Orata, Francis; Getenga, Zachary M; Were, Hassan

    2015-01-01

    Carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) has been used within the Nzoia River Basin (NRB), especially in Bunyala Rice Irrigation Schemes, in Kenya for the control of pests. In this study, the capacity of native bacteria to degrade carbofuran in soils from NRB was investigated. A gram positive, rod-shaped bacteria capable of degrading carbofuran was isolated through liquid cultures with carbofuran as the only carbon and nitrogen source. The isolate degraded 98% of 100-μg mL(-1) carbofuran within 10 days with the formation of carbofuran phenol as the only detectable metabolite. The degradation of carbofuran was followed by measuring its residues in liquid cultures using high performance liquid chromatography (HPLC). Physical and morphological characteristics as well as molecular characterization confirmed the bacterial isolate to be a member of Bacillus species. The results indicate that this strain of Bacillus sp. could be considered as Bacillus cereus or Bacillus thuringiensis with a bootstrap value of 100% similar to the 16S rRNA gene sequences. The biodegradation capability of the native strains in this study indicates that they have great potential for application in bioremediation of carbofuran-contaminated soil sites.

  2. RAINFALL ANALYSIS IN KLANG RIVER BASIN USING CONTINUOUS WAVELET TRANSFORM

    Directory of Open Access Journals (Sweden)

    Celso A. G. Santos

    2016-01-01

    Full Text Available The rainfall characteristics within Klang River basin is analyzed by the continuous wavelet transform using monthly rainfall data (1997–2009 from a raingauge and also using daily rainfall data (1998–2013 from the Tropical Rainfall Measuring Mission (TRMM. The wavelet power spectrum showed that some frequency components were presented within the rainfall time series, but the observed time series is short to provide accurate information, thus the daily TRMM rainfall data were used. In such analysis, two main frequency components, i.e., 6 and 12 months, showed to be present during the entire period of 16 years. Such semiannual and annual frequencies were confirmed by the global wavelet power spectra. Finally, the modulation in the 8–16-month and 256– 512-day bands were examined by an average of all scales between 8 and 16 months, and 256 and 512 days, respectively, giving a measure of the average monthly/daily variance versus time, where the periods with low or high variance could be identified.

  3. Sinos River Hydrographic Basin: urban occupation, industrialization and environmental memory.

    Science.gov (United States)

    Nunes, M F; Figueiredo, J A S; Rocha, A L C

    2015-12-01

    This article presents an analysis of the process of industrialization and urbanization of the Sinos Valley in Rio Grande do Sul state, Brazil, starting from the establishment of leather goods and footwear manufacturing in the region during the 19th century when tanneries and factories producing footwear and/or components for footwear began to appear, and with special attention to aspects related to the environmental impact on the Sinos river hydrographic basin. The article is based on both bibliographic and documentary research and also draws on biographical narratives of workers with links to the leather goods and footwear industry obtained using ethnographic method. It was found that contemporary environmental conflicts emerge from within a memory of work and an environmental memory in which the factories, the unplanned urbanization, and the utilization of water and other natural resources form a chain of significance. Significance that precludes any form of fragmented analysis that isolates any of these aspects from the others: the economic, socio-historic, cultural, political, or the environmental.

  4. Sinos River Hydrographic Basin: urban occupation, industrialization and environmental memory

    Directory of Open Access Journals (Sweden)

    M. F. Nunes

    Full Text Available This article presents an analysis of the process of industrialization and urbanization of the Sinos Valley in Rio Grande do Sul state, Brazil, starting from the establishment of leather goods and footwear manufacturing in the region during the 19th century when tanneries and factories producing footwear and/or components for footwear began to appear, and with special attention to aspects related to the environmental impact on the Sinos river hydrographic basin. The article is based on both bibliographic and documentary research and also draws on biographical narratives of workers with links to the leather goods and footwear industry obtained using ethnographic method. It was found that contemporary environmental conflicts emerge from within a memory of work and an environmental memory in which the factories, the unplanned urbanization, and the utilization of water and other natural resources form a chain of significance. Significance that precludes any form of fragmented analysis that isolates any of these aspects from the others: the economic, socio-historic, cultural, political, or the environmental.

  5. Digital soil map of the Ussuri River basin

    Science.gov (United States)

    Bugaets, A. N.; Pschenichnikova, N. F.; Tereshkina, A. A.; Krasnopeev, S. M.; Gartsman, B. I.; Golodnaya, O. M.; Oznobikhin, V. I.

    2017-08-01

    On the basis of digital soil, topographic, and geological maps; raster topography model; forestry materials; and literature data, the digital soil map of the Ussuri River basin (24400 km2) was created on a scale of 1: 100000. To digitize the initial paper-based maps and analyze the results, an ESRI ArcGIS Desktop (ArcEditor) v.10.1 (http://www.esri.com) and an open-code SAGA GIS v.2.3 (System for Automated Geoscientific Analyses, http://www.saga-gis.org) were used. The spatial distribution of soil areas on the obtained digital soil map is in agreement with modern cartographic data and the SRTM digital elevation model (SRTM DEM). The regional soil classification developed by G.I. Ivanov was used in the legend to the soil map. The names of soil units were also correlated with the names suggested in the modern Russian soil classification system. The major soil units on the map are at the soil subtypes that reflect the entire vertical spectrum of soils in the south of the Far East of Russia (Primorye region). These are mountainous tundra soils, podzolic soils, brown taiga soils, mountainous brown forest soils, bleached brown soils, meadow-brown soils, meadow gley soils, and floodplain soils). With the help of the spatial analysis function of GIS, the comparison of the particular characteristics of the soil cover with numerical characteristics of the topography, geological composition of catchments, and vegetation cover was performed.

  6. Early Norian flora from Partizansk River Basin of Primorye, Russia

    Institute of Scientific and Technical Information of China (English)

    Elena B Volynets; Svetlana A Schorokhova; Ge Sun

    2006-01-01

    An early Norian flora from the Partizansk River Basin of Primorye, Far-East of Russia, is described in detail for the first time, in which over 25 taxa are reported. The flora is dominated by cycadoalean, bennettitalean and coniferous plants, associated with a lot of ferns and czekanowskialean plants, and with a few ginkgoalean. In floristic characteristics, the flora can be well comparable with Late Triassic Mongugai flora of southwestern Primorye and its neighboring Tianqiaoling flora of eastern Jilin, China, as well with the Yamanoi and Nariwa floras from southwestern Japan. As the plant-bearing strata are sandwiched in the lower Norian marine beds yielding marine fauna, the age of the Partizansk flora is well evidenced as the early Norian. Paleophytogeographically, the flora appears to be in the ecotone of the Medio-Triassic and Arcto-Triassic floristic regions in Eurasia, and indicates probably warm temperate or subtropic vegetation in nature. Four new species are reported in this paper, including Ctenis elegantus sp. nov, Ixostrobus pacificus sp. nov., Elatocladus elegantus sp. nov. and E. prynadae sp. nov.

  7. Precipitation variability assessment of northeast China: Songhua River basin

    Science.gov (United States)

    Khan, Muhammad Imran; Liu, Dong; Fu, Qiang; Azmat, Muhammad; Luo, Mingjie; Hu, Yuxiang; Zhang, Yongjia; Abrar, Faiz M.

    2016-07-01

    Variability in precipitation is critical for the management of water resources. In this study, the research entropy base concept was applied to investigate spatial and temporal variability of the precipitation during 1964-2013 in the Songhua River basin of Heilongjiang Province in China. Sample entropy was applied on precipitation data on a monthly, seasonally, annually, decade scale and the number of rainy days for each selected station. Intensity entropy and apportionment entropy were used to calculate the variability over individual year and decade, respectively. Subsequently, Spearman's Rho and Mann-Kendall tests were applied to observe for trends in the precipitation time series. The statistics of sample disorder index showed that the precipitation during February (mean 1.09, max. 1.26 and min. 0.80), April (mean 1.12, max. 1.29 and min. 0.99) and July (mean 1.10, max. 1.20 and min. 0.98) contributed significantly higher than those of other months. Overall, the contribution of the winter season was considerably high with a standard deviation of 0.10. The precipitation variability on decade basis was observed to increase from decade 1964-1973 and 1994-2003 with a mean value of decadal apportionment disorder index 0.023 and 0.053, respectively. In addition, the Mann-Kendall test value (1.90) showed a significant positive trend only at the Shangzhi station.

  8. Elements for an integrated resource planning in the framework of river basins: a study for the Cuiaba River Basin; Elementos para um planejamento integrado de recursos no ambito de bacias hidrograficas: um estudo para a bacia do rio Cuiaba

    Energy Technology Data Exchange (ETDEWEB)

    Dorileo, Ivo Leandro; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico. Dept. de Energia], e-mail: ildorileo@sigmanet.com.br, e-mail: bajay@fem.unicamp.br

    2008-07-01

    A new approach in energy planning in Brazil, IRP - Integrated Resources Planning for River Basins, gathers three main determinants of development: water, electricity and piped gas. This paper argues, briefly, the need of this planning, of indicative character, integrated with the River Basin Plans, and it presents a retrospective analysis concerning water, electricity and LPG demands of the economy sectors from Cuiaba River Basin region, priority elements to aid the prospective studies and to carry out process related to the IRP. (author)

  9. Sub-basin scale characterization of climate change vulnerability, impacts and adaptation in an Indian River basin

    NARCIS (Netherlands)

    Bhave, A.; Mishra, A.; Groot, A.M.E.

    2013-01-01

    Knowledge of climate change vulnerability and impacts is a prerequisite for formulating locally relevant climate change adaptation policies. A participatory approach has been used in this study to determine climate change vulnerability, impacts and adaptation aspects for the Kangsabati River basin,

  10. The future of the reservoirs in the Siret River Basin considering the sediment transport of rivers (ROMANIA

    Directory of Open Access Journals (Sweden)

    Petru OLARIU

    2015-02-01

    Full Text Available The Siret River Basin is characterized by an important use of hydro potential, resulted in the number of reservoirs constructed and operational. The cascade power stage of the reservoirs on Bistrita and Siret rivers indicate the anthropic interventions with different purposes (hydro energy, water supply, irrigation etc. in the Siret River Basin. In terms of the capacity in the Siret River Basin there is a dominance of the small capacity reservoirs, which is given by the less than 20 mil m³ volumes. Only two lakes have capacities over 200 mil m³: Izvoru Muntelui on Bistrita River and Siriu on Buzau River. Based on the monitoring of the alluvial flow at the hydrometric stations, from the Siret River Basin, there have been analysed the sediment yield formation and the solid transit dimensions in order to obtain typical values for the geographical areas of this territory. The silting of these reservoirs was monitored by successive topobatimetric measurements performed by the Bureau of Prognosis, Hydrology and Hydrogeology and a compartment within Hidroelectrica S.A. Piatra Neamt Subsidiary. The quantities of the deposited sediments are very impressive. The annual rates range betwee3 000 – 2 000 000 t/year, depending on the size of the hydrographical basin, the capacity of the reservoirs, the liquid flow and many other factors which may influence the upstream transport of sediments. These rates of sedimentation lead to a high degree of silting in the reservoirs. Many of them are silted over 50% of the initial capacity and the others even more. The effects of the silting have an important impact when analysing the effective exploitation of the reservoirs. 

  11. COMPARISON OF THREE MODELS TO PREDICT ANNUAL SEDIMENT YIELD IN CARONI RIVER BASIN, VENEZUELA

    OpenAIRE

    Edilberto Guevara-Pérez; Adriana M. Márquez

    2007-01-01

    Caroní River Basin is located in the south-eastern part of Venezuela; with an area of 92.000 km2, 40% of which belongs to the main affluent, the Paragua River. Caroní basin is the source of 66% of energy of the country. About 85% of the hydro electrical energy is generated in Guri reservoir located in the lower part of the watershed. To take provisions to avoid the reservoir silting it is very important the study of sediment yield of the basin. In this paper result of three empirical sediment...

  12. COMPARISON OF THREE MODELS TO PREDICT ANNUAL SEDIMENT YIELD IN CARONI RIVER BASIN, VENEZUELA

    OpenAIRE

    Edilberto Guevara-Pérez; Adriana M. Márquez

    2007-01-01

    Caroní River Basin is located in the south-eastern part of Venezuela; with an area of 92.000 km², 40% of which belongs to the main affluent, the Paragua River. Caroní basin is the source of 66% of energy of the country. About 85% of the hydro electrical energy is generated in Guri reservoir located in the lower part of the watershed. To take provisions to avoid the reservoir silting it is very important the study of sediment yield of the basin. In this paper result of three empirical sediment...

  13. Groundwater quality in the Delaware and St. Lawrence River Basins, New York, 2010

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2012-01-01

    Water samples were collected from 10 production and domestic wells in the Delaware River Basin in New York and from 20 production and domestic wells in the St. Lawrence River Basin in New York from August through November 2010 to characterize groundwater quality in the basins. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria.

  14. The Role of Cooperation and Information Exchange in Transnational River Basins: the Zambezi River case

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.; Soncini-Sessa, R.

    2012-12-01

    The presence of multiple, institutionally independent but physically interconnected decision-makers is a distinctive features of many water resources systems, especially of transnational river basins. The adoption of a centralized approach to study the optimal operation of these systems, as mostly done in the water resources literature, is conceptually interesting to quantify the best achievable performance, but of little practical impact given the real political and institutional setting. Centralized management indeed assumes a cooperative attitude and full information exchange by the involved parties. However, when decision-makers belong to different countries or institutions, it is very likely that they act considering only their local objectives, producing global externalities that negatively impact on other objectives. In this work we adopt a Multi-Agent Systems framework, which naturally allows to represent a set of self-interested agents (decision-makers and/or stakeholders) acting in a distributed decision-making process. According to this agent-based approach, each agent represents a decision-maker, whose decisions are defined by an explicit optimization problem considering only the agent's local interests. In particular, this work assesses the role of information exchange and increasing level of cooperation among originally non-cooperative agents. The Zambezi River basin is used to illustrate the methodology: the four largest reservoirs in the basin (Ithezhithezhi, Kafue-Gorge, Kariba and Cahora Bassa) are mainly operated for maximizing the economic revenue from hydropower energy production with considerably negative effects on the aquatic ecosystem in the Zambezi delta due to the alteration of the natural flow regime. We comparatively analyse the ideal centralized solution and the current situation where all the decision-makers act independently and non-cooperatively. Indeed, although a new basin-level institution called Zambezi Watercourse Commission

  15. Spatial Misfit in Participatory River Basin Management: Effects on Social Learning, a Comparative Analysis of German and French Case Studies

    Directory of Open Access Journals (Sweden)

    Ilke Borowski

    2008-06-01

    Full Text Available With the introduction of river basin management, as prescribed by the European Water Framework Directive (WFD, participatory structures are frequently introduced at the hydrological scale without fully adapting them to the decision-making structure. This results in parallel structures and spatial misfits within the institutional settings of river basin governance systems. By analyzing French and German case studies, we show how social learning (SL is impeded by such misfits. We also demonstrate that river basin-scale institutions or actors that link parallel structures are essential for promoting river basins as management entities, and for encouraging SL between actors at the river basin scale. In the multi-scale, multi-level settings of river basin governance, it is difficult to fully exclude spatial misfits. Thus, it is important to take our insights into account in the current transition of water management from the administrative to the hydrological scale to get the greatest benefit from SL processes.

  16. Thermal effects of dams in the Willamette River basin, Oregon

    Science.gov (United States)

    Rounds, Stewart A.

    2010-01-01

    where the annual maximum temperature typically occurred in September or October. Without-dam temperatures also tended to have more daily variation than with-dam temperatures. Examination of the without-dam temperature estimates indicated that dam sites could be grouped according to the amount of streamflow derived from high-elevation, spring-fed, and snowmelt-driven areas high in the Cascade Mountains (Cougar, Big Cliff/Detroit, River Mill, and Hills Creek Dams: Group A), as opposed to flow primarily derived from lower-elevation rainfall-driven drainages (Group B). Annual maximum temperatures for Group A ranged from 15 to 20 degree(s)C, expressed as the 7-day average of the daily maximum (7dADM), whereas annual maximum 7dADM temperatures for Group B ranged from 21 to 25 degrees C. Because summertime stream temperature is at least somewhat dependent on the upstream water source, it was important when estimating without-dam temperatures to use correlations to sites with similar upstream characteristics. For that reason, it also is important to maintain long-term, year-round temperature measurement stations at representative sites in each of the Willamette River basin's physiographic regions. Streamflow and temperature estimates downstream of the major dam sites and throughout the Willamette River were generated using existing CE-QUAL-W2 flow and temperature models. These models, originally developed for the Willamette River water-temperature Total Maximum Daily Load process, required only a few modifications to allow them to run under the greatly reduced without-dam flow conditions. Model scenarios both with and without upstream dams were run. Results showed that Willamette River streamflow without upstream dams was reduced to levels much closer to historical pre-dam conditions, with annual minimum streamflows approximately one-half or less of dam-augmented levels. Thermal effects of the dams varied according to the time of year, from cooling in mid-summer to warm

  17. Effects of Flood Control Works Failure in the Missouri River Basin

    Science.gov (United States)

    2014-06-13

    hydrologist with the National Resources Conservation Service; Bill Lawrence, a hydrologist with the National Weather Service; and Darwin Ockerman, a...duration of flooding in the Missouri River basin occurred in Saint Charles , Missouri. The Missouri River at Saint Charles stayed at or above flood...that protect Saint Charles and Saint Louis Counties along the Missouri River as displayed in figure 7. These levees protect over 69,000 acres; most of

  18. Glacial lakes in the Horgos river basin and their outbreak risk assessment

    OpenAIRE

    A. P. Medeu; T. G. Tokmagambetov; A. L. Kokarev; P. A. Plekhanov; N. S. Plekhanova

    2013-01-01

    The river Khorgos (in Kazakhstan – Korgas) is a boundary river between Kazakhstan and China. Its basin is located in the central part of southern slope of Dzhungarskiy (Zhetysu) Alatau range. According to agreement between Kazakhstan and China at the boundary transition of Khorgos in the floodplain of the river Khorgos the large Center of Frontier Cooperation is erected. Estimation of safety of the mentioned object including connection with possible glacial lakes outbursts has the importance ...

  19. 2002 Water-Table Contours of the Mojave River and the Morongo Ground-Water Basins, San Bernardino County, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a...

  20. Spatial and temporal variations in the occurrences of wet periods over major river basins in India

    Indian Academy of Sciences (India)

    N R Deshpande; N Singh

    2010-10-01

    This study highlights the hydro-climatic features of the five wet periods contributing in different percentages to the annual rainfall total over major river basins in India.Spatial and temporal variations in the parameters such as starting date,duration and rainfall intensity of these wet periods throughout India have been discussed using daily gridded rainfall data for the period 1951 –2007.An attempt is also made here,to assess the impact of global SSTs on the start and duration of the wet periods in Indian river basins. It is observed that,for almost all river basins in India,the 10%wet period occurs in the months of July/August with an average duration of 1 –3 days and rainfall intensity varying from 44 to 89 mm/day.The duration of the wet period contributing 90%to the annual rainfall varies from 112 days in the central parts of India to 186 days in the northern parts of the country.Signi ficant increase in the rainfall intensity has been observed in the case of some river basins of central India. The late start of 75%wet period along the West Coast and in peninsular river basins has been observed with increase in Nino 3.4 SSTs (MAM),while increase in the duration of the 75%wet period over the Krishna basin is associated with increase in Nino 3.4 SSTs (concurrent JJAS).

  1. Assessing Management Regimes in Transboundary River Basins: Do They Support Adaptive Management?

    Directory of Open Access Journals (Sweden)

    Eduard Interwies

    2008-06-01

    Full Text Available River basin management is faced with complex problems that are characterized by uncertainty and change. In transboundary river basins, historical, legal, and cultural differences add to the complexity. The literature on adaptive management gives several suggestions for handling this complexity. It recognizes the importance of management regimes as enabling or limiting adaptive management, but there is no comprehensive overview of regime features that support adaptive management. This paper presents such an overview, focused on transboundary river basin management. It inventories the features that have been claimed to be central to effective transboundary river basin management and refines them using adaptive management literature. It then collates these features into a framework describing actor networks, policy processes, information management, and legal and financial aspects. Subsequently, this framework is applied to the Orange and Rhine basins. The paper concludes that the framework provides a consistent and comprehensive perspective on transboundary river basin management regimes, and can be used for assessing their capacity to support adaptive management.

  2. [Forest carbon storage and fuel carbon emission in Tanjiang River basin].

    Science.gov (United States)

    Chen, Zhiliang; Xia, Nianhe; Wu, Zhifeng; Cheng, Jiong; Liu, Ping

    2006-10-01

    The investigation on the forest carbon storage and fuel carbon emission in Tanjiang River basin showed that since 1990, the forests in Tanjiang River basin acted as a carbon sink, and this action was increased with time and with economic development. The net carbon uptake by the forests was 1.0579 x 10 (7) t in 1990 and 1.28061 x 10 (7) t in 2002, with an annual increment of 1.856 x 10(5) t, while the fuel carbon emission was 9. 508 x 10(5) t in 1990 and 1.8562 x 10(6) t in 2002, with an annual increment of 7.0 x 10(4) t. In 2003, the fuel carbon emission was up to 2.1968 x 10(6) t, 3.406 x 105 t more than that in 2002. In 2002, the energy consumption per 10(4) yuan GDP in Tanjiang River basin was 2.21 t standard coal, higher than the average consumption (1.81 t standard coal) in the Pearl River delta. If the fuel consumption decreased to the average level, the carbon emission in Tanjiang River basin would be reduced by 3.360 x 10(5) t, which was higher than the annual increment of forest net carbon uptake in the basin. From the viewpoint of net carbon uptake and emission in a basin, more attention should be paid to the relations between forest carbon sink and human activities.

  3. Hydrological assessment of freshwater resource areas in the Zambezi River Basin

    CSIR Research Space (South Africa)

    Mwenge Kahinda, Jean-Marc

    2012-10-01

    Full Text Available -1 Hydrological assessment of freshwater resource areas in the Zambezi River Basin J MWENGE KAHINDA AND E KAPANGAZIWIRI CSIR, PO Box 395, Pretoria, South Africa, 0001 Email: jmwengekahinda@csir.co.za ? www.csir.co.za INTRODUCTION The Zambezi River Basin (ZRB... of the hydrological assessment of FRAs of the ZRB. It forms part of a scoping study with the objective to ensure that environmental flows are applied in the Zambezi River system. MATERIALS AND METHODS The hydrological identification of key FRAs required a...

  4. Karyotypic variation of Glanidium ribeiroi Haseman, 1911 (Siluriformes, Auchenipteridae) along the Iguazu river basin

    OpenAIRE

    Lui,R. L.; Blanco, D R; Traldi,J. B.; V. P. Margarido; Moreira-Filho,O

    2015-01-01

    Abstract The Iguazu river is a tributary of the left margin of the Paraná river, isolated from this basin about 22 million years ago with the appearance of the Iguazu Falls. The Iguazu river is characterized by high endemism due to two factors: its rugged topography and the old isolation caused by formation of the Iguazu Falls. This study analyzed cytogenetically a population of Glanidium ribeiroi collected in a region at the final stretch of this basin, by Giemsa staining, C-banding, impregn...

  5. Drought and detritivores determine leaf litter decomposition in calcareous streams of the Ebro catchment (Spain).

    Science.gov (United States)

    Monroy, Silvia; Menéndez, Margarita; Basaguren, Ana; Pérez, Javier; Elosegi, Arturo; Pozo, Jesús

    2016-12-15

    Drought, an important environmental factor affecting the functioning of stream ecosystems, is likely to become more prevalent in the Mediterranean region as a consequence of climate change and enhanced water demand. Drought can have profound impacts on leaf litter decomposition, a key ecosystem process in headwater streams, but there is still limited information on its effects at the regional scale. We measured leaf litter decomposition across a gradient of aridity in the Ebro River basin. We deployed coarse- and fine-mesh bags with alder and oak leaves in 11 Mediterranean calcareous streams spanning a range of over 400km, and determined changes in discharge, water quality, leaf-associated macroinvertebrates, leaf quality and decomposition rates. The study streams were subject to different degrees of drought, specific discharge (Ls(-1)km(-2)) ranging from 0.62 to 9.99. One of the streams dried out during the experiment, another one reached residual flow, whereas the rest registered uninterrupted flow but with different degrees of flow variability. Decomposition rates differed among sites, being lowest in the 2 most water-stressed sites, but showed no general correlation with specific discharge. Microbial decomposition rates were not correlated with final nutrient content of litter nor to fungal biomass. Total decomposition rate of alder was positively correlated to the density and biomass of shredders; that of oak was not. Shredder density in alder bags showed a positive relationship with specific discharge during the decomposition experiment. Overall, the results point to a complex pattern of litter decomposition at the regional scale, as drought affects decomposition directly by emersion of bags and indirectly by affecting the functional composition and density of detritivores.

  6. Real-time remote sensing driven river basin modeling using radar altimetry

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Riegels, Niels; Bauer-Gottwein, Peter

    2011-01-01

    and poorly monitored areas and are increasingly used to force, calibrate, and update hydrological models. In this study, we evaluate the potential of informing a river basin model with real-time radar altimetry measurements over reservoirs. We present a lumped, conceptual, river basin water balance modeling...... evapotranspiration was derived from temperature data. The Ensemble Kalman Filter was used to assimilate radar altimetry (ERS2 and Envisat) measurements of reservoir water levels. The modeling approach was applied to the Syr Darya River Basin, a snowmelt-dominated basin with large topographical variability, several...... large reservoirs and scarce hydrometeorological data that is located in Central Asia and shared between 4 countries with conflicting water management interests. The modeling approach was tested over a historical period for which in-situ reservoir water levels were available. Assimilation of radar...

  7. Regional Flood Frequency Analysis in the Volta River Basin, West Africa

    Directory of Open Access Journals (Sweden)

    Kossi Komi

    2016-02-01

    Full Text Available In the Volta River Basin, flooding has been one of the most damaging natural hazards during the last few decades. Therefore, flood frequency estimates are important for disaster risk management. This study aims at improving knowledge of flood frequencies in the Volta River Basin using regional frequency analysis based on L-moments. Hence, three homogeneous groups have been identified based on cluster analysis and a homogeneity test. By using L-moment diagrams and goodness of fit tests, the generalized extreme value and the generalized Pareto distributions are found suitable to yield accurate flood quantiles in the Volta River Basin. Finally, regression models of the mean annual flood with the size of the drainage area, mean basin slope and mean annual rainfall are proposed to enable flood frequency estimation of ungauged sites within the study area.

  8. An Integrated Decision Support System for Water Quality Management of Songhua River Basin

    Science.gov (United States)

    Zhang, Haiping; Yin, Qiuxiao; Chen, Ling

    2010-11-01

    In the Songhua River Basin of China, many water resource and water environment conflicts interact. A Decision Support System (DSS) for the water quality management has been established for the Basin. The System is featured by the incorporation of a numerical water quality model system into a conventional water quality management system which usually consists of geographic information system (GIS), WebGIS technology, database system and network technology. The model system is built based on DHI MIKE software comprising of a basin rainfall-runoff module, a basin pollution load evaluation module, a river hydrodynamic module and a river water quality module. The DSS provides a friendly graphical user interface that enables the rapid and transparent calculation of various water quality management scenarios, and also enables the convenient access and interpretation of the modeling results to assist the decision-making.

  9. Exploration of drought evolution using numerical simulations over the Xijiang (West River) basin in South China

    Science.gov (United States)

    Niu, Jun; Chen, Ji; Sun, Liqun

    2015-07-01

    The knowledge of drought evolution characteristics may aid the decision making process in mitigating drought impacts. This study uses a macro-scale hydrological model, Variable Infiltration Capacity (VIC) model, to simulate terrestrial hydrological processes over the Xijiang (West River) basin in South China. Three drought indices, namely standardized precipitation index (SPI), standardized runoff index (SRI), and soil moisture anomaly index (SMAI), are employed to examine the spatio-temporal and evolution features of drought events. SPI, SRI and SMAI represent meteorological drought, hydrological drought and agricultural drought, respectively. The results reveal that the drought severity depicted by SPI and SRI is similar with increasing timescales; SRI is close to that of SPI in the wet season for the Liu River basin as the high-frequency precipitation is conserved more by runoff; the time lags appear between SPI and SRI due to the delay response of runoff to precipitation variability for the You River basin. The case study in 2010 spring drought further shows that the spatio-temporal evolutions are modulated by the basin-scale topography. There is more consistency between meteorological and hydrological droughts for the fan-like basin with a converged river network. For the west area of the Xijiang basin with the high elevation, the hydrological drought severity is less than meteorological drought during the developing stage. The recovery of hydrological and agricultural droughts is slower than that of meteorological drought for basins with a longer mainstream.

  10. Managing water resources for sustainable development: the case of integrated river basin management in China.

    Science.gov (United States)

    Song, X; Ravesteijn, W; Frostell, B; Wennersten, R

    2010-01-01

    The emerging water crisis in China shows that the current institutional frameworks and policies with regard to water resources management are incapable of achieving an effective and satisfactory situation that includes Integrated River Basin Management (IRBM). This paper analyses this framework and related policies, examines their deficiencies in relation to all water stress problems and explores alternatives focusing on river basins. Water resources management reforms in modern China are reviewed and the main problems involved in transforming the current river management system into an IRBM-based system are analysed. The Huai River basin is used as an example of current river basin management, with quantitative data serving to show the scale and scope of the problems in the country as a whole. The institutional reforms required are discussed and a conceptual institutional framework is proposed to facilitate the implementation of IRBM in China. In particular, the roles, power and responsibilities of River Basin Commissions (RBCs) should be legally strengthened; the functions of supervising, decision-making and execution should be separated; and cross-sectoral legislation, institutional coordination and public participation at all levels should be promoted.

  11. Regional Cooperation Efforts in the Mekong River Basin: Mitigating river-related security threats and promoting regional development

    Directory of Open Access Journals (Sweden)

    Susanne Schmeier

    2009-01-01

    Full Text Available The development of international rivers is often perceived as leading to conflicts or even water wars. However, as the development of the Mekong River shows, cooperation has not only prevailed in the last decades, but River Basin Organizations (RBOs, established to mitigate river-related conflicts and/or develop the river basin, have also contributed to the emergence of more general cooperation structures, mainly by creating spill-over effects in other issue-areas, bringing cooperation to policy fields beyond the river itself. This article assesses the contribution of the Mekong River Commission (MRC and the Greater Mekong Sub-Region (GMS to the sustainable development of the Mekong Region as well as to the promotion of regional cooperation in mainland South-East Asia in general. --- Die Entwicklung grenzüberschreitender Flüsse wird oft mit Konflikten oder gar Kriegen um Wasser assoziiert. Wie jedoch die Entwicklung im Mekong-Becken zeigt, waren die vergangenen Jahrzehnte nicht nur von Kooperation gezeichnet, sondern Flussbeckenorganisationen konnten außerdem dazu beitragen, weitreichendere Kooperationsstrukturen zu entwickeln, die sich auf andere Politikfelder ausdehnen. Dieser Artikel beschäftigt sich mit dem Beitrag der Mekong River Commission (MRC und der Greater Mekong Sub-Region (GMS zur nachhaltigen Entwicklung in der Mekong Region sowie zur Förderung allgemeiner regionaler Kooperation im Festländischen Südostasien.

  12. River Modeling in Large and Ungauged Basins: Experience of Setting up the HEC RAS Model over the Ganges-Brahmaputra-Meghna Basins

    Science.gov (United States)

    Hossain, F.; Maswood, M.

    2014-12-01

    River modeling is the processing of setting up a physically-based hydrodynamic model that can simulate the water flow dynamics of a stream network against time varying boundary conditions. Such river models are an important component of any flood forecasting system that forecasts river levels in flood prone regions. However, many large river basins in the developing world such as the Ganges, Brahmaputra, Meghna (GBM), Indus, Irrawaddy, Salween, Mekong and Niger are mostly ungauged. Such large basins lack the necessary in-situ measurements of river bed depth/slope, bathymetry (river cross section), floodplain mapping and boundary condition flows for forcing a river model. For such basins, proxy approaches relying mostly on remote sensing data from space platforms are the only alternative. In this study, we share our experience of setting up the widely-used 1-D river model over the entire GBM basin and its stream network. Good quality in-situ measurements of river hydraulics (cross section, slope, flow) was available only for the downstream and flood prone region of the basin, which comprises only 7% of the basin area. For the remaining 93% of the basin area, we resorted to the use of data from the following satellite sensors to build a workable river model: a) Shuttle Radar Topography Mission (SRTM) for deriving bed slope; b) LANDSAT/MODIS for updating river network and flow direction generated by elevation data; c) radar altimetry data to build depth versus width relationship at river locations; d) satellite precipitation based hydrologic modeling of lateral flows into main stem rivers. In addition, we referred to an extensive body of literature to estimate the prevailing baseline hydraulics of rivers in the ungauged region. We measured success of our approach by systematically testing how well the basin-wide river model could simulate river level dynamics at two measured locations inside Bangladesh. Our experience of river modeling was replete with numerous

  13. Geographical Information Systems for International River Basin Management in the Third World

    Energy Technology Data Exchange (ETDEWEB)

    Kammerud, Terje Andre

    1997-12-31

    This thesis discusses implementation and application of Geographical Information systems (GIS) in international River Basin Organizations (RBOs) in the Third World. Third World countries sharing the same river basin are increasingly experiencing conflicts because they exploit the same water resource. Empirical knowledge is derived from two case studies. (1) The Mekong River Commission Secretariat`s experiences in applying GIS are investigated. The conditions assessed are related to institutional, funding, expertise, training and technology issues for successful application of GIS. (2) The prospects for the implementation of GIS at a future WATERNET Centre in Amman are investigated. Israel, Jordan and the Palestinian Authority have decided to establish a regional GIS Centre in the lower Jordan River Basin. The study assesses political, legal and institutional conditions for the successful implementation of GIS. It is concluded that implementing and applying GIS successfully in RBOs in the Third World is challenging, although not for technological reasons. 265 refs., 28 figs., 13 tabs.

  14. The responses of hydro-environment system in the Second Songhua River Basin to melt water

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the continuous monitoring data of hydrology and water quality in the period from 1972 to 1997, the responses of hydro-environment system to melt water in the Second Songhua River basin were derived. Because of melt water, the water quality in the Second Songhua River is good and changes very except that the contents of Hg and Mn in the water are higher. The contribution of melt water to the water fluxes in the Second Songhua River basin is distinct: the water flow in April increases remarkably, reaches the peak in the upper reaches. The pollutant contributions and water pollution indices (WPIs) of the Second Songhua River in April are high in the upper reaches while that in the lower reaches are low. The responses of hydro-environment system to melt water of that basin are affected by content of packed snow and the underlining surface systems.

  15. Water-Energy-Food Nexus in a Transboundary River Basin: The Case of Tonle Sap Lake, Mekong River Basin

    Directory of Open Access Journals (Sweden)

    Marko Keskinen

    2015-10-01

    Full Text Available The water-energy-food nexus is promoted as a new approach for research and policy-making. But what does the nexus mean in practice and what kinds of benefits does it bring? In this article we share our experiences with using a nexus approach in Cambodia’s Tonle Sap Lake area. We conclude that water, energy and food security are very closely linked, both in the Tonle Sap and in the transboundary Mekong River Basin generally. The current drive for large-scale hydropower threatens water and food security at both local and national scales. Hence, the nexus provides a relevant starting point for promoting sustainable development in the Mekong. We also identify and discuss two parallel dimensions for the nexus, with one focusing on research and analysis and the other on integrated planning and cross-sectoral collaboration. In our study, the nexus approach was particularly useful in facilitating collaboration and stakeholder engagement. This was because the nexus approach clearly defines the main themes included in the process, and at the same time widens the discussion from mere water resource management into the broader aspects of water, energy and food security.

  16. New River Dam Foundation Report. Gila River Basin: Phoenix, Arizona and Vicinity (Including New River).

    Science.gov (United States)

    1985-10-01

    further downstream before merging with the Agua Fria River. 6 Site Geology 2.08 The geological formations present within the project area consist...and appear to be of plutonic origin. The granite is characterized by its medium- to coarse- grained texture, small percentage of mafic minerals and...mottled appearance due to a high percentage of mafic minerals , and medium to whitish-gray color. Scattered occurrences of a fine- to medium-grained

  17. Flash droughts in a typical humid and subtropical basin: A case study in the Gan River Basin, China

    Science.gov (United States)

    Zhang, Yuqing; You, Qinglong; Chen, Changchun; Li, Xin

    2017-08-01

    As opposed to traditional drought events, flash droughts evolve rapidly and are characterized by soil moisture deficits. The general lack of high resolution soil moisture and evapotranspiration data makes identifying flash droughts at short-term scales (pentads or weeks) nearly impossible, particularly at the basin scale. In this study, we investigated the spatial patterns, temporal characteristics, and related mechanisms of flash droughts in a humid and subtropical basin (Gan River Basin) in China. The variable infiltration capacity (VIC) model can accurately reflect hydrological processes in the Gan River Basin at daily and monthly time scales; here, flash droughts were determined based on VIC outputs (soil moisture and evapotranspiration) and meteorological observations (maximum temperature and precipitation) during the growing season (March-October) from 1961 to 2013. We classified flash droughts into two categories (heat wave and precipitation deficit flash droughts) based on the formation mechanisms. Heat wave flash droughts are high temperature driven events, high temperatures (heat waves) cause evapotranspiration to increase and soil moisture to decrease rapidly. The main driver of precipitation deficit flash droughts is precipitation deficits, which cause soil moisture to drop and in turn cause evapotranspiration anomalies to decrease and temperature to increase. The northern part of the basin is apparently vulnerable to heat wave flash droughts, whereas precipitation deficit flash droughts tend to occur across the central and southern parts of the basin. Precipitation deficit flash droughts are more common than heat wave flash droughts in general. Both types of flash droughts became significantly more frequent from 1997 to 2013. These increases in both types of flash droughts are likely attributable to climate-related variables such as temperature, precipitation, evapotranspiration, and soil moisture during 1997-2013. As evidenced by our investigation of

  18. Distribution and dispersal of two invasive crayfish species in the Drava River basin, Croatia

    Directory of Open Access Journals (Sweden)

    S. Hudina

    2009-01-01

    Full Text Available The aim of this work is to explore the current distribution and dispersal rates of two nonindigenous crayfish species (NICS recorded in Croatia: the signal crayfish (Pacifastacus leniusculus and spiny-cheek crayfish(Orconectes limosus. Both NICS have been recorded in the Drava River basin, with signal crayfish spreading downstream from the north-west along the Drava’s tributary the Mura River, and spiny-cheek crayfish spreading upstream from the east from the Danube River throughout the Drava River. Signal crayfish distribution in the Mura River has been recorded up to 3 km from the confluence with the Drava River. Based on literature data and the current recorded distribution front, the downstream dispersal rate was between 18 and 24.4 km·yr−1. Spiny-cheek crayfish distribution has been recorded 15 km upstream of the Drava River mouth into the Danube River. Its upstream dispersal in the Drava River has been calculated at 2.5 km·yr −1. Both NICS could have an impact on native crayfish populations recorded within the Drava River basin in Croatia: the noble crayfish (Astacus astacus and the narrow-clawed crayfish (Astacus leptodactylus. In the Mura River no noble crayfish have been recorded since 2007, and the watercourse is at the moment dominated by the signal crayfish. Spiny-cheek crayfish populations have been found in coexistence with narrow-clawed crayfish populations, with O. limosus dominating by 16:1.

  19. Optimization and application of an extraction procedure to determine drugs of abuse in solid environmental matrices of Turia River Basin

    Science.gov (United States)

    Andres, Maria Jesus; Alvarez, Rodrigo; Andreu, Vicente; Pico, Yolanda

    2015-04-01

    show that extraction recoveries of phenylethylamine group were from 39.3 to 92.4%. For codeine and ketamine, the recoveries ranged from 44.4 to 90.6% and from 61.3 to 79.5%, respectively. Benzoylecgonine presented recoveries ranged from 72 to 77.5%. The precision of the method was below 20% for all the compounds. The method was applied to determine these drugs of abuse in sediments of the Turia River Basin. Ecstasy, codeine, ketamine and benzoylecgonine were found at concentrations ranging from 0.22 ng/g to 25 ng/g in 6 sampling points. Very limited information exists on the presence of drugs of abuse in environmental matrices. Nothing can be concluded about the differences between the recoveries obtained in unfiltered and filtered samples because they do not follow any trend. These results confirm the reliability of the method as well as its suitability to be applied in environmental studies. Acknowledgements This work has been supported by the Spanish Ministry of Economy and Competitiveness trough the project SCARCE-CDS 2009-0065, CGL 2011-29703-C02-01 and CGL 2011-29703-C02-02. MJ Andrés Costa also acknowledges to this Ministry the FPI grant to perform her PhD. References [1] T.H. Boles, M.J.M. Wells, Analysis of amphetamine and methamphetamine as emerging pollutants in wastewater and wastewater-impacted streams, Journal of Chromatography A 1217 (2010) 2561. [2] C. Postigo, M.J. López de Alda, D. Barceló, Drugs of abuse and their metabolites in the Ebro River basin: Occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation Environment International 36 (2010) 75.

  20. Water stress in global transboundary river basins: significance of upstream water use on downstream stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world’s transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. We found that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  1. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  2. Hydrological long-term dry and wet periods in the Xijiang River basin, South China

    Directory of Open Access Journals (Sweden)

    T. Fischer

    2013-01-01

    Full Text Available In this study, hydrological long-term dry and wet periods are analyzed for the Xijiang River basin in South China. Daily precipitation data of 118 stations and data on daily discharge at Gaoyao hydrological station at the mouth of the Xijiang River for the period 1961–2007 are used. At a 24-month timescale, the standardized precipitation index (SPI-24 for the six sub-basins of the Xijiang River and the standardized discharge index (SDI-24 for Gaoyao station are applied. The monthly values of the SPI-24 averaged for the Xijiang River basin correlate highly with the monthly values of the SDI-24. Distinct long-term dry and wet sequences can be detected.

    The principal component analysis is applied and shows spatial disparities in dry and wet periods for the six sub-basins. The correlation between the SPI-24 of the six sub-basins and the first principal component score shows that 67% of the variability within the sub-basins can be explained by dry and wet periods in the east of the Xijiang River basin. The spatial dipole conditions (second and third principal component explain spatiotemporal disparities in the variability of dry and wet periods. All sub-basins contribute to hydrological dry periods, while mainly the northeastern sub-basins cause wet periods in the Xijiang River. We can also conclude that long-term dry events are larger in spatial extent and cover all sub-basins while long-term wet events are regional phenomena.

    A spectral analysis is applied for the SPI-24 and the SDI-24. The results show significant peaks in periodicities of 11–14.7 yr, 2.8 yr, 3.4–3.7 yr, and 6.3–7.3 yr. The same periodic cycles can be found in the SPI-24 of the six sub-basins but with some variability in the mean magnitude. A wavelet analysis shows that significant periodicities have been stable over time since the 1980s. Extrapolations of the reconstructed SPI-24 and SDI-24 represent the continuation of observed significant periodicities

  3. Managing Water Resource Challenges in the Congo River Basin

    Science.gov (United States)

    Aloysius, N. R.

    2015-12-01

    Water resources in the tropical regions are under pressure from human appropriation and climate change. Current understanding of interactions between hydrology and climate in the tropical regions is inadequate. This is particularly true for the Congo River Basin (CRB), which also lacks hydroclimate data. Global climate models (GCM) show limited skills in simulating CRB's climate, and their future projections vary widely. Yet, GCMs provide the most credible scenarios of future climate, based upon which changes in water resources can be predicted with coupled hydrological models. The objectives of my work are to i) elucidate the spatial and temporal variability of water resources by developing a spatially explicit hydrological model suitable for describing key processes and fluxes, ii) evaluate the performance of GCMs in simulating precipitation and temperature and iii) develop a set of climate change scenarios for the basin. In addition, I also quantify the risks and reliabilities in smallholder rain-fed agriculture and demonstrates how available water resources can be utilized to increase crop yields. Key processes and fluxes of CRB's hydrological cycle are amply characterized by the hydrology model. Climate change projections are evaluated using a multi-model ensemble approach under different greenhouse gas emission scenarios. The near-term projections of climate and hydrological fluxes are not affected by emission scenarios. However, towards the mid-21st century, projections are emission scenario dependent. Available freshwater resources are projected to increase in the CRB, except in the semiarid southeast. These increases present new opportunities and challenges for augmenting human appropriation of water resources. By evaluating agricultural water requirements, and timing and availability of precipitation, I challenge the conventional wisdom that low agriculture productivities in the CRB are primarily attributable to nutrient limitation. Results show that

  4. Quantitative predictions of streamflow variability in the Susquehanna River Basin

    Science.gov (United States)

    Alexander, R.; Boyer, E. W.; Leonard, L. N.; Duffy, C.; Schwarz, G. E.; Smith, R. A.

    2012-12-01

    Hydrologic researchers and water managers have increasingly sought an improved understanding of the major processes that control fluxes of water and solutes across diverse environmental settings and large spatial scales. Regional analyses of observed streamflow data have led to advances in our knowledge of relations among land use, climate, and streamflow, with methodologies ranging from statistical assessments of multiple monitoring sites to the regionalization of the parameters of catchment-scale mechanistic simulation models. However, gaps remain in our understanding of the best ways to transfer the knowledge of hydrologic response and governing processes among locations, including methods for regionalizing streamflow measurements and model predictions. We developed an approach to predict variations in streamflow using the SPARROW (SPAtially Referenced Regression On Watershed attributes) modeling infrastructure, with mechanistic functions, mass conservation constraints, and statistical estimation of regional and sub-regional parameters. We used the model to predict discharge in the Susquehanna River Basin (SRB) under varying hydrological regimes that are representative of contemporary flow conditions. The resulting basin-scale water balance describes mean monthly flows in stream reaches throughout the entire SRB (represented at a 1:100,000 scale using the National Hydrologic Data network), with water supply and demand components that are inclusive of a range of hydrologic, climatic, and cultural properties (e.g., precipitation, evapotranspiration, soil and groundwater storage, runoff, baseflow, water use). We compare alternative models of varying complexity that reflect differences in the number and types of explanatory variables and functional expressions as well as spatial and temporal variability in the model parameters. Statistical estimation of the models reveals the levels of complexity that can be uniquely identified, subject to the information content

  5. Analysis of future precipitation in the Koshi river basin, Nepal

    Science.gov (United States)

    Agarwal, Anshul; Babel, Mukand S.; Maskey, Shreedhar

    2014-05-01

    We analyzed precipitation projections for the Koshi river basin in Nepal using outputs from 10 General Circulation Models (GCMs) under three emission scenarios (B1, A1B and A2). The low resolution future precipitation data obtained from the GCMs was downscaled using the statistical downscaling model LARS-WG. The data was downscaled for 48 stations located in the six physiographic regions in the Koshi basin. The precipitation projections for three future periods, i.e. 2020s, 2055s and 2090s, are presented using empirical Probability Density Functions (PDFs) for each physiographic region. The differences between the mean values of individual GCM projections and the mean value of the multi-model for the three scenarios allow for the estimation of uncertainty in the projections. We also analyzed the precipitation of the baseline and future periods using six indices that are recommended by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI). Results indicate that not all GCMs agree on weather changes in precipitation will be positive or negative. A majority of the GCMs and the average values of all the GCMs for each scenario, indicate a positive change in summer, autumn and annual precipitation but a negative change in spring precipitation. Differences in the GCM projections exist for all the three future periods and the differences increase with time. The estimated uncertainty is higher for scenario A1B compared to B1 and A2. Differences among scenarios are small during the 2020s, which become significant during the 2055s and 2090s. The length of the wet spell is expected to increase, whereas the length of the dry spell is expected to decrease in all three future periods. There is a large scatter in the values of the indices: number of days with precipitation above 20 mm, 1-day maximum precipitation, 5-day maximum precipitation, and amount of precipitation on the days with precipitation above 95th percentile, both in direction and magnitude of

  6. The mean residence time of river water in the Canada Basin

    Institute of Scientific and Technical Information of China (English)

    CHEN Min; XING Na; HUANG YiPu; QIU YuSheng

    2008-01-01

    Seawater was collected from the western Arctic Ocean for measurements of 18O, 226Ra and 228Ra. The fractions of river runoff and sea ice melt-water in water samples were estimated by using δ18O-S-PO* tracer system. The mean residence time of river water in the Canada Basin was calculated based on the relationship between 228Ra/226Ra)A.R. and the fractions of river runoff in the shelf and deep ocean. Our results showed that the river runoff fractions in the Canada Basin were significantly higher than those in the shelf regions, suggesting that the Canada Basin is a major storage region for Arctic river water. 228Ra activity concentrations in the Chukchi shelf and the Beaufort shelf ranged from 0.16 to 1.22 Bq/m3,lower than those reported for shelves in the low and middle latitudes, indicating the effect of sea ice melt-water. A good positive linear relationship was observed between 228Ra/226Ra)A.R. and the fraction of river runoff for shelf waters, while the 228Ra/226Ra)A.R in the Canada Basin was located below this regressive line. The low 228Ra/226Ra)A.R. in the Canada Basin was ascribed to 228Ra decay during shelf wa-ters transporting to the deep ocean. The residence time of 5.0-11.0 a was estimated for the river water in the Canada Basin, which determined the time response of surface freshening in the North Atlantic to the river runoff into the Arctic Ocean.

  7. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2010-08-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different surface grids and river nodes are modeled using one-dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R-squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the

  8. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2011-04-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R–squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the

  9. Rural Settlement Development and Environment Carrying Capacity Changes in Progo River Basin

    Directory of Open Access Journals (Sweden)

    Su Ritohardoyo

    2016-12-01

    Full Text Available Generally the broader rural settlement the heavier population pressure on agricultural land. It indicates that carrying capacity of the rural environment threatened lower. The spatial distribution of the threat in a river basin is quite important as one of the river basin management inputs. Therefore, this article aims at exposing result of research about influence rural population growth and rural settlement land changes to environment carrying capacity. This research was carried out in the rural area in Progo river basin consists 56 sub districts (34 sub districts part of Jawa Tengah Province, and 22 sub districts part of Yogyakarta Special Region. The whole sub districts are such as unit analysis, and research method is based on secondary data analysis. Several data consist Districts Region in Figure 1997 and 2003 (Temanggung, Magelang, Kulon Progo, Sleman and Bantul such as secondary data analysis. Data analysis employs of frequency and cross tabulation, statistics of regression and test. Result of the research shows that population growth of the rural areas in Progo river basin are about 0.72% annum; or the household growth about 3.15% annum as long as five years (1996-2003. Spatial distribution of the population growth in the upper part of the Progo river basin is higher than in the middle and lower part of the basin. The number proportion of farmer in every sub district area in this river basin have increased from 69.95% in 1997 to 70.81% in the year of 2003. It means that work opportunities broadening are still sluggish. However, the number proportion of farmers in the upper part of the Progo river basin is lower than in the middle and lower part of the basin. The rates of settlement land areas changes (0.32 ha/annum as long as five years (1997-2003 is not as fast as the rates of agricultural land areas changes (0.47 ha/annum. Spatial land settlement areas changes in the lower (6.1 ha/annum and middle parts (2.4 ha/annum faster than

  10. Modeling of Regionalized Emissions (MoRE) into Water Bodies: An Open-Source River Basin Management System

    National Research Council Canada - National Science Library

    Stephan Fuchs; Maria Kaiser; Lisa Kiemle; Steffen Kittlaus; Shari Rothvoß; Snezhina Toshovski; Adrian Wagner; Ramona Wander; Tatyana Weber; Sara Ziegler

    2017-01-01

    .... The river basin management system MoRE (Modeling of Regionalized Emissions) was developed as a flexible open-source instrument which is able to model pathway-specific emissions and river loads on a catchment scale...

  11. The relationship between irrigation water demand and drought in the Yellow River basin

    Science.gov (United States)

    Wang, Yu; Wang, Weihao; Peng, Shaoming; Jiang, Guiqin; Wu, Jian

    2016-10-01

    In order to organize water for drought resistance reasonably, we need to study the relationship between irrigation water demand and meteorological drought in quantitative way. We chose five typical irrigation districts including the Qingtongxia irrigation district, Yellow River irrigation districts of Inner Mongolia in the upper reaches of the Yellow River, the Fen river irrigation district and the Wei river irrigation district in the middle reaches of the Yellow River and the irrigation districts in the lower reaches of the Yellow River as research area. Based on the hydrology, meteorology, groundwater and crop parameters materials from 1956 to 2010 in the Yellow River basin, we selected reconnaissance drought index (RDI) to analyze occurrence and evolution regularity of drought in the five typical irrigation districts, and calculated the corresponding irrigation water demand by using crop water balance equation. The relationship of drought and irrigation water demand in each typical irrigation district was studied by using grey correlation analysis and relevant analysis method, and the quantitative relationship between irrigation water demand and RDI was established in each typical irrigation district. The results showed that the RDI can be applied to evaluate the meteorological drought in the typical irrigation districts of the Yellow River basin. There is significant correlation between the irrigation water demand and RDI, and the grey correlation degree and correlation coefficient increased with increasing crops available effective rainfall. The irrigation water demand of irrigation districts in the upstream, middle and downstream of the Yellow River basin presented different response degrees to drought. The irrigation water demand increased 105 million m3 with the drought increasing one grade (RDI decreasing 0.5) in the Qingtongxia irrigation district and Yellow River irrigation districts of Inner Mongolia. The irrigation water demand increased 219 million m3

  12. Groundwater quality in the Chemung River Basin, New York, 2008

    Science.gov (United States)

    Risen, Amy J.; Reddy, James E.

    2011-01-01

    The second groundwater quality study of the Chemung River Basin in south-central New York was conducted as part of the U.S. Geological Survey 305(b) water-quality-monitoring program. Water samples were collected from five production wells and five private residential wells from October through December 2008. The samples were analyzed to characterize the chemical quality of the groundwater. Five of the wells are screened in sand and gravel aquifers, and five are finished in bedrock aquifers. Two of these wells were also sampled for the first Chemung River Basin study of 2003. Samples were analyzed for 6 physical properties and 217 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and four types of bacterial analyses. Results of the water-quality analyses for individual wells are presented in tables, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. Water quality in the study area is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards; these were: sodium (one sample), total dissolved solids (one sample), aluminum (one sample), iron (one sample), manganese (four samples), radon-222 (eight samples), trichloroethene (one sample), and bacteria (four samples). The pH of all samples was typically neutral or slightly basic (median 7.5); the median water temperature was 11.0 degrees Celsius (?C). The ions with the highest median concentrations were bicarbonate (median 202 milligrams per liter [mg/L]) and calcium (median 59.0 mg/L). Groundwater in the study area is moderately hard to very hard, but more samples were hard or very hard (121 mg/L as calcium carbonate (CaCO3) or greater) than were moderately hard (61-120 mg/L as Ca

  13. River Gain and Loss Studies for the Red River of the North Basin, North Dakota and Minnesota

    Science.gov (United States)

    Williams-Sether, Tara

    2004-01-01

    The Dakota Water Resources Act passed by the U.S. Congress in 2000 authorized the Secretary of the Interior to conduct a comprehensive study of future water-quantity and -quality needs of the Red River of the North (Red River) Basin in North Dakota and of possible options to meet those water needs. To obtain the river gain and loss information needed to properly account for available streamflow within the basin, available river gain and loss studies for the Sheyenne, Turtle, Forest, and Park Rivers in North Dakota and the Wild Rice, Sand Hill, Clearwater, South Branch Buffalo, and Otter Tail Rivers in Minnesota were reviewed. Ground-water discharges for the Sheyenne River in a reach between Lisbon and Kindred, N. Dak., were about 28.8 cubic feet per second in 1963 and about 45.0 cubic feet per second in 1986. Estimated monthly net evaporation losses for additional flows to the Sheyenne River from the Missouri River ranged from 1.4 cubic feet per second in 1963 to 51.0 cubic feet per second in 1976. Maximum water losses for a reach between Harvey and West Fargo, N. Dak., for 1956-96 ranged from about 161 cubic feet per second for 1976 to about 248 cubic feet per second for 1977. Streamflow gains of 1 to 1.5 cubic feet per second per mile were estimated for the Wild Rice, Sand Hill, and Clearwater Rivers in Minnesota. The average ground-water discharge for a 5.2-mile reach of the Otter Tail River in Minnesota was about 14.1 cubic feet per second in August 1994. The same reach lost about 14.1 cubic feet per second between February 1994 and June 1994 and about 21.2 cubic feet per second between August 1994 and August 1995.

  14. Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China

    Science.gov (United States)

    Xu, Wei; Su, Xiaosi; Dai, Zhenxue; Yang, Fengtian; Zhu, Pucheng; Huang, Yong

    2017-06-01

    Environmental tracers (such as major ions, stable and radiogenic isotopes, and heat) monitored in natural waters provide valuable information for understanding the processes of river-groundwater interactions in arid areas. An integrated framework is presented for interpreting multi-tracer data (major ions, stable isotopes (2H, 18O), the radioactive isotope 222Rn, and heat) for delineating the river-groundwater interactions in Nalenggele River basin, northwest China. Qualitative and quantitative analyses were undertaken to estimate the bidirectional water exchange associated with small-scale interactions between groundwater and surface water. Along the river stretch, groundwater and river water exchange readily. From the high mountain zone to the alluvial fan, groundwater discharge to the river is detected by tracer methods and end-member mixing models, but the river has also been identified as a losing river using discharge measurements, i.e. discharge is bidirectional. On the delta-front of the alluvial fan and in the alluvial plain, in the downstream area, the characteristics of total dissolved solids values, 222Rn concentrations and δ18O values in the surface water, and patterns derived from a heat-tracing method, indicate that groundwater discharges into the river. With the environmental tracers, the processes of river-groundwater interaction have been identified in detail for better understanding of overall hydrogeological processes and of the impacts on water allocation policies.

  15. SURVEY OF COLUMBIA RIVER BASIN STREAMS FOR COLUMBIA PEBBLESNAIL Fluminicola columbiana AND SHORTFACE LANX Fisherola nuttalli

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D. A.; Frest, T. J.

    1993-05-01

    At present, there are only two remaining sizable populations of Columbia pebblesnail Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington; the lower Salmon River and middle Snake River, Idaho; and possibly in Hells Canyon of the Snake River, Idaho, Washington, and Oregon; and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historical range. Large populations of the shortface lanx Fisherola nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach of the Columbia River, Washington; Hells Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde, Washington and Oregon; Imnaha and John Day rivers, Oregon; Bonneville Dam area of the Columbia River, Washington and Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River: Columbia pebblesnail to a population in the Hanford Reach plus six other sites that are separated by large areas of unsuitable habitat from those in the river's major mbutaries shortface lanx to two populations (in the Hanford Reach and near Bonneville Dam) plus nine other sites that are separated by large areas of unsuitable habitat from those in the river's major tributaries.

  16. Assessment of spatial and temporal patterns of green and blue water flows in inland river basins in Northwest China

    Directory of Open Access Journals (Sweden)

    C. F. Zang

    2012-03-01

    Full Text Available In arid and semi-arid regions freshwater resources have become scarcer with increasing demands from socio-economic development and population growth. Until recently, water research and management in these has mainly focused on blue water but ignored green water. Here we report on spatial and temporal patterns of both blue and green water flows simulated by the Soil and Water Assessment Tool (SWAT for the Heihe river basin, the second largest inland river basin in Northwest China. Calibration and validation at two hydrological stations show good performance of the SWAT model in modelling hydrological processes. The total green and blue water flows were 22.09 billion m3 in the 2000s for the Heihe river basin. Blue water flows are larger in upstream sub-basins than in downstream sub-basins mainly due to high precipitation and large areas of glaciers in upstream. Green water flows are distributed more homogeneously among different sub-basins. The green water coefficient was 88.0% in the 2000s for the entire river basin, varying from around 80–90% in up- and mid-stream sub-basins to above 95% in downstream sub-basins. This is much higher than reported green water coefficient in many other river basins. The spatial patterns of green water coefficient were closely linked to dominant land covers (e.g. glaciers in upstream and desert in downstream and climate conditions (e.g. high precipitation in upstream and low precipitation in downstream. There are no clear consistent historical trends of change in green and blue water flows and green water coefficient at both the river basin and sub-basin levels. This study provides insights into green and blue water endowments for the entire Heihe river basin at sub-basin level. The results are helpful for formulating reasonable water policies to improve water resources management in the inland river basins of China.

  17. Sinkholes in the salt-bearing evaporite karst of the Ebro River valley upstream of Zaragoza city (NE Spain): Geomorphological mapping and analysis as a basis for risk management

    Science.gov (United States)

    Galve, J. P.; Gutiérrez, F.; Lucha, P.; Bonachea, J.; Remondo, J.; Cendrero, A.; Gutiérrez, M.; Gimeno, M. J.; Pardo, G.; Sánchez, J. A.

    2009-07-01

    A detailed sinkhole map has been produced in a stretch of the Ebro Valley (40.8 km 2) including the western sector of Zaragoza city (NE Spain). During the last few decades, around 70% of the original sinkhole area has been filled with anthropogenic sediments causing the disappearance of 137 ha of wetlands. The interstratal karstification of salts (halite and glauberite) and a WNW-ESE-trending joint set have played a major control in the development of sinkholes. Three morphometric types of sinkholes have been differentiated, each attributed to a specific subsidence mechanism inferred from the paleosinkholes exposed in the surrounding of Zaragoza city; sagging of bedrock and cover, collapse of bedrock and cover, and collapse of cover material related to the downward migration of particles through dissolutional conduits. Each type of sinkhole is characterised by a distinctive behaviour in terms of controlling factors, spatio-temporal distribution and kinematics, and consequently the proposed differentiation may have a practical utility. The vast majority of the subsidence damage identified in the area occurs within the boundaries of pre-existing sinkholes identifiable in old aerial photographs and topographical maps. This fact demonstrates that the application of preventive planning strategies based on detailed geomorphological maps would have allowed avoidance of most of the large financial losses caused by subsidence in the area, of the order of hundreds of thousands of euros per year.

  18. Using radar altimetry to update a large-scale hydrological model of the Brahmaputra river basin

    DEFF Research Database (Denmark)

    Finsen, F.; Milzow, Christian; Smith, R.

    2014-01-01

    Measurements of river and lake water levels from space-borne radar altimeters (past missions include ERS, Envisat, Jason, Topex) are useful for calibration and validation of large-scale hydrological models in poorly gauged river basins. Altimetry data availability over the downstream reaches...... of the Brahmaputra is excellent (17 high-quality virtual stations from ERS-2, 6 from Topex and 10 from Envisat are available for the Brahmaputra). In this study, altimetry data are used to update a large-scale Budyko-type hydrological model of the Brahmaputra river basin in real time. Altimetry measurements...... are converted to discharge using rating curves of simulated discharge versus observed altimetry. This approach makes it possible to use altimetry data from river cross sections where both in-situ rating curves and accurate river cross section geometry are not available. Model updating based on radar altimetry...

  19. River Mileages and Drainage Areas for Illinois Streams. Volume 2. Illinois River Basin.

    Science.gov (United States)

    1979-12-01

    FOREST 50.2 MADISON STREET RIVER FOREST 50.5 IL PT 56 RIVER FOREST 51.0 C & NW RR RIVER FOREST 51.1 LAKE STREET RIVER FOREST 51.6 CHICAGO AVENUE RIVER ... FOREST 51.9 SILVER CREEK R RIVER FOREST 53.9 DAM S35v40NoRI2E RIVER FOREST 54.2 NORTH PUEBLO AVENUE RIVER FOREST 55.1 GRAND AVENUE RIVER FOREST 55.1...USGS GAGE 05530600 AT RIVER GROVE 451 415546 O75040 RIVER

  20. A snapshot on prokaryotic diversity of the Solimões River basin (Amazon, Brazil).

    Science.gov (United States)

    Toyama, D; Santos-Júnior, C D; Kishi, L T; Oliveira, T C S; Garcia, J W; Sarmento, H; Miranda, F P; Henrique-Silva, F

    2017-05-18

    The Amazon region has the largest hydrographic basin on the planet and 
is well known for its huge biodiversity of plants and animals. However, 
there is a lack of studies on aquatic microbial biodiversity in the 
Solimões River, one of its main water courses. To investigate the 
microbial biodiversity of this region, we performed 16S rRNA gene clone 
libraries from Solimões River and adjacent rivers and lakes. Our question was which microorganisms inhabit the different types of aquatic 
environments in this part of the basin, and how diversity varies among 
these environments (rivers and lakes). The microbial 
diversity generating 13 clone libraries of the bacterial 16S rRNA gene 
and 5 libraries of the archaeal 16S rRNA gene was assessed. Diversity measured by several alpha diversity indices (ACE, Chao, Shannon and Simpson) revealed significant differences in diversity indices between lake and river samples. The site with higher microbial diversity was in the Solimões River (4S), downstream the confluence with Purus River. The most common bacterial taxon was the cosmopolitan Polynucleobacter genus, widely observed in all samples. The phylum Thaumarchaeota was the prevailing archaeal taxon. Our results provide the first insight into the microbial diversity of the world's largest river basin.

  1. Stomach Content of a Juvenile Bolivian River Dolphin (Inia geoffrensis boliviensis) from the Upper Madeira Basin, Bolivia

    NARCIS (Netherlands)

    Aliaga-Rossel, E.; Beerman, A.S.; Sarmiento, J.

    2010-01-01

    The article presents a study about the stomach content of a juvenile Bolivian river dolphin (Inia geoffrensis boliviensis), an endemic subspecies of the Amazon River dolphin, found in the upper Madeira River basin in Bolivia. The study finds that the stomach of Bolivian river dolphin contained a mix

  2. Stomach Content of a Juvenile Bolivian River Dolphin (Inia geoffrensis boliviensis) from the Upper Madeira Basin, Bolivia

    NARCIS (Netherlands)

    Aliaga-Rossel, E.; Beerman, A.S.; Sarmiento, J.

    2010-01-01

    The article presents a study about the stomach content of a juvenile Bolivian river dolphin (Inia geoffrensis boliviensis), an endemic subspecies of the Amazon River dolphin, found in the upper Madeira River basin in Bolivia. The study finds that the stomach of Bolivian river dolphin contained a

  3. Suwannee river basin and estuary integrated science workshop: September 22-24, 2004 Cedar Key, Florida

    Science.gov (United States)

    Katz, Brian; Raabe, Ellen

    2004-01-01

    In response to the growing number of environmental concerns in the mostly pristine Suwannee River Basin and the Suwannee River Estuary system, the States of Florida and Georgia, the Federal government, and other local organizations have identified the Suwannee River as an ecosystem in need of protection because of its unique biota and important water resources. Organizations with vested interests in the region formed a coalition, the Suwannee Basin Interagency Alliance (SBIA), whose goals are to promote coordination in the identification, management, and scientific knowledge of the natural resources in the basin and estuary. To date, an integrated assessment of the physical, biological, and water resources has not been completed. A holistic, multi-disciplinary approach is being pursued to address the research needs in the basin and estuary and to provide supportive data for meeting management objectives of the entire ecosystem. The USGS is well situated to focus on the larger concerns of the basin and estuary by addressing specific research questions linking water supply and quality to ecosystem function and health across county and state boundaries. A strategic plan is being prepared in cooperation with Federal, State, and local agencies to identify and implement studies to address the most compelling research issues and management questions, and to conduct fundamental environmental monitoring studies. The USGS, Suwannee River Water Management District and the Florida Marine Research Institute are co-sponsoring this scientific workshop on the Suwannee River Basin and Estuary to: Discuss current and past research findings, Identify information gaps and research priorities, and Develop an action plan for coordinated and relevant research activities in the future. This workshop builds on the highly successful basin-wide conference sponsored by the Suwannee Basin Interagency Alliance that was held three years ago in Live Oak, Florida. This years workshop will focus on

  4. Prospects for Learning in River Management: Exploring the Initial Implementation of the Water Framework Directive in a Swedish River Basin

    Science.gov (United States)

    Lundmark, Carina; Jonsson, Gunnar

    2014-01-01

    This case study explores the initial implementation of the EU Water Framework Directive (WFD) in the Lule River basin, Sweden, examining how and to what extent administrative procedures enable learning through dialogue and stakeholder collaboration. Theorising on adaptive co-management and social learning is used to structure what is to be learnt,…

  5. Modelling seasonal N and P loads in three contrasting large river basins using global datasets - Mississippi, Mekong and Rhine River

    NARCIS (Netherlands)

    Loos, S.; Middelkoop, H.; Perk, M. van der; Beek, L.P.H. van

    2011-01-01

    Nutrients are important components of the global biochemical cycle, and are key controls of the quality of inland and coastal waters. Quantification of the nutrient fluxes from large river basins to the oceans still relies on long-term yearly-load estimates; existing models are essentially empirical

  6. Drought analysis using multi-scale standardized precipitation index in the Han River Basin, China

    Institute of Scientific and Technical Information of China (English)

    Yue-ping XU; Sheng-ji LIN; Yan HUANG; Qin-qing ZHANG; Qi-hua RAN

    2011-01-01

    Regional drought analysis pro