WorldWideScience

Sample records for ebola virus-like particles

  1. Production of Novel Ebola Virus-Like Particles from cDNAs: an Alternative to Ebola Virus Generation by Reverse Genetics

    OpenAIRE

    Watanabe, Shinji; Watanabe, Tokiko; Noda, Takeshi; Takada, Ayato; Feldmann, Heinz; Jasenosky, Luke D.; Kawaoka, Yoshihiro

    2004-01-01

    We established a plasmid-based system for generating infectious Ebola virus-like particles (VLPs), which contain an Ebola virus-like minigenome consisting of a negative-sense copy of the green fluorescent protein gene. This system produced nearly 103 infectious particles per ml of supernatant, equivalent to the titer of Ebola virus generated by a reverse genetics system. Interestingly, infectious Ebola VLPs were generated, even without expression of VP24. Transmission and scanning electron mi...

  2. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies

    International Nuclear Information System (INIS)

    Ye Ling; Lin Jianguo; Sun Yuliang; Bennouna, Soumaya; Lo, Michael; Wu Qingyang; Bu Zhigao; Pulendran, Bali; Compans, Richard W.; Yang Chinglai

    2006-01-01

    Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity of Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection

  3. Human transbodies to VP40 inhibit cellular egress of Ebola virus-like particles

    International Nuclear Information System (INIS)

    Teimoori, Salma; Seesuay, Watee; Jittavisutthikul, Surasak; Chaisri, Urai; Sookrung, Nitat; Densumite, Jaslan; Saelim, Nawannaporn; Chulanetra, Monrat; Maneewatch, Santi; Chaicumpa, Wanpen

    2016-01-01

    A direct acting anti-Ebola agent is needed. VP40, a conserved protein across Ebolavirus (EBOV) species has several pivotal roles in the virus life cycle. Inhibition of VP40 functions would lessen the virion integrity and interfere with the viral assembly, budding, and spread. In this study, cell penetrable human scFvs (HuscFvs) that bound to EBOV VP40 were produced by phage display technology. Gene sequences coding for VP40-bound-HuscFvs were subcloned from phagemids into protein expression plasmids downstream to a gene of cell penetrating peptide, i.e., nonaarginine (R9). By electron microscopy, transbodies from three clones effectively inhibited egress of the Ebola virus-like particles from human hepatic cells transduced with pseudo-typed-Lentivirus particles carrying EBOV VP40 and GP genes. Computerized simulation indicated that the effective HuscFvs bound to multiple basic residues in the cationic patch of VP40 C-terminal domain which are important in membrane-binding for viral matrix assembly and virus budding. The transbodies bound also to VP40 N-terminal domain and L domain peptide encompassed the PTAPPEY (WW binding) motif, suggesting that they might confer VP40 function inhibition through additional mechanism(s). The generated transbodies are worthwhile tested with authentic EBOV before developing to direct acting anti-Ebola agent for preclinical and clinical trials. - Highlights: • Cell penetrable human scFvs (transbodies) to Ebolavirus (EBOV) VP40 were produced. • The transbodies inhibited egress of EBOV-like particles (VLPs) from human hepatocytes. • They interacted with VP40 CTD basic residues important for plasma membrane binding. • And hence interfere with viral matrix assembly and viral progeny budding. • This is the first report on human antibodies that target intracellular EBOV VP40.

  4. Spatial Localization of the Ebola Virus Glycoprotein Mucin-Like Domain Determined by Cryo-Electron Tomography

    OpenAIRE

    Tran, Erin E. H.; Simmons, James A.; Bartesaghi, Alberto; Shoemaker, Charles J.; Nelson, Elizabeth; White, Judith M.; Subramaniam, Sriram

    2014-01-01

    The Ebola virus glycoprotein mucin-like domain (MLD) is implicated in Ebola virus cell entry and immune evasion. Using cryo-electron tomography of Ebola virus-like particles, we determined a three-dimensional structure for the full-length glycoprotein in a near-native state and compared it to that of a glycoprotein lacking the MLD. Our results, which show that the MLD is located at the apex and the sides of each glycoprotein monomer, provide a structural template for analysis of MLD function.

  5. Induction of ebolavirus cross-species immunity using retrovirus-like particles bearing the Ebola virus glycoprotein lacking the mucin-like domain.

    Science.gov (United States)

    Ou, Wu; Delisle, Josie; Jacques, Jerome; Shih, Joanna; Price, Graeme; Kuhn, Jens H; Wang, Vivian; Verthelyi, Daniela; Kaplan, Gerardo; Wilson, Carolyn A

    2012-01-25

    The genus Ebolavirus includes five distinct viruses. Four of these viruses cause hemorrhagic fever in humans. Currently there are no licensed vaccines for any of them; however, several vaccines are under development. Ebola virus envelope glycoprotein (GP1,2) is highly immunogenic, but antibodies frequently arise against its least conserved mucin-like domain (MLD). We hypothesized that immunization with MLD-deleted GP1,2 (GPΔMLD) would induce cross-species immunity by making more conserved regions accessible to the immune system. To test this hypothesis, mice were immunized with retrovirus-like particles (retroVLPs) bearing Ebola virus GPΔMLD, DNA plasmids (plasmo-retroVLP) that can produce such retroVLPs in vivo, or plasmo-retroVLP followed by retroVLPs. Cross-species neutralizing antibody and GP1,2-specific cellular immune responses were successfully induced. Our findings suggest that GPΔMLD presented through retroVLPs may provide a strategy for development of a vaccine against multiple ebolaviruses. Similar vaccination strategies may be adopted for other viruses whose envelope proteins contain highly variable regions that may mask more conserved domains from the immune system.

  6. Spatial localization of the Ebola virus glycoprotein mucin-like domain determined by cryo-electron tomography.

    Science.gov (United States)

    Tran, Erin E H; Simmons, James A; Bartesaghi, Alberto; Shoemaker, Charles J; Nelson, Elizabeth; White, Judith M; Subramaniam, Sriram

    2014-09-01

    The Ebola virus glycoprotein mucin-like domain (MLD) is implicated in Ebola virus cell entry and immune evasion. Using cryo-electron tomography of Ebola virus-like particles, we determined a three-dimensional structure for the full-length glycoprotein in a near-native state and compared it to that of a glycoprotein lacking the MLD. Our results, which show that the MLD is located at the apex and the sides of each glycoprotein monomer, provide a structural template for analysis of MLD function. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Induction of ebolavirus cross-species immunity using retrovirus-like particles bearing the Ebola virus glycoprotein lacking the mucin-like domain

    Directory of Open Access Journals (Sweden)

    Ou Wu

    2012-01-01

    Full Text Available Abstract Background The genus Ebolavirus includes five distinct viruses. Four of these viruses cause hemorrhagic fever in humans. Currently there are no licensed vaccines for any of them; however, several vaccines are under development. Ebola virus envelope glycoprotein (GP1,2 is highly immunogenic, but antibodies frequently arise against its least conserved mucin-like domain (MLD. We hypothesized that immunization with MLD-deleted GP1,2 (GPΔMLD would induce cross-species immunity by making more conserved regions accessible to the immune system. Methods To test this hypothesis, mice were immunized with retrovirus-like particles (retroVLPs bearing Ebola virus GPΔMLD, DNA plasmids (plasmo-retroVLP that can produce such retroVLPs in vivo, or plasmo-retroVLP followed by retroVLPs. Results Cross-species neutralizing antibody and GP1,2-specific cellular immune responses were successfully induced. Conclusion Our findings suggest that GPΔMLD presented through retroVLPs may provide a strategy for development of a vaccine against multiple ebolaviruses. Similar vaccination strategies may be adopted for other viruses whose envelope proteins contain highly variable regions that may mask more conserved domains from the immune system.

  8. Nucleocapsid-like structures of Ebola virus reconstructed using electron tomography

    International Nuclear Information System (INIS)

    Noda, T.; Aoyama, K.; Sagara, H.; Kida, H.; Kawaoka, Y.

    2005-01-01

    Electron tomography (ET) is a new technique for high resolution, three-dimensional (3D) reconstruction of pleiomocphic mac. n)molecular complexes, such as virus components. By employing this technique, we resolved the 3D structure of Ebola virus nucleocapsid-like (NC-like) structures in the cytoplasm of cells expressing NP, VP24, and VP35: the minimum components required to form these NC-like structures. Reconstruction of these tubular NC-like structures of Ebola virus showed them to be composed of left-handed helices spaced at short intervals, which is structurally consistent with other non-segmented negative-strand RNA viruses

  9. Interaction between Ebola Virus Glycoprotein and Host Toll-Like Receptor 4 Leads to Induction of Proinflammatory Cytokines and SOCS1 ▿ †

    OpenAIRE

    Okumura, Atsushi; Pitha, Paula M.; Yoshimura, Akihiko; Harty, Ronald N.

    2009-01-01

    Ebola virus initially targets monocytes and macrophages, which can lead to the release of proinflammatory cytokines and chemokines. These inflammatory cytokines are thought to contribute to the development of circulatory shock seen in fatal Ebola virus infections. Here we report that host Toll-like receptor 4 (TLR4) is a sensor for Ebola virus glycoprotein (GP) on virus-like particles (VLPs) and that resultant TLR4 signaling pathways lead to the production of proinflammatory cytokines and sup...

  10. Role of Natural Killer Cells in Innate Protection against Lethal Ebola Virus Infection

    OpenAIRE

    Warfield, Kelly L.; Perkins, Jeremy G.; Swenson, Dana L.; Deal, Emily M.; Bosio, Catharine M.; Aman, M. Javad; Yokoyama, Wayne M.; Young, Howard A.; Bavari, Sina

    2004-01-01

    Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1–3 d before Ebola virus infection rapidly induced protective immunity. VLP injectio...

  11. Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography.

    Science.gov (United States)

    Bharat, Tanmay A M; Noda, Takeshi; Riches, James D; Kraehling, Verena; Kolesnikova, Larissa; Becker, Stephan; Kawaoka, Yoshihiro; Briggs, John A G

    2012-03-13

    Ebola virus is a highly pathogenic filovirus causing severe hemorrhagic fever with high mortality rates. It assembles heterogenous, filamentous, enveloped virus particles containing a negative-sense, single-stranded RNA genome packaged within a helical nucleocapsid (NC). We have used cryo-electron microscopy and tomography to visualize Ebola virus particles, as well as Ebola virus-like particles, in three dimensions in a near-native state. The NC within the virion forms a left-handed helix with an inner nucleoprotein layer decorated with protruding arms composed of VP24 and VP35. A comparison with the closely related Marburg virus shows that the N-terminal region of nucleoprotein defines the inner diameter of the Ebola virus NC, whereas the RNA genome defines its length. Binding of the nucleoprotein to RNA can assemble a loosely coiled NC-like structure; the loose coil can be condensed by binding of the viral matrix protein VP40 to the C terminus of the nucleoprotein, and rigidified by binding of VP24 and VP35 to alternate copies of the nucleoprotein. Four proteins (NP, VP24, VP35, and VP40) are necessary and sufficient to mediate assembly of an NC with structure, symmetry, variability, and flexibility indistinguishable from that in Ebola virus particles released from infected cells. Together these data provide a structural and architectural description of Ebola virus and define the roles of viral proteins in its structure and assembly.

  12. Homologous and Heterologous Protection of Nonhuman Primates by Ebola and Sudan Virus-Like Particles

    Science.gov (United States)

    Warfield, Kelly L.; Dye, John M.; Wells, Jay B.; Unfer, Robert C.; Holtsberg, Frederick W.; Shulenin, Sergey; Vu, Hong; Swenson, Dana L.; Bavari, Sina; Aman, M. Javad

    2015-01-01

    Filoviruses cause hemorrhagic fever resulting in significant morbidity and mortality in humans. Several vaccine platforms that include multiple virus-vectored approaches and virus-like particles (VLPs) have shown efficacy in nonhuman primates. Previous studies have shown protection of cynomolgus macaques against homologous infection for Ebola virus (EBOV) and Marburg virus (MARV) following a three-dose vaccine regimen of EBOV or MARV VLPs, as well as heterologous protection against Ravn Virus (RAVV) following vaccination with MARV VLPs. The objectives of the current studies were to determine the minimum number of vaccine doses required for protection (using EBOV as the test system) and then demonstrate protection against Sudan virus (SUDV) and Taï Forest virus (TAFV). Using the EBOV nonhuman primate model, we show that one or two doses of VLP vaccine can confer protection from lethal infection. VLPs containing the SUDV glycoprotein, nucleoprotein and VP40 matrix protein provide complete protection against lethal SUDV infection in macaques. Finally, we demonstrate protective efficacy mediated by EBOV, but not SUDV, VLPs against TAFV; this is the first demonstration of complete cross-filovirus protection using a single component heterologous vaccine within the Ebolavirus genus. Along with our previous results, this observation provides strong evidence that it will be possible to develop and administer a broad-spectrum VLP-based vaccine that will protect against multiple filoviruses by combining only three EBOV, SUDV and MARV components. PMID:25793502

  13. Homologous and heterologous protection of nonhuman primates by Ebola and Sudan virus-like particles.

    Directory of Open Access Journals (Sweden)

    Kelly L Warfield

    Full Text Available Filoviruses cause hemorrhagic fever resulting in significant morbidity and mortality in humans. Several vaccine platforms that include multiple virus-vectored approaches and virus-like particles (VLPs have shown efficacy in nonhuman primates. Previous studies have shown protection of cynomolgus macaques against homologous infection for Ebola virus (EBOV and Marburg virus (MARV following a three-dose vaccine regimen of EBOV or MARV VLPs, as well as heterologous protection against Ravn Virus (RAVV following vaccination with MARV VLPs. The objectives of the current studies were to determine the minimum number of vaccine doses required for protection (using EBOV as the test system and then demonstrate protection against Sudan virus (SUDV and Taï Forest virus (TAFV. Using the EBOV nonhuman primate model, we show that one or two doses of VLP vaccine can confer protection from lethal infection. VLPs containing the SUDV glycoprotein, nucleoprotein and VP40 matrix protein provide complete protection against lethal SUDV infection in macaques. Finally, we demonstrate protective efficacy mediated by EBOV, but not SUDV, VLPs against TAFV; this is the first demonstration of complete cross-filovirus protection using a single component heterologous vaccine within the Ebolavirus genus. Along with our previous results, this observation provides strong evidence that it will be possible to develop and administer a broad-spectrum VLP-based vaccine that will protect against multiple filoviruses by combining only three EBOV, SUDV and MARV components.

  14. Ebola (Ebola Virus Disease): Diagnosis

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) What is Ebola Virus Disease? ...

  15. Ebola (Ebola Virus Disease): Transmission

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) What is Ebola Virus Disease? ...

  16. Ebola (Ebola Virus Disease): Treatment

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) What is Ebola Virus Disease? ...

  17. Role of natural killer cells in innate protection against lethal ebola virus infection.

    Science.gov (United States)

    Warfield, Kelly L; Perkins, Jeremy G; Swenson, Dana L; Deal, Emily M; Bosio, Catharine M; Aman, M Javad; Yokoyama, Wayne M; Young, Howard A; Bavari, Sina

    2004-07-19

    Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1-3 d before Ebola virus infection rapidly induced protective immunity. VLP injection enhanced the numbers of natural killer (NK) cells in lymphoid tissues. In contrast to live Ebola virus, VLP treatment of NK cells enhanced cytokine secretion and cytolytic activity against NK-sensitive targets. Unlike wild-type mice, treatment of NK-deficient or -depleted mice with VLPs had no protective effect against Ebola virus infection and NK cells treated with VLPs protected against Ebola virus infection when adoptively transferred to naive mice. The mechanism of NK cell-mediated protection clearly depended on perforin, but not interferon-gamma secretion. Particles containing only VP40 were sufficient to induce NK cell responses and provide protection from infection in the absence of the viral GP. These findings revealed a decisive role for NK cells during lethal Ebola virus infection. This work should open new doors for better understanding of Ebola virus pathogenesis and direct the development of immunotherapeutics, which target the innate immune system, for treatment of Ebola virus infection.

  18. Ebola (Ebola Virus Disease): Prevention

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014- ...

  19. Ebola (Ebola Virus Disease)

    Science.gov (United States)

    ... Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is not ... gov . Recommend on Facebook Tweet Share Compartir Ebola Virus Disease (EVD) is a rare and deadly disease ...

  20. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Wu

    2015-11-01

    Full Text Available Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD in humans and non-human primates (NHPs. Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs, vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirus∆VP30, recombinant cytomegalovirus (CMV-based vaccines, recombinant rabies virus (RABV-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD.

  1. Ebola Virus Persistence in Semen Ex Vivo.

    Science.gov (United States)

    Fischer, Robert J; Judson, Seth; Miazgowicz, Kerri; Bushmaker, Trent; Munster, Vincent J

    2016-02-01

    On March 20, 2015, a case of Ebola virus disease was identified in Liberia that most likely was transmitted through sexual contact. We assessed the efficiency of detecting Ebola virus in semen samples by molecular diagnostics and the stability of Ebola virus in ex vivo semen under simulated tropical conditions.

  2. Phosphoinositide-3 kinase-Akt pathway controls cellular entry of Ebola virus.

    Directory of Open Access Journals (Sweden)

    Mohammad F Saeed

    2008-08-01

    Full Text Available The phosphoinositide-3 kinase (PI3K pathway regulates diverse cellular activities related to cell growth, migration, survival, and vesicular trafficking. It is known that Ebola virus requires endocytosis to establish an infection. However, the cellular signals that mediate this uptake were unknown for Ebola virus as well as many other viruses. Here, the involvement of PI3K in Ebola virus entry was studied. A novel and critical role of the PI3K signaling pathway was demonstrated in cell entry of Zaire Ebola virus (ZEBOV. Inhibitors of PI3K and Akt significantly reduced infection by ZEBOV at an early step during the replication cycle. Furthermore, phosphorylation of Akt-1 was induced shortly after exposure of cells to radiation-inactivated ZEBOV, indicating that the virus actively induces the PI3K pathway and that replication was not required for this induction. Subsequent use of pseudotyped Ebola virus and/or Ebola virus-like particles, in a novel virus entry assay, provided evidence that activity of PI3K/Akt is required at the virus entry step. Class 1A PI3Ks appear to play a predominant role in regulating ZEBOV entry, and Rac1 is a key downstream effector in this regulatory cascade. Confocal imaging of fluorescently labeled ZEBOV indicated that inhibition of PI3K, Akt, or Rac1 disrupted normal uptake of virus particles into cells and resulted in aberrant accumulation of virus into a cytosolic compartment that was non-permissive for membrane fusion. We conclude that PI3K-mediated signaling plays an important role in regulating vesicular trafficking of ZEBOV necessary for cell entry. Disruption of this signaling leads to inappropriate trafficking within the cell and a block in steps leading to membrane fusion. These findings extend our current understanding of Ebola virus entry mechanism and may help in devising useful new strategies for treatment of Ebola virus infection.

  3. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    Science.gov (United States)

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD. © 2015 The Author(s) Published by S. Karger AG, Basel.

  4. Ebola virus: current and future perspectives.

    Science.gov (United States)

    Jadav, Surender Singh; Kumar, Anoop; Ahsan, Mohamed Jawed; Jayaprakash, Venkatesan

    2015-01-01

    The present outbreak associated with Ebola disease in Western countries of the African continent which is believed to be one of the massive eruptions caused by the Ebola viral infections. In the present scenario ebola has been transmitted to the European and American regions through the travelers from wide spread countries like Guinea, Liberia, Sierra Leone and Nigeria. The viral disease is spreading through the contact in any form by the infected persons or patients and creating huge risks to the mortals. The symptoms related to ebola virus are often highly pathogenic; about 70-80% of death cases are reported due to critical hemorrhagic fever. Early in infection, ebola virus infects macrophages and endothelial cells. It mainly produces a Viral Protein 24 (eVP24) which prevents interferon-based signals which are important for destruction of viruses. How ebola virus manipulates the function of the immune system is still unclear. Due to lack of this knowledge, no approved treatment is available. In this review, we have tried to compile the epidemiology, pathogenesis and treatment of ebola virus infection. The promising ligands against ebola virus have been also discussed which will be helpful for researchers to design drugs for the treatment of ebola virus disease.

  5. Ebola virus host cell entry.

    Science.gov (United States)

    Sakurai, Yasuteru

    2015-01-01

    Ebola virus is an enveloped virus with filamentous structure and causes a severe hemorrhagic fever in human and nonhuman primates. Host cell entry is the first essential step in the viral life cycle, which has been extensively studied as one of the therapeutic targets. A virus factor of cell entry is a surface glycoprotein (GP), which is an only essential viral protein in the step, as well as the unique particle structure. The virus also interacts with a lot of host factors to successfully enter host cells. Ebola virus at first binds to cell surface proteins and internalizes into cells, followed by trafficking through endosomal vesicles to intracellular acidic compartments. There, host proteases process GPs, which can interact with an intracellular receptor. Then, under an appropriate circumstance, viral and endosomal membranes are fused, which is enhanced by major structural changes of GPs, to complete host cell entry. Recently the basic research of Ebola virus infection mechanism has markedly progressed, largely contributed by identification of host factors and detailed structural analyses of GPs. This article highlights the mechanism of Ebola virus host cell entry, including recent findings.

  6. Ebola Virus and Marburg Virus

    Science.gov (United States)

    Ebola virus and Marburg virus Overview Ebola virus and Marburg virus are related viruses that cause hemorrhagic fevers — illnesses marked by severe bleeding (hemorrhage), organ failure and, in many ...

  7. Virus-like particles activate type I interferon pathways to facilitate post-exposure protection against Ebola virus infection.

    Directory of Open Access Journals (Sweden)

    Natarajan Ayithan

    Full Text Available Ebola virus (EBOV causes a severe hemorrhagic disease with high fatality. Virus-like particles (VLPs are a promising vaccine candidate against EBOV. We recently showed that VLPs protect mice from lethal EBOV infection when given before or after viral infection. To elucidate pathways through which VLPs confer post-exposure protection, we investigated the role of type I interferon (IFN signaling. We found that VLPs lead to accelerated induction of IFN stimulated genes (ISGs in liver and spleen of wild type mice, but not in Ifnar-/- mice. Accordingly, EBOV infected Ifnar-/- mice, unlike wild type mice succumbed to death even after VLP treatment. The ISGs induced in wild type mice included anti-viral proteins and negative feedback factors known to restrict viral replication and excessive inflammatory responses. Importantly, proinflammatory cytokine/chemokine expression was much higher in WT mice without VLPs than mice treated with VLPs. In EBOV infected Ifnar-/- mice, however, uninhibited viral replication and elevated proinflammatory factor expression ensued, irrespective of VLP treatment, supporting the view that type I IFN signaling helps to limit viral replication and attenuate inflammatory responses. Further analyses showed that VLP protection requires the transcription factor, IRF8 known to amplify type I IFN signaling in dendritic cells and macrophages, the probable sites of initial EBOV infection. Together, this study indicates that VLPs afford post-exposure protection by promoting expeditious initiation of type I IFN signaling in the host.

  8. Understanding Ebola Virus Transmission

    Directory of Open Access Journals (Sweden)

    Seth Judson

    2015-02-01

    Full Text Available An unprecedented number of Ebola virus infections among healthcare workers and patients have raised questions about our understanding of Ebola virus transmission. Here, we explore different routes of Ebola virus transmission between people, summarizing the known epidemiological and experimental data. From this data, we expose important gaps in Ebola virus research pertinent to outbreak situations. We further propose experiments and methods of data collection that will enable scientists to fill these voids in our knowledge about the transmission of Ebola virus.

  9. Mechanisms of immunity in post-exposure vaccination against Ebola virus infection.

    Directory of Open Access Journals (Sweden)

    Steven B Bradfute

    Full Text Available Ebolaviruses can cause severe hemorrhagic fever that is characterized by rapid viral replication, coagulopathy, inflammation, and high lethality rates. Although there is no clinically proven vaccine or treatment for Ebola virus infection, a virus-like particle (VLP vaccine is effective in mice, guinea pigs, and non-human primates when given pre-infection. In this work, we report that VLPs protect Ebola virus-infected mice when given 24 hours post-infection. Analysis of cytokine expression in serum revealed a decrease in pro-inflammatory cytokine and chemokine levels in mice given VLPs post-exposure compared to infected, untreated mice. Using knockout mice, we show that VLP-mediated post-exposure protection requires perforin, B cells, macrophages, conventional dendritic cells (cDCs, and either CD4+ or CD8+ T cells. Protection was Ebola virus-specific, as marburgvirus VLPs did not protect Ebola virus-infected mice. Increased antibody production in VLP-treated mice correlated with protection, and macrophages were required for this increased production. However, NK cells, IFN-gamma, and TNF-alpha were not required for post-exposure-mediated protection. These data suggest that a non-replicating Ebola virus vaccine can provide post-exposure protection and that the mechanisms of immune protection in this setting require both increased antibody production and generation of cytotoxic T cells.

  10. Mechanisms of immunity in post-exposure vaccination against Ebola virus infection.

    Science.gov (United States)

    Bradfute, Steven B; Anthony, Scott M; Stuthman, Kelly S; Ayithan, Natarajan; Tailor, Prafullakumar; Shaia, Carl I; Bray, Mike; Ozato, Keiko; Bavari, Sina

    2015-01-01

    Ebolaviruses can cause severe hemorrhagic fever that is characterized by rapid viral replication, coagulopathy, inflammation, and high lethality rates. Although there is no clinically proven vaccine or treatment for Ebola virus infection, a virus-like particle (VLP) vaccine is effective in mice, guinea pigs, and non-human primates when given pre-infection. In this work, we report that VLPs protect Ebola virus-infected mice when given 24 hours post-infection. Analysis of cytokine expression in serum revealed a decrease in pro-inflammatory cytokine and chemokine levels in mice given VLPs post-exposure compared to infected, untreated mice. Using knockout mice, we show that VLP-mediated post-exposure protection requires perforin, B cells, macrophages, conventional dendritic cells (cDCs), and either CD4+ or CD8+ T cells. Protection was Ebola virus-specific, as marburgvirus VLPs did not protect Ebola virus-infected mice. Increased antibody production in VLP-treated mice correlated with protection, and macrophages were required for this increased production. However, NK cells, IFN-gamma, and TNF-alpha were not required for post-exposure-mediated protection. These data suggest that a non-replicating Ebola virus vaccine can provide post-exposure protection and that the mechanisms of immune protection in this setting require both increased antibody production and generation of cytotoxic T cells.

  11. The etiology of Ebola virus disease-like illnesses in Ebola virusnegative patients from Sierra Leone.

    Science.gov (United States)

    Li, Wen-Gang; Chen, Wei-Wei; Li, Lei; Ji, Dong; Ji, Ying-Jie; Li, Chen; Gao, Xu-Dong; Wang, Li-Fu; Zhao, Min; Duan, Xue-Zhang; Duan, Hui-Juan

    2016-05-10

    During the 2014 Ebola virus disease (EVD) outbreak, less than half of EVD-suspected cases were laboratory tested as Ebola virus (EBOV)-negative, but disease identity remained unknown. In this study we investigated the etiology of EVD-like illnesses in EBOV-negative cases. From November 13, 2014 to March 16, 2015, EVD-suspected patients were admitted to Jui Government Hospital and assessed for EBOV infection by real-time PCR. Of 278 EBOV negative patients, 223 (80.21%), 142 (51.08%), 123 (44.24%), 114 (41.01%), 59 (21.22%), 35 (12.59%), and 12 (4.32%) reported fever, headache, joint pain, fatigue, nausea/vomiting, diarrhea, hemorrhage, respectively. Furthermore, 121 (43.52%), 44 (15.83%), 36 (12.95%), 33 (11.87%), 23 (8.27%), 10 (3.60%) patients were diagnosed as infection with malaria, HIV, Lassa fever, tuberculosis, yellow fever, and pneumonia, respectively. No significant differences in clinical features and symptoms were found between non-EVD and EVD patients. To the best of our knowledge, the present study is the first to explore the etiology of EVD-like illnesses in uninfected patients in Sierra Leone, highlighting the importance of accurate diagnosis to EVD confirmation.

  12. Ebola Virus

    Directory of Open Access Journals (Sweden)

    Anusha Rangare Lakshman

    2015-09-01

    Full Text Available The disease Ebola takes its name from the Ebola River situated near a village in the Democratic Republic of Congo, where the disease first appeared in 1976. It is caused by a virus from the Filoviridae family (filovirus. The present outbreak of Ebola Virus Disease (EVD concerns four countries in West Africa, namely Guinea, Liberia, Sierra Leone and Nigeria till date. Further to widespread transmission of the disease, it has been declared as a Public Health Emergency of International Concern by the World Health Organisation on 8 August 2014. As of 4 August 2014, countries have reported 1,711 cases (1,070 confirmed, 436 probable, 205 suspect, including 932 deaths. This review paper enlightens about the awareness of Ebola virus and its preventive measures. [Archives Medical Review Journal 2015; 24(3.000: 296-305

  13. Development of Lentivirus-Based Reference Materials for Ebola Virus Nucleic Acid Amplification Technology-Based Assays.

    Science.gov (United States)

    Mattiuzzo, Giada; Ashall, James; Doris, Kathryn S; MacLellan-Gibson, Kirsty; Nicolson, Carolyn; Wilkinson, Dianna E; Harvey, Ruth; Almond, Neil; Anderson, Robert; Efstathiou, Stacey; Minor, Philip D; Page, Mark

    2015-01-01

    The 2013-present Ebola virus outbreak in Western Africa has prompted the production of many diagnostic assays, mostly based on nucleic acid amplification technologies (NAT). The calibration and performance assessment of established assays and those under evaluation requires reference materials that can be used in parallel with the clinical sample to standardise or control for every step of the procedure, from extraction to the final qualitative/quantitative result. We have developed safe and stable Ebola virus RNA reference materials by encapsidating anti sense viral RNA into HIV-1-like particles. The lentiviral particles are replication-deficient and non-infectious due to the lack of HIV-1 genes and Envelope protein. Ebola virus genes were subcloned for encapsidation into two lentiviral preparations, one containing NP-VP35-GP and the other VP40 and L RNA. Each reference material was formulated as a high-titre standard for use as a calibrator for secondary or internal standards, and a 10,000-fold lower titre preparation to serve as an in-run control. The preparations have been freeze-dried to maximise stability. These HIV-Ebola virus RNA reference materials were suitable for use with in-house and commercial quantitative RT-PCR assays and with digital RT-PCR. The HIV-Ebola virus RNA reference materials are stable at up to 37°C for two weeks, allowing the shipment of the material worldwide at ambient temperature. These results support further evaluation of the HIV-Ebola virus RNA reference materials as part of an International collaborative study for the establishment of the 1st International Standard for Ebola virus RNA.

  14. Development of Lentivirus-Based Reference Materials for Ebola Virus Nucleic Acid Amplification Technology-Based Assays.

    Directory of Open Access Journals (Sweden)

    Giada Mattiuzzo

    Full Text Available The 2013-present Ebola virus outbreak in Western Africa has prompted the production of many diagnostic assays, mostly based on nucleic acid amplification technologies (NAT. The calibration and performance assessment of established assays and those under evaluation requires reference materials that can be used in parallel with the clinical sample to standardise or control for every step of the procedure, from extraction to the final qualitative/quantitative result. We have developed safe and stable Ebola virus RNA reference materials by encapsidating anti sense viral RNA into HIV-1-like particles. The lentiviral particles are replication-deficient and non-infectious due to the lack of HIV-1 genes and Envelope protein. Ebola virus genes were subcloned for encapsidation into two lentiviral preparations, one containing NP-VP35-GP and the other VP40 and L RNA. Each reference material was formulated as a high-titre standard for use as a calibrator for secondary or internal standards, and a 10,000-fold lower titre preparation to serve as an in-run control. The preparations have been freeze-dried to maximise stability. These HIV-Ebola virus RNA reference materials were suitable for use with in-house and commercial quantitative RT-PCR assays and with digital RT-PCR. The HIV-Ebola virus RNA reference materials are stable at up to 37°C for two weeks, allowing the shipment of the material worldwide at ambient temperature. These results support further evaluation of the HIV-Ebola virus RNA reference materials as part of an International collaborative study for the establishment of the 1st International Standard for Ebola virus RNA.

  15. Postmortem stability of Ebola virus.

    Science.gov (United States)

    Prescott, Joseph; Bushmaker, Trenton; Fischer, Robert; Miazgowicz, Kerri; Judson, Seth; Munster, Vincent J

    2015-05-01

    The ongoing Ebola virus outbreak in West Africa has highlighted questions regarding stability of the virus and detection of RNA from corpses. We used Ebola virus-infected macaques to model humans who died of Ebola virus disease. Viable virus was isolated <7 days posteuthanasia; viral RNA was detectable for 10 weeks.

  16. A heterologous prime-boost Ebola virus vaccine regimen induces durable neutralizing antibody response and prevents Ebola virus-like particle entry in mice.

    Science.gov (United States)

    Chen, Tan; Li, Dapeng; Song, Yufeng; Yang, Xi; Liu, Qingwei; Jin, Xia; Zhou, Dongming; Huang, Zhong

    2017-09-01

    Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Treatment of ebola virus disease.

    Science.gov (United States)

    Kilgore, Paul E; Grabenstein, John D; Salim, Abdulbaset M; Rybak, Michael

    2015-01-01

    In March 2014, the largest Ebola outbreak in history exploded across West Africa. As of November 14, 2014, the World Health Organization has reported a total of 21,296 Ebola virus disease (EVD) cases, including 13,427 laboratory-confirmed EVD cases reported from the three most affected countries (Guinea, Liberia, and Sierra Leone). As the outbreak of EVD has spread, clinical disease severity and national EVD case-fatality rates have remained high (21.2-60.8%). Prior to 2013, several EVD outbreaks were controlled by using routine public health interventions; however, the widespread nature of the current EVD outbreak as well as cultural practices in the affected countries have challenged even the most active case identification efforts. In addition, although treatment centers provide supportive care, no effective therapeutic agents are available for EVD-endemic countries. The ongoing EVD outbreak has stimulated investigation of several different therapeutic strategies that target specific viral structures and mechanisms of Ebola viruses. Six to eight putative pharmacotherapies or immunologically based treatments have demonstrated promising results in animal studies. In addition, agents composed of small interfering RNAs targeting specific proteins of Ebola viruses, traditional hyperimmune globulin isolated from Ebola animal models, monoclonal antibodies, and morpholino oligomers (small molecules used to block viral gene expression). A number of EVD therapeutic agents are now entering accelerated human trials in EVD-endemic countries. The goal of therapeutic agent development includes postexposure prevention and EVD cure. As knowledge of Ebola virus virology and pathogenesis grows, it is likely that new therapeutic tools will be developed. Deployment of novel Ebola therapies will require unprecedented cooperation as well as investment to ensure that therapeutic tools become available to populations at greatest risk for EVD and its complications. In this article, we

  18. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus.

    Science.gov (United States)

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A; Fraser, Mark E; Scott, Jordan L; Soni, Smita P; Jones, Keaton R; Digman, Michelle A; Gratton, Enrico; Tessier, Charles R; Stahelin, Robert V

    2015-09-01

    Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. Copyright © 2015, American

  19. Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing.

    Science.gov (United States)

    Shrivastava-Ranjan, Punya; Flint, Mike; Bergeron, Éric; McElroy, Anita K; Chatterjee, Payel; Albariño, César G; Nichol, Stuart T; Spiropoulou, Christina F

    2018-05-01

    Ebola virus (EBOV) infection is a major public health concern due to high fatality rates and limited effective treatments. Statins, widely used cholesterol-lowering drugs, have pleiotropic mechanisms of action and were suggested as potential adjunct therapy for Ebola virus disease (EVD) during the 2013-2016 outbreak in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV infection in vitro Statin treatment decreased infectious EBOV production in primary human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin treatment did not interfere with viral entry, but the viral particles released from treated cells showed reduced infectivity due to inhibition of viral glycoprotein processing, as evidenced by decreased ratios of the mature glycoprotein form to precursor form. Statin-induced inhibition of infectious virus production and glycoprotein processing was reversed by exogenous mevalonate, the rate-limiting product of the cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-treated cells produced EBOV particles devoid of the surface glycoproteins required for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV infection and suggest that the efficacy of statin treatment should be evaluated in appropriate animal models of EVD. IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, expensive, and scarce. Statins are inexpensive generic drugs that have been used for many years for the treatment of hypercholesterolemia and have a favorable safety profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV) production. Our study reveals a novel molecular mechanism in which statin regulates EBOV particle infectivity by preventing glycoprotein processing and incorporation into virus particles. Additionally, statins have anti-inflammatory and immunomodulatory effects. Since inflammation and dysregulation of the immune

  20. Plasmodium Parasitemia Associated With Increased Survival in Ebola Virus-Infected Patients.

    Science.gov (United States)

    Rosenke, Kyle; Adjemian, Jennifer; Munster, Vincent J; Marzi, Andrea; Falzarano, Darryl; Onyango, Clayton O; Ochieng, Melvin; Juma, Bonventure; Fischer, Robert J; Prescott, Joseph B; Safronetz, David; Omballa, Victor; Owuor, Collins; Hoenen, Thomas; Groseth, Allison; Martellaro, Cynthia; van Doremalen, Neeltje; Zemtsova, Galina; Self, Joshua; Bushmaker, Trenton; McNally, Kristin; Rowe, Thomas; Emery, Shannon L; Feldmann, Friederike; Williamson, Brandi N; Best, Sonja M; Nyenswah, Tolbert G; Grolla, Allen; Strong, James E; Kobinger, Gary; Bolay, Fatorma K; Zoon, Kathryn C; Stassijns, Jorgen; Giuliani, Ruggero; de Smet, Martin; Nichol, Stuart T; Fields, Barry; Sprecher, Armand; Massaquoi, Moses; Feldmann, Heinz; de Wit, Emmie

    2016-10-15

    The ongoing Ebola outbreak in West Africa has resulted in 28 646 suspected, probable, and confirmed Ebola virus infections. Nevertheless, malaria remains a large public health burden in the region affected by the outbreak. A joint Centers for Disease Control and Prevention/National Institutes of Health diagnostic laboratory was established in Monrovia, Liberia, in August 2014, to provide laboratory diagnostics for Ebola virus. All blood samples from suspected Ebola virus-infected patients admitted to the Médecins Sans Frontières ELWA3 Ebola treatment unit in Monrovia were tested by quantitative real-time polymerase chain reaction for the presence of Ebola virus and Plasmodium species RNA. Clinical outcome in laboratory-confirmed Ebola virus-infected patients was analyzed as a function of age, sex, Ebola viremia, and Plasmodium species parasitemia. The case fatality rate of 1182 patients with laboratory-confirmed Ebola virus infections was 52%. The probability of surviving decreased with increasing age and decreased with increasing Ebola viral load. Ebola virus-infected patients were 20% more likely to survive when Plasmodium species parasitemia was detected, even after controlling for Ebola viral load and age; those with the highest levels of parasitemia had a survival rate of 83%. This effect was independent of treatment with antimalarials, as this was provided to all patients. Moreover, treatment with antimalarials did not affect survival in the Ebola virus mouse model. Plasmodium species parasitemia is associated with an increase in the probability of surviving Ebola virus infection. More research is needed to understand the molecular mechanism underlying this remarkable phenomenon and translate it into treatment options for Ebola virus infection. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. Particle-to-PFU ratio of Ebola virus influences disease course and survival in cynomolgus macaques.

    Science.gov (United States)

    Alfson, Kendra J; Avena, Laura E; Beadles, Michael W; Staples, Hilary; Nunneley, Jerritt W; Ticer, Anysha; Dick, Edward J; Owston, Michael A; Reed, Christopher; Patterson, Jean L; Carrion, Ricardo; Griffiths, Anthony

    2015-07-01

    This study addresses the role of Ebola virus (EBOV) specific infectivity in virulence. Filoviruses are highly lethal, enveloped, single-stranded negative-sense RNA viruses that can cause hemorrhagic fever. No approved vaccines or therapies exist for filovirus infections, and infectious virus must be handled in maximum containment. Efficacy testing of countermeasures, in addition to investigations of pathogenicity and immune response, often requires a well-characterized animal model. For EBOV, an obstacle in performing accurate disease modeling is a poor understanding of what constitutes an infectious dose in animal models. One well-recognized consequence of viral passage in cell culture is a change in specific infectivity, often measured as a particle-to-PFU ratio. Here, we report that serial passages of EBOV in cell culture resulted in a decrease in particle-to-PFU ratio. Notably, this correlated with decreased potency in a lethal cynomolgus macaque (Macaca fascicularis) model of infection; animals were infected with the same viral dose as determined by plaque assay, but animals that received more virus particles exhibited increased disease. This suggests that some particles are unable to form a plaque in a cell culture assay but are able to result in lethal disease in vivo. These results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures. Ebola virus (EBOV) can cause severe hemorrhagic disease with a high case-fatality rate, and there are no approved vaccines or therapies. Specific infectivity can be considered the total number of viral particles per PFU, and its impact on disease is poorly understood. In stocks of most mammalian viruses, there are particles that are unable to complete an infectious cycle or unable to cause cell pathology in cultured cells. We asked if these particles cause disease in nonhuman primates by infecting monkeys with equal infectious doses of genetically identical stocks

  2. Ebola Virus RNA in Semen from an HIV-Positive Survivor of Ebola.

    Science.gov (United States)

    Purpura, Lawrence J; Rogers, Emerson; Baller, April; White, Stephen; Soka, Moses; Choi, Mary J; Mahmoud, Nuha; Wasunna, Christine; Massaquoi, Moses; Kollie, Jomah; Dweh, Straker; Bemah, Philip; Ladele, Victor; Kpaka, Jonathan; Jawara, Mary; Mugisha, Margaret; Subah, Onyekachi; Faikai, Mylene; Bailey, Jeff A; Rollin, Pierre; Marston, Barbara; Nyenswah, Tolbert; Gasasira, Alex; Knust, Barbara; Nichol, Stuart; Williams, Desmond

    2017-04-01

    Ebola virus is known to persist in semen of male survivors of Ebola virus disease (EVD). However, maximum duration of, or risk factors for, virus persistence are unknown. We report an EVD survivor with preexisting HIV infection, whose semen was positive for Ebola virus RNA 565 days after recovery from EVD.

  3. The organisation of Ebola virus reveals a capacity for extensive, modular polyploidy.

    Directory of Open Access Journals (Sweden)

    Daniel R Beniac

    Full Text Available BACKGROUND: Filoviruses, including Ebola virus, are unusual in being filamentous animal viruses. Structural data on the arrangement, stoichiometry and organisation of the component molecules of filoviruses has until now been lacking, partially due to the need to work under level 4 biological containment. The present study provides unique insights into the structure of this deadly pathogen. METHODOLOGY AND PRINCIPAL FINDINGS: We have investigated the structure of Ebola virus using a combination of cryo-electron microscopy, cryo-electron tomography, sub-tomogram averaging, and single particle image processing. Here we report the three-dimensional structure and architecture of Ebola virus and establish that multiple copies of the RNA genome can be packaged to produce polyploid virus particles, through an extreme degree of length polymorphism. We show that the helical Ebola virus inner nucleocapsid containing RNA and nucleoprotein is stabilized by an outer layer of VP24-VP35 bridges. Elucidation of the structure of the membrane-associated glycoprotein in its native state indicates that the putative receptor-binding site is occluded within the molecule, while a major neutralizing epitope is exposed on its surface proximal to the viral envelope. The matrix protein VP40 forms a regular lattice within the envelope, although its contacts with the nucleocapsid are irregular. CONCLUSIONS: The results of this study demonstrate a modular organization in Ebola virus that accommodates a well-ordered, symmetrical nucleocapsid within a flexible, tubular membrane envelope.

  4. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment.

    Science.gov (United States)

    Sakurai, Yasuteru; Kolokoltsov, Andrey A; Chen, Cheng-Chang; Tidwell, Michael W; Bauta, William E; Klugbauer, Norbert; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Davey, Robert A

    2015-02-27

    Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy. Copyright © 2015, American Association for the Advancement of Science.

  5. The Ebola contagion and forecasting virus: evidence from four African countries.

    Science.gov (United States)

    Nadhem, Selmi; Nejib, Hachicha D

    2015-12-01

    This paper is focused on examining the number of deaths' increases participation in the propagating the Ebola virus during the period ranging from March to October 2014. An application of the MGARCH-DCC model regressions on four countries has led to discover that the finding that human contact play a significant role in transmitting the Ebola virus. Our findings also reveal that Guinea has already suffered from a spread-like virus originating from Sierra Lione and Liberia. Noteworthy also, other countries are now liable to such a risk; for instance, Nigeria is a country vulnerable to the propagation of this virus. Consequently, we undertake to conduct our forecasts for EGARCH model estimates implements; which has estimated a decrease in the Ebola virus incurred number of deadly Ebola virus over the two months following the November and December.

  6. Interferon-γ Inhibits Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Bethany A Rhein

    Full Text Available Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  7. Interferon-γ Inhibits Ebola Virus Infection.

    Science.gov (United States)

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  8. A Rapid Screen for Host-Encoded miRNAs with Inhibitory Effects against Ebola Virus Using a Transcription- and Replication-Competent Virus-Like Particle System

    Directory of Open Access Journals (Sweden)

    Zhongyi Wang

    2018-05-01

    Full Text Available MicroRNAs (miRNAs may become efficient antiviral agents against the Ebola virus (EBOV targeting viral genomic RNAs or transcripts. We previously conducted a genome-wide search for differentially expressed miRNAs during viral replication and transcription. In this study, we established a rapid screen for miRNAs with inhibitory effects against EBOV using a tetracistronic transcription- and replication-competent virus-like particle (trVLP system. This system uses a minigenome comprising an EBOV leader region, luciferase reporter, VP40, GP, VP24, EBOV trailer region, and three noncoding regions from the EBOV genome and can be used to model the life cycle of EBOV under biosafety level (BSL 2 conditions. Informatic analysis was performed to select up-regulated miRNAs targeting the coding regions of the minigenome with the highest binding energy to perform inhibitory effect screening. Among these miRNAs, miR-150-3p had the most significant inhibitory effect. Reverse transcription polymerase chain reaction (RT-PCR, Western blot, and double fluorescence reporter experiments demonstrated that miR-150-3p inhibited the reproduction of trVLPs via the regulation of GP and VP40 expression by directly targeting the coding regions of GP and VP40. This novel, rapid, and convenient screening method will efficiently facilitate the exploration of miRNAs against EBOV under BSL-2 conditions.

  9. Recent advances on Ebola virus

    Directory of Open Access Journals (Sweden)

    Yasir Waheed

    2017-02-01

    Full Text Available The 2014–2015 Ebola epidemic in West Africa was the largest of its kind, with more than 11 000 deaths and 28 637 cases. The epidemic mobilized a coalition of countries from US to China, European Union, and African countries. The international community was not prepared to face this unprecedented epidemic. Numbers of research groups are working to find a potent vaccine against Ebola. Ebola virus has the ability to dodge the immune system either by blocking interferon production or by glycoprotein-based immune diversion. Individuals who survived from the Ebola virus are facing different health issues after the infection. The rate of miscarriage is also high in Ebola survivors while there are variable reports of the presence of Ebola virus in semen of Ebola survivors. There are many asymptomatic Ebola patients under consideration. West African countries lack the basic healthcare system, for which the actual number of deaths by the Ebola outbreak are much more than the deaths caused by the direct viral infection. The hospitals were empty due to fear and death of nurses and doctors. Millions of children missed the vaccine against measles. Hundreds of thousands of people could not get food. The Ebola epidemic also affected the mental health of people living in endemic countries. The families affected by Ebola are facing discrimination in the society. There is a dire need to adopt United Nations Sustainable Development Goal 3, which stresses to prepare ourselves to face any national or global health risk.

  10. Ebola virus disease: past, present and future

    Directory of Open Access Journals (Sweden)

    Harish Rajak

    2015-05-01

    Full Text Available Ebola virus disease is one of the most deadly ailments known to mankind due to its high mortality rate (up to 90% accompanying with the disease. Ebola haemorrhagic fever (EHF is an infectious disease of animal that can be transmitted to both human and non-human primates. The first epidemic of EHF occurred in 1976 in the Democratic Republic of the Congo. The incubation period of ebola is less than 21 days. Ebola virus infections are depicted by immune suppression and a systemic inflammatory response that leads to damage of the vascular, coagulation and immune systems, causing multi-organ failure and shock. Five genetically distinct members of the Filoviridae family responsible for EHF are as follows: Zaire ebolavirus, Sudan ebolavirus, Côte d’Ivoire ebolavirus, Bundibugyo ebolavirus and Reston ebolavirus. The ongoing 2014 West Africa ebola epidemic has been considered as the most serious panic in the medical field with respect to both the number of human cases and death toll. The natural host for ebola virus is unknown, thus it is not possible to carry out programs to regulate or abolish virus from transmission to people. The ebola virus infection provides little chance to develop acquired immunity causing rapid progression of the disease. It is pertinent to mention that at present, there is no antiviral therapy or vaccine that is helpful against ebola virus infection in humans. The impediment of EHF necessitates much better understanding of the epidemiology of the disease, particularly the role of wildlife, as well as bats, in the spread of ebola virus to humans.

  11. A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity.

    Science.gov (United States)

    Watt, Ari; Moukambi, Felicien; Banadyga, Logan; Groseth, Allison; Callison, Julie; Herwig, Astrid; Ebihara, Hideki; Feldmann, Heinz; Hoenen, Thomas

    2014-09-01

    Work with infectious Ebola viruses is restricted to biosafety level 4 (BSL4) laboratories, presenting a significant barrier for studying these viruses. Life cycle modeling systems, including minigenome systems and transcription- and replication-competent virus-like particle (trVLP) systems, allow modeling of the virus life cycle under BSL2 conditions; however, all current systems model only certain aspects of the virus life cycle, rely on plasmid-based viral protein expression, and have been used to model only single infectious cycles. We have developed a novel life cycle modeling system allowing continuous passaging of infectious trVLPs containing a tetracistronic minigenome that encodes a reporter and the viral proteins VP40, VP24, and GP1,2. This system is ideally suited for studying morphogenesis, budding, and entry, in addition to genome replication and transcription. Importantly, the specific infectivity of trVLPs in this system was ∼ 500-fold higher than that in previous systems. Using this system for functional studies of VP24, we showed that, contrary to previous reports, VP24 only very modestly inhibits genome replication and transcription when expressed in a regulated fashion, which we confirmed using infectious Ebola viruses. Interestingly, we also discovered a genome length-dependent effect of VP24 on particle infectivity, which was previously undetected due to the short length of monocistronic minigenomes and which is due at least partially to a previously unknown function of VP24 in RNA packaging. Based on our findings, we propose a model for the function of VP24 that reconciles all currently available data regarding the role of VP24 in nucleocapsid assembly as well as genome replication and transcription. Ebola viruses cause severe hemorrhagic fevers in humans, with no countermeasures currently being available, and must be studied in maximum-containment laboratories. Only a few of these laboratories exist worldwide, limiting our ability to study

  12. Investigating Ebola virus pathogenicity using molecular dynamics.

    Science.gov (United States)

    Pappalardo, Morena; Collu, Francesca; Macpherson, James; Michaelis, Martin; Fraternali, Franca; Wass, Mark N

    2017-08-11

    Ebolaviruses have been known to cause deadly disease in humans for 40 years and have recently been demonstrated in West Africa to be able to cause large outbreaks. Four Ebolavirus species cause severe disease associated with high mortality in humans. Reston viruses are the only Ebolaviruses that do not cause disease in humans. Conserved amino acid changes in the Reston virus protein VP24 compared to VP24 of other Ebolaviruses have been suggested to alter VP24 binding to host cell karyopherins resulting in impaired inhibition of interferon signalling, which may explain the difference in human pathogenicity. Here we used protein structural analysis and molecular dynamics to further elucidate the interaction between VP24 and KPNA5. As a control experiment, we compared the interaction of wild-type and R137A-mutant (known to affect KPNA5 binding) Ebola virus VP24 with KPNA5. Results confirmed that the R137A mutation weakens direct VP24-KPNA5 binding and enables water molecules to penetrate at the interface. Similarly, Reston virus VP24 displayed a weaker interaction with KPNA5 than Ebola virus VP24, which is likely to reduce the ability of Reston virus VP24 to prevent host cell interferon signalling. Our results provide novel molecular detail on the interaction of Reston virus VP24 and Ebola virus VP24 with human KPNA5. The results indicate a weaker interaction of Reston virus VP24 with KPNA5 than Ebola virus VP24, which is probably associated with a decreased ability to interfere with the host cell interferon response. Hence, our study provides further evidence that VP24 is a key player in determining Ebolavirus pathogenicity.

  13. An Ebola virus-centered knowledge base

    Science.gov (United States)

    Kamdar, Maulik R.; Dumontier, Michel

    2015-01-01

    Ebola virus (EBOV), of the family Filoviridae viruses, is a NIAID category A, lethal human pathogen. It is responsible for causing Ebola virus disease (EVD) that is a severe hemorrhagic fever and has a cumulative death rate of 41% in the ongoing epidemic in West Africa. There is an ever-increasing need to consolidate and make available all the knowledge that we possess on EBOV, even if it is conflicting or incomplete. This would enable biomedical researchers to understand the molecular mechanisms underlying this disease and help develop tools for efficient diagnosis and effective treatment. In this article, we present our approach for the development of an Ebola virus-centered Knowledge Base (Ebola-KB) using Linked Data and Semantic Web Technologies. We retrieve and aggregate knowledge from several open data sources, web services and biomedical ontologies. This knowledge is transformed to RDF, linked to the Bio2RDF datasets and made available through a SPARQL 1.1 Endpoint. Ebola-KB can also be explored using an interactive Dashboard visualizing the different perspectives of this integrated knowledge. We showcase how different competency questions, asked by domain users researching the druggability of EBOV, can be formulated as SPARQL Queries or answered using the Ebola-KB Dashboard. Database URL: http://ebola.semanticscience.org. PMID:26055098

  14. Recent advances in the development of vaccines for Ebola virus disease.

    Science.gov (United States)

    Ohimain, Elijah Ige

    2016-01-04

    Ebola virus is one of the most dangerous microorganisms in the world causing hemorrhagic fevers in humans and non-human primates. Ebola virus (EBOV) is a zoonotic infection, which emerges and re-emerges in human populations. The 2014 outbreak was caused by the Zaire strain, which has a kill rate of up to 90%, though 40% was recorded in the current outbreak. The 2014 outbreak is larger than all 20 outbreaks that have occurred since 1976, when the virus was first discovered. It is the first time that the virus was sustained in urban centers and spread beyond Africa into Europe and USA. Thus far, over 22,000 cases have been reported with about 50% mortality in one year. There are currently no approved therapeutics and preventive vaccines against Ebola virus disease (EVD). Responding to the devastating effe1cts of the 2014 outbreak and the potential risk of global spread, has spurred research for the development of therapeutics and vaccines. This review is therefore aimed at presenting the progress of vaccine development. Results showed that conventional inactivated vaccines produced from EBOV by heat, formalin or gamma irradiation appear to be ineffective. However, novel vaccines production techniques have emerged leading to the production of candidate vaccines that have been demonstrated to be effective in preclinical trials using small animal and non-human primates (NHP) models. Some of the promising vaccines have undergone phase 1 clinical trials, which demonstrated their safety and immunogenicity. Many of the candidate vaccines are vector based such as Vesicular Stomatitis Virus (VSV), Rabies Virus (RABV), Adenovirus (Ad), Modified Vaccinia Ankara (MVA), Cytomegalovirus (CMV), human parainfluenza virus type 3 (HPIV3) and Venezuelan Equine Encephalitis Virus (VEEV). Other platforms include virus like particle (VLP), DNA and subunit vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Possible sexual transmission of Ebola virus - Liberia, 2015.

    Science.gov (United States)

    Christie, Athalia; Davies-Wayne, Gloria J; Cordier-Lassalle, Thierry; Cordier-Lasalle, Thierry; Blackley, David J; Laney, A Scott; Williams, Desmond E; Shinde, Shivam A; Badio, Moses; Lo, Terrence; Mate, Suzanne E; Ladner, Jason T; Wiley, Michael R; Kugelman, Jeffrey R; Palacios, Gustavo; Holbrook, Michael R; Janosko, Krisztina B; de Wit, Emmie; van Doremalen, Neeltje; Munster, Vincent J; Pettitt, James; Schoepp, Randal J; Verhenne, Leen; Evlampidou, Iro; Kollie, Karsor K; Sieh, Sonpon B; Gasasira, Alex; Bolay, Fatorma; Kateh, Francis N; Nyenswah, Tolbert G; De Cock, Kevin M

    2015-05-08

    On March 20, 2015, 30 days after the most recent confirmed Ebola Virus Disease (Ebola) patient in Liberia was isolated, Ebola was laboratory confirmed in a woman in Monrovia. The investigation identified only one epidemiologic link to Ebola: unprotected vaginal intercourse with a survivor. Published reports from previous outbreaks have demonstrated Ebola survivors can continue to harbor virus in immunologically privileged sites for a period of time after convalescence. Ebola virus has been isolated from semen as long as 82 days after symptom onset and viral RNA has been detected in semen up to 101 days after symptom onset. One instance of possible sexual transmission of Ebola has been reported, although the accompanying evidence was inconclusive. In addition, possible sexual transmission of Marburg virus, a filovirus related to Ebola, was documented in 1968. This report describes the investigation by the Government of Liberia and international response partners of the source of Liberia's latest Ebola case and discusses the public health implications of possible sexual transmission of Ebola virus. Based on information gathered in this investigation, CDC now recommends that contact with semen from male Ebola survivors be avoided until more information regarding the duration and infectiousness of viral shedding in body fluids is known. If male survivors have sex (oral, vaginal, or anal), a condom should be used correctly and consistently every time.

  16. Viraemia and Ebola virus secretion in survivors of Ebola virus disease in Sierra Leone: a cross-sectional cohort study.

    Science.gov (United States)

    Green, Edward; Hunt, Luke; Ross, J C Gareth; Nissen, Nina Marie; Curran, Tanya; Badhan, Anjna; Sutherland, Katherine A; Richards, Jade; Lee, James S; Allen, Samuel H; Laird, Steven; Blackman, Mandy; Collacott, Ian; Parker, Paul A; Walbridge, Andrew; Phillips, Rebecca; Sellu, Sia Jammie; Dama, Agnes; Sheriff, Alpha Karim; Zombo, Joseph; Ngegba, Doris; Wurie, Alieh H; Checchi, Francesco; Brooks, Timothy J

    2016-09-01

    In survivors of Ebola virus disease, clinical sequelae including uveitis, arthralgia, and fatigue are common and necessitate systematic follow-up. However, the infection risk to health-care providers is poorly defined. Here we report Ebola virus RT-PCR data for body site and fluid samples from a large cohort of Ebola virus survivors at clinic follow-up. In this cross-sectional cohort study, consecutive survivors of Ebola virus disease attending Kerry Town survivor clinic (Freetown, Sierra Leone), who had been discharged from the Kerry Town Ebola treatment unit, were invited to participate. We collected and tested axillary, blood, conjunctival, forehead, mouth, rectal, semen, urine, and vaginal specimens for presence of Ebola virus using RT-PCR. We regarded samples to be positive for Ebola virus disease if the cycle threshold was 40 or lower. We collected demographic data from survivors of their age, sex, time since discharge from the treatment unit, and length of acute admission in the Ebola treatment unit using anonymised standard forms. Between April 2, and June 16, 2015, of 151 survivors of Ebola virus disease invited to participate, 112 (74%) provided consent. The median age of participants was 21·5 years (IQR 14-31·5) with 34 (30%) participants younger than 16 years. 50 (45%) of 112 participants were male. We tested a total of 555 specimens: 103 from the axilla, 93 from blood, 92 from conjunctiva, 54 from forehead, 105 from mouth, 17 from the rectum, one from semen, 69 from urine, and 21 from the vagina. The median time from Ebola treatment unit discharge to specimen collection was 142 days (IQR 127-159). 15 participants had a total of 74 swabs taken less than 100 days from discharge. The semen sample from one participant tested positive for Ebola virus at 114 days after discharge from the treatment unit; specimens taken from the axilla, blood, conjunctiva, forehead, mouth, rectum, and urine of the same participant tested negative. All specimens from the

  17. Ebola Virus Imported from Guinea to Senegal, 2014.

    Science.gov (United States)

    Ka, Daye; Fall, Gamou; Diallo, Viviane Cissé; Faye, Ousmane; Fortes, Louise Deguenonvo; Faye, Oumar; Bah, Elhadji Ibrahim; Diallo, Kadia Mbaye; Balique, Fanny; Ndour, Cheikh Tidiane; Seydi, Moussa; Sall, Amadou Alpha

    2017-06-01

    In March 2014, the World Health Organization declared an outbreak of Ebola virus disease in Guinea. In August 2014, a case caused by virus imported from Guinea occurred in Senegal, most likely resulting from nonsecure funerals and travel. Preparedness and surveillance in Senegal probably prevented secondary cases.

  18. Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus.

    Science.gov (United States)

    Karthick, V; Nagasundaram, N; Doss, C George Priya; Chakraborty, Chiranjib; Siva, R; Lu, Aiping; Zhang, Ge; Zhu, Hailong

    2016-02-17

    The Ebola virus is highly pathogenic and destructive to humans and other primates. The Ebola virus encodes viral protein 40 (VP40), which is highly expressed and regulates the assembly and release of viral particles in the host cell. Because VP40 plays a prominent role in the life cycle of the Ebola virus, it is considered as a key target for antiviral treatment. However, there is currently no FDA-approved drug for treating Ebola virus infection, resulting in an urgent need to develop effective antiviral inhibitors that display good safety profiles in a short duration. This study aimed to screen the effective lead candidate against Ebola infection. First, the lead molecules were filtered based on the docking score. Second, Lipinski rule of five and the other drug likeliness properties are predicted to assess the safety profile of the lead candidates. Finally, molecular dynamics simulations was performed to validate the lead compound. Our results revealed that emodin-8-beta-D-glucoside from the Traditional Chinese Medicine Database (TCMD) represents an active lead candidate that targets the Ebola virus by inhibiting the activity of VP40, and displays good pharmacokinetic properties. This report will considerably assist in the development of the competitive and robust antiviral agents against Ebola infection.

  19. Clinical development of Ebola vaccines

    Science.gov (United States)

    Sridhar, Saranya

    2015-01-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  20. An Ebola virus-centered knowledge base.

    Science.gov (United States)

    Kamdar, Maulik R; Dumontier, Michel

    2015-01-01

    Ebola virus (EBOV), of the family Filoviridae viruses, is a NIAID category A, lethal human pathogen. It is responsible for causing Ebola virus disease (EVD) that is a severe hemorrhagic fever and has a cumulative death rate of 41% in the ongoing epidemic in West Africa. There is an ever-increasing need to consolidate and make available all the knowledge that we possess on EBOV, even if it is conflicting or incomplete. This would enable biomedical researchers to understand the molecular mechanisms underlying this disease and help develop tools for efficient diagnosis and effective treatment. In this article, we present our approach for the development of an Ebola virus-centered Knowledge Base (Ebola-KB) using Linked Data and Semantic Web Technologies. We retrieve and aggregate knowledge from several open data sources, web services and biomedical ontologies. This knowledge is transformed to RDF, linked to the Bio2RDF datasets and made available through a SPARQL 1.1 Endpoint. Ebola-KB can also be explored using an interactive Dashboard visualizing the different perspectives of this integrated knowledge. We showcase how different competency questions, asked by domain users researching the druggability of EBOV, can be formulated as SPARQL Queries or answered using the Ebola-KB Dashboard. © The Author(s) 2015. Published by Oxford University Press.

  1. [Recent Advances in Vaccines and Drugs Against the Ebola Virus].

    Science.gov (United States)

    Zhu, Xiang; Yao, Chenguang; Wei, Yanhong; Kou, Zheng; Hu, Kanghong

    2015-05-01

    The Ebola virus belongs to the Filovirus family, which causes Ebola hemorrhagic fever (mortality, 25%-90%). An outbreak of infection by the Ebola virus is sweeping across West Africa, leading to high mortality and worldwide panic. The Ebola virus has caused a serious threat to public health, so intensive scientific studies have been carried out. Several vaccines (e.g., rVSV-ZEBOV, ChAd3-ZEBOV) have been put into clinical trials and antiviral drugs (e.g., TKM-Ebola, ZMAPP) have been administered in the emergency setting to patients infected by the Ebola virus. Here, recent advances in vaccines and drugs against the Ebola virus are reviewed.

  2. Ebola Virus Disease: A Review of Its Past and Present.

    Science.gov (United States)

    Murray, Michael J

    2015-09-01

    Ebola virus, the virus responsible for Ebola virus disease, has spawned several epidemics during the past 38 years. In 2014, an Ebola epidemic spread from Africa to other continents, becoming a pandemic. The virus's relatively unique structure, its infectivity and lethality, the difficulty in stopping its spread, and the lack of an effective treatment captured the world's attention. This article provides a brief review of the known history of Ebola virus disease, its etiology, epidemiology, and pathophysiology and a review of the limited information on managing patients with Ebola virus disease.

  3. Dynamic Phosphorylation of VP30 Is Essential for Ebola Virus Life Cycle.

    Science.gov (United States)

    Biedenkopf, Nadine; Lier, Clemens; Becker, Stephan

    2016-05-15

    Ebola virus is the causative agent of a severe fever with high fatality rates in humans and nonhuman primates. The regulation of Ebola virus transcription and replication currently is not well understood. An important factor regulating viral transcription is VP30, an Ebola virus-specific transcription factor associated with the viral nucleocapsid. Previous studies revealed that the phosphorylation status of VP30 impacts viral transcription. Together with NP, L, and the polymerase cofactor VP35, nonphosphorylated VP30 supports viral transcription. Upon VP30 phosphorylation, viral transcription ceases. Phosphorylation weakens the interaction between VP30 and the polymerase cofactor VP35 and/or the viral RNA. VP30 thereby is excluded from the viral transcription complex, simultaneously leading to increased viral replication which is supported by NP, L, and VP35 alone. Here, we use an infectious virus-like particle assay and recombinant viruses to show that the dynamic phosphorylation of VP30 is critical for the cotransport of VP30 with nucleocapsids to the sites of viral RNA synthesis, where VP30 is required to initiate primary viral transcription. We further demonstrate that a single serine residue at amino acid position 29 was sufficient to render VP30 active in primary transcription and to generate a recombinant virus with characteristics comparable to those of wild-type virus. In contrast, the rescue of a recombinant virus with a single serine at position 30 in VP30 was unsuccessful. Our results indicate critical roles for phosphorylated and dephosphorylated VP30 during the viral life cycle. The current Ebola virus outbreak in West Africa has caused more than 28,000 cases and 11,000 fatalities. Very little is known regarding the molecular mechanisms of how the Ebola virus transcribes and replicates its genome. Previous investigations showed that the transcriptional support activity of VP30 is activated upon VP30 dephosphorylation. The current study reveals that

  4. A Loop Region in the N-Terminal Domain of Ebola Virus VP40 Is Important in Viral Assembly, Budding, and Egress

    Directory of Open Access Journals (Sweden)

    Emmanuel Adu-Gyamfi

    2014-10-01

    Full Text Available Ebola virus (EBOV causes viral hemorrhagic fever in humans and can have clinical fatality rates of ~60%. The EBOV genome consists of negative sense RNA that encodes seven proteins including viral protein 40 (VP40. VP40 is the major Ebola virus matrix protein and regulates assembly and egress of infectious Ebola virus particles. It is well established that VP40 assembles on the inner leaflet of the plasma membrane of human cells to regulate viral budding where VP40 can produce virus like particles (VLPs without other Ebola virus proteins present. The mechanistic details, however, of VP40 lipid-interactions and protein-protein interactions that are important for viral release remain to be elucidated. Here, we mutated a loop region in the N-terminal domain of VP40 (Lys127, Thr129, and Asn130 and find that mutations (K127A, T129A, and N130A in this loop region reduce plasma membrane localization of VP40. Additionally, using total internal reflection fluorescence microscopy and number and brightness analysis we demonstrate these mutations greatly reduce VP40 oligomerization. Lastly, VLP assays demonstrate these mutations significantly reduce VLP release from cells. Taken together, these studies identify an important loop region in VP40 that may be essential to viral egress.

  5. Late Ebola virus relapse causing meningoencephalitis: a case report.

    Science.gov (United States)

    Jacobs, Michael; Rodger, Alison; Bell, David J; Bhagani, Sanjay; Cropley, Ian; Filipe, Ana; Gifford, Robert J; Hopkins, Susan; Hughes, Joseph; Jabeen, Farrah; Johannessen, Ingolfur; Karageorgopoulos, Drosos; Lackenby, Angie; Lester, Rebecca; Liu, Rebecca S N; MacConnachie, Alisdair; Mahungu, Tabitha; Martin, Daniel; Marshall, Neal; Mepham, Stephen; Orton, Richard; Palmarini, Massimo; Patel, Monika; Perry, Colin; Peters, S Erica; Porter, Duncan; Ritchie, David; Ritchie, Neil D; Seaton, R Andrew; Sreenu, Vattipally B; Templeton, Kate; Warren, Simon; Wilkie, Gavin S; Zambon, Maria; Gopal, Robin; Thomson, Emma C

    2016-07-30

    There are thousands of survivors of the 2014 Ebola outbreak in west Africa. Ebola virus can persist in survivors for months in immune-privileged sites; however, viral relapse causing life-threatening and potentially transmissible disease has not been described. We report a case of late relapse in a patient who had been treated for severe Ebola virus disease with high viral load (peak cycle threshold value 13.2). A 39-year-old female nurse from Scotland, who had assisted the humanitarian effort in Sierra Leone, had received intensive supportive treatment and experimental antiviral therapies, and had been discharged with undetectable Ebola virus RNA in peripheral blood. The patient was readmitted to hospital 9 months after discharge with symptoms of acute meningitis, and was found to have Ebola virus in cerebrospinal fluid (CSF). She was treated with supportive therapy and experimental antiviral drug GS-5734 (Gilead Sciences, San Francisco, Foster City, CA, USA). We monitored Ebola virus RNA in CSF and plasma, and sequenced the viral genome using an unbiased metagenomic approach. On admission, reverse transcriptase PCR identified Ebola virus RNA at a higher level in CSF (cycle threshold value 23.7) than plasma (31.3); infectious virus was only recovered from CSF. The patient developed progressive meningoencephalitis with cranial neuropathies and radiculopathy. Clinical recovery was associated with addition of high-dose corticosteroids during GS-5734 treatment. CSF Ebola virus RNA slowly declined and was undetectable following 14 days of treatment with GS-5734. Sequencing of plasma and CSF viral genome revealed only two non-coding changes compared with the original infecting virus. Our report shows that previously unanticipated, late, severe relapses of Ebola virus can occur, in this case in the CNS. This finding fundamentally redefines what is known about the natural history of Ebola virus infection. Vigilance should be maintained in the thousands of Ebola survivors

  6. Changes associated with Ebola virus adaptation to novel species.

    OpenAIRE

    Pappalardo, Morena; Reddin, Ian; Cantoni, Diego; Rossman, Jeremy S.; Michaelis, Martin; Wass, Mark N.

    2017-01-01

    Motivation: Ebola viruses are not pathogenic but can be adapted to replicate and cause disease in rodents. Here, we used a structural bioinformatics approach to analyze the mutations associated with Ebola virus adaptation to rodents to elucidate the determinants of host-specific Ebola virus pathogenicity.\\ud Results: We identified 33 different mutations associated with Ebola virus adaptation to rodents in the proteins GP, NP, L, VP24, and VP35. Only VP24, GP and NP were consistently found mut...

  7. Candidate Medical Countermeasures Targeting Ebola Virus Cell Entry

    Science.gov (United States)

    2017-03-31

    ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO. Structure of the 405 Ebola virus glycoprotein bound to an antibody from a human survivor. Nature...virus cell-entry inhibitors 21 17. Gallaher WR. Similar structural models of the transmembrane proteins of Ebola and 408 avian sarcoma viruses. Cell...85(4), 477-478 (1996). 409 18. Weissenhorn W, Carfí A, Lee K-H, Skehel JJ, Wiley DC. Crystal structure of the Ebola 410 virus membrane fusion

  8. Ebola (Ebola Virus Disease): Q&As on Transmission

    Science.gov (United States)

    ... in these fluids, but CDC and partners are working together to study how long the virus persists in ... Health, CDC, and the World Health Organization are working together to determine how long Ebola virus persists or ...

  9. Successful topical respiratory tract immunization of primates against Ebola virus.

    Science.gov (United States)

    Bukreyev, Alexander; Rollin, Pierre E; Tate, Mallory K; Yang, Lijuan; Zaki, Sherif R; Shieh, Wun-Ju; Murphy, Brian R; Collins, Peter L; Sanchez, Anthony

    2007-06-01

    Ebola virus causes outbreaks of severe viral hemorrhagic fever with high mortality in humans. The virus is highly contagious and can be transmitted by contact and by the aerosol route. These features make Ebola virus a potential weapon for bioterrorism and biological warfare. Therefore, a vaccine that induces both systemic and local immune responses in the respiratory tract would be highly beneficial. We evaluated a common pediatric respiratory pathogen, human parainfluenza virus type 3 (HPIV3), as a vaccine vector against Ebola virus. HPIV3 recombinants expressing the Ebola virus (Zaire species) surface glycoprotein (GP) alone or in combination with the nucleocapsid protein NP or with the cytokine adjuvant granulocyte-macrophage colony-stimulating factor were administered by the respiratory route to rhesus monkeys--in which HPIV3 infection is mild and asymptomatic--and were evaluated for immunogenicity and protective efficacy against a highly lethal intraperitoneal challenge with Ebola virus. A single immunization with any construct expressing GP was moderately immunogenic against Ebola virus and protected 88% of the animals against severe hemorrhagic fever and death caused by Ebola virus. Two doses were highly immunogenic, and all of the animals survived challenge and were free of signs of disease and of detectable Ebola virus challenge virus. These data illustrate the feasibility of immunization via the respiratory tract against the hemorrhagic fever caused by Ebola virus. To our knowledge, this is the first study in which topical immunization through respiratory tract achieved prevention of a viral hemorrhagic fever infection in a primate model.

  10. Persistence and clearance of Ebola virus RNA from seminal fluid of Ebola virus disease survivors: a longitudinal analysis and modelling study

    Directory of Open Access Journals (Sweden)

    Daouda Sissoko, MD

    2017-01-01

    Full Text Available Summary: Background: By January, 2016, all known transmission chains of the Ebola virus disease (EVD outbreak in west Africa had been stopped. However, there is concern about persistence of Ebola virus in the reproductive tract of men who have survived EVD. We aimed to use biostatistical modelling to describe the dynamics of Ebola virus RNA load in seminal fluid, including clearance parameters. Methods: In this longitudinal study, we recruited men who had been discharged from three Ebola treatment units in Guinea between January and July, 2015. Participants provided samples of seminal fluid at follow-up every 3–6 weeks, which we tested for Ebola virus RNA using quantitative real-time RT-PCR. Representative specimens from eight participants were then inoculated into immunodeficient mice to test for infectivity. We used a linear mixed-effect model to analyse the dynamics of virus persistence in seminal fluid over time. Findings: We enrolled 26 participants and tested 130 seminal fluid specimens; median follow up was 197 days (IQR 187–209 days after enrolment, which corresponded to 255 days (228–287 after disease onset. Ebola virus RNA was detected in 86 semen specimens from 19 (73% participants. Median duration of Ebola virus RNA detection was 158 days after onset (73–181; maximum 407 days at end of follow-up. Mathematical modelling of the quantitative time-series data showed a mean clearance rate of Ebola virus RNA from seminal fluid of −0·58 log units per month, although the clearance kinetic varied greatly between participants. Using our biostatistical model, we predict that 50% and 90% of male survivors clear Ebola virus RNA from seminal fluid at 115 days (90% prediction interval 72–160 and 294 days (212–399 after disease onset, respectively. We also predicted that the number of men positive for Ebola virus RNA in affected countries would decrease from about 50 in January 2016, to fewer than 1 person by July, 2016. Infectious

  11. Diagnosis of Ebola Virus Disease: Past, Present, and Future

    Science.gov (United States)

    Brooks, Tim J. G.

    2016-01-01

    SUMMARY Laboratory diagnosis of Ebola virus disease plays a critical role in outbreak response efforts; however, establishing safe and expeditious testing strategies for this high-biosafety-level pathogen in resource-poor environments remains extremely challenging. Since the discovery of Ebola virus in 1976 via traditional viral culture techniques and electron microscopy, diagnostic methodologies have trended toward faster, more accurate molecular assays. Importantly, technological advances have been paired with increasing efforts to support decentralized diagnostic testing capacity that can be deployed at or near the point of patient care. The unprecedented scope of the 2014-2015 West Africa Ebola epidemic spurred tremendous innovation in this arena, and a variety of new diagnostic platforms that have the potential both to immediately improve ongoing surveillance efforts in West Africa and to transform future outbreak responses have reached the field. In this review, we describe the evolution of Ebola virus disease diagnostic testing and efforts to deploy field diagnostic laboratories in prior outbreaks. We then explore the diagnostic challenges pervading the 2014-2015 epidemic and provide a comprehensive examination of novel diagnostic tests that are likely to address some of these challenges moving forward. PMID:27413095

  12. Persistence and clearance of Ebola virus RNA from seminal fluid of Ebola virus disease survivors: a longitudinal analysis and modelling study.

    Science.gov (United States)

    Sissoko, Daouda; Duraffour, Sophie; Kerber, Romy; Kolie, Jacques Seraphin; Beavogui, Abdoul Habib; Camara, Alseny-Modet; Colin, Géraldine; Rieger, Toni; Oestereich, Lisa; Pályi, Bernadett; Wurr, Stephanie; Guedj, Jeremie; Nguyen, Thi Huyen Tram; Eggo, Rosalind M; Watson, Conall H; Edmunds, W John; Bore, Joseph Akoi; Koundouno, Fara Raymond; Cabeza-Cabrerizo, Mar; Carter, Lisa L; Kafetzopoulou, Liana Eleni; Kuisma, Eeva; Michel, Janine; Patrono, Livia Victoria; Rickett, Natasha Y; Singethan, Katrin; Rudolf, Martin; Lander, Angelika; Pallasch, Elisa; Bockholt, Sabrina; Rodríguez, Estefanía; Di Caro, Antonino; Wölfel, Roman; Gabriel, Martin; Gurry, Céline; Formenty, Pierre; Keïta, Sakoba; Malvy, Denis; Carroll, Miles W; Anglaret, Xavier; Günther, Stephan

    2017-01-01

    By January, 2016, all known transmission chains of the Ebola virus disease (EVD) outbreak in west Africa had been stopped. However, there is concern about persistence of Ebola virus in the reproductive tract of men who have survived EVD. We aimed to use biostatistical modelling to describe the dynamics of Ebola virus RNA load in seminal fluid, including clearance parameters. In this longitudinal study, we recruited men who had been discharged from three Ebola treatment units in Guinea between January and July, 2015. Participants provided samples of seminal fluid at follow-up every 3-6 weeks, which we tested for Ebola virus RNA using quantitative real-time RT-PCR. Representative specimens from eight participants were then inoculated into immunodeficient mice to test for infectivity. We used a linear mixed-effect model to analyse the dynamics of virus persistence in seminal fluid over time. We enrolled 26 participants and tested 130 seminal fluid specimens; median follow up was 197 days (IQR 187-209 days) after enrolment, which corresponded to 255 days (228-287) after disease onset. Ebola virus RNA was detected in 86 semen specimens from 19 (73%) participants. Median duration of Ebola virus RNA detection was 158 days after onset (73-181; maximum 407 days at end of follow-up). Mathematical modelling of the quantitative time-series data showed a mean clearance rate of Ebola virus RNA from seminal fluid of -0·58 log units per month, although the clearance kinetic varied greatly between participants. Using our biostatistical model, we predict that 50% and 90% of male survivors clear Ebola virus RNA from seminal fluid at 115 days (90% prediction interval 72-160) and 294 days (212-399) after disease onset, respectively. We also predicted that the number of men positive for Ebola virus RNA in affected countries would decrease from about 50 in January 2016, to fewer than 1 person by July, 2016. Infectious virus was detected in 15 of 26 (58%) specimens tested in mice. Time

  13. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines.

    Science.gov (United States)

    Wool-Lewis, R J; Bates, P

    1998-04-01

    Studies analyzing Ebola virus replication have been severely hampered by the extreme pathogenicity of this virus. To permit analysis of the host range and function of the Ebola virus glycoprotein (Ebo-GP), we have developed a system for pseudotyping these glycoproteins into murine leukemia virus (MLV). This pseudotyped virus, MLV(Ebola), can be readily concentrated to titers which exceed 5 x 10(6) infectious units/ml and is effectively neutralized by antibodies specific for Ebo-GP. Analysis of MLV(Ebola) infection revealed that the host range conferred by Ebo-GP is very broad, extending to cells of a variety of species. Notably, all lymphoid cell lines tested were completely resistant to infection; we speculate that this is due to the absence of a cellular receptor for Ebo-GP on B and T cells. The generation of high-titer MLV(Ebola) pseudotypes will be useful for the analysis of immune responses to Ebola virus infection, development of neutralizing antibodies, analysis of glycoprotein function, and isolation of the cellular receptor(s) for the Ebola virus.

  14. Unusual Ebola Virus Chain of Transmission, Conakry, Guinea, 2014-2015.

    Science.gov (United States)

    Keita, Mory; Duraffour, Sophie; Loman, Nicholas J; Rambaut, Andrew; Diallo, Boubacar; Magassouba, Nfaly; Carroll, Miles W; Quick, Joshua; Sall, Amadou A; Glynn, Judith R; Formenty, Pierre; Subissi, Lorenzo; Faye, Ousmane

    2016-12-01

    In October 2015, a new case of Ebola virus disease in Guinea was detected. Case investigation, serology, and whole-genome sequencing indicated possible transmission of the virus from an Ebola virus disease survivor to another person and then to the case-patient reported here. This transmission chain over 11 months suggests slow Ebola virus evolution.

  15. ISCB Ebola Award for Important Future Research on the Computational Biology of Ebola Virus.

    Directory of Open Access Journals (Sweden)

    Peter D. Karp

    2015-01-01

    Full Text Available Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains as well as 3-D protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computational modeling of the spread of the virus, computational mining of the Ebola literature, and creation of a curated Ebola database. Taken together, such computational efforts could significantly accelerate traditional scientific approaches. In recognition of the need for important and immediate solutions from the field of computational biology against Ebola, the International Society for Computational Biology (ISCB announces a prize for an important computational advance in fighting the Ebola virus. ISCB will confer the ISCB Fight against Ebola Award, along with a prize of US$2,000, at its July 2016 annual meeting (ISCB Intelligent Systems for Molecular Biology [ISMB] 2016, Orlando, Florida.

  16. Ebola Virus Disease – Global Scenario & Bangladesh

    Directory of Open Access Journals (Sweden)

    Md Rezwanur Rahman

    2015-03-01

    Full Text Available Ebola virus disease (EVD, caused by one of the Ebola virus strains is an acute, serious illness which is often fatal when untreated. EVD, previously known as Ebola hemorrhagic fever, is a rare and deadly disease. It first appeared in 1976 in two simultaneous outbreaks, one in Nzara, Sudan, and the other in Yambuku, Democratic Republic of Congo. The latter occurred in a village near the Ebola River, from which the disease takes its name.1,2 On March 23, 2014, the World Health Organization (WHO was notified of an outbreak of EVD in Guinea. On August 8, WHO declared the epidemic to be a ‘Public health emergency of international concern’.3 The current 2014 outbreak in West Africa is the largest and most complex Ebola outbreak.1 It is to be noticed that the most severely affected countries, Guinea, Sierra Leone and Liberia have very weak health systems, lacking human and infrastructural resources and these countries recently emerged from long periods of conflict and instability.1 The virus family Filoviridae includes three genera: Cuevavirus, Marburgvirus, and Ebolavirus. Till date five species have been identified: Zaire, Bundibugyo, Sudan, Reston and Taï Forest. The recent outbreak belongs to the Zaire species which is the most lethal one, with an average case fatality rate of 78%.1,4 Till 6 December 2014, total 17,834 suspected cases and 6,678 deaths had been reported; however, WHO has said that these numbers may be vastly underestimated.5 The natural reservoir for Ebola has yet to be confirmed; however, fruit bats of the Pteropodidae family are considered to be the most likely candidate species.1,2,6 Ebola can be transmitted to human through close contact with the blood, secretions, organs or other bodily fluids of infected animals such as fruit bats, chimpanzees, gorillas, monkeys, etc. Ebola then spreads through human-to-human transmission via direct contact (through broken skin or mucous membranes with the blood, secretions, organs or

  17. Ebola virus: bioterrorism for humans

    Directory of Open Access Journals (Sweden)

    Pramodkumar Pyarelal Gupta

    2015-01-01

    Full Text Available Ebola virus disease is a severe, often fatal, zoonotic infection caused by a virus of the Filoviridae family (genus Ebolavirus. Ebola virus (EBOV spreads by human to human transmission through contacts with body fluids from infected patients. Initial stages of EBOV are non-specific which makes the differential diagnosis broad. Here in this review article we focused on to show the details of EBOV, from its first case right up to the possible targets to cure this lethal disease. In this study we have shown the statistical survey, epidemiology, disease ontology, different genes coding for different proteins in EBOV and future aspects of it.

  18. Characteristics of Filoviridae: Marburg and Ebola Viruses

    Science.gov (United States)

    Beer, Brigitte; Kurth, Reinhard; Bukreyev, Alexander

    Filoviruses are enveloped, nonsegmented negative-stranded RNA viruses. The two species, Marburg and Ebola virus, are serologically, biochemically, and genetically distinct. Marburg virus was first isolated during an outbreak in Europe in 1967, and Ebola virus emerged in 1976 as the causative agent of two simultaneous outbreaks in southern Sudan and northern Zaire. Although the main route of infection is known to be person-to-person transmission by intimate contact, the natural reservoir for filoviruses still remains a mystery.

  19. Immune barriers of Ebola virus infection.

    Science.gov (United States)

    McElroy, Anita K; Mühlberger, Elke; Muñoz-Fontela, César

    2018-02-01

    Since its initial emergence in 1976 in northern Democratic Republic of Congo (DRC), Ebola virus (EBOV) has been a global health concern due to its virulence in humans, the mystery surrounding the identity of its host reservoir and the unpredictable nature of Ebola virus disease (EVD) outbreaks. Early after the first clinical descriptions of a disease resembling a 'septic-shock-like syndrome', with coagulation abnormalities and multi-system organ failure, researchers began to evaluate the role of the host immune response in EVD pathophysiology. In this review, we summarize how data gathered during the last 40 years in the laboratory as well as in the field have provided insight into EBOV immunity. From molecular mechanisms involved in EBOV recognition in infected cells, to antigen processing and adaptive immune responses, we discuss current knowledge on the main immune barriers of infection as well as outstanding research questions. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. [Ebola virus disease: Update].

    Science.gov (United States)

    de la Calle-Prieto, Fernando; Arsuaga-Vicente, Marta; Mora-Rillo, Marta; Arnalich-Fernandez, Francisco; Arribas, Jose Ramon

    2016-01-01

    The first known Ebola outbreak occurred in 1976. Since then, 24 limited outbreaks had been reported in Central Africa, but never affecting more than 425 persons. The current outbreak in Western Africa is the largest in history with 28,220 reported cases and 11,291 deaths. The magnitude of the epidemic has caused worldwide alarm. For the first time, evacuated patients were treated outside Africa, and secondary cases have occurred in Spain and the United States. Since the start of the current epidemic, our knowledge about the epidemiology, clinical picture, laboratory findings, and virology of Ebola virus disease has considerably expanded. For the first time, experimental treatment has been tried, and there have been spectacular advances in vaccine development. A review is presented of these advances in the knowledge of Ebola virus disease. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  1. Spatiotemporal Fluctuations and Triggers of Ebola Virus Spillover.

    Science.gov (United States)

    Schmidt, John Paul; Park, Andrew W; Kramer, Andrew M; Han, Barbara A; Alexander, Laura W; Drake, John M

    2017-03-01

    Because the natural reservoir of Ebola virus remains unclear and disease outbreaks in humans have occurred only sporadically over a large region, forecasting when and where Ebola spillovers are most likely to occur constitutes a continuing and urgent public health challenge. We developed a statistical modeling approach that associates 37 human or great ape Ebola spillovers since 1982 with spatiotemporally dynamic covariates including vegetative cover, human population size, and absolute and relative rainfall over 3 decades across sub-Saharan Africa. Our model (area under the curve 0.80 on test data) shows that spillover intensity is highest during transitions between wet and dry seasons; overall, high seasonal intensity occurs over much of tropical Africa; and spillover intensity is greatest at high (>1,000/km 2 ) and very low (Ebola spillover from wild reservoirs and indicate particular times and regions for targeted surveillance.

  2. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses.

    Science.gov (United States)

    Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Hoenen, Thomas; Zimmer, Gert; Marz, Manja; Weber, Friedemann; Müller, Marcel A; Kochs, Georg

    2017-08-01

    Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity

  3. Structure of an antibody in complex with its mucin domain linear epitope that is protective against Ebola virus.

    Science.gov (United States)

    Olal, Daniel; Kuehne, Ana I; Bale, Shridhar; Halfmann, Peter; Hashiguchi, Takao; Fusco, Marnie L; Lee, Jeffrey E; King, Liam B; Kawaoka, Yoshihiro; Dye, John M; Saphire, Erica Ollmann

    2012-03-01

    Antibody 14G7 is protective against lethal Ebola virus challenge and recognizes a distinct linear epitope in the prominent mucin-like domain of the Ebola virus glycoprotein GP. The structure of 14G7 in complex with its linear peptide epitope has now been determined to 2.8 Å. The structure shows that this GP sequence forms a tandem β-hairpin structure that binds deeply into a cleft in the antibody-combining site. A key threonine at the apex of one turn is critical for antibody interaction and is conserved among all Ebola viruses. This work provides further insight into the mechanism of protection by antibodies that target the protruding, highly accessible mucin-like domain of Ebola virus and the structural framework for understanding and characterizing candidate immunotherapeutics.

  4. Ebola virus vaccines: an overview of current approaches

    Science.gov (United States)

    Marzi, Andrea; Feldmann, Heinz

    2016-01-01

    Ebola hemorrhagic fever is one of the most fatal viral diseases worldwide affecting humans and nonhuman primates. Although infections only occur frequently in Central Africa, the virus has the potential to spread globally and is classified as a category A pathogen that could be misused as a bioterrorism agent. As of today there is no vaccine or treatment licensed to counteract Ebola virus infections. DNA, subunit and several viral vector approaches, replicating and non-replicating, have been tested as potential vaccine platforms and their protective efficacy has been evaluated in nonhuman primate models for Ebola virus infections, which closely resemble disease progression in humans. Though these vaccine platforms seem to confer protection through different mechanisms, several of them are efficacious against lethal disease in nonhuman primates attesting that vaccination against Ebola virus infections is feasible. PMID:24575870

  5. Ebola virus VP35 blocks stress granule assembly.

    Science.gov (United States)

    Le Sage, Valerie; Cinti, Alessandro; McCarthy, Stephen; Amorim, Raquel; Rao, Shringar; Daino, Gian Luca; Tramontano, Enzo; Branch, Donald R; Mouland, Andrew J

    2017-02-01

    Stress granules (SGs) are dynamic cytoplasmic aggregates of translationally silenced mRNAs that assemble in response to environmental stress. SGs appear to play an important role in antiviral innate immunity and many viruses have evolved to block or subvert SGs components for their own benefit. Here, we demonstrate that intracellular Ebola virus (EBOV) replication and transcription-competent virus like particles (trVLP) infection does not lead to SG assembly but leads to a blockade to Arsenite-induced SG assembly. Moreover we show that EBOV VP35 represses the assembly of canonical and non-canonical SGs induced by a variety of pharmacological stresses. This SG blockade requires, at least in part, the C-terminal domain of VP35. Furthermore, results from our co-immunoprecipitation studies indicate that VP35 interacts with multiple SG components, including G3BP1, eIF3 and eEF2 through a stress- and RNA-independent mechanism. These data suggest a novel function for EBOV VP35 in the repression of SG assembly. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Ebola virus: A gap in drug design and discovery - experimental and computational perspective.

    Science.gov (United States)

    Balmith, Marissa; Faya, Mbuso; Soliman, Mahmoud E S

    2017-03-01

    The Ebola virus, formally known as the Ebola hemorrhagic fever, is an acute viral syndrome causing sporadic outbreaks that have ravaged West Africa. Due to its extreme virulence and highly transmissible nature, Ebola has been classified as a category A bioweapon organism. Only recently have vaccine or drug regimens for the Ebola virus been developed, including Zmapp and peptides. In addition, existing drugs which have been repurposed toward anti-Ebola virus activity have been re-examined and are seen to be promising candidates toward combating Ebola. Drug development involving computational tools has been widely employed toward target-based drug design. Screening large libraries have greatly stimulated research toward effective anti-Ebola virus drug regimens. Current emphasis has been placed on the investigation of host proteins and druggable viral targets. There is a huge gap in the literature regarding guidelines in the discovery of Ebola virus inhibitors, which may be due to the lack of information on the Ebola drug targets, binding sites, and mechanism of action of the virus. This review focuses on Ebola virus inhibitors, drugs which could be repurposed to combat the Ebola virus, computational methods which study drug-target interactions as well as providing further insight into the mode of action of the Ebola virus. © 2016 John Wiley & Sons A/S.

  7. Recent advances on Ebola virus

    OpenAIRE

    Yasir Waheed; Mehreen Tahir; Hasnain Waheed; Sher Zaman Safi

    2017-01-01

    The 2014–2015 Ebola epidemic in West Africa was the largest of its kind, with more than 11 000 deaths and 28 637 cases. The epidemic mobilized a coalition of countries from US to China, European Union, and African countries. The international community was not prepared to face this unprecedented epidemic. Numbers of research groups are working to find a potent vaccine against Ebola. Ebola virus has the ability to dodge the immune system either by blocking interferon production ...

  8. Ebola Virus Disease

    Centers for Disease Control (CDC) Podcasts

    This podcast provides general information about Ebola virus disease and the outbreak in West Africa. The program contains remarks from CDC Director Dr. Tom Frieden, as well as a brief description of CDC’s response efforts.

  9. Reidentification of Ebola Virus E718 and ME as Ebola Virus/H.sapiens-tc/COD/1976/Yambuku-Ecran.

    Science.gov (United States)

    Kuhn, Jens H; Lofts, Loreen L; Kugelman, Jeffrey R; Smither, Sophie J; Lever, Mark S; van der Groen, Guido; Johnson, Karl M; Radoshitzky, Sheli R; Bavari, Sina; Jahrling, Peter B; Towner, Jonathan S; Nichol, Stuart T; Palacios, Gustavo

    2014-11-20

    Ebola virus (EBOV) was discovered in 1976 around Yambuku, Zaire. A lack of nomenclature standards resulted in a variety of designations for each isolate, leading to confusion in the literature and databases. We sequenced the genome of isolate E718/ME/Ecran and unified the various designations under Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Ecran. Copyright © 2014 Kuhn et al.

  10. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    International Nuclear Information System (INIS)

    Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike; Zhang Liqun; Yang Lijuan; Ward, Jerrold M.; Dorward, David W.; Pickles, Raymond J.; Murphy, Brian R.; Feldmann, Heinz; Collins, Peter L.

    2009-01-01

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/ΔF-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/ΔF-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface, the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/ΔF-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV

  11. Wave-like spread of Ebola Zaire.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available In the past decade the Zaire strain of Ebola virus (ZEBOV has emerged repeatedly into human populations in central Africa and caused massive die-offs of gorillas and chimpanzees. We tested the view that emergence events are independent and caused by ZEBOV variants that have been long resident at each locality. Phylogenetic analyses place the earliest known outbreak at Yambuku, Democratic Republic of Congo, very near to the root of the ZEBOV tree, suggesting that viruses causing all other known outbreaks evolved from a Yambuku-like virus after 1976. The tendency for earlier outbreaks to be directly ancestral to later outbreaks suggests that outbreaks are epidemiologically linked and may have occurred at the front of an advancing wave. While the ladder-like phylogenetic structure could also bear the signature of positive selection, our statistical power is too weak to reach a conclusion in this regard. Distances among outbreaks indicate a spread rate of about 50 km per year that remains consistent across spatial scales. Viral evolution is clocklike, and sequences show a high level of small-scale spatial structure. Genetic similarity decays with distance at roughly the same rate at all spatial scales. Our analyses suggest that ZEBOV has recently spread across the region rather than being long persistent at each outbreak locality. Controlling the impact of Ebola on wild apes and human populations may be more feasible than previously recognized.

  12. Effective treatment strategies against Ebola virus

    Directory of Open Access Journals (Sweden)

    Amina Yaqoob

    2015-08-01

    Full Text Available Ebola virus (EBOV, a member of order Mononegavirales is most famous for causing the endemics of hemorrhagic fever in different countries of the world. Various effective treatment for EBOV are available presently but different clinical trials and experimental studies on animal models are ongoing for this purpose. Results from different studies showed that selective vaccines and therapeutic drugs have potential to interfere the viral life events within host cell in order to inhibit its replication. Various pre-clinical trials in this regard are proved successful on non-human primates (NHPs and found to be significant in inhibiting EBOV infections. It is the need of hour to develop effective vaccines against Ebola virus to combat this problem as soon as possible. The present article is a brief review on potential treatment strategies against Ebola virus.

  13. Human Ebola virus infection results in substantial immune activation.

    Science.gov (United States)

    McElroy, Anita K; Akondy, Rama S; Davis, Carl W; Ellebedy, Ali H; Mehta, Aneesh K; Kraft, Colleen S; Lyon, G Marshall; Ribner, Bruce S; Varkey, Jay; Sidney, John; Sette, Alessandro; Campbell, Shelley; Ströher, Ute; Damon, Inger; Nichol, Stuart T; Spiropoulou, Christina F; Ahmed, Rafi

    2015-04-14

    Four Ebola patients received care at Emory University Hospital, presenting a unique opportunity to examine the cellular immune responses during acute Ebola virus infection. We found striking activation of both B and T cells in all four patients. Plasmablast frequencies were 10-50% of B cells, compared with less than 1% in healthy individuals. Many of these proliferating plasmablasts were IgG-positive, and this finding coincided with the presence of Ebola virus-specific IgG in the serum. Activated CD4 T cells ranged from 5 to 30%, compared with 1-2% in healthy controls. The most pronounced responses were seen in CD8 T cells, with over 50% of the CD8 T cells expressing markers of activation and proliferation. Taken together, these results suggest that all four patients developed robust immune responses during the acute phase of Ebola virus infection, a finding that would not have been predicted based on our current assumptions about the highly immunosuppressive nature of Ebola virus. Also, quite surprisingly, we found sustained immune activation after the virus was cleared from the plasma, observed most strikingly in the persistence of activated CD8 T cells, even 1 mo after the patients' discharge from the hospital. These results suggest continued antigen stimulation after resolution of the disease. From these convalescent time points, we identified CD4 and CD8 T-cell responses to several Ebola virus proteins, most notably the viral nucleoprotein. Knowledge of the viral proteins targeted by T cells during natural infection should be useful in designing vaccines against Ebola virus.

  14. Unusual Ebola Virus Chain of Transmission, Conakry, Guinea, 2014–2015

    Science.gov (United States)

    Keita, Mory; Duraffour, Sophie; Loman, Nicholas J.; Rambaut, Andrew; Diallo, Boubacar; Magassouba, Nfaly; Carroll, Miles W.; Quick, Joshua; Sall, Amadou A.; Glynn, Judith R.; Formenty, Pierre; Faye, Ousmane

    2016-01-01

    In October 2015, a new case of Ebola virus disease in Guinea was detected. Case investigation, serology, and whole-genome sequencing indicated possible transmission of the virus from an Ebola virus disease survivor to another person and then to the case-patient reported here. This transmission chain over 11 months suggests slow Ebola virus evolution. PMID:27869596

  15. Characterization of Ebola Virus Entry by Using Pseudotyped Viruses: Identification of Receptor-Deficient Cell Lines

    OpenAIRE

    Wool-Lewis, Rouven J.; Bates, Paul

    1998-01-01

    Studies analyzing Ebola virus replication have been severely hampered by the extreme pathogenicity of this virus. To permit analysis of the host range and function of the Ebola virus glycoprotein (Ebo-GP), we have developed a system for pseudotyping these glycoproteins into murine leukemia virus (MLV). This pseudotyped virus, MLV(Ebola), can be readily concentrated to titers which exceed 5 × 106 infectious units/ml and is effectively neutralized by antibodies specific for Ebo-GP. Analysis of ...

  16. Virus genomes reveal factors that spread and sustained the Ebola epidemic

    DEFF Research Database (Denmark)

    Dudas, Gytis; Carvalho, Luiz Max; Bedford, Trevor

    2017-01-01

    The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. ...

  17. Ebola Virus Shedding and Transmission: Review of Current Evidence.

    Science.gov (United States)

    Vetter, Pauline; Fischer, William A; Schibler, Manuel; Jacobs, Michael; Bausch, Daniel G; Kaiser, Laurent

    2016-10-15

     The magnitude of the 2013-2016 Ebola virus disease outbreak in West Africa was unprecedented, with >28 500 reported cases and >11 000 deaths. Understanding the key elements of Ebola virus transmission is necessary to implement adequate infection prevention and control measures to protect healthcare workers and halt transmission in the community.  We performed an extensive PubMed literature review encompassing the period from discovery of Ebola virus, in 1976, until 1 June 2016 to evaluate the evidence on modes of Ebola virus shedding and transmission.  Ebola virus has been isolated by cell culture from blood, saliva, urine, aqueous humor, semen, and breast milk from infected or convalescent patients. Ebola virus RNA has been noted in the following body fluids days or months after onset of illness: saliva (22 days), conjunctiva/tears (28 days), stool (29 days), vaginal fluid (33 days), sweat (44 days), urine (64 days), amniotic fluid (38 days), aqueous humor (101 days), cerebrospinal fluid (9 months), breast milk (16 months [preliminary data]), and semen (18 months). Nevertheless, the only documented cases of secondary transmission from recovered patients have been through sexual transmission. We did not find strong evidence supporting respiratory or fomite-associated transmission. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  18. Effectively Communicating the Uncertainties Surrounding Ebola Virus Transmission.

    Directory of Open Access Journals (Sweden)

    Andy Kilianski

    2015-10-01

    Full Text Available The current Ebola virus outbreak has highlighted the uncertainties surrounding many aspects of Ebola virus virology, including routes of transmission. The scientific community played a leading role during the outbreak-potentially, the largest of its kind-as many of the questions surrounding ebolaviruses have only been interrogated in the laboratory. Scientists provided an invaluable resource for clinicians, public health officials, policy makers, and the lay public in understanding the progress of Ebola virus disease and the continuing outbreak. Not all of the scientific communication, however, was accurate or effective. There were multiple instances of published articles during the height of the outbreak containing potentially misleading scientific language that spurred media overreaction and potentially jeopardized preparedness and policy decisions at critical points. Here, we use articles declaring the potential for airborne transmission of Ebola virus as a case study in the inaccurate reporting of basic science, and we provide recommendations for improving the communication about unknown aspects of disease during public health crises.

  19. Effectively Communicating the Uncertainties Surrounding Ebola Virus Transmission.

    Science.gov (United States)

    Kilianski, Andy; Evans, Nicholas G

    2015-10-01

    The current Ebola virus outbreak has highlighted the uncertainties surrounding many aspects of Ebola virus virology, including routes of transmission. The scientific community played a leading role during the outbreak-potentially, the largest of its kind-as many of the questions surrounding ebolaviruses have only been interrogated in the laboratory. Scientists provided an invaluable resource for clinicians, public health officials, policy makers, and the lay public in understanding the progress of Ebola virus disease and the continuing outbreak. Not all of the scientific communication, however, was accurate or effective. There were multiple instances of published articles during the height of the outbreak containing potentially misleading scientific language that spurred media overreaction and potentially jeopardized preparedness and policy decisions at critical points. Here, we use articles declaring the potential for airborne transmission of Ebola virus as a case study in the inaccurate reporting of basic science, and we provide recommendations for improving the communication about unknown aspects of disease during public health crises.

  20. Virus genomes reveal factors that spread and sustained the Ebola epidemic

    DEFF Research Database (Denmark)

    Dudas, Gytis; Carvalho, Luiz Max; Bedford, Trevor

    2017-01-01

    The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We...

  1. Positive evolution of the glycoprotein (GP) gene is related to transmission of the Ebola virus.

    Science.gov (United States)

    Jing, Y X; Wang, L N; Wu, X M; Song, C X

    2016-03-28

    Ebola hemorrhagic fever is a fatal disease caused by the negative-strand RNA of the Ebola virus. A high-intensity outbreak of this fever was reported in West Africa last year; however, there is currently no definitive treatment strategy available for this disease. In this study, we analyzed the molecular evolutionary history and attempted to determine the positive selection sites in the Ebola genes using multiple-genomic sequences of the various Ebola virus subtypes, in order to gain greater clarity into the evolution of the virus and its various subtypes. Only the glycoprotein (GP) gene was positively selected among the 8 Ebola genes, with the other genes remaining in the purification stage. The positive selection sites in the GP gene were identified by a random-site model; these sites were found to be located in the mucin-like region, which is associated with transmembrane protein binding. Additionally, different branches of the phylogenetic tree displayed different positive sites, which in turn was responsible for differences in the cell adhesion ability of the virus. In conclusion, the pattern of positive sites in the GP gene is associated with the epidemiology and prevalence of Ebola in different areas.

  2. Longitudinal peripheral blood transcriptional analysis of a patient with severe Ebola virus disease.

    Science.gov (United States)

    Kash, John C; Walters, Kathie-Anne; Kindrachuk, Jason; Baxter, David; Scherler, Kelsey; Janosko, Krisztina B; Adams, Rick D; Herbert, Andrew S; James, Rebekah M; Stonier, Spencer W; Memoli, Matthew J; Dye, John M; Davey, Richard T; Chertow, Daniel S; Taubenberger, Jeffery K

    2017-04-12

    The 2013-2015 outbreak of Ebola virus disease in Guinea, Liberia, and Sierra Leone was unprecedented in the number of documented cases, but there have been few published reports on immune responses in clinical cases and their relationships with the course of illness and severity of Ebola virus disease. Symptoms of Ebola virus disease can include severe headache, myalgia, asthenia, fever, fatigue, diarrhea, vomiting, abdominal pain, and hemorrhage. Although experimental treatments are in development, there are no current U.S. Food and Drug Administration-approved vaccines or therapies. We report a detailed study of host gene expression as measured by microarray in daily peripheral blood samples collected from a patient with severe Ebola virus disease. This individual was provided with supportive care without experimental therapies at the National Institutes of Health Clinical Center from before onset of critical illness to recovery. Pearson analysis of daily gene expression signatures revealed marked gene expression changes in peripheral blood leukocytes that correlated with changes in serum and peripheral blood leukocytes, viral load, antibody responses, coagulopathy, multiple organ dysfunction, and then recovery. This study revealed marked shifts in immune and antiviral responses that preceded changes in medical condition, indicating that clearance of replicating Ebola virus from peripheral blood leukocytes is likely important for systemic viral clearance. Copyright © 2017, American Association for the Advancement of Science.

  3. Immunopathology of highly virulent pathogens: insights from Ebola virus.

    Science.gov (United States)

    Zampieri, Carisa A; Sullivan, Nancy J; Nabel, Gary J

    2007-11-01

    Ebola virus is a highly virulent pathogen capable of inducing a frequently lethal hemorrhagic fever syndrome. Accumulating evidence indicates that the virus actively subverts both innate and adaptive immune responses and triggers harmful inflammatory responses as it inflicts direct tissue damage. The host immune system is ultimately overwhelmed by a combination of inflammatory factors and virus-induced cell damage, particularly in the liver and vasculature, often leading to death from septic shock. We summarize the mechanisms of immune dysregulation and virus-mediated cell damage in Ebola virus-infected patients. Future approaches to prevention and treatment of infection will be guided by answers to unresolved questions about interspecies transmission, molecular mechanisms of pathogenesis, and protective adaptive and innate immune responses to Ebola virus.

  4. Ebola virus disease: Effects of respiratory protection on healthcare workers

    Directory of Open Access Journals (Sweden)

    Hanan Mohammed Mohammed

    2015-07-01

    Full Text Available Ebola virus disease outbreak in West Africa sends an alarming message to all countries in the world, to increase the level of coordination and application of preventive measures globally to avoid a disastrous epidemic in the World, as the current situation in West Africa is critical especially after the World Health Organization increased the alarming level to an emergency in public health all over the world. Viral hemorrhagic fevers are important because they can readily spread within a hospital or mortuary setting, there is no effective cure or vaccine, they have a high mortality rate and they are difficult to recognize and diagnose rapidly. WHO has recommended respiratory protection for HCWs performing certain tasks such as aerosol-generating procedures, laboratory procedures, and autopsies. Particulate respirators are designed to help reduce the wearer’s exposure to certain airborne particles. The most effective way to block aerosolized particles is to use either a half-face or a full-face respirator. HCWs still need shoe covers, a full face respirator and latex or nitrile gloves to decrease the risk of Ebola virus contamination.

  5. Seroprevalence of Ebola virus infection in Bombali District, Sierra Leone

    Directory of Open Access Journals (Sweden)

    Nadege Goumkwa Mafopa

    2017-12-01

    Full Text Available A serosurvey of anti-Ebola Zaire virus nucleoprotein IgG prevalence was carried out among Ebola virus disease survivors and their Community Contacts in Bombali District, Sierra Leone. Our data suggest that the specie of Ebola virus (Zaire responsible of the 2013-2016 epidemic in West Africa may cause mild or asymptomatic infection in a proportion of cases, possibly due to an efficient immune response.

  6. Vaccine potential of Nipah virus-like particles.

    Directory of Open Access Journals (Sweden)

    Pramila Walpita

    2011-04-01

    Full Text Available Nipah virus (NiV was first recognized in 1998 in a zoonotic disease outbreak associated with highly lethal febrile encephalitis in humans and a predominantly respiratory disease in pigs. Periodic deadly outbreaks, documentation of person-to-person transmission, and the potential of this virus as an agent of agroterror reinforce the need for effective means of therapy and prevention. In this report, we describe the vaccine potential of NiV virus-like particles (NiV VLPs composed of three NiV proteins G, F and M. Co-expression of these proteins under optimized conditions resulted in quantifiable amounts of VLPs with many virus-like/vaccine desirable properties including some not previously described for VLPs of any paramyxovirus: The particles were fusogenic, inducing syncytia formation; PCR array analysis showed NiV VLP-induced activation of innate immune defense pathways; the surface structure of NiV VLPs imaged by cryoelectron microscopy was dense, ordered, and repetitive, and consistent with similarly derived structure of paramyxovirus measles virus. The VLPs were composed of all the three viral proteins as designed, and their intracellular processing also appeared similar to NiV virions. The size, morphology and surface composition of the VLPs were consistent with the parental virus, and importantly, they retained their antigenic potential. Finally, these particles, formulated without adjuvant, were able to induce neutralizing antibody response in Balb/c mice. These findings indicate vaccine potential of these particles and will be the basis for undertaking future protective efficacy studies in animal models of NiV disease.

  7. Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry.

    Science.gov (United States)

    Henß, Lisa; Beck, Simon; Weidner, Tatjana; Biedenkopf, Nadine; Sliva, Katja; Weber, Christopher; Becker, Stephan; Schnierle, Barbara S

    2016-08-31

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. It has efficiently adapted to Aedes albopictus, which also inhabits temperate regions and currently causes large outbreaks in the Caribbean and Latin America. Ebola virus (EBOV) is a member of the filovirus family. It causes the Ebola virus disease (EDV), formerly known as Ebola hemorrhagic fever in humans and has a mortality rate of up to 70 %. The last outbreak in Western Africa was the largest in history and has caused approximately 25,000 cases and 10,000 deaths. For both viral infections no specific treatment or licensed vaccine is currently available. The bis-hexasulfonated naphthylurea, suramin, is used as a treatment for trypanosome-caused African river blindness. As a competitive inhibitor of heparin, suramin has been described to have anti-viral activity. We tested the activity of suramin during CHIKV or Ebola virus infection, using CHIKV and Ebola envelope glycoprotein pseudotyped lentiviral vectors and wild-type CHIKV and Ebola virus. Suramin efficiently inhibited CHIKV and Ebola envelope-mediated gene transfer while vesicular stomatitis virus G protein pseudotyped vectors were only marginally affected. In addition, suramin was able to inhibit wild-type CHIKV and Ebola virus replication in vitro. Inhibition occurred at early time points during CHIKV infection. Suramin, also known as Germanin or Bayer-205, is a market-authorized drug, however shows significant side effects, which probably prevents its use as a CHIKV drug, but due to the high lethality of Ebola virus infections, suramin might be valuable against Ebola infections.

  8. Elimination of Ebola Virus Transmission in Liberia - September 3, 2015.

    Science.gov (United States)

    Bawo, Luke; Fallah, Mosoka; Kateh, Francis; Nagbe, Thomas; Clement, Peter; Gasasira, Alex; Mahmoud, Nuha; Musa, Emmanuel; Lo, Terrence Q; Pillai, Satish K; Seeman, Sara; Sunshine, Brittany J; Weidle, Paul J; Nyensweh, Tolbert

    2015-09-11

    Following 42 days since the last Ebola virus disease (Ebola) patient was discharged from a Liberian Ebola treatment unit (ETU), September 3, 2015, marks the second time in a 4-month period that the World Health Organization (WHO) has declared Liberia free of Ebola virus transmission (1). The first confirmed Ebola cases in West Africa were identified in southeastern Guinea on March 23, 2014, and within 1 week, cases were identified and confirmed in Liberia (1). Since then, Liberia has reported 5,036 confirmed and probable Ebola cases and 4,808 Ebola-related deaths. The epidemic in Liberia peaked in late summer and early fall of 2014, when more than 200 confirmed and probable cases were reported each week .

  9. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)*

    Science.gov (United States)

    Zhou, Nan; Pan, Ting; Zhang, Junsong; Li, Qianwen; Zhang, Xue; Bai, Chuan; Huang, Feng; Peng, Tao; Zhang, Jianhua; Liu, Chao; Tao, Liang; Zhang, Hui

    2016-01-01

    Ebola virus infection can cause severe hemorrhagic fever with a high mortality in humans. The outbreaks of Ebola viruses in 2014 represented the most serious Ebola epidemics in history and greatly threatened public health worldwide. The development of additional effective anti-Ebola therapeutic agents is therefore quite urgent. In this study, via high throughput screening of Food and Drug Administration-approved drugs, we identified that teicoplanin, a glycopeptide antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on transcription- and replication-competent virus-like particles, with an IC50 as low as 330 nm. Comparative analysis further demonstrated that teicoplanin is able to block the entry of Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) envelope pseudotyped viruses as well. Teicoplanin derivatives such as dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola, MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola virus entry by specifically inhibiting the activity of cathepsin L, opening a novel avenue for the development of additional glycopeptides as potential inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has routinely been used in the clinic with low toxicity, our work provides a promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS virus infection. PMID:26953343

  10. Occupational Exposures to Ebola Virus in Ebola Treatment Center, Conakry, Guinea.

    Science.gov (United States)

    Savini, Hélène; Janvier, Frédéric; Karkowski, Ludovic; Billhot, Magali; Aletti, Marc; Bordes, Julien; Koulibaly, Fassou; Cordier, Pierre-Yves; Cournac, Jean-Marie; Maugey, Nancy; Gagnon, Nicolas; Cotte, Jean; Cambon, Audrey; Mac Nab, Christine; Moroge, Sophie; Rousseau, Claire; Foissaud, Vincent; De Greslan, Thierry; Granier, Hervé; Cellarier, Gilles; Valade, Eric; Kraemer, Philippe; Alla, Philippe; Mérens, Audrey; Sagui, Emmanuel; Carmoi, Thierry; Rapp, Christophe

    2017-08-01

    We report 77 cases of occupational exposures for 57 healthcare workers at the Ebola Treatment Center in Conakry, Guinea, during the Ebola virus disease outbreak in 2014-2015. Despite the high incidence of 3.5 occupational exposures/healthcare worker/year, only 18% of workers were at high risk for transmission, and no infections occurred.

  11. Development of risk reduction behavioral counseling for Ebola virus disease survivors enrolled in the Sierra Leone Ebola Virus Persistence Study, 2015-2016.

    Science.gov (United States)

    Abad, Neetu; Malik, Tasneem; Ariyarajah, Archchun; Ongpin, Patricia; Hogben, Matthew; McDonald, Suzanna L R; Marrinan, Jaclyn; Massaquoi, Thomas; Thorson, Anna; Ervin, Elizabeth; Bernstein, Kyle; Ross, Christine; Liu, William J; Kroeger, Karen; Durski, Kara N; Broutet, Nathalie; Knust, Barbara; Deen, Gibrilla F

    2017-09-01

    During the 2014-2016 West Africa Ebola Virus Disease (EVD) epidemic, the public health community had concerns that sexual transmission of the Ebola virus (EBOV) from EVD survivors was a risk, due to EBOV persistence in body fluids of EVD survivors, particularly semen. The Sierra Leone Ebola Virus Persistence Study was initiated to investigate this risk by assessing EBOV persistence in numerous body fluids of EVD survivors and providing risk reduction counseling based on test results for semen, vaginal fluid, menstrual blood, urine, rectal fluid, sweat, tears, saliva, and breast milk. This publication describes implementation of the counseling protocol and the key lessons learned. The Ebola Virus Persistence Risk Reduction Behavioral Counseling Protocol was developed from a framework used to prevent transmission of HIV and other sexually transmitted infections. The framework helped to identify barriers to risk reduction and facilitated the development of a personalized risk-reduction plan, particularly around condom use and abstinence. Pre-test and post-test counseling sessions included risk reduction guidance, and post-test counseling was based on the participants' individual test results. The behavioral counseling protocol enabled study staff to translate the study's body fluid test results into individualized information for study participants. The Ebola Virus Persistence Risk Reduction Behavioral Counseling Protocol provided guidance to mitigate the risk of EBOV transmission from EVD survivors. It has since been shared with and adapted by other EVD survivor body fluid testing programs and studies in Ebola-affected countries.

  12. Addressing Therapeutic Options for Ebola Virus Infection in Current and Future Outbreaks.

    Science.gov (United States)

    Haque, Azizul; Hober, Didier; Blondiaux, Joel

    2015-10-01

    Ebola virus can cause severe hemorrhagic disease with high fatality rates. Currently, no specific therapeutic agent or vaccine has been approved for treatment and prevention of Ebola virus infection of humans. Although the number of Ebola cases has fallen in the last few weeks, multiple outbreaks of Ebola virus infection and the likelihood of future exposure highlight the need for development and rapid evaluation of pre- and postexposure treatments. Here, we briefly review the existing and future options for anti-Ebola therapy, based on the data coming from rare clinical reports, studies on animals, and results from in vitro models. We also project the mechanistic hypotheses of several potential drugs against Ebola virus, including small-molecule-based drugs, which are under development and being tested in animal models or in vitro using various cell types. Our paper discusses strategies toward identifying and testing anti-Ebola virus properties of known and medically approved drugs, especially those that can limit the pathological inflammatory response in Ebola patients and thereby provide protection from mortality. We underline the importance of developing combinational therapy for better treatment outcomes for Ebola patients. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Ebola virus modulates transforming growth factor β signaling and cellular markers of mesenchyme-like transition in hepatocytes.

    Science.gov (United States)

    Kindrachuk, Jason; Wahl-Jensen, Victoria; Safronetz, David; Trost, Brett; Hoenen, Thomas; Arsenault, Ryan; Feldmann, Friederike; Traynor, Dawn; Postnikova, Elena; Kusalik, Anthony; Napper, Scott; Blaney, Joseph E; Feldmann, Heinz; Jahrling, Peter B

    2014-09-01

    Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most

  14. Ebola Virus: Immune Mechanisms of Protection and Vaccine Development

    OpenAIRE

    Nyamathi, AM; Fahey, JL; Sands, H; Casillas, AM

    2003-01-01

    Vaccination is one of our most powerful antiviral strategies. Despite the emergence of deadly viruses such as Ebola virus, vaccination efforts have focused mainly on childhood communicable diseases. Although Ebola virus was once believed to be limited to isolated outbreaks in distant lands, forces of globalization potentiate outbreaks anywhere in the world through incidental transmission. Moreover, since this virus has already been transformed into weapongrade material, the potential exists f...

  15. hand hygiene practices post ebola virus disease outbreak

    African Journals Online (AJOL)

    2014-10-20

    Oct 20, 2014 ... INTRODUCTION. Ebola virus disease (EVD) is an infectious viral disease characterized by a high case-fatality rate which may be as high as 90%.1,2 Ebola virus may be acquired during contact with blood or body fluids of an infected animal, commonly monkeys or fruit bats.2 Once human infection occurs ...

  16. Electron Microscopy of Ebola Virus-Infected Cells.

    Science.gov (United States)

    Noda, Takeshi

    2017-01-01

    Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.

  17. Knowledge and attitude towards Ebola and Marburg virus diseases in Uganda using quantitative and participatory epidemiology techniques.

    Science.gov (United States)

    Nyakarahuka, Luke; Skjerve, Eystein; Nabadda, Daisy; Sitali, Doreen Chilolo; Mumba, Chisoni; Mwiine, Frank N; Lutwama, Julius J; Balinandi, Stephen; Shoemaker, Trevor; Kankya, Clovice

    2017-09-01

    Uganda has reported five (5) Ebola virus disease outbreaks and three (3) Marburg virus disease outbreaks from 2000 to 2016. Peoples' knowledge and attitude towards Ebola and Marburg virus disease impact on control and prevention measures especially during outbreaks. We describe knowledge and attitude towards Ebola and Marburg virus outbreaks in two affected communities in Uganda to inform future outbreak responses and help in the design of health education and communication messages. The study was a community survey done in Luweero, Ibanda and Kamwenge districts that have experienced outbreaks of Ebola and Marburg virus diseases. Quantitative data were collected using a structured questionnaire and triangulated with qualitative participatory epidemiology techniques to gain a communities' knowledge and attitude towards Ebola and Marburg virus disease. Out of 740 respondents, 48.5% (359/740) were categorized as being knowledgeable about Ebola and Marburg virus diseases, whereas 60.5% (448/740) were having a positive attitude towards control and prevention of Ebola and Marburg virus diseases. The mean knowledge and attitude percentage scores were 54.3 (SD = 23.5, 95%CI = 52.6-56.0) and 69.9 (SD = 16.9, 95%CI = 68.9-71.1) respectively. People educated beyond primary school were more likely to be knowledgeable about Ebola and Marburg virus disease than those who did not attain any formal education (OR = 3.6, 95%CI = 2.1-6.1). Qualitative data revealed that communities describe Ebola and Marburg virus diseases as very severe diseases with no cure and they believe the diseases spread so fast. Respondents reported fear and stigma suffered by survivors, their families and the broader community due to these diseases. Communities in Uganda affected by filovirus outbreaks have moderate knowledge about these diseases and have a positive attitude towards practices to prevent and control Ebola and Marburg viral diseases. The public health sector should enhance this community

  18. Study of the pathogenesis of Ebola fever in laboratory animals with different sensitivity to this virus.

    Science.gov (United States)

    Chepurnov, A A; Dadaeva, A A; Kolesnikov, S I

    2001-12-01

    Pathophysiological parameters were compared in animals with different sensitivity to Ebola virus infected with this virus. Analysis of the results showed the differences in immune reactions underlying the difference between Ebola-sensitive and Ebola-resistant animals. No neutrophil activation in response to Ebola virus injection was noted in Ebola-sensitive animal. Phagocytic activity of neutrophils in these animals inversely correlated with animal sensitivity to Ebola virus. Animal susceptibility to Ebola virus directly correlated with the decrease in the number of circulating T and B cells. We conclude that the immune system plays the key role in animal susceptibility and resistance to Ebola virus.

  19. Disinfection of Ebola Virus in Sterilized Municipal Wastewater.

    Science.gov (United States)

    Bibby, Kyle; Fischer, Robert J; Casson, Leonard W; de Carvalho, Nathalia Aquino; Haas, Charles N; Munster, Vincent J

    2017-02-01

    Concerns have been raised regarding handling of Ebola virus contaminated wastewater, as well as the adequacy of proposed disinfection approaches. In the current study, we investigate the inactivation of Ebola virus in sterilized domestic wastewater utilizing sodium hypochlorite addition and pH adjustment. No viral inactivation was observed in the one-hour tests without sodium hypochlorite addition or pH adjustment. No virus was recovered after 20 seconds (i.e. 4.2 log10 unit inactivation to detection limit) following the addition of 5 and 10 mg L-1 sodium hypochlorite, which resulted in immediate free chlorine residuals of 0.52 and 1.11 mg L-1, respectively. The addition of 1 mg L-1 sodium hypochlorite resulted in an immediate free chlorine residual of 0.16 mg L-1, which inactivated 3.5 log10 units of Ebola virus in 20 seconds. Further inactivation was not evident due to the rapid consumption of the chlorine residual. Elevating the pH to 11.2 was found to significantly increase viral decay over ambient conditions. These results indicate the high susceptibility of the enveloped Ebola virus to disinfection in the presence of free chlorine in municipal wastewater; however, we caution that extension to more complex matrices (e.g. bodily fluids) will require additional verification.

  20. Functional Characterization of Adaptive Mutations during the West African Ebola Virus Outbreak.

    Science.gov (United States)

    Dietzel, Erik; Schudt, Gordian; Krähling, Verena; Matrosovich, Mikhail; Becker, Stephan

    2017-01-15

    The Ebola virus (EBOV) outbreak in West Africa started in December 2013, claimed more than 11,000 lives, threatened to destabilize a whole region, and showed how easily health crises can turn into humanitarian disasters. EBOV genomic sequences of the West African outbreak revealed nonsynonymous mutations, which induced considerable public attention, but their role in virus spread and disease remains obscure. In this study, we investigated the functional significance of three nonsynonymous mutations that emerged early during the West African EBOV outbreak. Almost 90% of more than 1,000 EBOV genomes sequenced during the outbreak carried the signature of three mutations: a D759G substitution in the active center of the L polymerase, an A82V substitution in the receptor binding domain of surface glycoprotein GP, and an R111C substitution in the self-assembly domain of RNA-encapsidating nucleoprotein NP. Using a newly developed virus-like particle system and reverse genetics, we found that the mutations have an impact on the functions of the respective viral proteins and on the growth of recombinant EBOVs. The mutation in L increased viral transcription and replication, whereas the mutation in NP decreased viral transcription and replication. The mutation in the receptor binding domain of the glycoprotein GP improved the efficiency of GP-mediated viral entry into target cells. Recombinant EBOVs with combinations of the three mutations showed a growth advantage over the prototype isolate Makona C7 lacking the mutations. This study showed that virus variants with improved fitness emerged early during the West African EBOV outbreak. The dimension of the Ebola virus outbreak in West Africa was unprecedented. Amino acid substitutions in the viral L polymerase, surface glycoprotein GP, and nucleocapsid protein NP emerged, were fixed early in the outbreak, and were found in almost 90% of the sequences. Here we showed that these mutations affected the functional activity of

  1. Uveitis and Systemic Inflammatory Markers in Convalescent Phase of Ebola Virus Disease.

    Science.gov (United States)

    Chancellor, John R; Padmanabhan, Sriranjani P; Greenough, Thomas C; Sacra, Richard; Ellison, Richard T; Madoff, Lawrence C; Droms, Rebecca J; Hinkle, David M; Asdourian, George K; Finberg, Robert W; Stroher, Ute; Uyeki, Timothy M; Cerón, Olga M

    2016-02-01

    We report a case of probable Zaire Ebola virus-related ophthalmologic complications in a physician from the United States who contracted Ebola virus disease in Liberia. Uveitis, immune activation, and nonspecific increase in antibody titers developed during convalescence. This case highlights immune phenomena that could complicate management of Ebola virus disease-related uveitis during convalescence.

  2. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV).

    Science.gov (United States)

    Zhou, Nan; Pan, Ting; Zhang, Junsong; Li, Qianwen; Zhang, Xue; Bai, Chuan; Huang, Feng; Peng, Tao; Zhang, Jianhua; Liu, Chao; Tao, Liang; Zhang, Hui

    2016-04-22

    Ebola virus infection can cause severe hemorrhagic fever with a high mortality in humans. The outbreaks of Ebola viruses in 2014 represented the most serious Ebola epidemics in history and greatly threatened public health worldwide. The development of additional effective anti-Ebola therapeutic agents is therefore quite urgent. In this study, via high throughput screening of Food and Drug Administration-approved drugs, we identified that teicoplanin, a glycopeptide antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on transcription- and replication-competent virus-like particles, with an IC50 as low as 330 nm Comparative analysis further demonstrated that teicoplanin is able to block the entry of Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) envelope pseudotyped viruses as well. Teicoplanin derivatives such as dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola, MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola virus entry by specifically inhibiting the activity of cathepsin L, opening a novel avenue for the development of additional glycopeptides as potential inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has routinely been used in the clinic with low toxicity, our work provides a promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS virus infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. THE STRENGTHS, WEAKNESSES, OPPORTUNITIES, AND THREATS (SWOTs) ANALYSES OF THE EBOLA VIRUS - PAPER RETRACTED.

    Science.gov (United States)

    Babalola, Michael Oluyemi

    2016-01-01

    Owing to the extreme virulence and case fatality rate of ebola virus disease (EVD), there had been so much furore, panic and public health emergency about the possible pandemic from the recent West African outbreak of the disease, with attendant handful research, both in the past and most recently. The magnitude of the epidemic of ebola virus disease has prompted global interest and urgency in the discovery of measures to mitigate the impact of the disease. Researchers in the academia and the industry were pressured to only focus on the development of effective and safe ebola virus vaccines, without consideration of the other aspects to this virus, which may influence the success or otherwise of a potential vaccine. The objective of this review was to adopt the SWOT concept to elucidate the biological Strengths, Weaknesses, Opportunities, and Threats to Ebola virus as a pathogen, with a view to understanding and devising holistic strategies at combating and overcoming the scourge of EVD. This systematic review and narrative synthesis utilized Medline, PubMed, Google and other databases to select about 150 publications on ebola and ebola virus disease using text word searches to generate the specific terms. Relevant publications were reviewed and compared, findings were synthesized using a narrative method and summarized qualitatively. Some of the identified strengths of ebola virus include: Ebola virus is an RNA virus with inherent capability to mutate, reassort and recombine to generate mutant or reassortant virulent strains; Ebola virus has a broad cellular tropism; Natural Reservoir of ebola virus is unconfirmed but fruit bats, arthropods, and plants are hypothesized; Ebola virus primarily targets and selectively destroys the immune system; Ebola viruses possess accessory proteins that inhibits the host' immune responses; Secreted glycoprotein (sGP), a truncated soluble protein that triggers immune activation and increased vascular permeability is uniquely

  4. Clinical Features and Outcome of Ebola Virus Disease in Pediatric Patients

    DEFF Research Database (Denmark)

    Damkjær, Mads; Rudolf, Frauke; Mishra, Sharmistha

    2016-01-01

    Clinical and outcome data on pediatric Ebola virus disease are limited. We report a case-series of 33 pediatric patients with Ebola virus disease in a single Ebola Treatment Center in 2014-2015. The case-fatality rate was 42%, with the majority of deaths occurring within 10 days of admission....

  5. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults.

    Science.gov (United States)

    Ledgerwood, J E; Costner, P; Desai, N; Holman, L; Enama, M E; Yamshchikov, G; Mulangu, S; Hu, Z; Andrews, C A; Sheets, R A; Koup, R A; Roederer, M; Bailer, R; Mascola, J R; Pau, M G; Sullivan, N J; Goudsmit, J; Nabel, G J; Graham, B S

    2010-12-16

    Ebola virus causes irregular outbreaks of severe hemorrhagic fever in equatorial Africa. Case mortality remains high; there is no effective treatment and outbreaks are sporadic and unpredictable. Studies of Ebola virus vaccine platforms in non-human primates have established that the induction of protective immunity is possible and safety and human immunogenicity has been demonstrated in a previous Phase I clinical trial of a 1st generation Ebola DNA vaccine. We now report the safety and immunogenicity of a recombinant adenovirus serotype 5 (rAd5) vaccine encoding the envelope glycoprotein (GP) from the Zaire and Sudan Ebola virus species, in a randomized, placebo-controlled, double-blinded, dose escalation, Phase I human study. Thirty-one healthy adults received vaccine at 2×10(9) (n=12), or 2×10(10) (n=11) viral particles or placebo (n=8) as an intramuscular injection. Antibody responses were assessed by ELISA and neutralizing assays; and T cell responses were assessed by ELISpot and intracellular cytokine staining assays. This recombinant Ebola virus vaccine was safe and subjects developed antigen specific humoral and cellular immune responses. Published by Elsevier Ltd.

  6. Ebola Virus Disease – An Update

    Directory of Open Access Journals (Sweden)

    Surekha Kishore

    2014-12-01

    Full Text Available Ebola Virus Disease (EVD is a severe, haemorrhagic febrile disease, often fatal in humans, caused by a non segmented, negative sense RNA virus of the family Filoviridae and genus Ebolavirus. It is also known as Ebola Haemorrhagic fever. There are five species of Ebolavirus, namely Bundibugyo ebolavirus, Zaire ebolavirus, Reston ebolavirus, Sudan ebolavirus and Tai Forest ebolavirus. The Zaire species has caused multiple large outbreaks with mortality rates of 55 to 88 percent since first appearance of the disease whereas the Sudan virus has been associated with an approximate 50 percent case-fatality rate in four known epidemics: two in Sudan in the 1970s, one in Uganda in 2000, and another in Sudan in 2004 [1-5].

  7. Prevalence and Current Approaches of Ebola Virus Disease in ASEAN Countries.

    Science.gov (United States)

    Rajiah, Kingston; San, Kok Pui; Jiun, Ting Wei; May, Tam Ai; Neng, Yap Chan; Seng, Hee Kah; Soon, Lim Jing; Pazooki, Nazanin

    2015-09-01

    As indicated by the World Health Organization as of year 2014, around 10,000 people have been influenced with Ebola infection. The episode of Ebola in African locale is courged with a high death rate. Notwithstanding, in the United States, people influenced by Ebola have been given brilliant wellbeing offices, as the U.S. is one of the highest nations that have taken sterner wellbeing measures and principles against Ebola. Aside from the U.S., individuals in Asia, where billions live in indigence and general wellbeing frameworks are frequently extremely powerless, are under more serious danger of the Ebola infection. Despite the fact that nations like Singapore, Malaysia, South Korea and Japan can take stretched out measures to battle against the infection, nations like Philippines and Indonesia have unfathomable quantities of poor who may be incredibly influenced by a conceivable episode. At this moment, the chances that Asia will take a critical hit from the Ebola infection appear to be genuinely little. Yet, while it is far-fetched that Asia will encounter a real flare-up, genuine concerns stay about the infection coming to urban communities like Hong Kong, Beijing, Shanghai and Singapore through their worldwide airplane terminals. Wellbeing priests from the Association of Southeast Asian Nations (ASEAN) reported key measures not long ago to keep the Ebola plague from coming to the locale and to backing influenced nations. This article accordingly will concentrate on the prevalence and current approaches of Ebola Virus Disease in ASEAN nations which is the need of the hour.

  8. Ebola virus: immune mechanisms of protection and vaccine development.

    Science.gov (United States)

    Nyamathi, Adeline M; Fahey, John L; Sands, Heather; Casillas, Adrian M

    2003-04-01

    Vaccination is one of our most powerful antiviral strategies. Despite the emergence of deadly viruses such as Ebola virus, vaccination efforts have focused mainly on childhood communicable diseases. Although Ebola virus was once believed to be limited to isolated outbreaks in distant lands, forces of globalization potentiate outbreaks anywhere in the world through incidental transmission. Moreover, since this virus has already been transformed into weapon-grade material, the potential exists for it to be used as a biological weapon with catastrophic consequences for any population vulnerable to attack. Ebola hemorrhagic fever (EHF) is a syndrome that can rapidly lead to death within days of symptom onset. The disease directly affects the immune system and vascular bed, with correspondingly high mortality rates. Patients with severe disease produce dangerously high levels of inflammatory cytokines, which destroy normal tissue and microcirculation, leading to profound capillary leakage, renal failure, and disseminated intravascular coagulation. Vaccine development has been fraught with obstacles, primarily of a biosafety nature. Case reports of acutely ill patients with EHF showing improvement with the transfusion of convalescent plasma are at odds with animal studies demonstrating further viral replication with the same treatment. Using mRNA extracted from bone marrow of Ebola survivors, human monoclonal antibodies against Ebola virus surface protein have been experimentally produced and now raise the hope for the development of a safe vaccine.

  9. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus

    Energy Technology Data Exchange (ETDEWEB)

    Messaoudi, Ilhem; Amarasinghe, Gaya K.; Basler, Christopher F.

    2015-10-06

    Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people, as highlighted by the latest Ebola virus epidemic in West Africa. Filovirus disease is characterized by uncontrolled virus replication and the activation of host responses that contribute to pathogenesis. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon response, by viral proteins, which allows high levels of viral replication. In this Review, we describe the mechanisms used by filoviruses to block host innate immunity and discuss the links between immune evasion and filovirus pathogenesis.

  10. Clomiphene and Its Isomers Block Ebola Virus Particle Entry and Infection with Similar Potency: Potential Therapeutic Implications.

    Science.gov (United States)

    Nelson, Elizabeth A; Barnes, Alyson B; Wiehle, Ronald D; Fontenot, Gregory K; Hoenen, Thomas; White, Judith M

    2016-08-02

    The 2014 outbreak of Ebola virus (EBOV) in Western Africa highlighted the need for anti-EBOV therapeutics. Clomiphene is a U.S. Food and Drug Administration (FDA)-approved drug that blocks EBOV entry and infection in cells and significantly protects EBOV-challenged mice. As provided, clomiphene is, approximately, a 60:40 mixture of two stereoisomers, enclomiphene and zuclomiphene. The pharmacokinetic properties of the two isomers vary, but both accumulate in the eye and male reproductive tract, tissues in which EBOV can persist. Here we compared the ability of clomiphene and its isomers to inhibit EBOV using viral-like particle (VLP) entry and transcription/replication-competent VLP (trVLP) assays. Clomiphene and its isomers inhibited the entry and infection of VLPs and trVLPs with similar potencies. This was demonstrated with VLPs bearing the glycoproteins from three filoviruses (EBOV Mayinga, EBOV Makona, and Marburg virus) and in two cell lines (293T/17 and Vero E6). Visual problems have been noted in EBOV survivors, and viral RNA has been isolated from semen up to nine months post-infection. Since the clomiphene isomers accumulate in these affected tissues, clomiphene or one of its isomers warrants consideration as an anti-EBOV agent, for example, to potentially help ameliorate symptoms in EBOV survivors.

  11. Clomiphene and Its Isomers Block Ebola Virus Particle Entry and Infection with Similar Potency: Potential Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Nelson

    2016-08-01

    Full Text Available The 2014 outbreak of Ebola virus (EBOV in Western Africa highlighted the need for anti-EBOV therapeutics. Clomiphene is a U.S. Food and Drug Administration (FDA-approved drug that blocks EBOV entry and infection in cells and significantly protects EBOV-challenged mice. As provided, clomiphene is, approximately, a 60:40 mixture of two stereoisomers, enclomiphene and zuclomiphene. The pharmacokinetic properties of the two isomers vary, but both accumulate in the eye and male reproductive tract, tissues in which EBOV can persist. Here we compared the ability of clomiphene and its isomers to inhibit EBOV using viral-like particle (VLP entry and transcription/replication-competent VLP (trVLP assays. Clomiphene and its isomers inhibited the entry and infection of VLPs and trVLPs with similar potencies. This was demonstrated with VLPs bearing the glycoproteins from three filoviruses (EBOV Mayinga, EBOV Makona, and Marburg virus and in two cell lines (293T/17 and Vero E6. Visual problems have been noted in EBOV survivors, and viral RNA has been isolated from semen up to nine months post-infection. Since the clomiphene isomers accumulate in these affected tissues, clomiphene or one of its isomers warrants consideration as an anti-EBOV agent, for example, to potentially help ameliorate symptoms in EBOV survivors.

  12. Prevention of sexual transmission of Ebola in Liberia through a national semen testing and counselling programme for survivors: an analysis of Ebola virus RNA results and behavioural data.

    Science.gov (United States)

    Soka, Moses J; Choi, Mary J; Baller, April; White, Stephen; Rogers, Emerson; Purpura, Lawrence J; Mahmoud, Nuha; Wasunna, Christine; Massaquoi, Moses; Abad, Neetu; Kollie, Jomah; Dweh, Straker; Bemah, Philip K; Christie, Athalia; Ladele, Victor; Subah, Oneykachi C; Pillai, Satish; Mugisha, Margaret; Kpaka, Jonathan; Kowalewski, Stephen; German, Emilio; Stenger, Mark; Nichol, Stuart; Ströher, Ute; Vanderende, Kristin E; Zarecki, Shauna Mettee; Green, Hugh Henry W; Bailey, Jeffrey A; Rollin, Pierre; Marston, Barbara; Nyenswah, Tolbert G; Gasasira, Alex; Knust, Barbara; Williams, Desmond

    2016-10-01

    Ebola virus has been detected in semen of Ebola virus disease survivors after recovery. Liberia's Men's Health Screening Program (MHSP) offers Ebola virus disease survivors semen testing for Ebola virus. We present preliminary results and behavioural outcomes from the first national semen testing programme for Ebola virus. The MHSP operates out of three locations in Liberia: Redemption Hospital in Montserrado County, Phebe Hospital in Bong County, and Tellewoyan Hospital in Lofa County. Men aged 15 years and older who had an Ebola treatment unit discharge certificate are eligible for inclusion. Participants' semen samples were tested for Ebola virus RNA by real-time RT-PCR and participants received counselling on safe sexual practices. Participants graduated after receiving two consecutive negative semen tests. Counsellors collected information on sociodemographics and sexual behaviours using questionnaires administered at enrolment, follow up, and graduation visits. Because the programme is ongoing, data analysis was restricted to data obtained from July 7, 2015, to May 6, 2016. As of May 6, 2016, 466 Ebola virus disease survivors had enrolled in the programme; real-time RT-PCR results were available from 429 participants. 38 participants (9%) produced at least one semen specimen that tested positive for Ebola virus RNA. Of these, 24 (63%) provided semen specimens that tested positive 12 months or longer after Ebola virus disease recovery. The longest interval between discharge from an Ebola treatment unit and collection of a positive semen sample was 565 days. Among participants who enrolled and provided specimens more than 90 days since their Ebola treatment unit discharge, men older than 40 years were more likely to have a semen sample test positive than were men aged 40 years or younger (p=0·0004). 84 (74%) of 113 participants who reported not using a condom at enrolment reported using condoms at their first follow-up visit (pEbola virus RNA by real-time RT

  13. Disinfection of Ebola Virus in Sterilized Municipal Wastewater.

    Directory of Open Access Journals (Sweden)

    Kyle Bibby

    2017-02-01

    Full Text Available Concerns have been raised regarding handling of Ebola virus contaminated wastewater, as well as the adequacy of proposed disinfection approaches. In the current study, we investigate the inactivation of Ebola virus in sterilized domestic wastewater utilizing sodium hypochlorite addition and pH adjustment. No viral inactivation was observed in the one-hour tests without sodium hypochlorite addition or pH adjustment. No virus was recovered after 20 seconds (i.e. 4.2 log10 unit inactivation to detection limit following the addition of 5 and 10 mg L-1 sodium hypochlorite, which resulted in immediate free chlorine residuals of 0.52 and 1.11 mg L-1, respectively. The addition of 1 mg L-1 sodium hypochlorite resulted in an immediate free chlorine residual of 0.16 mg L-1, which inactivated 3.5 log10 units of Ebola virus in 20 seconds. Further inactivation was not evident due to the rapid consumption of the chlorine residual. Elevating the pH to 11.2 was found to significantly increase viral decay over ambient conditions. These results indicate the high susceptibility of the enveloped Ebola virus to disinfection in the presence of free chlorine in municipal wastewater; however, we caution that extension to more complex matrices (e.g. bodily fluids will require additional verification.

  14. Ebola virus disease: radiology preparedness.

    Science.gov (United States)

    Bluemke, David A; Meltzer, Carolyn C

    2015-02-01

    At present, there is a major emphasis on Ebola virus disease (EVD) preparedness training at medical facilities throughout the United States. Failure to have proper EVD procedures in place was cited as a major reason for infection of medical personnel in the United States. Medical imaging does not provide diagnosis of EVD, but patient assessment in the emergency department and treatment isolation care unit is likely to require imaging services. The purpose of this article is to present an overview of relevant aspects of EVD disease and preparedness relevant to the radiologic community. © RSNA, 2014.

  15. Ebola Virus Disease

    Centers for Disease Control (CDC) Podcasts

    2014-08-08

    This podcast provides general information about Ebola virus disease and the outbreak in West Africa. The program contains remarks from CDC Director Dr. Tom Frieden, as well as a brief description of CDC’s response efforts.  Created: 8/8/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/8/2014.

  16. The pathogenesis of Ebola hemorrhagic fever.

    Science.gov (United States)

    Takada, A; Kawaoka, Y

    2001-10-01

    Ebola virus causes lethal hemorrhagic disease in humans, yet there are still no satisfactory biological explanations to account for its extreme virulence. This review focuses on recent findings relevant to understanding the pathogenesis of Ebola virus infection and developing vaccines and effective therapy. The available data suggest that the envelope glycoprotein and the interaction of some viral proteins with the immune system are likely to play important roles in the extraordinary pathogenicity of this virus. There are also indications that genetically engineered vaccines, including plasmid DNA and viral vectors expressing Ebola virus proteins, and passive transfer of neutralizing antibodies could be feasible options for the control of Ebola virus-associated disease.

  17. THE STRENGTHS, WEAKNESSES, OPPORTUNITIES, AND THREATS (SWOTs) ANALYSES OF THE EBOLA VIRUS – PAPER RETRACTED

    Science.gov (United States)

    Babalola, Michael Oluyemi

    2016-01-01

    Background: Owing to the extreme virulence and case fatality rate of ebola virus disease (EVD), there had been so much furore, panic and public health emergency about the possible pandemic from the recent West African outbreak of the disease, with attendant handful research, both in the past and most recently. The magnitude of the epidemic of ebola virus disease has prompted global interest and urgency in the discovery of measures to mitigate the impact of the disease. Researchers in the academia and the industry were pressured to only focus on the development of effective and safe ebola virus vaccines, without consideration of the other aspects to this virus, which may influence the success or otherwise of a potential vaccine. The objective of this review was to adopt the SWOT concept to elucidate the biological Strengths, Weaknesses, Opportunities, and Threats to Ebola virus as a pathogen, with a view to understanding and devising holistic strategies at combating and overcoming the scourge of EVD. Method: This systematic review and narrative synthesis utilized Medline, PubMed, Google and other databases to select about 150 publications on ebola and ebola virus disease using text word searches to generate the specific terms. Relevant publications were reviewed and compared, findings were synthesized using a narrative method and summarized qualitatively. Results: Some of the identified strengths of ebola virus include: Ebola virus is an RNA virus with inherent capability to mutate, reassort and recombine to generate mutant or reassortant virulent strains; Ebola virus has a broad cellular tropism; Natural Reservoir of ebola virus is unconfirmed but fruit bats, arthropods, and plants are hypothesized; Ebola virus primarily targets and selectively destroys the immune system; Ebola viruses possess accessory proteins that inhibits the host’ immune responses; Secreted glycoprotein (sGP), a truncated soluble protein that triggers immune activation and increased vascular

  18. Pathology of experimental Ebola virus infection in African green monkeys. Involvement of fibroblastic reticular cells.

    Science.gov (United States)

    Davis, K J; Anderson, A O; Geisbert, T W; Steele, K E; Geisbert, J B; Vogel, P; Connolly, B M; Huggins, J W; Jahrling, P B; Jaax, N K

    1997-08-01

    Ebola virus has been responsible for explosive lethal outbreaks of hemorrhagic fever in both humans and nonhuman primates. Previous studies showed a predilection of Ebola virus for cells of the mononuclear phagocyte system and endothelial cells. To examine the distribution of lesions and Ebola virus antigen in the tissues of six adult male African green monkeys (Cercopithecus aethiops) that died 6 to 7 days after intraperitoneal inoculation of Ebola-Zaire (Mayinga) virus. Tissues were examined histologically, immunohistochemically, and ultrastructurally. A major novel finding of this study was that fibroblastic reticular cells were immunohistochemically and ultrastructurally identified as targets of Ebola virus infection. The role of Ebola virus-infected fibroblastic reticular cells in the pathogenesis of Ebola hemorrhagic fever warrants further investigation. This is especially important because of recent observations indicating that fibroblastic reticular cells, along with the reticular fibers they produce, maximize the efficiency of the immune response.

  19. Search for the Ebola virus reservoir in Kikwit, Democratic Republic of the Congo

    DEFF Research Database (Denmark)

    Leirs, Herwig; Mills, James N.; Krebs, John W.

    1999-01-01

    A 3-month ecologic investigation was done to identify the reservoir of Ebola virus following the 1995 outbreak in Kikwit, Democratic Republic of the Congo, Efforts focused on the fields where the putative primary case had worked but included other habitats near Kikwit, Samples were collected from...... 3066 vertebrates and tested for the presence of antibodies to Ebola (subtype Zaire) virus: All tests were negative, and attempts to isolate Ebola virus were unsuccessful. The investigation was hampered by a lack of information beyond the daily activities of the primary case, a lack of information...... on Ebola virus ecology, which precluded the detailed study of select groups of animals, and sample-size limitations for rare species, The epidemiology of Ebola hemorrhagic fever suggests that humans have only intermittent contact with the virus, which complicates selection of target species. Further study...

  20. Rapid Bedside Inactivation of Ebola Virus for Safe Nucleic Acid Tests

    DEFF Research Database (Denmark)

    Rosenstierne, Maiken Worsøe; Karlberg, Helen; Bragstad, Karoline

    2016-01-01

    Rapid bedside inactivation of Ebola virus would be a solution for the safety of medical and technical staff, risk containment, sample transport, and high-throughput or rapid diagnostic testing during an outbreak. We show that the commercially available Magna Pure lysis/binding buffer used...... for nucleic acid extraction inactivates Ebola virus. A rapid bedside inactivation method for nucleic acid tests is obtained by simply adding Magna Pure lysis/binding buffer directly into vacuum blood collection EDTA tubes using a thin needle and syringe prior to sampling. The ready-to-use inactivation vacuum...... tubes are stable for more than 4 months, and Ebola virus RNA is preserved in the Magna Pure lysis/binding buffer for at least 5 weeks independent of the storage temperature. We also show that Ebola virus RNA can be manually extracted from Magna Pure lysis/binding buffer-inactivated samples using...

  1. Analytical Performance Characteristics of the Cepheid GeneXpert Ebola Assay for the Detection of Ebola Virus

    Science.gov (United States)

    Pinsky, Benjamin A.; Sahoo, Malaya K.; Sandlund, Johanna; Kleman, Marika; Kulkarni, Medha; Grufman, Per; Nygren, Malin; Kwiatkowski, Robert; Baron, Ellen Jo; Tenover, Fred; Denison, Blake; Higuchi, Russell; Van Atta, Reuel; Beer, Neil Reginald; Carrillo, Alda Celena; Naraghi-Arani, Pejman; Mire, Chad E.; Ranadheera, Charlene; Grolla, Allen; Lagerqvist, Nina; Persing, David H.

    2015-01-01

    Background The recently developed Xpert® Ebola Assay is a novel nucleic acid amplification test for simplified detection of Ebola virus (EBOV) in whole blood and buccal swab samples. The assay targets sequences in two EBOV genes, lowering the risk for new variants to escape detection in the test. The objective of this report is to present analytical characteristics of the Xpert® Ebola Assay on whole blood samples. Methods and Findings This study evaluated the assay’s analytical sensitivity, analytical specificity, inclusivity and exclusivity performance in whole blood specimens. EBOV RNA, inactivated EBOV, and infectious EBOV were used as targets. The dynamic range of the assay, the inactivation of virus, and specimen stability were also evaluated. The lower limit of detection (LoD) for the assay using inactivated virus was estimated to be 73 copies/mL (95% CI: 51–97 copies/mL). The LoD for infectious virus was estimated to be 1 plaque-forming unit/mL, and for RNA to be 232 copies/mL (95% CI 163–302 copies/mL). The assay correctly identified five different Ebola viruses, Yambuku-Mayinga, Makona-C07, Yambuku-Ecran, Gabon-Ilembe, and Kikwit-956210, and correctly excluded all non-EBOV isolates tested. The conditions used by Xpert® Ebola for inactivation of infectious virus reduced EBOV titer by ≥6 logs. Conclusion In summary, we found the Xpert® Ebola Assay to have high analytical sensitivity and specificity for the detection of EBOV in whole blood. It offers ease of use, fast turnaround time, and remote monitoring. The test has an efficient viral inactivation protocol, fulfills inclusivity and exclusivity criteria, and has specimen stability characteristics consistent with the need for decentralized testing. The simplicity of the assay should enable testing in a wide variety of laboratory settings, including remote laboratories that are not capable of performing highly complex nucleic acid amplification tests, and during outbreaks where time to detection

  2. New Perspectives on Ebola Virus Evolution.

    Directory of Open Access Journals (Sweden)

    Celeste J Brown

    Full Text Available Since the recent devastating outbreak of Ebola virus disease in western Africa, there has been significant effort to understand the evolution of the deadly virus that caused the outbreak. There has been a considerable investment in sequencing Ebola virus (EBOV isolates, and the results paint an important picture of how the virus has spread in western Africa. EBOV evolution cannot be understood outside the context of previous outbreaks, however. We have focused this study on the evolution of the EBOV glycoprotein gene (GP because one of its products, the spike glycoprotein (GP1,2, is central to the host immune response and because it contains a large amount of the phylogenetic signal for this virus. We inferred the maximum likelihood phylogeny of 96 nonredundant GP gene sequences representing each of the outbreaks since 1976 up to the end of 2014. We tested for positive selection and considered the placement of adaptive amino acid substitutions along the phylogeny and within the protein structure of GP1,2. We conclude that: 1 the common practice of rooting the phylogeny of EBOV between the first known outbreak in 1976 and the next outbreak in 1995 provides a misleading view of EBOV evolution that ignores the fact that there is a non-human EBOV host between outbreaks; 2 the N-terminus of GP1 may be constrained from evolving in response to the host immune system by the highly expressed, secreted glycoprotein, which is encoded by the same region of the GP gene; 3 although the mucin-like domain of GP1 is essential for EBOV in vivo, it evolves rapidly without losing its twin functions: providing O-linked glycosylation sites and a flexible surface.

  3. New Perspectives on Ebola Virus Evolution.

    Science.gov (United States)

    Brown, Celeste J; Quates, Caleb J; Mirabzadeh, Christopher A; Miller, Craig R; Wichman, Holly A; Miura, Tanya A; Ytreberg, F Marty

    2016-01-01

    Since the recent devastating outbreak of Ebola virus disease in western Africa, there has been significant effort to understand the evolution of the deadly virus that caused the outbreak. There has been a considerable investment in sequencing Ebola virus (EBOV) isolates, and the results paint an important picture of how the virus has spread in western Africa. EBOV evolution cannot be understood outside the context of previous outbreaks, however. We have focused this study on the evolution of the EBOV glycoprotein gene (GP) because one of its products, the spike glycoprotein (GP1,2), is central to the host immune response and because it contains a large amount of the phylogenetic signal for this virus. We inferred the maximum likelihood phylogeny of 96 nonredundant GP gene sequences representing each of the outbreaks since 1976 up to the end of 2014. We tested for positive selection and considered the placement of adaptive amino acid substitutions along the phylogeny and within the protein structure of GP1,2. We conclude that: 1) the common practice of rooting the phylogeny of EBOV between the first known outbreak in 1976 and the next outbreak in 1995 provides a misleading view of EBOV evolution that ignores the fact that there is a non-human EBOV host between outbreaks; 2) the N-terminus of GP1 may be constrained from evolving in response to the host immune system by the highly expressed, secreted glycoprotein, which is encoded by the same region of the GP gene; 3) although the mucin-like domain of GP1 is essential for EBOV in vivo, it evolves rapidly without losing its twin functions: providing O-linked glycosylation sites and a flexible surface.

  4. Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors - Final Report.

    Science.gov (United States)

    Deen, Gibrilla F; Broutet, Nathalie; Xu, Wenbo; Knust, Barbara; Sesay, Foday R; McDonald, Suzanna L R; Ervin, Elizabeth; Marrinan, Jaclyn E; Gaillard, Philippe; Habib, Ndema; Liu, Hongtu; Liu, William; Thorson, Anna E; Yamba, Francis; Massaquoi, Thomas A; James, Faustin; Ariyarajah, Archchun; Ross, Christine; Bernstein, Kyle; Coursier, Antoine; Klena, John; Carino, Marylin; Wurie, Alie H; Zhang, Yong; Dumbuya, Marion S; Abad, Neetu; Idriss, Baimba; Wi, Teodora; Bennett, Sarah D; Davies, Tina; Ebrahim, Faiqa K; Meites, Elissa; Naidoo, Dhamari; Smith, Samuel J; Ongpin, Patricia; Malik, Tasneem; Banerjee, Anshu; Erickson, Bobbie R; Liu, Yongjian; Liu, Yang; Xu, Ke; Brault, Aaron; Durski, Kara N; Winter, Jörn; Sealy, Tara; Nichol, Stuart T; Lamunu, Margaret; Bangura, James; Landoulsi, Sihem; Jambai, Amara; Morgan, Oliver; Wu, Guizhen; Liang, Mifang; Su, Qiudong; Lan, Yu; Hao, Yanzhe; Formenty, Pierre; Ströher, Ute; Sahr, Foday

    2017-10-12

    Ebola virus has been detected in the semen of men after their recovery from Ebola virus disease (EVD). We report the presence of Ebola virus RNA in semen in a cohort of survivors of EVD in Sierra Leone. We enrolled a convenience sample of 220 adult male survivors of EVD in Sierra Leone, at various times after discharge from an Ebola treatment unit (ETU), in two phases (100 participants were in phase 1, and 120 in phase 2). Semen specimens obtained at baseline were tested by means of a quantitative reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay with the use of the target sequences of NP and VP40 (in phase 1) or NP and GP (in phase 2). This study did not evaluate directly the risk of sexual transmission of EVD. Of 210 participants who provided an initial semen specimen for analysis, 57 (27%) had positive results on quantitative RT-PCR. Ebola virus RNA was detected in the semen of all 7 men with a specimen obtained within 3 months after ETU discharge, in 26 of 42 (62%) with a specimen obtained at 4 to 6 months, in 15 of 60 (25%) with a specimen obtained at 7 to 9 months, in 4 of 26 (15%) with a specimen obtained at 10 to 12 months, in 4 of 38 (11%) with a specimen obtained at 13 to 15 months, in 1 of 25 (4%) with a specimen obtained at 16 to 18 months, and in no men with a specimen obtained at 19 months or later. Among the 46 participants with a positive result in phase 1, the median baseline cycle-threshold values (higher values indicate lower RNA values) for the NP and VP40 targets were lower within 3 months after ETU discharge (32.4 and 31.3, respectively; in 7 men) than at 4 to 6 months (34.3 and 33.1; in 25), at 7 to 9 months (37.4 and 36.6; in 13), and at 10 to 12 months (37.7 and 36.9; in 1). In phase 2, a total of 11 participants had positive results for NP and GP targets (samples obtained at 4.1 to 15.7 months after ETU discharge); cycle-threshold values ranged from 32.7 to 38.0 for NP and from 31.1 to 37.7 for GP. These data showed the long

  5. Preparedness for ongoing Ebola virus infection: how to welcome it?

    Directory of Open Access Journals (Sweden)

    Sora Yasri

    2015-06-01

    Full Text Available The problem of Ebola virus infection is the big global concern. Preparedness for ongoing Ebola virus infection is the topic that should be discussed. In fact, it is necessary to set up a biosecurity system to protect against the present Ebola outbreak. The medical personnel have to prepare for fighting the problem. The management of the present outbreak requires international collaboration and control of cross-border disease transmission is also the big challenge. The good case study is the Hajj scenario.

  6. Development of a broad-spectrum antiviral with activity against Ebola virus.

    Science.gov (United States)

    Aman, M Javad; Kinch, Michael S; Warfield, Kelly; Warren, Travis; Yunus, Abdul; Enterlein, Sven; Stavale, Eric; Wang, Peifang; Chang, Shaojing; Tang, Qingsong; Porter, Kevin; Goldblatt, Michael; Bavari, Sina

    2009-09-01

    We report herein the identification of a small molecule therapeutic, FGI-106, which displays potent and broad-spectrum inhibition of lethal viral hemorrhagic fevers pathogens, including Ebola, Rift Valley and Dengue Fever viruses, in cell-based assays. Using mouse models of Ebola virus, we further demonstrate that FGI-106 can protect animals from an otherwise lethal infection when used either in a prophylactic or therapeutic setting. A single treatment, administered 1 day after infection, is sufficient to protect animals from lethal Ebola virus challenge. Cell-based assays also identified inhibitory activity against divergent virus families, which supports a hypothesis that FGI-106 interferes with a common pathway utilized by different viruses. These findings suggest FGI-106 may provide an opportunity for targeting viral diseases.

  7. Ebola Virus Disease in Children, Sierra Leone, 2014–2015

    Science.gov (United States)

    Naveed, Asad; Wing, Kevin; Gbessay, Musa; Ross, J.C.G.; Checchi, Francesco; Youkee, Daniel; Jalloh, Mohammed Boie; Baion, David; Mustapha, Ayeshatu; Jah, Hawanatu; Lako, Sandra; Oza, Shefali; Boufkhed, Sabah; Feury, Reynold; Bielicki, Julia A.; Gibb, Diana M.; Klein, Nigel; Sahr, Foday; Yeung, Shunmay

    2016-01-01

    Little is known about potentially modifiable factors in Ebola virus disease in children. We undertook a retrospective cohort study of children <13 years old admitted to 11 Ebola holding units in the Western Area, Sierra Leone, during 2014–2015 to identify factors affecting outcome. Primary outcome was death or discharge after transfer to Ebola treatment centers. All 309 Ebola virus–positive children 2 days–12 years old were included; outcomes were available for 282 (91%). Case-fatality was 57%, and 55% of deaths occurred in Ebola holding units. Blood test results showed hypoglycemia and hepatic/renal dysfunction. Death occurred swiftly (median 3 days after admission) and was associated with younger age and diarrhea. Despite triangulation of information from multiple sources, data availability was limited, and we identified no modifiable factors substantially affecting death. In future Ebola virus disease epidemics, robust, rapid data collection is vital to determine effectiveness of interventions for children. PMID:27649367

  8. Virus like particle-based vaccines against emerging infectious disease viruses.

    Science.gov (United States)

    Liu, Jinliang; Dai, Shiyu; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2016-08-01

    Emerging infectious diseases are major threats to human health. Most severe viral disease outbreaks occur in developing regions where health conditions are poor. With increased international travel and business, the possibility of eventually transmitting infectious viruses between different countries is increasing. The most effective approach in preventing viral diseases is vaccination. However, vaccines are not currently available for numerous viral diseases. Virus-like particles (VLPs) are engineered vaccine candidates that have been studied for decades. VLPs are constructed by viral protein expression in various expression systems that promote the selfassembly of proteins into structures resembling virus particles. VLPs have antigenicity similar to that of the native virus, but are non-infectious as they lack key viral genetic material. VLP vaccines have attracted considerable research interest because they offer several advantages over traditional vaccines. Studies have shown that VLP vaccines can stimulate both humoral and cellular immune responses, which may offer effective antiviral protection. Here we review recent developments with VLP-based vaccines for several highly virulent emerging or re-emerging infectious diseases. The infectious agents discussed include RNA viruses from different virus families, such as the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Togaviridae families.

  9. A systems view and lessons from the ongoing Ebola Virus disease ...

    African Journals Online (AJOL)

    This article analyses the on-going (2014) Ebola Virus Disease (EVD) outbreak in West Africa from a systems perspective; and draws out lessons for West Africa in general and Ghana in particular. Keywords: Ebola Virus Disease, West Africa , Ghana , Systems , Prevention and Control ...

  10. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce

    Science.gov (United States)

    Lai, Huafang; He, Junyun; Engle, Michael; Diamond, Michael S.; Chen, Qiang

    2011-01-01

    Summary Pharmaceutical protein production in plants has been greatly promoted by the development of viral-based vectors and transient expression systems. Tobacco and related Nicotiana species are currently the most common host plants for generation of plant-made pharmaceutical proteins (PMPs). Downstream processing of target PMPs from these plants, however, is hindered by potential technical and regulatory difficulties due to the presence of high levels of phenolics and toxic alkaloids. Here, we explored the use of lettuce, which grows quickly yet produces low levels of secondary metabolites, and viral vector-based transient expression systems to develop a robust PMP production platform. Our results showed that a geminiviral replicon system based on the bean yellow dwarf virus permits high-level expression in lettuce of virus-like particles (VLP) derived from the Norwalk virus capsid protein and therapeutic monoclonal antibodies (mAbs) against Ebola and West Nile viruses. These vaccine and therapeutic candidates can be readily purified from lettuce leaves with scalable processing methods while fully retaining functional activity. Furthermore, this study also demonstrated the feasibility of using commercially produced lettuce for high-level PMP production. This allows our production system to have access to unlimited quantities of inexpensive plant material for large-scale production. These results establish a new production platform for biological pharmaceutical agents that is effective, safe, low-cost, and amenable to large-scale manufacturing. PMID:21883868

  11. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    Science.gov (United States)

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  12. Implementation of a study to examine the persistence of Ebola virus in the body fluids of Ebola virus disease survivors in Sierra Leone: Methodology and lessons learned.

    Science.gov (United States)

    Deen, Gibrilla Fadlu; McDonald, Suzanna L R; Marrinan, Jaclyn E; Sesay, Foday R; Ervin, Elizabeth; Thorson, Anna E; Xu, Wenbo; Ströher, Ute; Ongpin, Patricia; Abad, Neetu; Ariyarajah, Archchun; Malik, Tasneem; Liu, Hongtu; Ross, Christine; Durski, Kara N; Gaillard, Philippe; Morgan, Oliver; Formenty, Pierre; Knust, Barbara; Broutet, Nathalie; Sahr, Foday

    2017-09-01

    The 2013-2016 West African Ebola virus disease epidemic was unprecedented in terms of the number of cases and survivors. Prior to this epidemic there was limited data available on the persistence of Ebola virus in survivors' body fluids and the potential risk of transmission, including sexual transmission. Given the urgent need to determine the persistence of Ebola virus in survivors' body fluids, an observational cohort study was designed and implemented during the epidemic response operation in Sierra Leone. This publication describes study implementation methodology and the key lessons learned. Challenges encountered during implementation included unforeseen duration of follow-up, complexity of interpreting and communicating laboratory results to survivors, and the urgency of translating research findings into public health practice. Strong community engagement helped rapidly implement the study during the epidemic. The study was conducted in two phases. The first phase was initiated within five months of initial protocol discussions and assessed persistence of Ebola virus in semen of 100 adult men. The second phase assessed the persistence of virus in multiple body fluids (semen or vaginal fluid, menstrual blood, breast milk, and urine, rectal fluid, sweat, saliva, tears), of 120 men and 120 women. Data from this study informed national and global guidelines in real time and demonstrated the need to implement semen testing programs among Ebola virus disease survivors. The lessons learned and study tools developed accelerated the implementation of such programs in Ebola virus disease affected countries, and also informed studies examining persistence of Zika virus. Research is a vital component of the public health response to an epidemic of a poorly characterized disease. Adequate resources should be rapidly made available to answer critical research questions, in order to better inform response efforts.

  13. Yoctomole electrochemical genosensing of Ebola virus cDNA by rolling circle and circle to circle amplification.

    Science.gov (United States)

    Carinelli, S; Kühnemund, M; Nilsson, M; Pividori, M I

    2017-07-15

    This work addresses the design of an Ebola diagnostic test involving a simple, rapid, specific and highly sensitive procedure based on isothermal amplification on magnetic particles with electrochemical readout. Ebola padlock probes were designed to detect a specific L-gene sequence present in the five most common Ebola species. Ebola cDNA was amplified by rolling circle amplification (RCA) on magnetic particles. Further re-amplification was performed by circle-to-circle amplification (C2CA) and the products were detected in a double-tagging approach using a biotinylated capture probe for immobilization on magnetic particles and a readout probe for electrochemical detection by square-wave voltammetry on commercial screen-printed electrodes. The electrochemical genosensor was able to detect as low as 200 ymol, corresponding to 120 cDNA molecules of L-gene Ebola virus with a limit of detection of 33 cDNA molecules. The isothermal double-amplification procedure by C2CA combined with the electrochemical readout and the magnetic actuation enables the high sensitivity, resulting in a rapid, inexpensive, robust and user-friendly sensing strategy that offers a promising approach for the primary care in low resource settings, especially in less developed countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A Case of Ebola Virus

    Centers for Disease Control (CDC) Podcasts

    2012-10-01

    Dr. Adam MacNeil, an epidemiologist at CDC, discusses Ebola virus.  Created: 10/1/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID); National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 10/1/2012.

  15. Ebola virus - epidemiology, diagnosis, and control: threat to humans, lessons learnt, and preparedness plans - an update on its 40 year's journey.

    Science.gov (United States)

    Singh, Raj Kumar; Dhama, Kuldeep; Malik, Yashpal Singh; Ramakrishnan, Muthannan Andavar; Karthik, Kumaragurubaran; Khandia, Rekha; Tiwari, Ruchi; Munjal, Ashok; Saminathan, Mani; Sachan, Swati; Desingu, Perumal Arumugam; Kattoor, Jobin Jose; Iqbal, Hafiz M N; Joshi, Sunil Kumar

    2017-12-01

    Ebola virus (EBOV) is an extremely contagious pathogen and causes lethal hemorrhagic fever disease in man and animals. The recently occurred Ebola virus disease (EVD) outbreaks in the West African countries have categorized it as an international health concern. For the virus maintenance and transmission, the non-human primates and reservoir hosts like fruit bats have played a vital role. For curbing the disease timely, we need effective therapeutics/prophylactics, however, in the absence of any approved vaccine, timely diagnosis and monitoring of EBOV remains of utmost importance. The technologically advanced vaccines like a viral-vectored vaccine, DNA vaccine and virus-like particles are underway for testing against EBOV. In the absence of any effective control measure, the adaptation of high standards of biosecurity measures, strict sanitary and hygienic practices, strengthening of surveillance and monitoring systems, imposing appropriate quarantine checks and vigilance on trade, transport, and movement of visitors from EVD endemic countries remains the answer of choice for tackling the EBOV spread. Herein, we converse with the current scenario of EBOV giving due emphasis on animal and veterinary perspectives along with advances in diagnosis and control strategies to be adopted, lessons learned from the recent outbreaks and the global preparedness plans. To retrieve the evolutionary information, we have analyzed a total of 56 genome sequences of various EBOV species submitted between 1976 and 2016 in public databases.

  16. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation.

    Directory of Open Access Journals (Sweden)

    Karen A O Martins

    Full Text Available Identifying safe and effective adjuvants is critical for the advanced development of protein-based vaccines. Pattern recognition receptor (PRR agonists are increasingly being explored as potential adjuvants, but there is concern that the efficacy of these molecules may be dependent on potentially dangerous levels of non-specific immune activation. The filovirus virus-like particle (VLP vaccine protects mice, guinea pigs, and nonhuman primates from viral challenge. In this study, we explored the impact of a stabilized dsRNA mimic, polyICLC, on VLP vaccination of C57BL/6 mice and Hartley guinea pigs. We show that at dose levels as low as 100 ng, the adjuvant increased the efficacy of the vaccine in mice. Antigen-specific, polyfunctional CD4 and CD8 T cell responses and antibody responses increased significantly upon inclusion of adjuvant. To determine whether the efficacy of polyICLC correlated with systemic immune activation, we examined serum cytokine levels and cellular activation in the draining lymph node. PolyICLC administration was associated with increases in TNFα, IL6, MCP1, MIP1α, KC, and MIP1β levels in the periphery and with the activation of dendritic cells (DCs, NK cells, and B cells. However, this activation resolved within 24 to 72 hours at efficacious adjuvant dose levels. These studies are the first to examine the polyICLC-induced enhancement of antigen-specific immune responses in the context of non-specific immune activation, and they provide a framework from which to consider adjuvant dose levels.

  17. Ebola Virus Disease Candidate Vaccines Under Evaluation in Clinical Trials

    Science.gov (United States)

    2016-06-02

    evidence that oral vaccines fail in populations with disturbed microbiota, poor nutrition , and high intestinal inflammation [102-104]. Additionally...countermeasure development against Ebola virus disease becoming a global public- health priority. This review summarizes the status quo of candidate...members of the mononegaviral family Filoviridae) cause two diseases recognized by the World Health Organization (WHO): Ebola virus disease (EVD) can be

  18. Ebola virus encodes a miR-155 analog to regulate importin-α5 expression.

    Science.gov (United States)

    Liu, Yuanwu; Sun, Jing; Zhang, Hongwen; Wang, Mingming; Gao, George Fu; Li, Xiangdong

    2016-10-01

    The 2014 outbreak of Ebola virus caused more than 10,000 human deaths. Current knowledge of suitable drugs, clinical diagnostic biomarkers and molecular mechanisms of Ebola virus infection is either absent or insufficient. By screening stem-loop structures from the viral genomes of four virulence species, we identified a novel, putative viral microRNA precursor that is specifically expressed by the Ebola virus. The sequence of the microRNA precursor was further confirmed by mining the existing RNA-Seq database. Two putative mature microRNAs were predicted and subsequently validated in human cell lines. Combined with this prediction of the microRNA target, we identified importin-α5, which is a key regulator of interferon signaling following Ebola virus infection, as one putative target. We speculate that this microRNA could facilitate the evasion of the host immune system by the virus. Moreover, this microRNA might be a potential clinical therapeutic target or a diagnostic biomarker for Ebola virus.

  19. In Vivo Replication and Pathogenesis of Vesicular Stomatitis Virus Recombinant M40 Containing Ebola Virus L-Domain Sequences

    Directory of Open Access Journals (Sweden)

    Takashi Irie

    2012-01-01

    Full Text Available The M40 VSV recombinant was engineered to contain overlapping PTAP and PPxY L-domain motifs and flanking residues from the VP40 protein of Ebola virus. Replication of M40 in cell culture is virtually indistinguishable from that of control viruses. However, the presence of the Ebola PTAP motif in the M40 recombinant enabled this virus to interact with and recruit host Tsg101, which was packaged into M40 virions. In this brief report, we compared replication and the pathogenic profiles of M40 and the parental virus M51R in mice to determine whether the presence of the Ebola L-domains and flanking residues altered in vivo characteristics of the virus. Overall, the in vivo characteristics of M40 were similar to those of the parental M51R virus, indicating that the Ebola sequences did not alter pathogenesis of VSV in this small animal model of infection.

  20. Towards Detection and Diagnosis of Ebola Virus Disease at Point-of-Care

    Science.gov (United States)

    Kaushik, Ajeet; Tiwari, Sneham; Jayant, Rahul Dev; Marty, Aileen; Nair, Madhavan

    2015-01-01

    Ebola outbreak-2014 (mainly Zaire strain related Ebola virus) has been declared most widely spread deadly persistent epidemic due to unavailability of rapid diagnostic, detection, and therapeutics. Ebola virus disease (EVD), a severe viral hemorrhagic fever syndrome caused by Ebola virus (EBOV) is transmitted by direct contact with the body fluids of infected person and objects contaminated with virus or infected animals. World Health Organization (WHO) has declared EVD epidemic as public health emergency of international concern with severe global economic burden. At fatal EBOV infection stage, patients usually die before the antibody response. Currently, rapid blood tests to diagnose EBOV infection include the antigen or antibodies capture using ELISA and RNA detection using RT/Q-PCR within 3–10 days after the onset of symptoms. Moreover, few nanotechnology-based colorimetric and paper-based immunoassay methods have been recently reported to detect Ebola virus. Unfortunately, these methods are limited to laboratory only. As state-of-the art (SoA) diagnostics time to confirm Ebola infection, varies from 6 hours to about 3 days, it causes delay in therapeutic approaches. Thus developing a cost-effective, rapid, sensitive, and selective sensor to detect EVD at point-of-care (POC) is certainly worth exploring to establish rapid diagnostics to decide therapeutics. This review highlights SoA of Ebola diagnostics and also a call to develop rapid, selective and sensitive POC detection of EBOV for global health care. We propose that adopting miniaturized electrochemical EBOV immunosensing can detect virus level at pM concentration within ~40 minute compared to 3 days of ELISA test at nM levels. PMID:26319169

  1. Reemerging Sudan Ebola Virus Disease in Uganda, 2011

    Science.gov (United States)

    Shoemaker, Trevor; Balinandi, Stephen; Campbell, Shelley; Wamala, Joseph Francis; McMullan, Laura K.; Downing, Robert; Lutwama, Julius; Mbidde, Edward; Ströher, Ute; Rollin, Pierre E.; Nichol, Stuart T.

    2012-01-01

    Two large outbreaks of Ebola hemorrhagic fever occurred in Uganda in 2000 and 2007. In May 2011, we identified a single case of Sudan Ebola virus disease in Luwero District. The establishment of a permanent in-country laboratory and cooperation between international public health entities facilitated rapid outbreak response and control activities. PMID:22931687

  2. Virus-like particles as nanovaccine candidates

    International Nuclear Information System (INIS)

    Guillen, G; Aguilar, J C; Dueñas, S; Hermida, L; Iglesias, E; Penton, E; Lobaina, Y; Lopez, M; Mussachio, A; Falcon, V; Alvarez, L; Martinez, G; Gil, L; Valdes, I; Izquierdo, A; Lazo, L; Marcos, E; Guzman, G; Muzio, V; Herrera, L

    2013-01-01

    The existing vaccines are mainly limited to the microorganisms we are able to culture and produce and/or to those whose killing is mediated by humoral response (antibody mediated). It has been more difficult to develop vaccines capable of inducing a functional cellular response needed to prevent or cure chronic diseases. New strategies should be taken into account in the improvement of cell-based immune responses in order to prevent and control the infections and eventually clear the virus. Preclinical and clinical results with vaccine candidates developed as a vaccine platform based on virus-like particles (VLPs) evidenced their ability to stimulate mucosal as well as systemic immunity. Particles based on envelope, membrane or nucleocapsid microbial proteins induce a strong immune response after nasal or parenteral administration in mice, non-human primates and humans. In addition, the immune response obtained was modulated in a Th1 sense. The VLPs were also able to immunoenhance the humoral and cellular immune responses against several viral pathogens. Studies in animals and humans with nasal and systemic formulations evidenced that it is possible to induce functional immune response against HBV, HCV, HIV and dengue virus. (paper)

  3. Ebinformatics: Ebola fuzzy informatics systems on the diagnosis, prediction and recommendation of appropriate treatments for Ebola virus disease (EVD

    Directory of Open Access Journals (Sweden)

    Olugbenga Oluwagbemi

    Full Text Available Ebola Virus Disease (EVD also known as the Ebola hemorrhagic fever is a very deadly infectious disease to humankind. Therefore, a safer and complementary method of diagnosis is to employ the use of an expert system in order to initiate a platform for pre-clinical treatments, thus acting as a precursor to comprehensive medical diagnosis and treatments. This work presents a design and implementation of informatics software and a knowledge-based expert system for the diagnosis, and provision of recommendations on the appropriate type of recommended treatment to the Ebola Virus Disease (EVD.In this research an Ebola fuzzy informatics system was developed for the purpose of diagnosing and providing useful recommendations to the management of the EVD in West Africa and other affected regions of the world. It also acts as a supplementary resource in providing medical advice to individuals in Ebola – ravaged countries. This aim was achieved through the following objectives: (i gathering of facts through the conduct of a comprehensive continental survey to determine the knowledge and perception level of the public about factors responsible for the transmission of the Ebola Virus Disease (ii develop an informatics software based on information collated from health institutions on basic diagnosis of the Ebola Virus Disease-related symptoms (iii adopting and marrying the knowledge of fuzzy logic and expert systems in developing the informatics software. Necessary requirements were collated from the review of existing expert systems, consultation of journals and articles, and internet sources. Online survey was conducted to determine the level at which individuals are aware of the factors responsible for the transmission of the Ebola Virus Disease (EVD. The expert system developed, was designed to use fuzzy logic as its inference mechanism along with a set of rules. A knowledge base was created to help provide diagnosis on the Ebola Virus Disease (EVD

  4. Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of ebola virus.

    Science.gov (United States)

    Hartman, Amy L; Bird, Brian H; Towner, Jonathan S; Antoniadou, Zoi-Anna; Zaki, Sherif R; Nichol, Stuart T

    2008-03-01

    Zaire ebolavirus causes a rapidly progressing hemorrhagic disease with high mortality. Identification of the viral virulence factors that contribute to the severity of disease induced by Ebola virus is critical for the design of therapeutics and vaccines against the disease. Given the rapidity of disease progression, virus interaction with the innate immune system early in the course of infection likely plays an important role in determining the outcome of the disease. The Ebola virus VP35 protein inhibits the activation of IRF-3, a critical transcription factor for the induction of early antiviral immunity. Previous studies revealed that a single amino acid change (R312A) in VP35 renders the protein unable to inhibit IRF-3 activation. A reverse-genetics-generated, mouse-adapted, recombinant Ebola virus that encodes the R312A mutation in VP35 was produced. We found that relative to the case for wild-type virus containing the authentic VP35 sequence, this single amino acid change in VP35 renders the virus completely attenuated in mice. Given that these viruses differ by only a single amino acid in the IRF-3 inhibitory domain of VP35, the level of alteration of virulence is remarkable and highlights the importance of VP35 for the pathogenesis of Ebola virus.

  5. Ebola virus: recommendations

    CERN Multimedia

    CERN Medical Service

    2014-01-01

    The CERN Medical Service has been closely following, in particular via the WHO, the development of the Ebola virus outbreak currently affecting some African countries. This infectious disease may be passed on through direct contact with the bodily fluids of a sick person.   Based on the recommendations of the WHO and the two Host States, Switzerland and France, as updated on their respective websites, so far there has been no ban on travel to the countries concerned. However, unless it is absolutely essential, you are advised not to visit any of the countries affected by Ebola (Guinea, Republic of Sierra Leone, Liberia, Nigeria). The two Host States have established an alert system, and a check is carried out on departure from the airports of those countries. It is strongly recommended that you contact the Medical Service if you are travelling to those countries. We remind you to observe the basic rules of hygiene such as frequent hand washing, whatever your destination. The Medical Service is...

  6. Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified GPs.

    Directory of Open Access Journals (Sweden)

    Nancy J Sullivan

    2006-06-01

    Full Text Available Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd encoding the Ebola glycoprotein (GP and nucleoprotein (NP has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine.To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 10(10 particles, two logs lower than that used previously.Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 10(10 rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate.

  7. Immune Protection of Nonhuman Primates against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

    Science.gov (United States)

    Geisbert, Joan B; Shedlock, Devon J; Xu, Ling; Lamoreaux, Laurie; Custers, Jerome H. H. V; Popernack, Paul M; Yang, Zhi-Yong; Pau, Maria G; Roederer, Mario; Koup, Richard A; Goudsmit, Jaap; Jahrling, Peter B; Nabel, Gary J

    2006-01-01

    Background Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd) encoding the Ebola glycoprotein (GP) and nucleoprotein (NP) has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine. Methods and Findings To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 1010 particles, two logs lower than that used previously. Conclusions Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 1010 rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate. PMID:16683867

  8. Ebola virus disease: preparedness in Japan.

    Science.gov (United States)

    Ashino, Yugo; Chagan-Yasutan, Haorile; Egawa, Shinichi; Hattori, Toshio

    2015-02-01

    The current outbreak of Ebola virus disease (EVD) is due to a lack of resources, untrained medical personnel, and the specific contact-mediated type of infection of this virus. In Japan's history, education and mass vaccination of the native Ainu people successfully eradicated epidemics of smallpox. Even though a zoonotic virus is hard to control, appropriate precautions and personal protection, as well as anti-symptomatic treatment, will control the outbreak of EVD. Ebola virus utilizes the antibody-dependent enhancement of infection to seed the cells of various organs. The pathogenesis of EVD is due to the cytokine storm of pro-inflammatory cytokines and the lack of antiviral interferon-α2. Matricellular proteins of galectin-9 and osteopontin might also be involved in the edema and abnormality of the coagulation system in EVD. Anti-fibrinolytic treatment will be effective. In the era of globalization, interviews of travelers with fever within 3 weeks of departure from the affected areas will be necessary. Not only the hospitals designated for specific biohazards but every hospital should be aware of the biology of biohazards and establish measures to protect both patients and the community.

  9. West Africa Ebola Virus Disease Epidemic: The Africa Experience ...

    African Journals Online (AJOL)

    Ebola Virus Disease (EVD), formerly known as Ebola haemorrhagic fever, is a severe acute viral illness characterized by sudden onset of fever, myalgia, malaise, and severe headache, followed by vomiting and diarrhea and, in some instances, bleeding. The 2014 West Africa outbreak is the largest in history, affecting ...

  10. Structures of protective antibodies reveal sites of vulnerability on Ebola virus.

    Science.gov (United States)

    Murin, Charles D; Fusco, Marnie L; Bornholdt, Zachary A; Qiu, Xiangguo; Olinger, Gene G; Zeitlin, Larry; Kobinger, Gary P; Ward, Andrew B; Saphire, Erica Ollmann

    2014-12-02

    Ebola virus (EBOV) and related filoviruses cause severe hemorrhagic fever, with up to 90% lethality, and no treatments are approved for human use. Multiple recent outbreaks of EBOV and the likelihood of future human exposure highlight the need for pre- and postexposure treatments. Monoclonal antibody (mAb) cocktails are particularly attractive candidates due to their proven postexposure efficacy in nonhuman primate models of EBOV infection. Two candidate cocktails, MB-003 and ZMAb, have been extensively evaluated in both in vitro and in vivo studies. Recently, these two therapeutics have been combined into a new cocktail named ZMapp, which showed increased efficacy and has been given compassionately to some human patients. Epitope information and mechanism of action are currently unknown for most of the component mAbs. Here we provide single-particle EM reconstructions of every mAb in the ZMapp cocktail, as well as additional antibodies from MB-003 and ZMAb. Our results illuminate key and recurring sites of vulnerability on the EBOV glycoprotein and provide a structural rationale for the efficacy of ZMapp. Interestingly, two of its components recognize overlapping epitopes and compete with each other for binding. Going forward, this work now provides a basis for strategic selection of next-generation antibody cocktails against Ebola and related viruses and a model for predicting the impact of ZMapp on potential escape mutations in ongoing or future Ebola outbreaks.

  11. Importation and containment of Ebola virus disease - Senegal, August-September 2014.

    Science.gov (United States)

    Mirkovic, Kelsey; Thwing, Julie; Diack, Papa Amadou

    2014-10-03

    On August 29, 2014, Senegal confirmed its first case of Ebola virus disease (Ebola) in a Guinean man, aged 21 years, who had traveled from Guinea to Dakar, Senegal, in mid-August to visit family. Senegalese medical and public health personnel were alerted about this patient after public health staff in Guinea contacted his family in Senegal on August 27. The patient had been admitted to a referral hospital in Senegal on August 26. He was promptly isolated, and a blood sample was sent for laboratory confirmation; Ebola was confirmed by reverse transcriptase-polymerase chain reaction at Institut Pasteur Dakar on August 29. The patient's mother and sister had been admitted to an Ebola treatment unit in Guinea on August 26, where they had named the patient as a contact and reported his recent travel to Senegal. Ebola was likely transmitted to the family from the brother of the patient, who had traveled by land from Sierra Leone to Guinea in early August seeking treatment from a traditional healer. The brother died in Guinea on August 10; family members, including the patient, participated in preparing the body for burial.

  12. Current trends in the management of Ebola virus disease-an updated systematic review

    Directory of Open Access Journals (Sweden)

    Palanisamy Sivanandy

    2016-08-01

    Full Text Available The Ebola virus created a ripple of fear when its number of cases rose rapidly and drastically in recent years. Ebola infection is transmitted in humans when contact closely with blood, organs or other body fluids of infected animals or secretions. It is often mortal as it affects vascular system of the body, results in organ failure and serious internal bleeding. Hence, this review was aimed to summarize various essential aspects of Ebola virus disease and its management. A systematic review was carried out by collecting various literatures, published research articles, notes and other published date related to Ebola virus disease. Standard supporting care in a hospital setting such as replenishment of fluid and electrolytes, ventilation support, pain control and nutritional support is initiated to the patients to manage the symptoms and prevent any complications of Ebola disease since there are no Food and Drug Administrationapproved medications available. In terms of pharmacological drug therapy, favipiravir has been shown to be efficacious and safe in treating the Ebola virus disease. Nevertheless, there are some preventive measures as well to decrease the risk of getting the disease. Further, the review suggests the efficient control and prevention of Ebola epidemic require adequate political support from the government as well as the establishment of a robust public health infrastructure and medical reserve. Strengthening of contact tracing and quarantine policies are also important for the prevention of Ebola virus disease. There should be a well-designed disease surveillance system when a suspected case is reported. Given the elevated case-fatality rate and the absence of effective treatment, it is sensible to evade research ethics and develop the promising future of experimental vaccines. The collection of clinical and epidemiological information of Ebola should be vigorous and systematic in the endemic affected areas.

  13. Nurses leading the fight against Ebola virus disease.

    Science.gov (United States)

    Sagar, Priscilla L

    2015-05-01

    The current Ebola crisis has sparked worldwide reaction of panic and disbelief in its wake as it decimated communities in West Africa, particularly in Guinea, Liberia, and Sierra Leone, including its health care workers. This article affirms the crucial role nurses play in maintaining health and preventing diseases, connects the devastating havoc of the Ebola virus disease to another issue of nursing shortage in underdeveloped countries, and asserts the key leadership nurses play in protecting the communities they serve while maintaining their safety and those of other health care workers. Nurses must actively seek a place at the table, as echoed by the American Academy of Nursing and American Nurses Association and the American Nurses Association, when decisions are being made regarding Ebola virus disease: at care settings, in the board room, and at federal, state, and local levels. © The Author(s) 2015.

  14. Lack of protection against ebola virus from chloroquine in mice and hamsters.

    Science.gov (United States)

    Falzarano, Darryl; Safronetz, David; Prescott, Joseph; Marzi, Andrea; Feldmann, Friederike; Feldmann, Heinz

    2015-06-01

    The antimalarial drug chloroquine has been suggested as a treatment for Ebola virus infection. Chloroquine inhibited virus replication in vitro, but only at cytotoxic concentrations. In mouse and hamster models, treatment did not improve survival. Chloroquine is not a promising treatment for Ebola. Efforts should be directed toward other drug classes.

  15. Development of Potential Small Molecule Therapeutics for Treatment of Ebola Virus.

    Science.gov (United States)

    Schafer, Adam Michael; Cheng, Han; Lee, Charles; Du, Ruikun; Han, Julianna; Perez, Jasmine; Peet, Norton; Manicassamy, Balaji; Rong, Lijun

    2017-10-10

    Ebola virus has caused 26 outbreaks in 10 different countries since its identification in 1976, making it one of the deadliest emerging viral pathogens. The most recent outbreak in West Africa from 2014-16 was the deadliest yet and culminated in 11,310 deaths out of 28,616 confirmed cases. Currently there are no FDA-approved therapeutics or vaccines to treat Ebola virus infections. The slow development of effective vaccines combined with the severity of past outbreaks emphasizes the need to accelerate research into understanding the virus lifecycle and the development of therapeutics for post exposure treatment. Here we present a summary of the major findings on the Ebola virus replication cycle and the therapeutic approaches explored to treat this devastating disease. The major focus of this review is on small molecule inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Design of Fusion Proteins for Efficient and Soluble Production of Immunogenic Ebola Virus Glycoprotein in Escherichia coli.

    Science.gov (United States)

    Ji, Yang; Lu, Yuan; Yan, Yishu; Liu, Xinxin; Su, Nan; Zhang, Chong; Bi, Shengli; Xing, Xin-Hui

    2018-03-03

    The Ebola hemorrhagic fever caused by Ebola virus is an extremely dangerous disease, and effective therapeutic agents are still lacking. Platforms for the efficient production of vaccines are crucial to ensure quick response against an Ebola virus outbreak. Ebola virus glycoprotein (EbolaGP) on the virion surface is responsible for membrane binding and virus entry, thus becoming the key target for vaccine development. However, heterologous expression of this protein still faces engineering challenges such as low production levels and insoluble aggregation. Here, the authors design and compare various fusion strategies, attaching great importance to the solubility-enhancing effect, and tag removal process. It is found that a C-terminal intein-based tag greatly enhances the solubility of EbolaGP and allows one-step chromatographic purification of the untagged EbolaGP through thiol-catalyzed self-cleavage. The purified untagged EbolaGP alone or with Freund's adjuvant are highly immunogenic, as confirmed in a mouse model. Consequently, the present study puts forward a new strategy for the efficient and soluble expression of untagged immunogenic EbolaGP. The intein-based protein fusion approach may be of importance for the large-scale production of Ebola virus subunit vaccine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Euthanasia Assessment in Ebola Virus Infected Nonhuman Primates

    Directory of Open Access Journals (Sweden)

    Travis K. Warren

    2014-11-01

    Full Text Available Multiple products are being developed for use against filoviral infections. Efficacy for these products will likely be demonstrated in nonhuman primate models of filoviral disease to satisfy licensure requirements under the Animal Rule, or to supplement human data. Typically, the endpoint for efficacy assessment will be survival following challenge; however, there exists no standardized approach for assessing the health or euthanasia criteria for filovirus-exposed nonhuman primates. Consideration of objective criteria is important to (a ensure test subjects are euthanized without unnecessary distress; (b enhance the likelihood that animals exhibiting mild or moderate signs of disease are not prematurely euthanized; (c minimize the occurrence of spontaneous deaths and loss of end-stage samples; (d enhance the reproducibility of experiments between different researchers; and (e provide a defensible rationale for euthanasia decisions that withstands regulatory scrutiny. Historic records were compiled for 58 surviving and non-surviving monkeys exposed to Ebola virus at the US Army Medical Research Institute of Infectious Diseases. Clinical pathology parameters were statistically analyzed and those exhibiting predicative value for survival are reported. These findings may be useful for standardization of objective euthanasia assessments in rhesus monkeys exposed to Ebola virus and may serve as a useful approach for other standardization efforts.

  18. On revealing the gene targets of Ebola virus microRNAs involved in the human skin microbiome

    Directory of Open Access Journals (Sweden)

    Pei-Chun Hsu

    2018-01-01

    Full Text Available Ebola virus, a negative-sense single-stranded RNA virus, causes severe viral hemorrhagic fever and has a high mortality rate. Histopathological and immunopathological analyses of Ebola virus have revealed that histopathological changes in skin tissue are associated with various degrees of endothelial cell swelling and necrosis. The interactions of microbes within or on a host are a crucial for the skin immune shield. The discovery of microRNAs (miRNAs in Ebola virus implies that immune escape, endothelial cell rupture, and tissue dissolution during Ebola virus infection are a result of the effects of Ebola virus miRNAs. Keratinocytes obtained from normal skin can attach and spread through expression of the thrombospondin family of proteins, playing a role in initiation of cell-mediated immune responses in the skin. Several miRNAs have been shown to bind the 3′ untranslated region of thrombospondin mRNA, thereby controlling its stability and translational activity. In this study, we discovered short RNA sequences that may act as miRNAs from Propionibacterium acnes using a practical workflow of bioinformatics methods. Subsequently, we deciphered the common target gene. These RNA sequences tended to bind to the same thrombospondin protein, THSD4, emphasizing the potential importance of the synergistic binding of miRNAs from Ebola virus, Propionibacterium acnes, and humans to the target. These results provide important insights into the molecular mechanisms of thrombospondin proteins and miRNAs in Ebola virus infection.

  19. Persistent infection with ebola virus under conditions of partial immunity.

    Science.gov (United States)

    Gupta, Manisha; Mahanty, Siddhartha; Greer, Patricia; Towner, Jonathan S; Shieh, Wun-Ju; Zaki, Sherif R; Ahmed, Rafi; Rollin, Pierre E

    2004-01-01

    Ebola hemorrhagic fever in humans is associated with high mortality; however, some infected hosts clear the virus and recover. The mechanisms by which this occurs and the correlates of protective immunity are not well defined. Using a mouse model, we determined the role of the immune system in clearance of and protection against Ebola virus. All CD8 T-cell-deficient mice succumbed to subcutaneous infection and had high viral antigen titers in tissues, whereas mice deficient in B cells or CD4 T cells cleared infection and survived, suggesting that CD8 T cells, independent of CD4 T cells and antibodies, are critical to protection against subcutaneous Ebola virus infection. B-cell-deficient mice that survived the primary subcutaneous infection (vaccinated mice) transiently depleted or not depleted of CD4 T cells also survived lethal intraperitoneal rechallenge for >/==" BORDER="0">25 days. However, all vaccinated B-cell-deficient mice depleted of CD8 T cells had high viral antigen titers in tissues following intraperitoneal rechallenge and died within 6 days, suggesting that memory CD8 T cells by themselves can protect mice from early death. Surprisingly, vaccinated B-cell-deficient mice, after initially clearing the infection, were found to have viral antigens in tissues later (day 120 to 150 post-intraperitoneal infection). Furthermore, following intraperitoneal rechallenge, vaccinated B-cell-deficient mice that were transiently depleted of CD4 T cells had high levels of viral antigen in tissues earlier (days 50 to 70) than vaccinated undepleted mice. This demonstrates that under certain immunodeficiency conditions, Ebola virus can persist and that loss of primed CD4 T cells accelerates the course of persistent infections. These data show that CD8 T cells play an important role in protection against acute disease, while both CD4 T cells and antibodies are required for long-term protection, and they provide evidence of persistent infection by Ebola virus suggesting

  20. Immunogenicity and efficacy of immunodeficiency virus-like particles pseudotyped with the G protein of vesicular stomatitis virus

    International Nuclear Information System (INIS)

    Kuate, Seraphin; Stahl-Hennig, Christiane; Stoiber, Heribert; Nchinda, Godwin; Floto, Anja; Franz, Monika; Sauermann, Ulrike; Bredl, Simon; Deml, Ludwig; Ignatius, Ralf; Norley, Steve; Racz, Paul; Tenner-Racz, Klara; Steinman, Ralph M.; Wagner, Ralf; Uberla, Klaus

    2006-01-01

    Vaccination with exogenous antigens such as recombinant viral proteins, immunodeficiency virus-derived whole inactivated virus particles, or virus-like particles (VLP) has generally failed to provide sufficient protection in animal models for AIDS. Pseudotyping VLPs with the vesicular stomatitis virus G protein (VSV-G), which is known to mediate entry into dendritic cells, might allow more efficient stimulation of immune responses. Therefore, we pseudotyped noninfectious immunodeficiency virus-like particles with VSV-G and carried out a preliminary screen of their immunogenicity and vaccination efficacy. Incorporation of VSV-G into HIV-1 VLPs led to hundred-fold higher antibody titers to HIV-1 Gag and enhancement of T cell responses in mice. Repeated vaccination of rhesus monkeys for 65 weeks with VSV-G pseudotyped simian immunodeficiency virus (SIV)-like particles (VLP[G]) provided initial evidence for efficient suppression of viral load after mucosal challenge with the SIVmac239 virus. Challenge of monkeys after a 28 week vaccination regimen with VLP[G] led to a reduction in peak viremia, but persistent suppression of viral load was not achieved. Due to limitations in the number of animals available for this study, improved efficacy of VSV-G pseudotyped VLPs in nonhuman primates could not be demonstrated. However, mouse experiments revealed that pseudotyping of VLPs with fusion-competent VSV-G clearly improves their immunogenicity. Additional strategies, particularly adjuvants, should be considered to provide greater protection against a challenge with pathogenic immunodeficiency virus

  1. [Ebola haemorrhagic fever.

    DEFF Research Database (Denmark)

    Fabiansen, C.; Kronborg, G.; Thybo, S.

    2008-01-01

    This review presents the latest findings on ebola. Ebola presents one of the highest case-fatality rates of all infectious diseases, and in 2007 outbreaks were observed first in the Democratic Republic of Congo and later in Uganda with a new subtype. Accumulating evidence suggests that fruit bats...... are a likely reservoir for the ebola virus. The frequency of filovirus outbreaks in Central Africa is increasing and the potential for introduction and patient care in Denmark is evaluated Udgivelsesdato: 2008/11/24...

  2. Ebola--haemoragisk feber

    DEFF Research Database (Denmark)

    Fabiansen, Christian; Kronborg, Gitte; Thybo, Søren

    2008-01-01

    This review presents the latest findings on ebola. Ebola presents one of the highest case-fatality rates of all infectious diseases, and in 2007 outbreaks were observed first in the Democratic Republic of Congo and later in Uganda with a new subtype. Accumulating evidence suggests that fruit bats...... are a likely reservoir for the ebola virus. The frequency of filovirus outbreaks in Central Africa is increasing and the potential for introduction and patient care in Denmark is evaluated. Udgivelsesdato: 2008-Nov-24...

  3. Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys.

    Directory of Open Access Journals (Sweden)

    Wendelien B Oswald

    2007-01-01

    Full Text Available Prophylaxis with high doses of neutralizing antibody typically offers protection against challenge with viruses producing acute infections. In this study, we have investigated the ability of the neutralizing human monoclonal antibody, KZ52, to protect against Ebola virus in rhesus macaques. This antibody was previously shown to fully protect guinea pigs from infection. Four rhesus macaques were given 50 mg/kg of neutralizing human monoclonal antibody KZ52 intravenously 1 d before challenge with 1,000 plaque-forming units of Ebola virus, followed by a second dose of 50 mg/kg antibody 4 d after challenge. A control animal was exposed to virus in the absence of antibody treatment. Passive transfer of the neutralizing human monoclonal antibody not only failed to protect macaques against challenge with Ebola virus but also had a minimal effect on the explosive viral replication following infection. We show that the inability of antibody to impact infection was not due to neutralization escape. It appears that Ebola virus has a mechanism of infection propagation in vivo in macaques that is uniquely insensitive even to high concentrations of neutralizing antibody.

  4. Laboratory diagnosis of Ebola virus disease and corresponding biosafety considerations in the China Ebola Treatment Center.

    Science.gov (United States)

    Huang, Qing; Fu, Wei-Ling; You, Jian-Ping; Mao, Qing

    2016-10-01

    Ebola virus disease (EVD), caused by Ebola virus (EBOV), is a potent acute infectious disease with a high case-fatality rate. Etiological and serological EBOV detection methods, including techniques that involve the detection of the viral genome, virus-specific antigens and anti-virus antibodies, are standard laboratory diagnostic tests that facilitate confirmation or exclusion of EBOV infection. In addition, routine blood tests, liver and kidney function tests, electrolytes and coagulation tests and other diagnostic examinations are important for the clinical diagnosis and treatment of EVD. Because of the viral load in body fluids and secretions from EVD patients, all body fluids are highly contagious. As a result, biosafety control measures during the collection, transport and testing of clinical specimens obtained from individuals scheduled to undergo EBOV infection testing (including suspected, probable and confirmed cases) are crucial. This report has been generated following extensive work experience in the China Ebola Treatment Center (ETC) in Liberia and incorporates important information pertaining to relevant diagnostic standards, clinical significance, operational procedures, safety controls and other issues related to laboratory testing of EVD. Relevant opinions and suggestions are presented in this report to provide contextual awareness associated with the development of standards and/or guidelines related to EVD laboratory testing.

  5. A Short Overview of Ebola Outbreak

    Directory of Open Access Journals (Sweden)

    Masumeh Saeidi

    2014-10-01

    Full Text Available   Ebola virus disease (formerly known as Ebola haemorrhagic fever is a severe, often fatal illness, with a death rate of up to 90%. The illness affects humans and nonhuman primates (monkeys, gorillas, and chimpanzees. Ebola first appeared in 1976 in two simultaneous outbreaks, one in a village near the Ebola River in the Democratic Republic of Congo, and the other in a remote area of Sudan. The origin of the virus is unknown but fruit bats (Pteropodidae are considered the likely host of the Ebola virus, based on available evidence. In the current outbreak in West Africa, the majority of cases in humans have occurred as a result of human-to-human transmission. Infection occurs from direct contact through broken skin or mucous membranes with the blood, or other bodily fluids or secretions (stool, urine, saliva, semen of infected people.

  6. Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses

    DEFF Research Database (Denmark)

    Schandock, Franziska; Riber, Camilla Frich; Röcker, Annika

    2017-01-01

    . This work performs selection of synthetic polymers as novel broadly active agents and demonstrates activity of these polymers against Zika, Ebola, Lassa, Lyssa, Rabies, Marburg, Ebola, influenza, herpes simplex, and human immunodeficiency viruses. Results presented herein offer structure...

  7. [Research progress on ebola virus glycoprotein].

    Science.gov (United States)

    Ding, Guo-Yong; Wang, Zhi-Yu; Gao, Lu; Jiang, Bao-Fa

    2013-03-01

    Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans and there are no effective therapeutic or prophylactic treatments available. The glycoprotein (GP) of EBOV is a transmembrane envelope protein known to play multiple functions including virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. GP is the primary target of protective immunity and the key target for developing neutralizing antibodies. In this paper, the research progress on genetic structure, pathogenesis and immunogenicity of EBOV GP in the last 5 years is reviewed.

  8. Enveloped virus-like particles as vaccines against pathogenic arboviruses

    NARCIS (Netherlands)

    Pijlman, G.P.

    2015-01-01

    Arthropod-borne arboviruses form a continuous threat to human and animal health, but few arboviral vaccines are currently available. Advances in expression technology for complex, enveloped virus-like particles (eVLPs) create new opportunities to develop potent vaccines against pathogenic

  9. The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway

    International Nuclear Information System (INIS)

    Mulherkar, Nirupama; Raaben, Matthijs; Torre, Juan Carlos de la; Whelan, Sean P.; Chandran, Kartik

    2011-01-01

    Ebola virus (EBOV) has been reported to enter cultured cell lines via a dynamin-2-independent macropinocytic pathway or clathrin-mediated endocytosis. The route(s) of productive EBOV internalization into physiologically relevant cell types remain unexplored, and viral-host requirements for this process are incompletely understood. Here, we use electron microscopy and complementary chemical and genetic approaches to demonstrate that the viral glycoprotein, GP, induces macropinocytic uptake of viral particles into cells. GP's highly-glycosylated mucin domain is dispensable for virus-induced macropinocytosis, arguing that interactions between other sequences in GP and the host cell surface are responsible. Unexpectedly, we also found a requirement for the large GTPase dynamin-2, which is proposed to be dispensable for several types of macropinocytosis. Our results provide evidence that EBOV uses an atypical dynamin-dependent macropinocytosis-like entry pathway to enter Vero cells, adherent human peripheral blood-derived monocytes, and a mouse dendritic cell line.

  10. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus

    Directory of Open Access Journals (Sweden)

    Beuy Joob

    2014-12-01

    Full Text Available The drug searching for combating the present outbreak of Ebola virus infection is the urgent activity at present. Finding the new effective drug at present must base on the molecular analysis of the pathogenic virus. The in-depth analysis of the viral protein to find the binding site, active pocket is needed. Here, the authors analyzed the envelope glycoprotein GP2 from Ebola virus. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus was done. According to this assessment, 7 active pockets with varied druggability could be identified.

  11. Zika virus-like particle (VLP) based vaccine

    Science.gov (United States)

    Boigard, Hélène; Alimova, Alexandra; Martin, George R.; Katz, Al; Gottlieb, Paul

    2017-01-01

    The newly emerged mosquito-borne Zika virus poses a major public challenge due to its ability to cause significant birth defects and neurological disorders. The impact of sexual transmission is unclear but raises further concerns about virus dissemination. No specific treatment or vaccine is currently available, thus the development of a safe and effective vaccine is paramount. Here we describe a novel strategy to assemble Zika virus-like particles (VLPs) by co-expressing the structural (CprME) and non-structural (NS2B/NS3) proteins, and demonstrate their effectiveness as vaccines. VLPs are produced in a suspension culture of mammalian cells and self-assembled into particles closely resembling Zika viruses as shown by electron microscopy studies. We tested various VLP vaccines and compared them to analogous compositions of an inactivated Zika virus (In-ZIKV) used as a reference. VLP immunizations elicited high titers of antibodies, as did the In-ZIKV controls. However, in mice the VLP vaccine stimulated significantly higher virus neutralizing antibody titers than comparable formulations of the In-ZIKV vaccine. The serum neutralizing activity elicited by the VLP vaccine was enhanced using a higher VLP dose and with the addition of an adjuvant, reaching neutralizing titers greater than those detected in the serum of a patient who recovered from a Zika infection in Brazil in 2015. Discrepancies in neutralization levels between the VLP vaccine and the In-ZIKV suggest that chemical inactivation has deleterious effects on neutralizing epitopes within the E protein. This along with the inability of a VLP vaccine to cause infection makes it a preferable candidate for vaccine development. PMID:28481898

  12. [Ebola and Marburg hemorrhagic fever viruses: update on filoviruses].

    Science.gov (United States)

    Leroy, E; Baize, S; Gonzalez, J P

    2011-04-01

    The Ebola and Marburg viruses are the sole members of the Filoviridae family of viruses. They are characterized by a long filamentous form that is unique in the viral world. Filoviruses are among the most virulent pathogens currently known to infect humans. They cause fulminating disease characterized by acute fever followed by generalized hemorrhagic syndrome that is associated with 90% mortality in the most severe forms. Epidemic outbreaks of Marburg and Ebola viruses have taken a heavy toll on human life in Central Africa and devastated large ape populations in Gabon and Republic of Congo. Since their discovery in 1967 (Marburg) and 1976 (Ebola), more than 2,300 cases and 1,670 deaths have been reported. These numbers pale in comparison with the burden caused by malnutrition or other infectious disease scourges in Africa such as malaria, cholera, AIDS, dengue or tuberculosis. However, due to their extremely high lethality, association with multifocal hemorrhaging and specificity to the African continent, these hemorrhagic fever viruses have given rise to great interest on the part not only of the international scientific community but also of the general public because of their perceived potential as biological weapons. Much research has been performed on these viruses and major progress has been made in knowledge of their ecology, epidemiology and physiopathology and in development of vaccine candidates and therapeutic schemes. The purpose of this review is to present the main developments in these particular fields in the last decade.

  13. Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells

    DEFF Research Database (Denmark)

    Hölzer, Martin; Krähling, Verena; Amman, Fabian

    2016-01-01

    The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result...... expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine...

  14. Secondary Infections with Ebola Virus in Rural Communities, Liberia and Guinea, 2014-2015.

    Science.gov (United States)

    Lindblade, Kim A; Nyenswah, Tolbert; Keita, Sakoba; Diallo, Boubakar; Kateh, Francis; Amoah, Aurora; Nagbe, Thomas K; Raghunathan, Pratima; Neatherlin, John C; Kinzer, Mike; Pillai, Satish K; Attfield, Kathleen R; Hajjeh, Rana; Dweh, Emmanuel; Painter, John; Barradas, Danielle T; Williams, Seymour G; Blackley, David J; Kirking, Hannah L; Patel, Monita R; Dea, Monica; Massoudi, Mehran S; Barskey, Albert E; Zarecki, Shauna L Mettee; Fomba, Moses; Grube, Steven; Belcher, Lisa; Broyles, Laura N; Maxwell, T Nikki; Hagan, Jose E; Yeoman, Kristin; Westercamp, Matthew; Mott, Joshua; Mahoney, Frank; Slutsker, Laurence; DeCock, Kevin M; Marston, Barbara; Dahl, Benjamin

    2016-09-01

    Persons who died of Ebola virus disease at home in rural communities in Liberia and Guinea resulted in more secondary infections than persons admitted to Ebola treatment units. Intensified monitoring of contacts of persons who died of this disease in the community is an evidence-based approach to reduce virus transmission in rural communities.

  15. Deciphering Dynamics of Recent Epidemic Spread and Outbreak in West Africa: The Case of Ebola Virus

    Science.gov (United States)

    Upadhyay, Ranjit Kumar; Roy, Parimita

    Recently, the 2014 Ebola virus (EBOV) outbreak in West Africa was the largest outbreak to date. In this paper, an attempt has been made for modeling the virus dynamics using an SEIR model to better understand and characterize the transmission trajectories of the Ebola outbreak. We compare the simulated results with the most recent reported data of Ebola infected cases in the three most affected countries Guinea, Liberia and Sierra Leone. The epidemic model exhibits two equilibria, namely, the disease-free and unique endemic equilibria. Existence and local stability of these equilibria are explored. Using central manifold theory, it is established that the transcritical bifurcation occurs when basic reproduction number passes through unity. The proposed Ebola epidemic model provides an estimate to the potential number of future cases. The model indicates that the disease will decline after peaking if multisectorial and multinational efforts to control the spread of infection are maintained. Possible implication of the results for disease eradication and its control are discussed which suggests that proper control strategies like: (i) transmission precautions, (ii) isolation and care of infectious Ebola patients, (iii) safe burial, (iv) contact tracing with follow-up and quarantine, and (v) early diagnosis are needed to stop the recurrent outbreak.

  16. Implementation of an Ebola virus disease vaccine clinical trial during the Ebola epidemic in Liberia: Design, procedures, and challenges.

    Science.gov (United States)

    Kennedy, Stephen B; Neaton, James D; Lane, H Clifford; Kieh, Mark W S; Massaquoi, Moses B F; Touchette, Nancy A; Nason, Martha C; Follmann, Dean A; Boley, Fatorma K; Johnson, Melvin P; Larson, Gregg; Kateh, Francis N; Nyenswah, Tolbert G

    2016-02-01

    The index case of the Ebola virus disease epidemic in West Africa is believed to have originated in Guinea. By June 2014, Guinea, Liberia, and Sierra Leone were in the midst of a full-blown and complex global health emergency. The devastating effects of this Ebola epidemic in West Africa put the global health response in acute focus for urgent international interventions. Accordingly, in October 2014, a World Health Organization high-level meeting endorsed the concept of a phase 2/3 clinical trial in Liberia to study Ebola vaccines. As a follow-up to the global response, in November 2014, the Government of Liberia and the US Government signed an agreement to form a research partnership to investigate Ebola and to assess intervention strategies for treating, controlling, and preventing the disease in Liberia. This agreement led to the establishment of the Joint Liberia-US Partnership for Research on Ebola Virus in Liberia as the beginning of a long-term collaborative partnership in clinical research between the two countries. In this article, we discuss the methodology and related challenges associated with the implementation of the Ebola vaccines clinical trial, based on a double-blinded randomized controlled trial, in Liberia. © The Author(s) 2016.

  17. Ebola virus outbreak, updates on current therapeutic strategies.

    Science.gov (United States)

    Elshabrawy, Hatem A; Erickson, Timothy B; Prabhakar, Bellur S

    2015-07-01

    Filoviruses are enveloped negative-sense single-stranded RNA viruses, which include Ebola and Marburg viruses, known to cause hemorrhagic fever in humans with a case fatality of up to 90%. There have been several Ebola virus outbreaks since the first outbreak in the Democratic Republic of Congo in 1976 of which, the recent 2013-2015 epidemic in Guinea, Liberia, and Sierra Leone is the largest in recorded history. Within a few months of the start of the outbreak in December 2013, thousands of infected cases were reported with a significant number of deaths. As of March 2015, according to the Centers for Disease Control and Prevention, there have been nearly 25,000 suspected cases, with 15,000 confirmed by laboratory testing, and over 10,000 deaths. The large number of cases and the high mortality rate, combined with the lack of effective Food and Drug Administration-approved treatments, necessitate the development of potent and safe therapeutic measures to combat the current and future outbreaks. Since the beginning of the outbreak, there have been considerable efforts to develop and characterize protective measures including vaccines and antiviral small molecules, and some have proven effective in vitro and in animal models. Most recently, a cocktail of monoclonal antibodies has been shown to be highly effective in protecting non-human primates from Ebola virus infection. In this review, we will discuss what is known about the nature of the virus, phylogenetic classification, genomic organization and replication, disease transmission, and viral entry and highlight the current approaches and efforts, in the development of therapeutics, to control the outbreak. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Hand hygiene practices post ebola virus disease outbreak in a ...

    African Journals Online (AJOL)

    Introduction: Ebola virus disease (EVD) is a highly contagious viral infection that requires a high risk perception and practice of good hand hygiene by regular hand washing or use of hand sanitizers for infection control at all time. The declaration of Nigeria as an Ebola-free country by the World Health Organization on the ...

  19. Feasibility of Cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations

    NARCIS (Netherlands)

    Hassani-Mehraban, A.; Creutzburg, S.; Heereveld, van L.; Kormelink, R.J.M.

    2015-01-01

    Within the last decade Virus-Like Particles (VLPs) have increasingly received attention from scientists for their use as a carrier of (peptide) molecules or as scaffold to present epitopes for use in subunit vaccines. To test the feasibility of Cowpea chlorotic mottle virus (CCMV) particles as a

  20. Ebola Virus Disease, Democratic Republic of the Congo, 2014.

    Science.gov (United States)

    Nanclares, Carolina; Kapetshi, Jimmy; Lionetto, Fanshen; de la Rosa, Olimpia; Tamfun, Jean-Jacques Muyembe; Alia, Miriam; Kobinger, Gary; Bernasconi, Andrea

    2016-09-01

    During July-November 2014, the Democratic Republic of the Congo underwent its seventh Ebola virus disease (EVD) outbreak. The etiologic agent was Zaire Ebola virus; 66 cases were reported (overall case-fatality rate 74.2%). Through a retrospective observational study of confirmed EVD in 25 patients admitted to either of 2 Ebola treatment centers, we described clinical features and investigated correlates associated with death. Clinical features were mainly generic. At admission, 76% of patients had >1 gastrointestinal symptom and 28% >1 hemorrhagic symptom. The case-fatality rate in this group was 48% and was higher for female patients (67%). Cox regression analysis correlated death with initial low cycle threshold, indicating high viral load. Cycle threshold was a robust predictor of death, as were fever, hiccups, diarrhea, dyspnea, dehydration, disorientation, hematemesis, bloody feces during hospitalization, and anorexia in recent medical history. Differences from other outbreaks could suggest guidance for optimizing clinical management and disease control.

  1. Immunology and evolvement of the adenovirus prime, MVA boost Ebola virus vaccine.

    Science.gov (United States)

    Zhou, Yan; Sullivan, Nancy J

    2015-08-01

    The 2014 Ebola virus outbreak caused an order of magnitude more deaths in a single outbreak than all previous known outbreaks combined, affecting both local and international public health, and threatening the security and economic stability of the countries in West Africa directly confronting the outbreak. The severity of the epidemic lead to a global response to assist with patient care, outbreak control, and deployment of vaccines. The latter was possible due to the long history of basic and clinical research aimed at identifying a safe and effective vaccine to protect against Ebola virus infection. This review highlights the immunology, development, and progress of vaccines based on replication-defective adenovirus vectors, culminating in the successful launch of the first Phase III trial of an Ebola virus vaccine. Published by Elsevier Ltd.

  2. Prophylactic Efficacy of Quercetin 3-β-O-d-Glucoside against Ebola Virus Infection.

    Science.gov (United States)

    Qiu, Xiangguo; Kroeker, Andrea; He, Shihua; Kozak, Robert; Audet, Jonathan; Mbikay, Majambu; Chrétien, Michel

    2016-09-01

    Ebola outbreaks occur on a frequent basis, with the 2014-2015 outbreak in West Africa being the largest one ever recorded. This outbreak has resulted in over 11,000 deaths in four African countries and has received international attention and intervention. Although there are currently no approved therapies or vaccines, many promising candidates are undergoing clinical trials, and several have had success in promoting recovery from Ebola. However, these prophylactics and therapeutics have been designed and tested only against the same species of Ebola virus as the one causing the current outbreak. Future outbreaks involving other species would require reformulation and possibly redevelopment. Therefore, a broad-spectrum alternative is highly desirable. We have found that a flavonoid derivative called quercetin 3-β-O-d-glucoside (Q3G) has the ability to protect mice from Ebola even when given as little as 30 min prior to infection. Furthermore, we have demonstrated that this compound targets the early steps of viral entry. Most promisingly, antiviral activity against two distinct species of Ebola virus was seen. This study serves as a proof of principle that Q3G has potential as a prophylactic against Ebola virus infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Development of a Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS) Method for the Quantitation of Viral Envelope Glycoprotein in Ebola Virus-Like Particle Vaccine Preparations

    Science.gov (United States)

    2016-09-05

    distribution is unlimited. UNCLASSIFIED Background: 92 Ebola is an extremely pathogenic virus that causes hemorrhagic fever and can result in 93... animals . 155 156 Materials and Methods: 157 Generation and Characterization of eVLPs. 158 TR-16-141 DISTRIBUTION STATEMENT A...measuring the optical density (OD) at 280 nm in 186 a spectrophotometer and assuming an extinction coefficient at 1% equal to 10 (under this 187

  4. Enhancement of Ebola Virus Infection via Ficolin-1 Interaction with the Mucin Domain of GP Glycoprotein.

    Science.gov (United States)

    Favier, Anne-Laure; Gout, Evelyne; Reynard, Olivier; Ferraris, Olivier; Kleman, Jean-Philippe; Volchkov, Viktor; Peyrefitte, Christophe; Thielens, Nicole M

    2016-06-01

    Ebola virus infection requires the surface viral glycoprotein to initiate entry into the target cells. The trimeric glycoprotein is a highly glycosylated viral protein which has been shown to interact with host C-type lectin receptors and the soluble complement recognition protein mannose-binding lectin, thereby enhancing viral infection. Similarly to mannose-binding lectin, ficolins are soluble effectors of the innate immune system that recognize particular glycans at the pathogen surface. In this study, we demonstrate that ficolin-1 interacts with the Zaire Ebola virus (EBOV) glycoprotein, and we characterized this interaction by surface plasmon resonance spectroscopy. Ficolin-1 was shown to bind to the viral glycoprotein with a high affinity. This interaction was mediated by the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of the viral glycoprotein. Using a ficolin-1 control mutant devoid of sialic acid-binding capacity, we identified sialylated moieties of the mucin domain to be potential ligands on the glycoprotein. In cell culture, using both pseudotyped viruses and EBOV, ficolin-1 was shown to enhance EBOV infection independently of the serum complement. We also observed that ficolin-1 enhanced EBOV infection on human monocyte-derived macrophages, described to be major viral target cells,. Competition experiments suggested that although ficolin-1 and mannose-binding lectin recognized different carbohydrate moieties on the EBOV glycoprotein, the observed enhancement of the infection likely depended on a common cellular receptor/partner. In conclusion, ficolin-1 could provide an alternative receptor-mediated mechanism for enhancing EBOV infection, thereby contributing to viral subversion of the host innate immune system. A specific interaction involving ficolin-1 (M-ficolin), a soluble effector of the innate immune response, and the glycoprotein (GP) of EBOV was identified. Ficolin-1 enhanced virus infection instead of tipping the

  5. Quantitative serology assays for determination of antibody responses to Ebola virus glycoprotein and matrix protein in nonhuman primates and humans.

    Science.gov (United States)

    Vu, Hong; Shulenin, Sergey; Grolla, Allen; Audet, Jonathan; He, Shihua; Kobinger, Gary; Unfer, Robert C; Warfield, Kelly L; Aman, M Javad; Holtsberg, Frederick W

    2016-02-01

    The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA's), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in Escherichia coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Requirements within the Ebola Viral Glycoprotein for Tetherin Antagonism

    Directory of Open Access Journals (Sweden)

    Nathan H. Vande Burgt

    2015-10-01

    Full Text Available Tetherin is an interferon-induced, intrinsic cellular response factor that blocks release of numerous viruses, including Ebola virus, from infected cells. As with many viruses targeted by host factors, Ebola virus employs a tetherin antagonist, the viral glycoprotein (EboGP, to counteract restriction and promote virus release. Unlike other tetherin antagonists such as HIV-1 Vpu or KSHV K5, the features within EboGP needed to overcome tetherin are not well characterized. Here, we describe sequences within the EboGP ectodomain and membrane spanning domain (msd as necessary to relieve tetherin restriction of viral particle budding. Fusing the EboGP msd to a normally secreted form of the glycoprotein effectively promotes Ebola virus particle release. Cellular protein or lipid anchors could not substitute for the EboGP msd. The requirement for the EboGP msd was not specific for filovirus budding, as similar results were seen with HIV particles. Furthermore trafficking of chimeric proteins to budding sites did not correlate with an ability to counter tetherin. Additionally, we find that a glycoprotein construct, which mimics the cathepsin-activated species by proteolytic removal of the EboGP glycan cap and mucin domains, is unable to counteract tetherin. Combining these results suggests an important role for the EboGP glycan cap and msd in tetherin antagonism.

  7. Ebola haemorrhagic fever

    Science.gov (United States)

    Feldmann, Heinz; Geisbert, Thomas W

    2012-01-01

    Ebola viruses are the causative agents of a severe form of viral haemorrhagic fever in man, designated Ebola haemorrhagic fever, and are endemic in regions of central Africa. The exception is the species Reston Ebola virus, which has not been associated with human disease and is found in the Philippines. Ebola virus constitutes an important local public health threat in Africa, with a worldwide effect through imported infections and through the fear of misuse for biological terrorism. Ebola virus is thought to also have a detrimental effect on the great ape population in Africa. Case-fatality rates of the African species in man are as high as 90%, with no prophylaxis or treatment available. Ebola virus infections are characterised by immune suppression and a systemic inflammatory response that causes impairment of the vascular, coagulation, and immune systems, leading to multiorgan failure and shock, and thus, in some ways, resembling septic shock. PMID:21084112

  8. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope.

    Science.gov (United States)

    Metz, Stefan W; Thomas, Ashlie; White, Laura; Stoops, Mark; Corten, Markus; Hannemann, Holger; de Silva, Aravinda M

    2018-04-02

    The 4 dengue serotypes (DENV) are mosquito-borne pathogens that are associated with severe hemorrhagic disease. DENV particles have a lipid bilayer envelope that anchors two membrane glycoproteins prM and E. Two E-protein monomers form head-to-tail homodimers and three E-dimers align to form "rafts" that cover the viral surface. Some human antibodies that strongly neutralize DENV bind to quaternary structure epitopes displayed on E protein dimers or higher order structures forming the infectious virus. Expression of prM and E in cell culture leads to the formation of DENV virus-like particles (VLPs) which are smaller than wildtype virus particles and replication defective due to the absence of a viral genome. There is no data available that describes the antigenic landscape on the surface of flavivirus VLPs in comparison to the better studied infectious virion. A large panel of well characterized antibodies that recognize epitope of ranging complexity were used in biochemical analytics to obtain a comparative antigenic surface view of VLPs in respect to virus particles. DENV patient serum depletions were performed the show the potential of VLPs in serological diagnostics. VLPs were confirmed to be heterogeneous in size morphology and maturation state. Yet, we show that many highly conformational and quaternary structure-dependent antibody epitopes found on virus particles are efficiently displayed on DENV1-4 VLP surfaces as well. Additionally, DENV VLPs can efficiently be used as antigens to deplete DENV patient sera from serotype specific antibody populations. This study aids in further understanding epitopic landscape of DENV VLPs and presents a comparative antigenic surface view of VLPs in respect to virus particles. We propose the use VLPs as a safe and practical alternative to infectious virus as a vaccine and diagnostic antigen.

  9. Plasmodium Parasitemia Associated With Increased Survival in Ebola Virus–Infected Patients

    Science.gov (United States)

    Rosenke, Kyle; Adjemian, Jennifer; Munster, Vincent J.; Marzi, Andrea; Falzarano, Darryl; Onyango, Clayton O.; Ochieng, Melvin; Juma, Bonventure; Fischer, Robert J.; Prescott, Joseph B.; Safronetz, David; Omballa, Victor; Owuor, Collins; Hoenen, Thomas; Groseth, Allison; Martellaro, Cynthia; van Doremalen, Neeltje; Zemtsova, Galina; Self, Joshua; Bushmaker, Trenton; McNally, Kristin; Rowe, Thomas; Emery, Shannon L.; Feldmann, Friederike; Williamson, Brandi N.; Best, Sonja M.; Nyenswah, Tolbert G.; Grolla, Allen; Strong, James E.; Kobinger, Gary; Bolay, Fatorma K.; Zoon, Kathryn C.; Stassijns, Jorgen; Giuliani, Ruggero; de Smet, Martin; Nichol, Stuart T.; Fields, Barry; Sprecher, Armand; Massaquoi, Moses; Feldmann, Heinz; de Wit, Emmie

    2016-01-01

    Background. The ongoing Ebola outbreak in West Africa has resulted in 28 646 suspected, probable, and confirmed Ebola virus infections. Nevertheless, malaria remains a large public health burden in the region affected by the outbreak. A joint Centers for Disease Control and Prevention/National Institutes of Health diagnostic laboratory was established in Monrovia, Liberia, in August 2014, to provide laboratory diagnostics for Ebola virus. Methods. All blood samples from suspected Ebola virus–infected patients admitted to the Médecins Sans Frontières ELWA3 Ebola treatment unit in Monrovia were tested by quantitative real-time polymerase chain reaction for the presence of Ebola virus and Plasmodium species RNA. Clinical outcome in laboratory-confirmed Ebola virus–infected patients was analyzed as a function of age, sex, Ebola viremia, and Plasmodium species parasitemia. Results. The case fatality rate of 1182 patients with laboratory-confirmed Ebola virus infections was 52%. The probability of surviving decreased with increasing age and decreased with increasing Ebola viral load. Ebola virus–infected patients were 20% more likely to survive when Plasmodium species parasitemia was detected, even after controlling for Ebola viral load and age; those with the highest levels of parasitemia had a survival rate of 83%. This effect was independent of treatment with antimalarials, as this was provided to all patients. Moreover, treatment with antimalarials did not affect survival in the Ebola virus mouse model. Conclusions. Plasmodium species parasitemia is associated with an increase in the probability of surviving Ebola virus infection. More research is needed to understand the molecular mechanism underlying this remarkable phenomenon and translate it into treatment options for Ebola virus infection. PMID:27531847

  10. A Rapid Screening Assay Identifies Monotherapy with Interferon-ß and Combination Therapies with Nucleoside Analogs as Effective Inhibitors of Ebola Virus.

    Directory of Open Access Journals (Sweden)

    Stephen D S McCarthy

    2016-01-01

    Full Text Available To date there are no approved antiviral drugs for the treatment of Ebola virus disease (EVD. While a number of candidate drugs have shown limited efficacy in vitro and/or in non-human primate studies, differences in experimental methodologies make it difficult to compare their therapeutic effectiveness. Using an in vitro model of Ebola Zaire replication with transcription-competent virus like particles (trVLPs, requiring only level 2 biosafety containment, we compared the activities of the type I interferons (IFNs IFN-α and IFN-ß, a panel of viral polymerase inhibitors (lamivudine (3TC, zidovudine (AZT tenofovir (TFV, favipiravir (FPV, the active metabolite of brincidofovir, cidofovir (CDF, and the estrogen receptor modulator, toremifene (TOR, in inhibiting viral replication in dose-response and time course studies. We also tested 28 two- and 56 three-drug combinations against Ebola replication. IFN-α and IFN-ß inhibited viral replication 24 hours post-infection (IC50 0.038μM and 0.016μM, respectively. 3TC, AZT and TFV inhibited Ebola replication when used alone (50-62% or in combination (87%. They exhibited lower IC50 (0.98-6.2μM compared with FPV (36.8μM, when administered 24 hours post-infection. Unexpectedly, CDF had a narrow therapeutic window (6.25-25μM. When dosed >50μM, CDF treatment enhanced viral infection. IFN-ß exhibited strong synergy with 3TC (97.3% inhibition or in triple combination with 3TC and AZT (95.8% inhibition. This study demonstrates that IFNs and viral polymerase inhibitors may have utility in EVD. We identified several 2 and 3 drug combinations with strong anti-Ebola activity, confirmed in studies using fully infectious ZEBOV, providing a rationale for testing combination therapies in animal models of lethal Ebola challenge. These studies open up new possibilities for novel therapeutic options, in particular combination therapies, which could prevent and treat Ebola infection and potentially reduce drug

  11. Towards the directed evolution of virus-like particles derived from polyomaviruses

    NARCIS (Netherlands)

    Teunissen, E.A.

    2014-01-01

    Virus-like particles (VLPs) are assemblies of viral structural proteins. These particles resemble the native viral capsid in structure, tropism, and transduction efficiency, but do not contain any viral genetic material. This makes them a safer alternative to viral vectors for gene therapy, and

  12. Membrane association and localization dynamics of the Ebola virus matrix protein VP40.

    Science.gov (United States)

    Gc, Jeevan B; Gerstman, Bernard S; Chapagain, Prem P

    2017-10-01

    The Ebola virus matrix protein VP40 is a major structural protein that provides the scaffolding for new Ebola virus particles. For this, VP40 is first trafficked to the lower leaflet of the plasma membrane (PM) in its dimeric form. Once associated with the PM, the VP40 dimers undergo structural rearrangements and oligomerize into hexamers and filaments that make up the virus matrix. Therefore, association of the VP40 dimers and their stabilization at the PM is a crucial step in the Ebola life-cycle. To understand the molecular details of the VP40 dimer-PM interactions, we investigated the dimer association with the inner leaflet of the PM using detailed all-atom molecular dynamics (MD) simulations. The formation of the dimer-PM complex is facilitated by the interactions of the VP40 lysine residues and the anionic lipids POPS, POPI, and PIP 2 in the PM. In contrast, the dimer fails to associate with a membrane without POPS, POPI, or PIP 2 lipids. We explored the mechanisms of the association and identified important residues and lipids involved in localization and stabilization of VP40 dimers at the PM. MD simulations elucidate the role of a C-terminal α-helix alignment parallel to the lipid bilayer surface as well as the creation of membrane defects that allow partial insertion of the hydrophobic residue V276 into the membrane to further stabilize the VP40 dimer-PM complex. Understanding the mechanisms of the VP40 dimer-PM association that facilitate oligomerization can be important for potentially targeting the VP40 for small molecules that can interfere with the virus life-cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Ebola virus disease and pregnancy - A review of the current knowledge of Ebola virus pathogenesis, maternal and neonatal outcomes

    Science.gov (United States)

    Bebell, Lisa M.; Oduyebo, Titilope; Riley, Laura E.

    2016-01-01

    The 2014-2016 Ebola virus disease (EVD) outbreak in West Africa devastated local health systems and caused thousands of deaths. Historical reports from Zaire ebolavirus outbreaks suggested pregnancy was associated with an increased risk of severe illness and death, with mortality rates from 74-100%. In total, 111 cases of pregnant patients with EVD are reported in the literature, with an aggregate maternal mortality of 86%. Pregnancy-specific data published from the recent outbreak include four small descriptive cohort studies and five case reports. Despite limitations including reporting bias and small sample size, these studies suggest mortality in pregnant women may be lower than previously reported, with five of 13(39%) infected women dying. Optimal treatments for pregnant women, and differences in EVD course between pregnant women and non-pregnant individuals are major scientific gaps that have not yet been systematically addressed. Ebola virus may be transmitted from mother to baby in utero, during delivery, or through contact with maternal body fluids after birth including breast milk. EVD is almost universally fatal to the developing fetus, and limited fetal autopsy data prevent inferences on risk of birth defects. Decisions about delivery mode and other obstetric interventions should be individualized. WHO recommends close monitoring of survivors who later become pregnant, but does not recommend enhanced precautions at subsequent delivery. Though sexual transmission of Ebola virus has been documented, birth outcomes among survivors have not been published and will be important to appropriately counsel women on pregnancy outcomes and inform delivery precautions for healthcare providers. PMID:28398679

  14. Viral bioterrorism: Learning the lesson of Ebola virus in West Africa 2013-2015.

    Science.gov (United States)

    Cenciarelli, Orlando; Gabbarini, Valentina; Pietropaoli, Stefano; Malizia, Andrea; Tamburrini, Annalaura; Ludovici, Gian Marco; Carestia, Mariachiara; Di Giovanni, Daniele; Sassolini, Alessandro; Palombi, Leonardo; Bellecci, Carlo; Gaudio, Pasquale

    2015-12-02

    Among the potential biological agents suitable as a weapon, Ebola virus represents a major concern. Classified by the CDC as a category A biological agent, Ebola virus causes severe hemorrhagic fever, characterized by high case-fatality rate; to date, no vaccine or approved therapy is available. The EVD epidemic, which broke out in West Africa since the late 2013, has got the issue of the possible use of Ebola virus as biological warfare agent (BWA) to come to the fore once again. In fact, due to its high case-fatality rate, population currently associates this pathogen to a real and tangible threat. Therefore, its use as biological agent by terrorist groups with offensive purpose could have serious repercussions from a psychosocial point of view as well as on closely sanitary level. In this paper, after an initial study of the main characteristics of Ebola virus, its potential as a BWA was evaluated. Furthermore, given the spread of the epidemic in West Africa in 2014 and 2015, the potential dissemination of the virus from an urban setting was evaluated. Finally, it was considered the actual possibility to use this agent as BWA in different scenarios, and the potential effects on one or more nation's stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease.

    Science.gov (United States)

    Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P; Qiu, Xiangguo

    2016-10-15

    Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is

  16. Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery.

    Directory of Open Access Journals (Sweden)

    Tsung-Hsien Chang

    2009-06-01

    Full Text Available Ebola Zaire virus is highly pathogenic for humans, with case fatality rates approaching 90% in large outbreaks in Africa. The virus replicates in macrophages and dendritic cells (DCs, suppressing production of type I interferons (IFNs while inducing the release of large quantities of proinflammatory cytokines. Although the viral VP35 protein has been shown to inhibit IFN responses, the mechanism by which it blocks IFN production has not been fully elucidated. We expressed VP35 from a mouse-adapted variant of Ebola Zaire virus in murine DCs by retroviral gene transfer, and tested for IFN transcription upon Newcastle Disease virus (NDV infection and toll-like receptor signaling. We found that VP35 inhibited IFN transcription in DCs following these stimuli by disabling the activity of IRF7, a transcription factor required for IFN transcription. By yeast two-hybrid screens and coimmunoprecipitation assays, we found that VP35 interacted with IRF7, Ubc9 and PIAS1. The latter two are the host SUMO E2 enzyme and E3 ligase, respectively. VP35, while not itself a SUMO ligase, increased PIAS1-mediated SUMOylation of IRF7, and repressed Ifn transcription. In contrast, VP35 did not interfere with the activation of NF-kappaB, which is required for induction of many proinflammatory cytokines. Our findings indicate that Ebola Zaire virus exploits the cellular SUMOylation machinery for its advantage and help to explain how the virus overcomes host innate defenses, causing rapidly overwhelming infection to produce a syndrome resembling fulminant septic shock.

  17. Ebola vaccine and treatment.

    Science.gov (United States)

    Takada, Ayato

    2015-01-01

    Filoviruses (Ebola and Marburg viruses) cause severe hemorrhagic fever in humans and nonhuman primates. No effective prophylaxis or treatment for filovirus diseases is yet commercially available. The recent outbreak of Ebola virus disease in West Africa has accelerated efforts to develop anti-Ebola virus prophylaxis and treatment, and unapproved drugs were indeed used for the treatment of patients during the outbreak. This article reviews previous researches and the latest topics on vaccine and therapy for Ebola virus disease.

  18. Ebola--haemoragisk feber

    DEFF Research Database (Denmark)

    Fabiansen, Christian; Kronborg, Gitte; Thybo, Søren

    2008-01-01

    This review presents the latest findings on ebola. Ebola presents one of the highest case-fatality rates of all infectious diseases, and in 2007 outbreaks were observed first in the Democratic Republic of Congo and later in Uganda with a new subtype. Accumulating evidence suggests that fruit bats...... are a likely reservoir for the ebola virus. The frequency of filovirus outbreaks in Central Africa is increasing and the potential for introduction and patient care in Denmark is evaluated. Udgivelsesdato: 2008-Nov-24......This review presents the latest findings on ebola. Ebola presents one of the highest case-fatality rates of all infectious diseases, and in 2007 outbreaks were observed first in the Democratic Republic of Congo and later in Uganda with a new subtype. Accumulating evidence suggests that fruit bats...

  19. Perspectives on West Africa Ebola Virus Disease Outbreak, 2013-2016.

    Science.gov (United States)

    Spengler, Jessica R; Ervin, Elizabeth D; Towner, Jonathan S; Rollin, Pierre E; Nichol, Stuart T

    2016-06-01

    The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013-2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community's insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Continued efforts during the outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research.

  20. Virus-Like Particles That Can Deliver Proteins and RNA | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The present invention describes novel virus-like particles (VLPs) that are capable of binding to and replicating within a target mammalian cell, including human cells. The claimed VLPs are safer than viral delivery because they are incapable of re-infecting target cells. The National Cancer Institute's Protein Expression Laboratory seeks parties interested in licensing the novel delivery of RNA to mammalian cells using virus-like particles.

  1. Modelling Ebola virus dynamics: Implications for therapy.

    Science.gov (United States)

    Martyushev, Alexey; Nakaoka, Shinji; Sato, Kei; Noda, Takeshi; Iwami, Shingo

    2016-11-01

    Ebola virus (EBOV) causes a severe, often fatal Ebola virus disease (EVD), for which no approved antivirals exist. Recently, some promising anti-EBOV drugs, which are experimentally potent in animal models, have been developed. However, because the quantitative dynamics of EBOV replication in humans is uncertain, it remains unclear how much antiviral suppression of viral replication affects EVD outcome in patients. Here, we developed a novel mathematical model to quantitatively analyse human viral load data obtained during the 2000/01 Uganda EBOV outbreak and evaluated the effects of different antivirals. We found that nucleoside analogue- and siRNA-based therapies are effective if a therapy with a >50% inhibition rate is initiated within a few days post-symptom-onset. In contrast, antibody-based therapy requires not only a higher inhibition rate but also an earlier administration, especially for otherwise fatal cases. Our results demonstrate that an appropriate choice of EBOV-specific drugs is required for effective EVD treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. In silico analysis suggests repurposing of ibuprofen for prevention and treatment of EBOLA virus disease

    NARCIS (Netherlands)

    V. Veljkovic (Veljko); M. Goeijenbier (Marco); S. Glisic (Sanja); N. Veljkovic (Nevena); V.R. Perovic (Vladimir R.); M. Sencanski (Milan); D.R. Branch (Donald R.); S. Paessler (Slobodan)

    2015-01-01

    textabstractThe large 2014/2015 Ebola virus outbreak in West Africa points out the urgent need to develop new preventive and therapeutic approaches that are effective against Ebola viruses and can be rapidly utilized. Recently, a simple theoretical criterion for the virtual screening of molecular

  3. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kirchdoerfer, Robert N.; Moyer, Crystal L.; Abelson, Dafna M.; Saphire, Erica Ollmann (Scripps)

    2016-10-18

    Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP), a phosphoprotein (VP35) and a polymerase (L). However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.

  4. Development and evaluation of a real-time RT-PCR assay for the detection of Ebola virus (Zaire) during an Ebola outbreak in Guinea in 2014-2015.

    Science.gov (United States)

    Dedkov, V G; Magassouba, N' F; Safonova, M V; Deviatkin, A A; Dolgova, A S; Pyankov, O V; Sergeev, A A; Utkin, D V; Odinokov, G N; Safronov, V A; Agafonov, A P; Maleev, V V; Shipulin, G A

    2016-02-01

    In early February 2014, an outbreak of the Ebola virus disease caused by Zaire ebolavirus (EBOV) occurred in Guinea; cases were also recorded in other West African countries with a combined population of approximately 25 million. A rapid, sensitive and inexpensive method for detecting EBOV is needed to effectively control such outbreak. Here, we report a real-time reverse-transcription PCR assay for Z. ebolavirus detection used by the Specialized Anti-epidemic Team of the Russian Federation during the Ebola virus disease prevention mission in the Republic of Guinea. The analytical sensitivity of the assay is 5 × 10(2) viral particles per ml, and high specificity is demonstrated using representative sampling of viral, bacterial and human nucleic acids. This assay can be applied successfully for detecting the West African strains of Z. ebolavirus as well as on strains isolated in the Democratic Republic of the Congo in 2014. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses.

    Science.gov (United States)

    Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Howell, Katie A; Patel, Sonal J; Gunn, Bronwyn; Karim, Marcus; Lai, Jonathan R; Frei, Julia C; Nyakatura, Elisabeth K; Zeitlin, Larry; Douglas, Robin; Fusco, Marnie L; Froude, Jeffrey W; Saphire, Erica Ollmann; Herbert, Andrew S; Wirchnianski, Ariel S; Lear-Rooney, Calli M; Alter, Galit; Dye, John M; Glass, Pamela J; Warfield, Kelly L; Aman, M Javad

    2016-01-01

    The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus, cross

  6. Control of Ebola hemorrhagic fever: vaccine development and our Ebola project in Sierra Leone.

    Science.gov (United States)

    Watanabe, Tokiko; Kawaoka, Yoshihiro

    2016-01-01

    Since December 2013, West Africa has experienced the worst Ebola virus outbreak in recorded history. Of the 28,639 cases reported to the World Health Organization as of March 2016, nearly half (14,124) occurred in Sierra Leone. With a case fatality rate of approximately 40%, this outbreak has claimed the lives of 11,316 individuals. No FDA-approved vaccines or drugs are available to prevent or treat Ebola virus infection. Experimental vaccines and therapies are being developed; however, their safety and efficacy are still being evaluated. Therefore, there is an urgent need to develop control measures to prevent or limit future Ebola virus outbreaks.Previously, we developed a replication-defective Ebola virus that lacks the coding region for the essential viral transcription activator VP30 (Ebola ΔVP30 virus). Here, we evaluated the vaccine efficacy of Ebola ΔVP30 virus in a non-human primate model and describe our collaborative Ebola project in Sierra Leone.

  7. Chemical modifications of antisense morpholino oligomers enhance their efficacy against Ebola virus infection.

    Science.gov (United States)

    Swenson, Dana L; Warfield, Kelly L; Warren, Travis K; Lovejoy, Candace; Hassinger, Jed N; Ruthel, Gordon; Blouch, Robert E; Moulton, Hong M; Weller, Dwight D; Iversen, Patrick L; Bavari, Sina

    2009-05-01

    Phosphorodiamidate morpholino oligomers (PMOs) are uncharged nucleic acid-like molecules designed to inactivate the expression of specific genes via the antisense-based steric hindrance of mRNA translation. PMOs have been successful at knocking out viral gene expression and replication in the case of acute viral infections in animal models and have been well tolerated in human clinical trials. We propose that antisense PMOs represent a promising class of therapeutic agents that may be useful for combating filoviral infections. We have previously shown that mice treated with a PMO whose sequence is complementary to a region spanning the start codon of VP24 mRNA were protected against lethal Ebola virus challenge. In the present study, we report on the abilities of two additional VP24-specific PMOs to reduce the cell-free translation of a VP24 reporter, to inhibit the in vitro replication of Ebola virus, and to protect mice against lethal challenge when the PMOs are delivered prior to infection. Additionally, structure-activity relationship evaluations were conducted to assess the enhancement of antiviral efficacy associated with PMO chemical modifications that included conjugation with peptides of various lengths and compositions, positioning of conjugated peptides to either the 5' or the 3' terminus, and the conferring of charge modifications by the addition of piperazine moieties. Conjugation with arginine-rich peptides greatly enhanced the antiviral efficacy of VP24-specific PMOs in infected cells and mice during lethal Ebola virus challenge.

  8. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    International Nuclear Information System (INIS)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-01-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with 60 CO gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of 60 CO radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. The authors found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents

  9. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    International Nuclear Information System (INIS)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-01-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with 60 Co gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of 60 Co radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. We found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents

  10. Secondary Infections with Ebola Virus in Rural Communities, Liberia and Guinea, 2014–2015

    Science.gov (United States)

    Nyenswah, Tolbert; Keita, Sakoba; Diallo, Boubakar; Kateh, Francis; Amoah, Aurora; Nagbe, Thomas K.; Raghunathan, Pratima; Neatherlin, John C.; Kinzer, Mike; Pillai, Satish K.; Attfield, Kathleen R.; Hajjeh, Rana; Dweh, Emmanuel; Painter, John; Barradas, Danielle T.; Williams, Seymour G.; Blackley, David J.; Kirking, Hannah L.; Patel, Monita R.; Dea, Monica; Massoudi, Mehran S.; Barskey, Albert E.; Zarecki, Shauna L. Mettee; Fomba, Moses; Grube, Steven; Belcher, Lisa; Broyles, Laura N.; Maxwell, T. Nikki; Hagan, Jose E.; Yeoman, Kristin; Westercamp, Matthew; Mott, Joshua; Mahoney, Frank; Slutsker, Laurence; DeCock, Kevin M.; Marston, Barbara; Dahl, Benjamin

    2016-01-01

    Persons who died of Ebola virus disease at home in rural communities in Liberia and Guinea resulted in more secondary infections than persons admitted to Ebola treatment units. Intensified monitoring of contacts of persons who died of this disease in the community is an evidence-based approach to reduce virus transmission in rural communities. PMID:27268508

  11. Maize rayado fino virus capsid proteins assemble into virus-like particles in Escherichia coli.

    Science.gov (United States)

    Hammond, Rosemarie W; Hammond, John

    2010-02-01

    Maize rayado fino virus (MRFV; genus Marafivirus; family Tymoviridae) is an isometric plant virus of 30 nm containing two components: empty shells and complete virus particles (encapsidating the 6.3 kb genomic RNA). Both particles are composed of two serologically related, carboxy co-terminal, coat proteins (CP) of apparent molecular mass 21-22 kDa (CP2) and 24-28 kDa (CP1) in a molar ratio of 3:1, respectively; CP1 contains a 37 amino acid amino terminal extension of CP2. In our study, expression of CP1 or CP2 in Escherichia coli resulted in assembly of each capsid protein into virus-like particles (VLPs), appearing in electron microscopy as stain-permeable (CP2) or stain-impermeable particles (CP1). CP1 VLPs encapsidated bacterial 16S ribosomal RNA, but not CP mRNA, while CP2 VLPs encapsidated neither CP mRNA nor 16S ribosomal RNA. Expression of CP1 and CP2 in E. coli using a co-expression vector resulted in the assembly of VLPs which were stain-impermeable and encapsidated CP mRNA. These results suggest that the N-terminal 37 amino acid residues of CP1, although not required for particle formation, may be involved in the assembly of complete virions and that the presence of both CP1 and CP2 in the particle is required for specific encapsidation of MRFV CP mRNA. (c) 2009 Elsevier B.V. All rights reserved.

  12. Сharacterization of epidemic called Ebola virus in West Africa

    Directory of Open Access Journals (Sweden)

    V. V. Nechaev

    2015-01-01

    Full Text Available The article summarized the material on the epidemiology of Ebola virus disease published in foreign literature and epidemiological analysis of the Ebola virus disease on the basis of official statistics in three countries in West Africa (Guinea in comparison with Liberia and Sierra Leone. Features of its development was detected in particular the different of intensity, dynamics of morbidity and mortality in the general population and health workers, caused by the biological characteristics of the pathogen as well as socioeconomic factors. Revealed discrepancies between the levels of morbidity and mortality determine the need for further study of the causes of this phenomenon. 

  13. Combating Ebola with Repurposed Therapeutics Using the CANDO Platform

    Directory of Open Access Journals (Sweden)

    Gaurav Chopra

    2016-11-01

    Full Text Available Ebola virus disease (EVD is extremely virulent with an estimated mortality rate of up to 90%. However, the state-of-the-art treatment for EVD is limited to quarantine and supportive care. The 2014 Ebola epidemic in West Africa, the largest in history, is believed to have caused more than 11,000 fatalities. The countries worst affected are also among the poorest in the world. Given the complexities, time, and resources required for a novel drug development, finding efficient drug discovery pathways is going to be crucial in the fight against future outbreaks. We have developed a Computational Analysis of Novel Drug Opportunities (CANDO platform based on the hypothesis that drugs function by interacting with multiple protein targets to create a molecular interaction signature that can be exploited for rapid therapeutic repurposing and discovery. We used the CANDO platform to identify and rank FDA-approved drug candidates that bind and inhibit all proteins encoded by the genomes of five different Ebola virus strains. Top ranking drug candidates for EVD treatment generated by CANDO were compared to in vitro screening studies against Ebola virus-like particles (VLPs by Kouznetsova et al. and genetically engineered Ebola virus and cell viability studies by Johansen et al. to identify drug overlaps between the in virtuale and in vitro studies as putative treatments for future EVD outbreaks. Our results indicate that integrating computational docking predictions on a proteomic scale with results from in vitro screening studies may be used to select and prioritize compounds for further in vivo and clinical testing. This approach will significantly reduce the lead time, risk, cost, and resources required to determine efficacious therapies against future EVD outbreaks.

  14. Ebola virus disease. Short history, long impact

    Directory of Open Access Journals (Sweden)

    Mª Teófila Vicente-Herrero

    2015-07-01

    Full Text Available Ebola Virus infection is at present times a growing worldwide concern, although its history goes back to 1967, with subsequent outbreaks in 1979, 1980 and 1987, all of them by contact in workers in affected areas. The concern of the scientific community about this issue is partially reflected in publications included in MEDLINE (PUBMED database and in which, taking as a keyword in the search box “Ebola virus”, 2.151 publications are found, belonging 984 of them to the last 5 years (45.7% and 527 of these publications (53.5% to the years 2014-2015. The earliest publication dates back to 1977, attaching no listed authors either reference abstract, and the most recent to January of current year 2015. This means Ebola infection is a global problem and that concern the international scientific community. A review of some of the studies published in this matter, considered of interest and discussed by the authors, is performed in this work.

  15. Ultrasensitive Detection of Ebola Virus Oligonucleotide Based on Upconversion Nanoprobe/Nanoporous Membrane System.

    Science.gov (United States)

    Tsang, Ming-Kiu; Ye, WeiWei; Wang, Guojing; Li, Jingming; Yang, Mo; Hao, Jianhua

    2016-01-26

    Ebola outbreaks are currently of great concern, and therefore, development of effective diagnosis methods is urgently needed. The key for lethal virus detection is high sensitivity, since early-stage detection of virus may increase the probability of survival. Here, we propose a luminescence scheme of assay consisting of BaGdF5:Yb/Er upconversion nanoparticles (UCNPs) conjugated with oligonucleotide probe and gold nanoparticles (AuNPs) linked with target Ebola virus oligonucleotide. As a proof of concept, a homogeneous assay was fabricated and tested, yielding a detection limit at picomolar level. The luminescence resonance energy transfer is ascribed to the spectral overlapping of upconversion luminescence and the absorption characteristics of AuNPs. Moreover, we anchored the UCNPs and AuNPs on a nanoporous alumina (NAAO) membrane to form a heterogeneous assay. Importantly, the detection limit was greatly improved, exhibiting a remarkable value at the femtomolar level. The enhancement is attributed to the increased light-matter interaction throughout the nanopore walls of the NAAO membrane. The specificity test suggested that the nanoprobes were specific to Ebola virus oligonucleotides. The strategy combining UCNPs, AuNPs, and NAAO membrane provides new insight into low-cost, rapid, and ultrasensitive detection of different diseases. Furthermore, we explored the feasibility of clinical application by using inactivated Ebola virus samples. The detection results showed great potential of our heterogeneous design for practical application.

  16. Characterization of chikungunya virus-like particles.

    Directory of Open Access Journals (Sweden)

    Nitchakarn Noranate

    Full Text Available Chikungunya virus (CHIKV is becoming a global concern due to the increasing number of outbreaks throughout the world and the absence of any CHIKV-specific vaccine or treatment. Virus-like particles (VLPs are multistructured proteins that mimic the organization and conformation of native viruses but lack the viral genome. They are noninfectious and potentially safer vaccine candidates. Recent studies demonstrated that the yield of CHIKV VLPs varies depending on the strains, despite the 95% amino acid similarity of the strains. This might be due to the codon usage, since protein expression is differently controlled by different organisms. We optimized the region encoding CHIKV structural proteins, C-E3-E2-6k-E1, inserted it into a mammalian expression vector, and used the resulting construct to transfect 293 cells. We detected 50-kDa proteins corresponding to E1 and/or E2 in the cell lysate and the supernatant. Transmission electron microscopy revealed spherical particles with a 50- to 60-nm diameter in the supernatant that resembled the native CHIKV virions. The buoyant density of the VLPs was 1.23 g/mL, and the yield was 20 µg purified VLPs per 108 cells. The VLPs aggregated when mixed with convalescent sera from chikungunya patients, indicating that their antigenicity is similar to that of native CHIKV. Antibodies elicited with the VLPs were capable of detecting native CHIKV, demonstrating that the VLPs retain immunogenicity similar to that of the native virion. These results indicated that CHIKV VLPs are morphologically, antigenically, and immunologically similar to the native CHIKV, suggesting that they have potential for use in chikungunya vaccines.

  17. Ebola virus and arthropods: a literature review and entomological consideration on the vector role.

    Science.gov (United States)

    Dutto, M; Bertero, M; Petrosillo, N; Pombi, M; Otranto, D

    2016-10-01

    Ebola virus is a pathogen responsible for a severe disease that affects humans and several animal species. To date, the natural reservoir of this virus is not known with certainty, although it is believed that fruit bats (Chiroptera: Pteropodidae) play an important role in maintaining the virus in nature. Although information on viral transmission from animals to humans is not clear, the role of arthropods has come under suspicion. In this article, we review the potential role of arthropods in spreading Ebola virus, acting as mechanical or biological vectors.

  18. Epidemiological features and trends of Ebola virus disease in West Africa

    Directory of Open Access Journals (Sweden)

    Ligui Wang

    2015-09-01

    Full Text Available According to a World Health Organization report, the epidemiological features of Ebola virus disease (EVD have changed significantly in West Africa. In this study, the new epidemiological features and prevalence trends for EVD in Guinea, Liberia, and Sierra Leone are described. It was predicted that the Ebola outbreak would end in June 2015.

  19. The Ebola Virus and Human Rights Concerns in Africa.

    Science.gov (United States)

    Durojaye, Ebenezer T; Mirugi-Mukundi, Gladys

    2015-09-01

    In the wake of the Ebola virus disease (EVD) that is ravaging parts of Africa certain measures are being taken by governments to prevent the spread of the epidemic within their borders. Some of these measures are drastic and may likely have implications for the fundamental rights of individuals. The EVD outbreaks have brought to the fore again the tension between public health and human rights. This article discusses the origin and mode of transmission of the EVD and then considers the human rights challenges that may arise as a result of states' responses to the disease in Africa.

  20. Ebola Virus Altered Innate and Adaptive Immune Response Signalling Pathways: Implications for Novel Therapeutic Approaches.

    Science.gov (United States)

    Kumar, Anoop

    2016-01-01

    Ebola virus (EBOV) arise attention for their impressive lethality by the poor immune response and high inflammatory reaction in the patients. It causes a severe hemorrhagic fever with case fatality rates of up to 90%. The mechanism underlying this lethal outcome is poorly understood. In 2014, a major outbreak of Ebola virus spread amongst several African countries, including Leone, Sierra, and Guinea. Although infections only occur frequently in Central Africa, but the virus has the potential to spread globally. Presently, there is no vaccine or treatment is available to counteract Ebola virus infections due to poor understanding of its interaction with the immune system. Accumulating evidence indicates that the virus actively alters both innate and adaptive immune responses and triggers harmful inflammatory responses. In the literature, some reports have shown that alteration of immune signaling pathways could be due to the ability of EBOV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. On the other hand, some reports have demonstrated that EBOV, VP35 proteins act as interferon antagonists. So, how the Ebola virus altered the innate and adaptive immune response signaling pathways is still an open question for the researcher to be explored. Thus, in this review, I try to summarize the mechanisms of the alteration of innate and adaptive immune response signaling pathways by Ebola virus which will be helpful for designing effective drugs or vaccines against this lethal infection. Further, potential targets, current treatment and novel therapeutic approaches have also been discussed.

  1. Misconceptions about Ebola virus disease among lay people in Guinea: Lessons for community education.

    Science.gov (United States)

    Kpanake, Lonzozou; Gossou, Komlantsè; Sorum, Paul Clay; Mullet, Etienne

    2016-05-01

    To characterize the perception of Ebola virus disease (EVD) in Guinea, we administered, from November 2014 to February 2015, a questionnaire to a convenience sample of 200 lay people in Conakry and a group of 8 physicians. We found widespread misconceptions among lay people, including that praying to God can protect against EVD, that traditional healers are more competent than physicians in treating EVD, that people get infected through physical proximity without contact, that the Ebola epidemic is the result of Western bioterrorism experiments, that Western medical staff disseminated the virus, and that the purpose of quarantine measures is to hasten the death of Ebola patients. Major educational interventions, sensitive to local cultural beliefs, are needed to overcome the misconceptions about Ebola in Guinea.

  2. Control of Ebola virus disease - firestone district, liberia, 2014.

    Science.gov (United States)

    Reaves, Erik J; Mabande, Lyndon G; Thoroughman, Douglas A; Arwady, M Allison; Montgomery, Joel M

    2014-10-24

    On March 30, 2014, the Ministry of Health and Social Welfare (MOHSW) of Liberia alerted health officials at Firestone Liberia, Inc. (Firestone) of the first known case of Ebola virus disease (Ebola) inside the Firestone rubber tree plantation of Liberia. The patient, who was the wife of a Firestone employee, had cared for a family member with confirmed Ebola in Lofa County, the epicenter of the Ebola outbreak in Liberia during March-April 2014. To prevent a large outbreak among Firestone's 8,500 employees, their dependents, and the surrounding population, the company responded by 1) establishing an incident management system, 2) instituting procedures for the early recognition and isolation of Ebola patients, 3) enforcing adherence to standard Ebola infection control guidelines, and 4) providing differing levels of management for contacts depending on their exposure, including options for voluntary quarantine in the home or in dedicated facilities. In addition, Firestone created multidisciplinary teams to oversee the outbreak response, address case detection, manage cases in a dedicated unit, and reintegrate convalescent patients into the community. The company also created a robust risk communication, prevention, and social mobilization campaign to boost community awareness of Ebola and how to prevent transmission. During August 1-September 23, a period of intense Ebola transmission in the surrounding areas, 71 cases of Ebola were diagnosed among the approximately 80,000 Liberians for whom Firestone provides health care (cumulative incidence = 0.09%). Fifty-seven (80%) of the cases were laboratory confirmed; 39 (68%) of these cases were fatal. Aspects of Firestone's response appear to have minimized the spread of Ebola in the local population and might be successfully implemented elsewhere to limit the spread of Ebola and prevent transmission to health care workers (HCWs).

  3. Structural and functional characterization of Reston Ebola virus VP35 interferon inhibitory domain.

    Science.gov (United States)

    Leung, Daisy W; Shabman, Reed S; Farahbakhsh, Mina; Prins, Kathleen C; Borek, Dominika M; Wang, Tianjiao; Mühlberger, Elke; Basler, Christopher F; Amarasinghe, Gaya K

    2010-06-11

    Ebolaviruses are causative agents of lethal hemorrhagic fever in humans and nonhuman primates. Among the filoviruses characterized thus far, Reston Ebola virus (REBOV) is the only Ebola virus that is nonpathogenic to humans despite the fact that REBOV can cause lethal disease in nonhuman primates. Previous studies also suggest that REBOV is less effective at inhibiting host innate immune responses than Zaire Ebola virus (ZEBOV) or Marburg virus. Virally encoded VP35 protein is critical for immune suppression, but an understanding of the relative contributions of VP35 proteins from REBOV and other filoviruses is currently lacking. In order to address this question, we characterized the REBOV VP35 interferon inhibitory domain (IID) using structural, biochemical, and virological studies. These studies reveal differences in double-stranded RNA binding and interferon inhibition between the two species. These observed differences are likely due to increased stability and loss of flexibility in REBOV VP35 IID, as demonstrated by thermal shift stability assays. Consistent with this finding, the 1.71-A crystal structure of REBOV VP35 IID reveals that it is highly similar to that of ZEBOV VP35 IID, with an overall backbone r.m.s.d. of 0.64 A, but contains an additional helical element at the linker between the two subdomains of VP35 IID. Mutations near the linker, including swapping sequences between REBOV and ZEBOV, reveal that the linker sequence has limited tolerance for variability. Together with the previously solved ligand-free and double-stranded-RNA-bound forms of ZEBOV VP35 IID structures, our current studies on REBOV VP35 IID reinforce the importance of VP35 in immune suppression. Functional differences observed between REBOV and ZEBOV VP35 proteins may contribute to observed differences in pathogenicity, but these are unlikely to be the major determinant. However, the high level of similarity in structure and the low tolerance for sequence variability, coupled

  4. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis.

    Directory of Open Access Journals (Sweden)

    Robert N Kirchdoerfer

    2016-10-01

    Full Text Available Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP, a phosphoprotein (VP35 and a polymerase (L. However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.

  5. Live Attenuated Recombinant Vaccine Protects Nonhuman Primates Against Ebola and Marburg Viruses

    National Research Council Canada - National Science Library

    Jones, Steven M; Feldmann, Heinz; Stroher, Ute; Geisbert, Joan B; Fernando, Lisa; Grolla, Allen; Klenk, Hans-Dieter; Sullivan, Nancy J; Volchkov, Viktor E; Fritz, Elizabeth A; Daddario, Kathleen M; Hensley, Lisa E; Jahrling, Peter B; Geisbert, Thomas W

    2005-01-01

    Vaccines and therapies are urgently needed to address public health needs stemming from emerging pathogens and biological threat agents such as the filoviruses Ebola virus (EBOV) and Marburg virus (MARV...

  6. Apoptosis in fatal Ebola infection. Does the virus toll the bell for immune system?

    Science.gov (United States)

    Baize, S; Leroy, E M; Mavoungou, E; Fisher-Hoch, S P

    2000-02-01

    In fatal Ebola virus hemorrhagic fever massive intravascular apoptosis develops rapidly following infection and progressing relentlessly until death. While data suggest that T lymphocytes are mainly deleted by apoptosis in PBMC of human fatal cases, experimental Ebola infection in animal models have shown some evidence of destruction of lymphocytes in spleen and lymph nodes probably involving both T and B cells. Nevertheless, we are able to conclude from the accumulated evidence that early interactions between Ebola virus and the immune system, probably via macrophages, main targets for viral replication, lead to massive destruction of immune cells in fatal cases.

  7. A Recombinant Vesicular Stomatitis Virus Ebola Vaccine.

    Science.gov (United States)

    Regules, Jason A; Beigel, John H; Paolino, Kristopher M; Voell, Jocelyn; Castellano, Amy R; Hu, Zonghui; Muñoz, Paula; Moon, James E; Ruck, Richard C; Bennett, Jason W; Twomey, Patrick S; Gutiérrez, Ramiro L; Remich, Shon A; Hack, Holly R; Wisniewski, Meagan L; Josleyn, Matthew D; Kwilas, Steven A; Van Deusen, Nicole; Mbaya, Olivier Tshiani; Zhou, Yan; Stanley, Daphne A; Jing, Wang; Smith, Kirsten S; Shi, Meng; Ledgerwood, Julie E; Graham, Barney S; Sullivan, Nancy J; Jagodzinski, Linda L; Peel, Sheila A; Alimonti, Judie B; Hooper, Jay W; Silvera, Peter M; Martin, Brian K; Monath, Thomas P; Ramsey, W Jay; Link, Charles J; Lane, H Clifford; Michael, Nelson L; Davey, Richard T; Thomas, Stephen J

    2017-01-26

    The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses

  8. Intramuscular Adeno-Associated Virus-Mediated Expression of Monoclonal Antibodies Provides 100% Protection Against Ebola Virus Infection in Mice.

    Science.gov (United States)

    van Lieshout, Laura P; Soule, Geoff; Sorensen, Debra; Frost, Kathy L; He, Shihua; Tierney, Kevin; Safronetz, David; Booth, Stephanie A; Kobinger, Gary P; Qiu, Xiangguo; Wootton, Sarah K

    2018-03-05

    The 2013-2016 West Africa outbreak demonstrated the epidemic potential of Ebola virus and highlighted the need for counter strategies. Monoclonal antibody (mAb)-based therapies hold promise as treatment options for Ebola virus infections. However, production of clinical-grade mAbs is labor intensive, and immunity is short lived. Conversely, adeno-associated virus (AAV)-mediated mAb gene transfer provides the host with a genetic blueprint to manufacture mAbs in vivo, leading to steady release of antibody over many months. Here we demonstrate that AAV-mediated expression of nonneutralizing mAb 5D2 or 7C9 confers 100% protection against mouse-adapted Ebola virus infection, while neutralizing mAb 2G4 was 83% protective. A 2-component cocktail, AAV-2G4/AAV-5D2, provided complete protection when administered 7 days prior to challenge and was partially protective with a 3-day lead time. Finally, AAV-mAb therapies provided sustained protection from challenge 5 months following AAV administration. AAV-mAb may be a viable alternative strategy for vaccination against emerging infectious diseases.

  9. Membrane Binding and Bending in Ebola VP40 Assembly and Egress

    Directory of Open Access Journals (Sweden)

    Robert V Stahelin

    2014-06-01

    Full Text Available Lipid-enveloped viruses contain a lipid bilayer coat that protects their genome and helps to facilitate entry into the host cell. Filoviruses are lipid-enveloped viruses that have up to 90% clinical fatality and include Marbug (MARV and Ebola (EBOV. These pleomorphic filamentous viruses enter the host cell through their membrane embedded glycoprotein and then replicate using just seven genes encoded in their negative sense RNA genome. EBOV budding occurs from the inner leaflet of the plasma membrane and is driven by the matrix protein VP40, which is the most abundantly expressed protein of the virus. VP40 expressed in mammalian cells alone can trigger budding of filamentous virus-like particles (VLPs that are nearly indistinguishable from authentic EBOV. VP40, like matrix proteins from other viruses, has been shown to bind anionic lipid membranes. However, how VP40 selectively interacts with the inner leaflet of the plasma membrane and assembles into a filamentous lipid enveloped particle is mostly unknown. This article describes what is known regarding VP40 membrane interactions and what answers will fill the gaps.

  10. Reduced evolutionary rate in reemerged Ebola virus transmission chains.

    Science.gov (United States)

    Blackley, David J; Wiley, Michael R; Ladner, Jason T; Fallah, Mosoka; Lo, Terrence; Gilbert, Merle L; Gregory, Christopher; D'ambrozio, Jonathan; Coulter, Stewart; Mate, Suzanne; Balogun, Zephaniah; Kugelman, Jeffrey; Nwachukwu, William; Prieto, Karla; Yeiah, Adolphus; Amegashie, Fred; Kearney, Brian; Wisniewski, Meagan; Saindon, John; Schroth, Gary; Fakoli, Lawrence; Diclaro, Joseph W; Kuhn, Jens H; Hensley, Lisa E; Jahrling, Peter B; Ströher, Ute; Nichol, Stuart T; Massaquoi, Moses; Kateh, Francis; Clement, Peter; Gasasira, Alex; Bolay, Fatorma; Monroe, Stephan S; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Scott Laney, A; Nyenswah, Tolbert; Christie, Athalia; Palacios, Gustavo

    2016-04-01

    On 29 June 2015, Liberia's respite from Ebola virus disease (EVD) was interrupted for the second time by a renewed outbreak ("flare-up") of seven confirmed cases. We demonstrate that, similar to the March 2015 flare-up associated with sexual transmission, this new flare-up was a reemergence of a Liberian transmission chain originating from a persistently infected source rather than a reintroduction from a reservoir or a neighboring country with active transmission. Although distinct, Ebola virus (EBOV) genomes from both flare-ups exhibit significantly low genetic divergence, indicating a reduced rate of EBOV evolution during persistent infection. Using this rate of change as a signature, we identified two additional EVD clusters that possibly arose from persistently infected sources. These findings highlight the risk of EVD flare-ups even after an outbreak is declared over.

  11. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses.

    Science.gov (United States)

    Mahanty, Siddhartha; Hutchinson, Karen; Agarwal, Sudhanshu; McRae, Michael; Rollin, Pierre E; Pulendran, Bali

    2003-03-15

    Acute infection of humans with Ebola and Lassa viruses, two principal etiologic agents of hemorrhagic fevers, often results in a paradoxical pattern of immune responses: early infection, characterized by an outpouring of inflammatory mediators such as TNF-alpha, IL-1 beta, and IL-6, vs late stage infections, which are associated with poor immune responses. The mechanisms underlying these diverse outcomes are poorly understood. In particular, the role played by cells of the innate immune system, such as dendritic cells (DC), is not known. In this study, we show that Ebola and Lassa viruses infect human monocyte-derived DC and impair their function. Monocyte-derived DC exposed to either virus fail to secrete proinflammatory cytokines, do not up-regulate costimulatory molecules, and are poor stimulators of T cells. These data represent the first evidence for a mechanism by which Ebola and Lassa viruses target DC to impair adaptive immunity.

  12. Media Messages and Perception of Risk for Ebola Virus Infection, United States.

    Science.gov (United States)

    Sell, Tara Kirk; Boddie, Crystal; McGinty, Emma E; Pollack, Keshia; Smith, Katherine Clegg; Burke, Thomas A; Rutkow, Lainie

    2017-01-01

    News media have been blamed for sensationalizing Ebola in the United States, causing unnecessary alarm. To investigate this issue, we analyzed US-focused news stories about Ebola virus disease during July 1-November 30, 2014. We found frequent use of risk-elevating messages, which may have contributed to increased public concern.

  13. Exploiting Fluorescent Polymers To Probe the Self-Assembly of Virus-like Particles

    DEFF Research Database (Denmark)

    Caden-Nava, Ruben D.; Hu, Yufang; Garmann, Rees F.

    2011-01-01

    , for example, poly(styrene sulfonate) (PSS), forming virus-like particles (VLPs). We have demonstrated recently that the VLPs formed from cowpea chlorotic mottle virus (CCMV) capsid protein increase in size (from T = 2 to T = 3 structures) upon increase in PSS molecular weight (from 400 kDa to 3.4MDa...

  14. The Macroeconomic Impact of Ebola Virus Disease (Evd: A Contribution to the Empirics of Growth

    Directory of Open Access Journals (Sweden)

    Obukohwo Oba Efayena

    2016-04-01

    Full Text Available The paper addressed the formulation of a macro model to capture the macroeconomic impact of the Ebola Virus Disease (EVD. Previous studies has adopted various models such as the dynamic computable general equilibrium (CGE model, endogenous model and the LINKAGE model, but there is dire need to generate a step-by-step model which will comprehensively capture how the Ebola Virus Disease (EVD impacts on macroeconomic variables. Adopting the traditional neoclassical growth model, the model aggregated the various macroeconomic variables as well as captured the epidemic’s strain on each of these variables. The paper also empirically shows that the Ebola Virus Disease (EVD has direct, indirect and deferred indirect cost implications for the economy. Using case studies of countries in Africa, the study evaluated how the Ebola Virus Disease (EVD has affected the macroeconomic status of selected economies. The findings imply that there is dire need to control the spread of the deadly plague. The paper contribute immensely to empirical studies in the field of macroeconomics.

  15. Acute rhabdomyolysis and delayed pericardial effusion in an Italian patient with Ebola virus disease: a case report.

    Science.gov (United States)

    Nicastri, Emanuele; Brucato, Antonio; Petrosillo, Nicola; Biava, Gianluigi; Uyeki, Timothy M; Ippolito, Giuseppe

    2017-08-30

    During the 2013-2016 West Africa Ebola virus disease (EVD) epidemic, some EVD patients, mostly health care workers, were evacuated to Europe and the USA. In May 2015, a 37-year old male nurse contracted Ebola virus disease in Sierra Leone. After Ebola virus detection in plasma, he was medically-evacuated to Italy. At admission, rhabdomyolysis was clinically and laboratory-diagnosed and was treated with aggressive hydration, oral favipiravir and intravenous investigational monoclonal antibodies against Ebola virus. The recovery clinical phase was complicated by a febrile thrombocytopenic syndrome with pericardial effusion treated with corticosteroids for 10 days and indomethacin for 2 months. No evidence of recurrence is reported. A febrile thrombocytopenic syndrome with pericardial effusion during the recovery phase of EVD appears to be uncommon. Clinical improvement with corticosteroid treatment suggests that an immune-mediated mechanism contributed to the pericardial effusion.

  16. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana.

    Science.gov (United States)

    Phoolcharoen, Waranyoo; Bhoo, Seong H; Lai, Huafang; Ma, Julian; Arntzen, Charles J; Chen, Qiang; Mason, Hugh S

    2011-09-01

    Filoviruses (Ebola and Marburg viruses) cause severe and often fatal haemorrhagic fever in humans and non-human primates. The US Centers for Disease Control identifies Ebola and Marburg viruses as 'category A' pathogens (defined as posing a risk to national security as bioterrorism agents), which has lead to a search for vaccines that could prevent the disease. Because the use of such vaccines would be in the service of public health, the cost of production is an important component of their development. The use of plant biotechnology is one possible way to cost-effectively produce subunit vaccines. In this work, a geminiviral replicon system was used to produce an Ebola immune complex (EIC) in Nicotiana benthamiana. Ebola glycoprotein (GP1) was fused at the C-terminus of the heavy chain of humanized 6D8 IgG monoclonal antibody, which specifically binds to a linear epitope on GP1. Co-expression of the GP1-heavy chain fusion and the 6D8 light chain using a geminiviral vector in leaves of N. benthamiana produced assembled immunoglobulin, which was purified by ammonium sulphate precipitation and protein G affinity chromatography. Immune complex formation was confirmed by assays to show that the recombinant protein bound the complement factor C1q. Size measurements of purified recombinant protein by dynamic light scattering and size-exclusion chromatography also indicated complex formation. Subcutaneous immunization of BALB/C mice with purified EIC resulted in anti-Ebola virus antibody production at levels comparable to those obtained with a GP1 virus-like particle. These results show excellent potential for a plant-expressed EIC as a human vaccine. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  17. Ebola Virus Infection Modelling and Identifiability Problems

    Directory of Open Access Journals (Sweden)

    Van-Kinh eNguyen

    2015-04-01

    Full Text Available The recent outbreaks of Ebola virus (EBOV infections have underlined the impact of the virus as a major threat for human health. Due to the high biosafety classification of EBOV (level 4, basic research is very limited. Therefore, the development of new avenues of thinking to advance quantitative comprehension of the virus and its interaction with the host cells is urgently neededto tackle this lethal disease. Mathematical modelling of the EBOV dynamics can be instrumental to interpret Ebola infection kinetics on quantitative grounds. To the best of our knowledge, a mathematical modelling approach to unravel the interaction between EBOV and the host cells isstill missing. In this paper, a mathematical model based on differential equations is used to represent the basic interactions between EBOV and wild-type Vero cells in vitro. Parameter sets that represent infectivity of pathogens are estimated for EBOV infection and compared with influenza virus infection kinetics. The average infecting time of wild-type Vero cells in EBOV is slower than in influenza infection. Simulation results suggest that the slow infecting time of EBOV could be compensated by its efficient replication. This study reveals several identifiability problems and what kind of experiments are necessary to advance the quantification of EBOV infection. A first mathematical approach of EBOV dynamics and the estimation of standard parametersin viral infections kinetics is the key contribution of this work, paving the way for future modelling work on EBOV infection.

  18. Assessment of Ebola virus disease preparedness in the WHO South-East Asia Region.

    Science.gov (United States)

    Vong, Sirenda; Samuel, Reuben; Gould, Philip; El Sakka, Hammam; Rana, Bardan J; Pinyowiwat, Vason; Bezbaruah, Supriya; Ofrin, Roderico

    2016-12-01

    To conduct assessments of Ebola virus disease preparedness in countries of the World Health Organization (WHO) South-East Asia Region. Nine of 11 countries in the region agreed to be assessed. During February to November 2015 a joint team from WHO and ministries of health conducted 4-5 day missions to Bangladesh, Bhutan, Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, Thailand and Timor-Leste. We collected information through guided discussions with senior technical leaders and visits to hospitals, laboratories and airports. We assessed each country's Ebola virus disease preparedness on 41 tasks under nine key components adapted from the WHO Ebola preparedness checklist of January 2015. Political commitment to Ebola preparedness was high in all countries. Planning was most advanced for components that had been previously planned or tested for influenza pandemics: multilevel and multisectoral coordination; multidisciplinary rapid response teams; public communication and social mobilization; drills in international airports; and training on personal protective equipment. Major vulnerabilities included inadequate risk assessment and risk communication; gaps in data management and analysis for event surveillance; and limited capacity in molecular diagnostic techniques. Many countries had limited planning for a surge of Ebola cases. Other tasks needing improvement included: advice to inbound travellers; adequate isolation rooms; appropriate infection control practices; triage systems in hospitals; laboratory diagnostic capacity; contact tracing; and danger pay to staff to ensure continuity of care. Joint assessment and feedback about the functionality of Ebola virus preparedness systems help countries strengthen their core capacities to meet the International Health Regulations.

  19. Emerging Targets and Novel Approaches to Ebola Virus Prophylaxis and Treatment

    Science.gov (United States)

    Choi, Jin Huk; Croyle, Maria A.

    2013-01-01

    Ebola is a highly virulent pathogen causing severe hemorrhagic fever with a high case fatality rate in humans and non-human primates (NHPs). Although safe and effective vaccines or other medicinal agents to block Ebola infection are currently unavailable, a significant effort has been put forth to identify several promising candidates for the treatment and prevention of Ebola hemorrhagic fever. Among these, recombinant-virus based vectors have been identified as potent vaccine candidates with some affording both pre- and post-exposure protection from the virus. Recently, Investigational New Drug (IND) applications have been approved by the United States (U.S.) Food and Drug Administration (FDA) and Phase I clinical trials initiated for two small molecule therapeutics, 1) anti-sense phosphorodiamidate morphino oligomers (PMOs: AVI-6002, AVI-6003), and 2) lipid-nanoparticle/small interfering RNA (LNP/siRNA: TKM-Ebola). These potential alternatives to vector-based vaccines require multiple doses to achieve therapeutic efficacy which is not ideal with regard to patient compliance and outbreak scenarios. These concerns have fueled a quest for even better vaccination and treatment strategies. Here, we summarize recent advances in vaccines or post-exposure therapeutics for prevention of Ebola hemorrhagic fever. The utility of novel pharmaceutical approaches to refine and overcome barriers associated with the most promising therapeutic platforms will also be discussed. PMID:23813435

  20. In vivo Ebola virus infection leads to a strong innate response in circulating immune cells.

    Science.gov (United States)

    Caballero, Ignacio S; Honko, Anna N; Gire, Stephen K; Winnicki, Sarah M; Melé, Marta; Gerhardinger, Chiara; Lin, Aaron E; Rinn, John L; Sabeti, Pardis C; Hensley, Lisa E; Connor, John H

    2016-09-05

    Ebola virus is the causative agent of a severe syndrome in humans with a fatality rate that can approach 90 %. During infection, the host immune response is thought to become dysregulated, but the mechanisms through which this happens are not entirely understood. In this study, we analyze RNA sequencing data to determine the host response to Ebola virus infection in circulating immune cells. Approximately half of the 100 genes with the strongest early increases in expression were interferon-stimulated genes, such as ISG15, OAS1, IFIT2, HERC5, MX1 and DHX58. Other highly upregulated genes included cytokines CXCL11, CCL7, IL2RA, IL2R1, IL15RA, and CSF2RB, which have not been previously reported to change during Ebola virus infection. Comparing this response in two different models of exposure (intramuscular and aerosol) revealed a similar signature of infection. The strong innate response in the aerosol model was seen not only in circulating cells, but also in primary and secondary target tissues. Conversely, the innate immune response of vaccinated macaques was almost non-existent. This suggests that the innate response is a major aspect of the cellular response to Ebola virus infection in multiple tissues. Ebola virus causes a severe infection in humans that is associated with high mortality. The host immune response to virus infection is thought to be an important aspect leading to severe pathology, but the components of this overactive response are not well characterized. Here, we analyzed how circulating immune cells respond to the virus and found that there is a strong innate response dependent on active virus replication. This finding is in stark contrast to in vitro evidence showing a suppression of innate immune signaling, and it suggests that the strong innate response we observe in infected animals may be an important contributor to pathogenesis.

  1. In vitro assembly of Ebola virus nucleocapsid-like complex expressed in E. coli

    Directory of Open Access Journals (Sweden)

    Ruchao Peng

    2016-09-01

    Full Text Available Abstract Ebola virus (EBOV harbors an RNA genome encapsidated by nucleoprotein (NP along with other viral proteins to form a nucleocapsid complex. Previous Cryo-eletron tomography and biochemical studies have shown the helical structure of EBOV nucleocapsid at nanometer resolution and the first 450 amino-acid of NP (NPΔ451–739 alone is capable of forming a helical nucleocapsid-like complex (NLC. However, the structural basis for NP-NP interaction and the dynamic procedure of the nucleocapsid assembly is yet poorly understood. In this work, we, by using an E. coli expression system, captured a series of images of NPΔ451–739 conformers at different stages of NLC assembly by negative-stain electron microscopy, which allowed us to picture the dynamic procedure of EBOV nucleocapsid assembly. Along with further biochemical studies, we showed the assembly of NLC is salt-sensitive, and also established an indispensible role of RNA in this process. We propose the diverse modes of NLC elongation might be the key determinants shaping the plasticity of EBOV virions. Our findings provide a new model for characterizing the self-oligomerization of viral nucleoproteins and studying the dynamic assembly process of viral nucleocapsid in vitro.

  2. Prediction of the Ebola Virus Infection Related Human Genes Using Protein-Protein Interaction Network.

    Science.gov (United States)

    Cao, HuanHuan; Zhang, YuHang; Zhao, Jia; Zhu, Liucun; Wang, Yi; Li, JiaRui; Feng, Yuan-Ming; Zhang, Ning

    2017-01-01

    Ebola hemorrhagic fever (EHF) is caused by Ebola virus (EBOV). It is reported that human could be infected by EBOV with a high fatality rate. However, association factors between EBOV and host still tend to be ambiguous. According to the "guilt by association" (GBA) principle, proteins interacting with each other are very likely to function similarly or the same. Based on this assumption, we tried to obtain EBOV infection-related human genes in a protein-protein interaction network using Dijkstra algorithm. We hope it could contribute to the discovery of novel effective treatments. Finally, 15 genes were selected as potential EBOV infection-related human genes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Multi-platform ’Omics Analysis of Human Ebola Virus Disease Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Eisfeld, Amie J.; Halfmann, Peter J.; Wendler, Jason P.; Kyle, Jennifer E.; Burnum-Johnson, Kristin E.; Peralta, Zuleyma; Maemura, Tadashi; Walters, Kevin B.; Watanabe, Tokiko; Fukuyama, Satoshi; Yamashita, Makoto; Jacobs, Jon M.; Kim, Young-Mo; Casey, Cameron P.; Stratton, Kelly G.; Webb-Robertson, Bobbie-Jo M.; Gritsenko, Marina A.; Monroe, Matthew E.; Weitz, Karl K.; Shukla, Anil K.; Tian, Mingyuan; Neumann, Gabriele; Reed, Jennifer L.; van Bakel, Harm; Metz, Thomas O.; Smith, Richard D.; Waters, Katrina M.; N' jai, Alhaji; Sahr, Foday; Kawaoka, Yoshihiro

    2017-12-01

    The pathogenesis of human Ebola virus disease (EVD) is complex. EVD is characterized by high levels of virus replication and dissemination, dysregulated immune responses, extensive virus- and host-mediated tissue damage, and disordered coagulation. To clarify how host responses contribute to EVD pathophysiology, we performed multi-platform ’omics analysis of peripheral blood mononuclear cells and plasma from EVD patients. Our results indicate that EVD molecular signatures overlap with those of sepsis, imply that pancreatic enzymes contribute to tissue damage in fatal EVD, and suggest that Ebola virus infection may induce aberrant neutrophils whose activity could explain hallmarks of fatal EVD. Moreover, integrated biomarker prediction identified putative biomarkers from different data platforms that differentiated survivors and fatalities early after infection. This work reveals insight into EVD pathogenesis, suggests an effective approach for biomarker identification, and provides an important community resource for further analysis of human EVD severity.

  4. An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles.

    Science.gov (United States)

    Santi, Luca; Batchelor, Lance; Huang, Zhong; Hjelm, Brooke; Kilbourne, Jacquelyn; Arntzen, Charles J; Chen, Qiang; Mason, Hugh S

    2008-03-28

    Virus-like particles (VLPs) derived from enteric pathogens like Norwalk virus (NV) are well suited to study oral immunization. We previously described stable transgenic plants that accumulate recombinant NV-like particles (rNVs) that were orally immunogenic in mice and humans. The transgenic approach suffers from long generation time and modest level of antigen accumulation. We now overcome these constraints with an efficient tobacco mosaic virus (TMV)-derived transient expression system using leaves of Nicotiana benthamiana. We produced properly assembled rNV at 0.8 mg/g leaf 12 days post-infection (dpi). Oral immunization of CD1 mice with 100 or 250 microg/dose of partially purified rNV elicited systemic and mucosal immune responses. We conclude that the plant viral transient expression system provides a robust research tool to generate abundant quantities of rNV as enriched, concentrated VLP preparations that are orally immunogenic.

  5. Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified GPs

    NARCIS (Netherlands)

    Sullivan, Nancy J.; Geisbert, Thomas W.; Geisbert, Joan B.; Shedlock, Devon J.; Xu, Ling; Lamoreaux, Laurie; Custers, Jerome H. H. V.; Popernack, Paul M.; Yang, Zhi-Yong; Pau, Maria G.; Roederer, Mario; Koup, Richard A.; Goudsmit, Jaap; Jahrling, Peter B.; Nabel, Gary J.

    2006-01-01

    BACKGROUND: Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or

  6. Comparative analysis of rabbit hemorrhagic disease virus (RHDV) and new RHDV2 virus antigenicity, using specific virus-like particles

    OpenAIRE

    Bárcena, Juan; Guerra, Beatriz; Angulo, Iván; González, Julia; Valcárcel, Félix; Mata, Carlos P.; Castón, José R.; Blanco, Esther; Alejo, Alí

    2015-01-01

    International audience; In 2010 a new Lagovirus related to rabbit haemorrhagic disease virus (RHDV) emerged in France and has since rapidly spread throughout domestic and wild rabbit populations of several European countries. The new virus, termed RHDV2, exhibits distinctive genetic, antigenic and pathogenic features. Notably, RHDV2 kills rabbits previously vaccinated with RHDV vaccines. Here we report for the first time the generation and characterization of RHDV2-specific virus-like particl...

  7. A review on the Ebola virus, outbreak history and the current research tools to control the disease

    Directory of Open Access Journals (Sweden)

    Cesar Marcial Escobedo-Bonilla

    2015-01-01

    Full Text Available The Ebola virus is a zoonotic pathogen causing hemorrhagic fever disease with a high mortality rate. The distribution of this pathogen has been limited to woodlands from Central and West Africa and the forest-savannah ecotone in East Africa. The likely reservoir species are frugivorous bats living in these areas. This pathogen is becoming an increasing threat to human populations since its distribution range is expanding faster than expected. The current Ebola outbreaks in Western Africa and in the Democratic Republic of Congo have rapidly spread infecting high numbers of individuals in five African countries. The disease has reached the United States and Spain. This expansion is due partly to increasing global connectivity. This situation represents a new challenge to control the spread of the disease. Experimental drugs have been used to treat a few infected people with promising results. This gives hope for an effective treatment against Ebola hemorrhagic fever in the near future, though thousands of people remain at risk of infection. The present review aims to give an update of the knowledge on the disease, including features of the Ebola virus, the history of disease outbreaks in Africa and the tools that are being developed in order to control this re-emergent disease.

  8. Evidence for a decrease in transmission of Ebola virus--Lofa County, Liberia, June 8-November 1, 2014.

    Science.gov (United States)

    Sharma, Aditya; Heijenberg, Nico; Peter, Clement; Bolongei, Josephus; Reeder, Bruce; Alpha, Tamba; Sterk, Esther; Robert, Hugues; Kurth, Andreas; Cannas, Angela; Bocquin, Anne; Strecker, Thomas; Logue, Christopher; Di Caro, Antonino; Pottage, Thomas; Yue, Constanze; Stoecker, Kilian; Wölfel, Roman; Gabriel, Martin; Günther, Stephan; Damon, Inger

    2014-11-21

    Lofa County has one of the highest cumulative incidences of Ebola virus disease (Ebola) in Liberia. Recent situation reports from the Liberian Ministry of Health and Social Welfare (MoHSW) have indicated a decrease in new cases of Ebola in Lofa County. In October 2014, the Liberian MoHSW requested the assistance of CDC to further characterize recent trends in Ebola in Lofa County. Data collected during June 8-November 1, 2014 from three sources were analyzed: 1) aggregate data for newly reported cases, 2) case-based data for persons admitted to the dedicated Ebola treatment unit (ETU) for the county, and 3) test results for community decedents evaluated for Ebola. Trends from all three sources suggest that transmission of Ebola virus decreased as early as August 17, 2014, following rapid scale-up of response activities in Lofa County after a resurgence of Ebola in early June 2014. The comprehensive response strategy developed with participation from the local population in Lofa County might serve as a model to implement in other affected areas to accelerate control of Ebola.

  9. Assessment of the potential for international dissemination of Ebola virus via commercial air travel during the 2014 west African outbreak.

    Science.gov (United States)

    Bogoch, Isaac I; Creatore, Maria I; Cetron, Martin S; Brownstein, John S; Pesik, Nicki; Miniota, Jennifer; Tam, Theresa; Hu, Wei; Nicolucci, Adriano; Ahmed, Saad; Yoon, James W; Berry, Isha; Hay, Simon I; Anema, Aranka; Tatem, Andrew J; MacFadden, Derek; German, Matthew; Khan, Kamran

    2015-01-03

    The WHO declared the 2014 west African Ebola epidemic a public health emergency of international concern in view of its potential for further international spread. Decision makers worldwide are in need of empirical data to inform and implement emergency response measures. Our aim was to assess the potential for Ebola virus to spread across international borders via commercial air travel and assess the relative efficiency of exit versus entry screening of travellers at commercial airports. We analysed International Air Transport Association data for worldwide flight schedules between Sept 1, 2014, and Dec 31, 2014, and historic traveller flight itinerary data from 2013 to describe expected global population movements via commercial air travel out of Guinea, Liberia, and Sierra Leone. Coupled with Ebola virus surveillance data, we modelled the expected number of internationally exported Ebola virus infections, the potential effect of air travel restrictions, and the efficiency of airport-based traveller screening at international ports of entry and exit. We deemed individuals initiating travel from any domestic or international airport within these three countries to have possible exposure to Ebola virus. We deemed all other travellers to have no significant risk of exposure to Ebola virus. Based on epidemic conditions and international flight restrictions to and from Guinea, Liberia, and Sierra Leone as of Sept 1, 2014 (reductions in passenger seats by 51% for Liberia, 66% for Guinea, and 85% for Sierra Leone), our model projects 2.8 travellers infected with Ebola virus departing the above three countries via commercial flights, on average, every month. 91,547 (64%) of all air travellers departing Guinea, Liberia, and Sierra Leone had expected destinations in low-income and lower-middle-income countries. Screening international travellers departing three airports would enable health assessments of all travellers at highest risk of exposure to Ebola virus infection

  10. Detection and classification of ebola on microfluidic chips

    Science.gov (United States)

    Lin, Xue; Jin, Xiangyu; Fan, Yunqian; Huang, Qin; Kou, Yue; Zu, Guo; Huang, Shiguang; Liu, Xiaosheng; Huang, Guoliang

    2016-10-01

    Point-of-care testing (POCT) for an infectious diseases is the prerequisite to control of the disease and limitation of its spread. A microfluidic chip for detection and classification of four strains of Ebola virus was developed and evaluated. This assay was based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) and specific primers for Ebola Zaire virus, Ebola Sudan virus, Ebola Tai Forest virus and Ebola Bundibugyo virus were designed. The sensitivity of the microfluidic chip was under 103 copies per milliliter, as determined by ten repeated tests. This assay is unique in its ability to enable diagnosis of the Ebola infections and simultaneous typing of Ebola virus on a single chip. It offers short reaction time, ease of use and high specificity. These features should enable POCT in remote area during outbreaks of Ebola virus.

  11. Emerging sexually transmitted viral infections: 1. Review of Ebola virus disease.

    Science.gov (United States)

    Caswell, Rachel J; Manavi, Kaveh

    2017-11-01

    This is the first in a series of articles reviewing four viral infections, Ebola virus, Zika virus, human T-cell lymphotropic virus, type 1 and hepatitis C virus, with an emphasis on recent advances in our understanding of their sexual transmission. With current day speed and ease of travel it is important for staff in sexual healthcare services to know and understand these infections when patients present to them and also to be able to advise those travelling to endemic regions. Following the recent resurgence in West Africa, this first article looks at Ebola virus disease (EVD). EVD has a high mortality rate and, of note, has been detected in the semen of those who have cleared the virus from their blood and have clinically recovered from the disease. As the result of emerging data, the WHO now recommends safe sex practices for all male survivors of EVD for 12 months after the onset of the disease or after having had two consecutive negative tests of semen specimens for the virus. This review provides an up-to-date summary of what is currently known about EVD and its implications for sexual health practice.

  12. Community Knowledge, Attitudes, and Practices Regarding Ebola Virus Disease - Five Counties, Liberia, September-October, 2014.

    Science.gov (United States)

    Kobayashi, Miwako; Beer, Karlyn D; Bjork, Adam; Chatham-Stephens, Kevin; Cherry, Cara C; Arzoaquoi, Sampson; Frank, Wilmot; Kumeh, Odell; Sieka, Joseph; Yeiah, Adolphus; Painter, Julia E; Yoder, Jonathan S; Flannery, Brendan; Mahoney, Frank; Nyenswah, Tolbert G

    2015-07-10

    As of July 1, 2015, Guinea, Liberia, and Sierra Leone have reported a total of 27,443 confirmed, probable, and suspected Ebola virus disease (Ebola) cases and 11,220 deaths. Guinea and Sierra Leone have yet to interrupt transmission of Ebola virus. In January, 2016, Liberia successfully achieved Ebola transmission-free status, with no new Ebola cases occurring during a 42-day period; however, new Ebola cases were reported beginning June 29, 2015. Local cultural practices and beliefs have posed challenges to disease control, and therefore, targeted, timely health messages are needed to address practices and misperceptions that might hinder efforts to stop the spread of Ebola. As early as September 2014, Ebola spread to most counties in Liberia. To assess Ebola-related knowledge, attitudes, and practices (KAP) in the community, CDC epidemiologists who were deployed to the counties (field team), carried out a survey conducted by local trained interviewers. The survey was conducted in September and October 2014 in five counties in Liberia with varying cumulative incidence of Ebola cases. Survey results indicated several findings. First, basic awareness of Ebola was high across all surveyed populations (median correct responses = 16 of 17 questions on knowledge of Ebola transmission; range = 2-17). Second, knowledge and understanding of Ebola symptoms were incomplete (e.g., 61% of respondents said they would know if they had Ebola symptoms). Finally, certain fears about the disease were present: >90% of respondents indicated a fear of Ebola patients, >40% a fear of cured patients, and >50% a fear of treatment units (expressions of this last fear were greater in counties with lower Ebola incidence). This survey, which was conducted at a time when case counts were rapidly increasing in Liberia, indicated limited knowledge of Ebola symptoms and widespread fear of Ebola treatment units despite awareness of communication messages. Continued efforts are needed to address

  13. Virus Genomes Reveal the Factors that Spread and Sustained the West African Ebola Epidemic

    Science.gov (United States)

    2016-08-09

    Ladner, J. T. et al. Evolution and Spread of Ebola Virus in Liberia , 2014--2015. Cell Host Microbe 18, 659–669 (2015). 15. Lemey, P. et al. Unifying...Virus genomes reveal the factors that spread and sustained the West African Ebola epidemic. Gytis Dudas1,2, Luiz Max Carvalho1, Trevor Bedford2...Charlesville, Liberia ., 19University of Sierra Leone, Freetown, Sierra Leone , 20Center for Systems Biology, Department of Organismic and Evolutionary

  14. Clinical Presentation and Care of Patients with Ebola Virus Disease in the China Ebola Treatment Unit, Liberia.

    Science.gov (United States)

    Shao, Xiaoping; Ren, Weizheng; Zhou, Feihu

    2017-01-24

    In order to evaluate the clinical characteristics of confirmed Ebola Virus Disease (EVD) patients admitted to the China Ebola Treatment Unit (China ETU) between January 2015 and March 2015, we retrospectively analyzed clinical symptoms, treatment, and epidemiologic features of 5 patients with confirmed EVD, and reviewed the relevant medical literature. Of these, 3 patients survived, and 2 died. The time interval from the onset of symptoms to the negative PCR test for Ebola virus in the 3 survivors was 14-18 days. All survivors reported direct contact with confirmed EVD patients up to 21 days prior to admission. All patients developed a fever, fatigue, and anorexia. Fever was generally the first symptom to develop, followed by a gastrointestinal phase characterized by vomiting/nausea (3 cases, 60%), diarrhea (3 cases), and abdominal pain (4 cases, 80%). Three patients (60%) reported joint pain, muscle pain, and conjunctival hemorrhage, respectively, and 2 patients (40%) developed a headache. We concluded that strict isolation and interruption of the route of transmission were required for suspected or confirmed EVD patients. The main treatment strategies were supportive care, maintenance of blood volume and electrolyte balance, and the prevention of complications.

  15. Evolution and Spread of Ebola Virus in Liberia, 2014-2015.

    Science.gov (United States)

    Ladner, Jason T; Wiley, Michael R; Mate, Suzanne; Dudas, Gytis; Prieto, Karla; Lovett, Sean; Nagle, Elyse R; Beitzel, Brett; Gilbert, Merle L; Fakoli, Lawrence; Diclaro, Joseph W; Schoepp, Randal J; Fair, Joseph; Kuhn, Jens H; Hensley, Lisa E; Park, Daniel J; Sabeti, Pardis C; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Bolay, Fatorma K; Kugelman, Jeffrey R; Palacios, Gustavo

    2015-12-09

    The 2013-present Western African Ebola virus disease (EVD) outbreak is the largest ever recorded with >28,000 reported cases. Ebola virus (EBOV) genome sequencing has played an important role throughout this outbreak; however, relatively few sequences have been determined from patients in Liberia, the second worst-affected country. Here, we report 140 EBOV genome sequences from the second wave of the Liberian outbreak and analyze them in combination with 782 previously published sequences from throughout the Western African outbreak. While multiple early introductions of EBOV to Liberia are evident, the majority of Liberian EVD cases are consistent with a single introduction, followed by spread and diversification within the country. Movement of the virus within Liberia was widespread, and reintroductions from Liberia served as an important source for the continuation of the already ongoing EVD outbreak in Guinea. Overall, little evidence was found for incremental adaptation of EBOV to the human host. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Macrocyclic peptide inhibitors for the protein-protein interaction of Zaire Ebola virus protein 24 and karyopherin alpha 5.

    Science.gov (United States)

    Song, Xiao; Lu, Lu-Yi; Passioura, Toby; Suga, Hiroaki

    2017-06-21

    Ebola virus infection leads to severe hemorrhagic fever in human and non-human primates with an average case fatality rate of 50%. To date, numerous potential therapies are in development, but FDA-approved drugs or vaccines are yet unavailable. Ebola viral protein 24 (VP24) is a multifunctional protein that plays critical roles in the pathogenesis of Ebola virus infection, e.g. innate immune suppression by blocking the interaction between KPNA and PY-STAT1. Here we report macrocyclic peptide inhibitors of the VP24-KPNA5 protein-protein interaction (PPI) by means of the RaPID (Random non-standard Peptides Integrated Discovery) system. These macrocyclic peptides showed remarkably high affinity to recombinant Zaire Ebola virus VP24 (eVP24), with a dissociation constant in the single digit nanomolar range, and could also successfully disrupt the eVP24-KPNA interaction. This work provides for the first time a chemical probe capable of modulating this PPI interaction and is the starting point for the development of unique anti-viral drugs against the Ebola virus.

  17. DNA vaccines elicit durable protective immunity against individual or simultaneous infections with Lassa and Ebola viruses in guinea pigs

    Science.gov (United States)

    Cashman, Kathleen A.; Wilkinson, Eric R.; Wollen, Suzanne E.; Shamblin, Joshua D.; Zelko, Justine M.; Bearss, Jeremy J.; Zeng, Xiankun; Broderick, Kate E.; Schmaljohn, Connie S.

    2017-01-01

    ABSTRACT We previously developed optimized DNA vaccines against both Lassa fever and Ebola hemorrhagic fever viruses and demonstrated that they were protective individually in guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 13 guinea pigs two times, four weeks apart with 50 µg of each DNA vaccine or a mock vaccine at discrete sites by intradermal electroporation. Five weeks following the second vaccinations, guinea pigs were exposed to lethal doses of Lassa virus, Ebola virus, or a combination of both viruses simultaneously. None of the vaccinated guinea pigs, regardless of challenge virus and including the coinfected group, displayed weight loss, fever or other disease signs, and all survived to the study endpoint. All of the mock-vaccinated guinea pigs that were infected with Lassa virus, and all but one of the EBOV-infected mock-vaccinated guinea pigs succumbed. In order to determine if the dual-agent vaccination strategy could protect against both viruses if exposures were temporally separated, we held the surviving vaccinates in BSL-4 for approximately 120 days to perform a cross-challenge experiment in which guinea pigs originally infected with Lassa virus received a lethal dose of Ebola virus and those originally infected with Ebola virus were infected with a lethal dose of Lassa virus. All guinea pigs remained healthy and survived to the study endpoint. This study clearly demonstrates that DNA vaccines against Lassa and Ebola viruses can elicit protective immunity against both individual virus exposures as well as in a mixed-infection environment. PMID:29135337

  18. [Establishment of Quality Control System of Nucleic Acid Detection for Ebola Virus in Sierra Leone-China Friendship Biological Safety Laboratory].

    Science.gov (United States)

    Wang, Qin; Zhang, Yong; Nie, Kai; Wang, Huanyu; Du, Haijun; Song, Jingdong; Xiao, Kang; Lei, Wenwen; Guo, Jianqiang; Wei, Hejiang; Cai, Kun; Wang, Yanhai; Wu, Jiang; Gerald, Bangura; Kamara, Idrissa Laybohr; Liang, Mifang; Wu, Guizhen; Dong, Xiaoping

    2016-03-01

    The quality control process throughout the Ebola virus nucleic acid detection in Sierra Leone-China Friendship Biological Safety Laboratory (SLE-CHN Biosafety Lab) was described in detail, in order to comprehensively display the scientific, rigorous, accurate and efficient practice in detection of Ebola virus of first batch detection team in SLE-CHN Biosafety Lab. Firstly, the key points of laboratory quality control system was described, including the managements and organizing, quality control documents and information management, instrument, reagents and supplies, assessment, facilities design and space allocation, laboratory maintenance and biosecurity. Secondly, the application of quality control methods in the whole process of the Ebola virus detection, including before the test, during the test and after the test, was analyzed. The excellent and professional laboratory staffs, the implementation of humanized management are the cornerstone of the success; High-level biological safety protection is the premise for effective quality control and completion of Ebola virus detection tasks. And professional logistics is prerequisite for launching the laboratory diagnosis of Ebola virus. The establishment and running of SLE-CHN Biosafety Lab has landmark significance for the friendship between Sierra Leone and China, and the lab becomes the most important base for Ebola virus laboratory testing in Sierra Leone.

  19. Ebola Virus Epidemic in West Africa: Global Health Economic Challenges, Lessons Learned, and Policy Recommendations.

    Science.gov (United States)

    Elmahdawy, Mahmoud; Elsisi, Gihan H; Carapinha, Joao; Lamorde, Mohamed; Habib, Abdulrazaq; Agyie-Baffour, Peter; Soualmi, Redouane; Ragab, Samah; Udezi, Anthony W; Usifoh, Cyril; Usifoh, Stella

    2017-09-01

    The Ebola virus has spread across several Western Africa countries, adding a significant financial burden to their health systems and economies. In this article the experience with Ebola is reviewed, and economic challenges and policy recommendations are discussed to help curb the impact of other diseases in the future. The West African Ebola virus disease epidemic started in resource-constrained settings and caused thousands of fatalities during the last epidemic. Nevertheless, given population mobility, international travel, and an increasingly globalized economy, it has the potential to re-occur and evolve into a global pandemic. Struggling health systems in West African countries hinder the ability to reduce the causes and effects of the Ebola epidemic. The lessons learned include the need for strengthening health systems, mainly primary care systems, expedited access to treatments and vaccines to treat the Ebola virus disease, guidance on safety, efficacy, and regulatory standards for such treatments, and ensuring that research and development efforts are directed toward existing needs. Other lessons include adopting policies that allow for better flow of relief, averting the adverse impact of strong quarantine policy that includes exaggerating the aversion behavior by alarming trade and business partners providing financial support to strengthen growth in the affected fragile economies by the Ebola outbreak. Curbing the impact of future Ebola epidemics, or comparable diseases, requires increased long-term investments in health system strengthening, better collaboration between different international organizations, more funding for research and development efforts aimed at developing vaccines and treatments, and tools to detect, treat, and prevent future epidemics. Copyright © 2017. Published by Elsevier Inc.

  20. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults

    NARCIS (Netherlands)

    Ledgerwood, J. E.; Costner, P.; Desai, N.; Holman, L.; Enama, M. E.; Yamshchikov, G.; Mulangu, S.; Hu, Z.; Andrews, C. A.; Sheets, R. A.; Koup, R. A.; Roederer, M.; Bailer, R.; Mascola, J. R.; Pau, M. G.; Sullivan, N. J.; Goudsmit, J.; Nabel, G. J.; Graham, B. S.

    2010-01-01

    Ebola virus causes irregular outbreaks of severe hemorrhagic fever in equatorial Africa. Case mortality remains high; there is no effective treatment and outbreaks are sporadic and unpredictable. Studies of Ebola virus vaccine platforms in non-human primates have established that the induction of

  1. Ebola virus disease and social media: A systematic review.

    Science.gov (United States)

    Fung, Isaac Chun-Hai; Duke, Carmen Hope; Finch, Kathryn Cameron; Snook, Kassandra Renee; Tseng, Pei-Ling; Hernandez, Ana Cristina; Gambhir, Manoj; Fu, King-Wa; Tse, Zion Tsz Ho

    2016-12-01

    We systematically reviewed existing research pertinent to Ebola virus disease and social media, especially to identify the research questions and the methods used to collect and analyze social media. We searched 6 databases for research articles pertinent to Ebola virus disease and social media. We extracted the data using a standardized form. We evaluated the quality of the included articles. Twelve articles were included in the main analysis: 7 from Twitter with 1 also including Weibo, 1 from Facebook, 3 from YouTube, and 1 from Instagram and Flickr. All the studies were cross-sectional. Eleven of the 12 articles studied ≥ 1of these 3 elements of social media and their relationships: themes or topics of social media contents, meta-data of social media posts (such as frequency of original posts and reposts, and impressions) and characteristics of the social media accounts that made these posts (such as whether they are individuals or institutions). One article studied how news videos influenced Twitter traffic. Twitter content analysis methods included text mining (n = 3) and manual coding (n = 1). Two studies involved mathematical modeling. All 3 YouTube studies and the Instagram/Flickr study used manual coding of videos and images, respectively. Published Ebola virus disease-related social media research focused on Twitter and YouTube. The utility of social media research to public health practitioners is warranted. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Self-assembly of virus-like particles of canine parvovirus capsid protein expressed from Escherichia coli and application as virus-like particle vaccine.

    Science.gov (United States)

    Xu, Jin; Guo, Hui-Chen; Wei, Yan-Quan; Dong, Hu; Han, Shi-Chong; Ao, Da; Sun, De-Hui; Wang, Hai-Ming; Cao, Sui-Zhong; Sun, Shi-Qi

    2014-04-01

    Canine parvovirus disease is an acute infectious disease caused by canine parvovirus (CPV). Current commercial vaccines are mainly attenuated and inactivated; as such, problems concerning safety may occur. To resolve this problem, researchers developed virus-like particles (VLPs) as biological nanoparticles resembling natural virions and showing high bio-safety. This property allows the use of VLPs for vaccine development and mechanism studies of viral infections. Tissue-specific drug delivery also employs VLPs as biological nanomaterials. Therefore, VLPs derived from CPV have a great potential in medicine and diagnostics. In this study, small ubiquitin-like modifier (SUMO) fusion motif was utilized to express a whole, naturalVP2 protein of CPV in Escherichia coli. After the cleavage of the fusion motif, the CPV VP2 protein has self-assembled into VLPs. The VLPs had a size and shape that resembled the authentic virus capsid. However, the self-assembly efficiency of VLPs can be affected by different pH levels and ionic strengths. The mice vaccinated subcutaneously with CPV VLPs and CPV-specific immune responses were compared with those immunized with the natural virus. This result showed that VLPs can effectively induce anti-CPV specific antibody and lymphocyte proliferation as a whole virus. This result further suggested that the antigen epitope of CPV was correctly present on VLPs, thereby showing the potential application of a VLP-based CPV vaccine.

  3. A cellular automata model of Ebola virus dynamics

    Science.gov (United States)

    Burkhead, Emily; Hawkins, Jane

    2015-11-01

    We construct a stochastic cellular automaton (SCA) model for the spread of the Ebola virus (EBOV). We make substantial modifications to an existing SCA model used for HIV, introduced by others and studied by the authors. We give a rigorous analysis of the similarities between models due to the spread of virus and the typical immune response to it, and the differences which reflect the drastically different timing of the course of EBOV. We demonstrate output from the model and compare it with clinical data.

  4. THE STRENGTHS, WEAKNESSES, OPPORTUNITIES, AND THREATS (SWOTs) ANALYSES OF THE EBOLA VIRUS ? PAPER RETRACTED

    OpenAIRE

    Babalola, Michael Oluyemi

    2016-01-01

    Background: Owing to the extreme virulence and case fatality rate of ebola virus disease (EVD), there had been so much furore, panic and public health emergency about the possible pandemic from the recent West African outbreak of the disease, with attendant handful research, both in the past and most recently. The magnitude of the epidemic of ebola virus disease has prompted global interest and urgency in the discovery of measures to mitigate the impact of the disease. Researchers in the acad...

  5. Ebola virus disease in a humanitarian aid worker - New York City, October 2014.

    Science.gov (United States)

    Yacisin, Kari; Balter, Sharon; Fine, Annie; Weiss, Don; Ackelsberg, Joel; Prezant, David; Wilson, Ross; Starr, David; Rakeman, Jennifer; Raphael, Marisa; Quinn, Celia; Toprani, Amita; Clark, Nancy; Link, Nathan; Daskalakis, Demetre; Maybank, Aletha; Layton, Marcelle; Varma, Jay K

    2015-04-03

    In late October 2014, Ebola virus disease (Ebola) was diagnosed in a humanitarian aid worker who recently returned from West Africa to New York City (NYC). The NYC Department of Health and Mental Hygiene (DOHMH) actively monitored three close contacts of the patient and 114 health care personnel. No secondary cases of Ebola were detected. In collaboration with local and state partners, DOHMH had developed protocols to respond to such an event beginning in July 2014. These protocols included safely transporting a person at the first report of symptoms to a local hospital prepared to treat a patient with Ebola, laboratory testing for Ebola, and monitoring of contacts. In response to this single case of Ebola, initial health care worker active monitoring protocols needed modification to improve clarity about what types of exposure should be monitored. The response costs were high in both human resources and money: DOHMH alone spent $4.3 million. However, preparedness activities that include planning and practice in effectively monitoring the health of workers involved in Ebola patient care can help prevent transmission of Ebola.

  6. Generation of Recombinant Ebola Viruses Using Reverse Genetics.

    Science.gov (United States)

    Groseth, Allison

    2017-01-01

    Reverse genetics systems encompass a wide array of tools aimed at recapitulating some or all of the virus life cycle. In their most complete form, full-length clone systems allow us to use plasmid-encoded versions of the ribonucleoprotein (RNP) components to initiate the transcription and replication of a plasmid-encoded version of the complete viral genome, thereby initiating the complete virus life cycle and resulting in infectious virus. As such this approach is ideal for the generation of tailor-made recombinant filoviruses, which can be used to study virus biology. In addition, the generation of tagged and particularly fluorescent or luminescent viruses can be applied as tools for both diagnostic applications and for screening to identify novel countermeasures. Here we describe the generation and basic characterization of recombinant Ebola viruses rescued from cloned cDNA using a T7-driven system.

  7. Computational Modelling and Optimal Control of Ebola Virus Disease with non-Linear Incidence Rate

    Science.gov (United States)

    Takaidza, I.; Makinde, O. D.; Okosun, O. K.

    2017-03-01

    The 2014 Ebola outbreak in West Africa has exposed the need to connect modellers and those with relevant data as pivotal to better understanding of how the disease spreads and quantifying the effects of possible interventions. In this paper, we model and analyse the Ebola virus disease with non-linear incidence rate. The epidemic model created is used to describe how the Ebola virus could potentially evolve in a population. We perform an uncertainty analysis of the basic reproductive number R 0 to quantify its sensitivity to other disease-related parameters. We also analyse the sensitivity of the final epidemic size to the time control interventions (education, vaccination, quarantine and safe handling) and provide the cost effective combination of the interventions.

  8. Hantavirus Gn and Gc glycoproteins self-assemble into virus-like particles.

    Science.gov (United States)

    Acuña, Rodrigo; Cifuentes-Muñoz, Nicolás; Márquez, Chantal L; Bulling, Manuela; Klingström, Jonas; Mancini, Roberta; Lozach, Pierre-Yves; Tischler, Nicole D

    2014-02-01

    How hantaviruses assemble and exit infected cells remains largely unknown. Here, we show that the expression of Andes (ANDV) and Puumala (PUUV) hantavirus Gn and Gc envelope glycoproteins lead to their self-assembly into virus-like particles (VLPs) which were released to cell supernatants. The viral nucleoprotein was not required for particle formation. Further, a Gc endodomain deletion mutant did not abrogate VLP formation. The VLPs were pleomorphic, exposed protrusions and reacted with patient sera.

  9. Ebola virus – new threat to global health

    Directory of Open Access Journals (Sweden)

    Rina K. Kusumaratna

    2015-12-01

        The Ebola virus outbreak constitutes a serious warning that epidemics may occur anywhere and places every afflicted nation at risk. Therefore it is essential to institute measures to stop its spread and its future threat, which is a moral obligation of members of the health profession, whether academicians, researchers, or health ministry officials.

  10. Evidences of Changes in Surface Electrostatic Charge Distribution during Stabilization of HPV16 Virus-Like Particles.

    Directory of Open Access Journals (Sweden)

    Juan F Vega

    Full Text Available The stabilization of human papillomavirus type 16 virus-like particles has been examined by means of different techniques including dynamic and static light scattering, transmission electron microscopy and electrophoretic mobility. All these techniques provide different and often complementary perspectives about the aggregation process and generation of stabilized virus-like particles after a period of time of 48 hours at a temperature of 298 K. Interestingly, static light scattering results point towards a clear colloidal instability in the initial systems, as suggested by a negative value of the second virial coefficient. This is likely related to small repulsive electrostatic interactions among the particles, and in agreement with relatively small absolute values of the electrophoretic mobility and, hence, of the net surface charges. At this initial stage the small repulsive interactions are not able to compensate binding interactions, which tend to aggregate the particles. As time proceeds, an increase of the size of the particles is accompanied by strong increases, in absolute values, of the electrophoretic mobility and net surface charge, suggesting enhanced repulsive electrostatic interactions and, consequently, a stabilized colloidal system. These results show that electrophoretic mobility is a useful methodology that can be applied to screen the stabilization factors for virus-like particles during vaccine development.

  11. Antibody Derived Peptides for Detection of Ebola Virus Glycoprotein.

    Directory of Open Access Journals (Sweden)

    Luis Mario Rodríguez-Martínez

    Full Text Available Current Ebola virus (EBOV detection methods are costly and impractical for epidemic scenarios. Different immune-based assays have been reported for the detection and quantification of Ebola virus (EBOV proteins. In particular, several monoclonal antibodies (mAbs have been described that bind the capsid glycoprotein (GP of EBOV GP. However, the currently available platforms for the design and production of full-length mAbs are cumbersome and costly. The use of antibody fragments, rather than full-length antibodies, might represent a cost-effective alternative for the development of diagnostic and possibly even therapeutic alternatives for EBOV.We report the design and expression of three recombinant anti-GP mAb fragments in Escherichia coli cultures. These fragments contained the heavy and light variable portions of the three well-studied anti-GP full-length mAbs 13C6, 13F6, and KZ52, and are consequently named scFv-13C6, scFv-13F6, and Fab-KZ52, respectively. All three fragments exhibited specific anti-GP binding activity in ELISA experiments comparable to that of full-length anti-GP antibodies (i.e., the same order of magnitude and they are easily and economically produced in bacterial cultures.Antibody fragments might represent a useful, effective, and low cost alternative to full-length antibodies in Ebola related capture and diagnostics applications.

  12. Stability and assembly in vitro of bacteriophage PP7 virus-like particles

    Directory of Open Access Journals (Sweden)

    Peabody David S

    2007-11-01

    Full Text Available Abstract Background The stability of a virus-like particle (VLP is an important consideration for its use in nanobiotechnology. The icosahedral capsid of the RNA bacteriophage PP7 is cross-linked by disulfide bonds between coat protein dimers at its 5-fold and quasi-6-fold symmetry axes. This work determined the effects of these disulfides on the VLP's thermal stability. Results Measurements of the thermal denaturation behavior of PP7 VLPs in the presence and absence of a reducing agent show that disulfide cross-links substantially stabilize them against thermal denaturation. Although dimers in the capsid are linked to one another by disulfides, the two subunits of dimers themselves are held together only by non-covalent interactions. In an effort to confer even greater stability a new cross-link was introduced by genetically fusing two coat protein monomers, thus producing a "single-chain dimer" that assembles normally into a completely cross-linked VLP. However, subunit fusion failed to increase the thermal stability of the particles, even though it stabilized the isolated dimer. As a step toward gaining control of the internal composition of the capsid, conditions that promote the assembly of PP7 coat protein dimers into virus-like particles in vitro were established. Conclusion The presence of inter-dimer disulfide bonds greatly stabilizes the PP7 virus-like particle against thermal denaturation. Covalently cross-linking the subunits of the dimers themselves by genetically fusing them through a dipeptide linker sequence, offers no further stabilization of the VLP, although it does stabilize the dimer. PP7 capsids readily assemble in vitro in a reaction that requires RNA.

  13. Three-dimensional visualization of forming Hepatitis C virus-like particles by electron-tomography

    Energy Technology Data Exchange (ETDEWEB)

    Badia-Martinez, Daniel; Peralta, Bibiana [Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio (Spain); Andres, German; Guerra, Milagros [Electron Microscopy Unit, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Campus Cantoblanco, 28049 Madrid (Spain); Gil-Carton, David [Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio (Spain); Abrescia, Nicola G.A., E-mail: nabrescia@cicbiogune.es [Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2012-09-01

    Hepatitis C virus infects almost 170 million people per year but its assembly pathway, architecture and the structures of its envelope proteins are poorly understood. Using electron tomography of plastic-embedded sections of insect cells, we have visualized the morphogenesis of recombinant Hepatitis C virus-like particles. Our data provide a three-dimensional sketch of viral assembly at the endoplasmic reticulum showing different budding stages and contiguity of buds. This latter phenomenon could play an important role during the assembly of wt-HCV and explain the size-heterogeneity of its particles.

  14. Three-dimensional visualization of forming Hepatitis C virus-like particles by electron-tomography

    International Nuclear Information System (INIS)

    Badia-Martinez, Daniel; Peralta, Bibiana; Andrés, German; Guerra, Milagros; Gil-Carton, David; Abrescia, Nicola G.A.

    2012-01-01

    Hepatitis C virus infects almost 170 million people per year but its assembly pathway, architecture and the structures of its envelope proteins are poorly understood. Using electron tomography of plastic-embedded sections of insect cells, we have visualized the morphogenesis of recombinant Hepatitis C virus-like particles. Our data provide a three-dimensional sketch of viral assembly at the endoplasmic reticulum showing different budding stages and contiguity of buds. This latter phenomenon could play an important role during the assembly of wt-HCV and explain the size-heterogeneity of its particles.

  15. Virus fitness differences observed between two naturally occurring isolates of Ebola virus Makona variant using a reverse genetics approach.

    Science.gov (United States)

    Albariño, César G; Guerrero, Lisa Wiggleton; Chakrabarti, Ayan K; Kainulainen, Markus H; Whitmer, Shannon L M; Welch, Stephen R; Nichol, Stuart T

    2016-09-01

    During the large outbreak of Ebola virus disease that occurred in Western Africa from late 2013 to early 2016, several hundred Ebola virus (EBOV) genomes have been sequenced and the virus genetic drift analyzed. In a previous report, we described an efficient reverse genetics system designed to generate recombinant EBOV based on a Makona variant isolate obtained in 2014. Using this system, we characterized the replication and fitness of 2 isolates of the Makona variant. These virus isolates are nearly identical at the genetic level, but have single amino acid differences in the VP30 and L proteins. The potential effects of these differences were tested using minigenomes and recombinant viruses. The results obtained with this approach are consistent with the role of VP30 and L as components of the EBOV RNA replication machinery. Moreover, the 2 isolates exhibited clear fitness differences in competitive growth assays. Published by Elsevier Inc.

  16. What is Ebola?

    Science.gov (United States)

    Stein, R A

    2015-01-01

    On 23 March 2014, the World Health Organization first announced a new Ebola virus outbreak that started in December 2013 in the eastern part of the Republic of Guinea. Human infections shortly emerged in Liberia, Sierra Leone, and Nigeria. On 30 September 2014, the Centers for Disease Control and Prevention confirmed through laboratory testing the first Ebola virus infection diagnosed in the USA, in a patient who travelled from West Africa to Texas. On 6 October 2014, the first human infection occurring outside of Africa was reported, in a Spanish nurse who treated two priests, both of whom died, and on 23 October 2014, the first human infection was reported in New York City. To date, the 2014 Ebola virus outbreak is the longest, largest, and most persistent one since 1976, when the virus was first identified in humans, and the number of human cases exceeded, as of mid-September 2014, the cumulative number of infections from all the previous outbreaks. The early clinical presentation overlaps with other infectious diseases, opening differential diagnosis difficulties. Understanding the transmission routes and identifying the natural reservoir of the virus are additional challenges in studying Ebola hemorrhagic fever outbreaks. Ebola virus is as much a public health challenge for developing countries as it is for the developed world, and previous outbreaks underscored that the relative contribution of the risk factors may differ among outbreaks. The implementation of effective preparedness plans is contingent on integrating teachings from previous Ebola virus outbreaks with those from the current outbreak and with lessons provided by other infectious diseases, along with developing a multifaceted inter-disciplinary and cross-disciplinary framework that should be established and shaped by biomedical as well as sociopolitical sciences. © 2014 John Wiley & Sons Ltd.

  17. The rhetorical construction of the predatorial virus: a Burkian analysis of nonfiction accounts of the Ebola virus.

    Science.gov (United States)

    Weldon, R A

    2001-01-01

    Over the past 5 years, a new subgenre of horror films, referred to as plague films, has turned our focus to the threat of a hemorrhagic viral pandemic, comparable to the Spanish Flu epidemic of 1916. Based on the Ebola viral outbreaks of 1976, various writers have presented their accounts under the guise of increasing interest and prevention strategies. Disregarding inappropriate health care practices as the cause of these epidemics, accountability is refocused onto the rhetorically constructed, predatory nature of the virus. By employing Burke's theory of dramatism and pentadic analysis, the author examines this rhetorical construction of Ebola as a predatorial virus and its implications for public perceptions of public health endeavors.

  18. Evolution and spread of Ebola virus in Liberia, 2014–2015

    Science.gov (United States)

    Ladner, Jason T.; Wiley, Michael R.; Mate, Suzanne; Dudas, Gytis; Prieto, Karla; Lovett, Sean; Nagle, Elyse R.; Beitzel, Brett; Gilbert, Merle L.; Fakoli, Lawrence; Diclaro, Joseph W.; Schoepp, Randal J.; Fair, Joseph; Kuhn, Jens H.; Hensley, Lisa E.; Park, Daniel J.; Sabeti, Pardis C.; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Bolay, Fatorma K.; Kugelman, Jeffrey R.; Palacios, Gustavo

    2015-01-01

    SUMMARY The 2013–present Western African Ebola virus disease (EVD) outbreak is the largest ever recorded with >28,000 reported cases. Ebola virus (EBOV) genome sequencing has played an important role throughout this outbreak; however, relatively few sequences have been determined from patients in Liberia, the second worst-affected country. Here, we report 140 EBOV genome sequences from the second wave of the Liberian outbreak and analyze them in combination with 782 previously published sequences from throughout the Western African outbreak. While multiple early introductions of EBOV to Liberia are evident, the majority of Liberian EVD cases are consistent with a single introduction, followed by spread and diversification within the country. Movement of the virus within Liberia was widespread and reintroductions from Liberia served as an important source for the continuation of the already ongoing EVD outbreak in Guinea. Overall, little evidence was found for incremental adaptation of EBOV to the human host. PMID:26651942

  19. Comparative analysis of rabbit hemorrhagic disease virus (RHDV) and new RHDV2 virus antigenicity, using specific virus-like particles.

    Science.gov (United States)

    Bárcena, Juan; Guerra, Beatriz; Angulo, Iván; González, Julia; Valcárcel, Félix; Mata, Carlos P; Castón, José R; Blanco, Esther; Alejo, Alí

    2015-09-24

    In 2010 a new Lagovirus related to rabbit haemorrhagic disease virus (RHDV) emerged in France and has since rapidly spread throughout domestic and wild rabbit populations of several European countries. The new virus, termed RHDV2, exhibits distinctive genetic, antigenic and pathogenic features. Notably, RHDV2 kills rabbits previously vaccinated with RHDV vaccines. Here we report for the first time the generation and characterization of RHDV2-specific virus-like particles (VLPs). Our results further confirmed the differential antigenic properties exhibited by RHDV and RHDV2, highlighting the need of using RHDV2-specific diagnostic assays to monitor the spread of this new virus.

  20. Ebola virus (EBOV) infection: Therapeutic strategies.

    Science.gov (United States)

    De Clercq, Erik

    2015-01-01

    Within less than a year after its epidemic started (in December 2013) in Guinea, Ebola virus (EBOV), a member of the filoviridae, has spread over a number of West-African countries (Guinea, Sierra Leone and Liberia) and gained allures that have been unprecedented except by human immunodeficiency virus (HIV). Although EBOV is highly contagious and transmitted by direct contact with body fluids, it could be counteracted by the adequate chemoprophylactic and -therapeutic interventions: vaccines, antibodies, siRNAs (small interfering RNAs), interferons and chemical substances, i.e. neplanocin A derivatives (i.e. 3-deazaneplanocin A), BCX4430, favipiravir (T-705), endoplasmic reticulum (ER) α-glucosidase inhibitors and a variety of compounds that have been found to inhibit EBOV infection blocking viral entry or by a mode of action that still has to be resolved. Much has to be learned from the mechanism of action of the compounds active against VSV (vesicular stomatitis virus), a virus belonging to the rhabdoviridae, that in its mode of replication could be exemplary for the replication of filoviridae. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Viral Infections in Pregnancy: A Focus on Ebola Virus.

    Science.gov (United States)

    Olgun, Nicole S

    2018-01-30

    During gestation, the immune response of the placenta to viruses and other pathogens plays an important role in determining a pregnant woman's vulnerability toward infectious diseases. Located at the maternal- fetal interface, trophoblast cells serve to minimize the spread of viruses between the host and developing fetus through an intricate system of innate antiviral immune signaling. Adverse pregnancy outcomes, ranging from learning disabilities to preterm birth and fetal death, are all documented results of a viral breach in the placental barrier. Viral infections during pregnancy can also be spread through blood and vaginal secretions, and during the post-natal period, via breast milk. Thus, even in the absence of vertical transmission of viral infection to the fetus, maternal health can still be compromised and threaten the pregnancy. The most common viral DNA isolates found in gestation are adenovirus, cytomegalovirus, and enterovirus. However, with the recent pandemic of Ebola virus, and the first documented case of a neonate to survive due to experimental therapies in 2017, it is becoming increasingly apparent that the changing roles and impacts of viral infection during pregnancy needs to be better understood, while strategies to minimize adverse pregnancy outcomes need to be identified. This review focuses on the adverse impacts of viral infection during gestation, with an emphasis on Ebola virus. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Ocular Manifestations of Ebola Virus Disease: An Ophthalmologist's Guide to Prevent Infection and Panic

    Science.gov (United States)

    Vingolo, Enzo Maria; Messano, Giuseppe Alessio; Fragiotta, Serena; Petti, Stefano

    2015-01-01

    Ebola virus disease (EVD—formerly known as Ebola hemorrhagic fever) is a severe hemorrhagic fever caused by lipid-enveloped, nonsegmented, negative-stranded RNA viruses belonging to the genus Ebolavirus. Case fatality rates may reach up to 76% of infected individuals, making this infection a deadly health problem in the sub-Saharan population. At the moment, there are still no indications on ophthalmological clinical signs and security suggestions for healthcare professionals (doctors and nurses or cooperative persons). This paper provides a short but complete guide to reduce infection risks. PMID:26557674

  3. Computational elucidation of potential antigenic CTL epitopes in Ebola virus.

    Science.gov (United States)

    Dikhit, Manas R; Kumar, Santosh; Vijaymahantesh; Sahoo, Bikash R; Mansuri, Rani; Amit, Ajay; Yousuf Ansari, Md; Sahoo, Ganesh C; Bimal, Sanjiva; Das, Pradeep

    2015-12-01

    Cell-mediated immunity is important for the control of Ebola virus infection. We hypothesized that those HLA A0201 and HLA B40 restricted epitopes derived from Ebola virus proteins, would mount a good antigenic response. Here we employed an immunoinformatics approach to identify specific 9mer amino acid which may be capable of inducing a robust cell-mediated immune response in humans. We identified a set of 28 epitopes that had no homologs in humans. Specifically, the epitopes derived from NP, RdRp, GP and VP40 share population coverage of 93.40%, 84.15%, 74.94% and 77.12%, respectively. Based on the other HLA binding specificity and population coverage, seven novel promiscuous epitopes were identified. These 7 promiscuous epitopes from NP, RdRp and GP were found to have world-wide population coverage of more than 95% indicating their potential significance as useful candidates for vaccine design. Epitope conservancy analysis also suggested that most of the peptides are highly conserved (100%) in other virulent Ebola strain (Mayinga-76, Kikwit-95 and Makona-G3816- 2014) and can therefore be further investigated for their immunological relevance and usefulness as vaccine candidates. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Guidance to Companies on Referring to Registered Disinfectant Products that Meet the CDC Criteria for Use Against the Ebola Virus

    Science.gov (United States)

    There are no EPA-registered products with label claims against the Ebola virus, but enveloped viruses such as Ebola are susceptible to many hospital disinfectants used to disinfect hard, non-porous surfaces. CDC guidance addresses use of such products.

  5. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4

    Directory of Open Access Journals (Sweden)

    Chih-Yun Lai

    2017-08-01

    Full Text Available Ebola virus (EBOV, a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD is currently available, Ebola virus glycoprotein (GP is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs. Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4

  6. Ebola Virus Disease and Pregnancy: A Retrospective Cohort Study of Patients Managed at 5 Ebola Treatment Units in West Africa.

    Science.gov (United States)

    Henwood, Patricia C; Bebell, Lisa M; Roshania, Reshma; Wolfman, Vanessa; Mallow, Michaela; Kalyanpur, Anushka; Levine, Adam C

    2017-07-15

    Reliable data are lacking on pregnancy outcomes during Ebola virus disease (EVD) epidemics. We aimed to characterize symptoms and outcomes among pregnant women admitted to Ebola treatment units (ETUs) with suspected and confirmed EVD to better inform obstetric management. We analyzed a retrospective cohort of reproductive-aged women presenting to 5 West African ETUs from September 2014 to September 2015. We compared clinical symptoms, risk of EVD diagnosis, and mortality between pregnant and nonpregnant women. Of 729 reproductive-aged women admitted to study ETUs, 44 (6%) reported pregnancy. Thirteen of 44 pregnant women (30%) tested EVD positive; 6 of 13 (46%) died. Pregnant women were less likely than nonpregnant women to report anorexia, asthenia, diarrhea, fever, myalgias/arthralgias, nausea, or vomiting (P Ebola viral loads on presentation to nonpregnant women, as measured by initial cycle threshold (26.4 vs 23.2, P = .16), they were less likely to have myalgias/arthralgias (P< .001) and vomiting (P = .02). Both all-cause mortality (14% vs 19%, P = .39) and EVD-specific mortality (46% vs 54%, P = .60) were not significantly different between pregnant and nonpregnant women. Two neonates born live in the ETU died within 8 days. We find no evidence to support a difference in the risk of death between pregnant women with suspected or confirmed EVD compared to nonpregnant women. Limited data suggest poor fetal and neonatal outcomes in EVD-affected pregnancies. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  7. Crystallization and preliminary X-ray diffraction analysis of recombinant hepatitis E virus-like particle

    International Nuclear Information System (INIS)

    Wang, Che-Yen; Miyazaki, Naoyuki; Yamashita, Tetsuo; Higashiura, Akifumi; Nakagawa, Atsushi; Li, Tian-Cheng; Takeda, Naokazu; Xing, Li; Hjalmarsson, Erik; Friberg, Claes; Liou, Der-Ming; Sung, Yen-Jen; Tsukihara, Tomitake; Matsuura, Yoshiharu; Miyamura, Tatsuo; Cheng, R. Holland

    2008-01-01

    A recombinant virus-like particle that is a potential oral hepatitis E vaccine was crystallized. Diffraction data were collected to 8.3 Å resolution and the X-ray structure was phased with the aid of a low-resolution density map determined using cryo-electron microscopy data. Hepatitis E virus (HEV) accounts for the majority of enterically transmitted hepatitis infections worldwide. Currently, there is no specific treatment for or vaccine against HEV. The major structural protein is derived from open reading frame (ORF) 2 of the viral genome. A potential oral vaccine is provided by the virus-like particles formed by a protein construct of partial ORF3 protein (residue 70–123) fused to the N-terminus of the ORF2 protein (residues 112–608). Single crystals obtained by the hanging-drop vapour-diffusion method at 293 K diffract X-rays to 8.3 Å resolution. The crystals belong to space group P2 1 2 1 2 1 , with unit-cell parameters a = 337, b = 343, c = 346 Å, α = β = γ = 90°, and contain one particle per asymmetric unit

  8. Social vulnerability and Ebola virus disease in rural Liberia

    Science.gov (United States)

    John A. Stanturf; Scott L. Goodrick; Melvin L. Warren; Susan Charnley; Christie M. Stegall

    2015-01-01

    The Ebola virus disease (EVD) epidemic that has stricken thousands of people in the three West African countries of Liberia, Sierra Leone, and Guinea highlights the lack of adaptive capacity in post-conflict countries. The scarcity of health services in particular renders these populations vulnerable to multiple interacting stressors including food insecurity, climate...

  9. Modeling of the Ebola Virus Delta Peptide Reveals a Potential Lytic Sequence Motif

    Directory of Open Access Journals (Sweden)

    William R. Gallaher

    2015-01-01

    Full Text Available Filoviruses, such as Ebola and Marburg viruses, cause severe outbreaks of human infection, including the extensive epidemic of Ebola virus disease (EVD in West Africa in 2014. In the course of examining mutations in the glycoprotein gene associated with 2014 Ebola virus (EBOV sequences, a differential level of conservation was noted between the soluble form of glycoprotein (sGP and the full length glycoprotein (GP, which are both encoded by the GP gene via RNA editing. In the region of the proteins encoded after the RNA editing site sGP was more conserved than the overlapping region of GP when compared to a distant outlier species, Tai Forest ebolavirus. Half of the amino acids comprising the “delta peptide”, a 40 amino acid carboxy-terminal fragment of sGP, were identical between otherwise widely divergent species. A lysine-rich amphipathic peptide motif was noted at the carboxyl terminus of delta peptide with high structural relatedness to the cytolytic peptide of the non-structural protein 4 (NSP4 of rotavirus. EBOV delta peptide is a candidate viroporin, a cationic pore-forming peptide, and may contribute to EBOV pathogenesis.

  10. Noninfectious virus-like particles produced by Moloney murine leukemia virus-based retrovirus packaging cells deficient in viral envelope become infectious in the presence of lipofection reagents

    Science.gov (United States)

    Sharma, Sanjai; Murai, Fukashi; Miyanohara, Atsushi; Friedmann, Theodore

    1997-01-01

    Retrovirus packaging cell lines expressing the Moloney murine leukemia virus gag and pol genes but lacking virus envelope genes produce virus-like particles constitutively, whether or not they express a transcript from an integrated retroviral provirus. In the absence of a proviral transcript, the assembled particles contain processed gag and reverse transcriptase, and particles made by cells expressing an integrated lacZ provirus also contain viral RNA. The virus-like particles from both cell types are enveloped and are secreted/budded into the extracellular space but are noninfectious. Their physicochemical properties are similar to those of mature retroviral particles. The noninfectious gag pol RNA particles can readily be made infectious by the addition of lipofection reagents to produce preparations with titers of up to 105 colony-forming units per ml. PMID:9380714

  11. Noninfectious virus-like particles produced by Moloney murine leukemia virus-based retrovirus packaging cells deficient in viral envelope become infectious in the presence of lipofection reagents.

    Science.gov (United States)

    Sharma, S; Murai, F; Miyanohara, A; Friedmann, T

    1997-09-30

    Retrovirus packaging cell lines expressing the Moloney murine leukemia virus gag and pol genes but lacking virus envelope genes produce virus-like particles constitutively, whether or not they express a transcript from an integrated retroviral provirus. In the absence of a proviral transcript, the assembled particles contain processed gag and reverse transcriptase, and particles made by cells expressing an integrated lacZ provirus also contain viral RNA. The virus-like particles from both cell types are enveloped and are secreted/budded into the extracellular space but are noninfectious. Their physicochemical properties are similar to those of mature retroviral particles. The noninfectious gag pol RNA particles can readily be made infectious by the addition of lipofection reagents to produce preparations with titers of up to 10(5) colony-forming units per ml.

  12. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    Science.gov (United States)

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  13. Application of unweighted pair group methods with arithmetic average (UPGMA) for identification of kinship types and spreading of ebola virus through establishment of phylogenetic tree

    Science.gov (United States)

    Andriani, Tri; Irawan, Mohammad Isa

    2017-08-01

    Ebola Virus Disease (EVD) is a disease caused by a virus of the genus Ebolavirus (EBOV), family Filoviridae. Ebola virus is classifed into five types, namely Zaire ebolavirus (ZEBOV), Sudan ebolavirus (SEBOV), Bundibugyo ebolavirus (BEBOV), Tai Forest ebolavirus also known as Cote d'Ivoire ebolavirus (CIEBOV), and Reston ebolavirus (REBOV). Identification of kinship types of Ebola virus can be performed using phylogenetic trees. In this study, the phylogenetic tree constructed by UPGMA method in which there are Multiple Alignment using Progressive Method. The results concluded that the phylogenetic tree formation kinship ebola virus types that kind of Tai Forest ebolavirus close to Bundibugyo ebolavirus but the layout state ebola epidemic spread far apart. The genetic distance for this type of Bundibugyo ebolavirus with Tai Forest ebolavirus is 0.3725. Type Tai Forest ebolavirus similar to Bundibugyo ebolavirus not inuenced by the proximity of the area ebola epidemic spread.

  14. Clinical Management of Ebola Virus Disease in the United States and Europe.

    Science.gov (United States)

    Uyeki, Timothy M; Mehta, Aneesh K; Davey, Richard T; Liddell, Allison M; Wolf, Timo; Vetter, Pauline; Schmiedel, Stefan; Grünewald, Thomas; Jacobs, Michael; Arribas, Jose R; Evans, Laura; Hewlett, Angela L; Brantsaeter, Arne B; Ippolito, Giuseppe; Rapp, Christophe; Hoepelman, Andy I M; Gutman, Julie

    2016-02-18

    Available data on the characteristics of patients with Ebola virus disease (EVD) and clinical management of EVD in settings outside West Africa, as well as the complications observed in those patients, are limited. We reviewed available clinical, laboratory, and virologic data from all patients with laboratory-confirmed Ebola virus infection who received care in U.S. and European hospitals from August 2014 through December 2015. A total of 27 patients (median age, 36 years [range, 25 to 75]) with EVD received care; 19 patients (70%) were male, 9 of 26 patients (35%) had coexisting conditions, and 22 (81%) were health care personnel. Of the 27 patients, 24 (89%) were medically evacuated from West Africa or were exposed to and infected with Ebola virus in West Africa and had onset of illness and laboratory confirmation of Ebola virus infection in Europe or the United States, and 3 (11%) acquired EVD in the United States or Europe. At the onset of illness, the most common signs and symptoms were fatigue (20 patients [80%]) and fever or feverishness (17 patients [68%]). During the clinical course, the predominant findings included diarrhea, hypoalbuminemia, hyponatremia, hypokalemia, hypocalcemia, and hypomagnesemia; 14 patients (52%) had hypoxemia, and 9 (33%) had oliguria, of whom 5 had anuria. Aminotransferase levels peaked at a median of 9 days after the onset of illness. Nearly all the patients received intravenous fluids and electrolyte supplementation; 9 (33%) received noninvasive or invasive mechanical ventilation; 5 (19%) received continuous renal-replacement therapy; 22 (81%) received empirical antibiotics; and 23 (85%) received investigational therapies (19 [70%] received at least two experimental interventions). Ebola viral RNA levels in blood peaked at a median of 7 days after the onset of illness, and the median time from the onset of symptoms to clearance of viremia was 17.5 days. A total of 5 patients died, including 3 who had respiratory and renal

  15. Ebola Virus: New Insights into Disease Aetiopathology and Possible Therapeutic Interventions

    National Research Council Canada - National Science Library

    Geisbert, Thomas

    2004-01-01

    Ebola virus (EBOV) gained public notoriety in the last decade largely as a consequence of the highly publicised isolation of a new EBOV species in a suburb of Washington, DC, in 1989, together with the dramatic...

  16. Virus-like particles suppress growth of the red-tide-forming marine dinoflagellate Gymnodinium mikimotoi.

    Science.gov (United States)

    Onji, Masashi; Nakano, Shin-ichi; Suzuki, Satoru

    2003-01-01

    We isolated 2 virus-like agents that suppressed growth of Gymnodinium mikimotoi from coastal waters of the Uwa Sea, Japan. The agents found in the flagellate cells, named GM6 and GM7, were filterable in a 0.22-microm-pore filter with approximately 100-nm shapes. Electron microscopic observation showed the presence of virus-like particles in severely damaged G. mikimotoi cells infected by GM6. The growth-suppression activity of the agents (GM6 or GM7) was lost by heating at 50 degrees C, with treatments of DNase and protease, and filtration through a 0.05-microm filter. Our results suggest that the agents are DNA viruses infectious to and virulent for G. mikimotoi. This is the first report of a virus-like agent specific to G. mikimotoi.

  17. Ebola virus infection inversely correlates with the overall expression levels of promyelocytic leukaemia (PML protein in cultured cells

    Directory of Open Access Journals (Sweden)

    Szekely Laszlo

    2003-04-01

    Full Text Available Abstract Background Ebola virus causes severe, often fatal hemorrhagic fever in humans. The mechanism of escape from cellular anti-viral mechanisms is not yet fully understood. The promyelocytic leukaemia (PML associated nuclear body is part of the interferon inducible cellular defense system. Several RNA viruses have been found to interfere with the anti-viral function of the PML body. The possible interaction between Ebola virus and the PML bodies has not yet been explored. Results We found that two cell lines, Vero E6 and MCF7, support virus production at high and low levels respectively. The expression of viral proteins was visualized and quantified using high resolution immunofluorescence microscopy. Ebola encoded NP and VP35 accumulated in cytoplasmic inclusion bodies whereas VP40 was mainly membrane associated but it was also present diffusely in the cytoplasm as well as in the euchromatic areas of the nucleus. The anti-VP40 antibody also allowed the detection of extracellular virions. Interferon-alpha treatment decreased the production of all three viral proteins and delayed the development of cytopathic effects in both cell lines. Virus infection and interferon-alpha treatment induced high levels of PML protein expression in MCF7 but much less in Vero E6 cells. No disruption of PML bodies, a common phenomenon induced by a variety of different viruses, was observed. Conclusion We have established a simple fixation and immunofluorescence staining procedure that allows specific co-detection and precise sub-cellular localization of the PML nuclear bodies and the Ebola virus encoded proteins NP, VP35 and VP40 in formaldehyde treated cells. Interferon-alpha treatment delays virus production in vitro. Intact PML bodies may play an anti-viral role in Ebola infected cells.

  18. Assessment of ebola virus disease, health care infrastructure, and preparedness - four counties,Southeastern Liberia, august 2014.

    Science.gov (United States)

    Forrester, Joseph D; Pillai, Satish K; Beer, Karlyn D; Neatherlin, John; Massaquoi, Moses; Nyenswah, Tolbert G; Montgomery, Joel M; De Cock, Kevin

    2014-10-10

    Ebola virus disease (Ebola) is a multisystem disease caused by a virus of the genus Ebolavirus. In late March 2014, Ebola cases were described in Liberia, with epicenters in Lofa County and later in Montserrado County. While information about case burden and health care infrastructure was available for the two epicenters, little information was available about remote counties in southeastern Liberia. Over 9 days, August 6-14, 2014, Ebola case burden, health care infrastructure, and emergency preparedness were assessed in collaboration with the Liberian Ministry of Health and Social Welfare in four counties in southeastern Liberia: Grand Gedeh, Grand Kru, River Gee, and Maryland. Data were collected by health care facility visits to three of the four county referral hospitals and by unstructured interviews with county and district health officials, hospital administrators, physicians, nurses, physician assistants, and health educators in all four counties. Local burial practices were discussed with county officials, but no direct observation of burial practices was conducted. Basic information about Ebola surveillance and epidemiology, case investigation, contact tracing, case management, and infection control was provided to local officials.

  19. Current Ebola vaccines

    Science.gov (United States)

    Hoenen, Thomas; Groseth, Allison; Feldmann, Heinz

    2012-01-01

    Introduction Ebolaviruses cause severe viral hemorrhagic fever in humans and non-human primates, with case fatality rates of up to 90%. Currently, neither a specific treatment nor a vaccine licensed for use in humans is available. However, a number of vaccine candidates have been developed in the last decade that are highly protective in non-human primates, the gold standard animal model for Ebola hemorrhagic fever. Areas covered This review analyzes a number of scenarios for the use of ebolavirus vaccines, discusses the requirements for ebolavirus vaccines in these scenarios, and describes current ebolavirus vaccines. Among these vaccines are recombinant Adenoviruses, recombinant Vesicular Stomatitis viruses, recombinant Human Parainfluenza viruses and virus-like particles. Interestingly, one of these vaccine platforms, based on recombinant Vesicular Stomatitis viruses, has also demonstrated post-exposure protection in non-human primates. Expert opinion The most pressing remaining challenge is now to move these vaccine candidates forward into human trials and towards licensure. In order to achieve this, it will be necessary to establish the mechanisms and correlates of protection for these vaccines, and to continue to demonstrate their safety, particularly in potentially immunocompromised populations. However, already now there is sufficient evidence that, from a scientific perspective, a vaccine protective against ebolaviruses is possible. PMID:22559078

  20. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    Science.gov (United States)

    Richardson, Jason S; Yao, Michel K; Tran, Kaylie N; Croyle, Maria A; Strong, James E; Feldmann, Heinz; Kobinger, Gary P

    2009-01-01

    The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation adenovirus-based Ebola vaccine. Understanding and improving the

  1. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    Directory of Open Access Journals (Sweden)

    Jason S Richardson

    Full Text Available BACKGROUND: The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP. The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. METHODOLOGY/PRINCIPAL FINDINGS: Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP. Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. CONCLUSIONS/SIGNIFICANCE: We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the

  2. Delayed Disease Progression in Cynomolgus Macaques Infected with Ebola Virus Makona Strain.

    Science.gov (United States)

    Marzi, Andrea; Feldmann, Friederike; Hanley, Patrick W; Scott, Dana P; Günther, Stephan; Feldmann, Heinz

    2015-10-01

    In late 2013, the largest documented outbreak of Ebola hemorrhagic fever started in Guinea and has since spread to neighboring countries, resulting in almost 27,000 cases and >11,000 deaths in humans. In March 2014, Ebola virus (EBOV) was identified as the causative agent. This study compares the pathogenesis of a new EBOV strain, Makona, which was isolated in Guinea in 2014 with the prototype strain from the 1976 EBOV outbreak in the former Zaire. Both strains cause lethal disease in cynomolgus macaques with similar pathologic changes and hallmark features of Ebola hemorrhagic fever. However, disease progression was delayed in EBOV-Makona-infected animals, suggesting decreased rather than increased virulence of this most recent EBOV strain.

  3. Modeling Ebola Virus Genome Replication and Transcription with Minigenome Systems.

    Science.gov (United States)

    Cressey, Tessa; Brauburger, Kristina; Mühlberger, Elke

    2017-01-01

    In this chapter, we describe the minigenome system for Ebola virus (EBOV), which reconstitutes EBOV polymerase activity in cells and can be used to model viral genome replication and transcription. This protocol comprises all steps including cell culture, plasmid preparation, transfection, and luciferase reporter assay readout.

  4. Emergency Medical Services Public Health Implications and Interim Guidance for the Ebola Virus in the United States

    Directory of Open Access Journals (Sweden)

    Christopher E. McCoy

    2014-11-01

    Full Text Available The 25th known outbreak of the Ebola Virus Disease (EVD is now a global public health emergency and the World Health Organization (WHO has declared the epidemic to be a Public Health Emergency of International Concern (PHEIC. Since the first cases of the West African epidemic were reported in March 2014, there has been an increase in infection rates of over 13,000% over a 6-month period. The Ebola virus has now arrived in the United States and public health professionals, doctors, hospitals, Emergency Medial Services Administrators, Medical Directors, and policy makers have been working with haste to develop strategies to prevent the disease from reaching epidemic proportions. Prehospital care providers (emergency medical technicians and paramedics and medical first responders (including but not limited to firefighters and law enforcement are the healthcare systems front lines when it comes to first medical contact with patients outside of the hospital setting. Risk of contracting Ebola can be particularly high in this population of first responders if the appropriate precautions are not implemented. This article provides a brief clinical overview of the Ebola Virus Disease and provides a comprehensive summary of the Center for Disease Control and Prevention’s Interim Guidance for Emergency Medical Services (EMS Systems and 9-1-1 Public Safety Answering Points (PSAPS for Management of Patients with Known of Suspected Ebola Virus Disease in the United States. [West J Emerg Med. 2014;15(7:-0.

  5. The Ebola Virus Nucleoprotein Recruits the Host PP2A-B56 Phosphatase to Activate Transcriptional Support Activity of VP30

    DEFF Research Database (Denmark)

    Kruse, Thomas; Biedenkopf, Nadine; Hertz, Emil Peter Thrane

    2018-01-01

    Transcription of the Ebola virus genome depends on the viral transcription factor VP30 in its unphosphorylated form, but the underlying molecular mechanism of VP30 dephosphorylation is unknown. Here we show that the Ebola virus nucleoprotein (NP) recruits the host PP2A-B56 protein phosphatase......A-B56 and show that it suppresses Ebola virus transcription and infection. This work dissects the molecular mechanism of VP30 dephosphorylation by PP2A-B56, and it pinpoints this phosphatase as a potential target for therapeutic intervention....

  6. Living Under the Constant Threat of Ebola: A Phenomenological Study of Survivors and Family Caregivers During an Ebola Outbreak.

    Science.gov (United States)

    Matua, Gerald Amandu; Wal, Dirk Mostert Van der

    2015-09-01

    Ebola is a highly infectious disease that is caused by viruses of the family Filoviridae and transmitted to humans by direct contact with animals infected from unknown natural reservoirs. Ebola virus infection induces acute fever and death within a few days in up to 90% of symptomatic individuals, causing widespread fear, panic, and antisocial behavior. Uganda is vulnerable to future Ebola outbreaks. Therefore, the survivors of Ebola and their family caregivers are likely to continue experiencing related antisocial overtones, leading to negative health outcomes. This study articulated the lived experiences of survivors and their family caregivers after an Ebola outbreak in Kibale District, Western Uganda. Eliciting a deeper understanding of these devastating lifetime experiences provides opportunities for developing and implementing more compassionate and competent nursing care for affected persons. Ebola survivors and their family caregivers were recruited using a purposive sampling method. Twelve (12) adult survivors and their family caregivers were recruited and were interviewed individually between May and July 2013 in Kibale, a rural district in Western Uganda close to the border of the Democratic Republic of the Congo, where Ebola virus was first discovered in 1976. Oral and written informed consent was obtained before all in-depth interviews, and the researchers adhered to principles of anonymity and confidentiality. The interviews were recorded digitally, and data analysis employed Wertz's Empirical Psychological Reflection method, which is grounded in descriptive phenomenology. Living under the constant threat of Ebola is experienced through two main categories: (a) defining features of the experience and (b) responding to the traumatizing experience. Five themes emerged in the first category: (a) fear, ostracism, and stigmatization; (b) annihilation of sufferer's actualities and possibilities; (c) the lingering nature of the traumatic experience; (d

  7. Oligonucleotide Length-Dependent Formation of Virus-Like Particles.

    Science.gov (United States)

    Maassen, Stan J; de Ruiter, Mark V; Lindhoud, Saskia; Cornelissen, Jeroen J L M

    2018-05-23

    Understanding the assembly pathway of viruses can contribute to creating monodisperse virus-based materials. In this study, the cowpea chlorotic mottle virus (CCMV) is used to determine the interactions between the capsid proteins of viruses and their cargo. The assembly of the capsid proteins in the presence of different lengths of short, single-stranded (ss) DNA is studied at neutral pH, at which the protein-protein interactions are weak. Chromatography, electrophoresis, microscopy, and light scattering data show that the assembly efficiency and speed of the particles increase with increasing length of oligonucleotides. The minimal length required for assembly under the conditions used herein is 14 nucleotides. Assembly of particles containing such short strands of ssDNA can take almost a month. This slow assembly process enabled the study of intermediate states, which confirmed a low cooperative assembly for CCMV and allowed for further expansion of current assembly theories. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Clinical Laboratory Values as Early Indicators of Ebola Virus Infection in Nonhuman Primates.

    Science.gov (United States)

    Reisler, Ronald B; Yu, Chenggang; Donofrio, Michael J; Warren, Travis K; Wells, Jay B; Stuthman, Kelly S; Garza, Nicole L; Vantongeren, Sean A; Donnelly, Ginger C; Kane, Christopher D; Kortepeter, Mark G; Bavari, Sina; Cardile, Anthony P

    2017-08-01

    The Ebola virus (EBOV) outbreak in West Africa during 2013-2016 demonstrated the need to improve Ebola virus disease (EVD) diagnostics and standards of care. This retrospective study compared laboratory values and clinical features of 3 nonhuman primate models of lethal EVD to assess associations with improved survival time. In addition, the study identified laboratory values useful as predictors of survival, surrogates for EBOV viral loads, and triggers for initiation of therapeutic interventions in these nonhuman primate models. Furthermore, the data support that, in nonhuman primates, the Makona strain of EBOV may be less virulent than the Kikwit strain of EBOV. The applicability of these findings as potential diagnostic and management tools for EVD in humans warrants further investigation.

  9. Minimally Symptomatic Infection in an Ebola 'Hotspot': A Cross-Sectional Serosurvey.

    Directory of Open Access Journals (Sweden)

    Eugene T Richardson

    2016-11-01

    Full Text Available Evidence for minimally symptomatic Ebola virus (EBOV infection is limited. During the 2013-16 outbreak in West Africa, it was not considered epidemiologically relevant to published models or projections of intervention effects. In order to improve our understanding of the transmission dynamics of EBOV in humans, we investigated the occurrence of minimally symptomatic EBOV infection in quarantined contacts of reported Ebola virus disease cases in a recognized 'hotspot.'We conducted a cross-sectional serosurvey in Sukudu, Kono District, Sierra Leone, from October 2015 to January 2016. A blood sample was collected from 187 study participants, 132 negative controls (individuals with a low likelihood of previous exposure to Ebola virus, and 30 positive controls (Ebola virus disease survivors. IgG responses to Ebola glycoprotein and nucleoprotein were measured using Alpha Diagnostic International ELISA kits with plasma diluted at 1:200. Optical density was read at 450 nm (subtracting OD at 630nm to normalize well background on a ChroMate 4300 microplate reader. A cutoff of 4.7 U/mL for the anti-GP ELISA yielded 96.7% sensitivity and 97.7% specificity in distinguishing positive and negative controls. We identified 14 seropositive individuals not known to have had Ebola virus disease. Two of the 14 seropositive individuals reported only fever during quarantine while the remaining 12 denied any signs or symptoms during quarantine.By using ELISA to measure Zaire Ebola virus antibody concentrations, we identified a significant number of individuals with previously undetected EBOV infection in a 'hotspot' village in Sierra Leone, approximately one year after the village outbreak. The findings provide further evidence that Ebola, like many other viral infections, presents with a spectrum of clinical manifestations, including minimally symptomatic infection. These data also suggest that a significant portion of Ebola transmission events may have gone

  10. Ebola Virus Epidemic in West Africa and Beyond

    Directory of Open Access Journals (Sweden)

    Oscar G Gómez-Duarte

    2014-10-01

    Full Text Available Is there a reason to fear that an Ebola outbreak may strike Latin America? The fear may not be unreasonable taking into account the history of epidemics that have affected the American continent since colonization times in 1492. Old World small pox epidemics spread and killed millions of Native Americans north and south from the equator. Imported West Nile virus infections reported in New York in 1999 dramatically spread East to West of the United States. Most recently, Chikungunya virus arrived to Central America in 2013 and has already infected close to 1 million people in Mexico, Central American countries, Brazil, Colombia, Ecuador, Guyanas, Paraguay, and Venezuela.

  11. The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis.

    Science.gov (United States)

    Feldmann, H; Volchkov, V E; Volchkova, V A; Klenk, H D

    1999-01-01

    Filoviruses cause systemic infections that can lead to severe hemorrhagic fever in human and non-human primates. The primary target of the virus appears to be the mononuclear phagocytic system. As the virus spreads through the organism, the spectrum of target cells increases to include endothelial cells, fibroblasts, hepatocytes, and many other cells. There is evidence that the filovirus glycoprotein plays an important role in cell tropism, spread of infection, and pathogenicity. Biosynthesis of the glycoprotein forming the spikes on the virion surface involves cleavage by the host cell protease furin into two disulfide linked subunits GP1 and GP2. GP1 is also shed in soluble form from infected cells. Different strains of Ebola virus show variations in the cleavability of the glycoprotein, that may account for differences in pathogenicity, as has been observed with influenza viruses and paramyxoviruses. Expression of the spike glycoprotein of Ebola virus, but not of Marburg virus, requires transcriptional editing. Unedited GP mRNA yields the nonstructural glycoprotein sGP, which is secreted extensively from infected cells. Whether the soluble glycoproteins GP1 and sGP interfere with the humoral immune response and other defense mechanisms remains to be determined.

  12. RNA packaging of MRFV virus-like particles: The interplay between RNA pools and capsid coat protein

    Science.gov (United States)

    Virus-like particles (VLPs) can be produced through self-assembly of capsid protein (CP) into particles with discrete shapes and sizes and containing different types of RNA molecules. The general principle that governs particle assembly and RNA packaging is determined by unique interactions between ...

  13. Two proteins with reverse transcriptase activities associated with hepatitis B virus-like particles

    International Nuclear Information System (INIS)

    Bavand, M.R.; Laub, O.

    1988-01-01

    Recent studies suggest that hepatitis B virus (HBV), despite being a DNA virus, replicates via an RNA intermediate. The HBV life cycle is therefore a permuted version of the RNA retroviral life cycle. Sequence homology between retroviral reverse transcriptase and the putative HBV polymerase gene product suggests the presence of an HBV reverse transcriptase. As yet, there has been no direct evidence that reverse transcriptase activity is present in the viral particle. The authors used activity gel analysis to detect the in situ catalytic activities of DNA polymerases after sodium dodecyl sulfate-polyacrylamide gel electrophorsis. These studies demonstrated that HBV-like particles secreted by a differentiated human hepatoma cell line tranfected with genomic HBV DNA contain two major polymerase activities which migrate as ∼90- and ∼70-kilodalton (kDa) proteins. This demonstrated, for the first time, that HBV-like particles contain a novel DNA polymerase-reverse transcriptase activity. Furthermore, they propose that the 70-kDa reverse transcriptase may be produced by proteolytic self-cleavage of the 90-kDa precursor protein

  14. Distinct lineages of Ebola virus in Guinea during the 2014 West African epidemic.

    Science.gov (United States)

    Simon-Loriere, Etienne; Faye, Ousmane; Faye, Oumar; Koivogui, Lamine; Magassouba, Nfaly; Keita, Sakoba; Thiberge, Jean-Michel; Diancourt, Laure; Bouchier, Christiane; Vandenbogaert, Matthias; Caro, Valérie; Fall, Gamou; Buchmann, Jan P; Matranga, Christan B; Sabeti, Pardis C; Manuguerra, Jean-Claude; Holmes, Edward C; Sall, Amadou A

    2015-08-06

    An epidemic of Ebola virus disease of unprecedented scale has been ongoing for more than a year in West Africa. As of 29 April 2015, there have been 26,277 reported total cases (of which 14,895 have been laboratory confirmed) resulting in 10,899 deaths. The source of the outbreak was traced to the prefecture of Guéckédou in the forested region of southeastern Guinea. The virus later spread to the capital, Conakry, and to the neighbouring countries of Sierra Leone, Liberia, Nigeria, Senegal and Mali. In March 2014, when the first cases were detected in Conakry, the Institut Pasteur of Dakar, Senegal, deployed a mobile laboratory in Donka hospital to provide diagnostic services to the greater Conakry urban area and other regions of Guinea. Through this process we sampled 85 Ebola viruses (EBOV) from patients infected from July to November 2014, and report their full genome sequences here. Phylogenetic analysis reveals the sustained transmission of three distinct viral lineages co-circulating in Guinea, including the urban setting of Conakry and its surroundings. One lineage is unique to Guinea and closely related to the earliest sampled viruses of the epidemic. A second lineage contains viruses probably reintroduced from neighbouring Sierra Leone on multiple occasions, while a third lineage later spread from Guinea to Mali. Each lineage is defined by multiple mutations, including non-synonymous changes in the virion protein 35 (VP35), glycoprotein (GP) and RNA-dependent RNA polymerase (L) proteins. The viral GP is characterized by a glycosylation site modification and mutations in the mucin-like domain that could modify the outer shape of the virion. These data illustrate the ongoing ability of EBOV to develop lineage-specific and potentially phenotypically important variation.

  15. YouTube as a Source of Information on Ebola Virus Disease.

    Science.gov (United States)

    Pathak, Ranjan; Poudel, Dilli Ram; Karmacharya, Paras; Pathak, Amrit; Aryal, Madan Raj; Mahmood, Maryam; Donato, Anthony A

    2015-07-01

    The current West Africa epidemic of Ebola virus disease (EVD), which began from Guinea in December 2013, has been the longest and deadliest Ebola outbreak to date. With the propagation of the internet, public health officials must now compete with other official and unofficial sources of information to get their message out. This study aimed at critically appraising videos available on one popular internet video site (YouTube) as a source of information for Ebola virus disease (EVD). Videos were searched in YouTube (http://www.youtube.com) using the keyword "Ebola outbreak" from inception to November 1, 2014 with the default "relevance" filter. Only videos in English language under 10 min duration within first 10 pages of search were included. Duplicates were removed and the rest were classified as useful or misleading by two independent reviewers. Video sources were categorized by source. Inter-observer agreement was evaluated with kappa coefficient. Continuous and categorical variables were analyzed using the Student t-test and Chi-squared test, respectively. One hundred and eighteen out of 198 videos were evaluated. Thirty-one (26.27%) videos were classified as misleading and 87 (73.73%) videos were classified as useful. The kappa coefficient of agreement regarding the usefulness of the videos was 0.68 (P YouTube were characterized as useful. Although YouTube seems to generally be a useful source of information on the current outbreak, increased efforts to disseminate scientifically correct information is desired to prevent unnecessary panic among the among the general population.

  16. Recent advances in vaccine development against Ebola threat as bioweapon.

    Science.gov (United States)

    Gera, Prachi; Gupta, Ankit; Verma, Priyanka; Singh, Joginder; Gupta, Jeena

    2017-09-01

    With the increasing rate of Ebola virus appearance, with multiple natural outbreaks of Ebola hemorrhagic fever, it is worthy of consideration as bioweapon by anti-national groups. Further, with the non-availability of the vaccines against Ebola virus, concerns about the public health emerge. In this regard, this review summarizes the structure, genetics and potential of Ebola virus to be used as a bioweapon. We highlight the recent advances in the treatment strategies and vaccine development against Ebola virus. The understanding of these aspects might lead to effective treatment practices which can be applied during the future outbreaks of Ebola.

  17. 9. Fight Ebola virus disease in Africa, a question related to the ...

    African Journals Online (AJOL)

    user

    Keywords: Environment; Ebola virus disease; West Africa ... (Spain, United States of America, Italy, Mali,. Nigeria, United ... particularly dry conditions at the end of a wet season: this can ... Hypsignathus and Epomops, forest antelopes and. 4.

  18. [Epidemiological aspects of Ebola virus disease in Guinea (december 2013-april 2016)].

    Science.gov (United States)

    Migliani, R; Keïta, S; Diallo, B; Mesfin, S; Perea, W; Dahl, B; Rodier, G

    2016-10-01

    Ebola Zaire species variant Makona between its emergence in December 2013 and April 2016, resulted in an epidemic of Guinea importance and unprecedented gravity with 3814 reported cases of which 3358 were confirmed (88.0%) and 2544 were died (66.7%). The epidemic has evolved in phases: a silent phase without identification of all fatal cases until February 2014; a first outbreak from March 2014, when the alarm is raised and the virus detected, which lasted until July 2014; a second increase, which was the most intense, from August 2014 to January 2015 focused primarily on the forest Guinea; and a final increase from February 2015 centered on lower Guinea and the capital Conakry. Adapting strategies in 2015 (initiative "Zero Ebola in 60 days" active case search and suspicious deaths and awareness of active prefectures, microbanding the last affected communities and raking around these localities) and ring vaccination of contacts around confirmed cases has allowed to gradually control the main outbreak in October 2015. But a survivor was originally resurgence in forest areas between March and April 2016 with 10 cases including 8 deaths. The epidemic has particularly affected the forest Guinea region (44% and 48% of Guinean cases and deaths), elderly women (≥ 50 years), and health professionals (211 cases including 115 deaths); however, almost one-third of the patients (32.6%) was not provided supportive care in the Ebola centers. The epidemic is currently marked by the resurgence of small foci, from excreting subjects cured of the virus who have been controlled so far successfully. The survivors are the subject of special attention. It is necessary to learn lessons from the response to better prepare for the future, to improve knowledge about the natural history of the Ebola virus disease, and to rethink communication in this regard with the public and its leaders.

  19. Ebola hemorrhagic fever outbreaks: strategies for effective epidemic management, containment and control.

    Science.gov (United States)

    Matua, Gerald Amandu; Van der Wal, Dirk Mostert; Locsin, Rozzano C

    2015-01-01

    Ebola hemorrhagic fever, caused by the highly virulent RNA virus of the filoviridae family, has become one of the world's most feared pathogens. The virus induces acute fever and death, often associated with hemorrhagic symptoms in up to 90% of infected patients. The known sub-types of the virus are Zaire, Sudan, Taï Forest, Bundibugyo and Reston Ebola viruses. In the past, outbreaks were limited to the East and Central African tropical belt with the exception of Ebola Reston outbreaks that occurred in animal facilities in the Philippines, USA and Italy. The on-going outbreak in West Africa that is causing numerous deaths and severe socio-economic challenges has resulted in widespread anxiety globally. This panic may be attributed to the intense media interest, the rapid spread of the virus to other countries like United States and Spain, and moreover, to the absence of an approved treatment or vaccine. Informed by this widespread fear and anxiety, we analyzed the commonly used strategies to manage and control Ebola outbreaks and proposed new approaches that could improve epidemic management and control during future outbreaks. We based our recommendations on epidemic management practices employed during recent outbreaks in East, Central and West Africa, and synthesis of peer-reviewed publications as well as published "field" information from individuals and organizations recently involved in the management of Ebola epidemics. The current epidemic management approaches are largely "reactive", with containment efforts aimed at halting spread of existing outbreaks. We recommend that for better outcomes, in addition to "reactive" interventions, "pre-emptive" strategies also need to be instituted. We conclude that emphasizing both "reactive" and "pre-emptive" strategies is more likely to lead to better epidemic preparedness and response at individual, community, institutional, and government levels, resulting in timely containment of future Ebola outbreaks. Copyright

  20. Emergence of ebola virus disease and its devastating impact in poor ...

    African Journals Online (AJOL)

    There is the urgent need by stakeholders to device appropriate preventive / control measures including development of effective drugs and vaccines to checkmate the spread of EVD and associated severe morbidity, high mortality and devastating socio-economic impact. Key Words: Ebola virus disease, severe morbidity, ...

  1. Biomarker Correlates of Survival in Pediatric Patients with Ebola Virus Disease

    Centers for Disease Control (CDC) Podcasts

    2014-08-19

    Dr. Mike Miller reads an abridged version of the article, Biomarker Correlates of Survival in Pediatric Patients with Ebola Virus Disease.  Created: 8/19/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/19/2014.

  2. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    Directory of Open Access Journals (Sweden)

    Kari A Dilley

    Full Text Available Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV, and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV. Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR activation.

  3. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    Science.gov (United States)

    Dilley, Kari A; Voorhies, Alexander A; Luthra, Priya; Puri, Vinita; Stockwell, Timothy B; Lorenzi, Hernan; Basler, Christopher F; Shabman, Reed S

    2017-01-01

    Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation.

  4. Experimental Treatment of Ebola Virus Disease with Brincidofovir.

    Directory of Open Access Journals (Sweden)

    Jake Dunning

    Full Text Available The nucleotide analogue brincidofovir was developed to prevent and treat infections caused by double-stranded DNA viruses. Based on in vitro data suggesting an antiviral effect against Ebola virus, brincidofovir was included in the World Health Organisation list of agents that should be prioritised for clinical evaluation in patients with Ebola virus disease (EVD during the West African epidemic.In this single-arm phase 2 trial conducted in Liberia, patients with laboratory-confirmed EVD (two months of age or older, enrolment bodyweight ≥50 kg received oral brincidofovir 200 mg as a loading dose on day 0, followed by 100 mg brincidofovir on days 3, 7, 10, and 14. Bodyweight-adjusted dosing was used for patients weighing <50 kg at enrolment. The primary outcome was survival at Day 14 after the first dose of brincidofovir. Four patients were enrolled between 01 January 2015 and 31 January 2015. The trial was stopped following the decision by the manufacturer to terminate their program of development of brincidofovir for EVD. No Serious Adverse Reactions or Suspected Unexpected Serious Adverse Reactions were identified. All enrolled subjects died of an illness consistent with EVD.Due to the small sample size it was not possible to determine the efficacy of brincidofovir for the treatment of EVD. The premature termination of the trial highlights the need to establish better practices for preclinical in-vitro and animal screening of therapeutics for potentially emerging epidemic infectious diseases prior to their use in patients.Pan African Clinical Trials Registry PACTR201411000939962.

  5. Development of a Sensitive and Specific Serological Assay Based on Luminex Technology for Detection of Antibodies to Zaire Ebola Virus.

    Science.gov (United States)

    Ayouba, Ahidjo; Touré, Abdoulaye; Butel, Christelle; Keita, Alpha Kabinet; Binetruy, Florian; Sow, Mamadou S; Foulongne, Vincent; Delaporte, Eric; Peeters, Martine

    2017-01-01

    The recent Zaire Ebola virus (EBOV) outbreak in West Africa illustrates clearly the need for additional studies with humans and animals to elucidate the ecology of Ebola viruses (EBVs). In this study, we developed a serological assay based on the Luminex technology. Nine recombinant proteins representing different viral regions (nucleoprotein [NP], 40-kDa viral protein [VP40], and glycoprotein [GP]) from four of the five EBV lineages were used. Samples from 94 survivors of the EBOV outbreak in Guinea and negative samples from 108 patients in France were used to calculate test performance for EBOV detection and cross-reaction with other Ebola virus lineages. For EBOV antibody detection, sensitivities of 95.7%, 96.8%, and 92.5% and specificities of 94.4%, 95.4%, and 96.3% for NP, GP, and VP40, respectively, were observed. All EBOV-negative samples that presented a reaction, except for one, interacted with a single antigen, whereas almost all samples from EBOV survivors were simultaneously reactive with NP and GP (90/94) or with NP, GP, and VP40 (87/94). Considering as positive for past EBOV infection only samples that reacted with EBOV NP and GP, sensitivity was 95.7% and specificity increased to 99.1%. Comparing results with commercial EBOV NP and GP enzyme-linked immunosorbent assays (ELISAs; Alpha Diagnostic, San Antonio, TX), lower sensitivity (92.5%) and high specificity (100%) were observed with the same positivity criteria. Samples from EBOV survivors cross-reacted with GP from Sudan Ebola virus (GP-SUDV) (81.9%), GP from Bundibugyo Ebola virus (GP-BDBV) (51.1%), GP from Reston Ebola virus (GP-RESTV) (9.6%), VP40-SUDV (76.6%), and VP40-BDBV (38.3%). Overall, we developed a sensitive and specific high-throughput serological assay, and defined an algorithm, for epidemiological surveys with humans. Copyright © 2016 American Society for Microbiology.

  6. Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion

    Directory of Open Access Journals (Sweden)

    Priya Luthra

    2017-04-01

    Full Text Available Ebola virus (EBOV protein VP35 inhibits production of interferon alpha/beta (IFN by blocking RIG-I-like receptor signaling pathways, thereby promoting virus replication and pathogenesis. A high-throughput screening assay, developed to identify compounds that either inhibit or bypass VP35 IFN-antagonist function, identified five DNA intercalators as reproducible hits from a library of bioactive compounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs. These compounds were demonstrated to induce IFN responses in an ATM kinase-dependent manner and to also trigger the DNA-sensing cGAS-STING pathway of IFN induction. These compounds also suppress EBOV replication in vitro and induce IFN in the presence of IFN-antagonist proteins from multiple negative-sense RNA viruses. These findings provide new insights into signaling pathways activated by important chemotherapy drugs and identify a novel therapeutic approach for IFN induction that may be exploited to inhibit RNA virus replication.

  7. Evaluation of a National Call Center and a Local Alerts System for Detection of New Cases of Ebola Virus Disease - Guinea, 2014-2015

    Science.gov (United States)

    2016-03-11

    call centers were established in response to the Ebola epidemic in Guinea, Liberia , and Sierra Leone, the sensitivity of those call centers for...Control and Prevention Evaluation of a National Call Center and a Local Alerts System for Detection of New Cases of Ebola Virus Disease — Guinea, 2014...2015 Christopher T. Lee, MD1,2,3; Marc Bulterys, MD, PhD2,4,5; Lise D. Martel, PhD2,6; Benjamin A. Dahl PhD2,5 The epidemic of Ebola virus disease ( Ebola

  8. Production and immunogenicity of chimeric virus-like particles containing the spike glycoprotein of infectious bronchitis virus.

    Science.gov (United States)

    Lv, Lishan; Li, Xiaoming; Liu, Genmei; Li, Ran; Liu, Qiliang; Shen, Huifang; Wang, Wei; Xue, Chunyi; Cao, Yongchang

    2014-01-01

    Infectious bronchitis virus (IBV) poses a severe threat to the poultry industry and causes heavy economic losses worldwide. Vaccination is the most effective method of preventing infection and controlling the spread of IBV, but currently available inactivated and attenuated virus vaccines have some disadvantages. We developed a chimeric virus-like particle (VLP)-based candidate vaccine for IBV protection. The chimeric VLP was composed of matrix 1 protein from avian influenza H5N1 virus and a fusion protein neuraminidase (NA)/spike 1 (S1) that was generated by fusing IBV S1 protein to the cytoplasmic and transmembrane domains of NA protein of avian influenza H5N1 virus. The chimeric VLPs elicited significantly higher S1-specific antibody responses in intramuscularly immunized mice and chickens than inactivated IBV viruses. Furthermore, the chimeric VLPs induced significantly higher neutralization antibody levels than inactivated H120 virus in SPF chickens. Finally, the chimeric VLPs induced significantly higher IL-4 production in mice. These results demonstrate that chimeric VLPs have the potential for use in vaccines against IBV infection.

  9. Learning from Ebola Virus: How to Prevent Future Epidemics

    Directory of Open Access Journals (Sweden)

    Alexander S. Kekulé

    2015-07-01

    Full Text Available The recent Ebola virus disease (EVD epidemic in Guinea, Liberia and Sierra Leone demonstrated that the World Health Organization (WHO is incapable to control outbreaks of infectious diseases in less developed regions of the world. This essay analyses the causes for the failure of the international response and proposes four measures to improve resilience, early detection and response to future outbreaks of infectious diseases.

  10. Mapping the zoonotic niche of Ebola virus disease in Africa

    Science.gov (United States)

    Pigott, David M; Golding, Nick; Mylne, Adrian; Huang, Zhi; Henry, Andrew J; Weiss, Daniel J; Brady, Oliver J; Kraemer, Moritz UG; Smith, David L; Moyes, Catherine L; Bhatt, Samir; Gething, Peter W; Horby, Peter W; Bogoch, Isaac I; Brownstein, John S; Mekaru, Sumiko R; Tatem, Andrew J; Khan, Kamran; Hay, Simon I

    2014-01-01

    Ebola virus disease (EVD) is a complex zoonosis that is highly virulent in humans. The largest recorded outbreak of EVD is ongoing in West Africa, outside of its previously reported and predicted niche. We assembled location data on all recorded zoonotic transmission to humans and Ebola virus infection in bats and primates (1976–2014). Using species distribution models, these occurrence data were paired with environmental covariates to predict a zoonotic transmission niche covering 22 countries across Central and West Africa. Vegetation, elevation, temperature, evapotranspiration, and suspected reservoir bat distributions define this relationship. At-risk areas are inhabited by 22 million people; however, the rarity of human outbreaks emphasises the very low probability of transmission to humans. Increasing population sizes and international connectivity by air since the first detection of EVD in 1976 suggest that the dynamics of human-to-human secondary transmission in contemporary outbreaks will be very different to those of the past. DOI: http://dx.doi.org/10.7554/eLife.04395.001 PMID:25201877

  11. Efficacy of Vesicular Stomatitis Virus-Ebola Virus Postexposure Treatment in Rhesus Macaques Infected With Ebola Virus Makona.

    Science.gov (United States)

    Marzi, Andrea; Hanley, Patrick W; Haddock, Elaine; Martellaro, Cynthia; Kobinger, Gary; Feldmann, Heinz

    2016-10-15

    The Ebola virus (EBOV) epidemic in West Africa increased the focus on vaccine development against this hemorrhagic fever-causing pathogen, and as a consequence human clinical trials for a few selected platforms were accelerated. One of these vaccines is vesicular stomatitis virus (VSV)-EBOV, also known as rVSV-ZEBOV, a fast-acting vaccine against EBOV and so far the only vaccine with reported efficacy against EBOV infections in humans in phase III clinical trials. In this study, we analyzed the potential of VSV-EBOV for postexposure treatment of rhesus macaques infected with EBOV-Makona. We treated groups of animals with 1 dose of VSV-EBOV either in a single injection at 1 or 24 hours after EBOV exposure or with 2 injections, half the dose at each time point; 1 control group received the same dose of the VSV-based Marburg virus vaccine at both time points; another group remained untreated. Although all untreated animals succumbed to EBOV infection, 33%-67% of the animals in each treatment group survived the infection, including the group treated with the VSV-based Marburg virus vaccine. This result suggests that protection from postexposure vaccination may be antigen unspecific and due rather to an early activation of the innate immune system. In conclusion, VSV-EBOV remains a potent and fast-acting prophylactic vaccine but demonstrates only limited efficacy in postexposure treatment. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Discovery and early development of AVI-7537 and AVI-7288 for the treatment of Ebola virus and Marburg virus infections.

    Science.gov (United States)

    Iversen, Patrick L; Warren, Travis K; Wells, Jay B; Garza, Nicole L; Mourich, Dan V; Welch, Lisa S; Panchal, Rekha G; Bavari, Sina

    2012-11-06

    There are no currently approved treatments for filovirus infections. In this study we report the discovery process which led to the development of antisense Phosphorodiamidate Morpholino Oligomers (PMOs) AVI-6002 (composed of AVI-7357 and AVI-7539) and AVI-6003 (composed of AVI-7287 and AVI-7288) targeting Ebola virus and Marburg virus respectively. The discovery process involved identification of optimal transcript binding sites for PMO based RNA-therapeutics followed by screening for effective viral gene target in mouse and guinea pig models utilizing adapted viral isolates. An evolution of chemical modifications were tested, beginning with simple Phosphorodiamidate Morpholino Oligomers (PMO) transitioning to cell penetrating peptide conjugated PMOs (PPMO) and ending with PMOplus containing a limited number of positively charged linkages in the PMO structure. The initial lead compounds were combinations of two agents targeting separate genes. In the final analysis, a single agent for treatment of each virus was selected, AVI-7537 targeting the VP24 gene of Ebola virus and AVI-7288 targeting NP of Marburg virus, and are now progressing into late stage clinical development as the optimal therapeutic candidates.

  13. A molecular assembly system for presentation of antigens on the surface of HBc virus-like particles

    International Nuclear Information System (INIS)

    Blokhina, Elena A.; Kuprianov, Victor V.; Stepanova, Ludmila A.; Tsybalova, Ludmila M.; Kiselev, Oleg I.; Ravin, Nikolai V.; Skryabin, Konstantin G.

    2013-01-01

    Hepatitis B virus-like particles, icosahedral structures formed by multiple core protein dimers, are promising immune-enhancing vaccine carriers for foreign antigens. Insertions into the surface-exposed immunodominant loop are especially immunogenic. However, the need to conserve the particulate structure to ensure high immunogenicity imposes restraints on the nature of the heterologous sequence that can be inserted. We propose a new approach to constructing HBc particles linked to the target epitopes that relies on non-covalent interactions between the epitope and pre-assembled unmodified HBc particles. Interaction was enabled by fusion of the epitope to the GSLLGRMKGA peptide, binding to the spike tips. This peptide may be used as a “binding tag” allowing in vitro construction of HBc particles carrying the target peptide. Such virus-like particles carrying multiple copies of the extracellular domain of the M2 protein of different influenza strains appeared to be highly immunogenic and protected immunised mice against a lethal influenza challenge.

  14. A molecular assembly system for presentation of antigens on the surface of HBc virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Blokhina, Elena A.; Kuprianov, Victor V. [Centre ' Bioengineering' , Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow (Russian Federation); Stepanova, Ludmila A.; Tsybalova, Ludmila M. [Research Institute of Influenza, Russian Federation Ministry of Health and Social Development, St. Petersburg (Russian Federation); Kiselev, Oleg I. [Research Institute of Influenza, Russian Federation Ministry of Health and Social Development, St. Petersburg (Russian Federation); GenNanotech Ltd, St. Petersburg (Russian Federation); Ravin, Nikolai V., E-mail: nravin@biengi.ac.ru [Centre ' Bioengineering' , Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow (Russian Federation); GenNanotech Ltd, St. Petersburg (Russian Federation); Skryabin, Konstantin G. [Centre ' Bioengineering' , Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow (Russian Federation); GenNanotech Ltd, St. Petersburg (Russian Federation)

    2013-01-20

    Hepatitis B virus-like particles, icosahedral structures formed by multiple core protein dimers, are promising immune-enhancing vaccine carriers for foreign antigens. Insertions into the surface-exposed immunodominant loop are especially immunogenic. However, the need to conserve the particulate structure to ensure high immunogenicity imposes restraints on the nature of the heterologous sequence that can be inserted. We propose a new approach to constructing HBc particles linked to the target epitopes that relies on non-covalent interactions between the epitope and pre-assembled unmodified HBc particles. Interaction was enabled by fusion of the epitope to the GSLLGRMKGA peptide, binding to the spike tips. This peptide may be used as a 'binding tag' allowing in vitro construction of HBc particles carrying the target peptide. Such virus-like particles carrying multiple copies of the extracellular domain of the M2 protein of different influenza strains appeared to be highly immunogenic and protected immunised mice against a lethal influenza challenge.

  15. Effect of HIV-1 envelope cytoplasmic tail on adenovirus primed virus encoded virus-like particle immunizations

    DEFF Research Database (Denmark)

    Andersson, Anne Marie C; Ragonnaud, Emeline; Seaton, Kelly E.

    2016-01-01

    were found between the different priming regimens as both induced high titered tier 1 neutralizing antibodies, but no tier 2 antibodies, possibly reflecting the similar presentation of trimer specific antibody epitopes. The described vaccine regimens provide insight into the effects of the HIV-1 Env......The low number of envelope (Env) spikes presented on native HIV-1 particles is a major impediment for HIV-1 prophylactic vaccine development. We designed virus-like particle encoding adenoviral vectors utilizing SIVmac239 Gag as an anchor for full length and truncated HIV-1 M consensus Env...

  16. Bioengineering of Tobacco Mosaic Virus to Create a Non-Infectious Positive Control for Ebola Diagnostic Assays

    Science.gov (United States)

    Lam, Patricia; Gulati, Neetu M.; Stewart, Phoebe L.; Keri, Ruth A.; Steinmetz, Nicole F.

    2016-03-01

    The 2014 Ebola epidemic is the largest to date. There is no cure or treatment for this deadly disease; therefore there is an urgent need to develop new diagnostics to accurately detect Ebola. Current RT-PCR assays lack sensitive and reliable positive controls. To address this critical need, we devised a bio-inspired positive control for use in RT-PCR diagnostics: we encapsulated scrambled Ebola RNA sequences inside of tobacco mosaic virus to create a biomimicry that is non-infectious, but stable, and could therefore serve as a positive control in Ebola diagnostic assays. Here, we report the bioengineering and validation of this probe.

  17. Epidemiology of Ebola virus disease transmission among health care workers in Sierra Leone, May to December 2014: a retrospective descriptive study.

    Science.gov (United States)

    Olu, Olushayo; Kargbo, Brima; Kamara, Sarian; Wurie, Alie H; Amone, Jackson; Ganda, Louisa; Ntsama, Bernard; Poy, Alain; Kuti-George, Fredson; Engedashet, Etsub; Worku, Negusu; Cormican, Martin; Okot, Charles; Yoti, Zabulon; Kamara, Kande-Bure; Chitala, Kennedy; Chimbaru, Alex; Kasolo, Francis

    2015-10-13

    Anecdotal evidence suggests that much of the continuing infection of health care workers (HCWs) with Ebola virus during the current outbreak in Sierra Leone has occurred in settings other than Ebola isolation units, and it is likely that some proportion of acquisition by HCWs occurs outside the workplace. There is a critical need to define more precisely the pathways of Ebola infection among HCWs, to optimise measures for reducing risk during current and future outbreaks. We conducted a retrospective descriptive study of Ebola acquisition among health workers in Sierra Leone during May-December 2014. The data used were obtained mainly from the national Ebola database, a cross-sectional survey conducted through administration of a structured questionnaire to infected HCWs, and key informant interviews of select health stakeholders. A total of 293 HCWs comprising 277 (95 %) confirmed, 6 (2 %) probable, and 10 (3 %) suspected cases of infection with Ebola virus were enrolled in the study from nine districts of the country. Over half of infected HCWs (153) were nurses; others included laboratory staff (19, 6.5 %), doctors (9, 3.1 %), cleaners and porters (9, 3.1 %), Community Health Officers (8, 2.7 %), and pharmacists (2, 0.7 %). HCW infections were mainly reported from the Western Area (24.9 %), Kailahun (18.4 %), Kenema (17.7 %), and Bombali (13.3 %) districts. Almost half of the infected HCWs (120, 47.4 %) believed that their exposure occurred in a hospital setting. Others believed that they were exposed in the home (48, 19 %), at health centres (45, 17.8 %), or at other types of health facilities (13, 5.1 %). Only 27 (10.7 %) of all HCW infections were associated with Ebola virus disease (EVD) isolation units. Over half (60 %, 150) of infected HCWs said they had been trained in infection prevention and control prior to their infection, whereas 34 % (85) reported that they had not been so trained. This study demonstrated the perception that most HCW infections are

  18. HIV-specific humoral and cellular immunity in rabbits vaccinated with recombinant human immunodeficiency virus-like gag-env particles

    International Nuclear Information System (INIS)

    Haffar, O.K.; Smithgall, M.D.; Moran, P.A.; Travis, B.M.; Zarling, J.M.; Hu, S.L.

    1991-01-01

    Recombinant human immunodeficiency virus type-1 (HIV-1)-like gag-env particles produced in mammalian cells were inoculated into two New Zealand white rabbits. In parallel, two control rabbits were inoculated with the homologous HIV-1 virions inactivated by ultraviolet light (uv) and psoralen treatments. The humoral and cellular immune responses to HIV-1 were evaluated for both groups of animals. Recombinant particles elicited humoral immunity that was specific for all the viral structural proteins. The antibodies recognized both denatured and nondenatured proteins. Moreover, the sera neutralized the in vitro infectivity of the homologous virus in CEM cells. Importantly, the recombinant particles also generated a T helper response by priming with the HIV proteins. Similar results were observed with inactivated virus immunization. Therefore, the authors results suggest that the recombinant HIV-like particles elicit functional humoral immunity as well as cellular immunity and represent a novel vaccine candidate for AIDS

  19. Public health response to commercial airline travel of a person with Ebola virus infection - United States, 2014.

    Science.gov (United States)

    Regan, Joanna J; Jungerman, Robynne; Montiel, Sonia H; Newsome, Kimberly; Objio, Tina; Washburn, Faith; Roland, Efrosini; Petersen, Emily; Twentyman, Evelyn; Olaiya, Oluwatosin; Naughton, Mary; Alvarado-Ramy, Francisco; Lippold, Susan A; Tabony, Laura; McCarty, Carolyn L; Kinsey, Cara Bicking; Barnes, Meghan; Black, Stephanie; Azzam, Ihsan; Stanek, Danielle; Sweitzer, John; Valiani, Anita; Kohl, Katrin S; Brown, Clive; Pesik, Nicki

    2015-01-30

    Before the current Ebola epidemic in West Africa, there were few documented cases of symptomatic Ebola patients traveling by commercial airline, and no evidence of transmission to passengers or crew members during airline travel. In July 2014 two persons with confirmed Ebola virus infection who were infected early in the Nigeria outbreak traveled by commercial airline while symptomatic, involving a total of four flights (two international flights and two Nigeria domestic flights). It is not clear what symptoms either of these two passengers experienced during flight; however, one collapsed in the airport shortly after landing, and the other was documented to have fever, vomiting, and diarrhea on the day the flight arrived. Neither infected passenger transmitted Ebola to other passengers or crew on these flights. In October 2014, another airline passenger, a U.S. health care worker who had traveled domestically on two commercial flights, was confirmed to have Ebola virus infection. Given that the time of onset of symptoms was uncertain, an Ebola airline contact investigation in the United States was conducted. In total, follow-up was conducted for 268 contacts in nine states, including all 247 passengers from both flights, 12 flight crew members, eight cleaning crew members, and one federal airport worker (81 of these contacts were documented in a report published previously). All contacts were accounted for by state and local jurisdictions and followed until completion of their 21-day incubation periods. No secondary cases of Ebola were identified in this investigation, confirming that transmission of Ebola during commercial air travel did not occur.

  20. Rotavirus Virus-Like Particles as Surrogates in Environmental Persistence and Inactivation Studies

    Science.gov (United States)

    Caballero, Santiago; Abad, F. Xavier; Loisy, Fabienne; Le Guyader, Françoise S.; Cohen, Jean; Pintó, Rosa M.; Bosch, Albert

    2004-01-01

    Virus-like particles (VLPs) with the full-length VP2 and VP6 rotavirus capsid proteins, produced in the baculovirus expression system, have been evaluated as surrogates of human rotavirus in different environmental scenarios. Green fluorescent protein-labeled VLPs (GFP-VLPs) and particles enclosing a heterologous RNA (pseudoviruses), whose stability may be monitored by flow cytometry and antigen capture reverse transcription-PCR, respectively, were used. After 1 month in seawater at 20°C, no significant differences were observed between the behaviors of GFP-VLPs and of infectious rotavirus, whereas pseudovirus particles showed a higher decay rate. In the presence of 1 mg of free chlorine (FC)/liter both tracers persisted longer in freshwater at 20°C than infectious viruses, whereas in the presence of 0.2 mg of FC/liter no differences were observed between tracers and infectious rotavirus at short contact times. However, from 30 min of contact with FC onward, the decay of infectious rotavirus was higher than that of recombinant particles. The predicted Ct value for a 90% reduction of GFP-VLPs or pseudoviruses induces a 99.99% inactivation of infectious rotavirus. Both tracers were more resistant to UV light irradiation than infectious rotavirus in fresh and marine water. The effect of UV exposure was more pronounced on pseudovirus than in GFP-VLPs. In all types of water, the UV dose to induce a 90% reduction of pseudovirus ensures a 99.99% inactivation of infectious rotavirus. Recombinant virus surrogates open new possibilities for the systematic validation of virus removal practices in actual field situations where pathogenic agents cannot be introduced. PMID:15240262

  1. FORMACIÓN DE PORO EN MEMBRANA CELULAR POR MEDIO DE LA PEQUEÑA GLICOPROTEÍNA DE SECRECIÓN DEL VIRUS DE EBOLA ZAIRE

    Directory of Open Access Journals (Sweden)

    Nury EsperanzaVargas-Alejo

    2004-12-01

    Full Text Available Uno de los patógenos capaces de inducir fiebres hemorrágicas es el virus de Ebola, clasificado en la familia filoviridae con cuatro subtipos, de los cuales el más analizado es el subtipo de Ebola Zaire, identificando en su genoma siete proteínas estructurales y una de secreción denominada pequeña glicoproteína de secreción del virus de Ebola Zaire.Utilizando las herramientas de bioinformática y los diferentes estudios realizados al virus de Ebola Zaire a escala estructural y funcional, se logró predecir la estructura terciaria de su pequeña glicoproteína de secreción (SSGP EBO-Z. Basados en esta estructura se generó un posible modelo del mecanismo de entrada del virus de Ebola Zaire a la célula huésped, donde juegan un papel importante los receptores y ligandos de la membrana celular; permitiendo a la vez explicar los daños patológicos encontrados en los pacientes.

  2. Identification of a New Ribonucleoside Inhibitor of Ebola Virus Replication

    Directory of Open Access Journals (Sweden)

    Olivier Reynard

    2015-12-01

    Full Text Available The current outbreak of Ebola virus (EBOV in West Africa has claimed the lives of more than 15,000 people and highlights an urgent need for therapeutics capable of preventing virus replication. In this study we screened known nucleoside analogues for their ability to interfere with EBOV replication. Among them, the cytidine analogue β-d-N4-hydroxycytidine (NHC demonstrated potent inhibitory activities against EBOV replication and spread at non-cytotoxic concentrations. Thus, NHC constitutes an interesting candidate for the development of a suitable drug treatment against EBOV.

  3. Biosafety level-2 laboratory diagnosis of Zaire Ebola virus disease imported from Liberia to Nigeria

    Directory of Open Access Journals (Sweden)

    Olumuyiwa B. Salu

    2016-10-01

    Full Text Available Introduction: Global travel is an efficient route of transmission for highly infectious pathogens and increases the chances of such pathogens moving from high disease-endemic areas to new regions. We describe the rapid and safe identification of the first imported case of Ebola virus disease in a traveler to Lagos, Nigeria, using conventional reverse transcription polymerase chain reaction (RT-PCR in a biosafety level (BSL-2 facility. Case presentation: On 20 July 2014, a traveler arrived from Liberia at Lagos International Airport and was admitted to a private hospital in Lagos, with clinical suspicion of Ebola virus disease. Methodology and Outcome: Blood and urine specimens were collected, transported to the Virology Unit Laboratory at the College of Medicine, University of Lagos, and processed under stringent biosafety conditions for viral RNA extraction. RT-PCR was set-up to query the Ebola, Lassa and Dengue fever viruses. Amplicons for pan-filoviruses were detected as 300 bp bands on a 1.5% agarose gel image; there were no detectable bands for Lassa and Dengue viral RNA. Nucleotide BLAST and phylogenetic analysis of sequence data of the RNA-dependent RNA polymerase (L gene confirmed the sequence to be Zaire ebolavirus (EBOV/Hsap/ NGA/2014/LIB-NIG 01072014; Genbank: KM251803.1. Conclusion: Our BSL-2 facility in Lagos, Nigeria, was able to safely detect Ebola virus disease using molecular techniques, supporting the reliability of molecular detection of highly infectious viral pathogens under stringent safety guidelines in BSL-2 laboratories. This is a significant lesson for the many under-facilitated laboratories in resource-limited settings, as is predominantly found in sub-Saharan Africa.

  4. Laboratory support during and after the Ebola virus endgame: Towards a sustained laboratory infrastructure

    NARCIS (Netherlands)

    I. Goodfellow; C.B.E.M. Reusken (Chantal); M.P.G. Koopmans D.V.M. (Marion)

    2015-01-01

    textabstractThe Ebola virus epidemic in West Africa is on the brink of entering a second phase in which the (inter)national efforts to slow down virus transmission will be engaged to end the epidemic. The response community must consider the longevity of their current laboratory support, as it is

  5. Preparedness of institutions around the world for managing patients with Ebola virus disease: an infection control readiness checklist

    NARCIS (Netherlands)

    Tartari, E.; Allegranzi, B.; Ang, B.; Calleja, N.; Collignon, P.; Hopman, J.; Lang, L.; Lee, L.C.; Ling, M.L.; Mehtar, S.; Tambyah, P.A.; Widmer, A.; Voss, A.

    2015-01-01

    BACKGROUND: In response to global concerns about the largest Ebola virus disease (EVD), outbreak to-date in West Africa documented healthcare associated transmission and the risk of global spread, the International Society of Chemotherapy (ISC) Infection Control Working Group created an Ebola

  6. A novel self-replicating chimeric lentivirus-like particle.

    Science.gov (United States)

    Jurgens, Christy K; Young, Kelly R; Madden, Victoria J; Johnson, Philip R; Johnston, Robert E

    2012-01-01

    Successful live attenuated vaccines mimic natural exposure to pathogens without causing disease and have been successful against several viruses. However, safety concerns prevent the development of attenuated human immunodeficiency virus (HIV) as a vaccine candidate. If a safe, replicating virus vaccine could be developed, it might have the potential to offer significant protection against HIV infection and disease. Described here is the development of a novel self-replicating chimeric virus vaccine candidate that is designed to provide natural exposure to a lentivirus-like particle and to incorporate the properties of a live attenuated virus vaccine without the inherent safety issues associated with attenuated lentiviruses. The genome from the alphavirus Venezuelan equine encephalitis virus (VEE) was modified to express SHIV89.6P genes encoding the structural proteins Gag and Env. Expression of Gag and Env from VEE RNA in primate cells led to the assembly of particles that morphologically and functionally resembled lentivirus virions and that incorporated alphavirus RNA. Infection of CD4⁺ cells with chimeric lentivirus-like particles was specific and productive, resulting in RNA replication, expression of Gag and Env, and generation of progeny chimeric particles. Further genome modifications designed to enhance encapsidation of the chimeric virus genome and to express an attenuated simian immunodeficiency virus (SIV) protease for particle maturation improved the ability of chimeric lentivirus-like particles to propagate in cell culture. This study provides proof of concept for the feasibility of creating chimeric virus genomes that express lentivirus structural proteins and assemble into infectious particles for presentation of lentivirus immunogens in their native and functional conformation.

  7. Ebola management centre proximity associated with reduced delays of healthcare of Ebola Virus Disease (EVD patients, Tonkolili, Sierra Leone, 2014-15.

    Directory of Open Access Journals (Sweden)

    Georgios Theocharopoulos

    Full Text Available Between August-December 2014, Ebola Virus Disease (EVD patients from Tonkolili District were referred for care to two Médecins Sans Frontières (MSF Ebola Management Centres (EMCs outside the district (distant EMCs. In December 2014, MSF opened an EMC in Tonkolili District (district EMC. We examined the effect of opening a district-based EMC on time to admission and number of suspect cases dead on arrival (DOA, and identified factors associated with fatality in EVD patients, residents in Tonkolili District. Residents of Tonkolili district who presented between 12 September 2014 and 23 February 2015 to the district EMC and the two distant EMCs were identified from EMC line-lists. EVD cases were confirmed by a positive Ebola PCR test. We calculated time to admission since the onset of symptoms, case-fatality and adjusted Risk Ratios (aRR using Binomial regression. Of 249 confirmed Ebola cases, 206 (83% were admitted to the distant EMCs and 43 (17% to the district EMC. Of them 110 (45% have died. Confirmed cases dead on arrival (n = 10 were observed only in the distant EMCs. The median time from symptom onset to admission was 6 days (IQR 4,8 in distant EMCs and 3 days (IQR 2,7 in the district EMC (p3 days after symptom onset in the distant compared with the district EMC, but were less likely (aRR = 0.8; 95%CI 0.6-1.0 to have a high viral load (cycle threshold ≤22. A fatal outcome was associated with a high viral load (aRR 2.6; 95%CI 1.8-3.6 and vomiting at first presentation (aRR 1.4; 95%CI 1.0-2.0. The opening of a district EMC was associated with earlier admission of cases to appropriate care facilities, an essential component of reducing EVD transmission. High viral load and vomiting at admission predicted fatality. Healthcare providers should consider the location of EMCs to ensure equitable access during Ebola outbreaks.

  8. A web-based resource for designing therapeutics against Ebola Virus

    Science.gov (United States)

    Dhanda, Sandeep Kumar; Chaudhary, Kumardeep; Gupta, Sudheer; Brahmachari, Samir Kumar; Raghava, Gajendra P. S.

    2016-04-01

    In this study, we describe a web-based resource, developed for assisting the scientific community in designing an effective therapeutics against the Ebola virus. Firstly, we predicted and identified experimentally validated epitopes in each of the antigens/proteins of the five known ebolaviruses. Secondly, we generated all the possible overlapping 9mer peptides from the proteins of ebolaviruses. Thirdly, conserved peptides across all the five ebolaviruses (four human pathogenic species) with no identical sequence in the human proteome, based on 1000 Genomes project, were identified. Finally, we identified peptide or epitope-based vaccine candidates that could activate both the B- and T-cell arms of the immune system. In addition, we also identified efficacious siRNAs against the mRNA transcriptome (absent in human transcriptome) of all the five ebolaviruses. It was observed that three species can potentially be targeted by a single siRNA (19mer) and 75 siRNAs can potentially target at least two species. A web server, EbolaVCR, has been developed that incorporates all the above information and useful computational tools (http://crdd.osdd.net/oscadd/ebola/).

  9. Ebola hemorrhagic Fever and the current state of vaccine development.

    Science.gov (United States)

    Hong, Joo Eun; Hong, Kee-Jong; Choi, Woo Young; Lee, Won-Ja; Choi, Yeon Hwa; Jeong, Chung-Hyeon; Cho, Kwang-Il

    2014-12-01

    Current Ebola virus outbreak in West Africa already reached the total number of 1,323 including 729 deaths by July 31st. the fatality is around 55% in the southeastern area of Guinea, Sierra Leone, Liberia, and Nigeria. The number of patients with Ebola Hemorrhagic Fever (EHF) was continuously increasing even though the any effective therapeutics or vaccines has not been developed yet. The Ebola virus in Guinea showed 98% homology with Zaire Ebola Virus. Study of the pathogenesis of Ebola virus infection and assess of the various candidates of vaccine have been tried for a long time, especially in United States and some European countries. Even though the attenuated live vaccine and DNA vaccine containing Ebola viral genes were tested and showed efficacy in chimpanzees, those candidates still need clinical tests requiring much longer time than the preclinical development to be approved for the practical treatment. It can be expected to eradicate Ebola virus by a safe and efficient vaccine development similar to the case of smallpox virus which was extinguished from the world by the variola vaccine.

  10. Host Factors in Ebola Infection.

    Science.gov (United States)

    Rasmussen, Angela L

    2016-08-31

    Ebola virus (EBOV) emerged in West Africa in 2014 to devastating effect, and demonstrated that infection can cause a broad range of severe disease manifestations. As the virus itself was genetically similar to other Zaire ebolaviruses, the spectrum of pathology likely resulted from variable responses to infection in a large and genetically diverse population. This review comprehensively summarizes current knowledge of the host response to EBOV infection, including pathways hijacked by the virus to facilitate replication, host processes that contribute directly to pathogenesis, and host-pathogen interactions involved in subverting or antagonizing host antiviral immunity.

  11. Ebola disease: an international public health emergency

    Directory of Open Access Journals (Sweden)

    Saurabh RamBihariLal Shrivastava

    2015-04-01

    Full Text Available Ebola virus disease (EVD, previously known as Ebola hemorrhagic fever, is a severe illness caused by Ebola filovirus, and is often fatal if left untreated. The first case of the current EVD was diagnosed in Guinea in March 2014, and since then it has spread to Sierra Leone, Liberia, Nigeria, and Senegal. The current review has been performed with an objective to explore the magnitude of the current Ebola virus epidemic and identify the multiple determinants that have resulted in the exponential growth of the epidemic. An extensive search of all materials related to the topic was done for almost two months (August-October in Pubmed, Medline, World Health Organization website and Google Scholar search engines. Relevant documents, reports, recommendations, guidelines and research articles focusing on the different aspects of Ebola virus and its current outbreak, published in the period 2002-2014 were included in the review. Keywords used in the search include Ebola virus, Ebola virus disease, Ebola hemorrhagic fever, Ebola vaccine, and Ebola treatment. The current EVD epidemic has turned out to be extensive, severe, and uncontrollable because of a delayed response and ineffective public health care delivery system. In fact, multiple challenges have also been identified and thus a range of interventions have been proposed to control the epidemic. In conclusion, the 2014 epidemic of EVD has shown to the world that in absence of a strong public health care delivery system even a rare disease can risk the lives of millions of people. The crux of this epidemic is that a large scale and coordinated international response is the need of the hour to support affected and at-risk nations in intensifying their response activities and strengthening of national capacities.

  12. In silico-based vaccine design against Ebola virus glycoprotein

    Directory of Open Access Journals (Sweden)

    Dash R

    2017-03-01

    Full Text Available Raju Dash,1 Rasel Das,2 Md Junaid,3 Md Forhad Chowdhury Akash,4 Ashekul Islam,5 SM Zahid Hosen1 1Molecular Modeling and Drug Design Laboratory (MMDDL, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR, Chittagong, Bangladesh; 2Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur, Malaysia; 3Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; 4Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh; 5Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh Abstract: Ebola virus (EBOV is one of the lethal viruses, causing more than 24 epidemic outbreaks to date. Despite having available molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet for the management and avoidance of EBOV infections in humans. Disclosing this, the present study described an epitope-based peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, followed by molecular docking and molecular dynamics simulation approach. Here, protein sequences of all glycoproteins of EBOV were collected and examined via in silico methods to determine the most immunogenic protein. From the identified antigenic protein, the peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions of 154–162 were considered the most potential B-cell and T-cell epitopes, correspondingly. Moreover, this peptide (HKEGAFFLY interacted with HLA-A*32:15 with the highest binding energy and stability, and also a good conservancy of 83.85% with maximum population coverage. The results imply that the designed epitopes could manifest vigorous enduring defensive immunity against EBOV. Keywords: Ebola virus, epitope, glycoprotein, vaccine design

  13. A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus.

    Science.gov (United States)

    Ekins, Sean; Freundlich, Joel S; Coffee, Megan

    2014-01-01

    We are currently faced with a global infectious disease crisis which has been anticipated for decades. While many promising biotherapeutics are being tested, the search for a small molecule has yet to deliver an approved drug or therapeutic for the Ebola or similar filoviruses that cause haemorrhagic fever. Two recent high throughput screens published in 2013 did however identify several hits that progressed to animal studies that are FDA approved drugs used for other indications. The current computational analysis uses these molecules from two different structural classes to construct a common features pharmacophore. This ligand-based pharmacophore implicates a possible common target or mechanism that could be further explored. A recent structure based design project yielded nine co-crystal structures of pyrrolidinone inhibitors bound to the viral protein 35 (VP35). When receptor-ligand pharmacophores based on the analogs of these molecules and the protein structures were constructed, the molecular features partially overlapped with the common features of solely ligand-based pharmacophore models based on FDA approved drugs. These previously identified FDA approved drugs with activity against Ebola were therefore docked into this protein. The antimalarials chloroquine and amodiaquine docked favorably in VP35. We propose that these drugs identified to date as inhibitors of the Ebola virus may be targeting VP35. These computational models may provide preliminary insights into the molecular features that are responsible for their activity against Ebola virus in vitro and in vivo and we propose that this hypothesis could be readily tested.

  14. Clinical management of ebola virus disease in the United States and Europe

    NARCIS (Netherlands)

    Uyeki, Timothy M.; Mehta, Aneesh K.; Davey, Richard T.; Liddell, Allison M.; Wolf, Timo; Vetter, Pauline; Schmiedel, Stefan; Grünewald, Thomas; Jacobs, Michael; Arribas, Jose R.; Evans, Laura; Hewlett, Angela L.; Brantsaeter, Arne B.; Ippolito, Giuseppe; Rapp, Christophe; Hoepelman, Andy I M; Gutman, Julie

    2016-01-01

    Background Available data on the characteristics of patients with Ebola virus disease (EVD) and clinical management of EVD in settings outside West Africa, as well as the complications observed in those patients, are limited. METHODS We reviewed available clinical, laboratory, and virologic data

  15. Binding of human papilloma virus L1 virus-like particles to dendritic cells is mediated through heparan sulfates and induces immune activation

    NARCIS (Netherlands)

    de Witte, Lot; Zoughlami, Younes; Aengeneyndt, Birgit; David, Guido; van Kooyk, Yvette; Gissmann, Lutz; Geijtenbeek, Teunis B. H.

    2007-01-01

    Immunization using human papilloma virus (HPV)-L1 virus-like particles (VLPs) induces a robust and effective immune response, which has recently resulted in the implementation of the HPV-L1 VLP vaccination in health programs. However, during infection, HPV can escape immune surveillance leading to

  16. Prediction and identification of mouse cytotoxic T lymphocyte epitopes in Ebola virus glycoproteins

    Directory of Open Access Journals (Sweden)

    Wu Shipo

    2012-06-01

    Full Text Available Abstract Background Ebola viruses (EBOVs cause severe hemorrhagic fever with a high mortality rate. At present, there are no licensed vaccines or efficient therapies to combat EBOV infection. Previous studies have shown that both humoral and cellular immune responses are crucial for controlling Ebola infection. CD8+ T cells play an important role in mediating vaccine-induced protective immunity. The objective of this study was to identify H-2d-specific T cell epitopes in EBOV glycoproteins (GPs. Results Computer-assisted algorithms were used to predict H-2d-specific T cell epitopes in two species of EBOV (Sudan and Zaire GP. The predicted peptides were synthesized and identified in BALB/c mice immunized with replication-deficient adenovirus vectors expressing the EBOV GP. Enzyme-linked immunospot assays and intracellular cytokine staining showed that the peptides RPHTPQFLF (Sudan EBOV, GPCAGDFAF and LYDRLASTV (Zaire EBOV could stimulate splenoctyes in immunized mice to produce large amounts of interferon-gamma. Conclusion Three peptides within the GPs of two EBOV strains were identified as T cell epitopes. The identification of these epitopes should facilitate the evaluation of vaccines based on the Ebola virus glycoprotein in a BALB/c mouse model.

  17. Ebola Virus Binding to Tim-1 on T Lymphocytes Induces a Cytokine Storm.

    Science.gov (United States)

    Younan, Patrick; Iampietro, Mathieu; Nishida, Andrew; Ramanathan, Palaniappan; Santos, Rodrigo I; Dutta, Mukta; Lubaki, Ndongala Michel; Koup, Richard A; Katze, Michael G; Bukreyev, Alexander

    2017-09-26

    consistently linked with fatal disease outcome. Previous findings have demonstrated that specific T-cell subsets are key contributors to the onset of a cytokine storm. In this study, we investigated the role of Tim-1, a T-cell-receptor-independent trigger of T-cell activation. We first demonstrated that Tim-1-knockout (KO) mice survive lethal Ebola virus challenge. We then used a series of in vitro assays to demonstrate that Ebola virus directly binds primary T cells in a Tim-1-phosphatidylserine-dependent manner. We noted that binding induces a cytokine storm-like phenomenon and that blocking Tim-1-phosphatidylserine interactions reduces viral binding, T-cell activation, and cytokine production. These findings highlight a previously unknown role of Tim-1 in the development of a cytokine storm and "immune paralysis." Copyright © 2017 Younan et al.

  18. Recommendations for dealing with waste contaminated with Ebola virus: a Hazard Analysis of Critical Control Points approach.

    Science.gov (United States)

    Edmunds, Kelly L; Elrahman, Samira Abd; Bell, Diana J; Brainard, Julii; Dervisevic, Samir; Fedha, Tsimbiri P; Few, Roger; Howard, Guy; Lake, Iain; Maes, Peter; Matofari, Joseph; Minnigh, Harvey; Mohamedani, Ahmed A; Montgomery, Maggie; Morter, Sarah; Muchiri, Edward; Mudau, Lutendo S; Mutua, Benedict M; Ndambuki, Julius M; Pond, Katherine; Sobsey, Mark D; van der Es, Mike; Zeitoun, Mark; Hunter, Paul R

    2016-06-01

    To assess, within communities experiencing Ebola virus outbreaks, the risks associated with the disposal of human waste and to generate recommendations for mitigating such risks. A team with expertise in the Hazard Analysis of Critical Control Points framework identified waste products from the care of individuals with Ebola virus disease and constructed, tested and confirmed flow diagrams showing the creation of such products. After listing potential hazards associated with each step in each flow diagram, the team conducted a hazard analysis, determined critical control points and made recommendations to mitigate the transmission risks at each control point. The collection, transportation, cleaning and shared use of blood-soiled fomites and the shared use of latrines contaminated with blood or bloodied faeces appeared to be associated with particularly high levels of risk of Ebola virus transmission. More moderate levels of risk were associated with the collection and transportation of material contaminated with bodily fluids other than blood, shared use of latrines soiled with such fluids, the cleaning and shared use of fomites soiled with such fluids, and the contamination of the environment during the collection and transportation of blood-contaminated waste. The risk of the waste-related transmission of Ebola virus could be reduced by the use of full personal protective equipment, appropriate hand hygiene and an appropriate disinfectant after careful cleaning. Use of the Hazard Analysis of Critical Control Points framework could facilitate rapid responses to outbreaks of emerging infectious disease.

  19. Experimental Treatment of Ebola Virus Disease with TKM-130803: A Single-Arm Phase 2 Clinical Trial

    DEFF Research Database (Denmark)

    Dunning, Jake; Sahr, Foday; Rojek, Amanda

    2016-01-01

    BACKGROUND: TKM-130803, a small interfering RNA lipid nanoparticle product, has been developed for the treatment of Ebola virus disease (EVD), but its efficacy and safety in humans has not been evaluated. METHODS AND FINDINGS: In this single-arm phase 2 trial, adults with laboratory-confirmed EVD...... of admission. After 14 adults with EVD had received TKM-130803, the pre-specified futility boundary was reached, indicating a probability of survival to day 14 of ≤0.55, and enrolment was stopped. Pre-treatment geometric mean Ebola virus load in the 14 TKM-130803 recipients was 2.24 × 109 RNA copies/ml plasma...

  20. Virus-Like Particle Engineering: From Rational Design to Versatile Applications.

    Science.gov (United States)

    Ding, Xuanwei; Liu, Dong; Booth, George; Gao, Wei; Lu, Yuan

    2018-05-01

    As mimicking natural virus structures, virus-like particles (VLPs) have evolved to become a widely accepted technology used for humans which are safe, highly efficacious, and profitable. Several remarkable advantages have been achieved to revolutionize the molecule delivery for diverse applications in nanotechnology, biotechnology, and medicine. Here, the rational structure design, manufacturing process, functionalization strategy, and emerging applications of VLPs is reviewed. The situation and challenges in the VLP engineering, the key development orientation, and future applications have been discussed. To develop a good VLP design concept, the virus/VLP-host interactions need to be examined and the screening methods of the VLP stabilization factors need to be established. The functionalization toolbox can be expanded to fabricate smart, robust, and multifunctional VLPs. Novel robust VLP manufacturing platforms are required to deliver vaccines in resource-poor regions with a significant reduction in the production time and cost. The future applications of VLPs are always driven by the development of emerging technologies and new requirements of modern life. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mechanistic understanding of N-glycosylation in Ebola virus glycoprotein maturation and function.

    Science.gov (United States)

    Wang, Bin; Wang, Yujie; Frabutt, Dylan A; Zhang, Xihe; Yao, Xiaoyu; Hu, Dan; Zhang, Zhuo; Liu, Chaonan; Zheng, Shimin; Xiang, Shi-Hua; Zheng, Yong-Hui

    2017-04-07

    The Ebola virus (EBOV) trimeric envelope glycoprotein (GP) precursors are cleaved into the receptor-binding GP 1 and the fusion-mediating GP 2 subunits and incorporated into virions to initiate infection. GP 1 and GP 2 form heterodimers that have 15 or two N -glycosylation sites (NGSs), respectively. Here we investigated the mechanism of how N -glycosylation contributes to GP expression, maturation, and function. As reported before, we found that, although GP 1 NGSs are not critical, the two GP 2 NGSs, Asn 563 and Asn 618 , are essential for GP function. Further analysis uncovered that Asn 563 and Asn 618 regulate GP processing, demannosylation, oligomerization, and conformation. Consequently, these two NGSs are required for GP incorporation into EBOV-like particles and HIV type 1 (HIV-1) pseudovirions and determine viral transduction efficiency. Using CRISPR/Cas9 technology, we knocked out the two classical endoplasmic reticulum chaperones calnexin (CNX) and/or calreticulin (CRT) and found that both CNX and CRT increase GP expression. Nevertheless, NGSs are not required for the GP interaction with CNX or CRT. Together, we conclude that, although Asn 563 and Asn 618 are not required for EBOV GP expression, they synergistically regulate its maturation, which determines its functionality. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Neuropsychological long-term sequelae of Ebola virus disease survivors - A systematic review

    NARCIS (Netherlands)

    Lötsch, Felix; Schnyder, Jenny; Goorhuis, Abraham; Grobusch, Martin P.

    2017-01-01

    The recent West African Ebola virus disease (EVD) outbreak had catastrophic impact on populations, health care systems and economies of the affected countries. Somatic symptoms have been reported to persist long beyond the acute infection. This review was conducted to provide an overview on neuro-

  3. Controlling the last known cluster of Ebola virus disease - Liberia, January-February 2015.

    Science.gov (United States)

    Nyenswah, Tolbert; Fallah, Mosoka; Sieh, Sonpon; Kollie, Karsor; Badio, Moses; Gray, Alvin; Dilah, Priscilla; Shannon, Marnijina; Duwor, Stanley; Ihekweazu, Chikwe; Cordier-Lassalle, Thierry; Cordier-Lasalle, Thierry; Shinde, Shivam A; Hamblion, Esther; Davies-Wayne, Gloria; Ratnesh, Murugan; Dye, Christopher; Yoder, Jonathan S; McElroy, Peter; Hoots, Brooke; Christie, Athalia; Vertefeuille, John; Olsen, Sonja J; Laney, A Scott; Neal, Joyce J; Yaemsiri, Sirin; Navin, Thomas R; Coulter, Stewart; Pordell, Paran; Lo, Terrence; Kinkade, Carl; Mahoney, Frank

    2015-05-15

    As one of the three West African countries highly affected by the 2014-2015 Ebola virus disease (Ebola) epidemic, Liberia reported approximately 10,000 cases. The Ebola epidemic in Liberia was marked by intense urban transmission, multiple community outbreaks with source cases occurring in patients coming from the urban areas, and outbreaks in health care facilities (HCFs). This report, based on data from routine case investigations and contact tracing, describes efforts to stop the last known chain of Ebola transmission in Liberia. The index patient became ill on December 29, 2014, and the last of 21 associated cases was in a patient admitted into an Ebola treatment unit (ETU) on February 18, 2015. The chain of transmission was stopped because of early detection of new cases; identification, monitoring, and support of contacts in acceptable settings; effective triage within the health care system; and rapid isolation of symptomatic contacts. In addition, a "sector" approach, which divided Montserrado County into geographic units, facilitated the ability of response teams to rapidly respond to community needs. In the final stages of the outbreak, intensive coordination among partners and engagement of community leaders were needed to stop transmission in densely populated Montserrado County. A companion report describes the efforts to enhance infection prevention and control efforts in HCFs. After February 19, no additional clusters of Ebola cases have been detected in Liberia. On May 9, the World Health Organization declared the end of the Ebola outbreak in Liberia.

  4. Coronavirus-like particles in laboratory rabbits with different syndromes in The Netherlands (Coronavirus-like particles in rabbits).

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); J.S. Teppema; G. van Steenis (Bert)

    1982-01-01

    textabstractVirus-like particles were identified from the plasma of rabbits which developed pleural effusion disease after inoculation with different strains of Treponema pallidum. These particles were considered coronavirus-like on the basis of their size, morphology, and buoyant density. Clinical

  5. Discovery and Early Development of AVI-7537 and AVI-7288 for the Treatment of Ebola Virus and Marburg Virus Infections

    Directory of Open Access Journals (Sweden)

    Sina Bavari

    2012-11-01

    Full Text Available There are no currently approved treatments for filovirus infections. In this study we report the discovery process which led to the development of antisense Phosphorodiamidate Morpholino Oligomers (PMOs AVI-6002 (composed of AVI-7357 and AVI-7539 and AVI-6003 (composed of AVI-7287 and AVI-7288 targeting Ebola virus and Marburg virus respectively. The discovery process involved identification of optimal transcript binding sites for PMO based RNA-therapeutics followed by screening for effective viral gene target in mouse and guinea pig models utilizing adapted viral isolates. An evolution of chemical modifications were tested, beginning with simple Phosphorodiamidate Morpholino Oligomers (PMO transitioning to cell penetrating peptide conjugated PMOs (PPMO and ending with PMOplus containing a limited number of positively charged linkages in the PMO structure. The initial lead compounds were combinations of two agents targeting separate genes. In the final analysis, a single agent for treatment of each virus was selected, AVI-7537 targeting the VP24 gene of Ebola virus and AVI-7288 targeting NP of Marburg virus, and are now progressing into late stage clinical development as the optimal therapeutic candidates.

  6. Factors Underlying Ebola Virus Infection Among Health Workers, Kenema, Sierra Leone, 2014-2015.

    Science.gov (United States)

    Senga, Mikiko; Pringle, Kimberly; Ramsay, Andrew; Brett-Major, David M; Fowler, Robert A; French, Issa; Vandi, Mohamed; Sellu, Josephine; Pratt, Christian; Saidu, Josephine; Shindo, Nahoko; Bausch, Daniel G

    2016-08-15

    Ebola virus disease (EVD) in health workers (HWs) has been a major challenge during the 2014-2015 outbreak. We examined factors associated with Ebola virus exposure and mortality in HWs in Kenema District, Sierra Leone. We analyzed data from the Sierra Leone National Viral Hemorrhagic Fever Database, contact tracing records, Kenema Government Hospital (KGH) staff and Ebola Treatment Unit (ETU) rosters, and burial logs. From May 2014 through January 2015, 600 cases of EVD originated in Kenema District, including 92 (15%) HWs, 66 (72%) of whom worked at KGH. Among KGH medical staff and international volunteers, 18 of 62 (29%) who worked in the ETU developed EVD, compared with 48 of 83 (58%) who worked elsewhere in the hospital. Thirteen percent of HWs with EVD reported contact with EVD patients, while 27% reported contact with other infected HWs. The number of HW EVD cases at KGH declined roughly 1 month after implementation of a new triage system at KGH and the opening of a second ETU within the district. The case fatality ratio for HWs and non-HWs with EVD was 69% and 74%, respectively. The cluster of HW EVD cases in Kenema District is one of the largest ever reported. Most HWs with EVD had potential virus exposure both inside and outside of hospitals. Prevention measures for HWs must address a spectrum of infection risks in both formal and informal care settings as well as in the community. © 2016 World Health Organization; licensee Oxford Journals.

  7. Lateral Flow Immunoassays for Ebola Virus Disease Detection in Liberia.

    Science.gov (United States)

    Phan, Jill C; Pettitt, James; George, Josiah S; Fakoli, Lawrence S; Taweh, Fahn M; Bateman, Stacey L; Bennett, Richard S; Norris, Sarah L; Spinnler, David A; Pimentel, Guillermo; Sahr, Phillip K; Bolay, Fatorma K; Schoepp, Randal J

    2016-10-15

    Lateral flow immunoassays (LFIs) are point-of-care diagnostic assays that are designed for single use outside a formal laboratory, with in-home pregnancy tests the best-known example of these tests. Although the LFI has some limitations over more-complex immunoassay procedures, such as reduced sensitivity and the potential for false-positive results when using complex sample matrices, the assay has the benefits of a rapid time to result and ease of use. These benefits make it an attractive option for obtaining rapid results in an austere environment. In an outbreak of any magnitude, a field-based rapid diagnostic assay would allow proper patient transport and for safe burials to be conducted without the delay caused by transport of samples between remote villages and testing facilities. Use of such point-of-care instruments in the ongoing Ebola virus disease (EVD) outbreak in West Africa would have distinct advantages in control and prevention of local outbreaks, but proper understanding of the technology and interpretation of results are important. In this study, a LFI, originally developed by the Naval Medical Research Center for Ebola virus environmental testing, was evaluated for its ability to detect the virus in clinical samples in Liberia. Clinical blood and plasma samples and post mortem oral swabs submitted to the Liberian Institute for Biomedical Research, the National Public Health Reference Laboratory for EVD testing, were tested and compared to results of real-time reverse transcription-polymerase chain reaction (rRT-PCR), using assays targeting Ebola virus glycoprotein and nucleoprotein. The LFI findings correlated well with those of the real-time RT-PCR assays used as benchmarks. Rapid antigen-detection tests such as LFIs are attractive alternatives to traditional immunoassays but have reduced sensitivity and specificity, resulting in increases in false-positive and false-negative results. An understanding of the strengths, weaknesses, and

  8. The perspective of gender on the Ebola virus using a risk management and population health framework: a scoping review.

    Science.gov (United States)

    Nkangu, Miriam N; Olatunde, Oluwasayo A; Yaya, Sanni

    2017-10-11

    In the three decades since the first reported case of Ebola virus, most known index cases have been consistently traced to the hunting of "bush meat", and women have consistently recorded relatively high fatality rates in most catastrophic outbreaks. This paper discusses Ebola-related risk factors, which constantly interact with cultural values, and provides an insight into the link between gender and the risk of contracting infectious diseases, using Ebola virus as an example within Africa. A comprehensive search of the literature was conducted using the PubMed, Ovid Medline and Global Health CABI databases as well as CAB Abstracts, including gray literature. We used a descriptive and sex- and gender-based analysis to revisit previous studies on Ebola outbreaks since 1976 to 2014, and disaggregated the cases and fatality rates according to gender and the sources of known index cases based on available data. In total, approximately 1530 people died in all previous Ebola outbreaks from 1976 to 2012 compared with over 11,310 deaths from the 2014 outbreak. Women's increased exposure can be attributed to time spent at home and their responsibility for caring for the sick, while men's increased vulnerability to the virus can be attributed to their responsibility for caring for livestock and to time spent away from home, as most known sources of the index cases have been infected in the process of hunting. We present a conceptual model of a circle of interacting risk factors for Ebola in the African context. There is currently no evidence related to biological differences in female or male sex that increases Ebola virus transmission and vulnerability; rather, there are differences in the level of exposure between men and women. Gender is therefore an important risk factor to consider in the design of health programs. Building the capacity for effective risk communication is a worthwhile investment in public and global health for future emergency responses.

  9. Adenovirus-vectored Ebola vaccines.

    Science.gov (United States)

    Gilbert, Sarah C

    2015-01-01

    The 2014 outbreak of Ebola virus disease in West Africa has highlighted the need for the availability of effective vaccines against outbreak pathogens that are suitable for use in frontline workers who risk their own health in the course of caring for those with the disease, and also for members of the community in the affected area. Along with effective contact tracing and quarantine, use of a vaccine as soon as an outbreak is identified could greatly facilitate rapid control and prevent the outbreak from spreading. This review describes the progress that has been made in producing and testing adenovirus-based Ebola vaccines in both pre-clinical and clinical studies, and considers the likely future use of these vaccines.

  10. Human immune system mouse models of Ebola virus infection.

    Science.gov (United States)

    Spengler, Jessica R; Prescott, Joseph; Feldmann, Heinz; Spiropoulou, Christina F

    2017-08-01

    Human immune system (HIS) mice, immunodeficient mice engrafted with human cells (with or without donor-matched tissue), offer a unique opportunity to study pathogens that cause disease predominantly or exclusively in humans. Several HIS mouse models have recently been used to study Ebola virus (EBOV) infection and disease. The results of these studies are encouraging and support further development and use of these models in Ebola research. HIS mice provide a small animal model to study EBOV isolates, investigate early viral interactions with human immune cells, screen vaccines and therapeutics that modulate the immune system, and investigate sequelae in survivors. Here we review existing models, discuss their use in pathogenesis studies and therapeutic screening, and highlight considerations for study design and analysis. Finally, we point out caveats to current models, and recommend future efforts for modeling EBOV infection in HIS mice. Published by Elsevier B.V.

  11. The Use of Ebola Convalescent Plasma to Treat Ebola Virus Disease in Resource-Constrained Settings: A Perspective From the Field

    Science.gov (United States)

    van Griensven, Johan; De Weiggheleire, Anja; Delamou, Alexandre; Smith, Peter G.; Edwards, Tansy; Vandekerckhove, Philippe; Bah, Elhadj Ibrahima; Colebunders, Robert; Herve, Isola; Lazaygues, Catherine; Haba, Nyankoye; Lynen, Lutgarde

    2016-01-01

    The clinical evaluation of convalescent plasma (CP) for the treatment of Ebola virus disease (EVD) in the current outbreak, predominantly affecting Guinea, Sierra Leone, and Liberia, was prioritized by the World Health Organization in September 2014. In each of these countries, nonrandomized comparative clinical trials were initiated. The Ebola-Tx trial in Conakry, Guinea, enrolled 102 patients by 7 July 2015; no severe adverse reactions were noted. The Ebola-CP trial in Sierra Leone and the EVD001 trial in Liberia have included few patients. Although no efficacy data are available yet, current field experience supports the safety, acceptability, and feasibility of CP as EVD treatment. Longer-term follow-up as well as data from nontrial settings and evidence on the scalability of the intervention are required. CP sourced from within the outbreak is the most readily available source of anti-EVD antibodies. Until the advent of effective antivirals or monoclonal antibodies, CP merits further evaluation. PMID:26261205

  12. Two-Center Evaluation of Disinfectant Efficacy against Ebola Virus in Clinical and Laboratory Matrices

    Science.gov (United States)

    Smither, Sophie J.; Eastaugh, Lin; Filone, Claire Marie; Freeburger, Denise; Herzog, Artemas; Lever, M. Stephen; Miller, David M.; Mitzel, Dana; Noah, James W.; Reddick-Elick, Mary S.; Reese, Amy; Schuit, Michael; Wlazlowski, Carly B.; Hevey, Michael

    2018-01-01

    Ebola virus (EBOV) in body fluids poses risk for virus transmission. However, there are limited experimental data for such matrices on the disinfectant efficacy against EBOV. We evaluated the effectiveness of disinfectants against EBOV in blood on surfaces. Only 5% peracetic acid consistently reduced EBOV titers in dried blood to the assay limit of quantification. PMID:29261093

  13. Fight Ebola virus disease in Africa: a question related to the ...

    African Journals Online (AJOL)

    Repetitive outbreaks of Ebola virus disease is a major public health problem in Africa. Indeed, since September 1976, date of its isolation and its first description in the north of the ex-Zaire (now Democratic Republic of Congo) and in the south Sudan, many African countries continue to live recurring episodes of epidemics ...

  14. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!).

    Science.gov (United States)

    Henao-Restrepo, Ana Maria; Camacho, Anton; Longini, Ira M; Watson, Conall H; Edmunds, W John; Egger, Matthias; Carroll, Miles W; Dean, Natalie E; Diatta, Ibrahima; Doumbia, Moussa; Draguez, Bertrand; Duraffour, Sophie; Enwere, Godwin; Grais, Rebecca; Gunther, Stephan; Gsell, Pierre-Stéphane; Hossmann, Stefanie; Watle, Sara Viksmoen; Kondé, Mandy Kader; Kéïta, Sakoba; Kone, Souleymane; Kuisma, Eewa; Levine, Myron M; Mandal, Sema; Mauget, Thomas; Norheim, Gunnstein; Riveros, Ximena; Soumah, Aboubacar; Trelle, Sven; Vicari, Andrea S; Røttingen, John-Arne; Kieny, Marie-Paule

    2017-02-04

    up for 84 days. 3149 (53·9%) of 5837 individuals reported at least one adverse event in the 14 days after vaccination; these were typically mild (87·5% of all 7211 adverse events). Headache (1832 [25·4%]), fatigue (1361 [18·9%]), and muscle pain (942 [13·1%]) were the most commonly reported adverse events in this period across all age groups. 80 serious adverse events were identified, of which two were judged to be related to vaccination (one febrile reaction and one anaphylaxis) and one possibly related (influenza-like illness); all three recovered without sequelae. The results add weight to the interim assessment that rVSV-ZEBOV offers substantial protection against Ebola virus disease, with no cases among vaccinated individuals from day 10 after vaccination in both randomised and non-randomised clusters. WHO, UK Wellcome Trust, the UK Government through the Department of International Development, Médecins Sans Frontières, Norwegian Ministry of Foreign Affairs (through the Research Council of Norway's GLOBVAC programme), and the Canadian Government (through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre and Department of Foreign Affairs, Trade and Development). Copyright © 2017 World Health Organization. Published by Elsevier Ltd/Inc/BV. All rights reserved. Published by Elsevier Ltd.. All rights reserved.

  15. In silico analysis suggests interaction between Ebola virus and the extracellular matrix

    Directory of Open Access Journals (Sweden)

    Veljko eVeljkovic

    2015-02-01

    Full Text Available The worst Ebola virus (EV outbreak in history has hit Liberia, Sierra Leone and Guinea hardest and the trendlines in this crisis are grave, and now represents global public health threat concern. Limited therapeutic and/or prophylactic options which are available for humans suffering from Ebola virus disease (EVD further complicate situation. Previous studies suggested that the EV glycoprotein (GP is the main determinant causing structural damage of endothelial cells that triggers the hemorrhagic diathesis, but molecular mechanisms underlying this phenomenon remains elusive. Using the informational spectrum method (ISM, a virtual spectroscopy method for analysis of the protein-protein interactions, the interaction of GP with endothelial extracellular matrix (ECM was investigated. Presented results of this in silico study suggest that Elastin Microfibril Interface Located Proteins (EMILINs are involved in interaction between GP and ECM. This finding could contribute to better understanding of EV/endothelium interaction and its role in pathogenesis, prevention and therapy of EVD.

  16. The development of a massive open online course during the 2014-15 Ebola virus disease epidemic.

    Science.gov (United States)

    Evans, Dabney P; Luffy, Samantha M; Parisi, Stephanie; Del Rio, Carlos

    2017-09-01

    Timely training was urgently needed at the onset of the 2014 Ebola virus disease epidemic. Massive open online courses (MOOCs) have grown in popularity, though little is known about their utility in time-sensitive situations, including infectious disease outbreaks. We created the first English language massive open online course on Ebola virus disease. Designed by a team representing various units of Emory University and six partner institutions, the six module course was aimed at a global general audience but also relevant for health care professionals. Over 7,000 learners from 170 countries participated in the initial course offering. More than a third of learners were from emerging economies, including seven percent from Africa, and another 13% from countries outside the United States who received individuals requiring treatment for Ebola virus disease. Creating and producing the first English language MOOC on EVD in a short time period required effective collaboration and strong coordination between subject matter and course development experts from Emory. Through these collaborative efforts, the development team was able to provide urgently needed training and educational materials while the epidemic of EVD continued to radiate through West Africa. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Ebola images emerge from the cave.

    Science.gov (United States)

    Diamond, Michael S; Fremont, Daved H

    2008-08-14

    Ebola virus causes a lethal hemorrhagic disease for which no therapy or vaccine is currently approved. Recently, the crystal structure of the Ebola virus glycoprotein in complex with a human neutralizing antibody was illuminated, providing a path from the shadows toward understanding cellular attachment, viral fusion, and immune evasion.

  18. General introduction into the Ebola virus biology and disease.

    Science.gov (United States)

    Zawilińska, Barbara; Kosz-Vnenchak, Magdalena

    2014-01-01

    Epidemic of Ebola hemorrhagic fever which appeared in the countries of West Africa in 2014, is the largest outbreak which occurred so far. The virus causing this epidemic, Zaire Ebolavirus (ZEBOV), along with four other species of Ebolaviruses is classified to the genus Ebolavirus in the family Filoviridae. ZEBOV is one of the most virulent pathogens among the viral haemorrhagic fevers, and case fatality rates up to 90% have been reported. Mortality is the result of multi-organ failure and severe bleeding complications. The aim of this review is to present the general characteristics of the virus and its biological properties, pathogenicity and epidemiology, with a focus on laboratory methods used in the diagnosis of these infections.

  19. ALIX Rescues Budding of a Double PTAP/PPEY L-Domain Deletion Mutant of Ebola VP40: A Role for ALIX in Ebola Virus Egress.

    Science.gov (United States)

    Han, Ziying; Madara, Jonathan J; Liu, Yuliang; Liu, Wenbo; Ruthel, Gordon; Freedman, Bruce D; Harty, Ronald N

    2015-10-01

    Ebola (EBOV) is an enveloped, negative-sense RNA virus belonging to the family Filoviridae that causes hemorrhagic fever syndromes with high-mortality rates. To date, there are no licensed vaccines or therapeutics to control EBOV infection and prevent transmission. Consequently, the need to better understand the mechanisms that regulate virus transmission is critical to developing countermeasures. The EBOV VP40 matrix protein plays a central role in late stages of virion assembly and egress, and independent expression of VP40 leads to the production of virus-like particles (VLPs) by a mechanism that accurately mimics budding of live virus. VP40 late (L) budding domains mediate efficient virus-cell separation by recruiting host ESCRT and ESCRT-associated proteins to complete the membrane fission process. L-domains consist of core consensus amino acid motifs including PPxY, P(T/S)AP, and YPx(n)L/I, and EBOV VP40 contains overlapping PPxY and PTAP motifs whose interactions with Nedd4 and Tsg101, respectively, have been characterized extensively. Here, we present data demonstrating for the first time that EBOV VP40 possesses a third L-domain YPx(n)L/I consensus motif that interacts with the ESCRT-III protein Alix. We show that the YPx(n)L/I motif mapping to amino acids 18-26 of EBOV VP40 interacts with the Alix Bro1-V fragment, and that siRNA knockdown of endogenous Alix expression inhibits EBOV VP40 VLP egress. Furthermore, overexpression of Alix Bro1-V rescues VLP production of the budding deficient EBOV VP40 double PTAP/PPEY L-domain deletion mutant to wild-type levels. Together, these findings demonstrate that EBOV VP40 recruits host Alix via a YPx(n)L/I motif that can function as an alternative L-domain to promote virus egress. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Enhanced light microscopy visualization of virus particles from Zika virus to filamentous ebolaviruses.

    Directory of Open Access Journals (Sweden)

    George G Daaboul

    Full Text Available Light microscopy is a powerful tool in the detection and analysis of parasites, fungi, and prokaryotes, but has been challenging to use for the detection of individual virus particles. Unlabeled virus particles are too small to be visualized using standard visible light microscopy. Characterization of virus particles is typically performed using higher resolution approaches such as electron microscopy or atomic force microscopy. These approaches require purification of virions away from their normal millieu, requiring significant levels of expertise, and can only enumerate small numbers of particles per field of view. Here, we utilize a visible light imaging approach called Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS that allows automated counting and sizing of thousands of individual virions. Virions are captured directly from complex solutions onto a silicon chip and then detected using a reflectance interference imaging modality. We show that the use of different imaging wavelengths allows the visualization of a multitude of virus particles. Using Violet/UV illumination, the SP-IRIS technique is able to detect individual flavivirus particles (~40 nm, while green light illumination is capable of identifying and discriminating between vesicular stomatitis virus and vaccinia virus (~360 nm. Strikingly, the technology allows the clear identification of filamentous infectious ebolavirus particles and virus-like particles. The ability to differentiate and quantify unlabeled virus particles extends the usefulness of traditional light microscopy and can be embodied in a straightforward benchtop approach allowing widespread applications ranging from rapid detection in biological fluids to analysis of virus-like particles for vaccine development and production.

  1. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model.

    Science.gov (United States)

    Oestereich, Lisa; Lüdtke, Anja; Wurr, Stephanie; Rieger, Toni; Muñoz-Fontela, César; Günther, Stephan

    2014-05-01

    Outbreaks of Ebola hemorrhagic fever in sub-Saharan Africa are associated with case fatality rates of up to 90%. Currently, neither a vaccine nor an effective antiviral treatment is available for use in humans. Here, we evaluated the efficacy of the pyrazinecarboxamide derivative T-705 (favipiravir) against Zaire Ebola virus (EBOV) in vitro and in vivo. T-705 suppressed replication of Zaire EBOV in cell culture by 4log units with an IC90 of 110μM. Mice lacking the type I interferon receptor (IFNAR(-)(/)(-)) were used as in vivo model for Zaire EBOV-induced disease. Initiation of T-705 administration at day 6 post infection induced rapid virus clearance, reduced biochemical parameters of disease severity, and prevented a lethal outcome in 100% of the animals. The findings suggest that T-705 is a candidate for treatment of Ebola hemorrhagic fever. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study.

    Science.gov (United States)

    Faye, Ousmane; Boëlle, Pierre-Yves; Heleze, Emmanuel; Faye, Oumar; Loucoubar, Cheikh; Magassouba, N'Faly; Soropogui, Barré; Keita, Sakoba; Gakou, Tata; Bah, El Hadji Ibrahima; Koivogui, Lamine; Sall, Amadou Alpha; Cauchemez, Simon

    2015-03-01

    An epidemic of Ebola virus disease of unprecedented size continues in parts of west Africa. For the first time, large urban centres such as Conakry, the capital of Guinea, are affected. We did an observational study of patients with Ebola virus disease in three regions of Guinea, including Conakry, aiming to map the routes of transmission and assess the effect of interventions. Between Feb 10, 2014, and Aug 25, 2014, we obtained data from the linelist of all confirmed and probable cases in Guinea (as of Sept 16, 2014), a laboratory database of information about patients, and interviews with patients and their families and neighbours. With this information, we mapped chains of transmission, identified which setting infections most probably originated from (community, hospitals, or funerals), and computed the context-specific and overall reproduction numbers. Of 193 confirmed and probable cases of Ebola virus disease reported in Conakry, Boffa, and Télimélé, 152 (79%) were positioned in chains of transmission. Health-care workers contributed little to transmission. In March, 2014, individuals with Ebola virus disease who were not health-care workers infected a mean of 2·3 people (95% CI 1·6-3·2): 1·4 (0·9-2·2) in the community, 0·4 (0·1-0·9) in hospitals, and 0·5 (0·2-1·0) at funerals. After the implementation of infection control in April, the reproduction number in hospitals and at funerals reduced to lower than 0·1. In the community, the reproduction number dropped by 50% for patients that were admitted to hospital, but remained unchanged for those that were not. In March, hospital transmissions constituted 35% (seven of 20) of all transmissions and funeral transmissions constituted 15% (three); but from April to the end of the study period, they constituted only 9% (11 of 128) and 4% (five), respectively. 82% (119 of 145) of transmission occurred in the community and 72% (105) between family members. Our simulations show that a 10% increase in

  3. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death.

    Science.gov (United States)

    Falasca, L; Agrati, C; Petrosillo, N; Di Caro, A; Capobianchi, M R; Ippolito, G; Piacentini, M

    2015-08-01

    Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30-50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases.

  4. Overview of Ebola virus disease in 2014

    Directory of Open Access Journals (Sweden)

    Chih-Peng Tseng

    2015-01-01

    Full Text Available In late December 2013, a deadly infectious epidemic, Ebola virus disease (EVD, emerged from West Africa and resulted in a formidable outbreak in areas including Guinea, Liberia, Sierra Leone and Nigeria. EVD is a zoonotic disease with a high mortality rate. Person-to-person transmission occurs through blood or body fluid exposure, which can jeopardize first-line healthcare workers if there is a lack of stringent infection control or no proper personal protective equipment available. Currently, there is no standard treatment for EVD. To promptly identify patients and prevent further spreading, physicians should be aware of travel or contact history for patients with constitutional symptoms.

  5. Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression.

    Science.gov (United States)

    Oda, Shun-Ichiro; Noda, Takeshi; Wijesinghe, Kaveesha J; Halfmann, Peter; Bornholdt, Zachary A; Abelson, Dafna M; Armbrust, Tammy; Stahelin, Robert V; Kawaoka, Yoshihiro; Saphire, Erica Ollmann

    2016-02-15

    Marburg virus (MARV), a member of the filovirus family, causes severe hemorrhagic fever with up to 90% lethality. MARV matrix protein VP40 is essential for assembly and release of newly copied viruses and also suppresses immune signaling in the infected cell. Here we report the crystal structure of MARV VP40. We found that MARV VP40 forms a dimer in solution, mediated by N-terminal domains, and that formation of this dimer is essential for budding of virus-like particles. We also found the N-terminal domain to be necessary and sufficient for immune antagonism. The C-terminal domains of MARV VP40 are dispensable for immunosuppression but are required for virus assembly. The C-terminal domains are only 16% identical to those of Ebola virus, differ in structure from those of Ebola virus, and form a distinct broad and flat cationic surface that likely interacts with the cell membrane during virus assembly. Marburg virus, a cousin of Ebola virus, causes severe hemorrhagic fever, with up to 90% lethality seen in recent outbreaks. Molecular structures and visual images of the proteins of Marburg virus are essential for the development of antiviral drugs. One key protein in the Marburg virus life cycle is VP40, which both assembles the virus and suppresses the immune system. Here we provide the molecular structure of Marburg virus VP40, illustrate differences from VP40 of Ebola virus, and reveal surfaces by which Marburg VP40 assembles progeny and suppresses immune function. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Maternal and Child Health Services in the Context of the Ebola Virus ...

    African Journals Online (AJOL)

    Maternal and Child Health Services in the Context of the Ebola Virus Disease: Health Care Workers' Knowledge, Attitudes and Practices in Rural Guinea. Alexandre Delamou, Sidikiba Sidibé, Alison Marie El Ayadi, Bienvenu Salim Camara, Thérèse Delvaux, Bettina Utz, Abdoulaye II Toure, Sah D. Sandouno, Alioune ...

  7. Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis.

    Science.gov (United States)

    Merler, Stefano; Ajelli, Marco; Fumanelli, Laura; Gomes, Marcelo F C; Piontti, Ana Pastore Y; Rossi, Luca; Chao, Dennis L; Longini, Ira M; Halloran, M Elizabeth; Vespignani, Alessandro

    2015-02-01

    The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions. We modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits. Up to Aug 16, 2014, we estimated that 38·3% of infections (95% CI 17·4-76·4) were acquired in hospitals, 30·7% (14·1-46·4) in households, and 8·6% (3·2-11·8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits. The model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since

  8. A web-based resource for designing therapeutics against Ebola Virus

    OpenAIRE

    Sandeep Kumar Dhanda; Kumardeep Chaudhary; Sudheer Gupta; Samir Kumar Brahmachari; Gajendra P. S. Raghava

    2016-01-01

    In this study, we describe a web-based resource, developed for assisting the scientific community in designing an effective therapeutics against the Ebola virus. Firstly, we predicted and identified experimentally validated epitopes in each of the antigens/proteins of the five known ebolaviruses. Secondly, we generated all the possible overlapping 9mer peptides from the proteins of ebolaviruses. Thirdly, conserved peptides across all the five ebolaviruses (four human pathogenic species) with ...

  9. Effective chikungunya virus-like particle vaccine produced in insect cells.

    Directory of Open Access Journals (Sweden)

    Stefan W Metz

    Full Text Available The emerging arthritogenic, mosquito-borne chikungunya virus (CHIKV causes severe disease in humans and represents a serious public health threat in countries where Aedes spp mosquitoes are present. This study describes for the first time the successful production of CHIKV virus-like particles (VLPs in insect cells using recombinant baculoviruses. This well-established expression system is rapidly scalable to volumes required for epidemic responses and proved well suited for processing of CHIKV glycoproteins and production of enveloped VLPs. Herein we show that a single immunization with 1 µg of non-adjuvanted CHIKV VLPs induced high titer neutralizing antibody responses and provided complete protection against viraemia and joint inflammation upon challenge with the Réunion Island CHIKV strain in an adult wild-type mouse model of CHIKV disease. CHIKV VLPs produced in insect cells using recombinant baculoviruses thus represents as a new, safe, non-replicating and effective vaccine candidate against CHIKV infections.

  10. ISCB Ebola Award for Important Future Research on the Computational Biology of Ebola Virus

    OpenAIRE

    Karp, P.D.; Berger, B.; Kovats, D.; Lengauer, T.; Linial, M.; Sabeti, P.; Hide, W.; Rost, B.

    2015-01-01

    Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains as well as 3-D protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computati...

  11. A novel recombinant virus-like particle vaccine for prevention of porcine parvovirus-induced reproductive failure

    NARCIS (Netherlands)

    Antonis, A.F.G.; Bruschke, C.J.M.; Rueda, P.; Maranga, L.; Casal, J.; Vela, C.; Hilgers, L.A.T.; Belt, P.B.G.M.; Weerdmeester, K.; Carrondo, M.J.; Langeveld, J.P.M.

    2006-01-01

    A novel vaccine against porcine parvovirus (PPV), composed of recombinant virus-like particles (PPV-VLPs) produced with the baculovirus expression vector system (BEVS) at industrial scale, was tested for its immunogenicity and protective potency. A formulation of submicrogram amounts of PPV-VLPs in

  12. Frequently Asked Questions on Ebola Virus Disease

    Science.gov (United States)

    ... and should follow recommended precautions strictly. Health worker Ebola infections in Guinea, Liberia and Sierra Leone How to put on and how to remove personal protective equipment - posters 6. Can Ebola be transmitted sexually? Sexual transmission of the Ebola ...

  13. Genotype I of Japanese Encephalitis Virus Virus-like Particles Elicit Sterilizing Immunity against Genotype I and III Viral Challenge in Swine.

    Science.gov (United States)

    Fan, Yi-Chin; Chen, Jo-Mei; Lin, Jen-Wei; Chen, Yi-Ying; Wu, Guan-Hong; Su, Kuan-Hsuan; Chiou, Ming-Tang; Wu, Shang-Rung; Yin, Ji-Hang; Liao, Jiunn-Wang; Chang, Gwong-Jen J; Chiou, Shyan-Song

    2018-05-10

    Swine are a critical amplifying host involved in human Japanese encephalitis (JE) outbreaks. Cross-genotypic immunogenicity and sterile protection are important for the current genotype III (GIII) virus-derived vaccines in swine, especially now that emerging genotype I (GI) JE virus (JEV) has replaced GIII virus as the dominant strain. Herein, we aimed to develop a system to generate GI JEV virus-like particles (VLPs) and evaluate the immunogenicity and protection of the GI vaccine candidate in mice and specific pathogen-free swine. A CHO-heparan sulfate-deficient (CHO-HS(-)) cell clone, named 51-10 clone, stably expressing GI-JEV VLP was selected and continually secreted GI VLPs without signs of cell fusion. 51-10 VLPs formed a homogeneously empty-particle morphology and exhibited similar antigenic activity as GI virus. GI VLP-immunized mice showed balanced cross-neutralizing antibody titers against GI to GIV viruses (50% focus-reduction micro-neutralization assay titers 71 to 240) as well as potent protection against GI or GIII virus infection. GI VLP-immunized swine challenged with GI or GIII viruses showed no fever, viremia, or viral RNA in tonsils, lymph nodes, and brains as compared with phosphate buffered saline-immunized swine. We thus conclude GI VLPs can provide sterile protection against GI and GIII viruses in swine.

  14. Impact of interventions and the incidence of ebola virus disease in Liberia-implications for future epidemics.

    Science.gov (United States)

    Kirsch, Thomas D; Moseson, Heidi; Massaquoi, Moses; Nyenswah, Tolbert G; Goodermote, Rachel; Rodriguez-Barraquer, Isabel; Lessler, Justin; Cumings, Derek A T; Peters, David H

    2017-03-01

    To better understand the impact of national and global efforts to contain the Ebola virus disease epidemic of 2014–15 in Liberia, we provide a detailed timeline of the major interventions and relate them to the epidemic curve.  In addition to personal experience in the response, we systematically reviewed situation reports from the Liberian government, UN, CDC, WHO, UNICEF, IFRC, USAID, and local and international news reports to create the timeline. We extracted data on the timing and nature of activities and compared them to the timeline of the epidemic curve using the reproduction number—the estimate of the average number of new cases caused by a single case.  Interventions were organized around five major strategies, with the majority of resources directed to the creation of treatment beds. We conclude that no single intervention stopped the epidemic; rather, the interventions likely had reinforcing effects, and some were less likely than others to have made a major impact. We find that the epidemic’s turning coincided with a reorganization of the response in August–September 2014, the emergence of community leadership in control efforts, and changing beliefs and practices in the population. Ebola Treatment Units were important for Ebola treatment, but the vast majority of these treatment centre beds became available after the epidemic curve began declining. Similarly, the United Nations Mission for Ebola Emergency Response was launched after the epidemic curve had already turned.  These findings have significant policy implications for future epidemics and suggest that much of the decline in the epidemic curve was driven by critical behaviour changes within local communities, rather than by international efforts that came after the epidemic had turned. Future global interventions in epidemic response should focus on building community capabilities, strengthening local ownership, and dramatically reducing delays in the response.

  15. Measles Cases during Ebola Outbreak, West Africa, 2013-2106.

    Science.gov (United States)

    Colavita, Francesca; Biava, Mirella; Castilletti, Concetta; Quartu, Serena; Vairo, Francesco; Caglioti, Claudia; Agrati, Chiara; Lalle, Eleonora; Bordi, Licia; Lanini, Simone; Guanti, Michela Delli; Miccio, Rossella; Ippolito, Giuseppe; Capobianchi, Maria R; Di Caro, Antonino

    2017-06-01

    The recent Ebola outbreak in West Africa caused breakdowns in public health systems, which might have caused outbreaks of vaccine-preventable diseases. We tested 80 patients admitted to an Ebola treatment center in Freetown, Sierra Leone, for measles. These patients were negative for Ebola virus. Measles virus IgM was detected in 13 (16%) of the patients.

  16. Antiviral Screening of Multiple Compounds against Ebola Virus.

    Science.gov (United States)

    Dowall, Stuart D; Bewley, Kevin; Watson, Robert J; Vasan, Seshadri S; Ghosh, Chandradhish; Konai, Mohini M; Gausdal, Gro; Lorens, James B; Long, Jason; Barclay, Wendy; Garcia-Dorival, Isabel; Hiscox, Julian; Bosworth, Andrew; Taylor, Irene; Easterbrook, Linda; Pitman, James; Summers, Sian; Chan-Pensley, Jenny; Funnell, Simon; Vipond, Julia; Charlton, Sue; Haldar, Jayanta; Hewson, Roger; Carroll, Miles W

    2016-10-27

    In light of the recent outbreak of Ebola virus (EBOV) disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro. The compounds were selected on a rational basis because their mechanisms of action suggested that they had the potential to disrupt EBOV entry, replication or exit from cells or because they had displayed some antiviral activity against EBOV in previous tests. Nine compounds caused no reduction in viral replication despite cells remaining healthy, so they were excluded from further analysis (zidovudine; didanosine; stavudine; abacavir sulphate; entecavir; JB1a; Aimspro; celgosivir; and castanospermine). A second screen of the remaining compounds and the feasibility of appropriateness for in vivo testing removed six further compounds (ouabain; omeprazole; esomeprazole; Gleevec; D-LANA-14; and Tasigna). The three most promising compounds (17-DMAG; BGB324; and NCK-8) were further screened for in vivo activity in the guinea pig model of EBOV disease. Two of the compounds, BGB324 and NCK-8, showed some effect against lethal infection in vivo at the concentrations tested, which warrants further investigation. Further, these data add to the body of knowledge on the antiviral activities of multiple compounds against EBOV and indicate that the scientific community should invest more effort into the development of novel and specific antiviral compounds to treat Ebola virus disease.

  17. Antiviral Screening of Multiple Compounds against Ebola Virus

    Directory of Open Access Journals (Sweden)

    Stuart D. Dowall

    2016-10-01

    Full Text Available In light of the recent outbreak of Ebola virus (EBOV disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro. The compounds were selected on a rational basis because their mechanisms of action suggested that they had the potential to disrupt EBOV entry, replication or exit from cells or because they had displayed some antiviral activity against EBOV in previous tests. Nine compounds caused no reduction in viral replication despite cells remaining healthy, so they were excluded from further analysis (zidovudine; didanosine; stavudine; abacavir sulphate; entecavir; JB1a; Aimspro; celgosivir; and castanospermine. A second screen of the remaining compounds and the feasibility of appropriateness for in vivo testing removed six further compounds (ouabain; omeprazole; esomeprazole; Gleevec; D-LANA-14; and Tasigna. The three most promising compounds (17-DMAG; BGB324; and NCK-8 were further screened for in vivo activity in the guinea pig model of EBOV disease. Two of the compounds, BGB324 and NCK-8, showed some effect against lethal infection in vivo at the concentrations tested, which warrants further investigation. Further, these data add to the body of knowledge on the antiviral activities of multiple compounds against EBOV and indicate that the scientific community should invest more effort into the development of novel and specific antiviral compounds to treat Ebola virus disease.

  18. Remarkable morphological diversity of viruses and virus-like particles in hot terrestrial environments.

    Science.gov (United States)

    Rachel, R; Bettstetter, M; Hedlund, B P; Häring, M; Kessler, A; Stetter, K O; Prangishvili, D

    2002-12-01

    Electron microscopic studies of the viruses in two hot springs (85 degrees C, pH 1.5-2.0, and 75-93 degrees C, pH 6.5) in Yellowstone National Park revealed particles with twelve different morphotypes. This diversity encompassed known viruses of hyperthermophilic archaea, filamentous Lipothrixviridae, rod-shaped Rudiviridae, and spindle-shaped Fuselloviridae, and novel morphotypes previously not observed in nature. Two virus types resembled head-and-tail bacteriophages from the families Siphoviridae and Podoviridae, and constituted the first observation of these viruses in a hydrothermal environment. Viral hosts in the acidic spring were members of the hyperthermophilic archaeal genus Acidianus.

  19. Influence of Referral Pathway on Ebola Virus Disease Case-Fatality Rate and Effect of Survival Selection Bias

    DEFF Research Database (Denmark)

    Rudolf, Frauke; Damkjær, Mads; Lunding, Suzanne

    2017-01-01

    Case-fatality rates in Ebola treatment centers (ETCs) varied widely during the Ebola virus disease (EVD) outbreak in West Africa. We assessed the influence of referral pathway on ETC case-fatality rates with a retrospective cohort of 126 patients treated at the Mathaska ETC in Port Loko, Sierra...... Leone. The patients consisted of persons who had confirmed EVD when transferred to the ETC or who had been diagnosed onsite. The case-fatality rate for transferred patients was 46% versus 67% for patients diagnosed onsite (p = 0.02). The difference was mediated by Ebola viral load at diagnosis...

  20. Promising MS2 mediated virus-like particle vaccine against foot-and-mouth disease.

    Science.gov (United States)

    Dong, Yan-mei; Zhang, Guo-guang; Huang, Xiao-jun; Chen, Liang; Chen, Hao-tai

    2015-05-01

    Foot-and-mouth disease (FMD) has caused severe economic losses to millions of farmers worldwide. In this work, the coding genes of 141-160 epitope peptide (EP141-160) of VP1 were inserted into the coat protein (CP) genes of MS2 in prokaryotic expression vector, and the recombinant protein self-assembled into virus-like particles (VLP). Results showed that the CP-EP141-160 VLP had a strong immunoreaction with the FMD virus (FMDV) antigen in vitro, and also had an effective immune response in mice. Further virus challenge tests were carried out on guinea pigs and swine, high-titer neutralizing antibodies were produced and the CP-EP141-160 VLP vaccine could protect most of the animals against FMDV. Copyright © 2015. Published by Elsevier B.V.

  1. Ebola in West Africa: an international medical emergency

    Directory of Open Access Journals (Sweden)

    Yasir Waheed

    2014-09-01

    Full Text Available West Africa is facing the worst Ebola outbreak with 3 685 cases and 1 841 deaths reported from Liberia, Guinea, Senegal, Sierra Leona and Nigeria. There is no vaccine or direct treatment available to treat the patients with Ebola. World Health Organization (WHO has approved the use of experimental drugs for Ebola patients. Health workers are at high risk. The governments and WHO are responsible to provide necessary protective equipment to health workers dealing with Ebola. There is a strong need to identify the invisible chains of virus transmission. World Bank pledges $200 million to fight against Ebola, while WHO said $430 million are needed to control the Ebola outbreak. Ebola can be contained by early detection and isolation of case, contact tracing, monitoring of contacts and adaptation of rigorous procedures for virus control.

  2. Mental health care during the Ebola virus disease outbreak in Sierra Leone.

    Science.gov (United States)

    Kamara, Stania; Walder, Anna; Duncan, Jennifer; Kabbedijk, Antoinet; Hughes, Peter; Muana, Andrew

    2017-12-01

    Reported levels of mental health and psychosocial problems rose during the 2014-2015 Ebola virus disease outbreak in Sierra Leone. As part of the emergency response, existing plans to create mental health units within the existing hospital framework were brought forward. A nurse-led mental health and psychosocial support service, with an inpatient liaison service and an outpatient clinic, was set up at the largest government hospital in the country. One mental health nurse trained general nurses in psychological first aid, case identification and referral pathways. Health-care staff attended mental well-being workshops on coping with stigma and stress. Mental health service provision in Sierra Leone is poor, with one specialist psychiatric hospital to serve the population of 7 million. From March 2015 to February 2016, 143 patients were seen at the clinic; 20 had survived or had relatives affected by Ebola virus disease. Half the patients (71) had mild distress or depression, anxiety disorders and grief or social problems, while 30 patients presented with psychosis requiring medication. Fourteen non-specialist nurses received mental health awareness training. Over 100 physicians, nurses and auxiliary staff participated in well-being workshops. A nurse-led approach within a non-specialist setting was a successful model for delivering mental health and psychosocial support services during the Ebola outbreak in Sierra Leone. Strong leadership and partnerships were essential for establishing a successful service. Lack of affordable psychotropic medications, limited human resources and weak social welfare structures remain challenges.

  3. Biomedical and Catalytic Opportunities of Virus-Like Particles in Nanotechnology.

    Science.gov (United States)

    Schwarz, B; Uchida, M; Douglas, T

    2017-01-01

    Within biology, molecules are arranged in hierarchical structures that coordinate and control the many processes that allow for complex organisms to exist. Proteins and other functional macromolecules are often studied outside their natural nanostructural context because it remains difficult to create controlled arrangements of proteins at this size scale. Viruses are elegantly simple nanosystems that exist at the interface of living organisms and nonliving biological machines. Studied and viewed primarily as pathogens to be combatted, viruses have emerged as models of structural efficiency at the nanoscale and have spurred the development of biomimetic nanoparticle systems. Virus-like particles (VLPs) are noninfectious protein cages derived from viruses or other cage-forming systems. VLPs provide incredibly regular scaffolds for building at the nanoscale. Composed of self-assembling protein subunits, VLPs provide both a model for studying materials' assembly at the nanoscale and useful building blocks for materials design. The robustness and degree of understanding of many VLP structures allow for the ready use of these systems as versatile nanoparticle platforms for the conjugation of active molecules or as scaffolds for the structural organization of chemical processes. Lastly the prevalence of viruses in all domains of life has led to unique activities of VLPs in biological systems most notably the immune system. Here we discuss recent efforts to apply VLPs in a wide variety of applications with the aim of highlighting how the common structural elements of VLPs have led to their emergence as paradigms for the understanding and design of biological nanomaterials. © 2017 Elsevier Inc. All rights reserved.

  4. Ebola Virus Stability Under Hospital and Environmental Conditions.

    Science.gov (United States)

    Westhoff Smith, Danielle; Hill-Batorski, Lindsay; N'jai, Alhaji; Eisfeld, Amie J; Neumann, Gabriele; Halfmann, Peter; Kawaoka, Yoshihiro

    2016-10-15

    The West African outbreak of Ebola virus (EBOV) is largely contained, but sporadic new cases continue to emerge. To assess the potential contribution of fomites to human infections with EBOV, we tested EBOV stability in human blood spotted onto Sierra Leonean banknotes and in syringe needles under hospital and environmental conditions. Under some of these conditions, EBOV remained infectious for >30 days, indicating that EBOV-contaminated items may pose a serious risk to humans. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. In the midst of a 'perfect storm': Unpacking the causes and consequences of Ebola-related stigma for children orphaned by Ebola in Sierra Leone

    DEFF Research Database (Denmark)

    Denis-Ramirez, Elise; Holmegaard Sørensen, Katrine; Skovdal, Morten

    2017-01-01

    The West African Ebola virus epidemic resulted in the deaths of more than 11,000 people and caused significant social disruption. Little is known about how the world's worst Ebola outbreak has affected the thousands of children left orphaned as their parents or caregivers succumbed to the virus....... Given the infectious nature of Ebola, and numerous anecdotal accounts of stigmatisation, we set out to examine children's social representations of peers orphaned by Ebola, unpacking the causes and consequences of Ebola-related stigma. The study was conducted in 2015 in Freetown, Sierra Leone. Data...

  6. Recently Identified Mutations in the Ebola Virus-Makona Genome Do Not Alter Pathogenicity in Animal Models

    Directory of Open Access Journals (Sweden)

    Andrea Marzi

    2018-05-01

    Full Text Available Summary: Ebola virus (EBOV, isolate Makona, the causative agent of the West African EBOV epidemic, has been the subject of numerous investigations to determine the genetic diversity and its potential implication for virus biology, pathogenicity, and transmissibility. Despite various mutations that have emerged over time through multiple human-to-human transmission chains, their biological relevance remains questionable. Recently, mutations in the glycoprotein GP and polymerase L, which emerged and stabilized early during the outbreak, have been associated with improved viral fitness in cell culture. Here, we infected mice and rhesus macaques with EBOV-Makona isolates carrying or lacking those mutations. Surprisingly, all isolates behaved very similarly independent of the genotype, causing severe or lethal disease in mice and macaques, respectively. Likewise, we could not detect any evidence for differences in virus shedding. Thus, no specific biological phenotype could be associated with these EBOV-Makona mutations in two animal models. : Marzi et al. demonstrate that recently identified mutations in the EBOV-Makona genome, which appeared during the West African epidemic, do not significantly alter pathogenicity in IFNAR−/− mice and rhesus macaques. Other factors may have been more important for increased case numbers, case fatalities, and human-to-human transmission during this unprecedented epidemic. Keywords: Ebola virus, Ebola Makona, glycoprotein GP, polymerase L, GP mutation A82V, L mutation D759G, West African epidemic, pathogenicity

  7. Modeling the effect of comprehensive interventions on Ebola virus transmission

    Science.gov (United States)

    Shen, Mingwang; Xiao, Yanni; Rong, Libin

    2015-10-01

    Since the re-emergence of Ebola in West Africa in 2014, comprehensive and stringent interventions have been implemented to decelerate the spread of the disease. The effectiveness of interventions still remains unclear. In this paper, we develop an epidemiological model that includes various controlling measures to systematically evaluate their effects on the disease transmission dynamics. By fitting the model to reported cumulative cases and deaths in Guinea, Sierra Leone and Liberia until March 22, 2015, we estimate the basic reproduction number in these countries as 1.2552, 1.6093 and 1.7994, respectively. Model analysis shows that there exists a threshold of the effectiveness of isolation, below which increasing the fraction of latent individuals diagnosed prior to symptoms onset or shortening the duration between symptoms onset and isolation may lead to more Ebola infection. This challenges an existing view. Media coverage plays a substantial role in reducing the final epidemic size. The response to reported cumulative infected cases and deaths may have a different effect on the epidemic spread in different countries. Among all the interventions, we find that shortening the duration between death and burial and improving the effectiveness of isolation are two effective interventions for controlling the outbreak of Ebola virus infection.

  8. Ebola virus disease: a literature review

    Directory of Open Access Journals (Sweden)

    Hirokazu Kimura

    2015-02-01

    Full Text Available Ebola virus disease (EVD is a life-threatening viral disease with a fatality rate ranging from around 30% to 90%. The first EVD outbreak was reported in the 1970s in Zaire (now the Democratic Republic of the Congo. Until 2013, most outbreaks occurred in the Central Africa region, including Zaire, Sudan and Uganda. However, between March and October 2014, over 10 000 cases of EVD have been recorded in West Africa, such as in Guinea, Liberia, Sierra Leone, and Nigeria, and a few hospital or secondary infections of EVD have occurred in Spain and the United States of America. EVD is presently one of the world's most feared diseases. In this literature review, we describe the epidemiology, clinical features, diagnosis, and treatment of EVD.

  9. Ebola Virus and Marburg Virus in Human Milk Are Inactivated by Holder Pasteurization.

    Science.gov (United States)

    Hamilton Spence, Erin; Huff, Monica; Shattuck, Karen; Vickers, Amy; Yun, Nadezda; Paessler, Slobodan

    2017-05-01

    Potential donors of human milk are screened for Ebola virus (EBOV) using standard questions, but testing for EBOV and Marburg virus (MARV) is not part of routine serological testing performed by milk banks. Research aim: This study tested the hypothesis that EBOV would be inactivated in donor human milk (DHM) by standard pasteurization techniques (Holder) used in all North American nonprofit milk banks. Milk samples were obtained from a nonprofit milk bank. They were inoculated with EBOV (Zaire strain) and MARV (Angola strain) and processed by standard Holder pasteurization technique. Plaque assays for EBOV and MARV were performed to detect the presence of virus after pasteurization. Neither EBOV nor MARV was detectable by viral plaque assay in DHM or culture media samples, which were pasteurized by the Holder process. EBOV and MARV are safely inactivated in human milk by standard Holder pasteurization technique. Screening for EBOV or MARV beyond questionnaire and self-deferral is not needed to ensure safety of DHM for high-risk infants.

  10. Crise du virus Ebola : Améliorer la communication scientifique et le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Crise du virus Ebola : Améliorer la communication scientifique et le journalisme local en période d'urgence et après une éclosion. La World Federation of Science Journalists (WFSJ) dirige un programme régional de communication et de formation pour les journalistes locaux, dans le but d'améliorer le journalisme ...

  11. Ebola virus genome plasticity as a marker of its passaging history: a comparison of in vitro passaging to non-human primate infection.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Kugelman

    Full Text Available To identify polymorphic sites that could be used as biomarkers of Ebola virus passage history, we repeatedly amplified Ebola virus (Kikwit variant in vitro and in vivo and performed deep sequencing analysis of the complete genomes of the viral subpopulations. We then determined the sites undergoing selection during passage in Vero E6 cells. Four locations within the Ebola virus Kikwit genome were identified that together segregate cell culture-passaged virus and virus obtained from infected non-human primates. Three of the identified sites are located within the glycoprotein gene (GP sequence: the poly-U (RNA editing site at position 6925, as well as positions 6677, and 6179. One site was found in the VP24 gene at position 10833. In all cases, in vitro and in vivo, both populations (majority and minority variants were maintained in the viral swarm, with rapid selections occurring after a few passages or infections. This analysis approach will be useful to differentiate whether filovirus stocks with unknown history have been passaged in cell culture and may support filovirus stock standardization for medical countermeasure development.

  12. Interplay Among Constitutes of Ebola Virus: Nucleoprotein, Polymerase L, Viral Proteins

    Science.gov (United States)

    Zhang, Minchuan; He, Peiming; Su, Jing; Singh, Dadabhai T.; Su, Hailei; Su, Haibin

    Ebola virus is a highly lethal filovirus, claimed thousands of people in its recent outbreak. Seven viral proteins constitute ebola viral structure, and four of them (nucleoprotein (NP), polymerase L, VP35 and VP30) participate majorly in viral replication and transcription. We have elucidated a conformation change of NP cleft by VP35 NP-binding protein domains through superimposing two experimental NP structure images and discussed the function of this conformation change in the replication and transcription with polymerase complex (L, VP35 and VP30). The important roles of VP30 in viral RNA synthesis have also been discussed. A “tapping” model has been proposed in this paper for a better understanding of the interplay among the four viral proteins (NP, polymerase L, VP35 and VP30). Moreover, we have pinpointed some key residue changes on NP (both NP N- and C-terminal) and L between Reston and Zaire by computational studies. Together, this paper provides a description of interactions among ebola viral proteins (NP, L, VP35, VP30 and VP40) in viral replication and transcription, and sheds light on the complex system of viral reproduction.

  13. Protein-based polymers that bond to DNA : design of virus-like particles and supramolecular nanostructures

    NARCIS (Netherlands)

    Hernandez Garcia, A.

    2014-01-01

    In this thesis it is demonstrated that it is possible to use Protein-based Polymers (PbPs) as synthetic binders of DNA (or any other negatively charged polyelectrolyte). The PbPs co-assemble with their DNA templates to form highly organized virus-like particles and supramolecular structures. A

  14. Community quarantine to interrupt Ebola virus transmission - Mawah Village, Bong County, Liberia, August-October, 2014.

    Science.gov (United States)

    Nyenswah, Tolbert; Blackley, David J; Freeman, Tabeh; Lindblade, Kim A; Arzoaquoi, Samson K; Mott, Joshua A; Williams, Justin N; Halldin, Cara N; Kollie, Francis; Laney, A Scott

    2015-02-27

    On September 30, 2014, the Bong County health officer notified the county Ebola task force of a growing outbreak of Ebola virus disease (Ebola) in Mawah, a village of approximately 800 residents. During September 9-16, household quarantine had been used by the community in response to a new Ebola infection. Because the infection led to a local outbreak that grew during September 17-20, county authorities suggested community quarantine be considered, and beginning on approximately September 20, the Fuamah District Ebola Task Force (Task Force) engaged Mawah leaders to provide education about Ebola and to secure cooperation for the proposed measures. On September 30, Bong County requested technical assistance to develop strategies to limit transmission in the village and to prevent spread to other areas. The county health team, with support from the Task Force and CDC, traveled to Mawah on October 1 and identified approximately two dozen residents reporting symptoms consistent with Ebola. Because of an ambulance shortage, 2 days were required, beginning October 1, to transport the patients to an Ebola treatment unit in Monrovia. Community quarantine measures, consisting of restrictions on entering or leaving Mawah, regulated river crossings, and market closures, were implemented on October 1. Local leaders raised concerns about availability of medical care and food. The local clinic was reopened on October 11, and food was distributed on October 12. The Task Force reported a total of 22 cases of Ebola in Mawah during September 9-October 2, of which 19 were fatal. During October 3-November 21, no new cases were reported in the village. Involving community members during planning and implementation helped support a safe and effective community quarantine in Mawah.

  15. Ebola Virus Disease in Pregnancy: Clinical, Histopathologic, and Immunohistochemical Findings.

    Science.gov (United States)

    Muehlenbachs, Atis; de la Rosa Vázquez, Olimpia; Bausch, Daniel G; Schafer, Ilana J; Paddock, Christopher D; Nyakio, Jean Paul; Lame, Papys; Bergeron, Eric; McCollum, Andrea M; Goldsmith, Cynthia S; Bollweg, Brigid C; Prieto, Miriam Alía; Lushima, Robert Shongo; Ilunga, Benoit Kebela; Nichol, Stuart T; Shieh, Wun-Ju; Ströher, Ute; Rollin, Pierre E; Zaki, Sherif R

    2017-01-01

    Here we describe clinicopathologic features of Ebola virus disease in pregnancy. One woman infected with Sudan virus in Gulu, Uganda, in 2000 had a stillbirth and survived, and another woman infected with Bundibugyo virus had a live birth with maternal and infant death in Isiro, the Democratic Republic of the Congo in 2012. Ebolavirus antigen was seen in the syncytiotrophoblast and placental maternal mononuclear cells by immunohistochemical analysis, and no antigen was seen in fetal placental stromal cells or fetal organs. In the Gulu case, ebolavirus antigen localized to malarial parasite pigment-laden macrophages. These data suggest that trophoblast infection may be a mechanism of transplacental ebolavirus transmission. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Conformational plasticity of the Ebola virus matrix protein.

    Science.gov (United States)

    Radzimanowski, Jens; Effantin, Gregory; Weissenhorn, Winfried

    2014-11-01

    Filoviruses are the causative agents of a severe and often fatal hemorrhagic fever with repeated outbreaks in Africa. They are negative sense single stranded enveloped viruses that can cross species barriers from its natural host bats to primates including humans. The small size of the genome poses limits to viral adaption, which may be partially overcome by conformational plasticity. Here we review the different conformational states of the Ebola virus (EBOV) matrix protein VP40 that range from monomers, to dimers, hexamers, and RNA-bound octamers. This conformational plasticity that is required for the viral life cycle poses a unique opportunity for development of VP40 specific drugs. Furthermore, we compare the structure to homologous matrix protein structures from Paramyxoviruses and Bornaviruses and we predict that they do not only share the fold but also the conformational flexibility of EBOV VP40. © 2014 The Protein Society.

  17. Virus-like particle vaccine primes immune responses preventing inactivated-virus vaccine-enhanced disease against respiratory syncytial virus.

    Science.gov (United States)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Youri; Kwon, Young-Man; Kang, Sang-Moo

    2017-11-01

    Formalin inactivated respiratory syncytial virus (FI-RSV) vaccination caused vaccine-enhanced respiratory disease (ERD) upon exposure to RSV in children. Virus-like particles presenting RSV F fusion protein (F VLP) are known to increase T helper type-1 (Th1) immune responses and avoid ERD in animal models. We hypothesized that F VLP would prime immune responses preventing ERD upon subsequent exposure to ERD-prone FI-RSV. Here, we demonstrated that heterologous F VLP priming and FI-RSV boosting of mice prevented FI-RSV vaccine-enhanced lung inflammation and eosinophilia upon RSV challenge. F VLP priming redirected pulmonary T cells toward effector CD8 T cells producing Th1 cytokines and significantly suppressed pulmonary Th2 cytokines. This study suggests that RSV F VLP priming would modulate and shift immune responses to subsequent exposure to ERD-prone FI-RSV vaccine and RSV infection, suppressing Th2 immune-mediated pulmonary histopathology and eosinophilia. Copyright © 2017. Published by Elsevier Inc.

  18. Ebola virus disease surveillance and response preparedness in northern Ghana

    OpenAIRE

    Adokiya, Martin N.; Awoonor-Williams, John K.

    2016-01-01

    Background: The recent Ebola virus disease (EVD) outbreak has been described as unprecedented in terms of morbidity, mortality, and geographical extension. It also revealed many weaknesses and inadequacies for disease surveillance and response systems in Africa due to underqualified staff, cultural beliefs, and lack of trust for the formal health care sector. In 2014, Ghana had high risk of importation of EVD cases.Objective: The objective of this study was to assess the EVD surveillance and ...

  19. Development, Evaluation, and Integration of a Quantitative Reverse-Transcription Polymerase Chain Reaction Diagnostic Test for Ebola Virus on a Molecular Diagnostics Platform.

    Science.gov (United States)

    Cnops, Lieselotte; Van den Eede, Peter; Pettitt, James; Heyndrickx, Leo; De Smet, Birgit; Coppens, Sandra; Andries, Ilse; Pattery, Theresa; Van Hove, Luc; Meersseman, Geert; Van Den Herrewegen, Sari; Vergauwe, Nicolas; Thijs, Rein; Jahrling, Peter B; Nauwelaers, David; Ariën, Kevin K

    2016-10-15

     The 2013-2016 Ebola epidemic in West Africa resulted in accelerated development of rapid diagnostic tests for emergency outbreak preparedness. We describe the development and evaluation of the Idylla™ prototype Ebola virus test, a fully automated sample-to-result molecular diagnostic test for rapid detection of Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV).  The Idylla™ prototype Ebola virus test can simultaneously detect EBOV and SUDV in 200 µL of whole blood. The sample is directly added to a disposable cartridge containing all reagents for sample preparation, RNA extraction, and amplification by reverse-transcription polymerase chain reaction analysis. The performance was evaluated with a variety of sample types, including synthetic constructs and whole blood samples from healthy volunteers spiked with viral RNA, inactivated virus, and infectious virus.  The 95% limits of detection for EBOV and SUDV were 465 plaque-forming units (PFU)/mL (1010 copies/mL) and 324 PFU/mL (8204 copies/mL), respectively. In silico and in vitro analyses demonstrated 100% correct reactivity for EBOV and SUDV and no cross-reactivity with relevant pathogens. The diagnostic sensitivity was 97.4% (for EBOV) and 91.7% (for SUDV), the specificity was 100%, and the diagnostic accuracy was 95.9%.  The Idylla™ prototype Ebola virus test is a fast, safe, easy-to-use, and near-patient test that meets the performance criteria to detect EBOV in patients with suspected Ebola. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  20. Virus-like-vaccines against HIV

    DEFF Research Database (Denmark)

    Andersson, Anne Marie C.; Schwerdtfeger, Melanie; Holst, Peter J.

    2018-01-01

    Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (......Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus...... of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production...

  1. Ebola viral disease: a review literature

    Directory of Open Access Journals (Sweden)

    Saeed Reza Jamali Moghadam

    2015-04-01

    Full Text Available Ebola virus is transmitted to people as a result of direct contact with body fluids containing virus of an infected patient. The incubation period usually lasts 5 to 7 d and approximately 95% of the patients appear signs within 21 d after exposure. Typical features include fever, profound weakness, diarrhea, abdominal pain, cramping, nausea and vomiting for 3-5 days and maybe persisting for up to a week. Laboratory complications including elevated aminotransferase levels, marked lymphocytopenia, and thrombocytopenia may have occurred. Hemorrhagic fever occurs in less than half of patients and it takes place most commonly in the gastrointestinal tract. The symptoms progress over the time and patients suffer from dehydration, stupor, confusion, hypotension, multi-organ failure, leading to fulminant shock and eventually death. The most general assays used for antibody detection are direct IgG and IgM ELISAs and IgM capture ELISA. An IgM or rising IgG titer (four-fold contributes to strong presumptive diagnosis. Currently neither a licensed vaccine nor an approved treatment is available for human use. Passive transfer of serum collected from survivors of Junin virus or Lassa virus, equine IgG product from horses hypervaccinated with Ebola virus, a “cocktail” of humanized-mouse antibodies (ZMapp, recombinant inhibitor of factor VIIa/tissue factor, activated protein C, RNA-polymerase inhibitors and small interfering RNA nano particles are among the therapies in development. Preclinical evaluation is also underway for various vaccine candidates. One is a chimpanzee adenovirus vector vaccine; other vaccines involve replication-defective adenovirus serotype 5 and recombinant vesicular stomatitis virus.

  2. Protection from lethal infection is determined by innate immune responses in a mouse model of Ebola virus infection

    International Nuclear Information System (INIS)

    Mahanty, Siddhartha; Gupta, Manisha; Paragas, Jason; Bray, Mike; Ahmed, Rafi; Rollin, Pierre E.

    2003-01-01

    A mouse-adapted strain of Ebola Zaire virus produces a fatal infection when BALB/cj mice are infected intraperitoneally (ip) but subcutaneous (sc) infection with the same virus fails to produce illness and confers long-term protection from lethal ip rechallenge. To identify immune correlates of protection in this model, we compared viral replication and cytokine/chemokine responses to Ebola virus in mice infected ip (10 PFU/mouse), or sc (100 PFU/mouse) and sc 'immune' mice rechallenged ip (10 6 PFU/mouse) at several time points postinfection (pi). Ebola viral antigens were detected in the serum, liver, spleen, and kidneys of ip-infected mice by day 2 pi, increasing up to day 6. Sc-infected mice and immune mice rechallenged ip had no detectable viral antigens until day 6 pi, when low levels of viral antigens were detected in the livers of sc-infected mice only. TNF-α and MCP-1 were detected earlier and at significantly higher levels in the serum and tissues of ip-infected mice than in sc-infected or immune mice challenged ip. In contrast, high levels of IFN-α and IFN-γ were found in tissues within 2 days after challenge in sc-infected and immune mice but not in ip-infected mice. Mice became resistant to ip challenge within 48 h of sc infection, coinciding with the rise in tissue IFN-α levels. In this model of Ebola virus infection, the nonlethal sc route of infection is associated with an attenuated inflammatory response and early production of antiviral cytokines, particularly IFN-α, as compared with lethal ip infection

  3. Human Adaptation of Ebola Virus during the West African Outbreak.

    Science.gov (United States)

    Urbanowicz, Richard A; McClure, C Patrick; Sakuntabhai, Anavaj; Sall, Amadou A; Kobinger, Gary; Müller, Marcel A; Holmes, Edward C; Rey, Félix A; Simon-Loriere, Etienne; Ball, Jonathan K

    2016-11-03

    The 2013-2016 outbreak of Ebola virus (EBOV) in West Africa was the largest recorded. It began following the cross-species transmission of EBOV from an animal reservoir, most likely bats, into humans, with phylogenetic analysis revealing the co-circulation of several viral lineages. We hypothesized that this prolonged human circulation led to genomic changes that increased viral transmissibility in humans. We generated a synthetic glycoprotein (GP) construct based on the earliest reported isolate and introduced amino acid substitutions that defined viral lineages. Mutant GPs were used to generate a panel of pseudoviruses, which were used to infect different human and bat cell lines. These data revealed that specific amino acid substitutions in the EBOV GP have increased tropism for human cells, while reducing tropism for bat cells. Such increased infectivity may have enhanced the ability of EBOV to transmit among humans and contributed to the wide geographic distribution of some viral lineages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Survey of Emergency Department staff on disaster preparedness and training for Ebola virus disease.

    Science.gov (United States)

    Siddle, Jennica; Tolleson-Rinehart, Sue; Brice, Jane

    2016-01-01

    In the domestic response to the outbreak of Ebola virus disease from 2013 to 2015, many US hospitals developed and implemented specialized training programs to care for patients with Ebola. This research reports on the effects of targeted training on Emergency Department (ED) staff's Ebola-related perceptions and attitudes. One hundred fifty-nine members of the UNC Health Care System ED staff participated in a voluntary cross-sectional, anonymous Web survey administered using a one-time "post then pre" design. Participants responded to questions about risk, roles, willingness to provide care, preparedness, and the contributions of media, training, or time to opinion change using a Likert agree-disagree scale. The authors conducted t test comparisons of Likert responses to pretraining and post-training attitudes about Ebola preparedness. The authors conducted multinomial logistic regression analyses of index scores of change and positivity of responses, controlling for the effects of independent variables. ED staff's opinions supported training; 73 percent felt all workers should receive Ebola education, 60 percent agreed all hospitals should prepare for Ebola, 66 percent felt UNC was better prepared, and 66 percent felt it had done enough to be ready for an Ebola case. Most staff (79 percent) said they had gotten more training for Ebola than for other disease outbreaks; 58 percent had experienced prior epidemics. After training, workers' attitudes were more positive about Ebola preparation including perceived risk of transmission, readiness and ability to manage a patient case, understanding team roles, and trust in both personal protective equipment and the hospital system's preparations (13 measures, p training period (Mean Difference [MD] = 17.45, SD = 9.89) and in the intended positive direction (MD = 15.80, SD = 0.91, p training (p = 0.003). Despite different occupations, mean scores were similar. Staff rated training most important and media least important

  5. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    International Nuclear Information System (INIS)

    Papaneri, Amy B.; Wirblich, Christoph; Cann, Jennifer A.; Cooper, Kurt; Jahrling, Peter B.; Schnell, Matthias J.; Blaney, Joseph E.

    2012-01-01

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RVΔG-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RVΔG-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RVΔG-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RVΔG-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  6. Identification and Pathological Characterization of Persistent Asymptomatic Ebola Virus infection in Rhesus Monkeys

    Science.gov (United States)

    2017-05-12

    2454 (2015). 412 16. Blackley, D.J., et al. Reduced evolutionary rate in reemerged Ebola virus 413 transmission chains. Sci Adv 2, e1600378 (2016). 414...and Marburgvirus Infections. in Harrison’s Principles of 456 Internal Medicine , Vol. 2 (eds. Kasper, D.L., et al.) 1323-1329 (McGraw-Hill 457

  7. Validation of the Cepheid GeneXpert for Detecting Ebola Virus in Semen.

    Science.gov (United States)

    Loftis, Amy James; Quellie, Saturday; Chason, Kelly; Sumo, Emmanuel; Toukolon, Mason; Otieno, Yonnie; Ellerbrok, Heinzfried; Hobbs, Marcia M; Hoover, David; Dube, Karine; Wohl, David A; Fischer, William A

    2017-02-01

    Ebola virus (EBOV) RNA persistence in semen, reported sexual transmission, and sporadic clusters at the end of the 2013-2016 epidemic have prompted recommendations that male survivors refrain from unprotected sex unless their semen is confirmed to be EBOV free. However, there is no fully validated assay for EBOV detection in fluids other than blood. The Cepheid Xpert Ebola assay for EBOV RNA detection was validated for whole semen and blood using samples obtained from uninfected donors and spiked with inactivated EBOV. The validation procedure incorporated standards from Clinical and Laboratory Standards Institute and Good Clinical Laboratory Practices guidelines for evaluating molecular devices for use in infectious disease testing. The assay produced limits of detection of 1000 copies/mL in semen and 275 copies/mL in blood. Limits of detection for both semen and blood increased with longer intervals between collection and testing, with acceptable results obtained up to 72 hours after specimen collection. The Cepheid Xpert Ebola assay is accurate and precise for detecting EBOV in whole semen. A validated assay for EBOV RNA detection in semen informs the care of male survivors of Ebola, as well as recommendations for public health. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  8. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies.

    Science.gov (United States)

    Bornholdt, Zachary A; Ndungo, Esther; Fusco, Marnie L; Bale, Shridhar; Flyak, Andrew I; Crowe, James E; Chandran, Kartik; Saphire, Erica Ollmann

    2016-02-23

    The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs. Copyright © 2016 Bornholdt et al.

  9. Knowledge, Attitudes, and Practices Related to Ebola Virus Disease at the End of a National Epidemic - Guinea, August 2015.

    Science.gov (United States)

    Jalloh, Mohamed F; Robinson, Susan J; Corker, Jamaica; Li, Wenshu; Irwin, Kathleen; Barry, Alpha M; Ntuba, Paulyne Ngalame; Diallo, Alpha A; Jalloh, Mohammad B; Nyuma, James; Sellu, Musa; VanSteelandt, Amanda; Ramsden, Megan; Tracy, LaRee; Raghunathan, Pratima L; Redd, John T; Martel, Lise; Marston, Barbara; Bunnell, Rebecca

    2017-10-20

    Health communication and social mobilization efforts to improve the public's knowledge, attitudes, and practices (KAP) regarding Ebola virus disease (Ebola) were important in controlling the 2014-2016 Ebola epidemic in Guinea (1), which resulted in 3,814 reported Ebola cases and 2,544 deaths.* Most Ebola cases in Guinea resulted from the washing and touching of persons and corpses infected with Ebola without adequate infection control precautions at home, at funerals, and in health facilities (2,3). As the 18-month epidemic waned in August 2015, Ebola KAP were assessed in a survey among residents of Guinea recruited through multistage cluster sampling procedures in the nation's eight administrative regions (Boké, Conakry, Faranah, Kankan, Kindia, Labé, Mamou, and Nzérékoré). Nearly all participants (92%) were aware of Ebola prevention measures, but 27% believed that Ebola could be transmitted by ambient air, and 49% believed they could protect themselves from Ebola by avoiding mosquito bites. Of the participants, 95% reported taking actions to avoid getting Ebola, especially more frequent handwashing (93%). Nearly all participants (91%) indicated they would send relatives with suspected Ebola to Ebola treatment centers, and 89% said they would engage special Ebola burial teams to remove corpses with suspected Ebola from homes. Of the participants, 66% said they would prefer to observe an Ebola-affected corpse from a safe distance at burials rather than practice traditional funeral rites involving corpse contact. The findings were used to guide the ongoing epidemic response and recovery efforts, including health communication, social mobilization, and planning, to prevent and respond to future outbreaks or sporadic cases of Ebola.

  10. A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Meador, Lydia R. [Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ (United States); Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Kessans, Sarah A. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Kilbourne, Jacquelyn; Kibler, Karen V. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Pantaleo, Giuseppe [Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne (Switzerland); Swiss Vaccine Research Institute, Lausanne (Switzerland); Roderiguez, Mariano Esteban [Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia – CSIC, Madrid (Spain); Blattman, Joseph N. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Jacobs, Bertram L., E-mail: bjacobs@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Mor, Tsafrir S., E-mail: tsafrir.mor@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States)

    2017-07-15

    Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viral vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1. - Highlights: • We devised a prime/boost anti HIV-1 vaccination strategy modeled after RV144. • We used plant-derived virus-like particles (VLPs) consisting of Gag and dgp41. • We used attenuated, replicating vaccinia virus vectors expressing the same antigens. • The immunogens elicited strong cellular and humoral immune responses.

  11. The Pathogenesis of Ebola Virus Disease.

    Science.gov (United States)

    Baseler, Laura; Chertow, Daniel S; Johnson, Karl M; Feldmann, Heinz; Morens, David M

    2017-01-24

    For almost 50 years, ebolaviruses and related filoviruses have been repeatedly reemerging across the vast equatorial belt of the African continent to cause epidemics of highly fatal hemorrhagic fever. The 2013-2015 West African epidemic, by far the most geographically extensive, most fatal, and longest lasting epidemic in Ebola's history, presented an enormous international public health challenge, but it also provided insights into Ebola's pathogenesis and natural history, clinical expression, treatment, prevention, and control. Growing understanding of ebolavirus pathogenetic mechanisms and important new clinical observations of the disease course provide fresh clues about prevention and treatment approaches. Although viral cytopathology and immune-mediated cell damage in ebolavirus disease often result in severe compromise of multiple organs, tissue repair and organ function recovery can be expected if patients receive supportive care with fluids and electrolytes; maintenance of oxygenation and tissue perfusion; and respiratory, renal, and cardiovascular support. Major challenges for managing future Ebola epidemics include establishment of early and aggressive epidemic control and earlier and better patient care and treatment in remote, resource-poor areas where Ebola typically reemerges. In addition, it will be important to further develop Ebola vaccines and to adopt policies for their use in epidemic and pre-epidemic situations.

  12. Lessons learned during active epidemiological surveillance of Ebola ...

    African Journals Online (AJOL)

    Objective: To review epidemiological surveillance approaches used during Ebola and Marburg hemorrhagic fever epidemics in Africa in the past fifteen years. Overall, 26 hemorrhagic epidemic outbreaks have been registered in 12 countries; 18 caused by the Ebola virus and eight by the Marburg virus. About 2551 cases ...

  13. Initiating a watch list for Ebola virus antibody escape mutations

    OpenAIRE

    Craig R. Miller; Erin L. Johnson; Aran Z. Burke; Kyle P. Martin; Tanya A. Miura; Holly A. Wichman; Celeste J. Brown; F. Marty Ytreberg

    2016-01-01

    The 2014 Ebola virus (EBOV) outbreak in West Africa is the largest in recorded history and resulted in over 11,000 deaths. It is essential that strategies for treatment and containment be developed to avoid future epidemics of this magnitude. With the development of vaccines and antibody-based therapies using the envelope glycoprotein (GP) of the 1976 Mayinga strain, one important strategy is to anticipate how the evolution of EBOV might compromise these efforts. In this study we have initiat...

  14. Ebola Virus Epidemiology and Evolution in Nigeria.

    Science.gov (United States)

    Folarin, Onikepe A; Ehichioya, Deborah; Schaffner, Stephen F; Winnicki, Sarah M; Wohl, Shirlee; Eromon, Philomena; West, Kendra L; Gladden-Young, Adrianne; Oyejide, Nicholas E; Matranga, Christian B; Deme, Awa Bineta; James, Ayorinde; Tomkins-Tinch, Christopher; Onyewurunwa, Kenneth; Ladner, Jason T; Palacios, Gustavo; Nosamiefan, Iguosadolo; Andersen, Kristian G; Omilabu, Sunday; Park, Daniel J; Yozwiak, Nathan L; Nasidi, Abdusallam; Garry, Robert F; Tomori, Oyewale; Sabeti, Pardis C; Happi, Christian T

    2016-10-15

    Containment limited the 2014 Nigerian Ebola virus (EBOV) disease outbreak to 20 reported cases and 8 fatalities. We present here clinical data and contact information for at least 19 case patients, and full-length EBOV genome sequences for 12 of the 20. The detailed contact data permits nearly complete reconstruction of the transmission tree for the outbreak. The EBOV genomic data are consistent with that tree. It confirms that there was a single source for the Nigerian infections, shows that the Nigerian EBOV lineage nests within a lineage previously seen in Liberia but is genetically distinct from it, and supports the conclusion that transmission from Nigeria to elsewhere did not occur. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  15. Pre-Ebola virus disease laboratory system and related challenges in Liberia

    Directory of Open Access Journals (Sweden)

    Stephen B. Kennedy

    2016-10-01

    Full Text Available Prior to the Ebola virus disease outbreak in Liberia, the laboratory system was duplicativefragmented and minimally coordinated. The National Reference Laboratory was conceptualisedto address the existing challenges by promoting the implementation of effective and sustainablelaboratory services in Liberia. However, in a resource-limited environment such as Liberiaprogress regarding the rebuilding of the health system can be relatively slow, while efforts tosustain the transient gains remain a key challenge for the Ministry of Health. In this paper, wedescribe the pre-Ebola virus disease laboratory system in Liberia and its prevailing efforts toaddress future emerging infectious diseases, as well as current Infectious diseases, all of whichare exacerbated by poverty. We conclude that laboratory and diagnostic services in Liberiahave encountered numerous challenges regarding its efforts to strengthen the healthcaredelivery system. These challenges include limited trained human resource capacity, inadequateinfrastructure, and a lack of coordination. As with most countries in sub-Saharan Africa, whencomparing urban and rural settings, diagnostic and clinical services are generally skewedtoward urban health facilities and private, faith-based health facilities. We recommend thatstructured policy be directed at these challenges for national institutions to develop guidelinesto improve, strengthen and sustain diagnostic and curative laboratory services to effectivelyaddress current infectious diseases and prepare for future emerging and re-emerging infectiousdiseases.

  16. Mitigating measles outbreaks in West Africa post-Ebola.

    Science.gov (United States)

    Truelove, Shaun A; Moss, William J; Lessler, Justin

    2015-01-01

    The Ebola outbreak in 2014-2015 devastated the populations, economies and healthcare systems of Guinea, Liberia and Sierra Leone. With this devastation comes the impending threat of outbreaks of other infectious diseases like measles. Strategies for mitigating these risks must include both prevention, through vaccination, and case detection and management, focused on surveillance, diagnosis and appropriate clinical care and case management. With the high transmissibility of measles virus, small-scale reactive vaccinations will be essential to extinguish focal outbreaks, while national vaccination campaigns are needed to guarantee vaccination coverage targets are reached in the long term. Rapid and multifaceted strategies should carefully navigate challenges present in the wake of Ebola, while also taking advantage of current Ebola-related activities and international attention. Above all, resources and focus currently aimed at these countries must be utilized to build up the deficit in infrastructure and healthcare systems that contributed to the extent of the Ebola outbreak.

  17. Ebola Virus Disease Is Characterized by Poor Activation and Reduced Levels of Circulating CD16+ Monocytes.

    Science.gov (United States)

    Lüdtke, Anja; Ruibal, Paula; Becker-Ziaja, Beate; Rottstegge, Monika; Wozniak, David M; Cabeza-Cabrerizo, Mar; Thorenz, Anja; Weller, Romy; Kerber, Romy; Idoyaga, Juliana; Magassouba, N'Faly; Gabriel, Martin; Günther, Stephan; Oestereich, Lisa; Muñoz-Fontela, César

    2016-10-15

    A number of previous studies have identified antigen-presenting cells (APCs) as key targets of Ebola virus (EBOV), but the role of APCs in human Ebola virus disease (EVD) is not known. We have evaluated the phenotype and kinetics of monocytes, neutrophils, and dendritic cells (DCs) in peripheral blood of patients for whom EVD was diagnosed by the European Mobile Laboratory in Guinea. Acute EVD was characterized by reduced levels of circulating nonclassical CD16 + monocytes with a poor activation profile. In survivors, CD16 + monocytes were activated during recovery, coincident with viral clearance, suggesting an important role of this cell subset in EVD pathophysiology. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  18. Molecular determinants of Ebola virus virulence in mice.

    Directory of Open Access Journals (Sweden)

    Hideki Ebihara

    2006-07-01

    Full Text Available Zaire ebolavirus (ZEBOV causes severe hemorrhagic fever in humans and nonhuman primates, with fatality rates in humans of up to 90%. The molecular basis for the extreme virulence of ZEBOV remains elusive. While adult mice resist ZEBOV infection, the Mayinga strain of the virus has been adapted to cause lethal infection in these animals. To understand the pathogenesis underlying the extreme virulence of Ebola virus (EBOV, here we identified the mutations responsible for the acquisition of the high virulence of the adapted Mayinga strain in mice, by using reverse genetics. We found that mutations in viral protein 24 and in the nucleoprotein were primarily responsible for the acquisition of high virulence. Moreover, the role of these proteins in virulence correlated with their ability to evade type I interferon-stimulated antiviral responses. These findings suggest a critical role for overcoming the interferon-induced antiviral state in the pathogenicity of EBOV and offer new insights into the pathogenesis of EBOV infection.

  19. Clinical Features of and Risk Factors for Fatal Ebola Virus Disease, Moyamba District, Sierra Leone, December 2014-February 2015.

    Science.gov (United States)

    Haaskjold, Yngvar Lunde; Bolkan, Håkon Angell; Krogh, Kurt Østhuus; Jongopi, James; Lundeby, Karen Marie; Mellesmo, Sindre; Garcés, Pedro San José; Jøsendal, Ola; Øpstad, Åsmund; Svensen, Erling; Fuentes, Luis Matias Zabala; Kamara, Alfred Sandy; Riera, Melchor; Arranz, Javier; Roberts, David P; Stamper, Paul D; Austin, Paula; Moosa, Alfredo J; Marke, Dennis; Hassan, Shoaib; Eide, Geir Egil; Berg, Åse; Blomberg, Bjørn

    2016-09-01

    The 2013-2016 outbreak of Ebola virus disease (EVD) in West Africa infected >28,000 people, including >11,000 who died, and disrupted social life in the region. We retrospectively studied clinical signs and symptoms and risk factors for fatal outcome among 31 Ebola virus-positive patients admitted to the Ebola Treatment Center in Moyamba District, Sierra Leone. We found a higher rate of bleeding manifestations than reported elsewhere during the outbreak. Significant predictors for death were shorter time from symptom onset to admission, male sex, high viral load on initial laboratory testing, severe pain, diarrhea, bloody feces, and development of other bleeding manifestations during hospitalization. These risk factors for death could be used to identify patients in need of more intensive medical support. The lack of fever in as many as one third of EVD cases may have implications for temperature-screening practices and case definitions.

  20. Characterization of a Latent Virus-Like Infection of Symbiotic Zooxanthellae▿

    Science.gov (United States)

    Lohr, Jayme; Munn, Colin B.; Wilson, William H.

    2007-01-01

    A latent virus-like agent, which we designated zooxanthella filamentous virus 1 (ZFV1), was isolated from Symbiodinium sp. strain CCMP 2465 and characterized. Transmission electron microscopy and analytical flow cytometry revealed the presence of a new group of distinctive filamentous virus-like particles after exposure of the zooxanthellae to UV light. Examination of thin sections of the zooxanthellae revealed the formation and proliferation of filamentous virus-like particles in the UV-induced cells. Assessment of Symbiodinium sp. cultures was used here as a model to show the effects of UV irradiance and induction of potential latent viruses. The unique host-virus system described here provides insight into the role of latent infections in zooxanthellae through environmentally regulated viral induction mechanisms. PMID:17351090

  1. Characterization of a latent virus-like infection of symbiotic zooxanthellae.

    Science.gov (United States)

    Lohr, Jayme; Munn, Colin B; Wilson, William H

    2007-05-01

    A latent virus-like agent, which we designated zooxanthella filamentous virus 1 (ZFV1), was isolated from Symbiodinium sp. strain CCMP 2465 and characterized. Transmission electron microscopy and analytical flow cytometry revealed the presence of a new group of distinctive filamentous virus-like particles after exposure of the zooxanthellae to UV light. Examination of thin sections of the zooxanthellae revealed the formation and proliferation of filamentous virus-like particles in the UV-induced cells. Assessment of Symbiodinium sp. cultures was used here as a model to show the effects of UV irradiance and induction of potential latent viruses. The unique host-virus system described here provides insight into the role of latent infections in zooxanthellae through environmentally regulated viral induction mechanisms.

  2. Differences in the Comparative Stability of Ebola Virus Makona-C05 and Yambuku-Mayinga in Blood.

    Directory of Open Access Journals (Sweden)

    Michael Schuit

    Full Text Available In support of the response to the 2013-2016 Ebola virus disease (EVD outbreak in Western Africa, we investigated the persistence of Ebola virus/H.sapiens-tc/GIN/2014/Makona-C05 (EBOV/Mak-C05 on non-porous surfaces that are representative of hospitals, airplanes, and personal protective equipment. We performed persistence studies in three clinically-relevant human fluid matrices (blood, simulated vomit, and feces, and at environments representative of in-flight airline passenger cabins, environmentally-controlled hospital rooms, and open-air Ebola treatment centers in Western Africa. We also compared the surface stability of EBOV/Mak-C05 to that of the prototype Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Mayinga (EBOV/Yam-May, in a subset of these conditions. We show that on inert, non-porous surfaces, EBOV decay rates are matrix- and environment-dependent. Among the clinically-relevant matrices tested, EBOV persisted longest in dried human blood, had limited viability in dried simulated vomit, and did not persist in feces. EBOV/Mak-C05 and EBOV/Yam-May decay rates in dried matrices were not significantly different. However, during the drying process in human blood, EBOV/Yam-May showed significantly greater loss in viability than EBOV/Mak-C05 under environmental conditions relevant to the outbreak region, and to a lesser extent in conditions relevant to an environmentally-controlled hospital room. This factor may contribute to increased communicability of EBOV/Mak-C05 when surfaces contaminated with dried human blood are the vector and may partially explain the magnitude of the most recent outbreak, compared to prior outbreaks. These EBOV persistence data will improve public health efforts by informing risk assessments, structure remediation decisions, and response procedures for future EVD outbreaks.

  3. Beyond Knowledge and Awareness: Addressing Misconceptions in Ghana's Preparation towards an Outbreak of Ebola Virus Disease.

    Directory of Open Access Journals (Sweden)

    Philip Baba Adongo

    Full Text Available Ebola Virus Disease (EVD is not new to the world. However, the West African EVD epidemic which started in 2014 evolved into the largest, most severe and most complex outbreak in the history of the disease. The three most-affected countries faced enormous challenges in stopping the transmission and providing care for all patients. Although Ghana had not recorded any confirmed Ebola case, social factors have been reported to hinder efforts to control the outbreak in the three most affected countries. This qualitative study was designed to explore community knowledge and attitudes about Ebola and its transmission.This study was carried out in five of the ten regions in Ghana. Twenty-five focus group discussions (N = 235 and 40 in-depth interviews were conducted across the five regions with community members, stakeholders and opinion leaders. The interviews were recorded digitally and transcribed verbatim. Framework analysis was adopted in the analysis of the data using Nvivo 10.The results showed a high level of awareness and knowledge about Ebola. The study further showed that knowledge on how to identify suspected cases of Ebola was also high among respondents. However, there was a firm belief that Ebola was a spiritual condition and could also be transmitted through air, mosquito bites and houseflies. These misconceptions resulted in perceptions of stigma and discrimination towards people who may get Ebola or work with Ebola patients.We conclude that although knowledge and awareness about Ebola is high among Ghanaians who participated in the study, there are still misconceptions about the disease. The study recommends that health education on Ebola disease should move beyond creating awareness to targeting the identified misconceptions to improve future containment efforts.

  4. [Marburg and Ebola hemorrhagic fevers--pathogens, epidemiology and therapy].

    Science.gov (United States)

    Stock, Ingo

    2014-09-01

    Marburg and Ebola hemorrhagic fevers are severe, systemic viral diseases affecting humans and non-human primates. They are characterized by multiple symptoms such as hemorrhages, fever, headache, muscle and abdominal pain, chills, sore throat, nausea, vomiting and diarrhea. Elevated liver-associated enzyme levels and coagulopathy are also associated with these diseases. Marburg and Ebola hemorrhagic fevers are caused by (Lake victoria) Marburg virus and different species of Ebola viruses, respectively. They are enveloped, single-stranded RNA viruses and belong to the family of filoviridae. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, ranging from 25 to 90% or more. Outbreaks of Marburg and Ebola hemorrhagic fever occur in certain regions of equatorial Africa at irregular intervals. Since 2000, the number of outbreaks has increased. In 2014, the biggest outbreak of a filovirus-induced hemorrhagic fever that has been documented so far occurred from March to July 2014 in Guinea, Sierra Leone, Liberia and Nigeria. The outbreak was caused by a new variant of Zaire Ebola-Virus, affected more than 2600 people (stated 20 August) and was associated with case-fatality rates of up to 67% (Guinea). Treatment of Marburg and Ebola hemorrhagic fevers is symptomatic and supportive, licensed antiviral agents are currently not available. Recently, BCX4430, a promising synthetic adenosine analogue with high in vitro and in vivo activity against filoviruses and other RNA viruses, has been described. BCX4430 inhibits viral RNA polymerase activity and protects cynomolgus macaques from Marburg virus infection when administered as late as 48 hours after infection. Nucleic acid-based products, recombinant vaccines and antibodies appear to be less suitable for the treatment of Marburg and Ebola hemorrhagic fevers.

  5. Ebola hemorrhagic fever outbreaks: strategies for effective epidemic management, containment and control

    OpenAIRE

    Matua, Gerald Amandu; Wal, Dirk Mostert Van der; Locsin, Rozzano C.

    2015-01-01

    Ebola hemorrhagic fever, caused by the highly virulent RNA virus of the filoviridae family, has become one of the world's most feared pathogens. The virus induces acute fever and death, often associated with hemorrhagic symptoms in up to 90% of infected patients. The known sub-types of the virus are Zaire, Sudan, Taï Forest, Bundibugyo and Reston Ebola viruses. In the past, outbreaks were limited to the East and Central African tropical belt with the exception of Ebola Reston outbreaks that o...

  6. Analysis of patient data from laboratories during the Ebola virus disease outbreak in Liberia, April 2014 to March 2015.

    Science.gov (United States)

    Furuse, Yuki; Fallah, Mosoka; Oshitani, Hitoshi; Kituyi, Ling; Mahmoud, Nuha; Musa, Emmanuel; Gasasira, Alex; Nyenswah, Tolbert; Dahn, Bernice; Bawo, Luke

    2017-07-01

    An outbreak of Ebola virus disease (EVD) in Liberia began in March 2014 and ended in January 2016. Epidemiological information on the EVD cases was collected and managed nationally; however, collection and management of the data were challenging at the time because surveillance and reporting systems malfunctioned during the outbreak. EVD diagnostic laboratories, however, were able to register basic demographic and clinical information of patients more systematically. Here we present data on 16,370 laboratory samples that were tested between April 4, 2014 and March 29, 2015. A total of 10,536 traceable individuals were identified, of whom 3,897 were confirmed cases (positive for Ebola virus RNA). There were significant differences in sex, age, and place of residence between confirmed and suspected cases that tested negative for Ebola virus RNA. Age (young children and the elderly) and place of residence (rural areas) were the risk factors for death due to the disease. The case fatality rate of confirmed cases decreased from 80% to 63% during the study period. These findings may help support future investigations and lead to a fuller understanding of the outbreak in Liberia.

  7. Analysis of patient data from laboratories during the Ebola virus disease outbreak in Liberia, April 2014 to March 2015.

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    2017-07-01

    Full Text Available An outbreak of Ebola virus disease (EVD in Liberia began in March 2014 and ended in January 2016. Epidemiological information on the EVD cases was collected and managed nationally; however, collection and management of the data were challenging at the time because surveillance and reporting systems malfunctioned during the outbreak. EVD diagnostic laboratories, however, were able to register basic demographic and clinical information of patients more systematically. Here we present data on 16,370 laboratory samples that were tested between April 4, 2014 and March 29, 2015. A total of 10,536 traceable individuals were identified, of whom 3,897 were confirmed cases (positive for Ebola virus RNA. There were significant differences in sex, age, and place of residence between confirmed and suspected cases that tested negative for Ebola virus RNA. Age (young children and the elderly and place of residence (rural areas were the risk factors for death due to the disease. The case fatality rate of confirmed cases decreased from 80% to 63% during the study period. These findings may help support future investigations and lead to a fuller understanding of the outbreak in Liberia.

  8. Strategies in Ebola virus disease (EVD) diagnostics at the point of care.

    Science.gov (United States)

    Coarsey, Chad T; Esiobu, Nwadiuto; Narayanan, Ramswamy; Pavlovic, Mirjana; Shafiee, Hadi; Asghar, Waseem

    2017-11-01

    Ebola virus disease (EVD) is a devastating, highly infectious illness with a high mortality rate. The disease is endemic to regions of Central and West Africa, where there is limited laboratory infrastructure and trained staff. The recent 2014 West African EVD outbreak has been unprecedented in case numbers and fatalities, and has proven that such regional outbreaks can become a potential threat to global public health, as it became the source for the subsequent transmission events in Spain and the USA. The urgent need for rapid and affordable means of detecting Ebola is crucial to control the spread of EVD and prevent devastating fatalities. Current diagnostic techniques include molecular diagnostics and other serological and antigen detection assays; which can be time-consuming, laboratory-based, often require trained personnel and specialized equipment. In this review, we discuss the various Ebola detection techniques currently in use, and highlight the potential future directions pertinent to the development and adoption of novel point-of-care diagnostic tools. Finally, a case is made for the need to develop novel microfluidic technologies and versatile rapid detection platforms for early detection of EVD.

  9. BCX4430 - A broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease.

    Science.gov (United States)

    Taylor, Raymond; Kotian, Pravin; Warren, Travis; Panchal, Rekha; Bavari, Sina; Julander, Justin; Dobo, Sylvia; Rose, Angela; El-Kattan, Yahya; Taubenheim, Brian; Babu, Yarlagadda; Sheridan, William P

    2016-01-01

    The adenosine nucleoside analog BCX4430 is a direct-acting antiviral drug under investigation for the treatment of serious and life-threatening infections from highly pathogenic viruses, such as the Ebola virus. Cellular kinases phosphorylate BCX4430 to a triphosphate that mimics ATP; viral RNA polymerases incorporate the drug's monophosphate nucleotide into the growing RNA chain, causing premature chain termination. BCX4430 is active in vitro against many RNA viral pathogens, including the filoviruses and emerging infectious agents such as MERS-CoV and SARS-CoV. In vivo, BCX4430 is active after intramuscular, intraperitoneal, and oral administration in a variety of experimental infections. In nonclinical studies involving lethal infections with Ebola virus, Marburg virus, Rift Valley fever virus, and Yellow Fever virus, BCX4430 has demonstrated pronounced efficacy. In experiments conducted in several models, both a reduction in the viral load and an improvement in survival were found to be related to the dose of BCX4430. A Phase 1 clinical trial of intramuscular administration of BCX4430 in healthy subjects is currently ongoing. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. All rights reserved.

  10. High survival rates and associated factors among ebola virus disease patients hospitalized at donka national hospital, conakry, Guinea.

    Science.gov (United States)

    Qureshi, Adnan I; Chughtai, Morad; Bah, Elhadj Ibrahima; Barry, Moumié; Béavogui, Kézély; Loua, Tokpagnan Oscar; Malik, Ahmed A

    2015-02-01

    Anecdotal reports suggesting that survival rates among hospitalized patients with Ebola virus disease in Guinea are higher than the 29.2% rate observed in the current epidemic in West Africa. Survival after symptom onset was determined using Kaplan Meier survival methods among patients with confirmed Ebola virus disease treated in Conakry, Guinea from March 25, 2014, to August 5, 2014. We analyzed the relationship between survival and patient factors, including demographics and clinical features. Of the 70 patients analyzed [mean age ± standard deviation (SD), 34 ± 14.1; 44 were men], 42 were discharged alive with a survival rate among hospitalized patients of 60% (95% confidence interval, 41.5-78.5%). The survival rate was 28 (71.8%) among 39 patients under 34 years of age, and 14 (46.7%) among 30 patients aged 35 years or greater (p = 0.034). The rates of myalgia (3 of 42 versus 7 of 28, p = 0.036) and hiccups (1 of 42 versus 5 of 28, p = 0.023) were significantly lower among patients who survived. Our results provide insights into a cohort of hospitalized patients with Ebola virus disease in whom survival is prominently higher than seen in other cohorts of hospitalized patients.

  11. Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin

    International Nuclear Information System (INIS)

    Usami, Katsuaki; Matsuno, Keita; Igarashi, Manabu; Denda-Nagai, Kaori; Takada, Ayato; Irimura, Tatsuro

    2011-01-01

    Highlights: → Ebola virus infection is mediated by binding to and fusion with the target cells. → Structural feature of the viral glycoprotein determines the infectivity. → Surface C-type lectin, MGL, of macrophages and dendritic cells mediate the infection. → GP2, one of glycoprotein subunits, plays an essential role in MGL-mediated infection. → There is a critical amino acid residue involved in high infectivity. -- Abstract: Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses, i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.

  12. Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Katsuaki [Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033 (Japan); Matsuno, Keita; Igarashi, Manabu [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020 (Japan); Denda-Nagai, Kaori [Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033 (Japan); Takada, Ayato [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020 (Japan); Irimura, Tatsuro, E-mail: irimura@mol.f.u-tokyo.ac.jp [Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033 (Japan)

    2011-04-01

    Highlights: {yields} Ebola virus infection is mediated by binding to and fusion with the target cells. {yields} Structural feature of the viral glycoprotein determines the infectivity. {yields} Surface C-type lectin, MGL, of macrophages and dendritic cells mediate the infection. {yields} GP2, one of glycoprotein subunits, plays an essential role in MGL-mediated infection. {yields} There is a critical amino acid residue involved in high infectivity. -- Abstract: Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses, i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.

  13. Ethnomedical and ethnobotanical investigations on the response capacities of Guinean traditional health practioners in the management of outbreaks of infectious diseases: The case of the Ebola virus epidemic.

    Science.gov (United States)

    Baldé, A M; Traoré, M S; Baldé, M A; Barry, M S; Diallo, A; Camara, M; Traoré, S; Kouyaté, M; Traoré, S; Ouo-Ouo, S; Myanthé, A L; Keita, N; Haba, N L; Goumou, K; Bah, F; Camara, A; Diallo, M S T; Sylla, M; Baldé, E S; Diané, S; Pieters, L; Oularé, K

    2016-04-22

    The recent outbreak of Ebola virus infections has mostly remained confined to the West African countries Guinea-Conakry, Sierra-Leone and Liberia. Due to intense national and international mobilizations, a significant reduction in Ebola virus transmission has been recorded. While international efforts focus on new vaccines, medicines and diagnostics, no coherent national or international approach exists to integrate the potential of the traditional health practitioners (THPs) in the management of infectious diseases epidemics. Nevertheless, the first contact of most of the Ebola infected patients is with the THPs since the symptoms are similar to those of common traditionally treated diseases or symptoms such as malaria, hemorrhagic syndrome, typhoid or other gastrointestinal diseases, fever and vomiting. In an ethnomedical survey conducted in the 4 main Guinean regions contacts were established with a total of 113 THPs. The socio-demographic characteristics, the professional status and the traditional perception of Ebola Virus Disease (EVD) were recorded. The traditional treatment of the main symptoms was based on 47 vegetal recipes which were focused on the treatment of diarrhea (22 recipes), fever (22 recipes), vomiting (2 recipes), external antiseptic (2 recipes), hemorrhagic syndrome (2 recipes), convulsion and dysentery (one recipe each). An ethnobotanical survey led to the collection of 54 plant species from which 44 identified belonging to 26 families. The most represented families were Euphorbiaceae, Caesalpiniaceae and Rubiaceae. Literature data on the twelve most cited plant species tends to corroborate their traditional use and to highlight their pharmacological potential. It is worth to document all available knowledge on the traditional management of EVD-like symptoms in order to evaluate systematically the anti-Ebola potential of Guinean plant species. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. The Role of Conserved N-Linked Glycans on Ebola Virus Glycoprotein 2.

    Science.gov (United States)

    Lennemann, Nicholas J; Walkner, Madeline; Berkebile, Abigail R; Patel, Neil; Maury, Wendy

    2015-10-01

    N-linked glycosylation is a common posttranslational modification found on viral glycoproteins (GPs) and involved in promoting expression, cellular attachment, protection from proteases, and antibody evasion. The GP subunit GP2 of filoviruses contains 2 completely conserved N-linked glycosylation sites (NGSs) at N563 and N618, suggesting that they have been maintained through selective pressures. We assessed mutants lacking these glycans for expression and function to understand the role of these sites during Ebola virus entry. Elimination of either GP2 glycan individually had a modest effect on GP expression and no impact on antibody neutralization of vesicular stomatitis virus pseudotyped with Ebola virus GP. However, loss of the N563 glycan enhanced entry by 2-fold and eliminated GP detection by a well-characterized monoclonal antibody KZ52. Loss of both sites dramatically decreased GP expression and abolished entry. Surprisingly, a GP that retained a single NGS at N563, eliminating the remaining 16 NGSs from GP1 and GP2, had detectable expression, a modest increase in entry, and pronounced sensitivity to antibody neutralization. Our findings support the importance of the GP2 glycans in GP expression/structure, transduction efficiency, and antibody neutralization, particularly when N-linked glycans are also removed from GP1. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Cathepsin B & L are not required for ebola virus replication.

    Science.gov (United States)

    Marzi, Andrea; Reinheckel, Thomas; Feldmann, Heinz

    2012-01-01

    Ebola virus (EBOV), family Filoviridae, emerged in 1976 on the African continent. Since then it caused several outbreaks of viral hemorrhagic fever in humans with case fatality rates up to 90% and remains a serious Public Health concern and biothreat pathogen. The most pathogenic and best-studied species is Zaire ebolavirus (ZEBOV). EBOV encodes one viral surface glycoprotein (GP), which is essential for replication, a determinant of pathogenicity and an important immunogen. GP mediates viral entry through interaction with cellular surface molecules, which results in the uptake of virus particles via macropinocytosis. Later in this pathway endosomal acidification activates the cysteine proteases Cathepsin B and L (CatB, CatL), which have been shown to cleave ZEBOV-GP leading to subsequent exposure of the putative receptor-binding and fusion domain and productive infection. We studied the effect of CatB and CatL on in vitro and in vivo replication of EBOV. Similar to previous findings, our results show an effect of CatB, but not CatL, on ZEBOV entry into cultured cells. Interestingly, cell entry by other EBOV species (Bundibugyo, Côte d'Ivoire, Reston and Sudan ebolavirus) was independent of CatB or CatL as was EBOV replication in general. To investigate whether CatB and CatL have a role in vivo during infection, we utilized the mouse model for ZEBOV. Wild-type (control), catB(-/-) and catL(-/-) mice were equally susceptible to lethal challenge with mouse-adapted ZEBOV with no difference in virus replication and time to death. In conclusion, our results show that CatB and CatL activity is not required for EBOV replication. Furthermore, EBOV glycoprotein cleavage seems to be mediated by an array of proteases making targeted therapeutic approaches difficult.

  16. Cathepsin B & L are not required for ebola virus replication.

    Directory of Open Access Journals (Sweden)

    Andrea Marzi

    Full Text Available Ebola virus (EBOV, family Filoviridae, emerged in 1976 on the African continent. Since then it caused several outbreaks of viral hemorrhagic fever in humans with case fatality rates up to 90% and remains a serious Public Health concern and biothreat pathogen. The most pathogenic and best-studied species is Zaire ebolavirus (ZEBOV. EBOV encodes one viral surface glycoprotein (GP, which is essential for replication, a determinant of pathogenicity and an important immunogen. GP mediates viral entry through interaction with cellular surface molecules, which results in the uptake of virus particles via macropinocytosis. Later in this pathway endosomal acidification activates the cysteine proteases Cathepsin B and L (CatB, CatL, which have been shown to cleave ZEBOV-GP leading to subsequent exposure of the putative receptor-binding and fusion domain and productive infection. We studied the effect of CatB and CatL on in vitro and in vivo replication of EBOV. Similar to previous findings, our results show an effect of CatB, but not CatL, on ZEBOV entry into cultured cells. Interestingly, cell entry by other EBOV species (Bundibugyo, Côte d'Ivoire, Reston and Sudan ebolavirus was independent of CatB or CatL as was EBOV replication in general. To investigate whether CatB and CatL have a role in vivo during infection, we utilized the mouse model for ZEBOV. Wild-type (control, catB(-/- and catL(-/- mice were equally susceptible to lethal challenge with mouse-adapted ZEBOV with no difference in virus replication and time to death. In conclusion, our results show that CatB and CatL activity is not required for EBOV replication. Furthermore, EBOV glycoprotein cleavage seems to be mediated by an array of proteases making targeted therapeutic approaches difficult.

  17. Virus-like particles in venom of Meteorus pulchricornis induce host hemocyte apoptosis.

    Science.gov (United States)

    Suzuki, M; Tanaka, T

    2006-06-01

    Ultrastructural studies on the reproductive tract and venom apparatus of a female braconid, Meteorus pulchricornis, revealed that the parasitoid lacks the calyx region in its oviduct, but possesses a venom gland with two venom gland filaments and a venom reservoir filled with white and cloudy fluid. Its venom gland cell is concaved and has a lumen filled with numerous granules. Transmisson electron microscopic (TEM) observation revealed that virus-like particles (VLPs) were produced in venom gland cells. The virus-like particle observed in M. pulchricornis (MpVLP) is composed of membranous envelopes with two different parts: a high-density core and a whitish low-density part. The VLPs of M. pulchricornis is also found assembling ultimately in the lumen of venom gland cell. Microvilli were found thrusting into the lumen of the venom gland cell and seem to aid in driving the matured MpVLPs to the common duct of the venom gland filament. Injection of MpVLPs into non-parasitized Pseudaletia separata hosts induced apoptosis in hemocytes, particularly granulocytes (GRs). Rate of apoptosis induced in GRs peaked 48h after VLP injection. While a large part of the GR population collapsed due to apoptosis caused by MpVLPs, the plasmatocyte population was minimally affected. The capacity of MpVLPs to cause apoptosis in host's hemocytes was further demonstrated by a decrease ( approximately 10-fold) in ability of host hemocytes to encapsulate fluorescent latex beads when MpVLPs were present. Apparently, the reduced encapsulation ability was due to a decrease in the GR population resulting from MpVLP-induced apoptosis.

  18. Shedding of Ebola Virus Surface Glycoprotein Is a Mechanism of Self-regulation of Cellular Cytotoxicity and Has a Direct Effect on Virus Infectivity.

    Science.gov (United States)

    Dolnik, Olga; Volchkova, Valentina A; Escudero-Perez, Beatriz; Lawrence, Philip; Klenk, Hans-Dieter; Volchkov, Viktor E

    2015-10-01

    The surface glycoprotein (GP) is responsible for Ebola virus (EBOV) attachment and membrane fusion during virus entry. Surface expression of highly glycosylated GP causes marked cytotoxicity via masking of a wide range of cellular surface molecules, including integrins. Considerable amounts of surface GP are shed from virus-infected cells in a soluble truncated form by tumor necrosis factor α-converting enzyme. In this study, the role of GP shedding was investigated using a reverse genetics approach by comparing recombinant viruses possessing amino acid substitutions at the GP shedding site. Virus with an L635V substitution showed a substantial decrease in shedding, whereas a D637V substitution resulted in a striking increase in the release of shed GP. Variations in shedding efficacy correlated with observed differences in the amounts of shed GP in the medium, GP present in virus-infected cells, and GP present on virions. An increase in shedding appeared to be associated with a reduction in viral cytotoxicity, and, vice versa, the virus that shed less was more cytotoxic. An increase in shedding also resulted in a reduction in viral infectivity, whereas a decrease in shedding efficacy enhanced viral growth characteristics in vitro. Differences in shedding efficacy and, as a result, differences in the amount of mature GP available for incorporation into budding virions did not equate to differences in overall release of viral particles. Likewise, data suggest that the resulting differences in the amount of mature GP on the cell surface led to variations in the GP content of released particles and, as a consequence, in infectivity. In conclusion, fine-tuning of the levels of EBOV GP expressed at the surface of virus-infected cells via GP shedding plays an important role in EBOV replication by orchestrating the balance between optimal virion GP content and cytotoxicity caused by GP. © The Author 2015. Published by Oxford University Press on behalf of the Infectious

  19. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad F Saeed

    2010-09-01

    Full Text Available Zaire ebolavirus (ZEBOV, a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new

  20. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    Energy Technology Data Exchange (ETDEWEB)

    Papaneri, Amy B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Wirblich, Christoph [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Cann, Jennifer A.; Cooper, Kurt [Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Jahrling, Peter B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Schnell, Matthias J., E-mail: matthias.schnell@jefferson.edu [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Blaney, Joseph E., E-mail: jblaney@niaid.nih.gov [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States)

    2012-12-05

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RV{Delta}G-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RV{Delta}G-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RV{Delta}G-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RV{Delta}G-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  1. CE: Inside an Ebola Treatment Unit: A Nurse's Report.

    Science.gov (United States)

    Wilson, Deborah

    2015-12-01

    In December 2013, the first cases of the most recent outbreak of Ebola virus disease (formerly known as Ebola hemorrhagic fever) emerged in the West African nation of Guinea. Within months the disease had spread to the neighboring countries of Liberia and Sierra Leone. The international humanitarian aid organization Médecins Sans Frontières (MSF; known in English as Doctors Without Borders) soon responded by sending staff to set up treatment centers and outreach triage teams in all three countries. In August 2014, the World Health Organization declared the outbreak an international public health emergency.In September 2014, the author was sent by MSF to work as a nurse in an Ebola treatment unit in Liberia for five weeks. This article describes her experiences there. It provides some background, outlines the practices and teams involved, and aims to convey a sense of what it's like to work during an Ebola outbreak and to put a human face on this devastating epidemic.

  2. Molecular and structural characterization of fluorescent human parvovirus B19 virus-like particles

    International Nuclear Information System (INIS)

    Gilbert, Leona; Toivola, Jouni; White, Daniel; Ihalainen, Teemu; Smith, Wesley; Lindholm, Laura; Vuento, Matti; Oker-Blom, Christian

    2005-01-01

    Although sharing a T = 1 icosahedral symmetry with other members of the Parvoviridae family, it has been suggested that the fivefold channel of the human parvovirus B19 VP2 capsids is closed at its outside end. To investigate the possibility of placing a relatively large protein moiety at this site of B19, fluorescent virus-like particles (fVLPs) of B19 were developed. The enhanced green fluorescent protein (EGFP) was inserted at the N-terminus of the structural protein VP2 and assembly of fVLPs from this fusion protein was obtained. Electron microscopy revealed that these fluorescent protein complexes were very similar in size when compared to wild-type B19 virus. Further, fluorescence correlation spectroscopy showed that an average of nine EGFP domains were associated with these virus-like structures. Atomic force microscopy and immunoprecipitation studies showed that EGFP was displayed on the surface of these fVLPs. Confocal imaging indicated that these chimeric complexes were targeted to late endosomes when expressed in insect cells. The fVLPs were able to efficiently enter cancer cells and traffic to the nucleus via the microtubulus network. Finally, immunoglobulins present in human parvovirus B19 acute and past-immunity serum samples were able to detect antigenic epitopes present in these fVLPs. In summary, we have developed fluorescent virus-like nanoparticles displaying a large heterologous entity that should be of help to elucidate the mechanisms of infection and pathogenesis of human parvovirus B19. In addition, these B19 nanoparticles serve as a model in the development of targetable vehicles designed for delivery of biomolecules

  3. Pathogenicity Comparison Between the Kikwit and Makona Ebola Virus Variants in Rhesus Macaques.

    Science.gov (United States)

    Wong, Gary; Qiu, Xiangguo; de La Vega, Marc-Antoine; Fernando, Lisa; Wei, Haiyan; Bello, Alexander; Fausther-Bovendo, Hugues; Audet, Jonathan; Kroeker, Andrea; Kozak, Robert; Tran, Kaylie; He, Shihua; Tierney, Kevin; Soule, Geoff; Moffat, Estella; Günther, Stephan; Gao, George F; Strong, Jim; Embury-Hyatt, Carissa; Kobinger, Gary

    2016-10-15

    Enhanced virulence and/or transmission of West African Ebola virus (EBOV) variants, which are divergent from their Central African counterparts, are suspected to have contributed to the sizable toll of the recent Ebola virus disease (EVD) outbreak. This study evaluated the pathogenicity and shedding in rhesus macaques infected with 1 of 2 West African isolates (EBOV-C05 or EBOV-C07) or a Central African isolate (EBOV-K). All animals infected with EBOV-C05 or EBOV-C07 died of EVD, whereas 2 of 3 EBOV-K-infected animals died. The viremia level was elevated 10-fold in EBOV-C05-infected animals, compared with EBOV-C07- or EBOV-K-infected animals. More-severe lung pathology was observed in 2 of 6 EBOV-C05/C07-infected macaques. This is the first detailed analysis of the recently circulating EBOV-C05/C07 in direct comparison to EBOV-K with 6 animals per group, and it showed that EBOV-C05 but not EBOV-C07 can replicate at higher levels and cause more tissue damage in some animals. Increased virus shedding from individuals who are especially susceptible to EBOV replication is possibly one of the many challenges facing the community of healthcare and policy-making responders since the beginning of the outbreak. © Crown copyright 2016.

  4. How Ebola virus counters the interferon system.

    Science.gov (United States)

    Kühl, A; Pöhlmann, S

    2012-09-01

    Zoonotic transmission of Ebola virus (EBOV) to humans causes a severe haemorrhagic fever in afflicted individuals with high case-fatality rates. Neither vaccines nor therapeutics are at present available to combat EBOV infection, making the virus a potential threat to public health. To devise antiviral strategies, it is important to understand which components of the immune system could be effective against EBOV infection. The interferon (IFN) system constitutes a key innate defence against viral infections and prevents development of lethal disease in mice infected with EBOV strains not adapted to this host. Recent research revealed that expression of the host cell IFN-inducible transmembrane proteins 1-3 (IFITM1-3) and tetherin is induced by IFN and restricts EBOV infection, at least in cell culture model systems. IFITMs, tetherin and other effector molecules of the IFN system could thus pose a potent barrier against EBOV spread in humans. However, EBOV interferes with signalling events required for human cells to express these proteins. Here, we will review the strategies employed by EBOV to fight the IFN system, and we will discuss how IFITM proteins and tetherin inhibit EBOV infection. © 2012 Blackwell Verlag GmbH.

  5. Newly Discovered Ebola Virus Associated with Hemorrhagic Fever Outbreak in Uganda

    Science.gov (United States)

    Towner, Jonathan S.; Sealy, Tara K.; Khristova, Marina L.; Albariño, César G.; Conlan, Sean; Reeder, Serena A.; Quan, Phenix-Lan; Lipkin, W. Ian; Downing, Robert; Tappero, Jordan W.; Okware, Samuel; Lutwama, Julius; Bakamutumaho, Barnabas; Kayiwa, John; Comer, James A.; Rollin, Pierre E.; Ksiazek, Thomas G.; Nichol, Stuart T.

    2008-01-01

    Over the past 30 years, Zaire and Sudan ebolaviruses have been responsible for large hemorrhagic fever (HF) outbreaks with case fatalities ranging from 53% to 90%, while a third species, Côte d'Ivoire ebolavirus, caused a single non-fatal HF case. In November 2007, HF cases were reported in Bundibugyo District, Western Uganda. Laboratory investigation of the initial 29 suspect-case blood specimens by classic methods (antigen capture, IgM and IgG ELISA) and a recently developed random-primed pyrosequencing approach quickly identified this to be an Ebola HF outbreak associated with a newly discovered ebolavirus species (Bundibugyo ebolavirus) distantly related to the Côte d'Ivoire ebolavirus found in western Africa. Due to the sequence divergence of this new virus relative to all previously recognized ebolaviruses, these findings have important implications for design of future diagnostic assays to monitor Ebola HF disease in humans and animals, and ongoing efforts to develop effective antivirals and vaccines. PMID:19023410

  6. Ebola hemorrhagic fever associated with novel virus strain, Uganda, 2007-2008.

    Science.gov (United States)

    Wamala, Joseph F; Lukwago, Luswa; Malimbo, Mugagga; Nguku, Patrick; Yoti, Zabulon; Musenero, Monica; Amone, Jackson; Mbabazi, William; Nanyunja, Miriam; Zaramba, Sam; Opio, Alex; Lutwama, Julius J; Talisuna, Ambrose O; Okware, Sam I

    2010-07-01

    During August 2007-February 2008, the novel Bundibugyo ebolavirus species was identified during an outbreak of Ebola viral hemorrhagic fever in Bundibugyo district, western Uganda. To characterize the outbreak as a requisite for determining response, we instituted a case-series investigation. We identified 192 suspected cases, of which 42 (22%) were laboratory positive for the novel species; 74 (38%) were probable, and 77 (40%) were negative. Laboratory confirmation lagged behind outbreak verification by 3 months. Bundibugyo ebolavirus was less fatal (case-fatality rate 34%) than Ebola viruses that had caused previous outbreaks in the region, and most transmission was associated with handling of dead persons without appropriate protection (adjusted odds ratio 3.83, 95% confidence interval 1.78-8.23). Our study highlights the need for maintaining a high index of suspicion for viral hemorrhagic fevers among healthcare workers, building local capacity for laboratory confirmation of viral hemorrhagic fevers, and institutionalizing standard precautions.

  7. Preclinical Development and Production of Virus-Like Particles As Vaccine Candidates for Hepatitis C

    Directory of Open Access Journals (Sweden)

    Makutiro Ghislain Masavuli

    2017-12-01

    Full Text Available Hepatitis C Virus (HCV infects 2% of the world’s population and is the leading cause of liver disease and liver transplantation. It poses a serious and growing worldwide public health problem that will only be partially addressed with the introduction of new antiviral therapies. However, these treatments will not prevent re-infection particularly in high risk populations. The introduction of a HCV vaccine has been predicted, using simulation models in a high risk population, to have a significant effect on reducing the incidence of HCV. A vaccine with 50 to 80% efficacy targeted to high-risk intravenous drug users could dramatically reduce HCV incidence in this population. Virus like particles (VLPs are composed of viral structural proteins which self-assemble into non-infectious particles that lack genetic material and resemble native viruses. Thus, VLPs represent a safe and highly immunogenic vaccine delivery platform able to induce potent adaptive immune responses. Currently, many VLP-based vaccines have entered clinical trials, while licensed VLP vaccines for hepatitis B virus (HBV and human papilloma virus (HPV have been in use for many years. The HCV core, E1 and E2 proteins can self-assemble into immunogenic VLPs while inclusion of HCV antigens into heterogenous (chimeric VLPs is also a promising approach. These VLPs are produced using different expression systems such as bacterial, yeast, mammalian, plant, or insect cells. Here, this paper will review HCV VLP-based vaccines and their immunogenicity in animal models as well as the different expression systems used in their production.

  8. Knowledge, Attitude and Perception of Ebola Virus Disease among Secondary School Students in Ondo State, Nigeria, October, 2014

    OpenAIRE

    Ilesanmi, Olayinka; Alele, Faith Osaretin

    2016-01-01

    Introduction: The first case of Ebola Virus Disease (EVD) in Nigeria was imported on 20th July 2014, by an air traveller. On 8th August, 2014, WHO declared the Ebola outbreak in West Africa a Public Health Emergency of International Concern (PHEIC). This study aimed at assessing the knowledge, perception and attitude of secondary school students towards EVD and adopting disease preventive behaviour. Methods: A descriptive cross sectional study of 440 students from a mixed secondary school in ...

  9. Humanized Mouse Model of Ebola Virus Disease Mimics the Immune Responses in Human Disease.

    Science.gov (United States)

    Bird, Brian H; Spengler, Jessica R; Chakrabarti, Ayan K; Khristova, Marina L; Sealy, Tara K; Coleman-McCray, JoAnn D; Martin, Brock E; Dodd, Kimberly A; Goldsmith, Cynthia S; Sanders, Jeanine; Zaki, Sherif R; Nichol, Stuart T; Spiropoulou, Christina F

    2016-03-01

    Animal models recapitulating human Ebola virus disease (EVD) are critical for insights into virus pathogenesis. Ebola virus (EBOV) isolates derived directly from human specimens do not, without adaptation, cause disease in immunocompetent adult rodents. Here, we describe EVD in mice engrafted with human immune cells (hu-BLT). hu-BLT mice developed EVD following wild-type EBOV infection. Infection with high-dose EBOV resulted in rapid, lethal EVD with high viral loads, alterations in key human antiviral immune cytokines and chemokines, and severe histopathologic findings similar to those shown in the limited human postmortem data available. A dose- and donor-dependent clinical course was observed in hu-BLT mice infected with lower doses of either Mayinga (1976) or Makona (2014) isolates derived from human EBOV cases. Engraftment of the human cellular immune system appeared to be essential for the observed virulence, as nonengrafted mice did not support productive EBOV replication or develop lethal disease. hu-BLT mice offer a unique model for investigating the human immune response in EVD and an alternative animal model for EVD pathogenesis studies and therapeutic screening. Published by Oxford University Press for the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. Virus-Like-Vaccines against HIV.

    Science.gov (United States)

    Andersson, Anne-Marie C; Schwerdtfeger, Melanie; Holst, Peter J

    2018-02-11

    Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (VLP) vaccines have emerged as potent inducers of antibody and helper T cell responses, while replication-deficient viral vectors have yielded potent cytotoxic T cell responses. Here, we review the emerging concept of merging these two technologies into virus-like-vaccines (VLVs) for the targeting of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production, is a distinct advantage over live-attenuated vaccines that must balance safety and immunogenicity. Previous studies have delivered VLVs encoded in modified Vaccinia Ankara vectors and we have developed the concept into a single-reading adenovirus-based technology capable of eliciting robust CD8⁺ and CD4⁺ T cells responses and trimer binding antibody responses. Such vaccines offer the potential to display the naturally produced immunogen directly and induce an integrated humoral and cellular immune response.

  11. Ebola: translational science considerations.

    Science.gov (United States)

    Chiappelli, Francesco; Bakhordarian, Andre; Thames, April D; Du, Angela M; Jan, Allison L; Nahcivan, Melissa; Nguyen, Mia T; Sama, Nateli; Manfrini, Ercolano; Piva, Francesco; Rocha, Rafael Malagoli; Maida, Carl A

    2015-01-16

    We are currently in the midst of the most aggressive and fulminating outbreak of Ebola-related disease, commonly referred to as "Ebola", ever recorded. In less than a year, the Ebola virus (EBOV, Zaire ebolavirus species) has infected over 10,000 people, indiscriminately of gender or age, with a fatality rate of about 50%. Whereas at its onset this Ebola outbreak was limited to three countries in West Africa (Guinea, where it was first reported in late March 2014, Liberia, where it has been most rampant in its capital city, Monrovia and other metropolitan cities, and Sierra Leone), cases were later reported in Nigeria, Mali and Senegal, as well as in Western Europe (i.e., Madrid, Spain) and the US (i.e., Dallas, Texas; New York City) by late October 2014. World and US health agencies declared that the current Ebola virus disease (EVD) outbreak has a strong likelihood of growing exponentially across the world before an effective vaccine, treatment or cure can be developed, tested, validated and distributed widely. In the meantime, the spread of the disease may rapidly evolve from an epidemics to a full-blown pandemic. The scientific and healthcare communities actively research and define an emerging kaleidoscope of knowledge about critical translational research parameters, including the virology of EBOV, the molecular biomarkers of the pathological manifestations of EVD, putative central nervous system involvement in EVD, and the cellular immune surveillance to EBOV, patient-centered anthropological and societal parameters of EVD, as well as translational effectiveness about novel putative patient-targeted vaccine and pharmaceutical interventions, which hold strong promise, if not hope, to curb this and future Ebola outbreaks. This work reviews and discusses the principal known facts about EBOV and EVD, and certain among the most interesting ongoing or future avenues of research in the field, including vaccination programs for the wild animal vectors of the virus

  12. Protection against Multiple Subtypes of Influenza Viruses by Virus-Like Particle Vaccines Based on a Hemagglutinin Conserved Epitope

    Directory of Open Access Journals (Sweden)

    Shaoheng Chen

    2015-01-01

    Full Text Available We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA trimmer, the long alpha helix (LAH, as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR of hepatitis B virus core protein (HBc, and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP. Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB* adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8 (H1N1. In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB* adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections.

  13. Clinical Chemistry of Patients With Ebola in Monrovia, Liberia.

    Science.gov (United States)

    de Wit, Emmie; Kramer, Shelby; Prescott, Joseph; Rosenke, Kyle; Falzarano, Darryl; Marzi, Andrea; Fischer, Robert J; Safronetz, David; Hoenen, Thomas; Groseth, Allison; van Doremalen, Neeltje; Bushmaker, Trenton; McNally, Kristin L; Feldmann, Friederike; Williamson, Brandi N; Best, Sonja M; Ebihara, Hideki; Damiani, Igor A C; Adamson, Brett; Zoon, Kathryn C; Nyenswah, Tolbert G; Bolay, Fatorma K; Massaquoi, Moses; Sprecher, Armand; Feldmann, Heinz; Munster, Vincent J

    2016-10-15

    The development of point-of-care clinical chemistry analyzers has enabled the implementation of these ancillary tests in field laboratories in resource-limited outbreak areas. The Eternal Love Winning Africa (ELWA) outbreak diagnostic laboratory, established in Monrovia, Liberia, to provide Ebola virus and Plasmodium spp. diagnostics during the Ebola epidemic, implemented clinical chemistry analyzers in December 2014. Clinical chemistry testing was performed for 68 patients in triage, including 12 patients infected with Ebola virus and 18 infected with Plasmodium spp. The main distinguishing feature in clinical chemistry of Ebola virus-infected patients was the elevation in alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and γ-glutamyltransferase levels and the decrease in calcium. The implementation of clinical chemistry is probably most helpful when the medical supportive care implemented at the Ebola treatment unit allows for correction of biochemistry derangements and on-site clinical chemistry analyzers can be used to monitor electrolyte balance. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. Ebola Virus Disease: Essential Public Health Principles for Clinicians

    Directory of Open Access Journals (Sweden)

    Kristi L. Koenig

    2014-11-01

    Full Text Available Ebola Virus Disease (EVD has become a public health emergency of international concern. The World Health Organization and Centers for Disease Control and Prevention have developed guidance to educate and inform healthcare workers and travelers worldwide. Symptoms of EVD include abrupt onset of fever, myalgias, and headache in the early phase, followed by vomiting, diarrhea and possible progression to hemorrhagic rash, life-threatening bleeding, and multi-organ failure in the later phase. The disease is not transmitted via airborne spread like influenza, but rather from person-to-person, or animal to person, via direct contact with bodily fluids or blood. It is crucial that emergency physicians be educated on disease presentation and how to generate a timely and accurate differential diagnosis that includes exotic diseases in the appropriate patient population. A patient should be evaluated for EVD when both suggestive symptoms, including unexplained hemorrhage, AND risk factors within 3 weeks prior, such as travel to an endemic area, direct handling of animals from outbreak areas, or ingestion of fruit or other uncooked foods contaminated with bat feces containing the virus are present. There are experimental therapies for treatment of EVD virus; however the mainstay of therapy is supportive care. Emergency department personnel on the frontlines must be prepared to rapidly identify and isolate febrile travelers if indicated. All healthcare workers involved in care of EVD patients should wear personal protective equipment. Despite the intense media focus on EVD rather than other threats, emergency physicians must master and follow essential public health principles for management of all infectious diseases. This includes not only identification and treatment of individuals, but also protection of healthcare workers and prevention of spread, keeping in mind the possibility of other more common disease processes. [West J Emerg Med. 2014;15(7:–0.

  15. Operational Research during the Ebola Emergency.

    LENUS (Irish Health Repository)

    Fitzpatrick, Gabriel

    2017-07-01

    Operational research aims to identify interventions, strategies, or tools that can enhance the quality, effectiveness, or coverage of programs where the research is taking place. Médecins Sans Frontières admitted ≈5,200 patients with confirmed Ebola virus disease during the Ebola outbreak in West Africa and from the beginning nested operational research within its emergency response. This research covered critical areas, such as understanding how the virus spreads, clinical trials, community perceptions, challenges within Ebola treatment centers, and negative effects on non-Ebola healthcare. Importantly, operational research questions were decided to a large extent by returning volunteers who had first-hand knowledge of the immediate issues facing teams in the field. Such a method is appropriate for an emergency medical organization. Many challenges were also identified while carrying out operational research across 3 different countries, including the basic need for collecting data in standardized format to enable comparison of findings among treatment centers.

  16. Evaluation of Ebola Virus Countermeasures in Guinea Pigs.

    Science.gov (United States)

    Marzi, Andrea

    2017-01-01

    Ebola virus (EBOV) pathology in humans remains incompletely understood; therefore, a number of rodent and nonhuman primate (NHP) models have been established to study the disease caused by this virus. While the macaque model most accurately recapitulates human disease, rodent models, which display only certain aspects of human disease but are more cost-effective, are widely used for initial screens during EBOV countermeasure development. In particular, mice and guinea pigs were among the first species used for the efficacy testing of EBOV vaccines and therapeutics. While mice have low predictive value, guinea pigs have proven to be a more reliable predictor for the evaluation of countermeasures in NHPs. In addition, guinea pigs are larger in size compared to mice, allowing for more frequent collection of blood samples at larger volumes. However, guinea pigs have the disadvantage that there is only a limited pool of immunological tools available to characterize host responses to vaccination, treatment and infection. In this chapter, the efficacy testing of an EBOV vaccine and a therapeutic in the guinea pig model are described.

  17. Treatment of Ebola Virus Infection With a Recombinant Inhibitor of Factor Vlla/Tissue Factor: A Study in Rhesus Monkeys

    National Research Council Canada - National Science Library

    Geisbert, Thomas W; Hensley, Lisa E; Jahrling, Peter B; Larsen, Tom; Geisbert, Joan B

    2003-01-01

    Infection with the Ebola virus induces overexpression of the procoagulant tissue factor in primate monocytes and macrophages, suggesting that inhibition of the tissue-factor pathway could ameliorate...

  18. Affinity selection of Nipah and Hendra virus-related vaccine candidates from a complex random peptide library displayed on bacteriophage virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Peabody, David S.; Chackerian, Bryce; Ashley, Carlee; Carnes, Eric; Negrete, Oscar

    2017-01-24

    The invention relates to virus-like particles of bacteriophage MS2 (MS2 VLPs) displaying peptide epitopes or peptide mimics of epitopes of Nipah Virus envelope glycoprotein that elicit an immune response against Nipah Virus upon vaccination of humans or animals. Affinity selection on Nipah Virus-neutralizing monoclonal antibodies using random sequence peptide libraries on MS2 VLPs selected peptides with sequence similarity to peptide sequences found within the envelope glycoprotein of Nipah itself, thus identifying the epitopes the antibodies recognize. The selected peptide sequences themselves are not necessarily identical in all respects to a sequence within Nipah Virus glycoprotein, and therefore may be referred to as epitope mimics VLPs displaying these epitope mimics can serve as vaccine. On the other hand, display of the corresponding wild-type sequence derived from Nipah Virus and corresponding to the epitope mapped by affinity selection, may also be used as a vaccine.

  19. Clinical Features of and Risk Factors for Fatal Ebola Virus Disease, Moyamba District, Sierra Leone, December 2014–February 2015

    Energy Technology Data Exchange (ETDEWEB)

    Haaskjold, Yngvar Lunde [Haukeland Univ. Hospital, Bergen (Norway); Bolkan, Hakon Angell [St. Olav Hospital, Trondheim (Norway); Krogh, Kurt Osthuus [St. Olav Hospital, Trondheim (Norway); Jongopi, James [Moyamba District Hospital (Sierra Leone); Lundeby, Karen Marie [Oslo Univ. Hospital (Norway); Mellesmo, Sindre [St. Olav Hospital, Trondheim (Norway); Garces, Pedro San Jose [Medicos del Mundo, Madrid (Spain); Josendal, Ola [Haukeland Univ. Hospital, Bergen (Norway); Opstad, Asmund [Haraldsplass Diaconal Hospital, Bergen (Norway); Svensen, Erling [Haukeland Univ. Hospital, Bergen (Norway); Univ. of Bergen (Norway); Fuentes, Luis Matias Zabala [Medicos del Mundo, Madrid (Spain); Kamara, Alfred Sandy [Moyamba District Hospital (Sierra Leone); Riera, Melchor [Hospital Son Espases, Palma de Mallorca (Spain); Izquierdo, Javier Arranz [Medicos del Mundo, Madrid (Spain); Inst. de Investigacion de Palma (Spain); Roberts, David P. [MRIGlobal, Rockville, MD (United States); Stamper, Paul D. [MRIGlobal, Rockville, MD (United States); Austin, Paula [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moosa, Alfredo J. [Moyamba District Hospital (Sierra Leone); Marke, Dennis [Moyamba District Hospital (Sierra Leone); Hassan, Shoaib [Public Health (Pakistan); Berg, Ase [Stavanger Univ. Hospital (Norway); Blomberg, Bjorn [Haukeland Univ. Hospital, Bergen (Norway); Univ. of Bergen (Norway)

    2016-09-01

    The current outbreak of Ebola virus disease (EVD) in West Africa has infected more than 28,000 people, killed more than 11,000 and disrupted social life. We studied retrospectively the clinical presentation and risk factors for fatal outcome among the 31 Ebola virus (EBV) positive patients admitted to the Ebola Treatment Center (ETC) in Moyamba District, Sierra Leone. We found a higher rate of bleeding manifestations than reported elsewhere during the current outbreak. Significant predictors for fatal outcome were shorter time from onset to admission, male sex, high viral load on initial lab test, severe pain, diarrhea, bloody stools, and development of other bleeding manifestations during hospital admission. Awareness of risk factors for fatal outcome could be used to identify patients in need of more intensive medical support. The lack of fever in as much as a third of EVD cases may have implications for temperature screening practices and case definitions.

  20. Production of FMDV virus-like particles by a SUMO fusion protein approach in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Liang Shu-Mei

    2009-08-01

    Full Text Available Abstract Virus-like particles (VLPs are formed by the self-assembly of envelope and/or capsid proteins from many viruses. Some VLPs have been proven successful as vaccines, and others have recently found applications as carriers for foreign antigens or as scaffolds in nanoparticle biotechnology. However, production of VLP was usually impeded due to low water-solubility of recombinant virus capsid proteins. Previous studies revealed that virus capsid and envelope proteins were often posttranslationally modified by SUMO in vivo, leading into a hypothesis that SUMO modification might be a common mechanism for virus proteins to retain water-solubility or prevent improper self-aggregation before virus assembly. We then propose a simple approach to produce VLPs of viruses, e.g., foot-and-mouth disease virus (FMDV. An improved SUMO fusion protein system we developed recently was applied to the simultaneous expression of three capsid proteins of FMDV in E. coli. The three SUMO fusion proteins formed a stable heterotrimeric complex. Proteolytic removal of SUMO moieties from the ternary complexes resulted in VLPs with size and shape resembling the authentic FMDV. The method described here can also apply to produce capsid/envelope protein complexes or VLPs of other disease-causing viruses.