WorldWideScience

Sample records for ebn1 pathway regulation

  1. Novel protein regulates ERK pathway

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The ERK (extracellular signal-regulated kinase) pathway plays a critical role in the vital processes of living cells such as proliferation and differentiation.Recently, CAS scientists in Shanghai have discovered a novel mechanism of spatial regulation on ERK pathway. The result was published in the 4 September issue of the Proceedings of National Academy of Sciences(PNAS).

  2. Multiple pathways regulate shoot branching

    Directory of Open Access Journals (Sweden)

    Catherine eRameau

    2015-01-01

    Full Text Available Shoot branching patterns result from the spatio-temporal regulation of axillary bud outgrowth. Numerous endogenous, developmental and environmental factors are integrated at the bud and plant levels to determine numbers of growing shoots. Multiple pathways that converge to common integrators are most probably involved. We propose several pathways involving not only the classical hormones auxin, cytokinins and strigolactones, but also other signals with a strong influence on shoot branching such as gibberellins, sugars or molecular actors of plant phase transition. We also deal with recent findings about the molecular mechanisms and the pathway involved in the response to shade as an example of an environmental signal controlling branching. We propose the TCP transcription factor TB1/BRC1 and the polar auxin transport stream in the stem as possible integrators of these pathways. We finally discuss how modeling can help to represent this highly dynamic system by articulating knowledges and hypothesis and calculating the phenotype properties they imply.

  3. DMPD: Regulation of mitochondrial antiviral signaling pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18549796 Regulation of mitochondrial antiviral signaling pathways. Moore CB, Ting J...P. Immunity. 2008 Jun;28(6):735-9. (.png) (.svg) (.html) (.csml) Show Regulation of mitochondrial antiviral ...signaling pathways. PubmedID 18549796 Title Regulation of mitochondrial antiviral signaling pathways. Author

  4. [Pathways of flowering regulation in plants].

    Science.gov (United States)

    Liu, Yongping; Yang, Jing; Yang, Mingfeng

    2015-11-01

    Flowering, the floral transition from vegetative growth to reproductive growth, is induced by diverse endogenous and exogenous cues, such as photoperiod, temperature, hormones and age. Precise flowering time is critical to plant growth and evolution of species. The numerous renewal molecular and genetic results have revealed five flowering time pathways, including classical photoperiod pathway, vernalization pathway, autonomous pathway, gibberellins (GA) pathway and newly identified age pathway. These pathways take on relatively independent role, and involve extensive crosstalks and feedback loops. This review describes the complicated regulatory network of this floral transition to understand the molecular mechanism of flowering and provide references for further research in more plants.

  5. Master regulators, regulatory networks, and pathways of glioblastoma subtypes.

    Science.gov (United States)

    Bozdag, Serdar; Li, Aiguo; Baysan, Mehmet; Fine, Howard A

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor. GBM samples are classified into subtypes based on their transcriptomic and epigenetic profiles. Despite numerous studies to better characterize GBM biology, a comprehensive study to identify GBM subtype- specific master regulators, gene regulatory networks, and pathways is missing. Here, we used FastMEDUSA to compute master regulators and gene regulatory networks for each GBM subtype. We also ran Gene Set Enrichment Analysis and Ingenuity Pathway Analysis on GBM expression dataset from The Cancer Genome Atlas Project to compute GBM- and GBM subtype-specific pathways. Our analysis was able to recover some of the known master regulators and pathways in GBM as well as some putative novel regulators and pathways, which will aide in our understanding of the unique biology of GBM subtypes.

  6. Signaling pathways regulating murine pancreatic development

    DEFF Research Database (Denmark)

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...

  7. Signaling pathways regulating murine pancreatic development

    DEFF Research Database (Denmark)

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...

  8. Characterization of signal transduction pathways regulating myelopoiesis

    NARCIS (Netherlands)

    Geest, C.R.

    2009-01-01

    Studies have demonstrated that hematopoiesis requires coordinated expression of many genes that may directly or indirectly govern HSC and progenitor cell maintenance, lineage commitment, differentiation and mature blood cell function. Although it is evident that correct regulation of proliferation,

  9. BMP pathway regulation of and by macrophages.

    Directory of Open Access Journals (Sweden)

    Megha Talati

    Full Text Available Pulmonary arterial hypertension (PAH is a disease of progressively increasing pulmonary vascular resistance, associated with mutations of the type 2 receptor for the BMP pathway, BMPR2. The canonical signaling pathway for BMPR2 is through the SMAD family of transcription factors. BMPR2 is expressed in every cell type, but the impact of BMPR2 mutations affecting SMAD signaling, such as Bmpr2delx4+, had only previously been investigated in smooth muscle and endothelium. In the present study, we created a mouse with universal doxycycline-inducible expression of Bmpr2delx4+ in order to determine if broader expression had an impact relevant to the development of PAH. We found that the most obvious phenotype was a dramatic, but patchy, increase in pulmonary inflammation. We crossed these double transgenic mice onto an NF-κB reporter strain, and by luciferase assays on live mice, individual organs and isolated macrophages, we narrowed down the origin of the inflammatory phenotype to constitutive activation of tissue macrophages. Study of bone marrow-derived macrophages from mutant and wild-type mice suggested a baseline difference in differentiation state in Bmpr2 mutants. When activated with LPS, both mutant and wild-type macrophages secrete BMP pathway inhibitors sufficient to suppress BMP pathway activity in smooth muscle cells (SMC treated with conditioned media. Functionally, co-culture with macrophages results in a BMP signaling-dependent increase in scratch closure in cultured SMC. We conclude that SMAD signaling through BMP is responsible, in part, for preventing macrophage activation in both live animals and in cells in culture, and that activated macrophages secrete BMP inhibitors in sufficient quantity to cause paracrine effect on vascular smooth muscle.

  10. The Hippo pathway regulates hematopoiesis in Drosophila melanogaster.

    Science.gov (United States)

    Milton, Claire C; Grusche, Felix A; Degoutin, Joffrey L; Yu, Eefang; Dai, Qi; Lai, Eric C; Harvey, Kieran F

    2014-11-17

    The Salvador-Warts-Hippo (Hippo) pathway is an evolutionarily conserved regulator of organ growth and cell fate. It performs these functions in epithelial and neural tissues of both insects and mammals, as well as in mammalian organs such as the liver and heart. Despite rapid advances in Hippo pathway research, a definitive role for this pathway in hematopoiesis has remained enigmatic. The hematopoietic compartments of Drosophila melanogaster and mammals possess several conserved features. D. melanogaster possess three types of hematopoietic cells that most closely resemble mammalian myeloid cells: plasmatocytes (macrophage-like cells), crystal cells (involved in wound healing), and lamellocytes (which encapsulate parasites). The proteins that control differentiation of these cells also control important blood lineage decisions in mammals. Here, we define the Hippo pathway as a key mediator of hematopoiesis by showing that it controls differentiation and proliferation of the two major types of D. melanogaster blood cells, plasmatocytes and crystal cells. In animals lacking the downstream Hippo pathway kinase Warts, lymph gland cells overproliferated, differentiated prematurely, and often adopted a mixed lineage fate. The Hippo pathway regulated crystal cell numbers by both cell-autonomous and non-cell-autonomous mechanisms. Yorkie and its partner transcription factor Scalloped were found to regulate transcription of the Runx family transcription factor Lozenge, which is a key regulator of crystal cell fate. Further, Yorkie or Scalloped hyperactivation induced ectopic crystal cells in a non-cell-autonomous and Notch-pathway-dependent fashion.

  11. Metabolic pathways regulated by p63.

    Science.gov (United States)

    Candi, Eleonora; Smirnov, Artem; Panatta, Emanuele; Lena, Anna Maria; Novelli, Flavia; Mancini, Mara; Viticchiè, Giuditta; Piro, Maria Cristina; Di Daniele, Nicola; Annicchiarico-Petruzzelli, Margherita; Melino, Gerry

    2017-01-15

    The transcription factor p63 belongs to the p53-family and is a master regulator of proliferative potential, lineage specification, and differentiation in epithelia during development and tissue homeostasis. In cancer, p63 contribution is isoform-specific, with both oncogenic and tumour suppressive roles attributed, for ΔNp63 and TAp63, respectively. Recently, p53 and TAp73, in line with other tumour suppressor genes, have emerged as important regulators of energy metabolism and metabolic reprogramming in cancer. To date, p63 contributions in controlling energy metabolism have been partially investigated; given the extensive interaction of the p53 family members, these studies have potential implications in tumour cells for metabolic reprogramming. Here, we review the role of p63 isoforms, TAp63 and ΔNp63, in controlling cell metabolism, focusing on their specific metabolic target genes and their physiological/functional context of action. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Physiological regulation of NEFA availability: lipolysis pathway.

    Science.gov (United States)

    Stich, V; Berlan, M

    2004-05-01

    Plasma NEFA are an important energy substrate and, furthermore, play a key role in the induction of insulin resistance in the body. The availability of NEFA is determined predominantly by their mobilization from adipose tissue triacylglycerol stores by the process of lipolysis. Adipose tissue lipolysis in man is regulated by a number of hormonal and paracrine and/or autocrine signals. The main hormonal signals may be represented by catecholamines, insulin, growth hormone, natriuretic peptides and some adipocytokines. The absolute levels and relative importance and contribution of these signals vary in different physiological situations, with diet and physical exercise being the main physiological variables that affect the hormonal signalling. Thus, modulations in hormonal signals induce an increase in NEFA mobilization in the post-absorptive state and during an acute bout of exercise, and suppress NEFA mobilization in the postprandial state. In addition, hormonal regulation is modified by long-term interventions in energy balance, such as dietary restriction and/or physical training, and is disturbed in some pathological states, such as obesity or diabetes. The question that remains is whether disturbances in lipolysis regulation in obese and diabetic subjects may be 'corrected' by the long-term interventions in diet and physical activity.

  13. Profiling of molecular pathways regulated by microRNA 601.

    Science.gov (United States)

    Ohdaira, Hiroaki; Nakagawa, Hiroki; Yoshida, Kenichi

    2009-12-01

    MicroRNAs (miRNAs) have been implicated in complex vertebrate developmental and pathological systems as a versatile class of molecules involved in the regulation of various biological processes and molecular pathways. To elucidate the role of miRNAs in human somatic cells, an understanding of the molecular framework regulated by individual miRNA is essential. In this study, we examined the effect of hsa-miR-601 on gene expression changes in human lung cancer cells A549. To achieve this, DNA microarray and global pathway analyses were performed on hsa-miR-601 introduced cells for two successive days. Gene ontology analysis revealed that the effect of hsa-miR-601 over-represented the negative regulation of translation/translational initiation, whereas GenMAPP analysis revealed that several characteristic pathways were changed in hsa-miR-601 introduced A549 cells compared to control short RNA introduced cells. Among them, up-regulation of actin cytoskeleton and down-regulation of Fas-induced apoptosis pathway occurred on two successive days after hsa-miR-601 introduction. Using a luciferase reporter assay, we also showed that hsa-miR-601 specifically repressed nuclear factor-kappaB (NF-kappaB) transcription factor-dependent reporter expression, a key component of the immune-oncogenesis pathway. These findings suggest that hsa-miR-601 could affect a variety of signaling pathways accompanying orchestrated gene expression changes. Our results argue that individual miRNAs affect complex regulation of cellular signaling pathways.

  14. Analyzing the regulation of metabolic pathways in human breast cancer

    Directory of Open Access Journals (Sweden)

    Schramm Gunnar

    2010-09-01

    Full Text Available Abstract Background Tumor therapy mainly attacks the metabolism to interfere the tumor's anabolism and signaling of proliferative second messengers. However, the metabolic demands of different cancers are very heterogeneous and depend on their origin of tissue, age, gender and other clinical parameters. We investigated tumor specific regulation in the metabolism of breast cancer. Methods For this, we mapped gene expression data from microarrays onto the corresponding enzymes and their metabolic reaction network. We used Haar Wavelet transforms on optimally arranged grid representations of metabolic pathways as a pattern recognition method to detect orchestrated regulation of neighboring enzymes in the network. Significant combined expression patterns were used to select metabolic pathways showing shifted regulation of the aggressive tumors. Results Besides up-regulation for energy production and nucleotide anabolism, we found an interesting cellular switch in the interplay of biosynthesis of steroids and bile acids. The biosynthesis of steroids was up-regulated for estrogen synthesis which is needed for proliferative signaling in breast cancer. In turn, the decomposition of steroid precursors was blocked by down-regulation of the bile acid pathway. Conclusion We applied an intelligent pattern recognition method for analyzing the regulation of metabolism and elucidated substantial regulation of human breast cancer at the interplay of cholesterol biosynthesis and bile acid metabolism pointing to specific breast cancer treatment.

  15. The N-end rule pathway and regulation by proteolysis

    Science.gov (United States)

    Varshavsky, Alexander

    2011-01-01

    The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. Degradation signals (degrons) that are targeted by the N-end rule pathway include a set called N-degrons. The main determinant of an N-degron is a destabilizing N-terminal residue of a protein. In eukaryotes, the N-end rule pathway is a part of the ubiquitin system and consists of two branches, the Ac/N-end rule and the Arg/N-end rule pathways. The Ac/N-end rule pathway targets proteins containing Nα-terminally acetylated (Nt-acetylated) residues. The Arg/N-end rule pathway recognizes unacetylated N-terminal residues and involves N-terminal arginylation. Together, these branches target for degradation a majority of cellular proteins. For example, more than 80% of human proteins are cotranslationally Nt-acetylated. Thus, most proteins harbor a specific degradation signal, termed AcN-degron, from the moment of their birth. Specific N-end rule pathways are also present in prokaryotes and in mitochondria. Enzymes that produce N-degrons include methionine-aminopeptidases, caspases, calpains, Nt-acetylases, Nt-amidases, arginyl-transferases, and leucyl-transferases. Regulated degradation of specific proteins by the N-end rule pathway mediates a legion of physiological functions, including the sensing of heme, oxygen, and nitric oxide; selective elimination of misfolded proteins; the regulation of DNA repair, segregation, and condensation; the signaling by G proteins; the regulation of peptide import, fat metabolism, viral and bacterial infections, apoptosis, meiosis, spermatogenesis, neurogenesis, and cardiovascular development; and the functioning of adult organs, including the pancreas and the brain. Discovered 25 years ago, this pathway continues to be a fount of biological insights. PMID:21633985

  16. The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis

    Science.gov (United States)

    Seo, Eunjeong; Kim, Wan-Young; Hur, Jeongmi; Kim, Hanbyul; Nam, Sun Ah; Choi, Arum; Kim, Yu-Mi; Park, Sang Hee; Chung, Chaeuk; Kim, Jin; Min, Soohong; Myung, Seung-Jae; Lim, Dae-Sik; Kim, Yong Kyun

    2016-01-01

    Renal tubulointerstitial fibrosis (TIF) is the final pathway of various renal injuries that result in chronic kidney disease. The mammalian Hippo-Salvador signaling pathway has been implicated in the regulation of cell proliferation, cell death, tissue regeneration, and tumorigenesis. Here, we report that the Hippo-Salvador pathway plays a role in disease development in patients with TIF and in a mouse model of TIF. Mice with tubular epithelial cell (TEC)-specific deletions of Sav1 (Salvador homolog 1) exhibited aggravated renal TIF, enhanced epithelial-mesenchymal transition-like phenotypic changes, apoptosis, and proliferation after unilateral ureteral obstruction (UUO). Moreover, Sav1 depletion in TECs increased transforming growth factor (TGF)-β and activated β-catenin expression after UUO, which likely accounts for the abovementioned enhanced TEC fibrotic phenotype. In addition, TAZ (transcriptional coactivator with PDZ-binding motif), a major downstream effector of the Hippo pathway, was significantly activated in Sav1-knockout mice in vivo. An in vitro study showed that TAZ directly regulates TGF-β and TGF-β receptor II expression. Collectively, our data indicate that the Hippo-Salvador pathway plays a role in the pathogenesis of TIF and that regulating this pathway may be a therapeutic strategy for reducing TIF. PMID:27550469

  17. The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis.

    Science.gov (United States)

    Seo, Eunjeong; Kim, Wan-Young; Hur, Jeongmi; Kim, Hanbyul; Nam, Sun Ah; Choi, Arum; Kim, Yu-Mi; Park, Sang Hee; Chung, Chaeuk; Kim, Jin; Min, Soohong; Myung, Seung-Jae; Lim, Dae-Sik; Kim, Yong Kyun

    2016-08-23

    Renal tubulointerstitial fibrosis (TIF) is the final pathway of various renal injuries that result in chronic kidney disease. The mammalian Hippo-Salvador signaling pathway has been implicated in the regulation of cell proliferation, cell death, tissue regeneration, and tumorigenesis. Here, we report that the Hippo-Salvador pathway plays a role in disease development in patients with TIF and in a mouse model of TIF. Mice with tubular epithelial cell (TEC)-specific deletions of Sav1 (Salvador homolog 1) exhibited aggravated renal TIF, enhanced epithelial-mesenchymal transition-like phenotypic changes, apoptosis, and proliferation after unilateral ureteral obstruction (UUO). Moreover, Sav1 depletion in TECs increased transforming growth factor (TGF)-β and activated β-catenin expression after UUO, which likely accounts for the abovementioned enhanced TEC fibrotic phenotype. In addition, TAZ (transcriptional coactivator with PDZ-binding motif), a major downstream effector of the Hippo pathway, was significantly activated in Sav1-knockout mice in vivo. An in vitro study showed that TAZ directly regulates TGF-β and TGF-β receptor II expression. Collectively, our data indicate that the Hippo-Salvador pathway plays a role in the pathogenesis of TIF and that regulating this pathway may be a therapeutic strategy for reducing TIF.

  18. Feedback Regulation of Kinase Signaling Pathways by AREs and GREs.

    Science.gov (United States)

    Vlasova-St Louis, Irina; Bohjanen, Paul R

    2016-01-25

    In response to environmental signals, kinases phosphorylate numerous proteins, including RNA-binding proteins such as the AU-rich element (ARE) binding proteins, and the GU-rich element (GRE) binding proteins. Posttranslational modifications of these proteins lead to a significant changes in the abundance of target mRNAs, and affect gene expression during cellular activation, proliferation, and stress responses. In this review, we summarize the effect of phosphorylation on the function of ARE-binding proteins ZFP36 and ELAVL1 and the GRE-binding protein CELF1. The networks of target mRNAs that these proteins bind and regulate include transcripts encoding kinases and kinase signaling pathways (KSP) components. Thus, kinase signaling pathways are involved in feedback regulation, whereby kinases regulate RNA-binding proteins that subsequently regulate mRNA stability of ARE- or GRE-containing transcripts that encode components of KSP.

  19. Feedback Regulation of Kinase Signaling Pathways by AREs and GREs

    Directory of Open Access Journals (Sweden)

    Irina Vlasova-St. Louis

    2016-01-01

    Full Text Available In response to environmental signals, kinases phosphorylate numerous proteins, including RNA-binding proteins such as the AU-rich element (ARE binding proteins, and the GU-rich element (GRE binding proteins. Posttranslational modifications of these proteins lead to a significant changes in the abundance of target mRNAs, and affect gene expression during cellular activation, proliferation, and stress responses. In this review, we summarize the effect of phosphorylation on the function of ARE-binding proteins ZFP36 and ELAVL1 and the GRE-binding protein CELF1. The networks of target mRNAs that these proteins bind and regulate include transcripts encoding kinases and kinase signaling pathways (KSP components. Thus, kinase signaling pathways are involved in feedback regulation, whereby kinases regulate RNA-binding proteins that subsequently regulate mRNA stability of ARE- or GRE-containing transcripts that encode components of KSP.

  20. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  1. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  2. Estrogen receptors regulate innate immune cells and signaling pathways.

    Science.gov (United States)

    Kovats, Susan

    2015-04-01

    Humans show strong sex differences in immunity to infection and autoimmunity, suggesting sex hormones modulate immune responses. Indeed, receptors for estrogens (ERs) regulate cells and pathways in the innate and adaptive immune system, as well as immune cell development. ERs are ligand-dependent transcription factors that mediate long-range chromatin interactions and form complexes at gene regulatory elements, thus promoting epigenetic changes and transcription. ERs also participate in membrane-initiated steroid signaling to generate rapid responses. Estradiol and ER activity show profound dose- and context-dependent effects on innate immune signaling pathways and myeloid cell development. While estradiol most often promotes the production of type I interferon, innate pathways leading to pro-inflammatory cytokine production may be enhanced or dampened by ER activity. Regulation of innate immune cells and signaling by ERs may contribute to the reported sex differences in innate immune pathways. Here we review the recent literature and highlight several molecular mechanisms by which ERs regulate the development or functional responses of innate immune cells.

  3. DMPD: When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18631453 When signaling pathways collide: positive and negative regulation of toll-...l) Show When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transd...uction. PubmedID 18631453 Title When signaling pathways collide: positive and neg

  4. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Ting; Ding, Jing-Ya [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Li, Ming-Yang [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yeh, Tien-Shun [Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Wang, Tsu-Wei, E-mail: twwang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yu, Jenn-Yah, E-mail: jyyu@ym.edu.tw [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  5. Protein Kinases of the Hippo Pathway: Regulation and Substrates

    Science.gov (United States)

    Avruch, Joseph; Zhou, Dawang; Fitamant, Julien; Bardeesy, Nabeel; Mou, Fan; Barrufet, Laura Regué

    2012-01-01

    The “Hippo” signaling pathway has emerged as a major regulator of cell proliferation and survival in metazoans. The pathway, as delineated by genetic and biochemical studies in Drosophila, consists of a kinase cascade regulated by cell-cell contact and cell polarity that inhibits the transcriptional coactivator Yorkie and its proliferative, anti-differentiation, antiapoptotic transcriptional program. The core pathway components are the GC kinase Hippo, which phosphorylates the noncatalytic polypeptide Mats/Mob1 and, with the assistance of the scaffold protein Salvador, phosphorylates the ndr-family kinase Lats. In turn phospho-Lats, after binding to phospho-Mats, autoactivates and phosphorylates Yorkie, resulting in its nuclear exit. Hippo also uses the scaffold protein Furry and a different Mob protein to control another ndr-like kinase, the morphogenetic regulator Tricornered. Architecturally homologous kinase cascades consisting of a GC kinase, a Mob protein, a scaffolding polypeptide and an ndr-like kinase are well described in yeast; in S. cerevisiae e.g., the MEN pathway promotes mitotic exit whereas the RAM network, using a different GC kinase, Mob protein, scaffold and ndr-like kinase, regulates cell polarity and morphogenesis. In mammals, the Hippo orthologues Mst1 and Mst2 utilize the Salvador ortholog WW45/Sav1 and other scaffolds to regulate the kinases Lats1/Lats2 and ndr1/ndr2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively regulate the Yorkie ortholog YAP in the epithelial cells of the liver and gut; loss of both Mst1 and Mst2 results in hyperproliferation and tumorigenesis that can be largely negated by reduction or elimination of YAP. Despite this conservation, considerable diversification in pathway composition and regulation is already evident; in skin e.g., YAP phosphorylation is independent of Mst1Mst2 and Lats1Lats2. Moreover, in lymphoid cells, Mst1/Mst2, under the control of the Rap1 GTPase and independent of YAP

  6. Kinase/phosphatase overexpression reveals pathways regulating hippocampal neuron morphology.

    Science.gov (United States)

    Buchser, William J; Slepak, Tatiana I; Gutierrez-Arenas, Omar; Bixby, John L; Lemmon, Vance P

    2010-07-01

    Development and regeneration of the nervous system requires the precise formation of axons and dendrites. Kinases and phosphatases are pervasive regulators of cellular function and have been implicated in controlling axodendritic development and regeneration. We undertook a gain-of-function analysis to determine the functions of kinases and phosphatases in the regulation of neuron morphology. Over 300 kinases and 124 esterases and phosphatases were studied by high-content analysis of rat hippocampal neurons. Proteins previously implicated in neurite growth, such as ERK1, GSK3, EphA8, FGFR, PI3K, PKC, p38, and PP1a, were confirmed to have effects in our functional assays. We also identified novel positive and negative neurite growth regulators. These include neuronal-developmentally regulated kinases such as the activin receptor, interferon regulatory factor 6 (IRF6) and neural leucine-rich repeat 1 (LRRN1). The protein kinase N2 (PKN2) and choline kinase alpha (CHKA) kinases, and the phosphatases PPEF2 and SMPD1, have little or no established functions in neuronal function, but were sufficient to promote neurite growth. In addition, pathway analysis revealed that members of signaling pathways involved in cancer progression and axis formation enhanced neurite outgrowth, whereas cytokine-related pathways significantly inhibited neurite formation.

  7. Regulation of the Hippo Pathway Transcription Factor TEAD.

    Science.gov (United States)

    Lin, Kimberly C; Park, Hyun Woo; Guan, Kun-Liang

    2017-09-27

    The TEAD transcription factor family is best known for transcriptional output of the Hippo signaling pathway and has been implicated in processes such as development, cell growth and proliferation, tissue homeostasis, and regeneration. Our understanding of the functional importance of TEADs has increased dramatically since its initial discovery three decades ago. The majority of our knowledge of TEADs is in the context of Hippo signaling as nuclear DNA-binding proteins passively activated by Yes-associated protein (YAP) and transcriptional activator with PDZ-binding domain (TAZ), transcription coactivators downstream of the Hippo pathway. However, recent studies suggest that TEAD itself is actively regulated. Here, we highlight evidence demonstrating Hippo-independent regulation of TEADs and the potential impacts these studies may have on new cancer therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity

    Directory of Open Access Journals (Sweden)

    Lama Tarayrah

    2015-11-01

    Full Text Available Signaling pathways and epigenetic mechanisms have both been shown to play essential roles in regulating stem cell activity. While the role of either mechanism in this regulation is well established in multiple stem cell lineages, how the two mechanisms interact to regulate stem cell activity is not as well understood. Here we report that in the Drosophila testis, an H3K4me3-specific histone demethylase encoded by little imaginal discs (lid maintains germline stem cell (GSC mitotic index and prevents GSC premature differentiation. Lid is required in germ cells for proper expression of the Stat92E transcription factor, the downstream effector of the Janus kinase signal transducer and activator of transcription (JAK-STAT signaling pathway. Our findings support a germ cell autonomous role for the JAK-STAT pathway in maintaining GSCs and place Lid as an upstream regulator of this pathway. Our study provides new insights into the biological functions of a histone demethylase in vivo and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities.

  9. New insights into transduction pathways that regulate boar sperm function.

    Science.gov (United States)

    Hurtado de Llera, A; Martin-Hidalgo, D; Gil, M C; Garcia-Marin, L J; Bragado, M J

    2016-01-01

    Detailed molecular mechanisms mediating signal transduction cascades that regulate boar sperm function involving Ser/Thr and tyrosine phosphorylation of proteins have been reviewed previously. Therefore, this review will focus in those kinase pathways identified recently (boar spermatozoa that regulate different functional spermatozoa processes. AMP-activated protein kinase (AMPK) is a cell energy sensor kinase that was first identified in mammalian spermatozoa in 2012, and since then it has emerged as an essential regulator of boar sperm function. Signaling pathways leading to AMPK activation in boar sperm are highlighted in this review (PKA, CaMKKα/β, and PKC as well as Ca(2+) and cAMP messengers as upstream regulators). Interestingly, stimuli considered as cell stress (hyperosmotic stress, inhibition of mitochondrial activity, absence of intracellular Ca(2+)) markedly activate AMPK in boar spermatozoa. Moreover, AMPK plays a remarkable and necessary regulatory role in mammalian sperm function, controlling essential boar sperm functional processes such as motility, viability, mitochondrial membrane potential, organization and fluidity of plasma membrane, and outer acrosome membrane integrity. These mentioned processes are all required under fluctuating environment of spermatozoa when transiting through the female reproductive tract to achieve fertilization. An applied role of AMPK in artificial insemination techniques is also suggested as during boar seminal doses preservation at 17 °C, physiological levels of AMPK activity markedly increase (maximum on Day 7) and result essential to maintain the aforementioned fundamental sperm processes. Moreover, regulation of sperm function exerted by the glycogen synthase kinase 3 and Src family kinase pathways is summarized.

  10. [Central regulation of body temperature by RANKL/RANK pathway].

    Science.gov (United States)

    Hanada, Reiko; Penninger, Josef M

    2011-08-01

    Receptor-activator of NF-κB ligand (RANKL) and its specific receptor RANK are key regulators of bone remodeling, lymph node formation, establishment of the thymic microenviroment, mammary gland development during pregnancy, bone metastasis in cancer and sex-hormone, progestin, -driven breast cancer. RANKL and RANK are also expressed in the central nervous systems (CNS) especially existed in the main region of thermoregulation. Central RANKL injection to the rodents induces fever via PGE(2)/EP3R pathway. This pathway is related with inflammation related fever. On the other hand, female mice with RANK gene deletion in neuron and astrocytes show increased their basal body temperature at the dark phase, which suggests RANKL/RANK system also regulates physiological thremoregulation in female. Not only in rodents but also in human, two children with a homozygous RANK mutation exhibit an abrogated fever response in pneumonia compare with the age-matched children with pneumonia. Thus, the central RANKL/RANK pathway has an important role for thermoregulation.

  11. Regulation of the pentose phosphate pathway in cancer.

    Science.gov (United States)

    Jiang, Peng; Du, Wenjing; Wu, Mian

    2014-01-01

    Energy metabolism is significantly reprogrammed in many human cancers, and these alterations confer many advantages to cancer cells, including the promotion of biosynthesis, ATP generation, detoxification and support of rapid proliferation. The pentose phosphate pathway (PPP) is a major pathway for glucose catabolism. The PPP directs glucose flux to its oxidative branch and produces a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), an essential reductant in anabolic processes. It has become clear that the PPP plays a critical role in regulating cancer cell growth by supplying cells with not only ribose-5-phosphate but also NADPH for detoxification of intracellular reactive oxygen species, reductive biosynthesis and ribose biogenesis. Thus, alteration of the PPP contributes directly to cell proliferation, survival and senescence. Furthermore, recent studies have shown that the PPP is regulated oncogenically and/or metabolically by numerous factors, including tumor suppressors, oncoproteins and intracellular metabolites. Dysregulation of PPP flux dramatically impacts cancer growth and survival. Therefore, a better understanding of how the PPP is reprogrammed and the mechanism underlying the balance between glycolysis and PPP flux in cancer will be valuable in developing therapeutic strategies targeting this pathway.

  12. Copper as a key regulator of cell signalling pathways.

    Science.gov (United States)

    Grubman, Alexandra; White, Anthony R

    2014-05-22

    Copper is an essential element in many biological processes. The critical functions associated with copper have resulted from evolutionary harnessing of its potent redox activity. This same property also places copper in a unique role as a key modulator of cell signal transduction pathways. These pathways are the complex sequence of molecular interactions that drive all cellular mechanisms and are often associated with the interplay of key enzymes including kinases and phosphatases but also including intracellular changes in pools of smaller molecules. A growing body of evidence is beginning to delineate the how, when and where of copper-mediated control over cell signal transduction. This has been driven by research demonstrating critical changes to copper homeostasis in many disorders including cancer and neurodegeneration and therapeutic potential through control of disease-associated cell signalling changes by modulation of copper-protein interactions. This timely review brings together for the first time the diverse actions of copper as a key regulator of cell signalling pathways and discusses the potential strategies for controlling disease-associated signalling processes using copper modulators. It is hoped that this review will provide a valuable insight into copper as a key signal regulator and stimulate further research to promote our understanding of copper in disease and therapy.

  13. Planar cell polarity pathway regulates nephrin endocytosis in developing podocytes.

    Science.gov (United States)

    Babayeva, Sima; Rocque, Brittany; Aoudjit, Lamine; Zilber, Yulia; Li, Jane; Baldwin, Cindy; Kawachi, Hiroshi; Takano, Tomoko; Torban, Elena

    2013-08-16

    The noncanonical Wnt/planar cell polarity (PCP) pathway controls a variety of cell behaviors such as polarized protrusive cell activity, directional cell movement, and oriented cell division and is crucial for the normal development of many tissues. Mutations in the PCP genes cause malformation in multiple organs. Recently, the PCP pathway was shown to control endocytosis of PCP and non-PCP proteins necessary for cell shape remodeling and formation of specific junctional protein complexes. During formation of the renal glomerulus, the glomerular capillary becomes enveloped by highly specialized epithelial cells, podocytes, that display unique architecture and are connected via specialized cell-cell junctions (slit diaphragms) that restrict passage of protein into the urine; podocyte differentiation requires active remodeling of cytoskeleton and junctional protein complexes. We report here that in cultured human podocytes, activation of the PCP pathway significantly stimulates endocytosis of the core slit diaphragm protein, nephrin, via a clathrin/β-arrestin-dependent endocytic route. In contrast, depletion of the PCP protein Vangl2 leads to an increase of nephrin at the cell surface; loss of Vangl2 functions in Looptail mice results in disturbed glomerular maturation. We propose that the PCP pathway contributes to podocyte development by regulating nephrin turnover during junctional remodeling as the cells differentiate.

  14. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation.

    Science.gov (United States)

    Kobayashi, Tatsuya; Lu, Jun; Cobb, Bradley S; Rodda, Stephen J; McMahon, Andrew P; Schipani, Ernestina; Merkenschlager, Matthias; Kronenberg, Henry M

    2008-02-12

    Small noncoding RNAs, microRNAs (miRNAs), bind to messenger RNAs through base pairing to suppress gene expression. Despite accumulating evidence that miRNAs play critical roles in various biological processes across diverse organisms, their roles in mammalian skeletal development have not been demonstrated. Here, we show that Dicer, an essential component for biogenesis of miRNAs, is essential for normal skeletal development. Dicer-null growth plates show a progressive reduction in the proliferating pool of chondrocytes, leading to severe skeletal growth defects and premature death of mice. The reduction of proliferating chondrocytes in Dicer-null growth plates is caused by two distinct mechanisms: decreased chondrocyte proliferation and accelerated differentiation into postmitotic hypertrophic chondrocytes. These defects appear to be caused by mechanisms downstream or independent of the Ihh-PTHrP signaling pathway, a pivotal signaling system that regulates chondrocyte proliferation and differentiation. Microarray analysis of Dicer-null chondrocytes showed limited expression changes in miRNA-target genes, suggesting that, in the majority of cases, chondrocytic miRNAs do not directly regulate target RNA abundance. Our results demonstrate the critical role of the Dicer-dependent pathway in the regulation of chondrocyte proliferation and differentiation during skeletal development.

  15. Autopalmitoylation of TEAD Proteins Regulates Transcriptional Output of Hippo Pathway

    Science.gov (United States)

    Chan, PuiYee; Han, Xiao; Zheng, Baohui; DeRan, Michael; Yu, Jianzhong; Jarugumilli, Gopala K.; Deng, Hua; Pan, Duojia; Luo, Xuelian; Wu, Xu

    2016-01-01

    TEA domain (TEAD) transcription factors bind to the co-activator YAP/TAZ, and regulate the transcriptional output of Hippo pathway, playing critical roles in organ size control and tumorigenesis. Protein S-palmitoylation attaches fatty acid (palmitate) to cysteine residues, and regulates protein trafficking, membrane localization and signaling activities. Using activity-based chemical probes, we discovered that human TEADs possess intrinsic palmitoylating enzyme-like activities, and undergo autopalmitoylation at evolutionarily conserved cysteine residues under physiological conditions. We determined the crystal structures of lipid-bound TEADs, and found that the lipid chain of palmitate inserts into a conserved deep hydrophobic pocket. Strikingly, palmitoylation is required for TEAD’s binding to YAP/TAZ, but dispensable for the binding to Vgll4 tumor suppressor. In addition, palmitoylation does not alter TEAD’s localization. Moreover, TEAD palmitoylation-deficient mutants impaired TAZ-mediated muscle differentiation in vitro, and Yorkie-mediated tissue overgrowth in Drosophila in vivo. Our study directly linked autopalmitoylation to the transcriptional regulation of Hippo pathway. PMID:26900866

  16. Regulation of ribosomal DNA amplification by the TOR pathway.

    Science.gov (United States)

    Jack, Carmen V; Cruz, Cristina; Hull, Ryan M; Keller, Markus A; Ralser, Markus; Houseley, Jonathan

    2015-08-01

    Repeated regions are widespread in eukaryotic genomes, and key functional elements such as the ribosomal DNA tend to be formed of high copy repeated sequences organized in tandem arrays. In general, high copy repeats are remarkably stable, but a number of organisms display rapid ribosomal DNA amplification at specific times or under specific conditions. Here we demonstrate that target of rapamycin (TOR) signaling stimulates ribosomal DNA amplification in budding yeast, linking external nutrient availability to ribosomal DNA copy number. We show that ribosomal DNA amplification is regulated by three histone deacetylases: Sir2, Hst3, and Hst4. These enzymes control homologous recombination-dependent and nonhomologous recombination-dependent amplification pathways that act in concert to mediate rapid, directional ribosomal DNA copy number change. Amplification is completely repressed by rapamycin, an inhibitor of the nutrient-responsive TOR pathway; this effect is separable from growth rate and is mediated directly through Sir2, Hst3, and Hst4. Caloric restriction is known to up-regulate expression of nicotinamidase Pnc1, an enzyme that enhances Sir2, Hst3, and Hst4 activity. In contrast, normal glucose concentrations stretch the ribosome synthesis capacity of cells with low ribosomal DNA copy number, and we find that these cells show a previously unrecognized transcriptional response to caloric excess by reducing PNC1 expression. PNC1 down-regulation forms a key element in the control of ribosomal DNA amplification as overexpression of PNC1 substantially reduces ribosomal DNA amplification rate. Our results reveal how a signaling pathway can orchestrate specific genome changes and demonstrate that the copy number of repetitive DNA can be altered to suit environmental conditions.

  17. Regulation of DNA double-strand break repair pathway choice

    Institute of Scientific and Technical Information of China (English)

    Meena Shrivastav; Leyma P De Haro; Jac A Nickoloff

    2008-01-01

    DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including large- or small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources includ-ing reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1 (XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.

  18. DMPD: The negative regulation of Toll-like receptor and associated pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17621314 The negative regulation of Toll-like receptor and associated pathways. Lan...g T, Mansell A. Immunol Cell Biol. 2007 Aug-Sep;85(6):425-34. Epub 2007 Jul 10. (.png) (.svg) (.html) (.csml) Show The... negative regulation of Toll-like receptor and associated pathways. PubmedID 17621314 Title The ne

  19. Bioinformatic dissecting of TP53 regulation pathway underlying butyrate-induced histone modification in epigenetic regulation

    Science.gov (United States)

    Butyrate affects cell proliferation, differentiation and motility. Butyrate inhibits histone deacetylase (HDAC) activities and induces cell cycle arrest and apoptosis. TP53 is one of the most active upstream regulators discovered by IPA in our RNA sequencing data set. The TP53 signaling pathway pl...

  20. The Pentose Phosphate Pathway Regulates the Circadian Clock.

    Science.gov (United States)

    Rey, Guillaume; Valekunja, Utham K; Feeney, Kevin A; Wulund, Lisa; Milev, Nikolay B; Stangherlin, Alessandra; Ansel-Bollepalli, Laura; Velagapudi, Vidya; O'Neill, John S; Reddy, Akhilesh B

    2016-09-13

    The circadian clock is a ubiquitous timekeeping system that organizes the behavior and physiology of organisms over the day and night. Current models rely on transcriptional networks that coordinate circadian gene expression of thousands of transcripts. However, recent studies have uncovered phylogenetically conserved redox rhythms that can occur independently of transcriptional cycles. Here we identify the pentose phosphate pathway (PPP), a critical source of the redox cofactor NADPH, as an important regulator of redox and transcriptional oscillations. Our results show that genetic and pharmacological inhibition of the PPP prolongs the period of circadian rhythms in human cells, mouse tissues, and fruit flies. These metabolic manipulations also cause a remodeling of circadian gene expression programs that involves the circadian transcription factors BMAL1 and CLOCK, and the redox-sensitive transcription factor NRF2. Thus, the PPP regulates circadian rhythms via NADPH metabolism, suggesting a pivotal role for NADPH availability in circadian timekeeping.

  1. Regulation of the MAPK pathway by raf kinase inhibitory protein.

    Science.gov (United States)

    Vandamme, Drieke; Herrero, Ana; Al-Mulla, Fahd; Kolch, Walter

    2014-01-01

    The Raf kinase inhibitor protein 1 (RKIP-1) was the first reported endogenous inhibitor of Raf-1-MEK-ERK/MAPK cascade, by interfering with the phosphorylation of MEK by Raf-1. However, RKIP's functions related to the MAPK signaling are far more complex. Newer data indicate that by modulating different protein-protein interactions, RKIP is involved in fine-tuning cell signaling, modulating ERK dynamics, and regulating cross talk between different pathways. Here, we describe the molecular mechanisms by which RKIP controls MAPK signaling at different levels and vice versa and its regulation via feedback phosphorylation. We also focus on several discrepancies and questions that remain, such as the RKIP binding regulation by Raf-1 N-region phosphorylation, the possible B-Raf inhibition, and the effects of RKIP-lipid binding. We also describe how RKIP's role as key signaling modulator of many cell fate decisions leads to the fact that fine control of RKIP activity and regulation is crucial to avoid pathological processes, such as metastasis, pulmonary arterial hypertension, and heart failure.

  2. Integration of Shh and Wnt Signaling Pathways Regulating Hematopoiesis.

    Science.gov (United States)

    Zhou, Zhigang; Wan, Liping; Wang, Chun; Zhou, Kun

    2015-12-01

    To investigate the spatial and temporal programmed expression of Shh and Wnt members during key stages of definitive hematopoiesis and the possible mechanism of Shh and Wnt signaling pathways regulating the proliferation of hematopoietic progenitor cells (HPCs). Spatial and temporal programmed gene expression of Shh and Wnt signaling during hematopoiesis corresponded with c-kit(+)lin(-) HPCs proliferation. C-kit(+)Lin(-) populations derived from aorta-gonad-mesonephros (AGM) of Balb/c mice at E10.5 with increased expression of Shh and Wnt3a demonstrated a greater potential for proliferation. Additionally, supplementation with soluble Shh N-terminal peptide promoted the proliferation of c-kit(+)Lin(-) populations by activating the Wnt signaling pathway, an effect which was inhibited by blocking Shh signaling. A specific inhibitor of wnt signaling was capable of inhibiting Shh-induced proliferation in a similar manner to shh inhibitor. Our results provide valuable information on Shh and Wnt signaling involved in hematopoiesis and highlight the importance of interaction of Shh and Wnt signaling in regulating HPCs proliferation.

  3. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  4. Strigolactone regulates shoot development through a core signalling pathway

    Directory of Open Access Journals (Sweden)

    Tom Bennett

    2016-12-01

    Full Text Available Strigolactones are a recently identified class of hormone that regulate multiple aspects of plant development. The DWARF14 (D14 α/β fold protein has been identified as a strigolactone receptor, which can act through the SCFMAX2 ubiquitin ligase, but the universality of this mechanism is not clear. Multiple proteins have been suggested as targets for strigolactone signalling, including both direct proteolytic targets of SCFMAX2, and downstream targets. However, the relevance and importance of these proteins to strigolactone signalling in many cases has not been fully established. Here we assess the contribution of these targets to strigolactone signalling in adult shoot developmental responses. We find that all examined strigolactone responses are regulated by SCFMAX2 and D14, and not by other D14-like proteins. We further show that all examined strigolactone responses likely depend on degradation of SMXL proteins in the SMXL6 clade, and not on the other proposed proteolytic targets BES1 or DELLAs. Taken together, our results suggest that in the adult shoot, the dominant mode of strigolactone signalling is D14-initiated, MAX2-mediated degradation of SMXL6-related proteins. We confirm that the BRANCHED1 transcription factor and the PIN-FORMED1 auxin efflux carrier are plausible downstream targets of this pathway in the regulation of shoot branching, and show that BRC1 likely acts in parallel to PIN1.

  5. SIRT1 regulates MAPK pathways in vitiligo skin: insight into the molecular pathways of cell survival.

    Science.gov (United States)

    Becatti, Matteo; Fiorillo, Claudia; Barygina, Victoria; Cecchi, Cristina; Lotti, Torello; Prignano, Francesca; Silvestro, Agrippino; Nassi, Paolo; Taddei, Niccolò

    2014-03-01

    Vitiligo is an acquired and progressive hypomelanotic disease that manifests as circumscribed depigmented patches on the skin. The aetiology of vitiligo remains unclear, but recent experimental data underline the interactions between melanocytes and other typical skin cells, particularly keratinocytes. Our previous results indicate that keratinocytes from perilesional skin show the features of damaged cells. Sirtuins (silent mating type information regulation 2 homolog) 1, well-known modulators of lifespan in many species, have a role in gene repression, metabolic control, apoptosis and cell survival, DNA repair, development, inflammation, neuroprotection and healthy ageing. In the literature there is no evidence for SIRT1 signalling in vitiligo and its possible involvement in disease progression. Here, biopsies were taken from the perilesional skin of 16 patients suffering from non-segmental vitiligo and SIRT1 signalling was investigated in these cells. For the first time, a new SIRT1/Akt, also known as Protein Kinase B (PKB)/mitogen-activated protein kinase (MAPK) signalling has been revealed in vitiligo. SIRT1 regulates MAPK pathway via Akt-apoptosis signal-regulating kinase-1 and down-regulates pro-apoptotic molecules, leading to decreased oxidative stress and apoptotic cell death in perilesional vitiligo keratinocytes. We therefore propose SIRT1 activation as a novel way of protecting perilesional vitiligo keratinocytes from damage.

  6. DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH, LATS and AMOT Proteins

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Kugler, Jan-Michael; Cohen, Stephen Michael

    2017-01-01

    /TAZ, is regulated by ubiquitin mediated protein turnover and several ubiquitin ligase complexes have been implicated in human cancer. However, little is known about the deubiquitylating enzymes that counteract these ubiquitin ligases in regulation of the Hippo pathway. Here we identify the DUB3 family...... deubiquitylating enzymes as regulators of Hippo pathway activity. We provide evidence that DUB3 proteins regulate YAP/TAZ activity by controlling the stability of the E3 ligase ITCH, the LATS kinases and the AMOT family proteins. As a novel Hippo pathway regulator, DUB3 has the potential to act a tumor suppressor...

  7. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation

    DEFF Research Database (Denmark)

    Dzamko, Nicolas; Schertzer, Jonathan D.; Ryall, James G.

    2008-01-01

    , malonyl-CoA levels were reduced and rates of fatty acid oxidation were comparable between genotypes. During treadmill exercise both KD and WT mice had similar values of respiratory exchange ratio. These studies suggested the presence of an alternative ACC2 kinase(s). Using a phosphoproteomics......The activation of AMP-activated protein kinase (AMPK) and phosphorylation/inhibition of acetyl-CoA carboxylase 2 (ACC2) is believed to be the principal pathway regulating fatty acid oxidation. However, during exercise AMPK activity and ACC Ser-221 phosphorylation does not always correlate...... with rates of fatty acid oxidation. To address this issue we have investigated the requirement for skeletal muscle AMPK in controlling aminoimidazole-4-carboxymide-1-beta-d-ribofuranoside (AICAR) and contraction-stimulated fatty acid oxidation utilizing transgenic mice expressing a muscle-specific kinase...

  8. A hippocampal Cdk5 pathway regulates extinction of contextual fear

    Science.gov (United States)

    Sananbenesi, Farahnaz; Fischer, Andre; Wang, Xinyu; Schrick, Christina; Neve, Rachael; Radulovic, Jelena; Tsai, Li-Huei

    2008-01-01

    Treatment of emotional disorders involves the promotion of extinction processes, which are defined as the learned reduction of fear. The molecular mechanisms underlying extinction have only begun to be elucidated. By employing genetic and pharmacological approaches in mice, we show here that extinction requires downregulation of Rac-1 and cyclin-dependent kinase 5 (Cdk5), and upregulation of p21 activated kinase-1 (PAK-1) activity. This is physiologically achieved by a Rac-1–dependent relocation of the Cdk5 activator p35 from the membrane to the cytosol and dissociation of p35 from PAK-1. Moreover, our data suggest that Cdk5/p35 activity prevents extinction in part by inhibition of PAK-1 activity in a Rac-1–dependent manner. We propose that extinction of contextual fear is regulated by counteracting components of a molecular pathway involving Rac-1, Cdk5 and PAK-1. Our data suggest that this pathway could provide a suitable target for therapeutic treatment of emotional disorders. PMID:17632506

  9. TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae

    Science.gov (United States)

    Welch, Aaron Z.; Gibney, Patrick A.; Botstein, David; Koshland, Douglas E.

    2013-01-01

    Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000–fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance. PMID:23171550

  10. Regulation of multiple carbon monoxide consumption pathways in anaerobic bacteria

    Directory of Open Access Journals (Sweden)

    Stephen M Techtmann

    2011-07-01

    Full Text Available Carbon monoxide (CO, well known as a toxic gas, is increasingly recognized as a key metabolite and signaling molecule. Microbial utilization of CO is quite common, evidenced by the rapid escalation in description of new species of CO-utilizing bacteria and archaea. Carbon monoxide dehydrogenase (CODH, the protein complex that enables anaerobic CO utilization has been well-characterized from an increasing number of microorganisms, however the regulation of multiple CO-related gene clusters in single isolates remains unexplored. Many species are extroraordinarily resistant to high CO concentrations, thiriving under pure CO at more than one atmosphere. We hypothesized that, in strains that can grow exclusively on CO, both carbon acquisition via the CODH/Acetyl CoA synthase complex and energy conservation via a CODH-linked hydrogenase must be differentially regulated in response to the availability of CO. The CO-sensing transcriptional activator, CooA is present in most CO-oxidizing bacteria. Here we present a genomic and phylogenetic survey of CODH operons and cooA genes found in CooA-containing bacteria. Two distinct groups of CooA homologs were found: One clade (CooA-1 is found in the majority of CooA containing bacteria, whereas the other clade (CooA-2 is found only in genomes that encode multiple CODH clusters, suggesting that the CooA-2 might be important for cross-regulation of competing CODH operons. Recombinant CooA-1 and CooA-2 regulators from the prototypical CO-utilizing bacterium Carboxydothermus hydrogenoformans were purified, and promoter binding analyses revealed that CooA-1 specifically regulates the hydrogenase-linked CODH, whereas CooA-2 is able to regulate both the hydrogenase-linked CODH and the CODH/ACS operons. These studies point to the ability of dual CooA homologs to partition CO into divergent CO-utilizing pathways resulting in efficient consumption of a single limiting growth substrate available across a wide range of

  11. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Beildeck, Marcy E. [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States); Gelmann, Edward P. [Columbia University, Department of Medicine, New York, NY (United States); Byers, Stephen W., E-mail: byerss@georgetown.edu [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States)

    2010-07-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  12. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis

    Directory of Open Access Journals (Sweden)

    Zuzanna Rzepka

    2016-06-01

    Full Text Available Melanins are natural pigments of skin, hair and eyes and can be classified into two main types: brown to black eumelanin and yellow to reddish-brown pheomelanin. Biosynthesis of melanins takes place in melanosomes, which are specialized cytoplasmic organelles of melanocytes - dendritic cells located in the basal layer of the epidermis, uveal tract of the eye, hair follicles, as well as in the inner ear, central nervous system and heart. Melanogenesis is a multistep process and begins with the conversion of amino acid L-tyrosine to DOPAquinone. The addition of cysteine or glutathione to DOPAquinone leads to the intermediates formation, followed by subsequent transformations and polymerization to the final product, pheomelanin. In the absence of thiol compounds DOPAquinone undergoes an intramolecular cyclization and oxidation to form DOPAchrome, which is then converted to 5,6-dihydroksyindole (DHI or 5,6-dihydroxyindole-2-carboxylic acid (DHICA. Eumelanin is formed by polymerization of DHI and DHICA and their quinones. Regulation of melanogenesis is achieved by physical and biochemical factors. The article presents the intracellular signaling pathways: cAMP/PKA/CREB/MITF cascade, MAP kinases cascade, PLC/DAG/PKCβ cascade and NO/cGMP/PKG cascade, which are involved in the regulation of expression and activity of the melanogenesis-related proteins by ultraviolet radiation and endogenous agents (cytokines, hormones. Activity of the key melanogenic enzyme, tyrosinase, is also affected by pH and temperature. Many pharmacologically active substances are able to inhibit or stimulate melanin biosynthesis, as evidenced by in vitro studies on cultured pigment cells.

  13. Cinnamon polyphenols regulate multiple metabolic pathways involved in intestinal lipid metabolism of primary small intestinal enterocytes

    Science.gov (United States)

    Increasing evidence suggests that dietary factors may affect the expression of multiple genes and signaling pathways including those that regulate intestinal lipoprotein metabolism. The small intestine is actively involved in the regulation of dietary lipid absorption, intracellular transport and me...

  14. DMPD: Convergence of the NF-kappaB and IRF pathways in the regulation of the innateantiviral response. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17706453 Convergence of the NF-kappaB and IRF pathways in the regulation of the innateanti... (.png) (.svg) (.html) (.csml) Show Convergence of the NF-kappaB and IRF pathways in the regulation of the innateanti... IRF pathways in the regulation of the innateantiviral response. Authors Hiscott J. Publication Cytokine Gro

  15. Altered Pathway Analyzer: A gene expression dataset analysis tool for identification and prioritization of differentially regulated and network rewired pathways

    Science.gov (United States)

    Kaushik, Abhinav; Ali, Shakir; Gupta, Dinesh

    2017-01-01

    Gene connection rewiring is an essential feature of gene network dynamics. Apart from its normal functional role, it may also lead to dysregulated functional states by disturbing pathway homeostasis. Very few computational tools measure rewiring within gene co-expression and its corresponding regulatory networks in order to identify and prioritize altered pathways which may or may not be differentially regulated. We have developed Altered Pathway Analyzer (APA), a microarray dataset analysis tool for identification and prioritization of altered pathways, including those which are differentially regulated by TFs, by quantifying rewired sub-network topology. Moreover, APA also helps in re-prioritization of APA shortlisted altered pathways enriched with context-specific genes. We performed APA analysis of simulated datasets and p53 status NCI-60 cell line microarray data to demonstrate potential of APA for identification of several case-specific altered pathways. APA analysis reveals several altered pathways not detected by other tools evaluated by us. APA analysis of unrelated prostate cancer datasets identifies sample-specific as well as conserved altered biological processes, mainly associated with lipid metabolism, cellular differentiation and proliferation. APA is designed as a cross platform tool which may be transparently customized to perform pathway analysis in different gene expression datasets. APA is freely available at http://bioinfo.icgeb.res.in/APA. PMID:28084397

  16. Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging

    NARCIS (Netherlands)

    Sapir, Amir; Tsur, Assaf; Koorman, Thijs; Ching, Kaitlin; Mishra, Prashant; Bardenheier, Annabelle; Podolsky, Lisa; Bening-Abu-Shach, Ulrike; Boxem, Mike; Chou, Tsui-Fen; Broday, Limor; Sternberg, Paul W

    2014-01-01

    Many metabolic pathways are critically regulated during development and aging but little is known about the molecular mechanisms underlying this regulation. One key metabolic cascade in eukaryotes is the mevalonate pathway. It catalyzes the synthesis of sterol and nonsterol isoprenoids, such as chol

  17. Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma.

    Science.gov (United States)

    Ahmad, F; Dixit, D; Sharma, V; Kumar, A; Joshi, S D; Sarkar, C; Sen, E

    2016-05-05

    Given the involvement of telomerase activation and dysregulated metabolism in glioma progression, the connection between these two critical players was investigated. Pharmacological inhibition of human Telomerase reverse transcriptase (hTERT) by Costunolide induced glioma cell apoptosis in a reactive oxygen species (ROS)-dependent manner. Costunolide induced an ROS-dependent increase in p53 abrogated telomerase activity. Costunolide decreased Nrf2 level; and ectopic Nrf2 expression decreased Costunolide-induced ROS generation. While TERT knock-down abrogated Nrf2 levels, overexpression of Nrf2 increased TERT expression. Inhibition of hTERT either by Costunolide, or by siRNA or dominant-negative hTERT (DN-hTERT) abrogated (i) expression of Glucose-6-phosphate dehydrogenase (G6PD) and Transketolase (TKT) - two major nodes in the pentose phosphate (PPP) pathway; and (ii) phosphorylation of glycogen synthase (GS). hTERT knock-down decreased TKT activity and increased glycogen accumulation. Interestingly, siRNA-mediated knock-down of TKT elevated glycogen accumulation. Coherent with the in vitro findings, Costunolide reduced tumor burden in heterotypic xenograft glioma mouse model. Costunolide-treated tumors exhibited diminished TKT activity, heightened glycogen accumulation, and increased senescence. Importantly, glioblastoma multiforme (GBM) patient tumors bearing TERT promoter mutations (C228T and C250T) known to be associated with increased telomerase activity; exhibited elevated Nrf2 and TKT expression and decreased glycogen accumulation. Taken together, our findings highlight the previously unknown (i) role of telomerase in the regulation of PPP and glycogen accumulation and (ii) the involvement of Nrf2-TERT loop in maintaining oxidative defense responses in glioma cells.

  18. Regulation of cellular metabolism by the Notch receptor signalling pathway

    OpenAIRE

    2012-01-01

    Seven genes involved in metabolism were tested as direct targets of the Notch signalling pathway. For each gene the occupancy of its enhancers by Su(H), its transcriptional response to Notch pathway and its biological functionality was verified in vitro and in vivo.

  19. Regulation of cross-talk in yeast MAPK signaling pathways.

    Science.gov (United States)

    Saito, Haruo

    2010-12-01

    MAP kinase (MAPK) modules are conserved three-kinase cascades that serve central roles in intracellular signal transduction in eukaryotic cells. MAPK pathways of different inputs and outputs use overlapping sets of signaling components. In yeast, for example, three MAPK pathways (pheromone response, filamentous growth response, and osmostress adaptation) all use the same Ste11 MAPK kinase kinase (MAPKKK). How undesirable leakage of signal, or cross-talk, is prevented between these pathways has been a subject of intensive study. This review discusses recent findings from yeast that indicate that there is no single mechanism, but that a combination of four general strategies (docking interactions, scaffold proteins, cross-pathway inhibition, and kinetic insulation) are utilized for the prevention of cross-talk between any two MAPK modules.

  20. Logical Analysis of Regulation of Interleukin-12 Expression Pathway Regulation During HCV Infection.

    Science.gov (United States)

    Farooqi, Zia-Ur-Rehman; Tareen, Samar H K; Ahmed, Jamil; Zaidi, Najam-Us-Sahar S

    2016-01-01

    Hepatitis C virus (HCV) triggers coordinated innate and adaptive response in host cell. HCV genome and proteins of the replicating virus are recognized as non-self-antigens by host cell to activate Toll Like Receptors (TLRs). Activated TLRs ultimately express cytokines, which can clear virus either by activating interferon (IFN), protein kinase C (PKC) and RNA Lase system or through activation of cytotoxic T-lymphocytes. Interleukin-12 (IL-12) is a potent antiviral cytokine, capable of clearing HCV by bridging both innate and adaptive antiviral immune response. Activation of TLR-4 on macrophages surface induces expression of IL-12 via NF-κB and AP-1 transcriptional pathway. After expression, IL- 12 releases IFN-γ, which activates anti-HCV cytotoxic lymphocytes. Conversely, in chronic HCV infection downregulation of IL-12 has been reported instead of by number of studies. Keeping in view of the above mentioned facts, this study was designed to evaluate HCV-core mediated down-regulation of IL-12 transcriptional pathway by employing a logical modeling approach based on the Ren´e Thomas formalism. The logical parameters of entities were estimated by using SMBioNet. The Logical model represents all possible dynamics of protein expression involved during course of HCV pathology. Results demonstrated that at chronic stage of infection, though TLR-4 was constantly active but yet it failed to express the NF-κB, AP-1, IL-12 and IFN-γ. This mechanism was indicative of incorporation of core mediated changes in IL-12 regulatory pathway. Moreover, results also indicate that HCV adopts different trajectories to accomplish the persistence of chronic phase of infection. It also implicated that human immune system tries to clear HCV but core is capable of inducing system oscillations to evade the immunity.

  1. PCNA Modifications for Regulation of Post-Replication Repair Pathways

    OpenAIRE

    2008-01-01

    Stalled DNA replication forks activate specific DNA repair mechanism called post-replication repair (PRR) pathways that simply bypass DNA damage. The bypassing of DNA damage by PRR prevents prolonged stalling of DNA replication that could result in double strand breaks (DSBs). Proliferating cell nuclear antigen (PCNA) functions to initiate and choose different bypassing pathways of PRR. In yeast, DNA replication forks stalled by DNA damage induces monoubiquitination of PCNA at K164, which is ...

  2. Transcriptional repressor PRR5 directly regulates clock-output pathways

    OpenAIRE

    Nakamichi, Norihito; Kiba, Takatoshi; Kamioka, Mari; Suzuki, Takamasa; Yamashino, Takafumi; Higashiyama, Tetsuya; Sakakibara, Hitoshi; Mizuno, Takeshi

    2012-01-01

    The circadian clock is an endogenous time-keeping mechanism that enables organisms to adapt to external daily cycles. The clock coordinates biological activities with these cycles, mainly through genome-wide gene expression. However, the exact mechanism underlying regulation of circadian gene expression is poorly understood. Here we demonstrated that an Arabidopsis PSEUDO-RESPONSE REGULATOR 5 (PRR5), which acts in the clock genetic circuit, directly regulates expression timing of key transcri...

  3. Sensors and signal transduction pathways in vertebrate cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Pedersen, Stine F

    2006-01-01

    will be discussed. In contrast to the simple pathway of osmosensing in yeast, cells from vertebrate organisms appear to exhibit multiple volume sensing systems, the specific mechanism(s) activated being cell type- and stimulus-dependent. Candidate sensors include integrins and growth factor receptors, while other...

  4. Integrated Regulation of Toll-like Receptor Responses by Notch and Interferon-γ Pathways

    OpenAIRE

    2008-01-01

    Toll-like receptor (TLR) responses are regulated to avoid toxicity and achieve coordinated responses appropriate for the cell environment. We found that Notch and TLR pathways cooperated to activate canonical Notch target genes, including transcriptional repressors Hes1 and Hey1, and to increase production of canonical TLR-induced cytokines TNF, IL-6 and IL-12. Cooperation by these pathways to increase target gene expression was mediated the Notch pathway component and transcription factor RB...

  5. Mathematical modelling of the diurnal regulation of the MEP pathway in Arabidopsis.

    Science.gov (United States)

    Pokhilko, Alexandra; Bou-Torrent, Jordi; Pulido, Pablo; Rodríguez-Concepción, Manuel; Ebenhöh, Oliver

    2015-05-01

    Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols, prenylated quinones and hormones are synthesised in chloroplasts via the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Here we develop a mathematical model of diurnal regulation of the MEP pathway in Arabidopsis thaliana. We used both experimental and theoretical approaches to integrate mechanisms potentially involved in the diurnal control of the pathway. Our data show that flux through the MEP pathway is accelerated in light due to the photosynthesis-dependent supply of metabolic substrates of the pathway and the transcriptional regulation of key biosynthetic genes by the circadian clock. We also demonstrate that feedback regulation of both the activity and the abundance of the first enzyme of the MEP pathway (1-deoxy-D-xylulose 5-phosphate synthase, DXS) by pathway products stabilizes the flux against changes in substrate supply and adjusts the flux according to product demand under normal growth conditions. These data illustrate the central relevance of photosynthesis, the circadian clock and feedback control of DXS for the diurnal regulation of the MEP pathway.

  6. The Hippo pathway regulates homeostatic growth of stem cell niche precursors in the Drosophila ovary.

    Science.gov (United States)

    Sarikaya, Didem P; Extavour, Cassandra G

    2015-02-01

    The Hippo pathway regulates organ size, stem cell proliferation and tumorigenesis in adult organs. Whether the Hippo pathway influences establishment of stem cell niche size to accommodate changes in organ size, however, has received little attention. Here, we ask whether Hippo signaling influences the number of stem cell niches that are established during development of the Drosophila larval ovary, and whether it interacts with the same or different effector signaling pathways in different cell types. We demonstrate that canonical Hippo signaling regulates autonomous proliferation of the soma, while a novel hippo-independent activity of Yorkie regulates autonomous proliferation of the germ line. Moreover, we demonstrate that Hippo signaling mediates non-autonomous proliferation signals between germ cells and somatic cells, and contributes to maintaining the correct proportion of these niche precursors. Finally, we show that the Hippo pathway interacts with different growth pathways in distinct somatic cell types, and interacts with EGFR and JAK/STAT pathways to regulate non-autonomous proliferation of germ cells. We thus provide evidence for novel roles of the Hippo pathway in establishing the precise balance of soma and germ line, the appropriate number of stem cell niches, and ultimately regulating adult female reproductive capacity.

  7. Regulation of the expression of the whole genome of Ustilago maydis by a MAPK pathway.

    Science.gov (United States)

    Martínez-Soto, Domingo; Ruiz-Herrera, José

    2015-05-01

    The operation of mitogen-activated protein kinase (MAPK) signal transduction pathways is one of the most important mechanisms for the transfer of extracellular information into the cell. These pathways are highly conserved in eukaryotic organisms. In fungi, MAPK pathways are involved in the regulation of a number of cellular processes such as metabolism, homeostasis, pathogenesis and cell differentiation and morphogenesis. Considering the importance of pathways, in the present work we proceeded to identify all the genes that are regulated by the signal transduction pathway involved in mating, pathogenesis and morphogenesis of Ustilago maydis. Accordingly we made a comparison between the transcriptomes from a wild-type strain and an Ubc2 mutant affected in the interacting protein of this pathway by use of microarrays. By this methodology, we identified 939 genes regulated directly or indirectly by the MAPK pathway. Of them, 432 were positively, and 507 were negatively found regulated. By functional grouping, genes encoding cyclin-dependent kinases, transcription factors, proteins involved in signal transduction, in synthesis of wall and cell membrane, and involved in dimorphism were identified as differentially regulated. These data reveal the importance of these global studies, and the large (and unsuspected) number of functions of the fungus under the control of this MAPK, providing clues to the possible mechanisms involved.

  8. mc1r Pathway regulation of zebrafish melanosome dispersion

    DEFF Research Database (Denmark)

    Richardson, Jennifer; Lundegaard, Pia Rengtved; Reynolds, Natalie L

    2008-01-01

    Zebrafish rapidly alter their pigmentation in response to environmental changes. For black melanocytes, this change is due to aggregation or dispersion of melanin in the cell. Dispersion and aggregation are controlled by intracellular cyclic adenosine monophosphate (cAMP) levels, which increase...... in mammals, and melanosome dispersal in cold-blood vertebrates, the pathway components are highly conserved. However, it has only been assumed that mc1r mediates melanosome dispersal in fish. Here, using morpholino oligonucleotides designed to knockdown mc1r expression, we find that mc1r morphants are unable...... to disperse melanosomes when grown in dark conditions. We also use chemical modifiers of the cAMP pathway, and find an unexpected response to the specific phosphodiesterase 4 (PDE4) inhibitor, rolipram, in melanosome dispersal. When treated with the drug, melanosomes fail to fully disperse in dark conditions...

  9. Regulation of the transforming growth factor β pathway by reversible ubiquitylation.

    Science.gov (United States)

    Al-Salihi, Mazin A; Herhaus, Lina; Sapkota, Gopal P

    2012-05-01

    The transforming growth factor β (TGFβ) signalling pathway plays a central role during embryonic development and in adult tissue homeostasis. It regulates gene transcription through a signalling cascade from cell surface receptors to intracellular SMAD transcription factors and their nuclear cofactors. The extent, duration and potency of signalling in response to TGFβ cytokines are intricately regulated by complex biochemical processes. The corruption of these regulatory processes results in aberrant TGFβ signalling and leads to numerous human diseases, including cancer. Reversible ubiquitylation of pathway components is a key regulatory process that plays a critical role in ensuring a balanced response to TGFβ signals. Many studies have investigated the mechanisms by which various E3 ubiquitin ligases regulate the turnover and activity of TGFβ pathway components by ubiquitylation. Moreover, recent studies have shed new light into their regulation by deubiquitylating enzymes. In this report, we provide an overview of current understanding of the regulation of TGFβ signalling by E3 ubiquitin ligases and deubiquitylases.

  10. The Retinoblastoma pathway regulates stem cell proliferation in freshwater planarians.

    Science.gov (United States)

    Zhu, Shu Jun; Pearson, Bret J

    2013-01-15

    Freshwater planarians are flatworms of the Lophotrochozoan superphylum and are well known for their regenerative abilities, which rely on a large population of pluripotent adult stem cells. However, the mechanisms by which planarians maintain a precise population of adult stem cells while balancing proliferation and cell death, remain to be elucidated. Here we have identified, characterized, and functionally tested the core Retinoblastoma (Rb) pathway components in planarian adult stem cell biology. The Rb pathway is an ancient and conserved mechanism of proliferation control from plants to animals and is composed of three core components: an Rb protein, and a transcription factor heterodimer of E2F and DP proteins. Although the planarian genome contains all components of the Rb pathway, we found that they have undergone gene loss from the ancestral state, similar to other species in their phylum. The single Rb homolog (Smed-Rb) was highly expressed in planarian stem cells and was required for stem cell maintenance, similar to the Rb-homologs p107 and p130 in vertebrates. We show that planarians and their phylum have undergone the most severe reduction in E2F genes observed thus far, and the single remaining E2F was predicted to be a repressive-type E2F (Smed-E2F4-1). Knockdown of either Smed-E2F4-1 or its dimerization partner Dp (Smed-Dp) by RNAi resulted in temporary hyper-proliferation. Finally, we showed that known Rb-interacting genes in other systems, histone deacetylase 1 and cyclinD (Smed-HDAC1; Smed-cycD), were similar to Rb in expression and phenotypes when knocked down by RNAi, suggesting that these established interactions with Rb may also be conserved in planarians. Together, these results showed that planarians use the conserved components of the Rb tumor suppressor pathway to control proliferation and cell survival.

  11. Integration of Transcriptional and Posttranslational Regulation in a Glucose Signal Transduction Pathway in Saccharomyces cerevisiae

    OpenAIRE

    Kim, Jeong-Ho; Brachet, Valérie; Moriya, Hisao; Johnston, Mark

    2006-01-01

    Expression of the HXT genes encoding glucose transporters in the budding yeast Saccharomyces cerevisiae is regulated by two interconnected glucose-signaling pathways: the Snf3/Rgt2-Rgt1 glucose induction pathway and the Snf1-Mig1 glucose repression pathway. The Snf3 and Rgt2 glucose sensors in the membrane generate a signal in the presence of glucose that inhibits the functions of Std1 and Mth1, paralogous proteins that regulate the function of the Rgt1 transcription factor, which binds to th...

  12. TLR-4 signalling pathway: MyD88 independent pathway up-regulation in chicken breeds upon LPS treatment.

    Science.gov (United States)

    Karnati, Hanuma Kumar; Pasupuleti, Satya Ratan; Kandi, Ravinder; Undi, Ram Babu; Sahu, Itishri; Kannaki, T R; Subbiah, Madhuri; Gutti, Ravi Kumar

    2015-03-01

    Toll-like receptors (TLRs) that sense the microbial pathogens are important components of host immune system. TLRs play key roles in the innate defence mechanism against pathogens, in the development of adaptive immunity, and are possibly the major determinants of the susceptibility to infections. To study the resistance pattern in different breeds of chicken, a comprehensive understanding of TLR4 signalling pathways is required. We investigated the TLR-4 pathway regulated gene expressions in PBMCs of chicken breeds of Broiler (Cobb), Aseel, Dahlem Red and Ghagus upon LPS treatment using Quantitative RT-PCR approach. Several genes were found to be up regulated in both TLR-induced MyD88-dependent and MyD88-independent pathways. These genes include TLR4 (Toll-like receptor 4), MyD88 (Myeloid differentiation primary response gene 88), TRAF6 (TNF receptor associated factor 6), TRIF (TIR domain containing adapter inducing interferon beta), the transcription factors NFkB (Nuclear factor kappa B), IRF7 (Interferon regulatory factor 7) and IFN β (Interferon beta). We have also studied inflammatory cytokines such as IL2, IL6, IL8, IL1 β and TNF α to further understand the downstream signalling of TLR4 pathway. These results showed that higher expression of TLR signalling activation via both MyD88-dependent and TRIF-dependent pathways are more beneficial to chicken mononuclear cells mediated innate immunity. We observed TRIF dependent pathway in Aseel and Ghagus breeds. Our results are in concurrent with general observation that Aseel breed is comparatively more resistant, Ghagus and broilers are moderately resistant and Dahlem Red is comparatively more susceptible to bacterial infections.

  13. Down-regulation of HIV-1 Infection by Inhibition of the MAPK Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    Jian Gong; Xi-hui Shen; Chao Chen; Hui Qiu; Rong-ge Yang

    2011-01-01

    The human immunodeficiency virus type 1(HIV-1)can interact with and exploit the host cellular machinery to replicate and propagate itself.Numerous studies have shown that the Mitogen-activated protein kinase(MAPK)signal pathway can positively regulate the replication of HIV-1,but exactly how each MAPK pathway affects HIV-1 infection and replication is not understood.In this study,we used the Extracellular signal-regulated kinase(ERK)pathway inhibitor,PD98059,the Jun N-terminal kinase(JNK)pathway inhibitor,SP600125,and the p38 pathway inhibitor,SB203580,to investigate the roles of these pathways in HIV-1replication.We found that application of PD98059 results in a strong VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus and HIV-1NL4-3 virus inhibition activity.In addition,SB203580 and SP600125 also elicited marked VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus inhibition activity but no HIV-1NL4-3 virus inhibition activity.We also found that SB203580 and SP600125 can enhance the HIV-1 inhibition activity of PD98059when cells were treated with all three MAPK pathway inhibitors in combination.Finally,we show that HIV-1virus inhibition activity of the MAPK pathway inhibitors was the result of the negative regulation of HIV-1 LTR promoter activity.

  14. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    Energy Technology Data Exchange (ETDEWEB)

    Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands); Pronk, Tessa E. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Brandhof, Evert-Jan van den [Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Ven, Leo T.M. van der [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Piersma, Aldert H. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands)

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  15. Regulation of mat responses by a differentiation MAPK pathway in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Sheelarani Karunanithi

    Full Text Available Fungal species exhibit diverse behaviors when presented with extracellular challenges. Pathogenic fungi can undergo cell differentiation and biofilm formation in response to fluctuating nutrient levels, and these responses are required for virulence. In the model fungal eukaryote Saccharomyces cerevisiae, nutrient limitation induces filamentous growth and biofilm/mat formation. Both responses require the same signal transduction (MAPK pathway and the same cell adhesion molecule (Flo11 but have been studied under different conditions. We found that filamentous growth and mat formation are aspects of a related response that is regulated by the MAPK pathway. Cells in yeast-form mats differentiated into pseudohyphae in response to nutrient limitation. The MAPK pathway regulated mat expansion (in the plane of the XY-axis and substrate invasion (downward in the plane of the Z-axis, which optimized the mat's response to extracellular nutrient levels. The MAPK pathway also regulated an upward growth pattern (in the plane of the Z-axis in response to nutrient limitation and changes in surface rigidity. Upward growth allowed for another level of mat responsiveness and resembled a type of colonial chemorepulsion. Together our results show that signaling pathways play critical roles in regulating social behaviors in which fungal cells participate. Signaling pathways may regulate similar processes in pathogens, whose highly nuanced responses are required for virulence.

  16. Interferon alpha regulates MAPK and STAT1 pathways in human hepatoma cells

    Directory of Open Access Journals (Sweden)

    Ren Hao

    2011-04-01

    Full Text Available Abstract Background Signaling events triggered by interferon (IFN account for the molecular mechanisms of antiviral effect. JAK-STAT pathway plays a critical role in IFN signaling, and other pathways are also implicated in IFN-mediated antiviral effect. Changes in mitogen-activated protein kinase (MAPK and STAT1 pathways were evaluated in human hepatoma cells Huh7 and HepG2 upon IFN alpha treatment. Results Phosphorylation of ERK was significantly and specifically up-regulated, whereas enhanced phosphorylation of upstream kinase MEK was unobservable upon IFN alpha treatment. A mild increase in p38 MAPK, SAPK/JNK and downstream target ATF-2 phosphorylation was detectable after exposure to IFN alpha, indicating differential up-regulation of the MAPK signaling cascades. Moreover, STAT1 phosphorylation was strongly enhanced by IFN alpha. Conclusion IFN alpha up-regulates MAPK and STAT1 pathways in human hepatoma cells, and may provide useful information for understanding the IFN signaling.

  17. Protein Kinase Pathways That Regulate Neuronal Survival and Death

    Science.gov (United States)

    2004-08-01

    interneurons of the cerebellum, provide a good model for a maximal concentration of IGF-I (50 ng/ml). The phosphor- VOL. 20, 2000 REGULATION OF NEURONAL...Cell 6:233-244. 272:33271-33278. Lyons GE, Micales BK , Schwarz J, Martin JF, Olson EN (1995) Expres- Ornatsky 01, Cox DM, Tangirala P, Andreucci JJ

  18. Primordial follicle assembly was regulated by Notch signaling pathway in the mice.

    Science.gov (United States)

    Chen, Chun-Lei; Fu, Xia-Fei; Wang, Lin-Qing; Wang, Jun-Jie; Ma, Hua-Gang; Cheng, Shun-Feng; Hou, Zhu-Mei; Ma, Jin-Mei; Quan, Guo-Bo; Shen, Wei; Li, Lan

    2014-03-01

    Notch signaling pathway, a highly conserved cell signaling system, exists in most multicellular organisms. The objective of this study was to examine Notch signaling pathway in germ cell cyst breakdown and primordial follicle formation. The receptor and ligand genes of Notch pathway (Notch1, Notch2, Jagged1, Jagged2 and Hes1) were extremely down-regulated after newborn mouse ovaries were cultured then exposed to DAPT or L-685,458 in vitro (P primordial follicles. Down-regulated mRNA expression of specific genes including Lhx8, Figla, Sohlh2 and Nobox, were also observed. The percentages of female germ cells in germ cell cysts and primordial follicles were counted after culture of newborn ovaries for 3 days in vitro. The result showed female germ cells in cysts was remarkably up-regulated while as the oocytes in primordial follicles was significantly down-regulated (P primordial follicle in mice.

  19. MicroRNAs regulate mitochondrial apoptotic pathway in myocardial ischemia-reperfusion-injury.

    Science.gov (United States)

    Makhdoumi, Pouran; Roohbakhsh, Ali; Karimi, Gholamreza

    2016-12-01

    MicroRNAs (miRNAs) are small non-coding RNAs that act as post-transcriptional gene regulators. They are involved in the pathogenesis of different disorders including heart diseases. MiRNAs contribute to ischemia/reperfusion injury (I/RI) by altering numerous key signaling elements. Together with alterations in the various potential signaling pathways, modification in miRNA expression has been suggested as a part of the response network following ischemia/reperfusion (I/R). In addition, cardiac mitochondrial homeostasis is closely associated with cardiac function and impairment of mitochondrial activity occurred after ischemia/reperfusion injury. MiRNAs play a key role in the regulation of mitochondrial apoptotic pathway and signaling proteins. In this review, we summarize the knowledge currently available regarding the molecular mechanisms of miRNA-regulated mitochondrial functions during ischemia/reperfusion injury. This regulation occurs in different stages of mitochondrial apoptosis pathway.

  20. The ubiquitin–proteasome system and signal transduction pathways regulating Epithelial Mesenchymal transition of cancer

    Directory of Open Access Journals (Sweden)

    Voutsadakis Ioannis A

    2012-07-01

    Full Text Available Abstract Epithelial to Mesenchymal transition (EMT in cancer, a process permitting cancer cells to become mobile and metastatic, has a signaling hardwire forged from development. Multiple signaling pathways that regulate carcinogenesis enabling characteristics in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis are also the main players in EMT. These pathways, as almost all cellular processes, are in their turn regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS. Ubiquitination is the covalent link of target proteins with the small protein ubiquitin and serves as a signal to target protein degradation by the proteasome or to other outcomes such as endocytosis, degradation by the lysosome or specification of cellular localization. This paper reviews signal transduction pathways regulating EMT and being regulated by ubiquitination.

  1. Protein Kinase D Regulates Cell Death Pathways in Experimental Pancreatitis

    OpenAIRE

    Yuan, Jingzhen; Liu, Yannan; Tan, Tanya; Guha, Sushovan; Gukovsky, Ilya; Gukovskaya, Anna; Pandol, Stephen J.

    2012-01-01

    Inflammation and acinar cell necrosis are two major pathological responses of acute pancreatitis, a serious disorder with no current therapies directed to its molecular pathogenesis. Serine/threonine protein kinase D family, which includes PKD/PKD1, PKD2, and PKD3, has been increasingly implicated in the regulation of multiple physiological and pathophysiological effects. We recently reported that PKD/PKD1, the predominant PKD isoform expressed in rat pancreatic acinar cells, mediates early e...

  2. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity

    Directory of Open Access Journals (Sweden)

    Katharina Timper

    2017-06-01

    Full Text Available The ‘obesity epidemic’ represents a major global socioeconomic burden that urgently calls for a better understanding of the underlying causes of increased weight gain and its associated metabolic comorbidities, such as type 2 diabetes mellitus and cardiovascular diseases. Improving our understanding of the cellular basis of obesity could set the stage for the development of new therapeutic strategies. The CNS plays a pivotal role in the regulation of energy and glucose homeostasis. Distinct neuronal cell populations, particularly within the arcuate nucleus of the hypothalamus, sense the nutrient status of the organism and integrate signals from peripheral hormones including pancreas-derived insulin and adipocyte-derived leptin to regulate calorie intake, glucose metabolism and energy expenditure. The arcuate neurons are tightly connected to other specialized neuronal subpopulations within the hypothalamus, but also to various extrahypothalamic brain regions, allowing a coordinated behavioral response. This At a Glance article gives an overview of the recent knowledge, mainly derived from rodent models, regarding the CNS-dependent regulation of energy and glucose homeostasis, and illustrates how dysregulation of the neuronal networks involved can lead to overnutrition and obesity. The potential impact of recent research findings in the field on therapeutic treatment strategies for human obesity is also discussed.

  3. MAPK signal pathways in the regulation of cell proliferation in mammalian cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    MAPK families play an important role in complex cellular programs like proliferation, differentiation,development, transformation, and apoptosis. At least three MAPK families have been characterized: extracellular signal-regulated kinase (ERK), Jun kinase (JNK/SAPK) and p38 MAPK. The above effects are fulfilled by regulation of cell cycle engine and other cell proliferation related proteins. In this paper we discussed their functions and cooperation with other signal pathways in regulation of cell proliferation.

  4. Carbohydrate Metabolism in Archaea: Current Insights into Unusual Enzymes and Pathways and Their Regulation

    Science.gov (United States)

    Esser, Dominik; Rauch, Bernadette

    2014-01-01

    SUMMARY The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many “classical” pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of “new,” unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented. PMID:24600042

  5. Regulation of PCP by the Fat signaling pathway

    Science.gov (United States)

    Matis, Maja; Axelrod, Jeffrey D.

    2013-01-01

    Planar cell polarity (PCP) in epithelia, orthogonal to the apical–basal axis, is essential for numerous developmental events and physiological functions. Drosophila model systems have been at the forefront of studies revealing insights into mechanisms regulating PCP and have revealed distinct signaling modules. One of these, involving the atypical cadherins Fat and Dachsous and the ectokinase Four-jointed, appears to link the direction of cell polarization to the tissue axes. We discuss models for the function of this signaling module as well as several unanswered questions that may guide future investigations. PMID:24142873

  6. PDP-1 links the TGF-β and IIS pathways to regulate longevity, development, and metabolism.

    Directory of Open Access Journals (Sweden)

    Sri Devi Narasimhan

    2011-04-01

    Full Text Available The insulin/IGF-1 signaling (IIS pathway is a conserved regulator of longevity, development, and metabolism. In Caenorhabditis elegans IIS involves activation of DAF-2 (insulin/IGF-1 receptor tyrosine kinase, AGE-1 (PI 3-kinase, and additional downstream serine/threonine kinases that ultimately phosphorylate and negatively regulate the single FOXO transcription factor homolog DAF-16. Phosphatases help to maintain cellular signaling homeostasis by counterbalancing kinase activity. However, few phosphatases have been identified that negatively regulate the IIS pathway. Here we identify and characterize pdp-1 as a novel negative modulator of the IIS pathway. We show that PDP-1 regulates multiple outputs of IIS such as longevity, fat storage, and dauer diapause. In addition, PDP-1 promotes DAF-16 nuclear localization and transcriptional activity. Interestingly, genetic epistasis analyses place PDP-1 in the DAF-7/TGF-β signaling pathway, at the level of the R-SMAD proteins DAF-14 and DAF-8. Further investigation into how a component of TGF-β signaling affects multiple outputs of IIS/DAF-16, revealed extensive crosstalk between these two well-conserved signaling pathways. We find that PDP-1 modulates the expression of several insulin genes that are likely to feed into the IIS pathway to regulate DAF-16 activity. Importantly, dysregulation of IIS and TGF-β signaling has been implicated in diseases such as Type 2 Diabetes, obesity, and cancer. Our results may provide a new perspective in understanding of the regulation of these pathways under normal conditions and in the context of disease.

  7. Inhibitory neural pathway regulating gastric emptying in rats.

    Science.gov (United States)

    Ishiguchi, T; Nishioka, S; Takahashi, T

    2000-02-14

    The relaxation of the pylorus is one of the most important factors for promoting gastric emptying. However, the role of inhibitory neurotransmitters in the regulation of pyloric relaxation and gastric emptying remains unclear. In this study, we investigated the effects of NO biosynthesis inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), and calcium dependent potassium channel blocker, apamin, on vagal stimulation-induced pyloric relaxation and gastric emptying in rats. Sodium nitroprusside (SNP), adenosine 5'-triphosphate (ATP), vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) caused pyloric relaxations in a dose dependent manner in vivo. Apamin (120 microg/kg) significantly reduced ATP and PACAP-induced pyloric relaxations without affecting SNP- or VIP-induced relaxations. Vagal stimulation (10 V, 1 ms, 1-20 Hz)-induced pyloric relaxation was significantly inhibited by L-NAME (10 mg/kg). The combined administration of L-NAME and apamin almost completely abolished vagal stimulation-induced pyloric relaxation. L-NAME and apamin significantly increased spontaneous contractions in the antrum, pylorus and duodenum. Increased motility index by L-NAME and apamin was significantly higher in the pylorus and duodenum, compared to that of antrum. L-NAME and apamin significantly delayed liquid gastric emptying. These results suggest that besides NO, probably ATP and PACAP, act as inhibitory neurotransmitters in the rat pylorus and regulate gastric emptying.

  8. MicroRNAs Regulate Key Effector Pathways of Senescence

    Directory of Open Access Journals (Sweden)

    Andrea Feliciano

    2011-01-01

    Full Text Available MicroRNAs (miRNAs are small (approximately 22 nt noncoding endogenous RNA molecules that regulate gene expression and protein coding by base pairing with the 3′ untranslated region (UTR of target mRNAs. miRNA expression is associated with cancer pathogenesis because miRNAs are intimately linked to cancer development. Senescence blocks cell proliferation, representing an important barrier that cells must bypass to reach malignancy. Importantly, certain miRNAs have been shown to have an important role during cellular senescence, which is also involved in human tumorigenesis. Therefore, therapeutic induction of senescence by drugs or miRNA-based therapies is a potential method to treat cancer by inducing a persistent growth arrest in tumors.

  9. dRYBP contributes to the negative regulation of the Drosophila Imd pathway.

    Directory of Open Access Journals (Sweden)

    Ricardo Aparicio

    Full Text Available The Drosophila humoral innate immune response fights infection by producing antimicrobial peptides (AMPs through the microbe-specific activation of the Toll or the Imd signaling pathway. Upon systemic infection, the production of AMPs is both positively and negatively regulated to reach a balanced immune response required for survival. Here, we report the function of the dRYBP (drosophila Ring and YY1 Binding Protein protein, which contains a ubiquitin-binding domain, in the Imd pathway. We have found that dRYBP contributes to the negative regulation of AMP production: upon systemic infection with Gram-negative bacteria, Diptericin expression is up-regulated in the absence of dRYBP and down-regulated in the presence of high levels of dRYBP. Epistatic analyses using gain and loss of function alleles of imd, Relish, or skpA and dRYBP suggest that dRYBP functions upstream or together with SKPA, a member of the SCF-E3-ubiquitin ligase complex, to repress the Imd signaling cascade. We propose that the role of dRYBP in the regulation of the Imd signaling pathway is to function as a ubiquitin adaptor protein together with SKPA to promote SCF-dependent proteasomal degradation of Relish. Beyond the identification of dRYBP as a novel component of Imd pathway regulation, our results also suggest that the evolutionarily conserved RYBP protein may be involved in the human innate immune response.

  10. Red yeast rice prevents atherosclerosis through regulating inflammatory signaling pathways.

    Science.gov (United States)

    Wu, Min; Zhang, Wen-Gao; Liu, Long-Tao

    2017-09-01

    To observe the effects of red yeast rice (RYR) on blood lipid levels, aortic atherosclerosis (AS), and plaque stability in apolipoprotein E gene knockout (ApoE-/-) mice. Twenty-four ApoE-/- mice were fed with a high-fat diet starting from 6 weeks of age. Mice were randomized into three groups (n = 8 in each group): model group (ApoE-/- group), RYR group (ApoE-/- + RYR group), and simvastatin group (ApoE-/- + simvastatin group). Eight 6-week-old C57BL/6 mice were assigned as the control group and fed with a basic diet. After 36 weeks, plasma lipids and inflflammatory factors were measured. Aortic atherosclerotic lesions by microscope, scanning electron microscope and transmission electron microscope were observed. Plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were measured with enzyme-linked immunosorbent assay. The level of high sensitivity C-reaction protein (Hs-CRP) was detected by the scattering immunoturbidimetric assay. Protein expression of matrix metalloproteinase-9 (MMP-9) and nuclear factor κB (NF-κB) in aorta were tested by immunohistochemistry. Compared with the model group, treatment with RYR significantly decreased the levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol, lipoprotein (a), and apolipoprotein B100 in ApoE-/- mice (P<0.01). Compared with the model group, treatment with RYR decreased the levels of Hs-CRP, IL-6, and TNF-α (P<0.01). RYR also reduced the protein levels of NF-κB and MMP-9 of the aorta. RYR has the anti-atherosclerotic and stabilizing unstable plaque effects. The mechanism might be related to the inflflammatory signaling pathways.

  11. Identifying a polymorphic 'switch' that influences miRNAs' regulation of a myasthenia gravis risk pathway.

    Directory of Open Access Journals (Sweden)

    Lili Yang

    Full Text Available The significant roles of genetic variants in myasthenia gravis (MG pathogenesis have been demonstrated in many studies, and recently it has been revealed that aberrant level/regulation of microRNAs (miRNAs might contribute to the initiation and progression of MG. However, the dysfunction of miRNA associated with single nucleotide polymorphisms (miRSNPs has not been well investigated in MG. In this study, we created a contemporary catalog of 89 MG risk genes via manual literature-mining. Based on this risk gene catalog, we obtained 18 MG risk pathways. Furthermore, we identified 93 miRNAs that target MG risk pathways and revealed the miRSNPs 'switches' in miRNA regulation in the MG risk pathways by integrating the database information of miRSNPs. We also constructed a miRNA-mediated SNP switching pathway network (MSSPN to intuitively analyze miRNA regulation of MG risk pathways and the relationship of the polymorphism 'switch' with these changes in regulation. Moreover, we carried out in-depth dissection on the correlation between hsa05200 (pathway in cancer and MG development, and elaborated the significance of 4 high-risk genes. By network analysis and literature mining, we proposed a potential mechanism of miRSNPs→gene→pathway effects on MG pathogenesis, especially for rs28457673 (miR-15/16/195/424/497 family→IGF1R→hsa05200 (pathway in cancer. Therefore, our studies have revealed a functional role for genetic modulators in MG pathogenesis at a systemic level, which could be informative for further miRNA and miRSNPs studies in MG.

  12. Expression of brain-derived neurotrophic factor (BDNF) is regulated by the Wnt signaling pathway

    OpenAIRE

    Yi, Hyun; Hu, Jianfei; Qian, Jiang; Hackam, Abigail S.

    2012-01-01

    BDNF is a well-characterized neurotrophin that mediates a wide variety of activities in the central nervous system (CNS), including neuronal differentiation, neuroprotection and synaptic plasticity. The canonical Wnt signaling pathway is a critical regulator of embryonic development and homeostasis in adult tissues. Our group and others recently demonstrated that Wnt signaling induces BDNF expression in neurons and glia. However, the precise relationship between BDNF and Wnt signaling pathway...

  13. Insulin Regulates Adipocyte Lipolysis via an Akt-Independent Signaling Pathway

    Science.gov (United States)

    Choi, Sarah M.; Tucker, David F.; Gross, Danielle N.; Easton, Rachael M.; DiPilato, Lisa M.; Dean, Abigail S.; Monks, Bob R.; Birnbaum, Morris J.

    2010-01-01

    After a meal, insulin suppresses lipolysis through the activation of its downstream kinase, Akt, resulting in the inhibition of protein kinase A (PKA), the main positive effector of lipolysis. During insulin resistance, this process is ineffective, leading to a characteristic dyslipidemia and the worsening of impaired insulin action and obesity. Here, we describe a noncanonical Akt-independent, phosphoinositide-3 kinase (PI3K)-dependent pathway that regulates adipocyte lipolysis using restricted subcellular signaling. This pathway selectively alters the PKA phosphorylation of its major lipid droplet-associated substrate, perilipin. In contrast, the phosphorylation of another PKA substrate, hormone-sensitive lipase (HSL), remains Akt dependent. Furthermore, insulin regulates total PKA activity in an Akt-dependent manner. These findings indicate that localized changes in insulin action are responsible for the differential phosphorylation of PKA substrates. Thus, we identify a pathway by which insulin regulates lipolysis through the spatially compartmentalized modulation of PKA. PMID:20733001

  14. Insulin regulates adipocyte lipolysis via an Akt-independent signaling pathway.

    Science.gov (United States)

    Choi, Sarah M; Tucker, David F; Gross, Danielle N; Easton, Rachael M; DiPilato, Lisa M; Dean, Abigail S; Monks, Bob R; Birnbaum, Morris J

    2010-11-01

    After a meal, insulin suppresses lipolysis through the activation of its downstream kinase, Akt, resulting in the inhibition of protein kinase A (PKA), the main positive effector of lipolysis. During insulin resistance, this process is ineffective, leading to a characteristic dyslipidemia and the worsening of impaired insulin action and obesity. Here, we describe a noncanonical Akt-independent, phosphoinositide-3 kinase (PI3K)-dependent pathway that regulates adipocyte lipolysis using restricted subcellular signaling. This pathway selectively alters the PKA phosphorylation of its major lipid droplet-associated substrate, perilipin. In contrast, the phosphorylation of another PKA substrate, hormone-sensitive lipase (HSL), remains Akt dependent. Furthermore, insulin regulates total PKA activity in an Akt-dependent manner. These findings indicate that localized changes in insulin action are responsible for the differential phosphorylation of PKA substrates. Thus, we identify a pathway by which insulin regulates lipolysis through the spatially compartmentalized modulation of PKA.

  15. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Regulating the balance between the kynurenine and serotonin pathways of tryptophan metabolism.

    Science.gov (United States)

    Li, Yang; Hu, Nan; Yang, Dan; Oxenkrug, Gregory; Yang, Qing

    2017-03-01

    Tryptophan is metabolized along the kynurenine and serotonin pathways, resulting in formation of kynurenine metabolites, neuroactive serotonin and melatonin. Each pathway is critical for maintaining healthy homeostasis. However, the two pathways are extremely unequal in their ability to degrade tryptophan, and little is known about the mechanisms maintaining the balance between them. Here, we demonstrated that in PC12 cells, a change of expression of key genes of one pathway resulted in a change of expression of key genes of the other. Melatonin, the end product of the serotonin pathway, played an important role in tryptophan metabolism by affecting both key enzymes of the two pathways. Melatonin treatment induced the expression of indole-2,3-dioxygenase 1 (IDO1) and enhanced the activity of the IDO1 promoter while decreasing the expression of arylalkylamine N-acetyl transferase. Melatonin treatment up-regulated the expression of forkhead box protein O1 (FoxO1) and enhanced the binding of FoxO1 to the IDO1 promoter. FoxO1 was shown to be a new regulator for IDO1 expression. Melatonin treatment decreased the phosphorylation of FoxO1 by extracellular signal-regulated kinases 1 and 2 and protein kinase B (Akt) and increased the phosphorylation of binding protein 14-3-3 by c-Jun N-terminal kinase (JNK), and thus the complex of FoxO1-14-3-3 in the cytoplasm was disassembled and FoxO1 was relocated to the nucleus to induce IDO1 expression. The JNK signaling pathway played an important role in melatonin-induced IDO1 up-regulation. In conclusion, this study suggests a link between melatonin, JNK, FoxO1 and IDO1 that acts as a potential balance regulator of tryptophan metabolism, and offers a new approach to treat diseases related to dysregulation of tryptophan metabolism. © 2017 Federation of European Biochemical Societies.

  17. Investigations of homologous recombination pathways and their regulation.

    Science.gov (United States)

    Daley, James M; Kwon, YoungHo; Niu, Hengyao; Sung, Patrick

    2013-12-13

    The DNA double-strand break (DSB), arising from exposure to ionizing radiation or various chemotherapeutic agents or from replication fork collapse, is among the most dangerous of chromosomal lesions. DSBs are highly cytotoxic and can lead to translocations, deletions, duplications, or mutations if mishandled. DSBs are eliminated by either homologous recombination (HR), which uses a homologous template to guide accurate repair, or by nonhomologous end joining (NHEJ), which simply rejoins the two broken ends after damaged nucleotides have been removed. HR generates error-free repair products and is also required for generating chromosome arm crossovers between homologous chromosomes in meiotic cells. The HR reaction includes several distinct steps: resection of DNA ends, homologous DNA pairing, DNA synthesis, and processing of HR intermediates. Each occurs in a highly regulated fashion utilizing multiple protein factors. These steps are being elucidated using a combination of genetic tools, cell-based assays, and in vitro reconstitution with highly purified HR proteins. In this review, we summarize contributions from our laboratory at Yale University in understanding HR mechanisms in eukaryotic cells.

  18. Molecular Pathways: Regulation and Therapeutic Implications of Multidrug Resistance

    Science.gov (United States)

    Chen, Kevin G.; Sikic, Branimir I.

    2012-01-01

    Multidrug transporters constitute major mechanisms of multidrug resistance (MDR) in human cancers. The ABCB1 (MDR1) gene encodes a well-characterized transmembrane transporter, termed P-glycoprotein (P-gp), which is expressed in many normal human tissues and cancers. P-gp plays a major role in the distribution and excretion of drugs, and is involved in intrinsic and acquired drug resistance of cancers. The regulation of ABCB1 expression is complex, and has not been well studied in a clinical setting. In this review, we elucidate molecular signaling and epigenetic interactions that govern ABCB1 expression and the development of MDR in cancer. We focus on acquired expression of ABCB1 that is associated with genomic instability of cancer cells, including mutational events that alter chromatin structures, gene rearrangements, and mutations in tumor suppressor proteins (e.g., mutant p53) that guard the integrity of genome. In addition, epigenetic modifications of the ABCB1 proximal and far upstream promoters by either demethylation of DNA or acetylation of histone H3 play a pivotal role in inducing ABCB1 expression. We describe a molecular network that coordinates genetic and epigenetic events leading to the activation of ABCB1. These mechanistic insignts provide additional translational targets and potential strategies to deal with clinical MDR. PMID:22344233

  19. The maternal JAK/STAT pathway of Drosophila regulates embryonic dorsal-ventral patterning

    Directory of Open Access Journals (Sweden)

    Lopes E.S.S.

    2004-01-01

    Full Text Available Activation of NFkappaB plays a pivotal role in many cellular processes such as inflammation, proliferation and apoptosis. In Drosophila, nuclear translocation of the NFkappaB-related transcription factor Dorsal is spatially regulated in order to subdivide the embryo into three primary dorsal-ventral (DV domains: the ventral presumptive mesoderm, the lateral neuroectoderm and the dorsal ectoderm. Ventral activation of the Toll receptor induces degradation of the IkappaB-related inhibitor Cactus, liberating Dorsal for nuclear translocation. In addition, other pathways have been suggested to regulate Dorsal. Signaling through the maternal BMP member Decapentaplegic (Dpp inhibits Dorsal translocation along a pathway parallel to and independent of Toll. In the present study, we show for the first time that the maternal JAK/STAT pathway also regulates embryonic DV patterning. Null alleles of loci coding for elements of the JAK/STAT pathway, hopscotch (hop, marelle (mrl and zimp (zimp, modify zygotic expression along the DV axis. Genetic analysis suggests that the JAK kinase Hop, most similar to vertebrate JAK2, may modify signals downstream of Dpp. In addition, an activated form of Hop results in increased levels of Cactus and Dorsal proteins, modifying the Dorsal/Cactus ratio and consequently DV patterning. These results indicate that different maternal signals mediated by the Toll, BMP and JAK/STAT pathways may converge to regulate NFkappaB activity in Drosophila.

  20. Regulation of apoptotic signal transduction pathways by the heat shock proteins

    Institute of Scientific and Technical Information of China (English)

    LI; Zhengyu; ZHAO; Xia; WEI; Yuquan

    2004-01-01

    The study about apoptotic signal transductions has become a project to reveal the molecular mechanisms of apoptosis. Heat shock proteins (hsps), which play an important role in cell growth and apoptosis, have attracted great attentions. A lot of researches have showed there is a hsps superfamily including hsp90, hsp70, hsp60 and hsp27, etc., which regulates the biological behaviors of cells, particularly apoptotic signal transduction in Fas pathway, JNK/SAPK pathway and caspases pathway at different levels, partly by the function of molecular chaperone.

  1. Quercitrin attenuates osteoporosis in ovariectomized rats by regulating mitogen-activated protein kinase (MAPK) signaling pathways.

    Science.gov (United States)

    Xing, Li-Zhi; Ni, Huai-Jun; Wang, Yu-Ling

    2017-03-13

    MAPK signaling pathways are crucial in regulating osteogenesis, a genetic disorder affecting the bones. Quercitrin, a type of flavonoid, is widely distributed in nature and involved in many pharmacological activities. But its osteoprotective functions and mechanism in osteoporosis are far from being understood clearly. In this paper, the MAPK upregulation was observed in the ovariectomy-induced bone loss. Quercitrin was found to downregulate MAPK signaling pathways and prevent the ovariectomy-induced deterioration of bone mineral density (BMD), trabecular microstructure, and bone mechanical characteristics. In this study, quercitrin was seen to prevent the progression of the postmenopausal osteoporosis among the rats, which may be mediated by the downregulated MAPK signaling pathways.

  2. Role of bile acids in the regulation of the metabolic pathways

    Institute of Scientific and Technical Information of China (English)

    Hiroki; Taoka; Yoko; Yokoyama; Kohkichi; Morimoto; Naho; Kitamura; Tatsuya; Tanigaki; Yoko; Takashina; Kazuo; Tsubota; Mitsuhiro; Watanabe

    2016-01-01

    Recent studies have revealed that bile acids(BAs)are not only facilitators of dietary lipid absorption but also important signaling molecules exerting multiple physiological functions.Some major signaling pathways involving the nuclear BAs receptor farnesoid X receptor and the G protein-coupled BAs receptor TGR5/M-BAR have been identified to be the targets of BAs.BAs regulate their own homeostasis via signaling pathways.BAs also affect diverse metabolic pathways including glucose metabolism,lipid metabolism and energy expenditure.This paper suggests the mechanism of controlling metabolism via BA signaling and demonstrates that BA signaling is an attractive therapeutic target of the metabolic syndrome.

  3. Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation.

    Science.gov (United States)

    Tanaka, M; Setoguchi, T; Hirotsu, M; Gao, H; Sasaki, H; Matsunoshita, Y; Komiya, S

    2009-06-16

    The study shows constitutive activation of the Notch pathway in various types of malignancies. However, it remains unclear how the Notch pathway is involved in the pathogenesis of osteosarcoma. We investigated the expression of the Notch pathway molecules in osteosarcoma biopsy specimens and examined the effect of Notch pathway inhibition. Real-time PCR revealed overexpression of Notch2, Jagged1, HEY1, and HEY2. On the other hand, Notch1 and DLL1 were downregulated in biopsy specimens. Notch pathway inhibition using gamma-secretase inhibitor and CBF1 siRNA slowed the growth of osteosarcomas in vitro. In addition, gamma-secretase inhibitor-treated xenograft models exhibited significantly slower osteosarcoma growth. Cell cycle analysis revealed that gamma-secretase inhibitor promoted G1 arrest. Real-time PCR and western blot revealed that gamma-secretase inhibitor reduced the expression of accelerators of the cell cycle, including cyclin D1, cyclin E1, E2, and SKP2. On the other hand, p21(cip1) protein, a cell cycle suppressor, was upregulated by gamma-secretase inhibitor treatment. These findings suggest that inhibition of Notch pathway suppresses osteosarcoma growth by regulation of cell cycle regulator expression and that the inactivation of the Notch pathway may be a useful approach to the treatment of patients with osteosarcoma.

  4. The flavonoid pathway regulates the petal colors of cotton flower.

    Directory of Open Access Journals (Sweden)

    Jiafu Tan

    Full Text Available Although biochemists and geneticists have studied the cotton flower for more than one century, little is known about the molecular mechanisms underlying the dramatic color change that occurs during its short developmental life following blooming. Through the analysis of world cotton germplasms, we found that all of the flowers underwent color changes post-anthesis, but there is a diverse array of petal colors among cotton species, with cream, yellow and red colors dominating the color scheme. Genetic and biochemical analyses indicated that both the original cream and red colors and the color changes post-anthesis were related to flavonoid content. The anthocyanin content and the expression of biosynthesis genes were both increased from blooming to one day post-anthesis (DPA when the flower was withering and undergoing abscission. Our results indicated that the color changes and flavonoid biosynthesis of cotton flowers were precisely controlled and genetically regulated. In addition, flavonol synthase (FLS genes involved in flavonol biosynthesis showed specific expression at 11 am when the flowers were fully opened. The anthocyanidin reductase (ANR genes, which are responsible for proanthocyanidins biosynthesis, showed the highest expression at 6 pm on 0 DPA, when the flowers were withered. Light showed primary, moderate and little effects on flavonol, anthocyanin and proanthocyanidin biosynthesis, respectively. Flavonol biosynthesis was in response to light exposure, while anthocyanin biosynthesis was involved in flower color changes. Further expression analysis of flavonoid genes in flowers of wild type and a flavanone 3-hydroxylase (F3H silenced line showed that the development of cotton flower color was controlled by a complex interaction between genes and light. These results present novel information regarding flavonoids metabolism and flower development.

  5. Interspecies Complementation of the LuxR Family Pathway-Specific Regulator Involved in Macrolide Biosynthesis.

    Science.gov (United States)

    Mo, SangJoon; Yoon, Yeo Joon

    2016-01-01

    PikD is a widely known pathway-specific regulator for controlling pikromycin production in Streptomyces venezuelae ATCC 15439, which is a representative of the large ATP-binding regulator of the LuxR family (LAL) in Streptomyces sp. RapH and FkbN also belong to the LAL family of transcriptional regulators, which show greatest homology with the ATP-binding motif and helix-turn-helix DNA-binding motif of PikD. Overexpression of pikD and heterologous expression of rapH and fkbN led to enhanced production of pikromycin by approximately 1.8-, 1.6-, and 1.6-fold in S. venezuelae, respectively. Cross-complementation of rapH and fkbN in the pikD deletion mutant (ΔpikD) restored pikromycin and derived macrolactone production. Overall, these results show that heterologous expression of rapH and fkbN leads to the overproduction of pikromycin and its congeners from the pikromycin biosynthetic pathway in S. venezuelae, and they have the same functionality as the pathwayspecific transcriptional activator for the pikromycin biosynthetic pathway in the ΔpikD strain. These results also show extensive "cross-communication" between pathway-specific regulators of streptomycetes and suggest revision of the current paradigm for pathwayspecific versus global regulation of secondary metabolism in Streptomyces species.

  6. The Protein Kinase A Pathway Regulates Zearalenone Production by Modulating Alternative ZEB2 Transcription.

    Science.gov (United States)

    Park, Ae Ran; Fu, Minmin; Shin, Ji Young; Son, Hokyoung; Lee, Yin-Won

    2016-05-28

    Zearalenone (ZEA) is an estrogenic mycotoxin that is produced by several Fusarium species, including Fusarium graminearum. One of the ZEA biosynthetic genes, ZEB2, encodes two isoforms of Zeb2 by alternative transcription, forming an activator (Zeb2L-Zeb2L homooligomer) and an inhibitor (Zeb2L-Zeb2S heterodimer) that directly regulate the ZEA biosynthetic genes in F. graminearum. Cyclic AMP-dependent protein kinase A (PKA) signaling regulates secondary metabolic processes in several filamentous fungi. In this study, we investigated the effects of the PKA signaling pathway on ZEA biosynthesis. Through functional analyses of PKA catalytic and regulatory subunits (CPKs and PKR), we found that the PKA pathway negatively regulates ZEA production. Genetic and biochemical evidence further demonstrated that the PKA pathway specifically represses ZEB2L transcription and also takes part in posttranscriptional regulation of ZEB2L during ZEA production. Our findings reveal the intriguing mechanism that the PKA pathway regulates secondary metabolite production by reprograming alternative transcription.

  7. Tbx2 regulates anterior neural specification by repressing FGF signaling pathway.

    Science.gov (United States)

    Cho, Gun-Sik; Park, Dong-Seok; Choi, Sun-Cheol; Han, Jin-Kwan

    2017-01-15

    During early embryogenesis, FGF signals regulate the antero-posterior (AP) patterning of the neural plate by promoting posterior cell fates. In particular, BMP signal-mediated attenuation of FGF pathway plays a critical role in the determination of the anterior neural region. Here we show that Tbx2, a T-box transcriptional repressor regulates anterior neural specification by suppressing FGF8 signaling pathway in Xenopus embryo. Tbx2 is expressed in the anterior edge of the neural plate in early neurulae. Overexpression and knockdown of Tbx2 induce expansion and reduction in the expression of anterior neural markers, respectively. It also suppresses FGF8-induced ERK phosphorylation and neural caudalization. Tbx2, which is a target gene of BMP signal, down-regulates FGF8 signaling by inhibiting the expression of Flrt3, a positive regulator of this pathway. We found that Tbx2 binds directly to the T-box element located in the promoter region of Flrt3 gene, thereby interfering with the activity of the promoter. Consistently, Tbx2 augmentation of anterior neural formation is inhibited by co-expression of Flrt3. Furthermore, disruption of the anterior-most structures such as eyes in Tbx2-depleted embryos can be rescued by inhibition of Flrt3 function or FGF signaling. Taken together, our results suggest that Tbx2 mediates BMP signal to down-regulate FGF signaling pathway by repressing Flrt3 expression for anterior tissue formation.

  8. Identification of miRNAs in Bovine Endometrium through RNAseq and Prediction of Regulated Pathways.

    Science.gov (United States)

    Palma-Vera, S E; Sharbati, S; Einspanier, R

    2015-10-01

    Detection of miRNAs in reproductive tissues is a key step to understand their role in fertility. We hypothesize that miRNAs must be involved in pathways controlling endometrial physiology and defense against pathogens. In this study, we aimed to characterize miRNAs present in bovine endometrium and to predict regulated pathways. Cytobrush endometrial samples from four cows were collected at oestrous cycle days 1-5, 6-12, 13-18 and 19-21. RNA was extracted and sequenced using Ion Torrent (®) technology. After mapping of the reads to miRNA stem loops, rRNAs and tRNAs, data were normalized and analysed using DESeq2. Targets and pathways were predicted with miRmap and KEGG, respectively. Validation of miRNAs in tissue was done by RT-qPCR (miR-Q). A total of 221 identities were common among groups, accumulating more than 99% of miRNA expression. MiRNAs were predicted to regulate MAPK signalling pathway, lysosome and extracellular matrix (ECM)-receptor interaction. Eight miRNAs were validated by miR-Q, showing that let-7a-5p and let-7b were regulated across the oestrous cycle. This study demonstrated a high similarity in miRNA expression profile across the oestrous cycles in bovine endometrium. These miRNAs were predicted to regulate pathways involved in cell proliferation, differentiation, transport and catabolism. The number of pathways shared by different miRNAs indicates the broad range of regulation these molecules exhibit in the endometrium. © 2015 Blackwell Verlag GmbH.

  9. Claudin-7 indirectly regulates the integrin/FAK signaling pathway in human colon cancer tissue.

    Science.gov (United States)

    Ding, Lei; Wang, Liyong; Sui, Leiming; Zhao, Huanying; Xu, Xiaoxue; Li, Tengyan; Wang, Xiaonan; Li, Wenjing; Zhou, Ping; Kong, Lu

    2016-08-01

    The claudin family of proteins is integral to the structure and function of tight junctions. The role of claudin-7 (Cldn-7, CLDN7) in regulating the integrin/focal adhesion kinase (FAK)/ERK signaling pathway remains poorly understood. Therefore, we investigated differences in gene expression, primarily focusing on CLDN7 and integrin/FAK/ERK signaling pathway genes, between colon cancer and adjacent normal tissues. Quantitative real-time reverse transcription-PCR and immunohistochemistry were utilized to verify the results of mRNA and protein expression, respectively. In silico analysis was used to predict co-regulation between Cldn-7 and integrin/FAK/ERK signaling pathway components, and the STRING database was used to analyze protein-protein interaction pairs among these proteins. Meta-analysis of expression microarrays in The Cancer Genome Atlas (TCGA) database was used to identify significant correlations between Cldn-7 and components of predicted genes in the integrin/FAK/ERK signaling pathway. Our results showed marked cancer stage-specific decreases in the protein expression of Cldn-7, Gelsolin, MAPK1 and MAPK3 in colon cancer samples, and the observed changes for all proteins except Cldn-7 were in agreement with changes in the corresponding mRNA levels. Cldn-7 might indirectly regulate MAPK3 via KRT8 due to KRT8 co-expression with MAPK3 or CLDN7. Our bioinformatics methods supported the hypothesis that Cldn-7 does not directly regulate any genes in the integrin/FAK/ERK signaling pathway. These factors may participate in a common network that regulates cancer progression in which the MAPK pathway serves as the central node.

  10. Recent Advances in the Regulation of Brassinosteroid Signaling and Biosynthesis Pathways

    Institute of Scientific and Technical Information of China (English)

    Huaxun Ye; Lei Li; Yanhai Yin

    2011-01-01

    Brassinosteroids (BRs) play important roles in plant growth, development and responses to environmental cues. BRs signal through plasma membrane receptor BRI1 and co-receptor BAK1, and several positive (BSK1, BSU1, PP2A) and negative (BKI1, BIN2 and 14-3-3) regulators to control the activities of BES1 and BZR1 family transcription factors,which regulate the expression of hundreds to thousands of genes for various BR responses. Recent studies identified novel signaling components in the BR pathways and started to establish the detailed mechanisms on the regulation of BR signaling. In addition, the molecular mechanism and transcriptional network through which BES1 and BZR1 control gene expression and various BR responses are beginning to be revealed. BES1 recruits histone demethylases ELF6 and REF6 as well as a transcription elongation factor IWS1 to regulate target gene expression. Identification of BES1 and BZR1 target genes established a transcriptional network for BR response and crosstalk with other signaling pathways. Recent studies also revealed regulatory mechanisms of BRs in many developmental processes and regulation of BR biosynthesis. Here we provide an overview and discuss some of the most recent progress in the regulation of BR signaling and biosynthesis pathways.

  11. A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC.

    Science.gov (United States)

    Occhi, Gianluca; Barollo, Susi; Regazzo, Daniela; Bertazza, Loris; Galuppini, Francesca; Guzzardo, Vincenza; Jaffrain-Rea, Marie Lise; Vianello, Federica; Ciato, Denis; Ceccato, Filippo; Watutantrige-Fernando, Sara; Bisognin, Andrea; Bortoluzzi, Stefania; Pennelli, Gianmaria; Boscaro, Marco; Scaroni, Carla; Mian, Caterina

    2015-10-13

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor mediating the toxicity and tumor-promoting properties of dioxin. AHR has been reported to be overexpressed and constitutively active in a variety of solid tumors, but few data are currently available concerning its role in thyroid cancer. In this study we quantitatively explored a series of 51 paired-normal and papillary thyroid carcinoma (PTC) tissues for AHR-related genes. We identified an increased AHR expression/activity in PTC, independently from its nuclear dimerization partner and repressor but strictly related to a constitutive active MAPK/ERK pathway. The AHR up-regulation followed by an increased expression of AHR target genes was confirmed by a meta-analysis of published microarray data, suggesting a ligand-independent active AHR pathway in PTC. In-vitro studies using a PTC-derived cell line (BCPAP) and HEK293 cells showed that BRAFV600E may directly modulate AHR localization, induce AHR expression and activity in an exogenous ligand-independent manner. The AHR pathway might represent a potential novel therapeutic target for PTC in the clinical practice.

  12. A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC

    Science.gov (United States)

    Regazzo, Daniela; Bertazza, Loris; Galuppini, Francesca; Guzzardo, Vincenza; Jaffrain-Rea, Marie Lise; Vianello, Federica; Ciato, Denis; Ceccato, Filippo; Watutantrige-Fernando, Sara; Bisognin, Andrea; Bortoluzzi, Stefania; Pennelli, Gianmaria; Boscaro, Marco; Scaroni, Carla; Mian, Caterina

    2015-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor mediating the toxicity and tumor-promoting properties of dioxin. AHR has been reported to be overexpressed and constitutively active in a variety of solid tumors, but few data are currently available concerning its role in thyroid cancer. In this study we quantitatively explored a series of 51 paired-normal and papillary thyroid carcinoma (PTC) tissues for AHR-related genes. We identified an increased AHR expression/activity in PTC, independently from its nuclear dimerization partner and repressor but strictly related to a constitutive active MAPK/ERK pathway. The AHR up-regulation followed by an increased expression of AHR target genes was confirmed by a meta-analysis of published microarray data, suggesting a ligand-independent active AHR pathway in PTC. In-vitro studies using a PTC-derived cell line (BCPAP) and HEK293 cells showed that BRAFV600E may directly modulate AHR localization, induce AHR expression and activity in an exogenous ligand-independent manner. The AHR pathway might represent a potential novel therapeutic target for PTC in the clinical practice. PMID:26392334

  13. Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Michael J Nemeth; David M Bodine

    2007-01-01

    Hematopoietic stem cells (HSCs) are a rare population of cells that are responsible for life-long generation of blood cells of all lineages. In order to maintain their numbers, HSCs must establish a balance between the opposing cell fates of self-renewal (in which the ability to function as HSCs is retained) and initiation of hematopoietic differentiation. Multiple signaling pathways have been implicated in the regulation of HSC cell fate. One such set of pathways are those activated by the Wnt family of ligands. Wnt signaling pathways play a crucial role during embryogenesis and deregulation of these pathways has been implicated in the formation of solid tumors. Wnt signaling also plays a role in the regulation of stem cells from multiple tissues, such as embryonic, epidermal, and intestinal stem cells. However, the function of Wnt signaling in HSC biology is still controversial. In this review, we will discuss the basic characteristics of the adult HSC and its regulatory microenvironment, the "niche", focusing on the regulation of the HSC and its niche by the Wnt signaling pathways.

  14. Regulation of MAP kinase-dependent apoptotic pathway: implication of reactive oxygen and nitrogen species.

    Science.gov (United States)

    Sumbayev, Vadim V; Yasinska, Inna M

    2005-04-15

    Mitogen-activated protein (MAP) kinase signaling cascades are multi-functional signaling networks that influence cell growth, differentiation, apoptosis, and cellular responses to stress. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase that triggers apoptogenic kinase cascade leading to the phosphorylation/activation of c-Jun N-terminal kinases and p38-MAP kinase, which are responsible for inducing apoptotic cell death. This pathway plays a pivotal role in transduction of signals from different apoptotic stimuli. In the present review, we summarized the recent evidence concerning MAP kinase-dependent apoptotic pathway and its regulation in the mammalian cells and organism in vivo. We have shown that the key messengers of regulation of this pathway are the reactive oxygen and nitrogen species. The role of protein oxidation and S-nitrosation in induction of apoptotic cell death via ASK1 is discussed. Also we have outlined other recently discovered signal transduction processes involved in the regulation of ASK1 activity and downstream pathway.

  15. Is transcriptional regulation of metabolic pathways an optimal strategy for fitness?

    Directory of Open Access Journals (Sweden)

    Carl Troein

    Full Text Available BACKGROUND: Transcriptional regulation of the genes in metabolic pathways is a highly successful strategy, which is virtually universal in microorganisms. The lac operon of E. coli is but one example of how enzyme and transporter production can be made conditional on the presence of a nutrient to catabolize. METHODOLOGY: With a minimalist model of metabolism, cell growth and transcriptional regulation in a microorganism, we explore how the interaction between environmental conditions and gene regulation set the growth rate of cells in the phase of exponential growth. This in silico model, which is based on biochemical rate equations, does not describe a specific organism, but the magnitudes of its parameters are chosen to match realistic values. Optimizing the parameters of the regulatory system allows us to quantify the fitness benefit of regulation. When a second nutrient and its metabolic pathway are introduced, the system must further decide whether and how to activate both pathways. CONCLUSIONS: Even the crudest transcriptional network is shown to substantially increase the fitness of the organism, and this effect persists even when the range of nutrient levels is kept very narrow. We show that maximal growth is achieved when pathway activation is a more or less steeply graded function of the nutrient concentration. Furthermore, we predict that bistability of the system is a rare phenomenon in this context, but outline a situation where it may be selected for.

  16. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Pooja Chandrakant Thacker

    Full Text Available Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer.

  17. MicroRNAs Regulating Signaling Pathways: Potential Biomarkers in Systemic Sclerosis

    Directory of Open Access Journals (Sweden)

    Yisha Li

    2015-08-01

    Full Text Available Systemic sclerosis (SSc is a multisystem fibrotic and autoimmune disease. Both genetic and epigenetic elements mediate SSc pathophysiology. This review summarizes the role of one epigenetic element, known as microRNAs (miRNAs, involved in different signaling pathways of SSc pathogenesis. The expression of key components in transforming growth factor-β (TGF-β signaling pathway has been found to be regulated by miRNAs both upstream and downstream of TGF-β. We are specifically interested in the pathway components upstream of TGF-β, while miRNAs in other signaling pathways have not been extensively studied. The emerging role of miRNAs in vasculopathy of SSc suggests a promising new direction for future investigation. Elucidation of the regulatory role of miRNAs in the expression of signaling factors may facilitate the discovery of novel biomarkers in SSc and improve the understanding and treatment of this disease.

  18. MicroRNAs Regulating Signaling Pathways:Potential Biomarkers in Systemic Sclerosis

    Institute of Scientific and Technical Information of China (English)

    Yisha Li; Jing Huang; Muyao Guo; Xiaoxia Zuo

    2015-01-01

    Systemic sclerosis (SSc) is a multisystem fibrotic and autoimmune disease. Both genetic and epigenetic elements mediate SSc pathophysiology. This review summarizes the role of one epigenetic element, known as microRNAs (miRNAs), involved in different signaling pathways of SSc pathogenesis. The expression of key components in transforming growth factor-b (TGF-b) signaling pathway has been found to be regulated by miRNAs both upstream and downstream of TGF-b. We are specifically interested in the pathway components upstream of TGF-b, while miRNAs in other signaling pathways have not been extensively studied. The emerging role of miRNAs in vasculopathy of SSc suggests a promising new direction for future investigation. Elu-cidation of the regulatory role of miRNAs in the expression of signaling factors may facilitate the discovery of novel biomarkers in SSc and improve the understanding and treatment of this disease.

  19. PDK1-Akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex.

    Science.gov (United States)

    Itoh, Yasuhiro; Higuchi, Maiko; Oishi, Koji; Kishi, Yusuke; Okazaki, Tomohiko; Sakai, Hiroshi; Miyata, Takaki; Nakajima, Kazunori; Gotoh, Yukiko

    2016-05-24

    Neurons migrate a long radial distance by a process known as locomotion in the developing mammalian neocortex. During locomotion, immature neurons undergo saltatory movement along radial glia fibers. The molecular mechanisms that regulate the speed of locomotion are largely unknown. We now show that the serine/threonine kinase Akt and its activator phosphoinositide-dependent protein kinase 1 (PDK1) regulate the speed of locomotion of mouse neocortical neurons through the cortical plate. Inactivation of the PDK1-Akt pathway impaired the coordinated movement of the nucleus and centrosome, a microtubule-dependent process, during neuronal migration. Moreover, the PDK1-Akt pathway was found to control microtubules, likely by regulating the binding of accessory proteins including the dynactin subunit p150(glued) Consistent with this notion, we found that PDK1 regulates the expression of cytoplasmic dynein intermediate chain and light intermediate chain at a posttranscriptional level in the developing neocortex. Our results thus reveal an essential role for the PDK1-Akt pathway in the regulation of a key step of neuronal migration.

  20. A new pathway of glucocorticoid action for asthma treatment through the regulation of PTEN expression

    Directory of Open Access Journals (Sweden)

    Chen Qingge

    2011-04-01

    Full Text Available Abstract Background "Phosphatase and tensin homolog deleted on chromosome 10" (PTEN is mostly considered to be a cancer-related gene, and has been suggested to be a new pathway of pathogenesis of asthma. The purpose of this study was to investigate the effects of the glucocorticoid, dexamethasone, on PTEN regulation. Methods OVA-challenged mice were used as an asthma model to investigate the effect of dexamethasone on PTEN regulation. Immunohistochemistry was used to detect expression levels of PTEN protein in lung tissues. The human A549 cell line was used to explore the possible mechanism of action of dexamethasone on human PTEN regulation in vitro. A luciferase reporter construct under the control of PTEN promoter was used to confirm transcriptional regulation in response to dexamethasone. Results PTEN protein was found to be expressed at low levels in lung tissues in asthmatic mice; but the expression was restored after treatment with dexamethasone. In A549 cells, human PTEN was up-regulated by dexamethasone treatment. The promoter-reporter construct confirmed that dexamethasone could regulate human PTEN transcription. Treatment with the histone deacetylase inhibitor, TSA, could increase PTEN expression in A549 cells, while inhibition of histone acetylase (HAT by anacardic acid attenuated dexamethasone-induced PTEN expression. Conclusions Based on the data a new mechanism is proposed where glucocorticoids treat asthma partly through up-regulation of PTEN expression. The in vitro studies also suggest that the PTEN pathway may be involved in human asthma.

  1. The Atg1-Tor pathway regulates yolk catabolism in Drosophila embryos.

    Science.gov (United States)

    Kuhn, Hallie; Sopko, Richelle; Coughlin, Margaret; Perrimon, Norbert; Mitchison, Tim

    2015-11-15

    Yolk provides an important source of nutrients during the early development of oviparous organisms. It is composed mainly of vitellogenin proteins packed into membrane-bound compartments called yolk platelets. Catabolism of yolk is initiated by acidification of the yolk platelet, leading to the activation of Cathepsin-like proteinases, but it is unknown how this process is triggered. Yolk catabolism initiates at cellularization in Drosophila melanogaster embryos. Using maternal shRNA technology we found that yolk catabolism depends on the Tor pathway and on the autophagy-initiating kinase Atg1. Whereas Atg1 was required for a burst of spatially regulated autophagy during late cellularization, autophagy was not required for initiating yolk catabolism. We propose that the conserved Tor metabolic sensing pathway regulates yolk catabolism, similar to Tor-dependent metabolic regulation on the lysosome.

  2. The STARS signaling pathway: a key regulator of skeletal muscle function.

    Science.gov (United States)

    Lamon, Séverine; Wallace, Marita A; Russell, Aaron P

    2014-09-01

    During the last decade, the striated muscle activator of Rho signaling (STARS), a muscle-specific protein, has been proposed to play an increasingly important role in skeletal muscle growth, metabolism, regeneration and stress adaptation. STARS influences actin dynamics and, as a consequence, regulates the myocardin-related transcription factor A/serum response factor (MRTF-A/SRF) transcriptional program, a well-known pathway controlling skeletal muscle development and function. Muscle-specific stress conditions, such as exercise, positively regulates, while disuse and degenerative muscle diseases are associated with a downregulation of STARS and its downstream partners, suggesting a pivotal role for STARS in skeletal muscle health. This review provides a comprehensive overview of the known role and regulation of STARS and the members of its signaling pathway, RhoA, MRTF-A and SRF, in skeletal muscle.

  3. Time-course regulation of quercetin on cell survival/proliferation pathways in human hepatoma cells.

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Angeles Martín, María; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2008-04-01

    Quercetin, a dietary flavonoid, has been shown to possess anticarcinogenic properties, but the precise molecular mechanisms of action are not thoroughly elucidated. This study was aimed at investigating the time-course regulation effect of quercetin on survival/proliferation pathways in a human hepatoma cell line (HepG2). Quercetin induced a significant time-dependent inactivation of the major survival signaling proteins, i. e., phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (AKT), extracellular regulated kinase (ERK), protein kinase C-alpha (PKC-alpha), in concert with a time-dependent activation of key death-related signals: c-jun amino-terminal kinase (JNK) and PKC-delta. These data suggest that quercetin exerts a tight regulation of survival/proliferation pathways that requires the integration of different signals and persists over time, being the balance of these regulatory signals what determines the fate of HepG2 cells.

  4. The molecular choreography of protein synthesis: translational control, regulation, and pathways.

    Science.gov (United States)

    Chen, Jin; Choi, Junhong; O'Leary, Seán E; Prabhakar, Arjun; Petrov, Alexey; Grosely, Rosslyn; Puglisi, Elisabetta Viani; Puglisi, Joseph D

    2016-01-01

    Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.

  5. Activation of the TOR Signalling Pathway by Glutamine Regulates Insect Fecundity.

    Science.gov (United States)

    Zhai, Yifan; Sun, Zhongxiang; Zhang, Jianqing; Kang, Kui; Chen, Jie; Zhang, Wenqing

    2015-05-29

    The target of rapamycin (TOR) positively controls cell growth in response to nutrients such as amino acids. However, research on the specific nutrients sensed by TOR is limited. Glutamine (Gln), a particularly important amino acid involved in metabolism in organisms, is synthesised and catalysed exclusively by glutamine synthetase (GS), and our previous studies have shown that Gln may regulate fecundity in vivo levels of the brown planthopper (BPH) Nilaparvata lugens. Until now, it has remained unclear whether Gln activates or inhibits the TOR signalling pathway. Here, we performed the combined analyses of iTRAQ (isobaric tags for relative and absolute quantification) and DGE (tag-based digital gene expression) data in N. lugens at the protein and transcript levels after GS RNAi, and we found that 52 pathways overlap, including the TOR pathway. We further experimentally demonstrate that Gln activates the TOR pathway by promoting the serine/threonine protein kinase AKT and inhibiting the 5'AMP-activated protein kinase AMPK phosphorylation activity in the pest. Furthermore, TOR regulates the fecundity of N. lugens probably by mediating vitellogenin (Vg) expression. This work is the first report that Gln activates the TOR pathway in vivo.

  6. New insights into the regulation of plant immunity by amino acid metabolic pathways.

    Science.gov (United States)

    Zeier, Jürgen

    2013-12-01

    Besides defence pathways regulated by classical stress hormones, distinct amino acid metabolic pathways constitute integral parts of the plant immune system. Mutations in several genes involved in Asp-derived amino acid biosynthetic pathways can have profound impact on plant resistance to specific pathogen types. For instance, amino acid imbalances associated with homoserine or threonine accumulation elevate plant immunity to oomycete pathogens but not to pathogenic fungi or bacteria. The catabolism of Lys produces the immune signal pipecolic acid (Pip), a cyclic, non-protein amino acid. Pip amplifies plant defence responses and acts as a critical regulator of plant systemic acquired resistance, defence priming and local resistance to bacterial pathogens. Asp-derived pyridine nucleotides influence both pre- and post-invasion immunity, and the catabolism of branched chain amino acids appears to affect plant resistance to distinct pathogen classes by modulating crosstalk of salicylic acid- and jasmonic acid-regulated defence pathways. It also emerges that, besides polyamine oxidation and NADPH oxidase, Pro metabolism is involved in the oxidative burst and the hypersensitive response associated with avirulent pathogen recognition. Moreover, the acylation of amino acids can control plant resistance to pathogens and pests by the formation of protective plant metabolites or by the modulation of plant hormone activity.

  7. The SLIT-ROBO pathway: a regulator of cell function with implications for the reproductive system.

    Science.gov (United States)

    Dickinson, Rachel E; Duncan, W Colin

    2010-04-01

    The secreted SLIT glycoproteins and their Roundabout (ROBO) receptors were originally identified as important axon guidance molecules. They function as a repulsive cue with an evolutionarily conserved role in preventing axons from migrating to inappropriate locations during the assembly of the nervous system. In addition the SLIT-ROBO interaction is involved in the regulation of cell migration, cell death and angiogenesis and, as such, has a pivotal role during the development of other tissues such as the lung, kidney, liver and breast. The cellular functions that the SLIT/ROBO pathway controls during tissue morphogenesis are processes that are dysregulated during cancer development. Therefore inactivation of certain SLITs and ROBOs is associated with advanced tumour formation and progression in disparate tissues. Recent research has indicated that the SLIT/ROBO pathway could also have important functions in the reproductive system. The fetal ovary expresses most members of the SLIT and ROBO families. The SLITs and ROBOs also appear to be regulated by steroid hormones and regulate physiological cell functions in adult reproductive tissues such as the ovary and endometrium. Furthermore several SLITs and ROBOs are aberrantly expressed during the development of ovarian, endometrial, cervical and prostate cancer. This review will examine the roles this pathway could have in the development, physiology and pathology of the reproductive system and highlight areas for future research that could further dissect the influence of the SLIT/ROBO pathway in reproduction.

  8. Plasma membrane calcium ATPase proteins as novel regulators of signal transduction pathways

    Institute of Scientific and Technical Information of China (English)

    Mary; Louisa; Holton; Michael; Emerson; Ludwig; Neyses; Angel; L; Armesilla

    2010-01-01

    Emerging evidence suggests that plasma membrane calcium ATPases (PMCAs) play a key role as regulators of calcium-triggered signal transduction pathways via interaction with partner proteins. PMCAs regulate these pathways by targeting specific proteins to cellular sub-domains where the levels of intracellular freecalcium are kept low by the calcium ejection properties of PMCAs. According to this model, PMCAs have been shown to interact functionally with the calcium-sensitive proteins neuronal nitric oxide synthase, calmodulindependent serine protein kinase, calcineurin and endothelial nitric oxidase synthase. Transgenic animals with altered expression of PMCAs are being used to evaluate the physiological significance of these interactions. To date, PMCA interactions with calcium-dependent partner proteins have been demonstrated to play a crucial role in the pathophysiology of the cardiovascular system via regulation of the nitric oxide and calcineurin/nuclear factor of activated T cells pathways. This new evidence suggests that PMCAs play a more sophisticated role than the mere ejection of calcium from the cells, by acting as modulators of signaling transduction pathways.

  9. Regulation of hepatitis C virus replication and gene expression by the MAPK-ERK pathway.

    Science.gov (United States)

    Pei, Rongjuan; Zhang, Xiaoyong; Xu, Song; Meng, Zhongji; Roggendorf, Michael; Lu, Mengji; Chen, Xinwen

    2012-10-01

    The mitogen activated protein kinases-extracellular signal regulated kinases (MAPK-ERK) pathway is involved in regulation of multiple cellular processes including the cell cycle. In the present study using a Huh7 cell line Con1 with an HCV replicon, we have shown that the MAPK-ERK pathway plays a significant role in the modulation of HCV replication and protein expression and might influence IFN-α signalling. Epithelial growth factor (EGF) was able to stimulate ERK activation and decreased HCV RNA load while a MAPK-ERK pathway inhibitor U0126 led to an elevated HCV RNA load and higher NS5A protein amounts in Con1 cells. It could be further demonstrated that the inhibition of the MAPK-ERK pathway facilitated the translation directed by the HCV internal ribosome entry site. Consistently, a U0126 treatment enhanced activity of the HCV reporter replicon in transient transfection assays. Thus, the MAPK-ERK pathway plays an important role in the regulation of HCV gene expression and replication. In addition, cyclin-dependent kinases (CDKs) downstream of ERK may also be involved in the modulation of HCV replication since roscovitine, an inhibitor of CDKs had a similar effect to that of U0126. Modulation of the cell cycle progression by cell cycle inhibitor or RNAi resulted consistently in changes of HCV RNA levels. Further, the replication of HCV replicon in Con1 cells was inhibited by IFN-α. The inhibitory effect of IFN-α could be partly reversed by pre-incubation of Con-1 cells with inhibitors of the MAPK-ERK pathway and CDKs. It could be shown that the MAPK-ERK inhibitors are able to partially modulate the expression of interferon-stimulated genes.

  10. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes.

    Science.gov (United States)

    Guo, Belinda B; Bellingham, Shayne A; Hill, Andrew F

    2015-02-06

    Prion diseases are a group of transmissible, fatal neurodegenerative disorders associated with the misfolding of the host-encoded prion protein, PrP(C), into a disease-associated form, PrP(Sc). The transmissible prion agent is principally formed of PrP(Sc) itself and is associated with extracellular vesicles known as exosomes. Exosomes are released from cells both in vitro and in vivo, and have been proposed as a mechanism by which prions spread intercellularly. The biogenesis of exosomes occurs within the endosomal system, through formation of intraluminal vesicles (ILVs), which are subsequently released from cells as exosomes. ILV formation is known to be regulated by the endosomal sorting complexes required for transport (ESCRT) machinery, although an alternative neutral sphingomyelinase (nSMase) pathway has been suggested to also regulate this process. Here, we investigate a role for the nSMase pathway in exosome biogenesis and packaging of PrP into these vesicles. Inhibition of the nSMase pathway using GW4869 revealed a role for the nSMase pathway in both exosome formation and PrP packaging. In agreement, targeted knockdown of nSMase1 and nSMase2 in mouse neurons using lentivirus-mediated RNAi also decreases exosome release, demonstrating the nSMase pathway regulates the biogenesis and release of exosomes. We also demonstrate that PrP(C) packaging is dependent on nSMase2, whereas the packaging of disease-associated PrP(Sc) into exosomes occurs independently of nSMase2. These findings provide further insight into prion transmission and identify a pathway which directly assists exosome-mediated transmission of prions.

  11. Regulation of Hepatitis C Virus Replication and Gene Expression by the MAPK-ERK Pathway

    Institute of Scientific and Technical Information of China (English)

    Rongjuan Pei; Xiaoyong Zhang; Song Xu; Zhongji Meng; Michael Roggendorf; Mengji Lu; Xinwen Chen

    2012-01-01

    The mitogen activated protein kinases-extracellular signal regulated kinases (MAPK-ERK) pathway is involved in regulation of multiple cellular processes including the cell cycle.In the present study using a Huh7 cell line Con1 with an HCV replicon,we have shown that the MAPK-ERK pathway plays a significant role in the modulation of HCV replication and protein expression and might influence IFN-α signalling.Epithelial growth factor (EGF) was able to stimulate ERK activation and decreased HCV RNA load while a MAPK-ERK pathway inhibitor U0126 led to an elevated HCV RNA load and higher NS5A protein amounts in Con1 cells.It could be further demonstrated that the inhibition of the MAPK-ERK pathway facilitated the translation directed by the HCV internal ribosome entry site.Consistently,a U0126 treatment enhanced activity of the HCV reporter replicon in transient transfection assays.Thus,the MAPK-ERK pathway plays an important role in the regulation of HCV gene expression and replication.In addition,cyclin-dependent kinases (CDKs) downstream of ERK may also be involved in the modulation of HCV replication since roscovitine,an inhibitor of CDKs had a similar effect to that of U0126.Modulation of the cell cycle progression by cell cycle inhibitor or RNAi resulted consistently in changes of HCV RNA levels.Further,the replication of HCV replicon in Conl cells was inhibited by IFN-α.The inhibitory effect of IFN-α could be partly reversed by pre-incubation of Con-1 cells with inhibitors of the MAPK-ERK pathway and CDKs.It could be shown that the MAPK-ERK inhibitors are able to partially modulate the expression of interferon-stimulated genes.

  12. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum.

    Science.gov (United States)

    Yu, Fangwei; Gu, Qin; Yun, Yingzi; Yin, Yanni; Xu, Jin-Rong; Shim, Won-Bo; Ma, Zhonghua

    2014-07-01

    The target of rapamycin (TOR) signaling pathway plays critical roles in controlling cell growth in a variety of eukaryotes. However, the contribution of this pathway in regulating virulence of plant pathogenic fungi is unknown. We identified and characterized nine genes encoding components of the TOR pathway in Fusarium graminearum. Biological, genetic and biochemical functions of each component were investigated. The FgFkbp12-rapamycin complex binds to the FgTor kinase. The type 2A phosphatases FgPp2A, FgSit4 and FgPpg1 were found to interact with FgTap42, a downstream component of FgTor. Among these, we determined that FgPp2A is likely to be essential for F. graminearum survival, and FgSit4 and FgPpg1 play important roles in cell wall integrity by positively regulating the phosphorylation of FgMgv1, a key MAP kinase in the cell wall integrity pathway. In addition, the FgPpg1 interacting protein, FgTip41, is involved in regulating mycelial growth and virulence. Notably, FgTip41 does not interact with FgTap42 but with FgPpg1, suggesting the existence of FgTap42:FgPpg1:FgTip41 heterotrimer in F. graminearum, a complex not observed in the yeast model. Collectively, we defined a genetic regulatory framework that elucidates how the TOR pathway regulates virulence and vegetative development in F. graminearum.

  13. Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: pathway dissection, regulation and engineering.

    Science.gov (United States)

    Gu, Yang; Jiang, Yu; Yang, Sheng; Jiang, Weihong

    2014-10-01

    Solventogenic clostridia can produce acetone, butanol and ethanol (ABE) by using different carbohydrates. For economical reasons, the utilization of cheap and renewable biomass in clostridia-based ABE fermentation has recently attracted increasing interests. With the study of molecular microbiology and development of genetic tools, the understanding of carbohydrate metabolism in clostridia has increased in recent years. Here, we review the pioneering work in this field, with a focus on dissecting the pathways and describing the regulation of the metabolism of economical substrate-derived carbohydrates by clostridia. Recent progress in the metabolic engineering of carbohydrate utilization pathways is also described.

  14. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    Energy Technology Data Exchange (ETDEWEB)

    Samarzija, Ivana [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland); Beard, Peter, E-mail: peter.beard@epfl.ch [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  15. Methionine sulfoxide reductase A regulates cell growth through the p53-p21 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Hee [Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717 (Korea, Republic of); Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr [Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717 (Korea, Republic of)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Down-regulation of MsrA inhibits normal cell proliferation. Black-Right-Pointing-Pointer MsrA deficiency leads to an increase in p21 by enhanced p53 acetylation. Black-Right-Pointing-Pointer Down-regulation of MsrA causes cell cycle arrest at the G{sub 2}/M stage. Black-Right-Pointing-Pointer MsrA is a regulator of cell growth that mediates the p53-p21 pathway. -- Abstract: MsrA is an oxidoreductase that catalyzes the stereospecific reduction of methionine-S-sulfoxide to methionine. Although MsrA is well-characterized as an antioxidant and has been implicated in the aging process and cellular senescence, its roles in cell proliferation are poorly understood. Here, we report a critical role of MsrA in normal cell proliferation and describe the regulation mechanism of cell growth by this protein. Down-regulation of MsrA inhibited cell proliferation, but MsrA overexpression did not promote it. MsrA deficiency led to an increase in p21, a major cyclin-dependent kinase inhibitor, thereby causing cell cycle arrest at the G{sub 2}/M stage. While protein levels of p53 were not altered upon MsrA deficiency, its acetylation level was significantly elevated, which subsequently activated p21 transcription. The data suggest that MsrA is a regulator of cell growth that mediates the p53-p21 pathway.

  16. OTUB1 modulates c-IAP1 stability to regulate signalling pathways.

    Science.gov (United States)

    Goncharov, Tatiana; Niessen, Kyle; de Almagro, Maria Cristina; Izrael-Tomasevic, Anita; Fedorova, Anna V; Varfolomeev, Eugene; Arnott, David; Deshayes, Kurt; Kirkpatrick, Donald S; Vucic, Domagoj

    2013-04-17

    The cellular inhibitor of apoptosis (c-IAP) proteins are E3 ubiquitin ligases that are critical regulators of tumour necrosis factor (TNF) receptor (TNFR)-mediated signalling. Through their E3 ligase activity c-IAP proteins promote ubiquitination of receptor-interaction protein 1 (RIP1), NF-κB-inducing kinase (NIK) and themselves, and regulate the assembly of TNFR signalling complexes. Consequently, in the absence of c-IAP proteins, TNFR-mediated activation of NF-κB and MAPK pathways and the induction of gene expression are severely reduced. Here, we describe the identification of OTUB1 as a c-IAP-associated deubiquitinating enzyme that regulates c-IAP1 stability. OTUB1 disassembles K48-linked polyubiquitin chains from c-IAP1 in vitro and in vivo within the TWEAK receptor-signalling complex. Downregulation of OTUB1 promotes TWEAK- and IAP antagonist-stimulated caspase activation and cell death, and enhances c-IAP1 degradation. Furthermore, knockdown of OTUB1 reduces TWEAK-induced activation of canonical NF-κB and MAPK signalling pathways and modulates TWEAK-induced gene expression. Finally, suppression of OTUB1 expression in zebrafish destabilizes c-IAP (Birc2) protein levels and disrupts fish vasculature. These results suggest that OTUB1 regulates NF-κB and MAPK signalling pathways and TNF-dependent cell death by modulating c-IAP1 stability.

  17. Nuclear mRNA degradation pathway(s are implicated in Xist regulation and X chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Constance Ciaudo

    2006-06-01

    Full Text Available A critical step in X-chromosome inactivation (XCI, which results in the dosage compensation of X-linked gene expression in mammals, is the coating of the presumptive inactive X chromosome by the large noncoding Xist RNA, which then leads to the recruitment of other factors essential for the heterochromatinisation of the inactive X and its transcriptional silencing. In an approach aimed at identifying genes implicated in the X-inactivation process by comparative transcriptional profiling of female and male mouse gastrula, we identified the Eif1 gene involved in translation initiation and RNA degradation. We show here that female embryonic stem cell lines, silenced by RNA interference for the Eif1 gene, are unable to form Xist RNA domains upon differentiation and fail to undergo X-inactivation. To probe further an effect involving RNA degradation pathways, the inhibition by RNA interference of Rent1, a factor essential for nonsense-mediated decay and Exosc10, a specific nuclear component of the exosome, was analysed and shown to similarly impair Xist upregulation and XCI. In Eif1-, Rent1-, and Exosc10-interfered clones, Xist spliced form(s are strongly downregulated, while the levels of unspliced form(s of Xist and the stability of Xist RNA remain comparable to that of the control cell lines. Our data suggests a role for mRNA nuclear degradation pathways in the critical regulation of spliced Xist mRNA levels and the onset of the X-inactivation process.

  18. Differential Regulation of the Autophagy and Proteasome Pathways in Skeletal Muscles in Sepsis.

    Science.gov (United States)

    Stana, Flavia; Vujovic, Marija; Mayaki, Dominique; Leduc-Gaudet, Jean-Philippe; Leblanc, Philippe; Huck, Laurent; Hussain, Sabah N A

    2017-09-01

    Skeletal muscle fiber atrophy develops in response to severe sepsis, but it is unclear as to how the proteolytic pathways that are involved in its development are differentially regulated. We investigated the link between sepsis-induced fiber atrophy and activation of the proteasome and autophagy pathways and whether the degree of activation is more severe and sustained in limb muscles than it is in the diaphragm. Randomized controlled experiment. Animal research laboratory. Adult male C57/BL6 mice. Two groups of animals were studied. The sepsis group was subjected to a cecal ligation and perforation technique, whereas the control (sham) group was subjected to abdominal surgery without cecal ligation and perforation. Measurements for both groups were performed 24, 48, and 96 hours after the surgical procedure. Atrophy was quantified in the diaphragm and tibialis anterior by measuring fiber diameter. Autophagy was evaluated using electron microscopic detection of autophagosomes and by measuring LC3B protein lipidation and autophagy-related protein expressions. Proteasomal degradation was quantified by measuring chymotrypsin-like activity of the 26S proteasome and messenger RNA expressions of muscle-specific E3 ligases. Sepsis triggered transient fiber atrophy in the diaphragm that lasted for 24 hours and prolonged atrophy in the tibialis anterior that persisted for 96 hours. The autophagy and proteasome pathways were activated in both muscles at varying intensities over the time course of sepsis. Activation was more pronounced in the tibialis anterior than in the diaphragm. Sepsis inhibited the V-Akt thymoma viral oncogene homolog 1 and complex 1 of the mammalian target of rapamycin pathways and stimulated the AMP-activated protein kinase pathway in both muscles. Sepsis triggers more severe and sustained muscle fiber atrophy in limb muscles when compared with respiratory muscle. This response is associated with enhanced proteasomal and autophagic proteolytic pathway

  19. Agrin as a Mechanotransduction Signal Regulating YAP through the Hippo Pathway.

    Science.gov (United States)

    Chakraborty, Sayan; Njah, Kizito; Pobbati, Ajaybabu V; Lim, Ying Bena; Raju, Anandhkumar; Lakshmanan, Manikandan; Tergaonkar, Vinay; Lim, Chwee Teck; Hong, Wanjin

    2017-03-07

    The Hippo pathway effectors YAP and TAZ act as nuclear sensors of mechanical signals in response to extracellular matrix (ECM) cues. However, the identity and nature of regulators in the ECM and the precise pathways relaying mechanoresponsive signals into intracellular sensors remain unclear. Here, we uncover a functional link between the ECM proteoglycan Agrin and the transcriptional co-activator YAP. Importantly, Agrin transduces matrix and cellular rigidity signals that enhance stability and mechanoactivity of YAP through the integrin-focal adhesion- and Lrp4/MuSK receptor-mediated signaling pathways. Agrin antagonizes focal adhesion assembly of the core Hippo components by facilitating ILK-PAK1 signaling and negating the functions of Merlin and LATS1/2. We further show that Agrin promotes oncogenesis through YAP-dependent transcription and is clinically relevant in human liver cancer. We propose that Agrin acts as a mechanotransduction signal in the ECM.

  20. Agrin as a Mechanotransduction Signal Regulating YAP through the Hippo Pathway

    Directory of Open Access Journals (Sweden)

    Sayan Chakraborty

    2017-03-01

    Full Text Available The Hippo pathway effectors YAP and TAZ act as nuclear sensors of mechanical signals in response to extracellular matrix (ECM cues. However, the identity and nature of regulators in the ECM and the precise pathways relaying mechanoresponsive signals into intracellular sensors remain unclear. Here, we uncover a functional link between the ECM proteoglycan Agrin and the transcriptional co-activator YAP. Importantly, Agrin transduces matrix and cellular rigidity signals that enhance stability and mechanoactivity of YAP through the integrin-focal adhesion- and Lrp4/MuSK receptor-mediated signaling pathways. Agrin antagonizes focal adhesion assembly of the core Hippo components by facilitating ILK-PAK1 signaling and negating the functions of Merlin and LATS1/2. We further show that Agrin promotes oncogenesis through YAP-dependent transcription and is clinically relevant in human liver cancer. We propose that Agrin acts as a mechanotransduction signal in the ECM.

  1. Differential regulation of growth-promoting signalling pathways by E-cadherin.

    Directory of Open Access Journals (Sweden)

    Nikolaos T Georgopoulos

    Full Text Available BACKGROUND: Despite the well-documented association between loss of E-cadherin and carcinogenesis, as well as the link between restoration of its expression and suppression of proliferation in carcinoma cells, the ability of E-cadherin to modulate growth-promoting cell signalling in normal epithelial cells is less well understood and frequently contradictory. The potential for E-cadherin to co-ordinate different proliferation-associated signalling pathways has yet to be fully explored. METHODOLOGY/PRINCIPAL FINDINGS: Using a normal human urothelial (NHU cell culture system and following a calcium-switch approach, we demonstrate that the stability of NHU cell-cell contacts differentially regulates the Epidermal Growth Factor Receptor (EGFR/Extracellular Signal-Regulated Kinase (ERK and Phosphatidylinositol 3-Kinase (PI3-K/AKT pathways. We show that stable cell contacts down-modulate the EGFR/ERK pathway, whilst inducing PI3-K/AKT activity, which transiently enhances cell growth at low density. Functional inactivation of E-cadherin interferes with the capacity of NHU cells to form stable calcium-mediated contacts, attenuates E-cadherin-mediated PI3-K/AKT induction and enhances NHU cell proliferation by allowing de-repression of the EGFR/ERK pathway and constitutive activation of β-catenin-TCF signalling. CONCLUSIONS/SIGNIFICANCE: Our findings provide evidence that E-cadherin can differentially and concurrently regulate specific growth-related signalling pathways in a context-specific fashion, with direct, functional consequences for cell proliferation and population growth. Our observations not only reveal a novel, complex role for E-cadherin in normal epithelial cell homeostasis and tissue regeneration, but also provide the basis for a more complete understanding of the consequences of E-cadherin loss on malignant transformation.

  2. Subcellular localization of frizzled receptors, mediated by their cytoplasmic tails, regulates signaling pathway specificity.

    Directory of Open Access Journals (Sweden)

    Jun Wu

    2004-07-01

    Full Text Available The Frizzled (Fz; called here Fz1 and Fz2 receptors have distinct signaling specificities activating either the canonical Wnt/beta-catenin pathway or Fz/planar cell polarity (PCP signaling in Drosophila. The regulation of signaling specificity remains largely obscure. We show that Fz1 and Fz2 have different subcellular localizations in imaginal disc epithelia, with Fz1 localizing preferentially to apical junctional complexes, and Fz2 being evenly distributed basolaterally. The subcellular localization difference directly contributes to the signaling specificity outcome. Whereas apical localization favors Fz/PCP signaling, it interferes with canonical Wnt/beta-catenin signaling. Receptor localization is mediated by sequences in the cytoplasmic tail of Fz2 that appear to block apical accumulation. Based on these data, we propose that subcellular Fz localization, through the association with other membrane proteins, is a critical aspect in regulating the signaling specificity within the Wnt/Fz signaling pathways.

  3. Zebrafish etv7 regulates red blood cell development through the cholesterol synthesis pathway

    Directory of Open Access Journals (Sweden)

    Anita M. Quintana

    2014-02-01

    Full Text Available ETV7 is a human oncoprotein that cooperates with Eμ-MYC to promote pre-B-cell leukemia in mice. It is normally expressed in the bone marrow and fetal liver and is upregulated in primary leukemia, suggesting that it is involved in proper hematopoiesis and leukemogenesis. ETV7 has been deleted in most rodents, but is conserved in all other vertebrates, including the zebrafish, Danio rerio. In this report, we characterize the function of the zebrafish etv7 gene during erythropoiesis. Our results demonstrate that etv7 regulates the expression of the zebrafish lanosterol synthase (lss gene, an essential gene in the cholesterol synthesis pathway. Furthermore, morpholino knockdown of etv7 leads to loss of hemoglobin-containing red blood cells, a phenotype that can be rescued by injection of exogenous cholesterol. We conclude that etv7 is essential for normal red blood cell development through regulation of the lss gene and the cholesterol synthesis pathway.

  4. Deubiquitylating enzyme USP9x regulates hippo pathway activity by controlling angiomotin protein turnover

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Andrejeva, Diana; Gupta, Rajat;

    2016-01-01

    The Hippo pathway has been identified as a key barrier for tumorigenesis, acting through downregulation of YAP/TAZ activity. Elevated YAP/TAZ activity has been documented in many human cancers. Ubiquitylation has been shown to play a key role in regulating YAP/TAZ activity through downregulation....../TAZ activity. We demonstrate that USPx regulates ubiquitin-mediated turnover of the YAP inhibitor, Angiomotin. USP9x acts to deubiquitylate Angiomotin at lysine 496, resulting in stabilization of Angiomotin and lower YAP/TAZ activity. USP9x mRNA levels were reduced in several cancers. Clinically, USP9x m...

  5. Static compression regulates OPG expression in periodontal ligament cells via the CAMK II pathway

    Directory of Open Access Journals (Sweden)

    YI Jianru

    2015-12-01

    Full Text Available ABSTRACT Objective This study aimed to investigate the potential role of CAMK II pathway in the compression-regulated OPG expression in periodontal ligament cells (PDLCs. Material and Methods The PDL tissue model was developed by 3-D culturing human PDLCs in a thin sheet of poly lactic-co-glycolic acid (PLGA scaffolds, which was subjected to static compression of 25 g/cm2 for 3, 6 and 12 h, with or without treatment of KN-93. After that, the expression of OPG, RANKL and NFATC2 was investigated through real-time PCR and western blot analysis. Results After static compression, the NFATC2 and RANKL expression was significantly up-regulated, while partially suppressed by KN-93 for 6 and 12 h respectively. The OPG expression was significantly down-regulated by compression in 3 h, started to elevate in 6 h, and significantly up-regulated in 12 h. The up-regulation after 12 h was significantly suppressed by KN-93. Conclusions Long-term static compression increases OPG expression in PDLCs, at least partially, via the CAMK II pathway.

  6. Essential role of TGF-beta/Smad pathway on statin dependent vascular smooth muscle cell regulation.

    Directory of Open Access Journals (Sweden)

    Juan Rodríguez-Vita

    Full Text Available BACKGROUND: The 3-hydroxy-3-methylglutaryl CoA reductase inhibitors (also called statins exert proven beneficial effects on cardiovascular diseases. Recent data suggest a protective role for Transforming Growth Factor-beta (TGF-beta in atherosclerosis by regulating the balance between inflammation and extracellular matrix accumulation. However, there are no studies about the effect of statins on TGF-beta/Smad pathway in atherosclerosis and vascular cells. METHODOLOGY: In cultured vascular smooth muscle cells (VSMCs statins enhanced Smad pathway activation caused by TGF-beta. In addition, statins upregulated TGF-beta receptor type II (TRII, and increased TGF-beta synthesis and TGF-beta/Smad-dependent actions. In this sense, statins, through Smad activation, render VSMCs more susceptible to TGF-beta induced apoptosis and increased TGF-beta-mediated ECM production. It is well documented that high doses of statins induce apoptosis in cultured VSMC in the presence of serum; however the precise mechanism of this effect remains to be elucidated. We have found that statins-induced apoptosis was mediated by TGF-beta/Smad pathway. Finally, we have described that RhoA inhibition is a common intracellular mechanisms involved in statins effects. The in vivo relevance of these findings was assessed in an experimental model of atherosclerosis in apolipoprotein E deficient mice: Treatment with Atorvastatin increased Smad3 phosphorylation and TRII overexpression, associated to elevated ECM deposition in the VSMCs within atheroma plaques, while apoptosis was not detected. CONCLUSIONS: Statins enhance TGF-beta/Smad pathway, regulating ligand levels, receptor, main signaling pathway and cellular responses of VSMC, including apoptosis and ECM accumulation. Our findings show that TGF-beta/Smad pathway is essential for statins-dependent actions in VSMCs.

  7. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity.

    Directory of Open Access Journals (Sweden)

    Jianzhong Yu

    Full Text Available Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly identified Hippo tumor-suppressor pathway plays a crucial role in the posterior follicle cells in the regulation of oocyte polarity. Disruption of the Hippo pathway, including major components Hippo, Salvador, and Warts, results in aberrant follicle-cell differentiation and proliferation and dramatic disruption of the oocyte anterior-posterior axis. These phenotypes are related to defective Notch signaling in follicle cells, because misexpression of a constitutively active form of Notch alleviates the oocyte polarity defects. We also find that follicle cells defective in Hippo signaling accumulate the Notch receptor and display defects in endocytosis markers. Our findings suggest that the interaction between Hippo and classic developmental pathways such as Notch is critical to spatial and temporal regulation of differentiation and proliferation and is essential for development of the body axes in Drosophila.

  8. Hypertensive stretch regulates endothelial exocytosis of Weibel-Palade bodies through VEGF receptor 2 signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Yan Xiong; Zhenqian Hu; Xiaofan Han; Beibei Jiang; Rongli Zhang; Xiaoyu Zhang; Yao Lu

    2013-01-01

    Regulated endothelial exocytosis of Weibel-Palade bodies (WPBs),the first stage in leukocyte trafficking,plays a pivotal role in inflammation and injury.Acute mechanical stretch has been closely associated with vascular inflammation,although the precise mechanism is unknown.Here,we show that hypertensive stretch regulates the exocytosis of WPBs of endothelial ceils (ECs) through VEGF receptor 2 (VEGFR2) signaling pathways.Stretch triggers a rapid release (within minutes) of von Willebrand factor and interleukin-8 from WPBs in cultured human ECs,promoting the interaction between leukocytes and ECs through the translocation of P-selectin to the cell membrane.We further show that hypertensive stretch significantly induces P-selectin translocation of intact ECs and enhances leukocyte adhesion both ex vivo and in vivo.Stretch-induced endothelial exocytosis is mediated via a VEGFR2/PLCy1/calcium pathway.Interestingly,stretch also induces a negative feedback via a VEGFR2/Akt/nitric oxide pathway.Such dual effects are confirmed using pharmacological and genetic approaches in carotid artery segments,as well as in acute hypertensive mouse models.These studies reveal mechanical stretch as a potent agonist for endothelial exocytosis,which is modulated by VEGFR2 signaling.Thus,VEGFR2 signaling pathways may represent novel therapeutic targets in limiting hypertensive stretch-related inflammation.

  9. Hedgehog signaling pathway regulated the target genes for adipogenesis in silkworm Bombyx mori.

    Science.gov (United States)

    Liang, Shuang; Chen, Rui-Ting; Zhang, Deng-Pan; Xin, Hu-Hu; Lu, Yan; Wang, Mei-Xian; Miao, Yun-Gen

    2015-10-01

    Hedgehog (Hh) signals regulate invertebrate and vertebrate development, yet the role of the pathway in adipose development remains poorly understood. In this report, we found that Hh pathway components are expressed in the fat body of silkworm larvae. Functional analysis of these components in a BmN cell line model revealed that activation of the Hh gene stimulated transcription of Hh pathway components, but inhibited the expression of the adipose marker gene AP2. Conversely, specific RNA interference-mediated knockdown of Hh resulted in increased AP2 expression. This further showed the regulation of Hh signal on the adipose marker gene. In silkworm larval models, enhanced adipocyte differentiation and an increase in adipocyte cell size were observed in silkworms that had been treated with a specific Hh signaling pathway antagonist, cyclopamine. The fat-body-specific Hh blockade tests were consistent with Hh signaling inhibiting silkworm adipogenesis. Our results indicate that the role of Hh signaling in inhibiting fat formation is conserved in vertebrates and invertebrates.

  10. Cdk9 T-loop phosphorylation is regulated by the calcium signaling pathway.

    Science.gov (United States)

    Ramakrishnan, Rajesh; Rice, Andrew P

    2012-02-01

    Eukaryotic RNA polymerase II transcriptional elongation is a tightly regulated process and is dependent upon positive transcription elongation factor-b (P-TEFb). The core P-TEFb complex is composed of Cdk9 and Cyclin T and is essential for the expression of most protein coding genes. Cdk9 kinase function is dependent upon phosphorylation of Thr186 in its T-loop. In this study, we examined kinases and signaling pathways that influence Cdk9 T-loop phosphorylation. Using an RNAi screen in HeLa cells, we found that Cdk9 T-loop phosphorylation is regulated by Ca(2+)/calmodulin-dependent kinase 1D (CaMK1D). Using small molecules inhibitors in HeLa cells and primary CD4(+) T lymphocytes, we found that the Ca(2+) signaling pathway is required for Cdk9 T-loop phosphorylation. Inhibition of Ca(2+) signaling led to dephosphorylation of Thr186 on Cdk9. In reporter plasmid assays, inhibition of the Ca(2+) signaling pathway repressed the PCNA promoter and HIV-1 Tat transactivation of the HIV-1 LTR, but not HTLV-1 Tax transactivation of the HTLV-1 LTR, suggesting that perturbation of the Ca(2+) pathway and reduction of Cdk9 T-loop phosphorylation inhibits transcription units that have a rigorous requirement for P-TEFb function.

  11. The Regulation of Inflammatory Pathways and Infectious Disease of the Cervix by Seminal Fluid

    Directory of Open Access Journals (Sweden)

    Anthonio Adefuye

    2014-01-01

    Full Text Available The connection between human papillomavirus (HPV infection and the consequent sequelae which establishes cervical neoplastic transformation and invasive cervical cancer has redefined many aspects of cervical cancer research. However there is still much that we do not know. In particular, the impact of external factors, like seminal fluid in sexually active women, on pathways that regulate cervical inflammation and tumorigenesis, have yet to be fully understood. HPV infection is regarded as the initiating noninflammatory cause of the disease; however emerging evidence points to resident HPV infections as drivers of inflammatory pathways that play important roles in tumorigenesis as well as in the susceptibility to other infections such as human immunodeficiency virus (HIV infection. Moreover there is emerging evidence to support a role for seminal fluid, in particular, the inflammatory bioactive lipids, and prostaglandins which are present in vast quantities in seminal fluid in regulating pathways that can exacerbate inflammation of the cervix, speed up tumorigenesis, and enhance susceptibility to HIV infection. This review will highlight some of our current knowledge of the role of seminal fluid as a potent driver of inflammatory and tumorigenic pathways in the cervix and will provide some evidence to propose a role for seminal plasma prostaglandins in HIV infection and AIDS-related cancer.

  12. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.

    Science.gov (United States)

    Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H

    2011-10-04

    Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.

  13. Hypertensive stretch regulates endothelial exocytosis of Weibel-Palade bodies through VEGF receptor 2 signaling pathways.

    Science.gov (United States)

    Xiong, Yan; Hu, Zhenqian; Han, Xiaofan; Jiang, Beibei; Zhang, Rongli; Zhang, Xiaoyu; Lu, Yao; Geng, Chenyang; Li, Wei; He, Yulong; Huo, Yingqing; Shibuya, Masabumi; Luo, Jincai

    2013-06-01

    Regulated endothelial exocytosis of Weibel-Palade bodies (WPBs), the first stage in leukocyte trafficking, plays a pivotal role in inflammation and injury. Acute mechanical stretch has been closely associated with vascular inflammation, although the precise mechanism is unknown. Here, we show that hypertensive stretch regulates the exocytosis of WPBs of endothelial cells (ECs) through VEGF receptor 2 (VEGFR2) signaling pathways. Stretch triggers a rapid release (within minutes) of von Willebrand factor and interleukin-8 from WPBs in cultured human ECs, promoting the interaction between leukocytes and ECs through the translocation of P-selectin to the cell membrane. We further show that hypertensive stretch significantly induces P-selectin translocation of intact ECs and enhances leukocyte adhesion both ex vivo and in vivo. Stretch-induced endothelial exocytosis is mediated via a VEGFR2/PLCγ1/calcium pathway. Interestingly, stretch also induces a negative feedback via a VEGFR2/Akt/nitric oxide pathway. Such dual effects are confirmed using pharmacological and genetic approaches in carotid artery segments, as well as in acute hypertensive mouse models. These studies reveal mechanical stretch as a potent agonist for endothelial exocytosis, which is modulated by VEGFR2 signaling. Thus, VEGFR2 signaling pathways may represent novel therapeutic targets in limiting hypertensive stretch-related inflammation.

  14. A systematic screen reveals MicroRNA clusters that significantly regulate four major signaling pathways.

    Directory of Open Access Journals (Sweden)

    Lindsey E Becker

    Full Text Available MicroRNAs (miRNAs are encoded in the genome as individual miRNA genes or as gene clusters transcribed as polycistronic units. About 50% of all miRNAs are estimated to be co-expressed with neighboring miRNAs. Recent studies have begun to illuminate the importance of the clustering of miRNAs from an evolutionary, as well as a functional standpoint. Many miRNA clusters coordinately regulate multiple members of cellular signaling pathways or protein interaction networks. This cooperative method of targeting could produce effects on an overall process that are much more dramatic than the smaller effects often associated with regulation by an individual miRNA. In this study, we screened 366 human miRNA minigenes to determine their effects on the major signaling pathways culminating in AP-1, NF-κB, c-Myc, or p53 transcriptional activity. By stratifying these data into miRNA clusters, this systematic screen provides experimental evidence for the combined effects of clustered miRNAs on these signaling pathways. We also verify p53 as a direct target of miR-200a. This study is the first to provide a panoramic view of miRNA clusters' effects on cellular pathways.

  15. Regulation of GIRK channel deactivation by Galpha(q) and Galpha(i/o) pathways.

    Science.gov (United States)

    Mark, M D; Ruppersberg, J P; Herlitze, S

    2000-09-01

    G protein regulated inward rectifying potassium channels (GIRKs) are activated by G protein coupled receptors (GPCRs) via the G protein betagamma subunits. However, little is known about the effects of different GPCRs on the deactivation kinetics of transmitter-mediated GIRK currents. In the present study we investigated the influence of different GPCRs in the presence and absence of RGS proteins on the deactivation kinetics of GIRK channels by coexpressing the recombinant protein subunits in Xenopus oocytes. The stimulation of both G(i/o)- and G(q)-coupled pathways accelerated GIRK deactivation. GIRK currents deactivated faster upon stimulation of G(i/o)- and G(q)-coupled pathways by P(2)Y(2) receptors (P(2)Y(2)Rs) than upon activation of the G(i/o)-coupled pathway alone via muscarinic acetylcholine receptor M2 (M(2) mAChRs). This acceleration was found to be dependent on phospholipase C (PLC) and protein kinase C (PKC) activities and intracellular calcium. With the assumption that RGS2 has a higher affinity for Galpha(q) than Galpha(i/o), we demonstrated that the deactivation kinetics of GIRK channels can be differentially regulated by the relative amount of RGS proteins. These data indicate that transmitter-mediated deactivation of GIRK currents is modulated by crosstalk between G(i/o)- and G(q)-coupled pathways.

  16. ERK5 pathway regulates the phosphorylation of tumour suppressor hDlg during mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Inesta-Vaquera, Francisco A. [Departamento de Inmunologia y Oncologia, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco-UAM, 28049 Madrid (Spain); Campbell, David G.; Arthur, J. Simon C. [MRC Protein Phosphorylation Unit, Sir James Black Building, School of Life Sciences, University of Dundee, Dundee DD1 5EH (United Kingdom); Cuenda, Ana, E-mail: acuenda@cnb.csic.es [Departamento de Inmunologia y Oncologia, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco-UAM, 28049 Madrid (Spain)

    2010-08-13

    Research highlights: {yields} hDlg is phosphorylated during mitosis in multiple residues. {yields} Prospho-hDlg is excluded from the midbody during mitosis. {yields} hDlg is not phosphorylated by p38{gamma} or JNK1/2 during mitosis. {yields} ERK5 pathway mediates hDlg phosphorylation in mitosis. -- Abstract: Human disc-large (hDlg) is a scaffold protein critical for the maintenance of cell polarity and adhesion. hDlg is thought to be a tumour suppressor that regulates the cell cycle and proliferation. However, the mechanism and pathways involved in hDlg regulation during these processes is still unclear. Here we report that hDlg is phosphorylated during mitosis, and we establish the identity of at least three residues phosphorylated in hDlg; some are previously unreported. Phosphorylation affects hDlg localisation excluding it from the contact point between the two daughter cells. Our results reveal a previously unreported pathway for hDlg phosphorylation in mitosis and show that ERK5 pathway mediates hDlg cell cycle dependent phosphorylation. This is likely to have important implications in the correct timely mitotic entry and mitosis progression.

  17. Insulin Regulates Adipocyte Lipolysis via an Akt-Independent Signaling Pathway

    OpenAIRE

    Choi, Sarah M.; Tucker, David F.; Gross, Danielle N.; Easton, Rachael M.; DiPilato, Lisa M.; Dean, Abigail S.; Monks, Bob R.; Birnbaum, Morris J.

    2010-01-01

    After a meal, insulin suppresses lipolysis through the activation of its downstream kinase, Akt, resulting in the inhibition of protein kinase A (PKA), the main positive effector of lipolysis. During insulin resistance, this process is ineffective, leading to a characteristic dyslipidemia and the worsening of impaired insulin action and obesity. Here, we describe a noncanonical Akt-independent, phosphoinositide-3 kinase (PI3K)-dependent pathway that regulates adipocyte lipolysis using restric...

  18. Microbial regulation of hippocampal miRNA expression: Implications for transcription of kynurenine pathway enzymes.

    Science.gov (United States)

    Moloney, Gerard M; O'Leary, Olivia F; Salvo-Romero, Eloisa; Desbonnet, Lieve; Shanahan, Fergus; Dinan, Timothy G; Clarke, Gerard; Cryan, John F

    2017-09-15

    Increasing evidence points to a functional role of the enteric microbiota in brain development, function and behaviour including the regulation of transcriptional activity in the hippocampus. Changes in CNS miRNA expression may reflect the colonisation status of the gut. Given the pivotal impact of miRNAs on gene expression, our study was based on the hypothesis that gene expression would also be altered in the germ-free state in the hippocampus. We measured miRNAs in the hippocampus of Germ free (GF), conventional (C) and Germ free colonised (exGF) Swiss Webster mice. miRNAs were selected for follow up based on significant differences in expression between groups according to sex and colonisation status. The expression of miR-294-5p was increased in male germ free animals and was normalised following colonisation. Targets of the differentially expressed miRNAs were over-represented in the kynurenine pathway. We show that the microbiota modulates the expression of miRNAs associated with kynurenine pathway metabolism and, demonstrate that the gut microbiota regulates the expression of kynurenine pathway genes in the hippocampus. We also show a sex-specific role for the microbiota in the regulation of miR-294-5p expression in the hippocampus. The gut microbiota plays an important role in modulating small RNAs that influence hippocampal gene expression, a process critical to hippocampal development. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation.

    Science.gov (United States)

    Lin, Kimberly C; Moroishi, Toshiro; Meng, Zhipeng; Jeong, Han-Sol; Plouffe, Steven W; Sekido, Yoshitaka; Han, Jiahuai; Park, Hyun Woo; Guan, Kun-Liang

    2017-07-28

    The Hippo pathway controls organ size and tissue homeostasis, with deregulation leading to cancer. The core Hippo components in mammals are composed of the upstream serine/threonine kinases Mst1/2, MAPK4Ks and Lats1/2. Inactivation of these upstream kinases leads to dephosphorylation, stabilization, nuclear translocation and thus activation of the major functional transducers of the Hippo pathway, YAP and its paralogue TAZ. YAP/TAZ are transcription co-activators that regulate gene expression primarily through interaction with the TEA domain DNA-binding family of transcription factors (TEAD). The current paradigm for regulation of this pathway centres on phosphorylation-dependent nucleocytoplasmic shuttling of YAP/TAZ through a complex network of upstream components. However, unlike other transcription factors, such as SMAD, NF-κB, NFAT and STAT, the regulation of TEAD nucleocytoplasmic shuttling has been largely overlooked. In the present study, we show that environmental stress promotes TEAD cytoplasmic translocation via p38 MAPK in a Hippo-independent manner. Importantly, stress-induced TEAD inhibition predominates YAP-activating signals and selectively suppresses YAP-driven cancer cell growth. Our data reveal a mechanism governing TEAD nucleocytoplasmic shuttling and show that TEAD localization is a critical determinant of Hippo signalling output.

  20. Mechanisms of JAK/STAT pathway negative regulation by the short coreceptor Eye Transformer/Latran.

    Science.gov (United States)

    Fisher, Katherine H; Stec, Wojciech; Brown, Stephen; Zeidler, Martin P

    2016-02-01

    Transmembrane receptors interact with extracellular ligands to transduce intracellular signaling cascades, modulate target gene expression, and regulate processes such as proliferation, apoptosis, differentiation, and homeostasis. As a consequence, aberrant signaling events often underlie human disease. Whereas the vertebrate JAK/STAT signaling cascade is transduced via multiple receptor combinations, the Drosophila pathway has only one full-length signaling receptor, Domeless (Dome), and a single negatively acting receptor, Eye Transformer/Latran (Et/Lat). Here we investigate the molecular mechanisms underlying Et/Lat activity. We demonstrate that Et/Lat negatively regulates the JAK/STAT pathway activity and can bind to Dome, thus reducing Dome:Dome homodimerization by creating signaling-incompetent Dome:Et/Lat heterodimers. Surprisingly, we find that Et/Lat is able to bind to both JAK and STAT92E but, despite the presence of putative cytokine-binding motifs, does not detectably interact with pathway ligands. We find that Et/Lat is trafficked through the endocytic machinery for lysosomal degradation but at a much slower rate than Dome, a difference that may enhance its ability to sequester Dome into signaling-incompetent complexes. Our data offer new insights into the molecular mechanism and regulation of Et/Lat in Drosophila that may inform our understanding of how short receptors function in other organisms.

  1. HIF-1α pathway: role, regulation and intervention for cancer therapy

    Directory of Open Access Journals (Sweden)

    Georgina N. Masoud

    2015-09-01

    Full Text Available Hypoxia-inducible factor-1 (HIF-1 has been recognized as an important cancer drug target. Many recent studies have provided convincing evidences of strong correlation between elevated levels of HIF-1 and tumor metastasis, angiogenesis, poor patient prognosis as well as tumor resistance therapy. It was found that hypoxia (low O2 levels is a common character in many types of solid tumors. As an adaptive response to hypoxic stress, hypoxic tumor cells activate several survival pathways to carry out their essential biological processes in different ways compared with normal cells. Recent advances in cancer biology at the cellular and molecular levels highlighted the HIF-1α pathway as a crucial survival pathway for which novel strategies of cancer therapy could be developed. However, targeting the HIF-1α pathway has been a challenging but promising progresses have been made in the past twenty years. This review summarizes the role and regulation of the HIF-1α in cancer, and recent therapeutic approaches targeting this important pathway.

  2. Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration.

    Science.gov (United States)

    Hayashi, Shinichi; Ochi, Haruki; Ogino, Hajime; Kawasumi, Aiko; Kamei, Yasuhiro; Tamura, Koji; Yokoyama, Hitoshi

    2014-12-01

    The size and shape of tissues are tightly controlled by synchronized processes among cells and tissues to produce an integrated organ. The Hippo signaling pathway controls both cell proliferation and apoptosis by dual signal-transduction states regulated through a repressive kinase cascade. Yap1 and Tead, transcriptional regulators that act downstream of the Hippo signaling kinase cascade, have essential roles in regulating cell proliferation. In amphibian limb or tail regeneration, the local tissue outgrowth terminates when the correct size is reached, suggesting that organ size is strictly controlled during epimorphic organ-level regeneration. We recently demonstrated that Yap1 is required for the regeneration of Xenopus tadpole limb buds (Hayashi et al., 2014, Dev. Biol. 388, 57-67), but the molecular link between the Hippo pathway and organ size control in vertebrate epimorphic regeneration is not fully understood. To examine the requirement of Hippo pathway transcriptional regulators in epimorphic regeneration, including organ size control, we inhibited these regulators during Xenopus tadpole tail regeneration by overexpressing a dominant-negative form of Yap (dnYap) or Tead4 (dnTead4) under a heat-shock promoter in transgenic animal lines. Each inhibition resulted in regeneration defects accompanied by reduced cell mitosis and increased apoptosis. Single-cell gene manipulation experiments indicated that Tead4 cell-autonomously regulates the survival of neural progenitor cells in the regenerating tail. In amphibians, amputation at the proximal level of the tail (deep amputation) results in faster regeneration than that at the distal level (shallow amputation), to restore the original-sized tail with similar timing. However, dnTead4 overexpression abolished the position-dependent differential growth rate of tail regeneration. These results suggest that the transcriptional regulators in the Hippo pathway, Tead4 and Yap1, are required for general vertebrate

  3. Leptin differentially regulates NPY secretion in hypothalamic cell lines through distinct intracellular signal transduction pathways.

    Science.gov (United States)

    Dhillon, Sandeep S; Belsham, Denise D

    2011-04-11

    Leptin acts as a key peripheral hormone in distinct neurons in the hypothalamus to modulate both reproductive function and energy homeostasis. The control of neuropeptide Y (NPY) secretion is an example of a process that can be differentially regulated by leptin. In order to further understand these distinct modulatory effects, we have used immortalized, neuronal hypothalamic cell lines expressing NPY, mHypoE-38 and mHypoE-46. We found that these cell lines express the endogenous leptin receptor, ObRb, and secrete detectable levels of NPY. We exposed the neurons to 100nM leptin for 1h and determined that the basal levels of NPY in the cell lines were differentially regulated: NPY secretion was inhibited in mHypoE-46 neurons, whereas NPY secretion was induced in the mHypoE-38 neurons. In order to determine the mechanisms involved in the divergent regulation of NPY release, we analyzed the activity of a number of signaling components using phospho-specific antibodies directed towards specific proteins in the MAP kinase, PI3K, and AMPK pathways, among others. We found that leptin activated a different combination of second messengers in each cell line. Importantly, we could link the regulation of NPY secretion to different signaling pathways, AMPK in the mHypoE-46 and both MAPK and PI3K in the mHypoE-38 neurons. This is the first demonstration that leptin can specifically regulate individual NPY neuron secretory responses through distinct signaling pathways.

  4. Sugar Allocation to Metabolic Pathways is Tightly Regulated and Affects the Virulence of Streptococcus mutans

    Science.gov (United States)

    Kawada-Matsuo, Miki; Oogai, Yuichi; Komatsuzawa, Hitoshi

    2016-01-01

    Bacteria take up and metabolize sugar as a carbohydrate source for survival. Most bacteria can utilize many sugars, including glucose, sucrose, and galactose, as well as amino sugars, such as glucosamine and N-acetylglucosamine. After entering the cytoplasm, the sugars are mainly allocated to the glycolysis pathway (energy production) and to various bacterial component biosynthesis pathways, including the cell wall, nucleic acids and amino acids. Sugars are also utilized to produce several virulence factors, such as capsule and lipoteichoic acid. Glutamine-fructose-6-phosphate aminotransferase (GlmS) and glucosamine-6-phosphate deaminase (NagB) have crucial roles in sugar distribution to the glycolysis pathway and to cell wall biosynthesis. In Streptococcus mutans, a cariogenic pathogen, the expression levels of glmS and nagB are coordinately regulated in response to the presence or absence of amino sugars. In addition, the disruption of this regulation affects the virulence of S. mutans. The expression of nagB and glmS is regulated by NagR in S. mutans, but the precise mechanism underlying glmS regulation is not clear. In Staphylococcus aureus and Bacillus subtilis, the mRNA of glmS has ribozyme activity and undergoes self-degradation at the mRNA level. However, there is no ribozyme activity region on glmS mRNA in S. mutans. In this review article, we summarize the sugar distribution, particularly the coordinated regulation of GlmS and NagB expression, and its relationship with the virulence of S. mutans. PMID:28036052

  5. Stress-induced nuclear RNA degradation pathways regulate yeast bromodomain factor 2 to promote cell survival.

    Directory of Open Access Journals (Sweden)

    Kevin Roy

    2014-09-01

    Full Text Available Bromodomain proteins are key regulators of gene expression. How the levels of these factors are regulated in specific environmental conditions is unknown. Previous work has established that expression of yeast Bromodomain factor 2 (BDF2 is limited by spliceosome-mediated decay (SMD. Here we show that BDF2 is subject to an additional layer of post-transcriptional control through RNase III-mediated decay (RMD. We found that the yeast RNase III Rnt1p cleaves a stem-loop structure within the BDF2 mRNA to down-regulate its expression. However, these two nuclear RNA degradation pathways play distinct roles in the regulation of BDF2 expression, as we show that the RMD and SMD pathways of the BDF2 mRNA are differentially activated or repressed in specific environmental conditions. RMD is hyper-activated by salt stress and repressed by hydroxyurea-induced DNA damage while SMD is inactivated by salt stress and predominates during DNA damage. Mutations of cis-acting signals that control SMD and RMD rescue numerous growth defects of cells lacking Bdf1p, and show that SMD plays an important role in the DNA damage response. These results demonstrate that specific environmental conditions modulate nuclear RNA degradation pathways to control BDF2 expression and Bdf2p-mediated gene regulation. Moreover, these results show that precise dosage of Bromodomain factors is essential for cell survival in specific environmental conditions, emphasizing their importance for controlling chromatin structure and gene expression in response to environmental stress.

  6. Deubiquitinating enzyme regulation of the p53 pathway: A lesson from Otub1

    Institute of Scientific and Technical Information of China (English)

    Xiao-Xin; Sun; Mu-Shui; Dai

    2014-01-01

    Deubiquitination has emerged as an important mechanism of p53 regulation. A number of deubiquitinating enzymes(DUBs) from the ubiquitin-specific protease family have been shown to regulate the p53-MDM2-MDMX networks. We recently reported that Otub1, a DUB from the OTU-domain containing protease family, is a novel p53 regulator. Interestingly, Otub1 abrogates p53 ubiquitination and stabilizes and activates p53 in cells independently of its deubiquitinating enzyme activity. Instead, it does so by inhibiting the MDM2 cognate ubiquitin-conjugating enzyme(E2) UbcH5. Otub1 also regulates other biological signaling through this non-canonical mechanism, suppression of E2, including the inhibition of DNA-damage-induced chromatin ubiquitination. Thus, Otub1 evolves as a unique DUB that mainly suppresses E2 to regulate substrates. Here we review the current progress made towards the understanding of the complex regulation of the p53 tumor suppressor pathway by DUBs, the biological function of Otub1 including its positive regulation of p53, and the mechanistic insights into how Otub1 suppresses E2.

  7. The associated regulators and signal pathway in rILl-16/CD4 mediated growth regulation in Jurkat cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    IL-16 is a ligand and chemotactic factor for CD4+ T cells. IL-16 inhibits the CD3 mediated lymphocyteactivation and proliferation. The effects of IL-16 on the target cells are dependent on the cell type, thepresence of co-activators etc. To understand the regulation function and mechanism of IL-16 on targetcells, we used a 130 a.a. recombinant IL-16 to study its effects on the growth of Jurkat T leukemia cellsin vitro. We found that the rIL-16 stimulated the proliferation of Jurkat cells at low dose (10-9M), butinhibited the growth of the cells at higher concentration (10-5M). Results showed that 10-5 M of rIL-16treatment induced an enhanced apoptosis in Jurkat cells. The treatment blocked the expression of FasL, butup-regulated the c-myc and Bid expression in the cells. Pre-treatment of PKC inhibitor or MEK1 inhibitormarkedly increased or decreased the rIL-16 induced growth-inhibiting effects on Jurkat cells, respectively.The results suggested that the rIL-16 might be a regulator for the growth or apoptosis of Jurkat cells ata dose-dependent manner. The growth-inhibiting effects of rIL-16 might be Fas/FasL independent, but,associated with the activation of PKC, up-regulated expression of c-Myc and Bid, and the participation ofthe ERK signal pathway in Jurkat cells.

  8. Extracellular signal-regulated kinases (ERKs) pathway and reactive oxygen species regulate tyrosine phosphorylation in capacitating boar spermatozoa.

    Science.gov (United States)

    Awda, Basim J; Buhr, Mary M

    2010-11-01

    The extracellular signal-regulated kinase (ERK) family of the mitogen-activated protein kinase (MAPK) pathway is identified for the first time in boar sperm and is associated with capacitation and tyrosine phosphorylation (tyr-P). Reactive oxygen species (ROS) modulate this signal transduction. Western immunoblotting detected the ERK pathway components RAF1, MEK1/2, and ERK1/2 in extracts from fresh boar spermatozoa and determined that their phosphoprotein profiles differed in a capacitation-dependent fashion. Capacitation was accompanied by appearance of two new ERKs (158 and 161 kDa) and disappearance of others. Capacitation was verified with increased tyr-P, which was inhibited by a 30-min pre-exposure of fresh boar sperm to a xanthine/xanthine oxidase ROS-generating system prior to the capacitating incubation; ROS pre-exposure also affected the phosphorylation of RAF1, MEK1/2, and ERK1/2. Preincubating sperm with inhibitors of the ERK components with or without the ROS generator affected subsequent capacitation. Inhibiting ERK1/2 inhibited tyr-P of capacitated boar spermatozoa proteins of 172, 97, and 66 kDa (P ≤ 0.04); with ROS, this inhibition increased (P influence through crosstalk with different pathways. ROS affect RAF1, MEK1/2, and ERK1/2 and could influence the sequential events of boar sperm capacitation.

  9. The silent information regulator 1 (Sirt1) is a positive regulator of the Notch pathway in Drosophila.

    Science.gov (United States)

    Horvath, Matej; Mihajlovic, Zorana; Slaninova, Vera; Perez-Gomez, Raquel; Moshkin, Yuri; Krejci, Alena

    2016-11-15

    The silent information regulator 1 (Sirt1) has been shown to have negative effects on the Notch pathway in several contexts. We bring evidence that Sirt1 has a positive effect on Notch activation in Drosophila, in the context of sensory organ precursor specification and during wing development. The phenotype of Sirt1 mutant resembles weak Notch loss-of-function phenotypes, and genetic interactions of Sirt1 with the components of the Notch pathway also suggest a positive role for Sirt1 in Notch signalling. Sirt1 is necessary for the efficient activation of enhancer of split [E(spl)] genes by Notch in S2N cells. Additionally, the Notch-dependent response of several E(spl) genes is sensitive to metabolic stress caused by 2-deoxy-d-glucose treatment, in a Sirt1-dependent manner. We found Sirt1 associated with several proteins involved in Notch repression as well as activation, including the cofactor exchange factor Ebi (TBL1), the RLAF/LAF histone chaperone complex and the Tip60 acetylation complex. Moreover, Sirt1 participates in the deacetylation of the CSL transcription factor Suppressor of Hairless. The role of Sirt1 in Notch signalling is, therefore, more complex than previously recognized, and its diverse effects may be explained by a plethora of Sirt1 substrates involved in the regulation of Notch signalling.

  10. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis

    Science.gov (United States)

    Moroishi, Toshiro; Park, Hyun Woo; Qin, Baodong; Chen, Qian; Meng, Zhipeng; Plouffe, Steven W.; Taniguchi, Koji; Yu, Fa-Xing; Karin, Michael; Pan, Duojia; Guan, Kun-Liang

    2015-01-01

    YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) are major downstream effectors of the Hippo pathway that influences tissue homeostasis, organ size, and cancer development. Aberrant hyperactivation of YAP/TAZ causes tissue overgrowth and tumorigenesis, whereas their inactivation impairs tissue development and regeneration. Dynamic and precise control of YAP/TAZ activity is thus important to ensure proper physiological regulation and homeostasis of the cells. Here, we show that YAP/TAZ activation results in activation of their negative regulators, LATS1/2 (large tumor suppressor 1/2) kinases, to constitute a negative feedback loop of the Hippo pathway in both cultured cells and mouse tissues. YAP/TAZ in complex with the transcription factor TEAD (TEA domain family member) directly induce LATS2 expression. Furthermore, YAP/TAZ also stimulate the kinase activity of LATS1/2 through inducing NF2 (neurofibromin 2). This feedback regulation is responsible for the transient activation of YAP upon lysophosphatidic acid (LPA) stimulation and the inhibition of YAP-induced cell migration. Thus, this LATS-mediated feedback loop provides an efficient mechanism to establish the robustness and homeostasis of YAP/TAZ regulation. PMID:26109050

  11. Ubiquitin-Specific Peptidase USP22 Negatively Regulates the STAT Signaling Pathway by Deubiquitinating SIRT1

    Directory of Open Access Journals (Sweden)

    Ning Ao

    2014-06-01

    Full Text Available Background/Aims: The ubiquitin-specific peptidase USP22 mediates various cellular and organismal processes, such as cell growth, apoptosis, and tumor malignancy. However, the molecular mechanisms that regulate USP22 activity remain poorly understood. Here we identify STAT3 as a new USP22 interactor. Methods:· We used western blotting and RT-PCR to measure key protein, acetylated STAT3, and mRNA levels in HEK293 and colorectal cancer cell lines transfected with expression plasmids or specific siRNAs. Co-immunoprecipitation was used to demonstrate protein-protein interaction and protein complex composition. Results: USP22 overexpression down-regulated STAT3 acetylation by deubiquitinating SIRT1. The three proteins were found to be present in a single protein complex. SiRNA-mediated depletion of endogenous USP22 resulted in SIRT1 destabilization and elevated STAT3 acetylation. Consistent with this finding, USP22 also down-regulated the expression of two known STAT3 target genes, MMP9 and TWIST. Conclusion: We show that USP22 is a new regulator of the SIRT1-STAT3 signaling pathway and report a new mechanistic explanation for cross talk between USP22 and the SIRT1-STAT pathways.

  12. Time-course regulation of survival pathways by epicatechin on HepG2 cells.

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Angeles Martín, María; Goya, Luis; Bravo, Laura; Ramos, Sonia

    2009-02-01

    Polyphenols, such as epicatechin, have been reported to exhibit a wide range of biological activities. The objective of the present study was to investigate the time-dependent regulation by epicatechin of survival/proliferation pathways in HepG2 cells. Treatment of HepG2 cells with 10 micromol/L epicatechin did not result in any cell damage up to 18 h, as evaluated by the lactate dehydrogenase assay. Moreover, the enhanced cell death evoked by an oxidative stress induced with tert-butyl hydroperoxide was prevented in the cells pretreated 4 or 18 h with epicatechin. Epicatechin-induced survival was a rapid event that was accompanied by early and sustained activation of major survival signaling proteins, such as AKT/phosphatidylinositol 3-kinase and extracellular-regulated kinase (activated from 5 min to 18 h), as well as protein kinase C (PKC)-alpha (30 min to 18 h), in concert with unaltered c-jun N-amino terminal kinase levels and early inactivation of key death-related signals like PKC-delta (5 min to 18 h). Additionally, reactive oxygen species generation was transiently reduced when cells were treated with 10 micromol/L epicatechin (15-240 min). These data suggest that epicatechin induces cellular survival through a tight regulation of survival/proliferation pathways that requires the integration of different signals and persists over time, the ultimate effect on HepG2 cells being regulated by the balance among these signals.

  13. WDR26 in Advanced Breast Cancer: A Novel Regulator of the P13K/AKT Pathway

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0539 TITLE: WDR26 in Advanced Breast Cancer : A Novel Regulator of the P13K/AKT Pathway PRINCIPAL INVESTIGATOR...5a. CONTRACT NUMBER WDR26 in Advanced Breast Cancer : A Novel Regulator of the P13K/AKT Pathway 5b. GRANT NUMBER W81XWH-14-1-0539 5c. PROGRAM...SUPPLEMENTARY NOTES 14. ABSTRACT The PI3K/AKT pathway is one of the most deregulated pathways in breast cancers (>70%), and a major contributor to tumor

  14. Pathway-specific regulation revisited: cross-regulation of multiple disparate gene clusters by PAS-LuxR transcriptional regulators.

    Science.gov (United States)

    Vicente, Cláudia M; Payero, Tamara D; Santos-Aberturas, Javier; Barreales, Eva G; de Pedro, Antonio; Aparicio, Jesús F

    2015-06-01

    PAS-LuxR regulators are highly conserved proteins devoted to the control of antifungal production by binding to operators located in given promoters of polyene biosynthetic genes. The canonical operator of PimM, archetype of this class of regulators, has been used here to search for putative targets of orthologous protein PteF in the genome of Streptomyces avermitilis, finding 97 putative operators outside the pentaene filipin gene cluster (pte). The processes putatively affected included genetic information processing; energy, carbohydrate, and lipid metabolism; DNA replication and repair; morphological differentiation; secondary metabolite biosynthesis; and transcriptional regulation, among others. Seventeen of these operators were selected, and their binding to PimM DNA-binding domain was assessed by electrophoretic mobility shift assays. Strikingly, the protein bound all predicted operators suggesting a direct control over targeted processes. As a proof of concept, we studied the biosynthesis of the ATP-synthase inhibitor oligomycin whose gene cluster included two operators. Regulator mutants showed a severe loss of oligomycin production, whereas gene complementation of the mutant restored phenotype, and gene duplication in the wild-type strain boosted oligomycin production. Comparative gene expression analyses in parental and mutant strains by reverse transcription-quantitative polymerase chain reaction of selected olm genes corroborated production results. These results demonstrate that PteF is able to cross-regulate the biosynthesis of two related secondary metabolites, filipin and oligomycin, but might be extended to all the processes indicated above. This study highlights the complexity of the network of interactions in which PAS-LuxR regulators are involved and opens new possibilities for the manipulation of metabolite production in Streptomycetes.

  15. Phosphatidylinositol 3-kinase pathway regulates sperm viability but not capacitation on boar spermatozoa.

    Science.gov (United States)

    Aparicio, I M; Bragado, M J; Gil, M C; Garcia-Herreros, M; Gonzalez-Fernandez, L; Tapia, J A; Garcia-Marin, L J

    2007-08-01

    Phosphatidylinositol 3-kinase (PI3-K) plays an important role in cell survival in somatic cells and recent data pointed out a role for this kinase in sperm capacitation and acrosome reaction (AR). This study was undertaken to evaluate the role of PI3-K pathway on porcine spermatozoa capacitation, AR, and viability using two unrelated PI3-K inhibitors, LY294002 and wortmannin. In boar spermatozoa, we have identified the presence of PDK1, PKB/Akt, and PTEN, three of the main key components of the PI3-K pathway. Incubation of boar sperm in a capacitating medium (TCM) caused a significant increase in the percentage of capacitated (25 +/- 2 to 34 +/- 1% P sperm in basal medium (TBM). Inhibition of PI3-K did affect neither the capacitation status nor AR nor protein p32 tyrosine phosphorylation of boar spermatozoa incubated in TBM or TCM. Boar sperm viability in TBM was significantly decreased by 40 and 20% after pretreatment with LY294002 or wortmannin, respectively. Similar results were observed after incubation of boar spermatozoa in TCM. Treatment of boar spermatozoa with the analog of cAMP, 8Br-cAMP significantly prevented the reduction on sperm viability. Our results provide evidence for an important role of the PI3-K pathway in the regulation of boar sperm viability and suggests that other signaling pathways different from PI3-K must be activated downstream of cAMP to contribute to regulation of sperm viability. Finally, in our conditions the PI3-K pathway seems not related with boar sperm capacitation or AR.

  16. Rare Genomic Variants Link Bipolar Disorder with Anxiety Disorders to CREB-Regulated Intracellular Signaling Pathways.

    Science.gov (United States)

    Kerner, Berit; Rao, Aliz R; Christensen, Bryce; Dandekar, Sugandha; Yourshaw, Michael; Nelson, Stanley F

    2013-01-01

    Bipolar disorder is a common, complex, and severe psychiatric disorder with cyclical disturbances of mood and a high suicide rate. Here, we describe a family with four siblings, three affected females and one unaffected male. The disease course was characterized by early-onset bipolar disorder and co-morbid anxiety spectrum disorders that followed the onset of bipolar disorder. Genetic risk factors were suggested by the early onset of the disease, the severe disease course, including multiple suicide attempts, and lack of adverse prenatal or early life events. In particular, drug and alcohol abuse did not contribute to the disease onset. Exome sequencing identified very rare, heterozygous, and likely protein-damaging variants in eight brain-expressed genes: IQUB, JMJD1C, GADD45A, GOLGB1, PLSCR5, VRK2, MESDC2, and FGGY. The variants were shared among all three affected family members but absent in the unaffected sibling and in more than 200 controls. The genes encode proteins with significant regulatory roles in the ERK/MAPK and CREB-regulated intracellular signaling pathways. These pathways are central to neuronal and synaptic plasticity, cognition, affect regulation and response to chronic stress. In addition, proteins in these pathways are the target of commonly used mood-stabilizing drugs, such as tricyclic antidepressants, lithium, and valproic acid. The combination of multiple rare, damaging mutations in these central pathways could lead to reduced resilience and increased vulnerability to stressful life events. Our results support a new model for psychiatric disorders, in which multiple rare, damaging mutations in genes functionally related to a common signaling pathway contribute to the manifestation of bipolar disorder.

  17. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation.

    Science.gov (United States)

    Wang, Jianbo; Hamblet, Natasha S; Mark, Sharayne; Dickinson, Mary E; Brinkman, Brendan C; Segil, Neil; Fraser, Scott E; Chen, Ping; Wallingford, John B; Wynshaw-Boris, Anthony

    2006-05-01

    The planar cell polarity (PCP) pathway is conserved throughout evolution, but it mediates distinct developmental processes. In Drosophila, members of the PCP pathway localize in a polarized fashion to specify the cellular polarity within the plane of the epithelium, perpendicular to the apicobasal axis of the cell. In Xenopus and zebrafish, several homologs of the components of the fly PCP pathway control convergent extension. We have shown previously that mammalian PCP homologs regulate both cell polarity and polarized extension in the cochlea in the mouse. Here we show, using mice with null mutations in two mammalian Dishevelled homologs, Dvl1 and Dvl2, that during neurulation a homologous mammalian PCP pathway regulates concomitant lengthening and narrowing of the neural plate, a morphogenetic process defined as convergent extension. Dvl2 genetically interacts with Loop-tail, a point mutation in the mammalian PCP gene Vangl2, during neurulation. By generating Dvl2 BAC (bacterial artificial chromosome) transgenes and introducing different domain deletions and a point mutation identical to the dsh1 allele in fly, we further demonstrated a high degree of conservation between Dvl function in mammalian convergent extension and the PCP pathway in fly. In the neuroepithelium of neurulating embryos, Dvl2 shows DEP domain-dependent membrane localization, a pre-requisite for its involvement in convergent extension. Intriguing, the Loop-tail mutation that disrupts both convergent extension in the neuroepithelium and PCP in the cochlea does not disrupt Dvl2 membrane distribution in the neuroepithelium, in contrast to its drastic effect on Dvl2 localization in the cochlea. These results are discussed in light of recent models on PCP and convergent extension.

  18. Rare genomic variants link bipolar disorder to CREB regulated intracellular signaling pathways

    Directory of Open Access Journals (Sweden)

    Berit eKerner

    2013-11-01

    Full Text Available Bipolar disorder is a common, complex, and severe psychiatric disorder with cyclical disturbances of mood and a high suicide rate. Here, we describe a family with four siblings, three affected females and one unaffected male. The disease course was characterized by early-onset bipolar disorder and co-morbid anxiety spectrum disorders that followed the onset of bipolar disorder. Genetic risk factors were suggested by the early onset of the disease, the severe disease course, including multiple suicide attempts, and lack of adverse prenatal or early life events. In particular, drug and alcohol abuse did not contribute to the disease onset. Exome sequencing identified very rare, heterozygous, and likely protein-damaging variants in eight brain-expressed genes: IQUB, JMJD1C, GADD45A, GOLGB1, PLSCR5, VRK2, MESDC2, and FGGY. The variants were shared among all three affected family members but absent in the unaffected sibling and in more than 200 controls. The genes encode proteins with significant regulatory roles in the ERK/MAPK and CREB-regulated intracellular signaling pathways. These pathways are central to neuronal and synaptic plasticity, cognition, affect regulation and response to chronic stress. In addition, proteins in these pathways are the target of commonly used mood stabilizing drugs, such as tricyclic antidepressants, lithium and valproic acid. The combination of multiple rare, damaging mutations in these central pathways could lead to reduced resilience and increased vulnerability to stressful life events. Our results support a new model for psychiatric disorders, in which multiple rare, damaging mutations in genes functionally related to a common signaling pathway contribute to the manifestation of bipolar disorder.

  19. Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hong-Bo, E-mail: xhbzhb@yahoo.com [College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128 (China); Lu, Xiang-Yang; Sun, Zhi-Liang [Hunan Agricultural University, Changsha 410128 (China); Zhang, Heng-Bo [Furong District Red Cross Hospital, Changsha 410126 (China)

    2011-12-15

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE{sup -/-}) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE{sup -/-} mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. -- Graphical abstract: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. Highlights: Black-Right-Pointing-Pointer OPN-CD44 pathway plays a critical role in the development of atherosclerosis. Black-Right-Pointing-Pointer We examine lesion area, OPN and CD44 changes after kaempferol treatment. Black-Right-Pointing-Pointer Kaempferol treatment decreased atherosclerotic lesion area in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis.

  20. SIRT1 Regulates the Inflammatory Response of Vascular Adventitial Fibroblasts through Autophagy and Related Signaling Pathway.

    Science.gov (United States)

    Wang, Wei-Rong; Li, Ting-Ting; Jing, Ting; Li, Yan-Xiang; Yang, Xiao-Feng; He, Yan-Hao; Zhang, Wei; Lin, Rong; Zhang, Ji-Ye

    2017-01-01

    Autophagy is a lysosomal degradation pathway that is essential for cellular survival, differentiation, and homeostasis. Sirtuin 1 (SIRT1), a NAD+-dependent deacetylase, plays a pivotal role in modulation of autophagy. Recent studies found that autophagy was involved in the regulation of inflammatory response. In this study, we aimed to determine the effect of SIRT1 on autophagy and inflammation, and whether autophagy can regulate the inflammatory response in vascular adventitial fibroblasts (VAFs). Cell autophagy was evaluated by fluorescence microscope and transmission electron microscopy. The expression of protein and mRNA were determined by Western blot analysis and real time-PCR. The production of cytokine was detected by ELISA. TNF-α induced autophagy and increased SIRT1 expression in VAFs. SIRT1 activator resveratrol enhanced TNF-α-induced VAF autophagy. In contrast, SIRT1 knockdown attenuated VAF autophagy. Both the Akt inhibitor MK2206 and mTOR inhibitor rapamycin further increased TNF-α-induced VAF autophagy. Furthermore, SIRT1 knockdown increased Akt phosphorylation and inhibited the autophagy in VAFs. However, MK2206 attenuated the effect of SIRT1 knockdown on VAF autophagy. In addition, ingenuity pathway analysis showed that there is a relationship between cell autophagy and inflammation. We found that SIRT1 knockdown increased the expression of NLRP3 and interleukin (IL)-6 and promoted the production of IL-1β in VAFs. Further study showed that autophagy activation decreased the expression of NLRP3 and IL-6 and inhibited the production of IL-1β, whereas autophagy inhibition increased the inflammatory response of VAFs. More importantly, our study showed that autophagy was involved in the degradation of NLRP3 through the autophagy-lysosome pathway. SIRT1 not only regulates VAF autophagy through the Akt/mTOR signaling pathway but also suppresses the inflammatory response of VAFs through autophagy. © 2017 The Author(s)Published by S. Karger AG, Basel.

  1. LINGO-1 Regulates Oligodendrocyte Differentiation through the Cytoplasmic Gelsolin Signaling Pathway.

    Science.gov (United States)

    Shao, Zhaohui; Lee, Xinhua; Huang, Guanrong; Sheng, Guoqing; Henderson, Christopher E; Louvard, Daniel; Sohn, Jiho; Pepinsky, Blake; Mi, Sha

    2017-03-22

    Differentiation and maturation of oligodendrocyte progenitor cells (OPCs) involve the assembly and disassembly of actin microfilaments. However, how actin dynamics are regulated during this process remains poorly understood. Leucine-rich repeat and Ig-like domain-containing Nogo receptor interacting protein 1 (LINGO-1) is a negative regulator of OPC differentiation. We discovered that anti-LINGO-1 antibody-promoted OPC differentiation was accompanied by upregulation of cytoplasmic gelsolin (cGSN), an abundant actin-severing protein involved in the depolymerization of actin filaments. Treating rat OPCs with cGSN siRNA reduced OPC differentiation, whereas overexpression of cGSN promoted OPC differentiation in vitro and remyelination in vivo Furthermore, coexpression of cGSN and LINGO-1 blocked the inhibitory effect of LINGO-1. Our study demonstrates that cGSN works downstream of LINGO-1 signaling pathway, which enhances actin dynamics and is essential for OPC morphogenesis and differentiation. This finding may lead to novel therapeutic approaches for the treatment of demyelinating diseases such as multiple sclerosis (MS).SIGNIFICANCE STATEMENT Myelin loss and subsequent axon degeneration contributes to a variety of neurological diseases, such as multiple sclerosis (MS). Understanding the regulation of myelination by oligodendrocytes is therefore critical for developing therapies for the treatment of MS. We previously demonstrated that leucine-rich repeat and Ig-like domain-containing Nogo receptor interacting protein 1 (LINGO-1) is a negative regulator of oligodendrocyte differentiation and that anti-LINGO-1 promotes remyelination in preclinical animal models for MS and in a phase II acute optic neuritis clinical trial (RENEW). The mechanism by which LINGO-1 regulates oligodendrocyte differentiation is unknown. Here, we demonstrate that LINGO-1 regulates oligodendrocyte differentiation and maturation through the cytoplasmic gelsolin signaling pathway, providing new

  2. Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates

    Directory of Open Access Journals (Sweden)

    Yusuke eNakane

    2014-05-01

    Full Text Available Most vertebrates living outside the tropical zone show robust physiological responses in response to seasonal changes in photoperiod, such as seasonal reproduction, molt, and migration. The highly sophisticated photoperiodic mechanism in Japanese quail has been used to uncover the mechanism of seasonal reproduction. Molecular analysis of quail mediobasal hypothalamus (MBH revealed that local thyroid hormone activation within the MBH plays a critical role in the photoperiodic response of gonads. This activation is accomplished by two gene switches: thyroid hormone-activating (DIO2 and thyroid hormone-inactivating enzymes (DIO3. Functional genomics studies have shown that long-day induced thyroid-stimulating hormone (TSH in the pars tuberalis (PT of the pituitary gland regulates DIO2/3 switching. In birds, light information received directly by deep brain photoreceptors regulates PT TSH. Recent studies demonstrated that Opsin 5-positive cerebrospinal fluid (CSF-contacting neurons are deep brain photoreceptors that regulate avian seasonal reproduction. Although the involvement of TSH and DIO2/3 in seasonal reproduction has been confirmed in various mammals, the light input pathway that regulates PT TSH in mammals differs from that of birds. In mammals, the eye is the only photoreceptor organ and light information received by the eye is transmitted to the pineal gland through the circadian pacemaker, the suprachiasmatic nucleus. Nocturnal melatonin secretion from the pineal gland indicates the length of night and regulates the PT TSH. In fish, the regulatory machinery for seasonal reproduction, from light input to neuroendocrine output, has been recently demonstrated in the coronet cells of the saccus vasculosus (SV. The SV is unique to fish and coronet cells are CSF-contacting neurons. Here, we discuss the universality and diversity of signal transduction pathways that regulate vertebrate seasonal reproduction.

  3. Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates.

    Science.gov (United States)

    Nakane, Yusuke; Yoshimura, Takashi

    2014-01-01

    Most vertebrates living outside the tropical zone show robust physiological responses in response to seasonal changes in photoperiod, such as seasonal reproduction, molt, and migration. The highly sophisticated photoperiodic mechanism in Japanese quail has been used to uncover the mechanism of seasonal reproduction. Molecular analysis of quail mediobasal hypothalamus (MBH) revealed that local thyroid hormone activation within the MBH plays a critical role in the photoperiodic response of gonads. This activation is accomplished by two gene switches: thyroid hormone-activating (DIO2) and thyroid hormone-inactivating enzymes (DIO3). Functional genomics studies have shown that long-day induced thyroid-stimulating hormone (TSH) in the pars tuberalis (PT) of the pituitary gland regulates DIO2/3 switching. In birds, light information received directly by deep brain photoreceptors regulates PT TSH. Recent studies demonstrated that Opsin 5-positive cerebrospinal fluid (CSF)-contacting neurons are deep brain photoreceptors that regulate avian seasonal reproduction. Although the involvement of TSH and DIO2/3 in seasonal reproduction has been confirmed in various mammals, the light input pathway that regulates PT TSH in mammals differs from that of birds. In mammals, the eye is the only photoreceptor organ and light information received by the eye is transmitted to the pineal gland through the circadian pacemaker, the suprachiasmatic nucleus. Nocturnal melatonin secretion from the pineal gland indicates the length of night and regulates the PT TSH. In fish, the regulatory machinery for seasonal reproduction, from light input to neuroendocrine output, has been recently demonstrated in the coronet cells of the saccus vasculosus (SV). The SV is unique to fish and coronet cells are CSF-contacting neurons. Here, we discuss the universality and diversity of signal transduction pathways that regulate vertebrate seasonal reproduction.

  4. O-GlcNAc regulates NEDD4-1 stability via caspase-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kuan; Bai, Bingyang; Ta, Yajie; Zhang, Tingling; Xiao, Zikang; Wang, Peng George, E-mail: pwang@nankai.edu.cn; Zhang, Lianwen, E-mail: lianwen@nankai.edu.cn

    2016-03-18

    O-GlcNAc modification of cytosolic and nuclear proteins regulates essential cellular processes such as stress responses, transcription, translation, and protein degradation. Emerging evidence indicates O-GlcNAcylation has a dynamic interplay with ubiquitination in cellular regulation. Here, we report that O-GlcNAc indirectly targets a vital E3 ubiquitin ligase enzyme of NEDD4-1. The protein level of NEDD4-1 is accordingly decreased following an increase of overall O-GlcNAc level upon PUGNAc or glucosamine stimulation. O-GlcNAc transferase (OGT) knockdown, overexpression and mutation results confirm that the stability of NEDD4-1 is negatively regulated by cellular O-GlcNAc. Moreover, the NEDD4-1 degradation induced by PUGNAc or GlcN is significantly inhibited by the caspase inhibitor. Our study reveals a regulation mechanism of NEDD4-1 stability by O-GlcNAcylation. - Highlights: • Reduced NEDD4-1 correlates with increased overall O-GlcNAc level. • OGT negatively regulates NEDD4-1 stability. • O-GlcNAc regulates NEDD4-1 through caspase-mediated pathway.

  5. Identification of DreI as an antiviral factor regulated by RLR signaling pathway.

    Directory of Open Access Journals (Sweden)

    Shun Li

    Full Text Available BACKGROUND: Retinoic acid-inducible gene I (RIG-I-like receptors (RLRs had been demonstrated to prime interferon (IFN response against viral infection via the conserved RLR signaling in fish, and a novel fish-specific gene, the grass carp reovirus (GCRV-induced gene 2 (Gig2, had been suggested to play important role in host antiviral response. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we cloned and characterized zebrafish Gig2 homolog (named Danio rerio Gig2-I, DreI, and revealed its antiviral role and expressional regulation signaling pathway. RT-PCR, Western blot and promoter activity assay indicate that DreI can be induced by poly I:C, spring viremia of carp virus (SVCV and recombinant IFN (rIFN, showing that DreI is a typical ISG. Using the pivotal signaling molecules of RLR pathway, including RIG-I, MDA5 and IRF3 from crucian carp, it is found that DreI expression is regulated by RLR cascade and IRF3 plays an important role in this regulation. Furthermore, promoter mutation assay confirms that the IFN-stimulated regulatory elements (ISRE in the 5' flanking region of DreI is essential for its induction. Finally, overexpression of DreI leads to establish a strong antiviral state against SVCV and Rana grylio virus (RGV infection in EPC (Epithelioma papulosum cyprinid cells. CONCLUSIONS/SIGNIFICANCE: These data indicate that DreI is an antiviral protein, which is regulated by RLR signaling pathway.

  6. Regulation of adipocyte differentiation and gene expression-crosstalk between TGFβ and wnt signaling pathways.

    Science.gov (United States)

    Lu, Hang; Ward, Meliza G; Adeola, Olayiwola; Ajuwon, Kolapo M

    2013-09-01

    Obesity results in reduced differentiation potential of adipocytes leading to adipose tissue insulin resistance. Elevated proinflammatory cytokines from adipose tissue in obesity, such as TNFα have been implicated in the reduced adipocyte differentiation. Other mediators of reduced adipocyte differentiation include TGFβ and wnt proteins. Although some overlap exists in the signaling cascades of the wnt and TGFβ pathways it is unknown if TGFβ or wnt proteins reciprocally induce the expression of each other to maximize their biological effects in adipocytes. Therefore, we investigated the possible involvement of TGFβ signaling in wnt induced gene expression and vice versa in 3T3-L1 adipocyte. Effect of TGFβ and Wnt pathways on differentiation was studied in preadipocytes induced to differentiate in the presence of Wnt3a or TGFβ1 and their inhibitors (FZ8-CRD and SB431542, respectively). Regulation of intracellular signaling and gene expression was also studied in mature adipocytes. Our results show that both TGFβ1 and Wnt3a lead to increased accumulation of β-catenin, phosphorylation of AKT and p44/42 MAPK. However, differences were found in the pattern of gene expression induced by the two proteins suggesting that distinct, but complex, signaling pathways are activated by TGFβ and wnt proteins to independently regulate adipocyte function.

  7. Interaction of PACAP with Sonic hedgehog reveals complex regulation of the hedgehog pathway by PKA.

    Science.gov (United States)

    Niewiadomski, Pawel; Zhujiang, Annie; Youssef, Mary; Waschek, James A

    2013-11-01

    Sonic hedgehog (Shh) signaling is essential for proliferation of cerebellar granule cell progenitors (cGCPs) and its aberrant activation causes a cerebellar cancer medulloblastoma. Pituitary adenylate cyclase activating polypeptide (PACAP) inhibits Shh-driven proliferation of cGCPs and acts as tumor suppressor in murine medulloblastoma. We show that PACAP blocks canonical Shh signaling by a mechanism that involves activation of protein kinase A (PKA) and inhibition of the translocation of the Shh-dependent transcription factor Gli2 into the primary cilium. PKA is shown to play an essential role in inhibiting gene transcription in the absence of Shh, but global PKA activity levels are found to be a poor predictor of the degree of Shh pathway activation. We propose that the core Shh pathway regulates a small compartmentalized pool of PKA in the vicinity of primary cilia. GPCRs that affect global PKA activity levels, such as the PACAP receptor, cooperate with the canonical Shh signal to regulate Gli protein phosphorylation by PKA. This interaction serves to fine-tune the transcriptional and physiological function of the Shh pathway.

  8. Neurofilament heavy polypeptide regulates the Akt-beta-catenin pathway in human esophageal squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Myoung Sook Kim

    Full Text Available Aerobic glycolysis and mitochondrial dysfunction are common features of aggressive cancer growth. We observed promoter methylation and loss of expression in neurofilament heavy polypeptide (NEFH in a significant proportion of primary esophageal squamous cell carcinoma (ESCC samples that were of a high tumor grade and advanced stage. RNA interference-mediated knockdown of NEFH accelerated ESCC cell growth in culture and increased tumorigenicity in vivo, whereas forced expression of NEFH significantly inhibited cell growth and colony formation. Loss of NEFH caused up-regulation of pyruvate kinase-M2 type and down-regulation of pyruvate dehydrogenase, via activation of the Akt/beta-catenin pathway, resulting in enhanced aerobic glycolysis and mitochondrial dysfunction. The acceleration of glycolysis and mitochondrial dysfunction in NEFH-knockdown cells was suppressed in the absence of beta-catenin expression, and was decreased by the treatment of 2-Deoxyglucose, a glycolytic inhibitor, or API-2, an Akt inhibitor. Loss of NEFH activates the Akt/beta-catenin pathway and increases glycolysis and mitochondrial dysfunction. Cancer cells with methylated NEFH can be targeted for destruction with specific inhibitors of deregulated downstream pathways.

  9. Regulation of the PI3K pathway through a p85α monomer–homodimer equilibrium

    KAUST Repository

    Cheung, Lydia W T

    2015-07-29

    The canonical action of the p85α regulatory subunit of phosphatidylinositol 3-kinase (PI3K) is to associate with the p110α catalytic subunit to allow stimuli-dependent activation of the PI3K pathway. We elucidate a p110α-independent role of homodimerized p85α in the positive regulation of PTEN stability and activity. p110α-free p85α homodimerizes via two intermolecular interactions (SH3:proline-rich region and BH:BH) to selectively bind unphosphorylated activated PTEN. As a consequence, homodimeric but not monomeric p85α suppresses the PI3K pathway by protecting PTEN from E3 ligase WWP2-mediated proteasomal degradation. Further, the p85α homodimer enhances the lipid phosphatase activity and membrane association of PTEN. Strikingly, we identified cancer patient-derived oncogenic p85α mutations that target the homodimerization or PTEN interaction surface. Collectively, our data suggest the equilibrium of p85α monomerdimers regulates the PI3K pathway and disrupting this equilibrium could lead to disease development. © Cheung et al.

  10. Regulation of Inflammatory Pathways in Cancer and Infectious Disease of the Cervix

    Directory of Open Access Journals (Sweden)

    Anthonio Adefuye

    2012-01-01

    Full Text Available Cervical cancer is one of the leading gynaecological malignancies worldwide. It is an infectious disease of the cervix, associated with human papillomavirus infection (HPV, infection with bacterial agents such as Chlamydia trachomatis and Neisseria gonorrhoea as well as human immunodeficiency virus (HIV. Furthermore, it is an AIDS-defining disease with an accelerated mortality in HIV-infected women with cervical cancer. With the introduction of robust vaccination strategies against HPV in the developed world, it is anticipated that the incidence of cervical cancer will decrease in the coming years. However, vaccination has limited benefit for women already infected with high-risk HPV, and alternative therapeutic intervention strategies are needed for these women. Many pathological disorders, including cervical cancer, are characterised by the exacerbated activation and maintenance of inflammatory pathways which are considered to be regulated by infectious agents. In cervical cancer, hyperactivation of these inflammatory pathways and regulation of immune infiltrate into tissues can potentially play a role not only in tumorigenesis but also in HIV infection. In this paper we will discuss the contribution of inflammatory pathways to cervical cancer progression and HIV infection and the role of HIV in cervical cancer progression.

  11. Distinct amino acid-sensing mTOR pathways regulate skeletal myogenesis.

    Science.gov (United States)

    Yoon, Mee-Sup; Chen, Jie

    2013-12-01

    Signaling through the mammalian target of rapamycin (mTOR) in response to amino acid availability controls many cellular and developmental processes. mTOR is a master regulator of myogenic differentiation, but the pathways mediating amino acid signals in this process are not known. Here we examine the Rag GTPases and the class III phosphoinositide 3-kinase (PI3K) Vps34, two mediators of amino acid signals upstream of mTOR complex 1 (mTORC1) in cell growth regulation, for their potential involvement in myogenesis. We find that, although both Rag and Vps34 mediate amino acid activation of mTORC1 in C2C12 myoblasts, they have opposing functions in myogenic differentiation. Knockdown of RagA/B enhances, whereas overexpression of active RagB/C mutants impairs, differentiation, and this inhibitory function of Rag is mediated by mTORC1 suppression of the IRS1-PI3K-Akt pathway. On the other hand, Vps34 is required for myogenic differentiation. Amino acids activate a Vps34-phospholipase D1 (PLD1) pathway that controls the production of insulin-like growth factor II, an autocrine inducer of differentiation, through the Igf2 muscle enhancer. The product of PLD, phosphatidic acid, activates the enhancer in a rapamycin-sensitive but mTOR kinase-independent manner. Our results uncover amino acid-sensing mechanisms controlling the homeostasis of myogenesis and underline the versatility and context dependence of mTOR signaling.

  12. Regulation of the PI3K pathway through a p85a monomer-homodimer equilibrium

    KAUST Repository

    Aljedani, Safia

    2017-01-08

    The phosphatidylinositol-3-kinase a (PI3Ka) is heterodimeric enzyme that is composed of p85a regulatory subunit and a p110a catalytic subunit. PI3Ka plays a key role in cell survival, growth and differentation. Owing to its role as a key regulator, the PI3Ka pathway is the most frequently mutated pathway in human cancers, and is targeted by many viruses to insure their survival and successful reproduction. Previous studies have shown that the equilibrium of p85 monomers and dimers regulates the PI3K pathway, suggesting that interrupting this equilibrium could lead to disease development. Moreover, studies suggest that the p85a monomers and dimers have opposing effects on PI3Ka signaling as only the p85a dimers bind to the PTEN phosphatase, whereas p85a monomers bind to the catalytic p110 subunit. However, the mechanism for dimerisation is controversial, and it is unknown why PTEN or p110a bind only dimer or monomer. Therefore, we combine molecular biology, biophsical, computational and structural methods to investigate the suprosingly complex p85 dimerisation mechanism and its control by ligands. Results may inspire novel theraputic approaches.

  13. Dopamine is a key regulator in the signalling pathway underlying predator-induced defences in Daphnia.

    Science.gov (United States)

    Weiss, Linda C; Leese, Florian; Laforsch, Christian; Tollrian, Ralph

    2015-10-07

    The waterflea Daphnia is a model to investigate the genetic basis of phenotypic plasticity resulting from one differentially expressed genome. Daphnia develops adaptive phenotypes (e.g. morphological defences) thwarting predators, based on chemical predator cue perception. To understand the genomic basis of phenotypic plasticity, the description of the precedent cellular and neuronal mechanisms is fundamental. However, key regulators remain unknown. All neuronal and endocrine stimulants were able to modulate but not induce defences, indicating a pathway of interlinked steps. A candidate able to link neuronal with endocrine responses is the multi-functional amine dopamine. We here tested its involvement in trait formation in Daphnia pulex and Daphnia longicephala using an induction assay composed of predator cues combined with dopaminergic and cholinergic stimulants. The mere application of both stimulants was sufficient to induce morphological defences. We determined dopamine localization in cells found in close association with the defensive trait. These cells serve as centres controlling divergent morphologies. As a mitogen and sclerotization agent, we anticipate that dopamine is involved in proliferation and structural formation of morphological defences. Furthermore, dopamine pathways appear to be interconnected with endocrine pathways, and control juvenile hormone and ecdysone levels. In conclusion, dopamine is suggested as a key regulator of phenotypic plasticity. © 2015 The Author(s).

  14. Adipocyte Metabolic Pathways Regulated by Diet Control the Female Germline Stem Cell Lineage in Drosophila melanogaster.

    Science.gov (United States)

    Matsuoka, Shinya; Armstrong, Alissa R; Sampson, Leesa L; Laws, Kaitlin M; Drummond-Barbosa, Daniela

    2017-06-01

    Nutrients affect adult stem cells through complex mechanisms involving multiple organs. Adipocytes are highly sensitive to diet and have key metabolic roles, and obesity increases the risk for many cancers. How diet-regulated adipocyte metabolic pathways influence normal stem cell lineages, however, remains unclear. Drosophila melanogaster has highly conserved adipocyte metabolism and a well-characterized female germline stem cell (GSC) lineage response to diet. Here, we conducted an isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to identify diet-regulated adipocyte metabolic pathways that control the female GSC lineage. On a rich (relative to poor) diet, adipocyte Hexokinase-C and metabolic enzymes involved in pyruvate/acetyl-CoA production are upregulated, promoting a shift of glucose metabolism toward macromolecule biosynthesis. Adipocyte-specific knockdown shows that these enzymes support early GSC progeny survival. Further, enzymes catalyzing fatty acid oxidation and phosphatidylethanolamine synthesis in adipocytes promote GSC maintenance, whereas lipid and iron transport from adipocytes controls vitellogenesis and GSC number, respectively. These results show a functional relationship between specific metabolic pathways in adipocytes and distinct processes in the GSC lineage, suggesting the adipocyte metabolism-stem cell link as an important area of investigation in other stem cell systems. Copyright © 2017 by the Genetics Society of America.

  15. Antagonistic cross-regulation between Wnt and Hedgehog signalling pathways controls post-embryonic retinal proliferation.

    Science.gov (United States)

    Borday, Caroline; Cabochette, Pauline; Parain, Karine; Mazurier, Nicolas; Janssens, Sylvie; Tran, Hong Thi; Sekkali, Belaïd; Bronchain, Odile; Vleminckx, Kris; Locker, Morgane; Perron, Muriel

    2012-10-01

    Continuous neurogenesis in the adult nervous system requires a delicate balance between proliferation and differentiation. Although Wnt/β-catenin and Hedgehog signalling pathways are thought to share a mitogenic function in adult neural stem/progenitor cells, it remains unclear how they interact in this process. Adult amphibians produce retinal neurons from a pool of neural stem cells localised in the ciliary marginal zone (CMZ). Surprisingly, we found that perturbations of the Wnt and Hedgehog pathways result in opposite proliferative outcomes of neural stem/progenitor cells in the CMZ. Additionally, our study revealed that Wnt and Hedgehog morphogens are produced in mutually exclusive territories of the post-embryonic retina. Using genetic and pharmacological tools, we found that the Wnt and Hedgehog pathways exhibit reciprocal inhibition. Our data suggest that Sfrp-1 and Gli3 contribute to this negative cross-regulation. Altogether, our results reveal an unexpected antagonistic interplay of Wnt and Hedgehog signals that may tightly regulate the extent of neural stem/progenitor cell proliferation in the Xenopus retina.

  16. Molecular Pathways Regulating Macrovascular Pathology and Vascular Smooth Muscle Cells Phenotype in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Sara Casella

    2015-10-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a disease reaching a pandemic proportion in developed countries and a major risk factor for almost all cardiovascular diseases and their adverse clinical manifestations. T2DM leads to several macrovascular and microvascular alterations that influence the progression of cardiovascular diseases. Vascular smooth muscle cells (VSMCs are fundamental players in macrovascular alterations of T2DM patients. VSMCs display phenotypic and functional alterations that reflect an altered intracellular biomolecular scenario of great vessels of T2DM patients. Hyperglycemia itself and through intraparietal accumulation of advanced glycation-end products (AGEs activate different pathways, in particular nuclear factor-κB and MAPKs, while insulin and insulin growth-factor receptors (IGFR are implicated in the activation of Akt and extracellular-signal-regulated kinases (ERK 1/2. Nuclear factor-κB is also responsible of increased susceptibility of VSMCs to pro-apoptotic stimuli. Down-regulation of insulin growth-factor 1 receptors (IGFR-1R activity in diabetic vessels also influences negatively miR-133a levels, so increasing apoptotic susceptibility of VSMCs. Alterations of those bimolecular pathways and related genes associate to the prevalence of a synthetic phenotype of VSMCs induces extracellular matrix alterations of great vessels. A better knowledge of those biomolecular pathways and related genes in VSMCs will help to understand the mechanisms leading to macrovascular alterations in T2DM patients and to suggest new targeted therapies.

  17. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jiaqi; Cao, Yuanzhao; Cheng, Kuoyuan; Xu, Bo; Wang, Tianchang; Yang, Qi; Yang, Qin [State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing (China); Feng, Xudong, E-mail: xudong.feng@childrens.harvard.edu [Department of Medicine, Children' s Hospital Boston, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (United States); Xia, Qing, E-mail: xqing@hsc.pku.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing (China)

    2015-06-10

    As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellular energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress.

  18. RICTOR involvement in the PI3K/AKT pathway regulation in melanocytes and melanoma.

    Science.gov (United States)

    Laugier, Florence; Finet-Benyair, Adeline; André, Jocelyne; Rachakonda, P Sivaramakrishna; Kumar, Rajiv; Bensussan, Armand; Dumaz, Nicolas

    2015-09-29

    Several studies have highlighted the importance of the PI3K pathway in melanocytes and its frequent over-activation in melanoma. However, little is known about regulation of the PI3K pathway in melanocytic cells. We showed that normal human melanocytes are less sensitive to selective PI3K or mTOR inhibitors than to dual PI3K/mTOR inhibitors. The resistance to PI3K inhibitor was due to a rapid AKT reactivation limiting the inhibitor effect on proliferation. Reactivation of AKT was linked to a feedback mechanism involving the mTORC2 complex and in particular its scaffold protein RICTOR. RICTOR overexpression in melanocytes disrupted the negative feedback, activated the AKT pathway and stimulated clonogenicity highlighting the importance of this feedback to restrict melanocyte proliferation. We found that the RICTOR locus is frequently amplified and overexpressed in melanoma and that RICTOR over-expression in NRAS-transformed melanocytes stimulates their clonogenicity, demonstrating that RICTOR amplification can cooperate with NRAS mutation to stimulate melanoma proliferation. These results show that RICTOR plays a central role in PI3K pathway negative feedback in melanocytes and that its deregulation could be involved in melanoma development.

  19. The role of phosphatidylinositol signaling pathway in regulating serotonin-induced oocyte maturation in Mercenaria mercenaria

    Institute of Scientific and Technical Information of China (English)

    WANG Qing; ZHANG Tao

    2011-01-01

    Serotonin (5-HT) has been found to stimulate meiotic maturation of oocytes in many molluscs. During maturation, several signaling pathways are involved, especially the phosphatidylinositol and cAMP pathways. In order to examine the possible role of the phosphatidylinositol signaling pathway in regulating oocyte maturation in Mercenaria mercenaria, the effects of the activator/inhibitor of phospholipase (PLC) and protein kinase C (PKC) on serotonin-induced maturation were studied. Results show that high-concentrations of neomycin (inhibitor of PLC) blocked oocyte maturation, while 9, 10-dimethyl- 1, 2-benzanthracene (DMBA, activator of PLC) promoted oocyte maturation in the presence of serotonin. It was also found that in the presence of serotonin, phorbol 12-myristate 13-acetate (PMA,activator of PKC) inhibited oocyte maturation, while sphingosine (inhibitor of PKC) stimulated oocyte maturation. These results indicate that serotonin-induced oocyte maturation requires the activation of the phosphatidylinositol pathway. Decrease of PLC inhibited serotonin-induced oocyte maturation, whereas a decrease of PKC stimulated the maturation. Thus, our study indicates that serotonin promotes maturation of M. mercenaria oocytes through PLC stimulated increase in calcium ion concentration via inositol-1,4, 5-trisphosphate (IP3) but not PKC.

  20. miR-24 regulates intrinsic apoptosis pathway in mouse cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Numerous cardiac diseases, including myocardial infarction (MI and chronic heart failure, have been associated with cardiomyocyte apoptosis. Promoting cell survival by inhibiting apoptosis is one of the effective strategies to attenuate cardiac dysfunction caused by cardiomyocyte loss. miR-24 has been shown as an anti-apoptotic microRNA in various animal models. In vivo delivery of miR-24 into a mouse MI model suppressed cardiac cell death, attenuated infarct size, and rescued cardiac dysfunction. However, the molecular pathway by which miR-24 inhibits cardiomyocyte apoptosis is not known. Here we found that miR-24 negatively regulates mouse primary cadiomyocyte cell death through functioning in the intrinsic apoptotic pathways. In ER-mediated intrinsic pathway, miR-24 genetically interacts with the CEBP homologous gene CHOP as knocking down of CHOP partially attenuated the induced apoptosis by miR-24 inhibition. In mitochondria-involved intrinsic pathway, miR-24 inhibits the initiation of apoptosis through suppression of Cytochrome C release and Bax translocation from cytosol to mitochondria. These results provide mechanistic insights into the miR-24 mediated anti-apoptotic effects in murine cardiomyocytes.

  1. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway.

    Science.gov (United States)

    Wu, Xue; Yang, Longlong; Zheng, Zhao; Li, Zhenzhen; Shi, Jihong; Li, Yan; Han, Shichao; Gao, Jianxin; Tang, Chaowu; Su, Linlin; Hu, Dahai

    2016-03-01

    Wound healing is a highly orchestrated, multistep process, and delayed wound healing is a significant symptomatic clinical problem. Keratinocyte migration and re-epithelialization play the most important roles in wound healing, as they determine the rate of wound healing. In our previous study, we found that Src, one of the oldest proto‑oncogenes encoding a membrane-associated, non-receptor protein tyrosine kinase, promotes keratinocyte migration. We therefore hypothesized that Src promotes wound healing through enhanced keratinocyte migration. In order to test this hypothesis, vectors for overexpressing Src and small interfering RNAs (siRNAs) for silencing of Src were used in the present study. We found that the overexpression of Src accelerated keratinocyte migration in vitro and promoted wound healing in vivo without exerting a marked effect on cell proliferation. The extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways play important roles in Src-accelerated keratinocyte migration. Further experiments demonstrated that Src induced the protein expression of matrix metalloproteinase-2 (MMP-2) and decreased the protein expression of E-cadherin. We suggest that ERK signaling is involved in the Src-mediated regulation of MMP-2 expression. The present study provided evidence that Src promotes keratinocyte migration and cutaneous wound healing, in which the regulation of MMP-2 through the ERK pathway plays an important role, and thus we also demonstrated a potential therapeutic role for Src in cutaneous wound healing.

  2. Regulated ADAM17-dependent EGF family ligand release by substrate-selecting signaling pathways.

    Science.gov (United States)

    Dang, Michelle; Armbruster, Nicole; Miller, Miles A; Cermeno, Efrain; Hartmann, Monika; Bell, George W; Root, David E; Lauffenburger, Douglas A; Lodish, Harvey F; Herrlich, Andreas

    2013-06-11

    Ectodomain cleavage of cell-surface proteins by A disintegrin and metalloproteinases (ADAMs) is highly regulated, and its dysregulation has been linked to many diseases. ADAM10 and ADAM17 cleave most disease-relevant substrates. Broad-spectrum metalloprotease inhibitors have failed clinically, and targeting the cleavage of a specific substrate has remained impossible. It is therefore necessary to identify signaling intermediates that determine substrate specificity of cleavage. We show here that phorbol ester or angiotensin II-induced proteolytic release of EGF family members may not require a significant increase in ADAM17 protease activity. Rather, inducers activate a signaling pathway using PKC-α and the PKC-regulated protein phosphatase 1 inhibitor 14D that is required for ADAM17 cleavage of TGF-α, heparin-binding EGF, and amphiregulin. A second pathway involving PKC-δ is required for neuregulin (NRG) cleavage, and, indeed, PKC-δ phosphorylation of serine 286 in the NRG cytosolic domain is essential for induced NRG cleavage. Thus, signaling-mediated substrate selection is clearly distinct from regulation of enzyme activity, an important mechanism that offers itself for application in disease.

  3. MicroRNA-142-3p Negatively Regulates Canonical Wnt Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Tanyu Hu

    Full Text Available Wnt/β-catenin signaling pathway plays essential roles in mammalian development and tissue homeostasis. MicroRNAs (miRNAs are a class of regulators involved in modulating this pathway. In this study, we screened miRNAs regulating Wnt/β-catenin signaling by using a TopFlash based luciferase reporter. Surprisingly, we found that miR-142 inhibited Wnt/β-catenin signaling, which was inconsistent with a recent study showing that miR-142-3p targeted Adenomatous Polyposis Coli (APC to upregulate Wnt/β-catenin signaling. Due to the discordance, we elaborated experiments by using extensive mutagenesis, which demonstrated that the stem-loop structure was important for miR-142 to efficiently suppress Wnt/β-catenin signaling. Moreover, the inhibitory effect of miR-142 relies on miR-142-3p rather than miR-142-5p. Further, we found that miR-142-3p directly modulated translation of Ctnnb1 mRNA (encoding β-catenin through binding to its 3' untranslated region (3' UTR. Finally, miR-142 was able to repress cell cycle progression by inhibiting active Wnt/β-catenin signaling. Thus, our findings highlight the inhibitory role of miR-142-3p in Wnt/β-catenin signaling, which help to understand the complex regulation of Wnt/β-catenin signaling.

  4. Unraveling the Specific Regulation of the Central Pathway for Anaerobic Degradation of 3-Methylbenzoate*

    Science.gov (United States)

    Juárez, Javier F.; Liu, Huixiang; Zamarro, María T.; McMahon, Stephen; Liu, Huanting; Naismith, James H.; Eberlein, Christian; Boll, Matthias; Carmona, Manuel; Díaz, Eduardo

    2015-01-01

    The mbd cluster encodes the anaerobic degradation of 3-methylbenzoate in the β-proteobacterium Azoarcus sp. CIB. The specific transcriptional regulation circuit that controls the expression of the mbd genes was investigated. The PO, PB1, and P3R promoters responsible for the expression of the mbd genes, their cognate MbdR transcriptional repressor, as well as the MbdR operator regions (ATACN10GTAT) have been characterized. The three-dimensional structure of MbdR has been solved revealing a conformation similar to that of other TetR family transcriptional regulators. The first intermediate of the catabolic pathway, i.e. 3-methylbenzoyl-CoA, was shown to act as the inducer molecule. An additional MbdR-dependent promoter, PA, which contributes to the expression of the CoA ligase that activates 3-methylbenzoate to 3-methylbenzoyl-CoA, was shown to be necessary for an efficient induction of the mbd genes. Our results suggest that the mbd cluster recruited a regulatory system based on the MbdR regulator and its target promoters to evolve a distinct central catabolic pathway that is only expressed for the anaerobic degradation of aromatic compounds that generate 3-methylbenzoyl-CoA as the central metabolite. All these results highlight the importance of the regulatory systems in the evolution and adaptation of bacteria to the anaerobic degradation of aromatic compounds. PMID:25795774

  5. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective

    Directory of Open Access Journals (Sweden)

    Adam Barrada

    2015-08-01

    Full Text Available Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth.

  6. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective

    Science.gov (United States)

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-01-01

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth. PMID:26295391

  7. Crosstalk between the unfolded protein response and pathways that regulate pathogenic development in Ustilago maydis.

    Science.gov (United States)

    Heimel, Kai; Freitag, Johannes; Hampel, Martin; Ast, Julia; Bölker, Michael; Kämper, Jörg

    2013-10-01

    The unfolded protein response (UPR) is a conserved eukaryotic signaling pathway regulating endoplasmic reticulum (ER) homeostasis during ER stress, which results, for example, from an increased demand for protein secretion. Here, we characterize the homologs of the central UPR regulatory proteins Hac1 (for Homologous to ATF/CREB1) and Inositol Requiring Enzyme1 in the plant pathogenic fungus Ustilago maydis and demonstrate that the UPR is tightly interlinked with the b mating-type-dependent signaling pathway that regulates pathogenic development. Exact timing of UPR is required for virulence, since premature activation interferes with the b-dependent switch from budding to filamentous growth. In addition, we found crosstalk between UPR and the b target Clampless1 (Clp1), which is essential for cell cycle release and proliferation in planta. The unusual C-terminal extension of the U. maydis Hac1 homolog, Cib1 (for Clp1 interacting bZIP1), mediates direct interaction with Clp1. The interaction between Clp1 and Cib1 promotes stabilization of Clp1, resulting in enhanced ER stress tolerance that prevents deleterious UPR hyperactivation. Thus, the interaction between Cib1 and Clp1 constitutes a checkpoint to time developmental progression and increased secretion of effector proteins at the onset of biotrophic development. Crosstalk between UPR and the b mating-type regulated developmental program adapts ER homeostasis to the changing demands during biotrophy.

  8. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective.

    Science.gov (United States)

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-08-19

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth.

  9. A nuclear receptor-like pathway regulating multidrug resistance in fungi.

    Science.gov (United States)

    Thakur, Jitendra K; Arthanari, Haribabu; Yang, Fajun; Pan, Shih-Jung; Fan, Xiaochun; Breger, Julia; Frueh, Dominique P; Gulshan, Kailash; Li, Darrick K; Mylonakis, Eleftherios; Struhl, Kevin; Moye-Rowley, W Scott; Cormack, Brendan P; Wagner, Gerhard; Näär, Anders M

    2008-04-03

    Multidrug resistance (MDR) is a serious complication during treatment of opportunistic fungal infections that frequently afflict immunocompromised individuals, such as transplant recipients and cancer patients undergoing cytotoxic chemotherapy. Improved knowledge of the molecular pathways controlling MDR in pathogenic fungi should facilitate the development of novel therapies to combat these intransigent infections. MDR is often caused by upregulation of drug efflux pumps by members of the fungal zinc-cluster transcription-factor family (for example Pdr1p orthologues). However, the molecular mechanisms are poorly understood. Here we show that Pdr1p family members in Saccharomyces cerevisiae and the human pathogen Candida glabrata directly bind to structurally diverse drugs and xenobiotics, resulting in stimulated expression of drug efflux pumps and induction of MDR. Notably, this is mechanistically similar to regulation of MDR in vertebrates by the PXR nuclear receptor, revealing an unexpected functional analogy of fungal and metazoan regulators of MDR. We have also uncovered a critical and specific role of the Gal11p/MED15 subunit of the Mediator co-activator and its activator-targeted KIX domain in antifungal/xenobiotic-dependent regulation of MDR. This detailed mechanistic understanding of a fungal nuclear receptor-like gene regulatory pathway provides novel therapeutic targets for the treatment of multidrug-resistant fungal infections.

  10. The CRTC1-SIK1 pathway regulates entrainment of the circadian clock.

    Science.gov (United States)

    Jagannath, Aarti; Butler, Rachel; Godinho, Sofia I H; Couch, Yvonne; Brown, Laurence A; Vasudevan, Sridhar R; Flanagan, Kevin C; Anthony, Daniel; Churchill, Grant C; Wood, Matthew J A; Steiner, Guido; Ebeling, Martin; Hossbach, Markus; Wettstein, Joseph G; Duffield, Giles E; Gatti, Silvia; Hankins, Mark W; Foster, Russell G; Peirson, Stuart N

    2013-08-29

    Retinal photoreceptors entrain the circadian system to the solar day. This photic resetting involves cAMP response element binding protein (CREB)-mediated upregulation of Per genes within individual cells of the suprachiasmatic nuclei (SCN). Our detailed understanding of this pathway is poor, and it remains unclear why entrainment to a new time zone takes several days. By analyzing the light-regulated transcriptome of the SCN, we have identified a key role for salt inducible kinase 1 (SIK1) and CREB-regulated transcription coactivator 1 (CRTC1) in clock re-setting. An entrainment stimulus causes CRTC1 to coactivate CREB, inducing the expression of Per1 and Sik1. SIK1 then inhibits further shifts of the clock by phosphorylation and deactivation of CRTC1. Knockdown of Sik1 within the SCN results in increased behavioral phase shifts and rapid re-entrainment following experimental jet lag. Thus SIK1 provides negative feedback, acting to suppress the effects of light on the clock. This pathway provides a potential target for the regulation of circadian rhythms.

  11. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway.

    Science.gov (United States)

    Chan, PuiYee; Han, Xiao; Zheng, Baohui; DeRan, Michael; Yu, Jianzhong; Jarugumilli, Gopala K; Deng, Hua; Pan, Duojia; Luo, Xuelian; Wu, Xu

    2016-04-01

    TEA domain (TEAD) transcription factors bind to the coactivators YAP and TAZ and regulate the transcriptional output of the Hippo pathway, playing critical roles in organ size control and tumorigenesis. Protein S-palmitoylation attaches a fatty acid, palmitate, to cysteine residues and regulates protein trafficking, membrane localization and signaling activities. Using activity-based chemical probes, we discovered that human TEADs possess intrinsic palmitoylating enzyme-like activities and undergo autopalmitoylation at evolutionarily conserved cysteine residues under physiological conditions. We determined the crystal structures of lipid-bound TEADs and found that the lipid chain of palmitate inserts into a conserved deep hydrophobic pocket. Strikingly, palmitoylation did not alter TEAD's localization, but it was required for TEAD's binding to YAP and TAZ and was dispensable for its binding to the Vgll4 tumor suppressor. Moreover, palmitoylation-deficient TEAD mutants impaired TAZ-mediated muscle differentiation in vitro and tissue overgrowth mediated by the Drosophila YAP homolog Yorkie in vivo. Our study directly links autopalmitoylation to the transcriptional regulation of the Hippo pathway.

  12. Toll-like receptor 3 regulates neural stem cell proliferation by modulating the Sonic Hedgehog pathway.

    Directory of Open Access Journals (Sweden)

    Kavitha Yaddanapudi

    Full Text Available Toll-like receptor 3 (TLR3 signaling has been implicated in neural stem/precursor cell (NPC proliferation. However, the molecular mechanisms involved, and their relationship to classical TLR-mediated innate immune pathways, remain unknown. Here, we report investigation of the mechanics of TLR3 signaling in neurospheres comprised of epidermal growth factor (EGF-responsive NPC isolated from murine embryonic cerebral cortex of C57BL/6 (WT or TLR3 deficient (TLR3(-/- mice. Our data indicate that the TLR3 ligand polyinosinic-polycytidylic acid (PIC negatively regulates NPC proliferation by inhibiting Sonic Hedgehog (Shh signaling, that PIC induces apoptosis in association with inhibition of Ras-ERK signaling and elevated expression of Fas, and that these effects are TLR3-dependent, suggesting convergent signaling between the Shh and TLR3 pathways.

  13. Down regulation of gene related sex hormone synthesis pathway in mouse testes by miroestrol and deoxymiroestrol.

    Science.gov (United States)

    Udomsuk, Latiporn; Juengwatanatrakul, Thaweesak; Putalun, Waraporn; Jarukamjorn, Kanokwan

    2011-12-01

    Miroestrol and deoxymiroestrol are phytoestrogens isolated from tuberous root of Pueraria candollei var. mirifica. Modulatory effects of miroestrol and deoxymiroestrol on enzymes involved in sex-hormone synthesis pathway in male C57BL/6 mice were investigated using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). Miroestrol and deoxymiroestrol suppressed the expressions of 3β-HSD, 17β-HSD1, and CYP17 while CYP19 mRNA expression was slightly decreased. In addition, the expression of 17β-HSD2 was induced in correlation with those did by estradiol. These observations supported that miroestrol and deoxymiroestrol could exhibit the same effect as estradiol regarding regulation of testicular gene related sex hormone synthesis pathway.

  14. Signaling pathway cloud regulation for in silico screening and ranking of the potential geroprotective drugs

    Directory of Open Access Journals (Sweden)

    Alex eZhavoronkov

    2014-03-01

    Full Text Available The major challenges of aging research include absence of the comprehensive set of aging biomarkers, the time it takes to evaluate the effects of various interventions on longevity in humans and the difficulty extrapolating the results from model organisms to humans. To address these challenges we propose the in silico method for screening and ranking the possible geroprotectors followed by the high-throughput in vivo and in vitro validation. The proposed method evaluates the changes in the signaling pathway cloud constructed using the gene expression data and epigenetic profiles of young and old patients’ tissues. The possible interventions are selected and rated according to their ability to regulate age-related changes and minimize differences in the signaling pathway cloud. This flexible and scalable approach may be used to predict the efficacy of the many drugs that may extend human longevity before conducting pre-clinical work and expensive clinical trials.

  15. Lysine acetylation stoichiometry and proteomics analyses reveal pathways regulated by sirtuin 1 in human cells.

    Science.gov (United States)

    Gil, Jeovanis; Ramírez-Torres, Alberto; Chiappe, Diego; Luna-Peñaloza, Juan; Fernandez-Reyes, Francis C; Arcos-Encarnación, Bolivar; Contreras, Sandra; Encarnación-Guevara, Sergio

    2017-09-11

    Lysine acetylation is a widespread posttranslational modification (PTM) affecting many biological pathways. Recent studies indicate that acetylated lysine residues mainly exhibit low acetylation occupancy, but challenges in sample preparation and analysis make it difficult to confidently assign these numbers, limiting understanding of their biological significance. Here, we tested three common sample preparation methods to determine their suitability for assessing acetylation stoichiometry in three human cell lines, identifying the acetylation occupancy in more than 1,300 proteins from each cell line. The stoichiometric analysis in combination with quantitative proteomics also enabled us to explore their functional roles. We found that higher abundance of the deacetylase sirtuin 1 (SIRT1) correlated with lower acetylation occupancy and lower levels of ribosomal proteins including those involved in ribosome biogenesis and rRNA processing. Treatment with the SIRT1 inhibitor EX-527 confirmed SIRT1's role in the regulation of pre-rRNA synthesis and processing. Specifically, proteins involved in pre-rRNA transcription, including subunits of the Pol 1 and SL1 complexes and the RNA polymerase I specific transcription initiation factor RRN3 were up-regulated after SIRT1 inhibition. Moreover, many protein effectors and regulators of pre-rRNA processing needed for rRNA maturation were also up-regulated after EX-527 treatment, with the outcome that pre-rRNA and 28S rRNA levels also increased. More generally, we found that SIRT1 inhibition down-regulates metabolic pathways including glycolysis and pyruvate metabolism. Together, these results provide the largest dataset thus far of lysine acetylation stoichiometry (available via ProteomeXchange with identifier PXD005903) and set the stage for further biological investigations of this central PTM. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  16. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models

    National Research Council Canada - National Science Library

    Schiaffino, Stefano; Mammucari, Cristina

    2011-01-01

    A highly conserved signaling pathway involving insulin-like growth factor 1 (IGF1), and a cascade of intracellular components that mediate its effects, plays a major role in the regulation of skeletal muscle growth...

  17. Cross talk of signaling pathways in the regulation of the glucocorticoid receptor function.

    Science.gov (United States)

    Davies, Laura; Karthikeyan, Nirupama; Lynch, James T; Sial, Elin-Alia; Gkourtsa, Areti; Demonacos, Constantinos; Krstic-Demonacos, Marija

    2008-06-01

    Several posttranslational modifications including phosphorylation have been detected on the glucocorticoid receptor (GR). However, the interdependence and combinatorial regulation of these modifications and their role in GR functions are poorly understood. We studied the effects of c-Jun N-terminal kinase (JNK)-dependent phosphorylation of GR on its sumoylation status and the impact that these modifications have on GR transcriptional activity. GR is targeted for phosphorylation at serine 246 (S246) by the JNK protein family in a rapid and transient manner. The levels of S246 phosphorylation of endogenous GR increased significantly in cells treated with UV radiation that activates JNK. S246 GR phosphorylation by JNK facilitated subsequent GR sumoylation at lysines 297 and 313. GR sumoylation increased with JNK activation and was inhibited in cells treated with JNK inhibitor. GR sumoylation in cells with activated JNK was mediated preferentially by small ubiquitin-like modifier (SUMO)2 rather than SUMO1. An increase in GR transcriptional activity was observed after inhibition of JNK or SUMO pathways and suppression of GR transcriptional activity after activation of both pathways in cells transfected with GR-responsive reporter genes. Endogenous GR transcriptional activity was inhibited on endogenous target genes IGF binding protein (IGFBP) and glucocorticoid-induced leucine zipper (GILZ) when JNK and SUMO pathways were induced individually or simultaneously. Activation of both of these signals inhibited GR-mediated regulation of human inhibitor of apoptosis gene (hIAP), whereas simultaneous activation had no effect. We conclude that phosphorylation aids GR sumoylation and that cross talk of JNK and SUMO pathways fine tune GR transcriptional activity in a target gene-specific manner, thereby modulating the hormonal response of cells exposed to stress.

  18. Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer.

    Science.gov (United States)

    Nip, Hannah; Dar, Altaf A; Saini, Sharanjot; Colden, Melissa; Varahram, Shahryari; Chowdhary, Harshika; Yamamura, Soichiro; Mitsui, Yozo; Tanaka, Yuichiro; Kato, Taku; Hashimoto, Yutaka; Shiina, Marisa; Kulkarni, Priyanka; Dasgupta, Pritha; Imai-Sumida, Mitsuho; Tabatabai, Z Laura; Greene, Kirsten; Deng, Guoren; Dahiya, Rajvir; Majid, Shahana

    2016-10-18

    Prostate carcinogenesis involves alterations in several signaling pathways, the most prominent being the PI3K/AKT pathway. This pathway is constitutively active and drives prostate cancer (PCa) progression to advanced metastatic disease. PTEN, a critical tumor and metastasis suppressor gene negatively regulates cell survival, proliferation, migration and angiogenesis via the PI3K/Akt pathway. PTEN is mutated, downregulated/dysfunctional in many cancers and its dysregulation correlates with poor prognosis in PCa. Here, we demonstrate that microRNA-4534 (miR-4534) is overexpressed in PCa and show that miR-4534 is hypermethylated in normal tissues and cell lines compared to PCa tissues/cells. miR-4534 exerts its oncogenic effects partly by downregulating the tumor suppressor PTEN gene. Knockdown of miR-4534 impaired cell proliferation, migration/invasion and induced G0/G1 cell cycle arrest and apoptosis in PCa. Suppression of miR-4534 and its effects on tumor growth was confirmed in a xenograft mouse model. We performed parallel experiments in non-cancer RWPE1 cells by overexpessing miR-4534 followed by functional assays. Overexpression of miR-4534 induced pro-cancerous characteristics in this non-cancer cell line. Statistical analyses revealed that miR-4534 has potential to independently distinguish malignant from normal tissues and positively correlated with poor overall and PSA recurrence free survival. Taken together, our results show that depletion of miR-4534 in PCa induces a tumor suppressor phenotype partly through induction of PTEN. These results have important implications for identifying and defining the role of new PTEN regulators such as microRNAs in prostate tumorigenesis. Understanding aberrantly overexpressed miR-4534 and its downregulation of PTEN will provide mechanistic insight and therapeutic targets for PCa therapy.

  19. Eight paths of ERK1/2 signalling pathway regulating hepatocyte proliferation in rat liver regeneration

    Indian Academy of Sciences (India)

    J. W. Li; G. P. Wang; J. Y. Fan; C. F. Chang; C. S. Xu

    2011-12-01

    Although it is known that hormones, growth factors and integrin promote hepatocyte proliferation in liver regeneration (LR) through ERK1/2 signalling pathway, reports about regulating processes of its intracellular paths in hepatocytes of LR are limited. This study aims at exploring which paths of ERK1/2 signalling pathway participate in the regulation of rat LR, especially in hepatocyte proliferation, and how they do so. In all, 14 paths and 165 genes are known to be involved in ERK1/2 signalling pathway. Of them, 161 genes are included in Rat Genome 230 2.0 Array. This array was used to detect expression changes of genes related to ERK1/2 signalling pathway in isolated hepatocytes of rat LR, showing that 60 genes were related to hepatocytes of LR. In addition, bioinformatics and systems biology methods were used to analyse the roles of 14 above paths in regenerating hepatocytes. We found that three paths, RTK → SHC → GRB2/SOS → RAS → RAF, Integrin → FAK → RAC → PAK → RAF and G → PI3K → RAC → PAK → RAF, promoted the G1 phase progression of hepatocytes by activating ERK1/2. A further four paths, Gq → PLC → PKC → SRC/PYK2 → GRB2/SOS → RAS → RAF, RTK → PLC → PKC → SRC/PYK2 → GRB2/SOS → RAS → RAF, Integrin → FAK/SRC → GRB2/SOS → RAS → RAF and Integrin → FAK → RAC → PAK → RAF, advanced the cell progression of S phase and G2/M checkpoint by activating ERK1/2, and so did PP1/2 → Mek1/2 by decreasing the negative influence on ERK1/2. At the late phase of LR, Gs → AC → EPAC → Rap1 → Raf blocked hepatocyte proliferation by decreasing the activity of ERK1/2 and so did PP1/2 → Mek1/2. In summary, 60 genes and 8 paths of ERK1/2 signalling pathway regulated hepatocyte proliferation in rat LR.

  20. Regulation of the STARS signaling pathway in response to endurance and resistance exercise and training.

    Science.gov (United States)

    Lamon, Séverine; Wallace, Marita A; Stefanetti, Renae J; Rahbek, Stine K; Vendelbo, Mikkel H; Russell, Aaron P; Vissing, Kristian

    2013-09-01

    The striated muscle activator of Rho signaling (STARS) protein and members of its downstream signaling pathway, including myocardin-related transcription factor-A (MRTF-A) and SRF, are increased in response to prolonged resistance exercise training but also following a single bout of endurance cycling. The aim of the present study was to measure and compare the regulation of STARS, MRTF-A and SRF mRNA and protein following 10 weeks of endurance training (ET) versus resistance training (RT), as well as before and following a single bout of endurance (EE) versus resistance exercise (RE). Following prolonged training, STARS, MRTF-A and SRF mRNA levels were all increased by similar magnitude, irrespective of training type. In the training-habituated state, STARS mRNA increased following a single-bout RE when measured 2.5 and 5 h post-exercise and had returned to resting level by 22 h following exercise. MRTF-A and SRF mRNA levels were decreased by 2.5, 5, and 22 h following a single bout of RE and EE exercise when compared to their respective basal levels, with no significant difference seen between the groups at any of the time points. No changes in protein levels were observed following the two modes of exercise training or a single bout of exercise. This study demonstrates that the stress signals elicited by ET and RT result in a comparable regulation of members of the STARS pathway. In contrast, a single bout of EE and RE, performed in the trained state, elicit different responses. These observations suggest that in the trained state, the acute regulation of the STARS pathway following EE or RE may be responsible for exercise-specific muscle adaptations.

  1. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium.

    Science.gov (United States)

    Sacchi, Romina; Li, Johnathon; Villarreal, Fernando; Gardell, Alison M; Kültz, Dietmar

    2013-12-15

    The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish.

  2. Identification of cisplatin-regulated metabolic pathways in pluripotent stem cells.

    Science.gov (United States)

    von Stechow, Louise; Ruiz-Aracama, Ainhoa; van de Water, Bob; Peijnenburg, Ad; Danen, Erik; Lommen, Arjen

    2013-01-01

    The chemotherapeutic compound, cisplatin causes various kinds of DNA lesions but also triggers other pertubations, such as ER and oxidative stress. We and others have shown that treatment of pluripotent stem cells with cisplatin causes a plethora of transcriptional and post-translational alterations that, to a major extent, point to DNA damage response (DDR) signaling. The orchestrated DDR signaling network is important to arrest the cell cycle and repair the lesions or, in case of damage beyond repair, eliminate affected cells. Failure to properly balance the various aspects of the DDR in stem cells contributes to ageing and cancer. Here, we performed metabolic profiling by mass spectrometry of embryonic stem (ES) cells treated for different time periods with cisplatin. We then integrated metabolomics with transcriptomics analyses and connected cisplatin-regulated metabolites with regulated metabolic enzymes to identify enriched metabolic pathways. These included nucleotide metabolism, urea cycle and arginine and proline metabolism. Silencing of identified proline metabolic and catabolic enzymes indicated that altered proline metabolism serves as an adaptive, rather than a toxic response. A group of enriched metabolic pathways clustered around the metabolite S-adenosylmethionine, which is a hub for methylation and transsulfuration reactions and polyamine metabolism. Enzymes and metabolites with pro- or anti-oxidant functions were also enriched but enhanced levels of reactive oxygen species were not measured in cisplatin-treated ES cells. Lastly, a number of the differentially regulated metabolic enzymes were identified as target genes of the transcription factor p53, pointing to p53-mediated alterations in metabolism in response to genotoxic stress. Altogether, our findings reveal interconnecting metabolic pathways that are responsive to cisplatin and may serve as signaling modules in the DDR in pluripotent stem cells.

  3. Identification of cisplatin-regulated metabolic pathways in pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Louise von Stechow

    Full Text Available The chemotherapeutic compound, cisplatin causes various kinds of DNA lesions but also triggers other pertubations, such as ER and oxidative stress. We and others have shown that treatment of pluripotent stem cells with cisplatin causes a plethora of transcriptional and post-translational alterations that, to a major extent, point to DNA damage response (DDR signaling. The orchestrated DDR signaling network is important to arrest the cell cycle and repair the lesions or, in case of damage beyond repair, eliminate affected cells. Failure to properly balance the various aspects of the DDR in stem cells contributes to ageing and cancer. Here, we performed metabolic profiling by mass spectrometry of embryonic stem (ES cells treated for different time periods with cisplatin. We then integrated metabolomics with transcriptomics analyses and connected cisplatin-regulated metabolites with regulated metabolic enzymes to identify enriched metabolic pathways. These included nucleotide metabolism, urea cycle and arginine and proline metabolism. Silencing of identified proline metabolic and catabolic enzymes indicated that altered proline metabolism serves as an adaptive, rather than a toxic response. A group of enriched metabolic pathways clustered around the metabolite S-adenosylmethionine, which is a hub for methylation and transsulfuration reactions and polyamine metabolism. Enzymes and metabolites with pro- or anti-oxidant functions were also enriched but enhanced levels of reactive oxygen species were not measured in cisplatin-treated ES cells. Lastly, a number of the differentially regulated metabolic enzymes were identified as target genes of the transcription factor p53, pointing to p53-mediated alterations in metabolism in response to genotoxic stress. Altogether, our findings reveal interconnecting metabolic pathways that are responsive to cisplatin and may serve as signaling modules in the DDR in pluripotent stem cells.

  4. Early Diagnosis of Clear Cell Kidney Cancer via VHL/HIF Pathway Regulated-Circulating microRNA

    Science.gov (United States)

    2016-05-01

    Award Number: W81XWH-11-1-0715 TITLE: Early Diagnosis of Clear Cell Kidney Cancer via VHL/HIF Pathway -Regulated Circulating microRNA PRINCIPAL...TITLE AND SUBTITLE Sa. CONTRACT NUMBER Early Diagnosis of Clear Cell Kidney Cancer via VHL/HIF Pathway - Regulated Circulating microRNA Sb. GRANT NUMBER...panel of diagnostic miRNAs that are measurable in serum and will be able to identify kidney cancer in its earliest stages. We hypothesized that serum

  5. RNAseq analysis of the parasitic nematode Strongyloides stercoralis reveals divergent regulation of canonical dauer pathways.

    Science.gov (United States)

    Stoltzfus, Jonathan D; Minot, Samuel; Berriman, Matthew; Nolan, Thomas J; Lok, James B

    2012-01-01

    The infectious form of many parasitic nematodes, which afflict over one billion people globally, is a developmentally arrested third-stage larva (L3i). The parasitic nematode Strongyloides stercoralis differs from other nematode species that infect humans, in that its life cycle includes both parasitic and free-living forms, which can be leveraged to investigate the mechanisms of L3i arrest and activation. The free-living nematode Caenorhabditis elegans has a similar developmentally arrested larval form, the dauer, whose formation is controlled by four pathways: cyclic GMP (cGMP) signaling, insulin/IGF-1-like signaling (IIS), transforming growth factor β (TGFβ) signaling, and biosynthesis of dafachronic acid (DA) ligands that regulate a nuclear hormone receptor. We hypothesized that homologous pathways are present in S. stercoralis, have similar developmental regulation, and are involved in L3i arrest and activation. To test this, we undertook a deep-sequencing study of the polyadenylated transcriptome, generating over 2.3 billion paired-end reads from seven developmental stages. We constructed developmental expression profiles for S. stercoralis homologs of C. elegans dauer genes identified by BLAST searches of the S. stercoralis genome as well as de novo assembled transcripts. Intriguingly, genes encoding cGMP pathway components were coordinately up-regulated in L3i. In comparison to C. elegans, S. stercoralis has a paucity of genes encoding IIS ligands, several of which have abundance profiles suggesting involvement in L3i development. We also identified seven S. stercoralis genes encoding homologs of the single C. elegans dauer regulatory TGFβ ligand, three of which are only expressed in L3i. Putative DA biosynthetic genes did not appear to be coordinately regulated in L3i development. Our data suggest that while dauer pathway genes are present in S. stercoralis and may play a role in L3i development, there are significant differences between the two species

  6. The transcription factor AREB1 regulates primary metabolic pathways in tomato fruits.

    Science.gov (United States)

    Bastías, Adriana; Yañez, Mónica; Osorio, Sonia; Arbona, Vicent; Gómez-Cadenas, Aurelio; Fernie, Alisdair R; Casaretto, José A

    2014-06-01

    Tomato fruit development is regulated both by the action of plant hormones and by tight genetic control. Recent studies suggest that abscisic acid (ABA) signalling may affect different aspects of fruit maturation. Previously, it was shown that SlAREB1, an ABA-regulated transcription factor involved in stress-induced responses, is expressed in seeds and in fruit tissues in tomato. Here, the role of SlAREB1 in regulating the expression of genes relevant for primary metabolic pathways and affecting the metabolic profile of the fruit was investigated using transgenic tomato lines. Metabolite profiling using gas chromatography-time of flight mass spectrometry (GC-TOF-MS) and non-targeted liquid chromatography-mass spectrometry (LC-MS) was performed on pericarp tissue from fruits harvested at three stages of fruit development. Principal component analysis of the data could distinguish the metabolite profiles of non-transgenic fruits from those that overexpress and down-regulate SlAREB1. Overexpression of SlAREB1 resulted in increased content of organic acids, hexoses, hexose-phosphates, and amino acids in immature green, mature green, and red ripe fruits, and these modifications correlated with the up-regulation of enzyme-encoding genes involved in primary carbohydrate and amino acid metabolism. A non-targeted LC-MS analysis indicated that the composition of secondary metabolites is also affected in transgenic lines. In addition, gene expression data revealed that some genes associated with fruit ripening are also up-regulated in SlAREB1-overexpressing lines compared with wild-type and antisense lines. Taken together, the results suggest that SlAREB1 participates in the regulation of the metabolic programming that takes place during fruit ripening and that may explain part of the role of ABA in fruit development in tomato.

  7. Spatial regulation of the mTORC1 system in amino acids sensing pathway

    Institute of Scientific and Technical Information of China (English)

    Tsukasa Suzuki; Ken Inoki

    2011-01-01

    The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine protein kinase that regulates numerous cellular processes including cell growth,proliferation,cell cycle,and autophagy,mTOR forms two different multi-protein complexes referred to as mTOR complex 1 (mTORC1) and mTORC2,and each complex exerts distinct functions exclusively,mTORC1 activity is sensitive to the selective inhibitor rapamycin,whereas mTORC2 is resistant,mTORC1 is regulated by many intra- and extra-cellular cues such as growth factors, nutrients, and energy-sensing signals,while mTORC2 senses ribosome maturation and growth factor signaling.This review focuses on current understandings by which mTORC1 pathway senses cellular nutrient availability for its activation.

  8. Identification of microRNAs regulating the developmental pathways of bone marrow derived mast cells.

    Directory of Open Access Journals (Sweden)

    Yang Xiang

    Full Text Available BACKGROUND: MicroRNAs (miRNAs play important roles in leukocyte differentiation, although those utilised for specific programs and key functions remain incompletely characterised. As a global approach to gain insights into the potential regulatory role of miRNA in mast cell differentiation we characterised expression in BM cultures from the initiation of differentiation. In cultures enriched in differentiating mast cells we characterised miRNA expression and identified miRNA targeting the mRNA of putative factors involved in differentiation pathways and cellular identity. Detailed pathway analysis identified a unique miRNA network that is intimately linked to the mast cell differentiation program. METHODOLOGY/PRINCIPAL FINDINGS: We identified 86 unique miRNAs with expression patterns that were up- or down- regulated at 5-fold or more during bone marrow derived mast cells (BMMC development. By employing TargetScan and MeSH databases, we identified 524 transcripts involved in 30 canonical pathways as potentially regulated by these specific 86 miRNAs. Furthermore, by applying miRanda and IPA analyses, we predict that 7 specific miRNAs of this group are directly associated with the expression of c-Kit and FcεRIα and likewise, that 18 miRNAs promote expression of Mitf, GATA1 and c/EBPα three core transcription factors that direct mast cell differentiation. Furthermore, we have identified 11 miRNAs that may regulate the expression of STATs-3, -5a/b, GATA2 and GATA3 during differentiation, along with 13 miRNAs that target transcripts encoding Ndst2, mMCP4 and mMCP6 and thus may regulate biosynthesis of mast cell secretory mediators. CONCLUSIONS/SIGNIFICANCE: This investigation characterises changes in miRNA expression in whole BM cultures during the differentiation of mast cells and predicts functional links between miRNAs and their target mRNAs for the regulation of development. This information provides an important resource for further

  9. A Myb transcription factor regulates genes of the phenylalanine pathway in maritime pine.

    Science.gov (United States)

    Craven-Bartle, Blanca; Pascual, M Belen; Cánovas, Francisco M; Avila, Concepción

    2013-06-01

    During the life cycles of conifer trees, such as maritime pine (Pinus pinaster Ait.), large quantities of carbon skeletons are irreversibly immobilized in the wood. In energetic terms this is an expensive process, in which carbon from photosynthesis is channelled through the shikimate pathway for the biosynthesis of phenylpropanoids. This crucial metabolic pathway is finely regulated, primarily through transcriptional control, and because phenylalanine is the precursor for phenylpropanoid biosynthesis, the precise regulation of phenylalanine synthesis and use should occur simultaneously. The promoters of three genes encoding the enzymes prephenate aminotransferase (PAT), phenylalanine ammonia lyase (PAL) and glutamine synthetase (GS1b) contain AC elements involved in the transcriptional activation mediated by R2R3-Myb factors. We have examined the capacity of the R2R3-Myb transcription factors Myb1, Myb4 and Myb8 to co-regulate the expression of PAT, PAL and GS1b. Only Myb8 was able to activate the transcription of the three genes. Moreover, the expression of this transcription factor is higher in lignified tissues, in which a high demand for phenylpropanoids exits. In a gain-of-function experiment, we have shown that Myb8 can specifically bind a well-conserved eight-nucleotide-long AC-II element in the promoter regions of PAT, PAL and GS1b, thereby activating their expression. Our results show that Myb8 regulates the expression of these genes involved in phenylalanine metabolism, which is required for channelling photosynthetic carbon to promote wood formation. The co-localization of PAT, PAL, GS1b and MYB8 transcripts in vascular cells further supports this conclusion.

  10. YBX1 regulates tumor growth via CDC25a pathway in human lung adenocarcinoma

    Science.gov (United States)

    Yu, Wendan; Li, Jinxiu; Tang, Zhipeng; Yu, Zhenlong; Zhao, Lei; Zhang, Yixiang; Wang, Ziyi; Wang, Peng; Li, Yechi; Li, Fengzhou; Sun, Zhe; Xuan, Yang; Tang, Ranran; Deng, Wu-guo; Guo, Wei; Gu, Chundong

    2016-01-01

    Y-box binding protein 1 (YBX1) is involved in the multi-tumor occurrence and development. However, the regulation of YBX1 in lung tumorigenesis and the underlying mechanisms, especially its relationship with CDC25a, was remains unclear. In this study, we analyzed the expression and clinical significance of YBX1 and CDC25a in lung adenocarcinoma and identified their roles in the regulation of lung cancer growth. The retrospective analysis of 116 patients with lung adenocarcinoma indicated that YBX1 was positively correlated with CDC25a expression. The Cox-regression analysis showed only high-ranking TNM stage and low CDC25a expression were an independent risk factor of prognosis in enrolled patients. High expression of YBX1 or CDC25a protein was also observed in lung adenocarcinoma cells compared with HLF cells. ChIP assay demonstrated the binding of endogenous YBX1 to the CDC25a promoter region. Overexpression of exogenous YBX1 up-regulated the expression of the CDC25a promoter-driven luciferase. By contrast, inhibition of YBX1 by siRNA markedly decreased the capability of YBX1 binding to CDC25a promoter in A549 and H322 cells. Inhibition of YBX1 expression also blocked cell cycle progression, suppressed cell proliferation and induced apoptosis via the CDC25a pathway in vitro. Moreover, inhibition of YBX1 by siRNA suppressed tumorigenesis in a xenograft mouse model and down-regulated the expression of YBX1, CDC25a, Ki67 and cleaved caspase 3 in the tumor tissues of mice. Collectively, these results demonstrate inhibition of YBX1 suppressed lung cancer growth partly via the CDC25a pathway and high expression of YBX1/CDC25a predicts poor prognosis in human lung adenocarcinoma. PMID:27384875

  11. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  12. A SNX10/V-ATPase pathway regulates ciliogenesis in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Yanaun Chen; Shuo Lin; Xiaodong Shu; Duanqing Pei; Bin Wu; Liangliang Xu; Huapeng Li; Jianhong Xia; Wenguang Yin; Zhuo Li; Dawei Shi; Song Li

    2012-01-01

    Sorting nexins (SNXs) are phosphoinositide-binding proteins implicated in the sorting of various membrane proteins in vitro,but the in vivo functions of them remain largely unknown.We reported previously that SNX10 is a unique member of the SNX family genes in that it has vacuolation activity in cells.We investigate the biological function of SNX10 by loss-of-function assay in this study and demonstrate that SNX10 is required for the formation of primary cilia in cultured cells.In zebrafish,SNX10 is involved in ciliogenesis in the Kupffer's vesicle and essential for left-right patterning of visceral organs.Mechanistically,SNX10 interacts with V-ATPase complex and targets it to the centrosome where ciliogenesis is initiated.Like SNX10,V-ATPase regulates ciliogenesis in vitro and in vivo and does so synergistically with SNX10.We further discover that SNX10 and V-ATPase regulate the ciliary trafficking of Rab8a,which is a critical regulator of ciliary membrane extension.These results identify an SNX10/V-ATPaseregulated vesicular trafficking pathway that is crucial for ciliogenesis,and reveal that SNX10/V-ATPase,through the regulation of cilia formation in various organs,play an essential role during early embryonic development.

  13. The mitochondrial Ca2+ uniporter: regulation by auxiliary subunits and signal transduction pathways.

    Science.gov (United States)

    Jhun, Bong Sook; Mishra, Jyotsna; Monaco, Sarah; Fu, Deming; Jiang, Wenmin; Sheu, Shey-Shing; O-Uchi, Jin

    2016-07-01

    Mitochondrial Ca(2+) homeostasis, the Ca(2+) influx-efflux balance, is responsible for the control of numerous cellular functions, including energy metabolism, generation of reactive oxygen species, spatiotemporal dynamics of Ca(2+) signaling, and cell growth and death. Recent discovery of the molecular identity of the mitochondrial Ca(2+) uniporter (MCU) provides new possibilities for application of genetic approaches to study the mitochondrial Ca(2+) influx mechanism in various cell types and tissues. In addition, the subsequent discovery of various auxiliary subunits associated with MCU suggests that mitochondrial Ca(2+) uptake is not solely regulated by a single protein (MCU), but likely by a macromolecular protein complex, referred to as the MCU-protein complex (mtCUC). Moreover, recent reports have shown the potential role of MCU posttranslational modifications in the regulation of mitochondrial Ca(2+) uptake through mtCUC. These observations indicate that mtCUCs form a local signaling complex at the inner mitochondrial membrane that could significantly regulate mitochondrial Ca(2+) handling, as well as numerous mitochondrial and cellular functions. In this review we discuss the current literature on mitochondrial Ca(2+) uptake mechanisms, with a particular focus on the structure and function of mtCUC, as well as its regulation by signal transduction pathways, highlighting current controversies and discrepancies.

  14. Dentate Gyrus Development Requires ERK Activity to Maintain Progenitor Population and MAPK Pathway Feedback Regulation.

    Science.gov (United States)

    Vithayathil, Joseph; Pucilowska, Joanna; Goodnough, L Henry; Atit, Radhika P; Landreth, Gary E

    2015-04-29

    The ERK/MAPK pathway is an important developmental signaling pathway. Mutations in upstream elements of this pathway result in neuro-cardio-facial cutaneous (NCFC) syndromes, which are typified by impaired neurocognitive abilities that are reliant upon hippocampal function. The role of ERK signaling during hippocampal development has not been examined and may provide critical insight into the cause of hippocampal dysfunction in NCFC syndromes. In this study, we have generated ERK1 and conditional ERK2 compound knock-out mice to determine the role of ERK signaling during development of the hippocampal dentate gyrus. We found that loss of both ERK1 and ERK2 resulted in 60% fewer granule cells and near complete absence of neural progenitor pools in the postnatal dentate gyrus. Loss of ERK1/2 impaired maintenance of neural progenitors as they migrate from the dentate ventricular zone to the dentate gyrus proper, resulting in premature depletion of neural progenitor cells beginning at E16.5, which prevented generation of granule cells later in development. Finally, loss of ERK2 alone does not impair development of the dentate gyrus as animals expressing only ERK1 developed a normal hippocampus. These findings establish that ERK signaling regulates maintenance of progenitor cells required for development of the dentate gyrus. Copyright © 2015 the authors 0270-6474/15/356836-13$15.00/0.

  15. A Wnt-Frz/Ror-Dsh pathway regulates neurite outgrowth in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Song Song

    2010-08-01

    Full Text Available One of the challenges to understand the organization of the nervous system has been to determine how axon guidance molecules govern axon outgrowth. Through an unbiased genetic screen, we identified a conserved Wnt pathway which is crucial for anterior-posterior (A/P outgrowth of neurites from RME head motor neurons in Caenorhabditis elegans. The pathway is composed of the Wnt ligand CWN-2, the Frizzled receptors CFZ-2 and MIG-1, the co-receptor CAM-1/Ror, and the downstream component Dishevelled/DSH-1. Among these, CWN-2 acts as a local attractive cue for neurite outgrowth, and its activity can be partially substituted with other Wnts, suggesting that spatial distribution plays a role in the functional specificity of Wnts. As a co-receptor, CAM-1 functions cell-autonomously in neurons and, together with CFZ-2 and MIG-1, transmits the Wnt signal to downstream effectors. Yeast two-hybrid screening identified DSH-1 as a binding partner for CAM-1, indicating that CAM-1 could facilitate CWN-2/Wnt signaling by its physical association with DSH-1. Our study reveals an important role of a Wnt-Frz/Ror-Dsh pathway in regulating neurite A/P outgrowth.

  16. Flexible metabolic pathway construction using modular and divisible selection gene regulators.

    Science.gov (United States)

    Rugbjerg, Peter; Myling-Petersen, Nils; Sommer, Morten O A

    2015-09-01

    Genetic selections are important to biological engineering. Although selectable traits are limited, currently each trait only permits simultaneous introduction of a single DNA fragment. Complex pathway and strain construction however depends on rapid, combinatorial introduction of many genes that encode putative pathway candidates and homologs. To triple the utility of existing selection genes, we have developed divisible selection in Saccharomyces cerevisiae. Here, independent DNA fragments can be introduced and selected for simultaneously using a set of split hybrid transcription factors composed of parts from Escherichia coli LexA and Herpes simplex VP16 to regulate one single selectable phenotype of choice. Only when co-expressed, these split hybrid transcription factors promote transcription of a selection gene, causing tight selection of transformants containing all desired DNA fragments. Upon transformation, 94% of the selected colonies resulted strictly from transforming all three modules based on ARS/CEN plasmids. Similarly when used for chromosome integration, 95% of the transformants contained all three modules. The divisible selection system acts dominantly and thus expands selection gene utility from one to three without any genomic pre-modifications of the strain. We demonstrate the approach by introducing the fungal rubrofusarin polyketide pathway at a gene load of 11 kb distributed on three different plasmids, using a single selection trait and one yeast transformation step. By tripling the utility of existing selection genes, the employment of divisible selection improves flexibility and freedom in the strain engineering process.

  17. Integrated intracellular metabolic profiling and pathway analysis approaches reveal complex metabolic regulation by Clostridium acetobutylicum.

    Science.gov (United States)

    Liu, Huanhuan; Huang, Di; Wen, Jianping

    2016-02-15

    Clostridium acetobutylicum is one of the most important butanol producing strains. However, environmental stress in the fermentation process usually leads to a lower yield, seriously hampering its industrialization. In order to systematically investigate the key intracellular metabolites that influence the strain growth and butanol production, and find out the critical regulation nodes, an integrated analysis approach has been carried out in this study. Based on the gas chromatography-mass spectrometry technology, the partial least square discriminant analysis and the pathway analysis, 40 metabolic pathways linked with 43 key metabolic nodes were identified. In-depth analysis showed that lots of amino acids metabolism promoted cell growth but exerted slight influence on butanol production, while sugar metabolism was favorable for cell growth but unfavorable for butanol synthesis. Besides, both lysine and succinic acid metabolism generated a complex effect on the whole metabolic network. Dicarboxylate metabolism exerted an indispensable role on cell growth and butanol production. Subsequently, rational feeding strategies were proposed to verify these conclusions and facilitate the butanol biosynthesis. Feeding amino acids, especially glycine and serine, could obviously improve cell growth while yeast extract, citric acid and ethylene glycol could significantly enhance both growth and butanol production. The feeding experiment confirmed that metabolic profiling combined with pathway analysis provided an accurate, reasonable and practical approach to explore the cellular metabolic activity and supplied a basis for improving butanol production. These strategies can also be extended for the production of other important bio-chemical compounds.

  18. Kaempferol Attenuates Cardiac Hypertrophy via Regulation of ASK1/MAPK Signaling Pathway and Oxidative Stress.

    Science.gov (United States)

    Feng, Hong; Cao, Jianlei; Zhang, Guangyu; Wang, Yanggan

    2017-02-20

    Kaempferol has been demonstrated to provide benefits for the treatment of atherosclerosis, coronary heart disease, hyperlipidemia, and diabetes through its antioxidant and anti-inflammatory properties. However, its role in cardiac hypertrophy remains to be elucidated. The aim of our study was to investigate the effects of kaempferol on cardiac hypertrophy and the underlying mechanism. Mice subjected to aorta banding were treated with or without kaempferol (100 mg/kg/d, p. o.) for 6 weeks. Echocardiography was performed to evaluate cardiac function. Mice hearts were collected for pathological observation and molecular mechanism investigation. H9c2 cardiomyocytes were stimulated with or without phenylephrine for in vitro study. Kaempferol significantly attenuated cardiac hypertrophy induced by aorta banding as evidenced by decreased cardiomyocyte areas and interstitial fibrosis, accompanied with improved cardiac functions and decreased apoptosis. The ASK1/MAPK signaling pathways (JNK1/2 and p38) were markedly activated in the aorta banding mouse heart but inhibited by kaempferol treatment. In in vitro experiments, kaempferol also inhibited the activity of ASK1/JNK1/2/p38 signaling pathway and the enlargement of H9c2 cardiomyocytes. Furthermore, our study revealed that kaempferol could protect the mouse heart and H9c2 cells from pathological oxidative stress. Our investigation indicated that treatment with kaempferol protects against cardiac hypertrophy, and its cardioprotection may be partially explained by the inhibition of the ASK1/MAPK signaling pathway and the regulation of oxidative stress.

  19. PORCN moonlights in a Wnt-independent pathway that regulates cancer cell proliferation.

    Directory of Open Access Journals (Sweden)

    Tracy M Covey

    Full Text Available Porcupine (PORCN is a membrane-bound O-acyl transferase that is required for the palmitoylation of Wnt proteins, and that is essential in diverse Wnt pathways for Wnt-Wntless (WLS binding, Wnt secretion, and Wnt signaling activity. We tested if PORCN was required for the proliferation of transformed cells. Knockdown of PORCN by multiple independent siRNAs results in a cell growth defect in a subset of epithelial cancer cell lines. The growth defect is transformation-dependent in human mammary epithelial (HMEC cells. Additionally, inducible PORCN knockdown by two independent shRNAs markedly reduces the growth of established MDA-MB-231 cancers in orthotopic xenografts in immunodeficient mice. Unexpectedly, the proliferation defect resulting from loss of PORCN occurs in a Wnt-independent manner, as it is rescued by re-expression of catalytically inactive PORCN, and is not seen after RNAi-mediated knockdown of the Wnt carrier protein WLS, nor after treatment with the PORCN inhibitor IWP. Consistent with a role in a Wnt-independent pathway, knockdown of PORCN regulates a distinct set of genes that are not altered by other inhibitors of Wnt signaling. PORCN protein thus appears to moonlight in a novel signaling pathway that is rate-limiting for cancer cell growth and tumorigenesis independent of its enzymatic function in Wnt biosynthesis and secretion.

  20. The TOR signaling pathway regulates starvation-induced pseudouridylation of yeast U2 snRNA.

    Science.gov (United States)

    Wu, Guowei; Radwan, Mohamed K; Xiao, Mu; Adachi, Hironori; Fan, Jason; Yu, Yi-Tao

    2016-08-01

    Pseudouridine (Ψ) has been identified in various types of RNAs, including mRNA, rRNA, tRNA, snRNA, and many other noncoding RNAs. We have previously shown that RNA pseudouridylation, like DNA and protein modifications, can be induced by stress. For instance, growing yeast cells to saturation induces the formation of Ψ93 in U2 snRNA. Here, we further investigate this inducible RNA modification. We show that switching yeast cells from nutrient-rich medium to different nutrient-deprived media (including water) results in the formation of Ψ93 in U2 snRNA. Using gene deletion/conditional depletion as well as rapamycin treatment, we further show that the TOR signaling pathway, which controls cell entry into stationary phase, regulates Ψ93 formation. The RAS/cAMP signaling pathway, which parallels the TOR pathway, plays no role in this inducible modification. © 2016 Wu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. Regulation of interferon pathway in 2-methoxyestradiol-treated osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Wimbauer Fritz

    2012-03-01

    Full Text Available Abstract Background Osteosarcoma is a bone tumor that often affects children and young adults. Although a combination of surgery and chemotherapy has improved the survival rate in the past decades, local recurrence and metastases still develop in 40% of patients. A definite therapy is yet to be determined for osteosarcoma. Anti- tumor compound and a metabolite of estrogen, 2-methoxyestradiol (2-ME induces cell death in osteosarcoma cells. In this report, we have investigated whether interferon (IFN pathway is involved in 2-ME-induced anti-tumor effects in osteosarcoma cells. Methods 2-ME effects on IFN mRNA levels were determined by Real time PCR analysis. Transient transfections followed by reporter assays were used for investigating 2-ME effects on IFN-pathway. Western blot analyses were used to measure protein and phosphorylation levels of IFN-regulated eukaryotic initiation factor-2 alpha (eIF-2α. Results 2-ME regulates IFN and IFN-mediated effects in osteosarcoma cells. 2 -ME induces IFN gene activity and expression in osteosarcoma cells. 2-ME treatment induced IFN-stimulated response element (ISRE sequence-dependent transcription and gamma-activated sequence (GAS-dependent transcription in several osteosarcoma cells. Whereas, 2-ME did not affect IFN gene and IFN pathways in normal primary human osteoblasts (HOB. 2-ME treatment increased the phosphorylation of eIF-2α in osteosarcoma cells. Furthermore, analysis of osteosarcoma tissues shows that the levels of phosphorylated form of eIF-2α are decreased in tumor compared to normal controls. Conclusions 2-ME treatment triggers the induction and activity of IFN and IFN pathway genes in 2-ME-sensitive osteosarcoma tumor cells but not in 2-ME-resistant normal osteoblasts. In addition, IFN-signaling is inhibited in osteosarcoma patients. Thus, IFN pathways play a role in osteosarcoma and in 2-ME-mediated anti-proliferative effects, and therefore targeted induction of IFN signaling could lead

  2. BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway.

    Science.gov (United States)

    Kamiya, Nobuhiro; Ye, Ling; Kobayashi, Tatsuya; Mochida, Yoshiyuki; Yamauchi, Mitsuo; Kronenberg, Henry M; Feng, Jian Q; Mishina, Yuji

    2008-11-01

    Bone morphogenetic proteins (BMPs) are known to induce ectopic bone. However, it is largely unknown how BMP signaling in osteoblasts directly regulates endogenous bone. This study investigated the mechanism by which BMP signaling through the type IA receptor (BMPR1A) regulates endogenous bone mass using an inducible Cre-loxP system. When BMPR1A in osteoblasts was conditionally disrupted during embryonic bone development, bone mass surprisingly was increased with upregulation of canonical Wnt signaling. Although levels of bone formation markers were modestly reduced, levels of resorption markers representing osteoclastogenesis were severely reduced, resulting in a net increase in bone mass. The reduction of osteoclastogenesis was primarily caused by Bmpr1a-deficiency in osteoblasts, at least through the RANKL-OPG pathway. Sclerostin (Sost) expression was downregulated by about 90% and SOST protein was undetectable in osteoblasts and osteocytes, whereas the Wnt signaling was upregulated. Treatment of Bmpr1a-deficient calvariae with sclerostin repressed the Wnt signaling and restored normal bone morphology. By gain of Smad-dependent BMPR1A signaling in mice, Sost expression was upregulated and osteoclastogenesis was increased. Finally, the Bmpr1a-deficient bone phenotype was rescued by enhancing BMPR1A signaling, with restoration of osteoclastogenesis. These findings demonstrate that BMPR1A signaling in osteoblasts restrain endogenous bone mass directly by upregulating osteoclastogenesis through the RANKL-OPG pathway, or indirectly by downregulating canonical Wnt signaling through sclerostin, a Wnt inhibitor and a bone mass mediator.

  3. A Brain-Region-Specific Neural Pathway Regulating Germinal Matrix Angiogenesis.

    Science.gov (United States)

    Ma, Shang; Santhosh, Devi; Kumar T, Peeyush; Huang, Zhen

    2017-05-22

    Intimate communication between neural and vascular cells is critical for normal brain development and function. Germinal matrix (GM), a key primordium for the brain reward circuitry, is unique among brain regions for its distinct pace of angiogenesis and selective vulnerability to hemorrhage during development. A major neonatal condition, GM hemorrhage can lead to cerebral palsy, hydrocephalus, and mental retardation. Here we identify a brain-region-specific neural progenitor-based signaling pathway dedicated to regulating GM vessel development. This pathway consists of cell-surface sphingosine-1-phosphate receptors, an intracellular cascade including Gα co-factor Ric8a and p38 MAPK, and target gene integrin β8, which in turn regulates vascular TGF-β signaling. These findings provide insights into region-specific specialization of neurovascular communication, with special implications for deciphering potent early-life endocrine, as well as potential gut microbiota impacts on brain reward circuitry. They also identify tissue-specific molecular targets for GM hemorrhage intervention. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Identification and Characterization of Multiple Intermediate Alleles of the Key Genes Regulating Brassinosteroid Biosynthesis Pathways

    Science.gov (United States)

    Du, Junbo; Zhao, Baolin; Sun, Xin; Sun, Mengyuan; Zhang, Dongzhi; Zhang, Shasha; Yang, Wenyu

    2017-01-01

    Most of the early identified brassinosteroid signaling and biosynthetic mutants are null mutants, exhibiting extremely dwarfed phenotypes and male sterility. These null mutants are usually unable to be directly transformed via a routinely used Agrobacterium-mediated gene transformation system and therefore are less useful for genetic characterization of the brassinosteroid (BR)-related pathways. Identification of intermediate signaling mutants such as bri1–5 and bri1–9 has contributed drastically to the elucidation of BR signaling pathway using both genetic and biochemical approaches. However, intermediate mutants of key genes regulating BR biosynthesis have seldom been reported. Here we report identification of several intermediate BR biosynthesis mutants mainly resulted from leaky transcriptions due to the insertions of T-DNAs in the introns. These mutants are semi-dwarfed and fertile and capable to be transformed. These intermediate mutants could be useful tools for future discovery and analyses of novel components regulating BR biosynthesis and catabolism via genetic modifier screen. PMID:28138331

  5. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways.

    Science.gov (United States)

    DelNero, Peter; Lane, Maureen; Verbridge, Scott S; Kwee, Brian; Kermani, Pouneh; Hempstead, Barbara; Stroock, Abraham; Fischbach, Claudia

    2015-07-01

    Oxygen status and tissue dimensionality are critical determinants of tumor angiogenesis, a hallmark of cancer and an enduring target for therapeutic intervention. However, it is unclear how these microenvironmental conditions interact to promote neovascularization, due in part to a lack of comprehensive, unbiased data sets describing tumor cell gene expression as a function of oxygen levels within three-dimensional (3D) culture. Here, we utilized alginate-based, oxygen-controlled 3D tumor models to study the interdependence of culture context and the hypoxia response. Microarray gene expression analysis of tumor cells cultured in 2D versus 3D under ambient or hypoxic conditions revealed striking interdependence between culture dimensionality and hypoxia response, which was mediated in part by pro-inflammatory signaling pathways. In particular, interleukin-8 (IL-8) emerged as a major player in the microenvironmental regulation of the hypoxia program. Notably, this interaction between dimensionality and oxygen status via IL-8 increased angiogenic sprouting in a 3D endothelial invasion assay. Taken together, our data suggest that pro-inflammatory pathways are critical regulators of tumor hypoxia response within 3D environments that ultimately impact tumor angiogenesis, potentially providing important therapeutic targets. Furthermore, these results highlight the importance of pathologically relevant tissue culture models to study the complex physical and chemical processes by which the cancer microenvironment mediates new vessel formation.

  6. The Drosophila Perlecan gene trol regulates multiple signaling pathways in different developmental contexts

    Directory of Open Access Journals (Sweden)

    Perry Trinity L

    2007-11-01

    signaling contexts. These studies also highlight the fact that Trol function is not dedicated to a single molecular mechanism, but is capable of regulating different growth factor pathways depending on the cell-type and event underway.

  7. Mechanisms regulating neuronal excitability and seizure development following mTOR pathway hyperactivation

    Directory of Open Access Journals (Sweden)

    Candi L LaSarge

    2014-03-01

    Full Text Available The PI3K/PTEN-mTOR pathway regulates a variety of neuronal functions, including cell proliferation, survival, growth and plasticity. Dysregulation of the pathway is implicated in the development of both genetic and acquired epilepsies. Indeed, several causal mutations have been identified in patients with epilepsy, the most prominent of these being mutations in phosphatase and tensin homologue (PTEN and tuberal sclerosis complexes 1 and 2 (TSC1, TSC2. These genes act as negative regulators of mTOR signaling, and mutations lead to hyperactivation of the pathway. Animal models deleting PTEN, TSC1 and TSC2 consistently produce epilepsy phenotypes, demonstrating that increased mTOR signaling can provoke neuronal hyperexcitability. Given the broad range of changes induced by altered mTOR signaling, however, the mechanisms underlying seizure development in these animals remain uncertain. In transgenic mice, cell populations with hyperactive mTOR have many structural abnormalities that support recurrent circuit formation, including somatic and dendritic hypertrophy, aberrant basal dendrites, and enlargement of axon tracts. At the functional level, mTOR hyperactivation is commonly, but not always, associated with enhanced synaptic transmission and plasticity. Moreover, these populations of abnormal neurons can affect the larger network, inducing secondary changes that may explain paradoxical findings reported between cell and network functioning in different models or at different developmental time points. Here, we review the animal literature examining the link between mTOR hyperactivation and epileptogenesis, emphasizing the impact of enhanced mTOR signaling on neuronal form and function.

  8. The canonical Notch pathway effector RBP-J regulates neuronal plasticity and expression of GABA transporters in hippocampal networks.

    Science.gov (United States)

    Liu, Shuxi; Wang, Yue; Worley, Paul F; Mattson, Mark P; Gaiano, Nicholas

    2015-05-01

    Activation of the Notch pathway in neurons is essential for learning and memory in various species from invertebrates to mammals. However, it remains unclear how Notch signaling regulates neuronal plasticity, and whether the transcriptional regulator and canonical pathway effector RBP-J plays a role. Here, we report that conditional disruption of RBP-J in the postnatal hippocampus leads to defects in long-term potentiation, long-term depression, and in learning and memory. Using gene expression profiling and chromatin immunoprecipitation, we identified two GABA transporters, GAT2 and BGT1, as putative Notch/RBP-J pathway targets, which may function downstream of RBP-J to limit the accumulation of GABA in the Schaffer collateral pathway. Our results reveal an essential role for canonical Notch/RBP-J signaling in hippocampal synaptic plasticity and suggest that role, at least in part, is mediated by the regulation of GABAergic signaling.

  9. Endothelial-derived tissue factor pathway inhibitor regulates arterial thrombosis but is not required for development or hemostasis.

    NARCIS (Netherlands)

    White, T.A.; Johnson, T.; Zarzhevsky, N.; Tom, C.; Delacroix, S.; Holroyd, E.W.; Maroney, S.A.; Singh, R.; Pan, S.; Fay, W.P.; Deursen, J.M.A. van; Mast, A.E.; Sandhu, G.S.; Simari, R.D.

    2010-01-01

    The antithrombotic surface of endothelium is regulated in a coordinated manner. Tissue factor pathway inhibitor (TFPI) localized at the endothelial cell surface regulates the production of FXa by inhibiting the TF/VIIa complex. Systemic homozygotic deletion of the first Kunitz (K1) domain of TFPI

  10. The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems.

    Science.gov (United States)

    Barcia-Vieitez, Ramiro; Ramos-Martínez, Juan Ignacio

    2014-11-01

    There is a paradox in the oxidizing phase of the phosphate pentose pathway that has not yet been solved. The flow through the pathway is reduced in basal conditions; however, it must rise notably when a NADPH supplement is required. The paradox consists of the strong inhibition that the NADPH exerts on the both dehydrogenases of the pathway, especially on the regulating enzyme glucose-6-phosphate dehydrogenase (G6PD). Theoretically, in anabolic situations, the increase of gene expression of G6PD and 6-phosphogluconate dehydrogenase can induce a rise in the production of NADPH, which would cause the immediate inhibition of the enzyme and a drastic flow reduction. However, increasing the flow through oxidative phase of the pentose phosphate pathway (OPPP) has been experimentally demonstrated in many physiological states. However, this situation will be resolved if the NADPH metabolized or otherwise sufficient NADPH is sequestered to relax the inhibition of the dehydrogenases of OPPP and to maintain high ratio of NADPH/NADP(+) needed to ensure the reducing environment of the cell cytoplasm and the contribution of NADPH for anabolic processes. In 1974, the presence of a protein capable of reversing the inhibition of G6PD by NADPH was detected; however, to date, this paradox remains undisclosed. This review deals with the possibility that such reverting action might be similar to the activity of a protein named HSCARG, which is responsible for the abduction of NADPH, thus keeping a portion of the coenzyme away from the catalytic action and, simultaneously, the immune response through the NF-κB (nuclear factor kappa light-chain enhancer of activated B cells) system. The model has many similarities with the hypothesis proposed some 40 years back on the reversion of G6PD inhibition by NADPH.

  11. TRPM7 channels regulate glioma stem cell through STAT3 and Notch signaling pathways.

    Science.gov (United States)

    Liu, Mingli; Inoue, Koichi; Leng, Tiandong; Guo, Shanchun; Xiong, Zhi-gang

    2014-12-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults with median survival time of 14.6 months. A small fraction of cancer stem cells (CSC) initiate and maintain tumors thus driving glioma tumorigenesis and being responsible for resistance to classical chemo- and radio-therapies. It is desirable to identify signaling pathways related to CSC to develop novel therapies to selectively target them. Transient receptor potential cation channel, subfamily M, member 7, also known as TRPM7 is a ubiquitous, Ca(2+) and Mg(2+) permeable ion channels that are special in being both an ion channel and a serine/threonine kinase. In studies of glioma cells silenced for TRPM7, we demonstrated that Notch (Notch1, JAG1, Hey2, and Survivin) and STAT3 pathways are down regulated in glioma cells grown in monolayer. Furthermore, phospho-STAT3, Notch target genes and CSC markers (ALDH1 and CD133) were significantly higher in spheroid glioma CSCs when compared with monolayer cultures. The results further show that tyrosine-phosphorylated STAT3 binds and activates the ALDH1 promoters in glioma cells. We found that TRMP7-induced upregulation of ALDH1 expression is associated with increases in ALDH1 activity and is detectable in stem-like cells when expanded as spheroid CSCs. Finally, TRPM7 promotes proliferation, migration and invasion of glioma cells. These demonstrate that TRPM7 activates JAK2/STAT3 and/or Notch signaling pathways and leads to increased cell proliferation and migration. These findings for the first time demonstrates that TRPM7 (1) activates a previously unrecognized STAT3→ALDH1 pathway, and (2) promotes the induction of ALDH1 activity in glioma cells.

  12. The DAF-7/TGF-β signaling pathway regulates abundance of the Caenorhabditis elegans glutamate receptor GLR-1.

    Science.gov (United States)

    McGehee, Annette M; Moss, Benjamin J; Juo, Peter

    2015-07-01

    Transforming growth factor-β (TGF-β) family signaling pathways have roles in both neuronal development and the regulation of synaptic function. Here we identify a novel role for the Caenorhabditis elegans DAF-7/TGF-β signaling pathway in the regulation of the AMPA-type glutamate receptor GLR-1. We found that the abundance of GLR-1 increases at synapses in the ventral nerve cord (VNC) of animals with loss-of-function mutations in multiple DAF-7/TGF-β pathway components including the TGF-β ligand DAF-7, the type I receptor DAF-1, and the Smads DAF-8 and DAF-14. The GLR-1 defect can be rescued by expression of daf-8 specifically in glr-1-expressing interneurons. The effect on GLR-1 was specific for the DAF-7 pathway because mutations in the DBL-1/TGF-β family pathway did not increase GLR-1 levels in the VNC. Immunoblot analysis indicates that total levels of GLR-1 protein are increased in neurons of DAF-7/TGF-β pathway mutants. The increased abundance of GLR-1 in the VNC of daf-7 pathway mutants is dependent on the transcriptional regulator DAF-3/Smad suggesting that DAF-3-dependent transcription controls GLR-1 levels. Furthermore, we found that glr-1 transcription is increased in daf-7 mutants based on a glr-1 transcriptional reporter. Together these results suggest that the DAF-7/TGF-β signaling pathway functions in neurons and negatively regulates the abundance of GLR-1, in part, by controlling transcription of the receptor itself. Finally, DAF-7/TGF-β pathway mutants exhibit changes in spontaneous locomotion that are dependent on endogenous GLR-1 and consistent with increased glutamatergic signaling. These results reveal a novel mechanism by which TGF-β signaling functions in the nervous system to regulate behavior.

  13. Polyamines are oncometabolites that regulate the LIN28/let-7 pathway in colorectal cancer cells.

    Science.gov (United States)

    Paz, Edwin A; LaFleur, Bonnie; Gerner, Eugene W

    2014-02-01

    Polyamine metabolism is a highly coordinated process that is essential for normal development and neoplastic growth in mammals. Although polyamine metabolism is a validated pathway for prevention of carcinogenesis, the mechanisms by which polyamines elicit their tumorigenic effects are poorly understood. In this study, we investigated the role of polyamine metabolism in colon cancer by screening a non-coding RNA (ncRNA) platform to identify polyamine responsive signaling nodes. We report that multiple non-coding RNAs are altered by polyamine depletion including induction of microRNA (miRNA) let-7i, a member of the tumor suppressive let-7 family. The let-7 family targets several RNAs for translational repression, including the growth-associated transcription factor HMGA2 and is negatively regulated by the pluripotency factor LIN28. Depletion of polyamines using difluoromethylornithine (DFMO) or genetic knockdown of the polyamine-modified eukaryotic translation initiation factor 5A isoforms 1 and 2 (eIF5A1/2) resulted in robust reduction of both HMGA2 and LIN28. Locked nucleic acid (LNA) oligonucleotides targeting the seed region of the let-7 family rescued the expression of HMGA2, but not LIN28, in both DFMO-treated and eIF5A1/2 knockdown cultures. Our findings suggest that polyamines are oncometabolites that influence specific aspects of tumorigenesis by regulating pluripotency associated factors, such as LIN28, via an eIF5A-dependent but let-7-independent mechanism while the expression of proliferation-related genes regulated by let-7, such as HMGA2, is mediated through microRNA mediated repression. Therefore, manipulating polyamine metabolism may be a novel method of targeting the LIN28/let-7 pathway in specific disease states. © 2013 Wiley Periodicals, Inc.

  14. The Che4 pathway of Myxococcus xanthus regulates type IV pilus-mediated motility.

    Science.gov (United States)

    Vlamakis, Hera C; Kirby, John R; Zusman, David R

    2004-06-01

    Myxococcus xanthus co-ordinates cell movement during its complex life cycle using multiple chemotaxis-like signal transduction pathways. These pathways regulate both type IV pilus-mediated social (S) motility and adventurous (A) motility. During a search for new chemoreceptors, we identified the che4 operon, which encodes homologues to a MCP (methyl-accepting chemotaxis protein), two CheWs, a hybrid CheA-CheY, a response regulator and a CheR. Deletion of the che4 operon did not cause swarming or developmental defects in either the wild-type (A(+)S(+)) strain or in a strain sustaining only A motility (A(+)S(-)). However, in a strain displaying only S motility (A(-)S(+)), deletion of the che4 operon or the gene encoding the response regulator, cheY4, caused enhanced vegetative swarming and prevented aggregation and sporulation. In contrast, deletion of mcp4 caused reduced vegetative swarming and enhanced development compared with the parent strain. Single-cell analysis of the motility of the A(-)S(+) parent strain revealed a previously unknown inverse correlation between velocity and reversal frequency. Thus, cells that moved at higher velocities showed a reduced reversal frequency. This co-ordination of reversal frequency and velocity was lost in the mcp4 and cheY4 mutants. The structural components of the S motility apparatus were unaffected in the che4 mutants, suggesting that the Che4 system affects reversal frequency of cells by modulating the function of the type IV pilus.

  15. LAPTM5 protein is a positive regulator of proinflammatory signaling pathways in macrophages.

    Science.gov (United States)

    Glowacka, Wioletta K; Alberts, Philipp; Ouchida, Rika; Wang, Ji-Yang; Rotin, Daniela

    2012-08-10

    LAPTM5 (lysosomal-associated protein transmembrane 5) is a protein that is preferentially expressed in immune cells, and it interacts with the Nedd4 family of ubiquitin ligases. Recent studies in T and B cells identified LAPTM5 as a negative regulator of T and B cell receptor levels at the plasma membrane. Here we investigated the function of LAPTM5 in macrophages. We demonstrate that expression of LAPTM5 is required for the secretion of proinflammatory cytokines in response to Toll-like receptor ligands. We also show that RAW264.7 cells knocked down for LAPTM5 or macrophages from LAPTM5(-/-) mice exhibit reduced activation of NF-κB and MAPK signaling pathways mediated by the TNF receptor, as well as multiple pattern recognition receptors in various cellular compartments. TNF stimulation of LAPTM5-deficient macrophages leads to reduced ubiquitination of RIP1 (receptor-interacting protein 1), suggesting a role for LAPTM5 at the receptor-proximate level. Interestingly, we find that macrophages from LAPTM5(-/-) mice display up-regulated levels of A20, a ubiquitin-editing enzyme responsible for deubiquitination of RIP1 and subsequent termination of NF-κB activation. Our studies thus indicate that, in contrast to its negative role in T and B cell activation, LAPTM5 acts as a positive modulator of inflammatory signaling pathways and hence cytokine secretion in macrophages. They also highlight a role for the endosomal/lysosomal system in regulating signaling via cytokine and pattern recognition receptors.

  16. The Strip-Hippo Pathway Regulates Synaptic Terminal Formation by Modulating Actin Organization at the Drosophila Neuromuscular Synapses

    Directory of Open Access Journals (Sweden)

    Chisako Sakuma

    2016-08-01

    Full Text Available Synapse formation requires the precise coordination of axon elongation, cytoskeletal stability, and diverse modes of cell signaling. The underlying mechanisms of this interplay, however, remain unclear. Here, we demonstrate that Strip, a component of the striatin-interacting phosphatase and kinase (STRIPAK complex that regulates these processes, is required to ensure the proper development of synaptic boutons at the Drosophila neuromuscular junction. In doing so, Strip negatively regulates the activity of the Hippo (Hpo pathway, an evolutionarily conserved regulator of organ size whose role in synapse formation is currently unappreciated. Strip functions genetically with Enabled, an actin assembly/elongation factor and the presumptive downstream target of Hpo signaling, to modulate local actin organization at synaptic termini. This regulation occurs independently of the transcriptional co-activator Yorkie, the canonical downstream target of the Hpo pathway. Our study identifies a previously unanticipated role of the Strip-Hippo pathway in synaptic development, linking cell signaling to actin organization.

  17. The yield of essential oils in Melaleuca alternifolia (Myrtaceae is regulated through transcript abundance of genes in the MEP pathway.

    Directory of Open Access Journals (Sweden)

    Hamish Webb

    Full Text Available Medicinal tea tree (Melaleuca alternifolia leaves contain large amounts of an essential oil, dominated by monoterpenes. Several enzymes of the chloroplastic methylerythritol phosphate (MEP pathway are hypothesised to act as bottlenecks to the production of monoterpenes. We investigated, whether transcript abundance of genes encoding for enzymes of the MEP pathway were correlated with foliar terpenes in M. alternifolia using a population of 48 individuals that ranged in their oil concentration from 39 -122 mg x g DM(-1. Our study shows that most genes in the MEP pathway are co-regulated and that the expression of multiple genes within the MEP pathway is correlated with oil yield. Using multiple regression analysis, variation in expression of MEP pathway genes explained 87% of variation in foliar monoterpene concentrations. The data also suggest that sesquiterpenes in M. alternifolia are synthesised, at least in part, from isopentenyl pyrophosphate originating from the plastid via the MEP pathway.

  18. REGγ regulates ERα degradation via ubiquitin–proteasome pathway in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Fan; Liang, Yan [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Bi, Jiong [Laboratory of General Surgery, First Affiliated Hospital, Sun Yet-sen University, Guangzhou 510080 (China); Chen, Li; Zhang, Fan [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Cui, Youhong [Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Jiang, Jun, E-mail: jcbd@medmail.com.cn [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2015-01-02

    Highlights: • High expression of REGγ is correlated with ERα status and poor clinical features. • Cell growth, mobility and invasion are significantly impaired by REGγ knockdown. • REGγ indirectly regulates ERα protein expression. - Abstract: REGγ is a proteasome coactivator which regulates proteolytic activity in eukaryotic cells. Abundant lines of evidence have showed that REGγ is over expressed in a number of human carcinomas. However, its precise role in the pathogenesis of cancer is still unclear. In this study, by examining 200 human breast cancer specimens, we demonstrated that REGγ was highly expressed in breast cancers, and the expression of REGγ was positively correlated with breast cancer patient estrogen receptor alpha (ERα) status. Moreover, the expression of REGγ was found positively associated with poor clinical features and low survival rates in ERα positive breast cancer patients. Further cell culture studies using MCF7 and BT474 breast cancer cell lines showed that cell proliferation, motility, and invasion capacities were decreased significantly by REGγ knockdown. Lastly, we demonstrated that REGγ indirectly regulates the degradation of ERα protein via ubiquitin–proteasome pathway. In conclusion, our findings provide the evidence that REGγ expression was positively correlated with ERα status and poor clinical prognosis in ERα positive breast cancer patients. As well, we disclose a new connection between the two molecules that are both highly expressed in most breast cancer cases.

  19. The regulated secretory pathway and human disease: insights from gene variants and single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Stephen eSalton

    2013-08-01

    Full Text Available The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs, where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs, with neuropsychiatric, endocrine and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A of the human brain-derived neurotrophic factor (BDNF gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired.

  20. Lxr regulates lipid metabolic and visual perception pathways during zebrafish development.

    Science.gov (United States)

    Pinto, Caroline Lucia; Kalasekar, Sharanya Maanasi; McCollum, Catherine W; Riu, Anne; Jonsson, Philip; Lopez, Justin; Swindell, Eric C; Bouhlatouf, Abdel; Balaguer, Patrick; Bondesson, Maria; Gustafsson, Jan-Åke

    2016-01-05

    The Liver X Receptors (LXRs) play important roles in multiple metabolic pathways, including fatty acid, cholesterol, carbohydrate and energy metabolism. To expand the knowledge of the functions of LXR signaling during embryonic development, we performed a whole-genome microarray analysis of Lxr target genes in zebrafish larvae treated with either one of the synthetic LXR ligands T0901317 or GW3965. Assessment of the biological processes enriched by differentially expressed genes revealed a prime role for Lxr in regulating lipid metabolic processes, similarly to the function of LXR in mammals. In addition, exposure to the Lxr ligands induced changes in expression of genes in the neural retina and lens of the zebrafish eye, including the photoreceptor guanylate cyclase activators and lens gamma crystallins, suggesting a potential novel role for Lxr in modulating the transcription of genes associated with visual function in zebrafish. The regulation of expression of metabolic genes was phenotypically reflected in an increased absorption of yolk in the zebrafish larvae, and changes in the expression of genes involved in visual perception were associated with morphological alterations in the retina and lens of the developing zebrafish eye. The regulation of expression of both lipid metabolic and eye specific genes was sustained in 1 month old fish. The transcriptional networks demonstrated several conserved effects of LXR activation between zebrafish and mammals, and also identified potential novel functions of Lxr, supporting zebrafish as a promising model for investigating the role of Lxr during development.

  1. Pds5 regulators segregate cohesion and condensation pathways in Saccharomyces cerevisiae.

    Science.gov (United States)

    Tong, Kevin; Skibbens, Robert V

    2015-06-02

    Cohesins are required both for the tethering together of sister chromatids (termed cohesion) and subsequent condensation into discrete structures-processes fundamental for faithful chromosome segregation into daughter cells. Differentiating between cohesin roles in cohesion and condensation would provide an important advance in studying chromatin metabolism. Pds5 is a cohesin-associated factor that is essential for both cohesion maintenance and condensation. Recent studies revealed that ELG1 deletion suppresses the temperature sensitivity of pds5 mutant cells. However, the mechanisms through which Elg1 may regulate cohesion and condensation remain unknown. Here, we report that ELG1 deletion from pds5-1 mutant cells results in a significant rescue of cohesion, but not condensation, defects. Based on evidence that Elg1 unloads the DNA replication clamp PCNA from DNA, we tested whether PCNA overexpression would similarly rescue pds5-1 mutant cell cohesion defects. The results indeed reveal that elevated levels of PCNA rescue pds5-1 temperature sensitivity and cohesion defects, but do not rescue pds5-1 mutant cell condensation defects. In contrast, RAD61 deletion rescues the condensation defect, but importantly, neither the temperature sensitivity nor cohesion defects exhibited by pds5-1 mutant cells. In combination, these findings reveal that cohesion and condensation are separable pathways and regulated in nonredundant mechanisms. These results are discussed in terms of a new model through which cohesion and condensation are spatially regulated.

  2. Perturbation-based analysis and modeling of combinatorial regulation in the yeast sulfur assimilation pathway.

    Science.gov (United States)

    McIsaac, R Scott; Petti, Allegra A; Bussemaker, Harmen J; Botstein, David

    2012-08-01

    In yeast, the pathways of sulfur assimilation are combinatorially controlled by five transcriptional regulators (three DNA-binding proteins [Met31p, Met32p, and Cbf1p], an activator [Met4p], and a cofactor [Met28p]) and a ubiquitin ligase subunit (Met30p). This regulatory system exerts combinatorial control not only over sulfur assimilation and methionine biosynthesis, but also on many other physiological functions in the cell. Recently we characterized a gene induction system that, upon the addition of an inducer, results in near-immediate transcription of a gene of interest under physiological conditions. We used this to perturb levels of single transcription factors during steady-state growth in chemostats, which facilitated distinction of direct from indirect effects of individual factors dynamically through quantification of the subsequent changes in genome-wide patterns of gene expression. We were able to show directly that Cbf1p acts sometimes as a repressor and sometimes as an activator. We also found circumstances in which Met31p/Met32p function as repressors, as well as those in which they function as activators. We elucidated and numerically modeled feedback relationships among the regulators, notably feedforward regulation of Met32p (but not Met31p) by Met4p that generates dynamic differences in abundance that can account for the differences in function of these two proteins despite their identical binding sites.

  3. hCLP46 regulates U937 cell proliferation via Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenzhan; Du, Jie; Chu, Qiaoyun [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Youxin [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Liu, Lixin [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Song, Manshu [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Wang, Wei, E-mail: wei6014@yahoo.com [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China)

    2011-04-29

    Highlights: {yields} Knock down of hCLP46 by RNAi impairs mammalian Notch signaling. {yields} hCLP46 affects neither cell surface Notch1 expression nor ligand-receptor binding. {yields} Knock down of hCLP46 inhibits U937 cell-growth by up-regulation of CDKN1B. -- Abstract: Human CAP10-like protein 46 kDa (hCLP46) is the homolog of Rumi, which is the first identified protein O-glucosyltransferase that modifies Notch receptor in Drosophila. Dysregulation of hCLP46 occurs in many hematologic diseases, but the role of hCLP46 remains unclear. Knockdown of hCLP46 by RNA interference resulted in decreased protein levels of endogenous Notch1, Notch intracellular domain (NICD) and Notch target gene Hes-1, suggesting the impairment of the Notch signaling. However, neither cell surface Notch expression nor ligand binding activities were affected. In addition, down-regulated expression of hCLP46 inhibited the proliferation of U937 cells, which was correlated with increased cyclin-dependent kinase inhibitor (CDKI) CDKN1B (p27) and decreased phosphorylation of retinoblastoma (RB) protein. We showed that lack of hCLP46 results in impaired ligand induced Notch activation in mammalian cell, and hCLP46 regulates the proliferation of U937 cell through CDKI-RB signaling pathway, which may be important for the pathogenesis of leukemia.

  4. The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway.

    Science.gov (United States)

    Park, Jong-In; Strock, Christopher J; Ball, Douglas W; Nelkin, Barry D

    2003-01-01

    Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF expression upon Raf activation and subsequent activation of JAK-STAT3 was also observed in small cell lung carcinoma cells, suggesting that this autocrine-paracrine signaling may be a common response to Ras/Raf activation. LIF was sufficient to induce growth arrest and differentiation of MTC cells. This effect was mediated through the gp130/JAK/STAT3 pathway, since anti-gp130 blocking antibody or dominant-negative STAT3 blocked the effects of LIF. Thus, LIF expression provides a novel mechanism allowing Ras/Raf signaling to activate the JAK-STAT3 pathway. In addition to this cell-extrinsic growth inhibitory pathway, we find that the Ras/Raf/MEK/ERK pathway induces an intracellular growth inhibitory signal, independent of the LIF/JAK/STAT3 pathway. Therefore, activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest and differentiation via at least two different signaling pathways. This use of multiple pathways may be important for "fail-safe" induction and maintenance of cell cycle arrest.

  5. sli-3 negatively regulates the LET-23/epidermal growth factor receptor-mediated vulval induction pathway in Caenorhabditis elegans.

    Science.gov (United States)

    Gupta, Bhagwati P; Liu, Jing; Hwang, Byung J; Moghal, Nadeem; Sternberg, Paul W

    2006-11-01

    The LIN-3-LET-23-mediated inductive signaling pathway plays a major role during vulval development in C. elegans. Studies on the components of this pathway have revealed positive as well as negative regulators that function to modulate the strength and specificity of the signal transduction cascade. We have carried out genetic screens to identify new regulators of this pathway by screening for suppressors of lin-3 vulvaless phenotype. The screens recovered three loci including alleles of gap-1 and a new gene represented by sli-3. Our genetic epistasis experiments suggest that sli-3 functions either downstream or in parallel to nuclear factors lin-1 and sur-2. sli-3 synergistically interacts with the previously identified negative regulators of the let-23 signaling pathway and causes excessive cell proliferation. However, in the absence of any other mutation sli-3 mutant animals display wild-type vulval induction and morphology. We propose that sli-3 functions as a negative regulator of vulval induction and defines a branch of the inductive signaling pathway. We provide evidence that sli-3 interacts with the EGF signaling pathway components during vulval induction but not during viability and ovulation processes. Thus, sli-3 helps define specificity of the EGF signaling to induce the vulva.

  6. lgl Regulates the Hippo Pathway Independently of Fat/Dachs, Kibra/Expanded/Merlin and dRASSF/dSTRIPAK

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Linda M., E-mail: parsonsl@unimelb.edu.au [Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002 (Australia); Department of Genetics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Grzeschik, Nicola A. [Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002 (Australia); Richardson, Helena E., E-mail: n.a.grzeschik@umcg.nl [Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002 (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3010 (Australia); Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria 3010 (Australia); Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria 3010 (Australia); Present address: Department of Cell Biology, University Medical Centre Groningen, Groningen (Netherlands)

    2014-04-16

    In both Drosophila and mammalian systems, the Hippo (Hpo) signalling pathway controls tissue growth by inhibiting cell proliferation and promoting apoptosis. The core pathway consists of a protein kinase Hpo (MST1/2 in mammals) that is regulated by a number of upstream inputs including Drosophila Ras Association Factor, dRASSF. We have previously shown in the developing Drosophila eye epithelium that loss of the apico-basal cell polarity regulator lethal-(2)-giant-larvae (lgl), and the concomitant increase in aPKC activity, results in ectopic proliferation and suppression of developmental cell death by blocking Hpo pathway signalling. Here, we further explore how Lgl/aPKC interacts with the Hpo pathway. Deregulation of the Hpo pathway by Lgl depletion is associated with the mislocalization of Hpo and dRASSF. We demonstrate that Lgl/aPKC regulate the Hpo pathway independently of upstream inputs from Fat/Dachs and the Kibra/Expanded/Merlin complex. We show depletion of Lgl also results in accumulation and mislocalization of components of the dSTRIPAK complex, a major phosphatase complex that directly binds to dRASSF and represses Hpo activity. However, depleting dSTRIPAK components, or removal of dRASSF did not rescue the lgl{sup −/−} or aPKC overexpression phenotypes. Thus, Lgl/aPKC regulate Hpo activity by a novel mechanism, independently of dRASSF and dSTRIPAK. Surprisingly, removal of dRASSF in tissue with increased aPKC activity results in mild tissue overgrowth, indicating that in this context dRASSF acts as a tumor suppressor. This effect was independent of the Hpo and Ras Mitogen Activated Protein Kinase (MAPK) pathways, suggesting that dRASSF regulates a novel pathway to control tissue growth.

  7. Nontypeable Haemophilus influenzae-Induced MyD88 Short Expression Is Regulated by Positive IKKβ and CREB Pathways and Negative ERK1/2 Pathway

    Science.gov (United States)

    Andrews, Carla S.; Miyata, Masanori; Susuki-Miyata, Seiko; Lee, Byung-Cheol; Komatsu, Kensei; Li, Jian-Dong

    2015-01-01

    Airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) are characterized by excessive inflammation and are exacerbated by nontypeable Haemophilus influenzae (NTHi). Airway epithelial cells mount the initial innate immune responses to invading pathogens and thus modulate inflammation. While inflammation is necessary to eliminate a pathogen, excessive inflammation can cause damage to the host tissue. Therefore, the inflammatory response must be tightly regulated and deciphering the signaling pathways involved in this response will enhance our understanding of the regulation of the host inflammatory response. NTHi binds to TLR2 and signal propagation requires the adaptor molecule myeloid differentiation factor 88 (MyD88). An alternative spliced form of MyD88 is called MyD88 short (MyD88s) and has been identified in macrophages and embryonic cell lines as a negative regulator of inflammation. However, the role of MyD88s in NTHi-induced inflammation in airway epithelial cells remains unknown. Here we show that NTHi induces MyD88s expression and MyD88s is a negative regulator of inflammation in airway epithelial cells. We further demonstrate that MyD88s is positively regulated by IKKβ and CREB and negatively regulated by ERK1/2 signaling pathways. Taken together these data indicate that airway inflammation is controlled in a negative feedback manner involving MyD88s and suggest that airway epithelial cells are essential to maintain immune homeostasis. PMID:26669856

  8. Nontypeable Haemophilus influenzae-Induced MyD88 Short Expression Is Regulated by Positive IKKβ and CREB Pathways and Negative ERK1/2 Pathway.

    Directory of Open Access Journals (Sweden)

    Carla S Andrews

    Full Text Available Airway diseases such as asthma and chronic obstructive pulmonary disease (COPD are characterized by excessive inflammation and are exacerbated by nontypeable Haemophilus influenzae (NTHi. Airway epithelial cells mount the initial innate immune responses to invading pathogens and thus modulate inflammation. While inflammation is necessary to eliminate a pathogen, excessive inflammation can cause damage to the host tissue. Therefore, the inflammatory response must be tightly regulated and deciphering the signaling pathways involved in this response will enhance our understanding of the regulation of the host inflammatory response. NTHi binds to TLR2 and signal propagation requires the adaptor molecule myeloid differentiation factor 88 (MyD88. An alternative spliced form of MyD88 is called MyD88 short (MyD88s and has been identified in macrophages and embryonic cell lines as a negative regulator of inflammation. However, the role of MyD88s in NTHi-induced inflammation in airway epithelial cells remains unknown. Here we show that NTHi induces MyD88s expression and MyD88s is a negative regulator of inflammation in airway epithelial cells. We further demonstrate that MyD88s is positively regulated by IKKβ and CREB and negatively regulated by ERK1/2 signaling pathways. Taken together these data indicate that airway inflammation is controlled in a negative feedback manner involving MyD88s and suggest that airway epithelial cells are essential to maintain immune homeostasis.

  9. The regulation of electron partitioning between the cytochrome and alternative pathways in soybean cotyledon and root mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Ribas-Carbo, M.; Lennon, A.M.; Robinson, S.A. [Duke Univ., Durham, NC (United States)] [and others

    1997-03-01

    The regulation of electron partitioning between the cytochrome (Cyt) and alternative pathways in soybean (Glycine max L. cv Ransom) mitochondria in the absence of added inhibitors has been studied using the oxygen isotope fractionation technique. This regulation can depend on several factors, including the amount of alternative oxidase protein, the redox status of the alternative oxidase regulatory sulfhydryl-disulfide system, the degree of activation by {alpha}-keto acids, and the concentration and redox state of the ubiquinone pool. We studied electron partitioning onto the alternative pathway in mitochondria isolated from etiolated and light-grown cotyledons and roots to ascertain how these factors interact in different tissues. In light-grown cotyledon mitochondria there is some partitioning to the alternative pathway in state 4, which is increased dramatically by either pyruvate or dithiothreitol. In etiolated cotyledon mitochondria, the alternative pathway shows little ability to complete for electrons with the Cyt pathway under any circumstances. In root mitochondria, control of alternative pathway activity is exercised by both the ubiquinone pool and the regulatory sulfhydryl-disulfide system. In addition, oxygen isotope fractionation by the Cyt and alternative pathways in mitochondria were identical to the fractionation for the respective pathways seen in intact tissue, suggesting that residual respiration is not present in the absence of inhibitors. 38 refs., 3 figs., 2 tabs.

  10. β-Spectrin regulates the hippo signaling pathway and modulates the basal actin network.

    Science.gov (United States)

    Wong, Kenneth Kin Lam; Li, Wenyang; An, Yanru; Duan, Yangyang; Li, Zhuoheng; Kang, Yibin; Yan, Yan

    2015-03-01

    Emerging evidence suggests functional regulation of the Hippo pathway by the actin cytoskeleton, although the detailed molecular mechanism remains incomplete. In a genetic screen, we identified a requirement for β-Spectrin in the posterior follicle cells for the oocyte repolarization process during Drosophila mid-oogenesis. β-spectrin mutations lead to loss of Hippo signaling activity in the follicle cells. A similar reduction of Hippo signaling activity was observed after β-Spectrin knockdown in mammalian cells. We further demonstrated that β-spectrin mutations disrupt the basal actin network in follicle cells. The abnormal stress fiber-like actin structure on the basal side of follicle cells provides a likely link between the β-spectrin mutations and the loss of the Hippo signaling activity phenotype.

  11. S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway.

    Science.gov (United States)

    Frungillo, Lucas; Skelly, Michael J; Loake, Gary J; Spoel, Steven H; Salgado, Ione

    2014-11-11

    Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity.

  12. Genome Engineering of the 2,3-Butanediol Biosynthetic Pathway for Tight Regulation in Cyanobacteria.

    Science.gov (United States)

    Nozzi, Nicole E; Atsumi, Shota

    2015-11-20

    Cyanobacteria have gained popularity among the metabolic engineering community as a tractable photosynthetic host for renewable chemical production. However, though a number of successfully engineered production systems have been reported, long-term genetic stability remains an issue for cyanobacterial systems. The genetic engineering toolbox for cyanobacteria is largely lacking inducible systems for expression control. The characterization of tight regulation systems for use in cyanobacteria may help to alleviate this problem. In this work we explore the function of the IPTG inducible promoter P(L)lacO1 in the model cyanobacterium Synechococcus elongatus PCC 7942 as well as the effect of gene order within an operon on pathway expression. According to our experiments, P(L)lacO1 functions well as an inducible promoter in S. elongatus. Additionally, we found that gene order within an operon can strongly influence control of expression of each gene.

  13. The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics

    Science.gov (United States)

    Kang, R; Tang, D; Schapiro, NE; Loux, T; Livesey, KM; Billiar, TR; Wang, H; Van Houten, B; Lotze, MT; Zeh, HJ

    2013-01-01

    Tumor cells require increased adenosine triphosphate (ATP) to support anabolism and proliferation. The precise mechanisms regulating this process in tumor cells are unknown. Here, we show that the receptor for advanced glycation endproducts (RAGE) and one of its primary ligands, high-mobility group box 1 (HMGB1), are required for optimal mitochondrial function within tumors. We found that RAGE is present in the mitochondria of cultured tumor cells as well as primary tumors. RAGE and HMGB1 coordinately enhanced tumor cell mitochondrial complex I activity, ATP production, tumor cell proliferation and migration. Lack of RAGE or inhibition of HMGB1 release diminished ATP production and slowed tumor growth in vitro and in vivo. These findings link, for the first time, the HMGB1–RAGE pathway with changes in bioenergetics. Moreover, our observations provide a novel mechanism within the tumor microenvironment by which necrosis and inflammation promote tumor progression. PMID:23318458

  14. Current advances in DNA repair: regulation of enzymes and pathways involved in maintaining genomic stability.

    Science.gov (United States)

    Neher, Tracy M; Turchi, John J

    2011-06-15

    Novel discoveries in the DNA repair field have lead to continuous and rapid advancement of our understanding of not only DNA repair but also DNA replication and recombination. Research in the field transcends numerous areas of biology, biochemistry, physiology, and medicine, making significant connections across these broad areas of study. From early studies conducted in bacterial systems to current analyses in eukaryotic systems and human disease, the innovative research into the mechanisms of repair machines and the consequences of ineffective DNA repair has impacted a wide scientific community. This Forum contains a select mix of primary research articles in addition to a number of timely reviews covering a subset of DNA repair pathways where recent advances and novel discoveries are improving our understanding of DNA repair, its regulation, and implications to human disease.

  15. Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARγ and Akt signaling pathway.

    Directory of Open Access Journals (Sweden)

    Hyoung Joon Park

    Full Text Available This study assessed the effects of Coprinus comatus cap (CCC on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ. Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the

  16. Neurotrophins regulate bone marrow stromal cell IL-6 expression through the MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Fariba Rezaee

    Full Text Available BACKGROUND: The host's response to infection is characterized by altered levels of neurotrophins and an influx of inflammatory cells to sites of injured tissue. Progenitor cells that give rise to the differentiated cellular mediators of inflammation are derived from bone marrow progenitor cells where their development is regulated, in part, by cues from bone marrow stromal cells (BMSC. As such, alteration of BMSC function in response to elevated systemic mediators has the potential to alter their function in biologically relevant ways, including downstream alteration of cytokine production that influences hematopoietic development. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we investigated BMSC neurotrophin receptor expression by flow cytometric analysis to determine differences in expression as well as potential to respond to NGF or BDNF. Intracellular signaling subsequent to neurotrophin stimulation of BMSC was analyzed by western blot, microarray analysis, confocal microscopy and real-time PCR. Analysis of BMSC Interleukin-6 (IL-6 expression was completed using ELISA and real-time PCR. CONCLUSION: BMSC established from different individuals had distinct expression profiles of the neurotrophin receptors, TrkA, TrkB, TrkC, and p75(NTR. These receptors were functional, demonstrated by an increase in Akt-phosphorylation following BMSC exposure to recombinant NGF or BDNF. Neurotrophin stimulation of BMSC resulted in increased IL-6 gene and protein expression which required activation of ERK and p38 MAPK signaling, but was not mediated by the NFkappaB pathway. BMSC response to neurotrophins, including the up-regulation of IL-6, may alter their support of hematopoiesis and regulate the availability of inflammatory cells for migration to sites of injury or infection. As such, these studies are relevant to the growing appreciation of the interplay between neurotropic mediators and the regulation of hematopoiesis.

  17. The role and regulation of the nuclear factor kappa B signalling pathway in human labour.

    Science.gov (United States)

    Lappas, M; Rice, G E

    2007-01-01

    Within the discipline of reproductive biology, our understanding of one of the most fundamental biological processes is lacking--the cellular and molecular mechanisms that govern birth. This lack of understanding limits our ability to reduce the incidence of labour complications. The incidence of labour complications including: preterm labour; cervical incompetence; and post-date pregnancies has not diminished in decades. The key to improving the management of human labour and delivery is an understanding of how the multiple processes that are requisite for a successful labour and delivery are coordinated to achieve a timely birth. Processes of human labour include the formation of: contraction associated proteins; inflammatory mediators (e.g. cytokines); uterotonic phospholipid metabolites (e.g. prostaglandins); and the induction of extracellular matrix (ECM) remodelling. Increasingly, it is becoming evident that labour onset and birth are the result of cross-talk between multiple components of an integrated network. This hypothesis is supported by recent data implicating various upstream regulatory pathways in the control of key labour-associated processes, including the activity of enzymes involved in the formation of prostaglandins and extracellular matrix remodelling, and mediators of inflammation. Clearly, the biochemical pathways involved in the formation of these mediators represent potential sites for intervention that may translate to therapeutic interventions to delay or prevent preterm labour and delivery. Available data strongly implicate the nuclear factor-kappaB (NF-kappaB) family as candidate upstream regulators of multiple labour-associated processes. Not only do these data warrant further detailed analysis of the involvement of these pathways in the process of human labour but also promise new insights into the key mechanisms that trigger birth and the identification of new therapeutic interventions that will improve the management of labour.

  18. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.

    Science.gov (United States)

    Zhang, Liang; Tang, Yan; Guo, Zhongpeng; Shi, Guiyang

    2013-10-01

    Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD⁺-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.

  19. Differential Maturation of the Two Regulated Secretory Pathways in Human iPSC-Derived Neurons.

    Science.gov (United States)

    Emperador Melero, Javier; Nadadhur, Aishwarya G; Schut, Desiree; Weering, Jan V; Heine, Vivi M; Toonen, Ruud F; Verhage, Matthijs

    2017-03-14

    Neurons communicate by regulated secretion of chemical signals from synaptic vesicles (SVs) and dense-core vesicles (DCVs). Here, we investigated the maturation of these two secretory pathways in micro-networks of human iPSC-derived neurons. These micro-networks abundantly expressed endogenous SV and DCV markers, including neuropeptides. DCV transport was microtubule dependent, preferentially anterograde in axons, and 2-fold faster in axons than in dendrites. SV and DCV secretion were strictly Ca(2+) and SNARE dependent. DCV secretion capacity matured until day in vitro (DIV) 36, with intense stimulation releasing 6% of the total DCV pool, and then plateaued. This efficiency is comparable with mature mouse neurons. In contrast, SV secretion capacity continued to increase until DIV50, with substantial further increase in secretion efficiency and decrease in silent synapses. These data show that the two secretory pathways can be studied in human neurons and that they mature differentially, with DCV secretion reaching maximum efficiency when that of SVs is still low.

  20. Differential Maturation of the Two Regulated Secretory Pathways in Human iPSC-Derived Neurons

    Directory of Open Access Journals (Sweden)

    Javier Emperador Melero

    2017-03-01

    Full Text Available Neurons communicate by regulated secretion of chemical signals from synaptic vesicles (SVs and dense-core vesicles (DCVs. Here, we investigated the maturation of these two secretory pathways in micro-networks of human iPSC-derived neurons. These micro-networks abundantly expressed endogenous SV and DCV markers, including neuropeptides. DCV transport was microtubule dependent, preferentially anterograde in axons, and 2-fold faster in axons than in dendrites. SV and DCV secretion were strictly Ca2+ and SNARE dependent. DCV secretion capacity matured until day in vitro (DIV 36, with intense stimulation releasing 6% of the total DCV pool, and then plateaued. This efficiency is comparable with mature mouse neurons. In contrast, SV secretion capacity continued to increase until DIV50, with substantial further increase in secretion efficiency and decrease in silent synapses. These data show that the two secretory pathways can be studied in human neurons and that they mature differentially, with DCV secretion reaching maximum efficiency when that of SVs is still low.

  1. In silico prediction of specific pathways that regulate mesangial cell proliferation in IgA nephropathy.

    Science.gov (United States)

    Mirfazeli, Elham Sadat; Marashi, Sayed-Amir; Kalantari, Shiva

    2016-12-01

    IgA nephropathy is one of the most common forms of primary glomerulonephritis worldwide leading to end-stage renal disease. Proliferation of mesangial cells, i.e., the multifunctional cells located in the intracapillary region of glomeruli, after IgA- dominant immune deposition is the major histologic feature in IgA nephropathy. In spite of several studies on molecular basis of proliferation in these cells, specific pathways responsible for regulation of proliferation are still to be discovered. In this study, we predicted a specific signaling pathway started from transferrin receptor (TFRC), a specific IgA1 receptor on mesangial cells, toward a set of proliferation-related proteins. The final constructed subnetwork was presented after filtration and evaluation. The results suggest that estrogen receptor (ESR1) as a hub protein in the significant subnetwork has an important role in the mesangial cell proliferation and is a potential target for IgA nephropathy therapy. In conclusion, this study suggests a novel hypothesis for the mechanism of pathogenesis in IgA nephropathy and is a reasonable start point for the future experimental studies on mesangial proliferation process in this disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants

    KAUST Repository

    Chen, Hao

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.

  3. Bmi1 regulates mitochondrial function and the DNA damage response pathway.

    Science.gov (United States)

    Liu, Jie; Cao, Liu; Chen, Jichun; Song, Shiwei; Lee, In Hye; Quijano, Celia; Liu, Hongjun; Keyvanfar, Keyvan; Chen, Haoqian; Cao, Long-Yue; Ahn, Bong-Hyun; Kumar, Neil G; Rovira, Ilsa I; Xu, Xiao-Ling; van Lohuizen, Maarten; Motoyama, Noboru; Deng, Chu-Xia; Finkel, Toren

    2009-05-21

    Mice deficient in the Polycomb repressor Bmi1 develop numerous abnormalities including a severe defect in stem cell self-renewal, alterations in thymocyte maturation and a shortened lifespan. Previous work has implicated de-repression of the Ink4a/Arf (also known as Cdkn2a) locus as mediating many of the aspects of the Bmi1(-/-) phenotype. Here we demonstrate that cells derived from Bmi1(-/-) mice also have impaired mitochondrial function, a marked increase in the intracellular levels of reactive oxygen species and subsequent engagement of the DNA damage response pathway. Furthermore, many of the deficiencies normally observed in Bmi1(-/-) mice improve after either pharmacological treatment with the antioxidant N-acetylcysteine or genetic disruption of the DNA damage response pathway by Chk2 (also known as Chek2) deletion. These results demonstrate that Bmi1 has an unexpected role in maintaining mitochondrial function and redox homeostasis and indicate that the Polycomb family of proteins can coordinately regulate cellular metabolism with stem and progenitor cell function.

  4. miR-58 family and TGF-β pathways regulate each other in Caenorhabditis elegans.

    Science.gov (United States)

    de Lucas, María Pilar; Sáez, Alberto G; Lozano, Encarnación

    2015-11-16

    Despite the fact that microRNAs (miRNAs) modulate the expression of around 60% of protein-coding genes, it is often hard to elucidate their precise role and target genes. Studying miRNA families as opposed to single miRNAs alone increases our chances of observing not only mutant phenotypes but also changes in the expression of target genes. Here we ask whether the TGF-β signalling pathways, which control many animal processes, might be modulated by miRNAs in Caenorhabditis elegans. Using a mutant for four members of the mir-58 family, we show that both TGF-β Sma/Mab (controlling body size) and TGF-β Dauer (regulating dauer, a stress-resistant larval stage) are upregulated. Thus, mir-58 family directly inhibits the expression of dbl-1 (ligand), daf-1, daf-4 and sma-6 (receptors) of TGF-β pathways. Epistasis experiments reveal that whereas the small body phenotype of the mir-58 family mutant must invoke unknown targets independent from TGF-β Sma/Mab, its dauer defectiveness can be rescued by DAF-1 depletion. Additionally, we found a negative feedback loop between TGF-β Sma/Mab and mir-58 and the related mir-80. Our results suggest that the interaction between mir-58 family and TGF-β genes is key on decisions about animal growth and stress resistance in C. elegans and perhaps other organisms.

  5. Berberine regulates AMP-activated protein kinase signaling pathways and inhibits colon tumorigenesis in mice.

    Science.gov (United States)

    Li, Weidong; Hua, Baojin; Saud, Shakir M; Lin, Hongsheng; Hou, Wei; Matter, Matthias S; Jia, Libin; Colburn, Nancy H; Young, Matthew R

    2015-10-01

    Colorectal cancer, a leading cause of cancer death, has been linked to inflammation and obesity. Berberine, an isoquinoline alkaloid, possesses anti-inflammatory, anti-diabetes and anti-tumor properties. In the azoxymethane initiated and dextran sulfate sodium (AOM/DSS) promoted colorectal carcinogenesis mouse model, berberine treated mice showed a 60% reduction in tumor number (P = 0.009), a 48% reduction in tumors 4 mm (P = 0.02) compared to vehicle treated mice. Berberine also decreased AOM/DSS induced Ki-67 and COX-2 expression. In vitro analysis showed that in addition to its anti-proliferation activity, berberine also induced apoptosis in colorectal cancer cell lines. Berberine activated AMP-activated protein kinase (AMPK), a major regulator of metabolic pathways, and inhibited mammalian target of rapamycin (mTOR), a downstream target of AMPK. Furthermore, 4E-binding protein-1 and p70 ribosomal S6 kinases, downstream targets of mTOR, were down regulated by berberine treatment. Berberine did not affect Liver kinase B1 (LKB1) activity or the mitogen-activated protein kinase pathway. Berberine inhibited Nuclear Factor kappa-B (NF-κB) activity, reduced the expression of cyclin D1 and survivin, induced phosphorylation of p53 and increased caspase-3 cleavage in vitro. Berberine inhibition of mTOR activity and p53 phosphorylation was found to be AMPK dependent, while inhibition NF-κB was AMPK independent. In vivo, berberine also activated AMPK, inhibited mTOR and p65 phosphorylation and activated caspase-3 cleavage. Our data suggests that berberine suppresses colon epithelial proliferation and tumorigenesis via AMPK dependent inhibition of mTOR activity and AMPK independent inhibition of NF-κB.

  6. Unfolded protein response and activated degradative pathways regulation in GNE myopathy.

    Directory of Open Access Journals (Sweden)

    Honghao Li

    Full Text Available Although intracellular beta amyloid (Aβ accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP deposition including unfolded protein response (UPR, ubiquitin proteasome system (UPS activation and its correlation with autophagy system. Eight GNE myopathy patients and five individuals with normal muscle morphology were included in this study. We performed immunofluorescence and immunoblotting to investigate the expression of AβPP, phosphorylated tau (p-tau and endoplasmic reticulum molecular chaperones. Proteasome activities were measured by cleavage of fluorogenic substrates. The expression of proteasome subunits and linkers between proteasomal and autophagy systems were also evaluated by immunoblotting and relative quantitative real-time RT-PCR. Four molecular chaperones, glucose-regulated protein 94 (GRP94, glucose-regulated protein 78 (GRP78, calreticulin and calnexin and valosin containing protein (VCP were highly expressed in GNE myopathy. 20S proteasome subunits, three main proteasome proteolytic activities, and the factors linking UPS and autophagy system were also increased. Our study suggests that AβPP deposition results in endoplasmic reticulum stress (ERS and highly expressed VCP deliver unfolded proteins from endoplasmic reticulum to proteosomal system which is activated in endoplasmic reticulum associated degradation (ERAD in GNE myopathy. Excessive ubiquitinated unfolded proteins are exported by proteins that connect UPS and autophagy to autophagy system, which is activated as an alternative pathway for degradation.

  7. The DC-HIL/syndecan-4 pathway regulates autoimmune responses through myeloid-derived suppressor cells.

    Science.gov (United States)

    Chung, Jin-Sung; Tamura, Kyoichi; Akiyoshi, Hideo; Cruz, Ponciano D; Ariizumi, Kiyoshi

    2014-03-15

    Having discovered that the dendritic cell (DC)-associated heparan sulfate proteoglycan-dependent integrin ligand (DC-HIL) receptor on APCs inhibits T cell activation by binding to syndecan-4 (SD-4) on T cells, we hypothesized that the DC-HIL/SD-4 pathway may regulate autoimmune responses. Using experimental autoimmune encephalomyelitis (EAE) as a disease model, we noted an increase in SD-4(+) T cells in lymphoid organs of wild-type (WT) mice immunized for EAE. The autoimmune disease was also more severely induced (clinically, histologically, and immunophenotypically) in mice knocked out for SD-4 compared with WT cohorts. Moreover, infusion of SD-4(-/-) naive T cells during EAE induction into Rag2(-/-) mice also led to increased severity of EAE in these animals. Similar to SD-4 on T cells, DC-HIL expression was upregulated on myeloid cells during EAE induction, with CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) as the most expanded population and most potent T cell suppressor among the myeloid cells examined. The critical role of DC-HIL was supported by DC-HIL gene deletion or anti-DC-HIL treatment, which abrogated T cell suppressor activity of MDSCs, and also by DC-HIL activation inducing MDSC expression of IFN-γ, NO, and reactive oxygen species. Akin to SD-4(-/-) mice, DC-HIL(-/-) mice manifested exacerbated EAE. Adoptive transfer of MDSCs from EAE-affected WT mice into DC-HIL(-/-) mice reduced EAE severity to the level of EAE-immunized WT mice, an outcome that was precluded by depleting DC-HIL(+) cells from the infused MDSC preparation. Our findings indicate that the DC-HIL/SD-4 pathway regulates autoimmune responses by mediating the T cell suppressor function of MDSCs.

  8. HTLV Tax: a fascinating multifunctional co-regulator of viral and cellular pathways

    Directory of Open Access Journals (Sweden)

    Robert eCurrer

    2012-11-01

    Full Text Available Human T cell lymphotropic virus type 1 (HTLV-1 has been identified as the causative agent of adult T cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. The virus infects between 15 and 20 million people worldwide of which approximately 2 to 5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications of Tax and sub-cellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis.

  9. Differential regulation of the Hippo pathway by adherens junctions and apical-basal cell polarity modules.

    Science.gov (United States)

    Yang, Chih-Chao; Graves, Hillary K; Moya, Ivan M; Tao, Chunyao; Hamaratoglu, Fisun; Gladden, Andrew B; Halder, Georg

    2015-02-10

    Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical-basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non-cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non-cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.

  10. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells

    Science.gov (United States)

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-01-01

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC. PMID:26486080

  11. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells.

    Science.gov (United States)

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-12-15

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC.

  12. Recent developments on lipolysis regulation in humans and discovery of a new lipolytic pathway.

    Science.gov (United States)

    Lafontan, M; Sengenes, C; Galitzky, J; Berlan, M; De Glisezinski, I; Crampes, F; Stich, V; Langin, D; Barbe, P; Rivière, D

    2000-11-01

    In man, the major hormones controlling the lipolytic function are insulin (inhibition of lipolysis) and catecholamines (stimulation of lipolysis). Catecholamines are of major importance for the regulation of lipid mobilization in human adipose tissue and for the increase of non-esterified fatty acid supply to the working muscle. In vitro studies have shown that there are differences in the catecholaminergic control of fat cells from various fat deposits and a number of physiological and pathological alterations of catecholamine-induced lipolysis have been reported. Lipolytic resistance to catecholamines has been reported in subcutaneous adipose tissue, the major fat depot in obese subjects. Multiple alterations in catecholamine signal transduction pathways have been reported. In situ microdialysis allows a physiological exploration of adipose tissue biology. Recent data obtained on the catecholaminergic regulation of lipolysis and lipid mobilization, using microdialysis in humans, will be analysed. A potent lipolytic and lipomobilizing effect of atrial natriuretic peptide has recently been discovered; the mechanisms of action and physiological relevance will also be discussed.

  13. Prostaglandin E2 negatively regulates AMP-activated protein kinase via protein kinase A signaling pathway.

    Science.gov (United States)

    Funahashi, Koji; Cao, Xia; Yamauchi, Masako; Kozaki, Yasuko; Ishiguro, Naoki; Kambe, Fukushi

    2009-01-01

    We investigated possible involvement of prostaglandin (PG) E2 in regulation of AMP-activated protein kinase (AMPK). When osteoblastic MG63 cells were cultured in serum-deprived media, Thr-172 phosphorylation of AMPK alpha-subunit was markedly increased. Treatment of the cells with PGE2 significantly reduced the phosphorylation. Ser-79 phosphorylation of acetyl-CoA carboxylase, a direct target for AMPK, was also reduced by PGE2. On the other hand, PGE2 reciprocally increased Ser-485 phosphorylation of the alpha-subunit that could be associated with inhibition of AMPK activity. These effects of PGE2 were mimicked by PGE2 receptor EP2 and EP4 agonists and forskolin, but not by EP1 and EP3 agonists, and the effects were suppressed by an adenylate cyclase inhibitor SQ22536 and a protein kinase A inhibitor H89. Additionally, the PGE2 effects were duplicated in primary calvarial osteoblasts. Together, the present study demonstrates that PGE2 negatively regulates AMPK activity via activation of protein kinase A signaling pathway.

  14. Osteoblastic regulation of B lymphopoiesis is mediated by Gs{alpha}-dependent signaling pathways.

    Science.gov (United States)

    Wu, Joy Y; Purton, Louise E; Rodda, Stephen J; Chen, Min; Weinstein, Lee S; McMahon, Andrew P; Scadden, David T; Kronenberg, Henry M

    2008-11-04

    Osteoblasts play an increasingly recognized role in supporting hematopoietic development and recently have been implicated in the regulation of B lymphopoiesis. Here we demonstrate that the heterotrimeric G protein alpha subunit G(s)alpha is required in cells of the osteoblast lineage for normal postnatal B lymphocyte production. Deletion of G(s)alpha early in the osteoblast lineage results in a 59% decrease in the percentage of B cell precursors in the bone marrow. Analysis of peripheral blood from mutant mice revealed a 67% decrease in the number of circulating B lymphocytes by 10 days of age. Strikingly, other mature hematopoietic lineages are not decreased significantly. Mice lacking G(s)alpha in cells of the osteoblast lineage exhibit a reduction in pro-B and pre-B cells. Furthermore, interleukin (IL)-7 expression is attenuated in G(s)alpha-deficient osteoblasts, and exogenous IL-7 is able to restore B cell precursor populations in the bone marrow of mutant mice. Finally, the defect in B lymphopoiesis can be rescued by transplantation into a WT microenvironment. These findings confirm that osteoblasts are an important component of the B lymphocyte niche and demonstrate in vivo that G(s)alpha-dependent signaling pathways in cells of the osteoblast lineage extrinsically regulate bone marrow B lymphopoiesis, at least partially in an IL-7-dependent manner.

  15. Osteoblastic regulation of B lymphopoiesis is mediated by Gsα-dependent signaling pathways

    Science.gov (United States)

    Wu, Joy Y.; Purton, Louise E.; Rodda, Stephen J.; Chen, Min; Weinstein, Lee S.; McMahon, Andrew P.; Scadden, David T.; Kronenberg, Henry M.

    2008-01-01

    Osteoblasts play an increasingly recognized role in supporting hematopoietic development and recently have been implicated in the regulation of B lymphopoiesis. Here we demonstrate that the heterotrimeric G protein α subunit Gsα is required in cells of the osteoblast lineage for normal postnatal B lymphocyte production. Deletion of Gsα early in the osteoblast lineage results in a 59% decrease in the percentage of B cell precursors in the bone marrow. Analysis of peripheral blood from mutant mice revealed a 67% decrease in the number of circulating B lymphocytes by 10 days of age. Strikingly, other mature hematopoietic lineages are not decreased significantly. Mice lacking Gsα in cells of the osteoblast lineage exhibit a reduction in pro-B and pre-B cells. Furthermore, interleukin (IL)-7 expression is attenuated in Gsα-deficient osteoblasts, and exogenous IL-7 is able to restore B cell precursor populations in the bone marrow of mutant mice. Finally, the defect in B lymphopoiesis can be rescued by transplantation into a WT microenvironment. These findings confirm that osteoblasts are an important component of the B lymphocyte niche and demonstrate in vivo that Gsα-dependent signaling pathways in cells of the osteoblast lineage extrinsically regulate bone marrow B lymphopoiesis, at least partially in an IL-7-dependent manner. PMID:18957542

  16. Rassf5 and Ndr kinases regulate neuronal polarity through Par3 phosphorylation in a novel pathway.

    Science.gov (United States)

    Yang, Rui; Kong, Eryan; Jin, Jing; Hergovich, Alexander; Püschel, Andreas W

    2014-08-15

    The morphology and polarized growth of cells depend on pathways that control the asymmetric distribution of regulatory factors. The evolutionarily conserved Ndr kinases play important roles in cell polarity and morphogenesis in yeast and invertebrates but it is unclear whether they perform a similar function in mammalian cells. Here, we analyze the function of mammalian Ndr1 and Ndr2 (also known as STK38 or STK38L, respectively) in the establishment of polarity in neurons. We show that they act downstream of the tumor suppressor Rassf5 and upstream of the polarity protein Par3 (also known as PARD3). Rassf5 and Ndr1 or Ndr2 are required during the polarization of hippocampal neurons to prevent the formation of supernumerary axons. Mechanistically, the Ndr kinases act by phosphorylating Par3 at Ser383 to inhibit its interaction with dynein, thereby polarizing the distribution of Par3 and reinforcing axon specification. Our results identify a novel Rassf5-Ndr-Par3 signaling cascade that regulates the transport of Par3 during the establishment of neuronal polarity. Their role in neuronal polarity suggests that Ndr kinases perform a conserved function as regulators of cell polarity.

  17. The inherited blindness protein AIPL1 regulates the ubiquitin-like FAT10 pathway.

    Directory of Open Access Journals (Sweden)

    John S Bett

    Full Text Available Mutations in AIPL1 cause the inherited blindness Leber congenital amaurosis (LCA. AIPL1 has previously been shown to interact with NUB1, which facilitates the proteasomal degradation of proteins modified with the ubiquitin-like protein FAT10. Here we report that AIPL1 binds non-covalently to free FAT10 and FAT10ylated proteins and can form a ternary complex with FAT10 and NUB1. In addition, AIPL1 antagonised the NUB1-mediated degradation of the model FAT10 conjugate, FAT10-DHFR, and pathogenic mutations of AIPL1 were defective in inhibiting this degradation. While all AIPL1 mutants tested still bound FAT10-DHFR, there was a close correlation between the ability of the mutants to interact with NUB1 and their ability to prevent NUB1-mediated degradation. Interestingly, AIPL1 also co-immunoprecipitated the E1 activating enzyme for FAT10, UBA6, suggesting AIPL1 may have a role in directly regulating the FAT10 conjugation machinery. These studies are the first to implicate FAT10 in retinal cell biology and LCA pathogenesis, and reveal a new role of AIPL1 in regulating the FAT10 pathway.

  18. Gap Junctions in the Ventral Hippocampal-Medial Prefrontal Pathway Are Involved in Anxiety Regulation

    Science.gov (United States)

    Schoenfeld, Timothy J.; Kloth, Alexander D.; Hsueh, Brian; Runkle, Matthew B.; Kane, Gary A.; Wang, Samuel S.-H.

    2014-01-01

    Anxiety disorders are highly prevalent but little is known about their underlying mechanisms. Gap junctions exist in brain regions important for anxiety regulation, such as the ventral hippocampus (vHIP) and mPFC, but their functions in these areas have not been investigated. Using pharmacological blockade of neuronal gap junctions combined with electrophysiological recordings, we found that gap junctions play a role in theta rhythm in the vHIP and mPFC of adult mice. Bilateral infusion of neuronal gap junction blockers into the vHIP decreased anxiety-like behavior on the elevated plus maze and open field. Similar anxiolytic effects were observed with unilateral infusion of these drugs into the vHIP combined with contralateral infusion into the mPFC. No change in anxious behavior was observed with gap junction blockade in the unilateral vHIP alone or in the bilateral dorsal HIP. Since physical exercise is known to reduce anxiety, we examined the effects of long-term running on the expression of the neuronal gap junction protein connexin-36 among inhibitory interneurons and found a reduction in the vHIP. Despite this change, we observed no alteration in theta frequency or power in long-term runners. Collectively, these findings suggest that neuronal gap junctions in the vHIP–mPFC pathway are important for theta rhythm and anxiety regulation under sedentary conditions but that additional mechanisms are likely involved in running-induced reduction in anxiety. PMID:25411496

  19. Notch1 regulates hippocampal plasticity through interaction with the Reelin pathway, glutamatergic transmission and CREB signaling

    Directory of Open Access Journals (Sweden)

    Emanuele eBrai

    2015-11-01

    Full Text Available Notch signaling plays a crucial role in adult brain function such as synaptic plasticity, memory and olfaction. Several reports suggest an involvement of this pathway in neurodegenerative dementia. Yet, to date, the mechanism underlying Notch activity in mature neurons remains unresolved. In this work, we investigate how Notch regulates synaptic potentiation and contributes to the establishment of memory in mice. We observe that Notch1 is a postsynaptic receptor with functional interactions with the Reelin receptor, ApoER2, and the ionotropic receptor, NMDAR. Targeted loss of Notch1 in the hippocampal CA fields affects Reelin signaling by influencing Dab1 expression and impairs the synaptic potentiation achieved through Reelin stimulation. Further analysis indicates that loss of Notch1 affects the expression and composition of the NMDAR but not AMPAR. Glutamatergic signaling is further compromised through downregulation of CamKII and its secondary and tertiary messengers resulting in reduced CREB signaling. Our results identify Notch1 as an important regulator of mechanisms involved in synaptic plasticity and memory formation. These findings emphasize the possible involvement of this signaling receptor in dementia.

  20. Marburgvirus Hijacks Nrf2-Dependent Pathway by Targeting Nrf2-Negative Regulator Keap1

    Directory of Open Access Journals (Sweden)

    Audrey Page

    2014-03-01

    Full Text Available Marburg virus (MARV has a high fatality rate in humans, causing hemorrhagic fever characterized by massive viral replication and dysregulated inflammation. Here, we demonstrate that VP24 of MARV binds Kelch-like ECH-associated protein 1 (Keap1, a negative regulator of nuclear transcription factor erythroid-derived 2 (Nrf2. Binding of VP24 to Keap1 Kelch domain releases Nrf2 from Keap1-mediated inhibition promoting persistent activation of a panoply of cytoprotective genes implicated in cellular responses to oxidative stress and regulation of inflammatory responses. Increased expression of Nrf2-dependent genes was demonstrated both during MARV infection and upon ectopic expression of MARV VP24. We also show that Nrf2-deficient mice can control MARV infection when compared to lethal infection in wild-type animals, indicating that Nrf2 is critical for MARV infection. We conclude that VP24-driven activation of the Nrf2-dependent pathway is likely to contribute to dysregulation of host antiviral inflammatory responses and that it ensures survival of MARV-infected cells despite these responses.

  1. Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network.

    Science.gov (United States)

    Martín, Guiomar; Leivar, Pablo; Ludevid, Dolores; Tepperman, James M; Quail, Peter H; Monte, Elena

    2016-05-06

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde- and photosensory-receptor signalling has remained unclear. Here, we show that the phytochrome and retrograde signalling (RS) pathways converge antagonistically to regulate the expression of the nuclear-encoded transcription factor GLK1, a key regulator of a light-induced transcriptional network central to photomorphogenesis. GLK1 gene transcription is directly repressed by PHYTOCHROME-INTERACTING FACTOR (PIF)-class bHLH transcription factors in darkness, but light-activated phytochrome reverses this activity, thereby inducing expression. Conversely, we show that retrograde signals repress this induction by a mechanism independent of PIF mediation. Collectively, our data indicate that light at moderate levels acts through the plant's nuclear-localized sensory-photoreceptor system to induce appropriate photomorphogenic development, but at excessive levels, sensed through the separate plastid-localized RS system, acts to suppress such development, thus providing a mechanism for protection against photo-oxidative damage by minimizing the tissue exposure to deleterious radiation.

  2. The Mammary Epithelial Cell Secretome and its Regulation by Signal Transduction Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jon M.; Waters, Katrina M.; Kathmann, Loel E.; Camp, David G.; Wiley, H. S.; Smith, Richard D.; Thrall, Brian D.

    2008-02-01

    Extracellular proteins released by mammary epithelial cells are critical mediators of cell communication, proliferation and organization, yet the actual spectrum of proteins released by any given cell (the secretome) is poorly characterized. To define the set of proteins secreted by human mammary epithelial cells (HMEC), we combined analytical and computational approaches to define a secretome protein set based upon probable biological significance. Analysis of HMEC-conditioned medium by liquid chromatography-mass spectrometry resulted in identification of 889 unique proteins, of which 151 were found to be specifically enriched in the extracellular compartment when compared with a database of proteins expressed in whole HMEC lysates. Additional high mass accuracy analysis revealed 36 proteins whose extracellular abundance increased after treatment with phorbol ester (PMA), a protein kinase C agonist and general secretagogue. Many of the PMA stimulated proteins have been reported to be aberrantly expressed in human cancers and appear to be co-regulated as multigene clusters. By inhibiting PMA-mediated transactivation of the epidermal growth factor receptor (EGFR), a pathway critically required for normal HMEC function, we found that the secretion of specific matrix metalloproteases were also coordinately regulated through EGFR transactivation. This study demonstrates a tiered strategy by which extracellular proteins can be identified and progressively assigned to classes of increasing confidence and regulatory importance.

  3. Atypical PKC-iota Controls Stem Cell Expansion via Regulation of the Notch Pathway

    Directory of Open Access Journals (Sweden)

    In Kyoung Mah

    2015-11-01

    Full Text Available The number of stem/progenitor cells available can profoundly impact tissue homeostasis and the response to injury or disease. Here, we propose that an atypical PKC, Prkci, is a key player in regulating the switch from an expansion to a differentiation/maintenance phase via regulation of Notch, thus linking the polarity pathway with the control of stem cell self-renewal. Prkci is known to influence symmetric cell division in invertebrates; however a definitive role in mammals has not yet emerged. Using a genetic approach, we find that loss of Prkci results in a marked increase in the number of various stem/progenitor cells. The mechanism used likely involves inactivation and symmetric localization of NUMB, leading to the activation of NOTCH1 and its downstream effectors. Inhibition of atypical PKCs may be useful for boosting the production of pluripotent stem cells, multipotent stem cells, or possibly even primordial germ cells by promoting the stem cell/progenitor fate.

  4. AMPKα1-LDH pathway regulates muscle stem cell self-renewal by controlling metabolic homeostasis.

    Science.gov (United States)

    Theret, Marine; Gsaier, Linda; Schaffer, Bethany; Juban, Gaëtan; Ben Larbi, Sabrina; Weiss-Gayet, Michèle; Bultot, Laurent; Collodet, Caterina; Foretz, Marc; Desplanches, Dominique; Sanz, Pascual; Zang, Zizhao; Yang, Lin; Vial, Guillaume; Viollet, Benoit; Sakamoto, Kei; Brunet, Anne; Chazaud, Bénédicte; Mounier, Rémi

    2017-07-03

    Control of stem cell fate to either enter terminal differentiation versus returning to quiescence (self-renewal) is crucial for tissue repair. Here, we showed that AMP-activated protein kinase (AMPK), the master metabolic regulator of the cell, controls muscle stem cell (MuSC) self-renewal. AMPKα1(-/-) MuSCs displayed a high self-renewal rate, which impairs muscle regeneration. AMPKα1(-/-) MuSCs showed a Warburg-like switch of their metabolism to higher glycolysis. We identified lactate dehydrogenase (LDH) as a new functional target of AMPKα1. LDH, which is a non-limiting enzyme of glycolysis in differentiated cells, was tightly regulated in stem cells. In functional experiments, LDH overexpression phenocopied AMPKα1(-/-) phenotype, that is shifted MuSC metabolism toward glycolysis triggering their return to quiescence, while inhibition of LDH activity rescued AMPKα1(-/-) MuSC self-renewal. Finally, providing specific nutrients (galactose/glucose) to MuSCs directly controlled their fate through the AMPKα1/LDH pathway, emphasizing the importance of metabolism in stem cell fate. © 2017 The Authors.

  5. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways.

    Science.gov (United States)

    Ung, Timothy H; Madsen, Helen J; Hellwinkel, Justin E; Lencioni, Alex M; Graner, Michael W

    2014-11-01

    Exosomes are virus-sized, membrane-enclosed vesicles with origins in the cellular endosomal system, but are released extracellularly. As a population, these tiny vesicles carry relatively enormous amounts of information in their protein, lipid and nucleic acid content, and the vesicles can have profound impacts on recipient cells. This review employs publically-available data combined with gene ontology applications to propose a novel concept, that exosomes transport transcriptional and translational machinery that may have direct impacts on gene expression in recipient cells. Here, we examine the previously published proteomic contents of medulloblastoma-derived exosomes, focusing on transcriptional regulators; we found that there are numerous proteins that may have potential roles in transcriptional and translational regulation with putative influence on downstream, cancer-related pathways. We expanded this search to all of the proteins in the Vesiclepedia database; using gene ontology approaches, we see that these regulatory factors are implicated in many of the processes involved in cancer initiation and progression. This information suggests that some of the effects of exosomes on recipient cells may be due to the delivery of protein factors that can directly and fundamentally change the transcriptional landscape of the cells. Within a tumor environment, this has potential to tilt the advantage towards the cancer.

  6. The cytochrome P450 epoxygenase pathway regulates the hepatic inflammatory response in fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Robert N Schuck

    Full Text Available Fatty liver disease is an emerging public health problem without effective therapies, and chronic hepatic inflammation is a key pathologic mediator in its progression. Cytochrome P450 (CYP epoxygenases metabolize arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs, which have potent anti-inflammatory effects. Although promoting the effects of EETs elicits anti-inflammatory and protective effects in the cardiovascular system, the contribution of CYP-derived EETs to the regulation of fatty liver disease-associated inflammation and injury is unknown. Using the atherogenic diet model of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH, our studies demonstrated that induction of fatty liver disease significantly and preferentially suppresses hepatic CYP epoxygenase expression and activity, and both hepatic and circulating levels of EETs in mice. Furthermore, mice with targeted disruption of Ephx2 (the gene encoding soluble epoxide hydrolase exhibited restored hepatic and circulating EET levels and a significantly attenuated induction of hepatic inflammation and injury. Collectively, these data suggest that suppression of hepatic CYP-mediated EET biosynthesis is an important pathological consequence of fatty liver disease-associated inflammation, and that the CYP epoxygenase pathway is a central regulator of the hepatic inflammatory response in NAFLD/NASH. Future studies investigating the utility of therapeutic strategies that promote the effects of CYP-derived EETs in NAFLD/NASH are warranted.

  7. Redox and trace metal regulation of ion channels in the pain pathway.

    Science.gov (United States)

    Evans, J Grayson; Todorovic, Slobodan M

    2015-09-15

    Given the clinical significance of pain disorders and the relative ineffectiveness of current therapeutics, it is important to identify alternative means of modulating nociception. The most obvious pharmacological targets are the ion channels that facilitate nervous transmission from pain sensors in the periphery to the processing regions within the brain and spinal cord. In order to design effective pharmacological tools for this purpose, however, it is first necessary to understand how these channels are regulated. A growing area of research involves the investigation of the role that trace metals and endogenous redox agents play in modulating the activity of a diverse group of ion channels within the pain pathway. In the present review, the most recent literature concerning trace metal and redox regulation of T-type calcium channels, NMDA (N-methyl-D-aspartate) receptors, GABAA (γ-aminobutyric acid A) receptors and TRP (transient receptor potential) channels are described to gain a comprehensive understanding of the current state of the field as well as to provide a basis for future thought and experimentation.

  8. N-Myristoylation Regulates the SnRK1 Pathway in Arabidopsis[W

    Science.gov (United States)

    Pierre, Michèle; Traverso, José A.; Boisson, Bertrand; Domenichini, Séverine; Bouchez, David; Giglione, Carmela; Meinnel, Thierry

    2007-01-01

    Cotranslational and posttranslational modifications are increasingly recognized as important in the regulation of numerous essential cellular functions. N-myristoylation is a lipid modification ensuring the proper function and intracellular trafficking of proteins involved in many signaling pathways. Arabidopsis thaliana, like human, has two tightly regulated N-myristoyltransferase (NMT) genes, NMT1 and NMT2. Characterization of knockout mutants showed that NMT1 was strictly required for plant viability, whereas NMT2 accelerated flowering. NMT1 impairment induced extremely severe defects in the shoot apical meristem during embryonic development, causing growth arrest after germination. A transgenic plant line with an inducible NMT1 gene demonstrated that NMT1 expression had further effects at later stages. NMT2 did not compensate for NMT1 in the nmt1-1 mutant, but NMT2 overexpression resulted in shoot and root meristem abnormalities. Various data from complementation experiments in the nmt1-1 background, using either yeast or human NMTs, demonstrated a functional link between the developmental arrest of nmt1-1 mutants and the myristoylation state of an extremely small set of protein targets. We show here that protein N-myristoylation is systematically associated with shoot meristem development and that SnRK1 (for SNF1-related kinase) is one of its essential primary targets. PMID:17827350

  9. Drosophila DOCK family protein sponge regulates the JNK pathway during thorax development.

    Science.gov (United States)

    Morishita, Kazushige; Ozasa, Fumito; Eguchi, Koichi; Yoshioka, Yasuhide; Yoshida, Hideki; Hiai, Hiroshi; Yamaguchi, Masamitsu

    2014-01-01

    The dedicator of cytokinesis (DOCK) family proteins that are conserved in a wide variety of species are known as DOCK1-DOCK11 in mammals. The Sponge (Spg) is a Drosophila counterpart to the mammalian DOCK3. Specific knockdown of spg by pannir-GAL4 or apterous-GAL4 driver in wing discs induced split thorax phenotype in adults. Reduction of the Drosophila c-Jun N-terminal kinase (JNK), basket (bsk) gene dose enhanced the spg knockdown-induced phenotype. Conversely, overexpression of bsk suppressed the split thorax phenotype. Monitoring JNK activity in the wing imaginal discs by immunostaining with anti-phosphorylated JNK (anti-pJNK) antibody together with examination of lacZ expression in a puckered-lacZ enhancer trap line revealed the strong reduction of the JNK activity in the spg knockdown clones. This was further confirmed by Western immunoblot analysis of extracts from wing discs of spg knockdown fly with anti-pJNK antibody. Furthermore, the Duolink in situ Proximity Ligation Assay method detected interaction signals between Spg and Rac1 in the wing discs. Taken together, these results indicate Spg positively regulates JNK pathway that is required for thorax development and the regulation is mediated by interaction with Rac1.

  10. TDRG1 regulates chemosensitivity of seminoma TCam-2 cells to cisplatin via PI3K/Akt/mTOR signaling pathway and mitochondria-mediated apoptotic pathway.

    Science.gov (United States)

    Gan, Yu; Wang, Yong; Tan, Zhengyu; Zhou, Jun; Kitazawa, Riko; Jiang, Xianzhen; Tang, Yuxin; Yang, Jianfu

    2016-07-02

    We previously identified TDRG1 (testis developmental related gene 1), a novel gene with exclusive expression in testis, promoted the proliferation and progression of cultured human seminoma cells through PI3K/Akt/mTOR signaling. As increasing evidence reveal that aberrant activation of this signaling is involved in cisplatin resistance. Then, in this study, we further explored whether TDRG1 regulated the chemosensitivity of seminoma TCam-2 cells to cisplatin. Our researches showed TDRG1 could regulate the viability of TCam-2 cells following cisplatin treatment in vitro through control of both cell apoptosis and cell cycle. Mechanistically, we observed TDRG1 positively regulated the expression levels of the key elements in PI3K/Akt/mTOR pathway including p-PI3K, p-Akt and p-mTOR and also affected the translocation of nuclear p-Akt in TCam-2 cells during cisplatin treatment. Meanwhile, the levels of Bad, cytochrome c, caspase-9 ratio (activated/total), caspase-3 ratio (activated/total) and cleaved-PARP were negatively modulated by TDRG1, which meant the involvement of mitochondria-mediated apoptotic pathway. Furthermore, we found the effect of TDRG1 knockdown or TDRG1 overexpression could be reversed by IGF-1, a PI3K signaling activator, or LY294002, a inhibitor of this pathway, respectively. Similar effects of TDRG1 on cisplatin chemosensitivity and associated molecular mechanism were also confirmed in vivo by employing xenograft assays. In addition, the positive correlation between TDRG1 and p-PI3K, or p-Akt, was found in tumor tissues from seminoma patients. In conclusion, we uncover that TDRG1 regulates chemosensitivity of TCam-2 cells to cisplatin through PI3K/Akt/mTOR signaling and mitochondria-mediated apoptotic pathway both in vitro and in vivo.

  11. Identification of metabolism pathways directly regulated by sigma54 factor in Bacillus thuringiensis

    Science.gov (United States)

    Peng, Qi; Wang, Guannan; Liu, Guiming; Zhang, Jie; Song, Fuping

    2015-01-01

    Sigma54 (σ54) regulates nitrogen and carbon utilization in bacteria. Promoters that are σ54-dependent are highly conserved and contain short sequences located at the −24 and −12 positions upstream of the transcription initiation site. σ54 requires regulatory proteins known as bacterial enhancer-binding proteins (bEBPs) to activate gene transcription. We show that σ54 regulates the capacity to grow on various nitrogen sources using a Bacillus thuringiensis HD73 mutant lacking the sigL gene encoding σ54 (ΔsigL). A 2-fold-change cutoff and a false discovery rate cutoff of P < 0.05 were used to analyze the DNA microarray data, which revealed 255 genes that were downregulated and 121 that were upregulated in the ΔsigL mutant relative to the wild-type HD73 strain. The σ54 regulon (stationary phase) was characterized by DNA microarray, bioinformatics, and functional assay; 16 operons containing 47 genes were identified whose promoter regions contain the conserved −12/−24 element and whose transcriptional activities were abolished or reduced in the ΔsigL mutant. Eight σ54-dependent transcriptional bEBPs were found in the Bt HD73 genome, and they regulated nine σ54-dependent promoters. The metabolic pathways activated by σ54 in this process have yet to be identified in Bacillus thuringiensis; nonetheless, the present analysis of the σ54 regulon provides a better understanding of the physiological roles of σ factors in bacteria. PMID:26029175

  12. The Kto-Skd complex can regulate ptc expression by interacting with Cubitus interruptus (Ci) in the Hedgehog signaling pathway.

    Science.gov (United States)

    Mao, Feifei; Yang, Xiaofeng; Fu, Lin; Lv, Xiangdong; Zhang, Zhao; Wu, Wenqing; Yang, Siqi; Zhou, Zhaocai; Zhang, Lei; Zhao, Yun

    2014-08-08

    The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Drosophila imaginal discs are subdivided into anterior and posterior compartments that derive from adjacent cell populations. The anterior/posterior (A/P) boundaries, which are critical to maintaining the position of organizers, are established by a complex mechanism involving Hh signaling. Here, we uncover the regulation of ptc in the Hh signaling pathway by two subunits of mediator complex, Kto and Skd, which can also regulate boundary location. Collectively, we provide further evidence that Kto-Skd affects the A/P-axial development of the whole wing disc. Kto can interact with Cubitus interruptus (Ci), bind to the Ci-binding region on ptc promoter, which are both regulated by Hh signals to down-regulate ptc expression. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast.

    Directory of Open Access Journals (Sweden)

    Masafumi Nishizawa

    2008-12-01

    Full Text Available The budding yeast Saccharomyces cerevisiae alters its gene expression profile in response to a change in nutrient availability. The PHO system is a well-studied case in the transcriptional regulation responding to nutritional changes in which a set of genes (PHO genes is expressed to activate inorganic phosphate (Pi metabolism for adaptation to Pi starvation. Pi starvation triggers an inhibition of Pho85 kinase, leading to migration of unphosphorylated Pho4 transcriptional activator into the nucleus and enabling expression of PHO genes. When Pi is sufficient, the Pho85 kinase phosphorylates Pho4, thereby excluding it from the nucleus and resulting in repression (i.e., lack of transcription of PHO genes. The Pho85 kinase has a role in various cellular functions other than regulation of the PHO system in that Pho85 monitors whether environmental conditions are adequate for cell growth and represses inadequate (untimely responses in these cellular processes. In contrast, Pho4 appears to activate some genes involved in stress response and is required for G1 arrest caused by DNA damage. These facts suggest the antagonistic function of these two players on a more general scale when yeast cells must cope with stress conditions. To explore general involvement of Pho4 in stress response, we tried to identify Pho4-dependent genes by a genome-wide mapping of Pho4 and Rpo21 binding (Rpo21 being the largest subunit of RNA polymerase II using a yeast tiling array. In the course of this study, we found Pi- and Pho4-regulated intragenic and antisense RNAs that could modulate the Pi signal transduction pathway. Low-Pi signal is transmitted via certain inositol polyphosphate (IP species (IP7 that are synthesized by Vip1 IP6 kinase. We have shown that Pho4 activates the transcription of antisense and intragenic RNAs in the KCS1 locus to down-regulate the Kcs1 activity, another IP6 kinase, by producing truncated Kcs1 protein via hybrid formation with the KCS1 m

  14. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Skerker

    2005-10-01

    Full Text Available Two-component signal transduction systems, comprised of histidine kinases and their response regulator substrates, are the predominant means by which bacteria sense and respond to extracellular signals. These systems allow cells to adapt to prevailing conditions by modifying cellular physiology, including initiating programs of gene expression, catalyzing reactions, or modifying protein-protein interactions. These signaling pathways have also been demonstrated to play a role in coordinating bacterial cell cycle progression and development. Here we report a system-level investigation of two-component pathways in the model organism Caulobacter crescentus. First, by a comprehensive deletion analysis we show that at least 39 of the 106 two-component genes are required for cell cycle progression, growth, or morphogenesis. These include nine genes essential for growth or viability of the organism. We then use a systematic biochemical approach, called phosphotransfer profiling, to map the connectivity of histidine kinases and response regulators. Combining these genetic and biochemical approaches, we identify a new, highly conserved essential signaling pathway from the histidine kinase CenK to the response regulator CenR, which plays a critical role in controlling cell envelope biogenesis and structure. Depletion of either cenK or cenR leads to an unusual, severe blebbing of cell envelope material, whereas constitutive activation of the pathway compromises cell envelope integrity, resulting in cell lysis and death. We propose that the CenK-CenR pathway may be a suitable target for new antibiotic development, given previous successes in targeting the bacterial cell wall. Finally, the ability of our in vitro phosphotransfer profiling method to identify signaling pathways that operate in vivo takes advantage of an observation that histidine kinases are endowed with a global kinetic preference for their cognate response regulators. We propose that this

  15. Two-Component Signal Transduction Pathways Regulating Growth and Cell Cycle Progression in a Bacterium: A System-Level Analysis

    Science.gov (United States)

    Skerker, Jeffrey M; Prasol, Melanie S; Perchuk, Barrett S; Biondi, Emanuele G

    2005-01-01

    Two-component signal transduction systems, comprised of histidine kinases and their response regulator substrates, are the predominant means by which bacteria sense and respond to extracellular signals. These systems allow cells to adapt to prevailing conditions by modifying cellular physiology, including initiating programs of gene expression, catalyzing reactions, or modifying protein–protein interactions. These signaling pathways have also been demonstrated to play a role in coordinating bacterial cell cycle progression and development. Here we report a system-level investigation of two-component pathways in the model organism Caulobacter crescentus. First, by a comprehensive deletion analysis we show that at least 39 of the 106 two-component genes are required for cell cycle progression, growth, or morphogenesis. These include nine genes essential for growth or viability of the organism. We then use a systematic biochemical approach, called phosphotransfer profiling, to map the connectivity of histidine kinases and response regulators. Combining these genetic and biochemical approaches, we identify a new, highly conserved essential signaling pathway from the histidine kinase CenK to the response regulator CenR, which plays a critical role in controlling cell envelope biogenesis and structure. Depletion of either cenK or cenR leads to an unusual, severe blebbing of cell envelope material, whereas constitutive activation of the pathway compromises cell envelope integrity, resulting in cell lysis and death. We propose that the CenK–CenR pathway may be a suitable target for new antibiotic development, given previous successes in targeting the bacterial cell wall. Finally, the ability of our in vitro phosphotransfer profiling method to identify signaling pathways that operate in vivo takes advantage of an observation that histidine kinases are endowed with a global kinetic preference for their cognate response regulators. We propose that this system

  16. An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation.

    Science.gov (United States)

    Ma, Sisi; Kemmeren, Patrick; Aliferis, Constantin F; Statnikov, Alexander

    2016-03-04

    Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods' performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost.

  17. Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse.

    Science.gov (United States)

    Feng, Yan-Min; Liang, Gui-Jin; Pan, Bo; Qin, Xun-Si; Zhang, Xi-Feng; Chen, Chun-Lei; Li, Lan; Cheng, Shun-Feng; De Felici, Massimo; Shen, Wei

    2014-01-01

    A critical process of early oogenesis is the entry of mitotic oogonia into meiosis, a cell cycle switch regulated by a complex gene regulatory network. Although Notch pathway is involved in numerous important aspects of oogenesis in invertebrate species, whether it plays roles in early oogenesis events in mammals is unknown. Therefore, the rationale of the present study was to investigate the roles of Notch signaling in crucial processes of early oogenesis, such as meiosis entry and early oocyte growth. Notch receptors and ligands were localized in mouse embryonic female gonads and 2 Notch inhibitors, namely DAPT and L-685,458, were used to attenuate its signaling in an in vitro culture system of ovarian tissues from 12.5 days post coitum (dpc) fetus. The results demonstrated that the expression of Stra8, a master gene for germ cell meiosis, and its stimulation by retinoic acid (RA) were reduced after suppression of Notch signaling, and the other meiotic genes, Dazl, Dmc1, and Rec8, were abolished or markedly decreased. Furthermore, RNAi of Notch1 also markedly inhibited the expression of Stra8 and SCP3 in cultured female germ cells. The increased methylation status of CpG islands within the Stra8 promoter of the oocytes was observed in the presence of DAPT, indicating that Notch signaling is probably necessary for maintaining the epigenetic state of this gene in a way suitable for RA stimulation. Furthermore, in the presence of Notch inhibitors, progression of oocytes through meiosis I was markedly delayed. At later culture periods, the rate of oocyte growth was decreased, which impaired subsequent primordial follicle assembly in cultured ovarian tissues. Taken together, these results suggested new roles of the Notch signaling pathway in female germ cell meiosis progression and early oogenesis events in mammals.

  18. PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix.

    Directory of Open Access Journals (Sweden)

    Ruth E Thomas

    Full Text Available Loss-of-function mutations in PINK1, which encodes a mitochondrially targeted serine/threonine kinase, result in an early-onset heritable form of Parkinson's disease. Previous work has shown that PINK1 is constitutively degraded in healthy cells, but selectively accumulates on the surface of depolarized mitochondria, thereby initiating their autophagic degradation. Although PINK1 is known to be a cleavage target of several mitochondrial proteases, whether these proteases account for the constitutive degradation of PINK1 in healthy mitochondria remains unclear. To explore the mechanism by which PINK1 is degraded, we performed a screen for mitochondrial proteases that influence PINK1 abundance in the fruit fly Drosophila melanogaster. We found that genetic perturbations targeting the matrix-localized protease Lon caused dramatic accumulation of processed PINK1 species in several mitochondrial compartments, including the matrix. Knockdown of Lon did not decrease mitochondrial membrane potential or trigger activation of the mitochondrial unfolded protein stress response (UPRmt, indicating that PINK1 accumulation in Lon-deficient animals is not a secondary consequence of mitochondrial depolarization or the UPRmt. Moreover, the influence of Lon on PINK1 abundance was highly specific, as Lon inactivation had little or no effect on the abundance of other mitochondrial proteins. Further studies indicated that the processed forms of PINK1 that accumulate upon Lon inactivation are capable of activating the PINK1-Parkin pathway in vivo. Our findings thus suggest that Lon plays an essential role in regulating the PINK1-Parkin pathway by promoting the degradation of PINK1 in the matrix of healthy mitochondria.

  19. Long noncoding RNA CCAT2 promotes breast tumor growth by regulating the Wnt signaling pathway

    Directory of Open Access Journals (Sweden)

    Cai Y

    2015-09-01

    Full Text Available Yi Cai,1,* Jing He,2,* Dong Zhang11Department of Geriatric Oncology, 2Department of Geriatric Integrated Surgery, The General Hospital of Chinese People’s Liberation Army, Beijing City, People’s Republic of China*These authors contributed equally to this workAbstract: In addition to protein-coding genes, the human genome makes a large amount of noncoding RNAs, including microRNAs and long noncoding RNAs (lncRNAs. Emerging evidence indicates that lncRNAs could have a critical role in the regulation of cellular processes such as cell growth and apoptosis as well as cancer progression and metastasis. The lncRNA CCAT2 is dysregulated in several cancers such as colon cancer, non-small cell lung cancer, esophageal squamous cell carcinoma, gastric cancer, and breast cancer; however, the contributions of CCAT2 to breast cancer remain largely unknown. In the current paper, we first confirmed the high expression level of CCAT2 in breast cancer tissues and breast cancer cell lines by reverse transcription quantitative polymerase chain reaction (RT-qPCR assay, and we further analyzed the relationship between CCAT2 expression and clinical prognostic factors. Also, the biological function of CCAT2 was explored and the results showed silencing of CCAT2 could suppress cell growth in vitro and tumor formation in vivo. Finally, our results revealed that the abnormal expression of CCAT2 could influence the Wnt signaling pathway. In conclusion, lncRNA CCAT2 might be considered as a novel molecule involved in breast cancer development, which provides a potential therapeutic target for breast cancer.Keywords: long noncoding RNAs, CCAT2, breast cancer, Wnt signaling pathway

  20. Acute regulation of cardiac metabolism by the hexosamine biosynthesis pathway and protein O-GlcNAcylation.

    Directory of Open Access Journals (Sweden)

    Boglárka Laczy

    Full Text Available OBJECTIVE: The hexosamine biosynthesis pathway (HBP flux and protein O-linked N-acetyl-glucosamine (O-GlcNAc levels have been implicated in mediating the adverse effects of diabetes in the cardiovascular system. Activation of these pathways with glucosamine has been shown to mimic some of the diabetes-induced functional and structural changes in the heart; however, the effect on cardiac metabolism is not known. Therefore, the primary goal of this study was to determine the effects of glucosamine on cardiac substrate utilization. METHODS: Isolated rat hearts were perfused with glucosamine (0-10 mM to increase HBP flux under normoxic conditions. Metabolic fluxes were determined by (13C-NMR isotopomer analysis; UDP-GlcNAc a precursor of O-GlcNAc synthesis was assessed by HPLC and immunoblot analysis was used to determine O-GlcNAc levels, phospho- and total levels of AMPK and ACC, and membrane levels of FAT/CD36. RESULTS: Glucosamine caused a dose dependent increase in both UDP-GlcNAc and O-GlcNAc levels, which was associated with a significant increase in palmitate oxidation with a concomitant decrease in lactate and pyruvate oxidation. There was no effect of glucosamine on AMPK or ACC phosphorylation; however, membrane levels of the fatty acid transport protein FAT/CD36 were increased and preliminary studies suggest that FAT/CD36 is a potential target for O-GlcNAcylation. CONCLUSION/INTERPRETATION: These data demonstrate that acute modulation of HBP and protein O-GlcNAcylation in the heart stimulates fatty acid oxidation, possibly by increasing plasma membrane levels of FAT/CD36, raising the intriguing possibility that the HBP and O-GlcNAc turnover represent a novel, glucose dependent mechanism for regulating cardiac metabolism.

  1. mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaojun [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000 (China); Zhong, Xiaomin [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011 (China); Tanyi, Janos L.; Shen, Jianfeng [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Xu, Congjian [Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011 (China); Gao, Peng [Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000 (China); Zheng, Tim M. [Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States); DeMichele, Angela [Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States); Zhang, Lin, E-mail: linzhang@mail.med.upenn.edu [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2013-02-15

    Highlights: ► Gene set enrichment analysis indicated mir-30d might regulate the autophagy pathway. ► mir-30d represses the expression of BECN1, BNIP3L, ATG12, ATG5 and ATG2. ► BECN1, BNIP3L, ATG12, ATG5 and ATG2 are direct targets of mir-30d. ► mir-30d inhibits autophagosome formation and LC3B-I conversion to LC3B-II. ► mir-30d regulates the autophagy process. -- Abstract: In human epithelial cancers, the microRNA (miRNA) mir-30d is amplified with high frequency and serves as a critical oncomir by regulating metastasis, apoptosis, proliferation, and differentiation. Autophagy, a degradation pathway for long-lived protein and organelles, regulates the survival and death of many cell types. Increasing evidence suggests that autophagy plays an important function in epithelial tumor initiation and progression. Using a combined bioinformatics approach, gene set enrichment analysis, and miRNA target prediction, we found that mir-30d might regulate multiple genes in the autophagy pathway including BECN1, BNIP3L, ATG12, ATG5, and ATG2. Our further functional experiments demonstrated that the expression of these core proteins in the autophagy pathway was directly suppressed by mir-30d in cancer cells. Finally, we showed that mir-30d regulated the autophagy process by inhibiting autophagosome formation and LC3B-I conversion to LC3B-II. Taken together, our results provide evidence that the oncomir mir-30d impairs the autophagy process by targeting multiple genes in the autophagy pathway. This result will contribute to understanding the molecular mechanism of mir-30d in tumorigenesis and developing novel cancer therapy strategy.

  2. Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death.

    Science.gov (United States)

    Vanlerberghe, Greg C; Robson, Christine A; Yip, Justine Y H

    2002-08-01

    Treatment of tobacco (Nicotiana tabacum L. cv Petit Havana SR1) cells with cysteine (Cys) triggers a signal pathway culminating in a large loss of mitochondrial cytochrome (cyt) pathway capacity. This down-regulation of the cyt path likely requires events outside the mitochondrion and is effectively blocked by cantharidin or endothall, indicating that protein dephosphorylation is one critical process involved. Generation of reactive oxygen species, cytosolic protein synthesis, and Ca(2+) flux from organelles also appear to be involved. Accompanying the loss of cyt path is a large induction of alternative oxidase (AOX) protein and capacity. Induction of AOX allows the cells to maintain high rates of respiration, indicating that the lesion triggered by Cys is in the cyt path downstream of ubiquinone. Consistent with this, transgenic (AS8) cells unable to induce AOX (due to the presence of an antisense transgene) lose all respiratory capacity upon Cys treatment. This initiates in AS8 a programmed cell death pathway, as evidenced by the accumulation of oligonucleosomal fragments of DNA as the culture dies. Alternatively, wild-type cells remain viable and eventually recover their cyt path. Induction of AOX in response to a chemical inhibition of the cyt path (by antimycin A) is also dependent upon protein dephosphorylation and the generation of reactive oxygen species. Common events required for both down-regulation of the cyt path and induction of AOX may represent a mechanism to coordinate the biogenesis of these two electron transport paths. Such coordinate regulation may be necessary, not only to satisfy metabolic demands, but also to modulate the initiation of a programmed cell death pathway responsive to mitochondrial respiratory status.

  3. Regulation of the Wnt/β-Catenin Signaling Pathway by Human Papillomavirus E6 and E7 Oncoproteins

    Directory of Open Access Journals (Sweden)

    Jesus Omar Muñoz Bello

    2015-08-01

    Full Text Available Cell signaling pathways are the mechanisms by which cells transduce external stimuli, which control the transcription of genes, to regulate diverse biological effects. In cancer, distinct signaling pathways, such as the Wnt/β-catenin pathway, have been implicated in the deregulation of critical molecular processes that affect cell proliferation and differentiation. For example, changes in β-catenin localization have been identified in Human Papillomavirus (HPV-related cancers as the lesion progresses. Specifically, β-catenin relocates from the membrane/cytoplasm to the nucleus, suggesting that this transcription regulator participates in cervical carcinogenesis. The E6 and E7 oncoproteins are responsible for the transforming activity of HPV, and some studies have implicated these viral oncoproteins in the regulation of the Wnt/β-catenin pathway. Nevertheless, new interactions of HPV oncoproteins with cellular proteins are emerging, and the study of the biological effects of such interactions will help to understand HPV-related carcinogenesis. Viruses 2015, 7 4735 This review addresses the accumulated evidence of the involvement of the HPV E6 and E7 oncoproteins in the activation of the Wnt/β-catenin pathway.

  4. The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes.

    Science.gov (United States)

    Fischer, Martin; Quaas, Marianne; Steiner, Lydia; Engeland, Kurt

    2016-01-01

    The tumor suppressor p53 functions predominantly as a transcription factor by activating and downregulating gene expression, leading to cell cycle arrest or apoptosis. p53 was shown to indirectly repress transcription of the CCNB2, KIF23 and PLK4 cell cycle genes through the recently discovered p53-p21-DREAM-CDE/CHR pathway. However, it remained unclear whether this pathway is commonly used. Here, we identify genes regulated by p53 through this pathway in a genome-wide computational approach. The bioinformatic analysis is based on genome-wide DREAM complex binding data, p53-depedent mRNA expression data and a genome-wide definition of phylogenetically conserved CHR promoter elements. We find 210 target genes that are expected to be regulated by the p53-p21-DREAM-CDE/CHR pathway. The target gene list was verified by detailed analysis of p53-dependent repression of the cell cycle genes B-MYB (MYBL2), BUB1, CCNA2, CCNB1, CHEK2, MELK, POLD1, RAD18 and RAD54L. Most of the 210 target genes are essential regulators of G2 phase and mitosis. Thus, downregulation of these genes through the p53-p21-DREAM-CDE/CHR pathway appears to be a principal mechanism for G2/M cell cycle arrest by p53.

  5. The phosphoinositide 3-kinase signalling pathway in normal and malignant B cells: activation mechanisms, regulation and impact on cellular functions

    Directory of Open Access Journals (Sweden)

    Samantha D Pauls

    2012-08-01

    Full Text Available The phosphoinositide 3-kinase (PI3K pathway is a central signal transduction axis controlling normal B cell homeostasis and activation in humoral immunity. The p110δ PI3K catalytic subunit has emerged as a critical mediator of multiple B cell functions. The activity of this pathway is regulated at multiple levels, with inositol phosphatases PTEN and SHIP both playing critical roles. When deregulated, the PI3K pathway can contribute to B cell malignancies and autoantibody production. This review summarizes current knowledge on key mechanisms that activate and regulate the PI3K pathway and influence normal B cell functional responses including the development of B cell subsets, antigen presentation, immunogloblulin isotype switch, germinal center responses and maintenance of B cell anergy. We also discuss PI3K pathway alterations reported in select B cell malignancies and highlight studies indicating the functional significance of this pathway in malignant B cell survival and growth within tissue microenvironments. Finally, we comment on early clinical trial results, which support PI3K inhibition as a promising treatment of chronic lymphocytic leukemia.

  6. The phosphoinositide 3-kinase signaling pathway in normal and malignant B cells: activation mechanisms, regulation and impact on cellular functions.

    Science.gov (United States)

    Pauls, Samantha D; Lafarge, Sandrine T; Landego, Ivan; Zhang, Tingting; Marshall, Aaron J

    2012-01-01

    The phosphoinositide 3-kinase (PI3K) pathway is a central signal transduction axis controlling normal B cell homeostasis and activation in humoral immunity. The p110δ PI3K catalytic subunit has emerged as a critical mediator of multiple B cell functions. The activity of this pathway is regulated at multiple levels, with inositol phosphatases PTEN and SHIP both playing critical roles. When deregulated, the PI3K pathway can contribute to B cell malignancies and autoantibody production. This review summarizes current knowledge on key mechanisms that activate and regulate the PI3K pathway and influence normal B cell functional responses including the development of B cell subsets, antigen presentation, immunoglobulin isotype switch, germinal center responses, and maintenance of B cell anergy. We also discuss PI3K pathway alterations reported in select B cell malignancies and highlight studies indicating the functional significance of this pathway in malignant B cell survival and growth within tissue microenvironments. Finally, we comment on early clinical trial results, which support PI3K inhibition as a promising treatment of chronic lymphocytic leukemia.

  7. Lack of myotubularin (MTM1) leads to muscle hypotrophy through unbalanced regulation of the autophagy and ubiquitin-proteasome pathways.

    Science.gov (United States)

    Al-Qusairi, Lama; Prokic, Ivana; Amoasii, Leonela; Kretz, Christine; Messaddeq, Nadia; Mandel, Jean-Louis; Laporte, Jocelyn

    2013-08-01

    Mutations in the phosphoinositide phosphatase myotubularin (MTM1) results in X-linked myotubular/centronuclear myopathy (XLMTM), characterized by a severe decrease in muscle mass and strength in patients and murine models. However, the molecular mechanism involved in the muscle hypotrophy is unclear. Here we show that the IGF1R/Akt pathway is affected in Mtm1-deficient murine muscles, characterized by an increase in IGF1 receptor and Akt levels in both the presymptomatic and symptomatic phases. Moreover, up-regulation of atrogenes was observed in the presymptomatic phase of the myopathy, supporting overactivation of the ubiquitin-proteasome pathway. In parallel, the autophagy machinery was affected as indicated by the increase in the number of autophagosomes and of autophagy markers, such as LC3 and P62. However, phosphorylation of FOXO3a and mTOR were abnormal at late but not at early stages of the disease, suggesting that myotubularin acts both upstream in the IGF1R/Akt pathway and downstream on the balance between the autophagy and ubiquitin-proteasome pathways in vivo. Adeno-associated virus-mediated delivery of Mtm1 into Mtm1-null muscles rescued muscle mass and normalized the expression levels of IGF1 receptor, the ubiquitin-proteasome pathway, and autophagy markers. These data support the hypothesis that the unbalanced regulation of the ubiquitin proteasome pathway and the autophagy machinery is a primary cause of the XLMTM pathogenesis.

  8. Role of cholinergic anti-inflammatory pathway in regulating host response and its interventional strategy for inflammatory diseases

    Institute of Scientific and Technical Information of China (English)

    WANG Da-wei; ZHOU Rong-bin; YAO Yong-ming

    2009-01-01

    @@ The cholinergic anti-inflammatory pathway (CAP) is a neurophysiological mechanism that regulates the immune system. The CAP inhibits inflammation by suppressing cytokine synthesis via release of acetylcholine in organs of the reticuloendothelial system, including the lungs, spleen, liver, kidneys and gastrointestinal tract.

  9. FLOWERING LOCUS C -dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways

    Directory of Open Access Journals (Sweden)

    Lynn James R

    2006-05-01

    Full Text Available Abstract Background The circadian system drives pervasive biological rhythms in plants. Circadian clocks integrate endogenous timing information with environmental signals, in order to match rhythmic outputs to the local day/night cycle. Multiple signaling pathways affect the circadian system, in ways that are likely to be adaptively significant. Our previous studies of natural genetic variation in Arabidopsis thaliana accessions implicated FLOWERING LOCUS C (FLC as a circadian-clock regulator. The MADS-box transcription factor FLC is best known as a regulator of flowering time. Its activity is regulated by many regulatory genes in the "autonomous" and vernalization-dependent flowering pathways. We tested whether these same pathways affect the circadian system. Results Genes in the autonomous flowering pathway, including FLC, were found to regulate circadian period in Arabidopsis. The mechanisms involved are similar, but not identical, to the control of flowering time. By mutant analyses, we demonstrate a graded effect of FLC expression upon circadian period. Related MADS-box genes had less effect on clock function. We also reveal an unexpected vernalization-dependent alteration of periodicity. Conclusion This study has aided in the understanding of FLC's role in the clock, as it reveals that the network affecting circadian timing is partially overlapping with the floral-regulatory network. We also show a link between vernalization and circadian period. This finding may be of ecological relevance for developmental programing in other plant species.

  10. PKCa and PKCd regulate ADAM17-mediated ectodomain shedding of heparin binding-EGF through separate pathways

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Instrell, Rachael; Rowlands, Christina;

    2011-01-01

    -EGF. We identified PKCa as the key participant in the activation of ADAM17 and suggest that it acts in parallel with a pathway linking PKCd and ERK activity. While PKCa specifically regulated PMA-induced shedding, PKCd and ERK influenced both constitutive and inducible shedding by apparently affecting...

  11. PI3K/mTOR-dependent signaling pathway as a possible regulator of processing bodies’ assembly

    Directory of Open Access Journals (Sweden)

    Filonenko V. V.

    2011-10-01

    Full Text Available Aim. To study the role of PI3K/mTOR signaling pathway in regulation of processing body (PB assembly. Methods. During this study we employed cell imaging technique and Western blot analysis. Results. It was shown that treatment of cells with the specific inhibitors of PI3K/mTOR pathway leads to changes of PBs’ number and size within cells as well as proteasomal degradation of their scaffold protein RCD-8. Conclusions. We speculate that mTOR/PI3K pathway may regulate in part the dynamic of PB formation in the cell by affecting the stability of RCD-8 protein and therefore controle mRNA metabolism

  12. Streptococcus pyogenes malate degradation pathway links pH regulation and virulence.

    Science.gov (United States)

    Paluscio, Elyse; Caparon, Michael G

    2015-03-01

    The ability of Streptococcus pyogenes to infect different niches within its human host most likely relies on its ability to utilize alternative carbon sources. In examining this question, we discovered that all sequenced S. pyogenes strains possess the genes for the malic enzyme (ME) pathway, which allows malate to be used as a supplemental carbon source for growth. ME is comprised of four genes in two adjacent operons, with the regulatory two-component MaeKR required for expression of genes encoding a malate permease (maeP) and malic enzyme (maeE). Analysis of transcription indicated that expression of maeP and maeE is induced by both malate and low pH, and induction in response to both cues is dependent on the MaeK sensor kinase. Furthermore, both maePE and maeKR are repressed by glucose, which occurs via a CcpA-independent mechanism. Additionally, malate utilization requires the PTS transporter EI enzyme (PtsI), as a PtsI(-) mutant fails to express the ME genes and is unable to utilize malate. Virulence of selected ME mutants was assessed in a murine model of soft tissue infection. MaeP(-), MaeK(-), and MaeR(-) mutants were attenuated for virulence, whereas a MaeE(-) mutant showed enhanced virulence compared to that of the wild type. Taken together, these data show that ME contributes to S. pyogenes' carbon source repertory, that malate utilization is a highly regulated process, and that a single regulator controls ME expression in response to diverse signals. Furthermore, malate uptake and utilization contribute to the adaptive pH response, and ME can influence the outcome of infection.

  13. Runx2 regulates G protein-coupled signaling pathways to control growth of osteoblast progenitors.

    Science.gov (United States)

    Teplyuk, Nadiya M; Galindo, Mario; Teplyuk, Viktor I; Pratap, Jitesh; Young, Daniel W; Lapointe, David; Javed, Amjad; Stein, Janet L; Lian, Jane B; Stein, Gary S; van Wijnen, Andre J

    2008-10-10

    Runt-related transcription factor 2 (Runx2) controls lineage commitment, proliferation, and anabolic functions of osteoblasts as the subnuclear effector of multiple signaling axes (e.g. transforming growth factor-beta/BMP-SMAD, SRC/YES-YAP, and GROUCHO/TLE). Runx2 levels oscillate during the osteoblast cell cycle with maximal levels in G(1). Here we examined what functions and target genes of Runx2 control osteoblast growth. Forced expression of wild type Runx2 suppresses growth of Runx2(-/-) osteoprogenitors. Point mutants defective for binding to WW domain or SMAD proteins or the nuclear matrix retain this growth regulatory ability. Hence, key signaling pathways are dispensable for growth control by Runx2. However, mutants defective for DNA binding or C-terminal gene repression/activation functions do not block proliferation. Target gene analysis by Affymetrix expression profiling shows that the C terminus of Runx2 regulates genes involved in G protein-coupled receptor signaling (e.g. Rgs2, Rgs4, Rgs5, Rgs16, Gpr23, Gpr30, Gpr54, Gpr64, and Gna13). We further examined the function of two genes linked to cAMP signaling as follows: Gpr30 that is stimulated and Rgs2 that is down-regulated by Runx2. RNA interference of Gpr30 and forced expression of Rgs2 in each case inhibit osteoblast proliferation. Notwithstanding its growth-suppressive potential, our results surprisingly indicate that Runx2 may sensitize cAMP-related G protein-coupled receptor signaling by activating Gpr30 and repressing Rgs2 gene expression in osteoblasts to increase responsiveness to mitogenic signals.

  14. Presenilin 1 regulates epidermal growth factor receptor turnover and signaling in the endosomal-lysosomal pathway.

    Science.gov (United States)

    Repetto, Emanuela; Yoon, Il-Sang; Zheng, Hui; Kang, David E

    2007-10-26

    Mutations in the gene encoding presenilin 1 (PS1) cause the most aggressive form of early-onset familial Alzheimer disease. In addition to its well established role in Abeta production and Notch proteolysis, PS1 has been shown to mediate other physiological activities, such as regulation of the Wnt/beta-catenin signaling pathway, modulation of phosphatidylinositol 3-kinase/Akt and MEK/ERK signaling, and trafficking of select membrane proteins and/or intracellular vesicles. In this study, we present evidence that PS1 is a critical regulator of a key signaling receptor tyrosine kinase, epidermal growth factor receptor (EGFR). Specifically, EGFR levels were robustly increased in fibroblasts deficient in both PS1 and PS2 (PS(-/-)) due to delayed turnover of EGFR protein. Stable transfection of wild-type PS1 but not PS2 corrected EGFR to levels comparable to PS(+/+) cells, while FAD PS1 mutations showed partial loss of activity. The C-terminal fragment of PS1 was sufficient to fully reduce EGFR levels. In addition, the rapid ligand-induced degradation of EGFR was markedly delayed in PS(-/-) cells, resulting in prolonged signal activation. Despite the defective turnover of EGFR, ligand-induced autophosphorylation, ubiquitination, and endocytosis of EGFR were not affected by the lack of PS1. Instead, the trafficking of EGFR from early endosomes to lysosomes was severely delayed by PS1 deficiency. Elevation of EGFR was also seen in brains of adult mice conditionally ablated in PS1 and in skin tumors associated with the loss of PS1. These findings demonstrate a critical role of PS1 in the trafficking and turnover of EGFR and suggest potential pathogenic effects of elevated EGFR as well as perturbed endosomal-lysosomal trafficking in cell cycle control and Alzheimer disease.

  15. α1-Acid Glycoprotein Up-regulates CD163 via TLR4/CD14 Protein Pathway

    Science.gov (United States)

    Komori, Hisakazu; Watanabe, Hiroshi; Shuto, Tsuyoshi; Kodama, Azusa; Maeda, Hitoshi; Watanabe, Kenji; Kai, Hirofumi; Otagiri, Masaki; Maruyama, Toru

    2012-01-01

    CD163, a scavenger receptor that is expressed at high levels in the monocyte-macrophage system, is a critical factor for the efficient extracellular hemoglobin (Hb) clearance during hemolysis. Because of the enormous detrimental effect of liberated Hb on our body by its ability to induce pro-inflammatory signals and tissue damage, an understanding of the molecular mechanisms associated with CD163 expression during the acute phase response is a central issue. We report here that α1-acid glycoprotein (AGP), an acute phase protein, the serum concentration of which is elevated under various inflammatory conditions, including hemolysis, up-regulates CD163 expression in both macrophage-like differentiated THP-1 (dTHP-1) cells and peripheral blood mononuclear cells in a time- and concentration-dependent manner. Moreover, the subsequent induction of Hb uptake was also observed in AGP-treated dTHP-1 cells. Among representative acute phase proteins such as AGP, α1-antitrypsin, C-reactive protein, and haptoglobin, only AGP increased CD163 expression, suggesting that AGP plays a specific role in the regulation of CD163. Consistently, the physiological concentrations of AGP induced CD163, and the subsequent induction of Hb uptake as well as the reduction of oxidative stress in plasma were observed in phenylhydrazine-induced hemolytic model mice, confirming the in vivo role of AGP. Finally, AGP signaling through the toll-like receptor-4 (TLR4) and CD14, the common innate immune receptor complex that normally recognizes bacterial components, was identified as a crucial stimulus that induces the autocrine regulatory loops of IL-6 and/or IL-10 via NF-κB, p38, and JNK pathways, which leads to an enhancement in CD163 expression. These findings provide possible insights into how AGP exerts anti-inflammatory properties against hemolysis-induced oxidative stress. PMID:22807450

  16. Notch pathway modulation on bone marrow-derived vascular precursor cells regulates their angiogenic and wound healing potential.

    Science.gov (United States)

    Caiado, Francisco; Real, Carla; Carvalho, Tânia; Dias, Sérgio

    2008-01-01

    Bone marrow (BM) derived vascular precursor cells (BM-PC, endothelial progenitors) are involved in normal and malignant angiogenesis, in ischemia and in wound healing. However, the mechanisms by which BM-PC stimulate the pre-existing endothelial cells at sites of vascular remodelling/recovery, and their contribution towards the formation of new blood vessels are still undisclosed. In the present report, we exploited the possibility that members of the Notch signalling pathway, expressed by BM-PC during endothelial differentiation, might regulate their pro-angiogenic or pro-wound healing properties. We demonstrate that Notch pathway modulates the adhesion of BM-PC to extracellular matrix (ECM) in vitro via regulation of integrin alpha3beta1; and that Notch pathway inhibition on BM-PC impairs their capacity to stimulate endothelial cell tube formation on matrigel and to promote endothelial monolayer recovery following wounding in vitro. Moreover, we show that activation of Notch pathway on BM-PC improved wound healing in vivo through angiogenesis induction. Conversely, inoculation of BM-PC pre-treated with a gamma secretase inhibitor (GSI) into wounded mice failed to induce angiogenesis at the wound site and did not promote wound healing, presumably due to a lower frequency of BM-PC at the wound area. Our data suggests that Notch pathway regulates BM-PC adhesion to ECM at sites of vascular repair and that it also regulates the capacity of BM-PC to stimulate angiogenesis and to promote wound healing. Drug targeting of the Notch pathway on BM-PC may thus represent a novel strategy to modulate neo-angiogenesis and vessel repair.

  17. Notch pathway modulation on bone marrow-derived vascular precursor cells regulates their angiogenic and wound healing potential.

    Directory of Open Access Journals (Sweden)

    Francisco Caiado

    Full Text Available Bone marrow (BM derived vascular precursor cells (BM-PC, endothelial progenitors are involved in normal and malignant angiogenesis, in ischemia and in wound healing. However, the mechanisms by which BM-PC stimulate the pre-existing endothelial cells at sites of vascular remodelling/recovery, and their contribution towards the formation of new blood vessels are still undisclosed. In the present report, we exploited the possibility that members of the Notch signalling pathway, expressed by BM-PC during endothelial differentiation, might regulate their pro-angiogenic or pro-wound healing properties. We demonstrate that Notch pathway modulates the adhesion of BM-PC to extracellular matrix (ECM in vitro via regulation of integrin alpha3beta1; and that Notch pathway inhibition on BM-PC impairs their capacity to stimulate endothelial cell tube formation on matrigel and to promote endothelial monolayer recovery following wounding in vitro. Moreover, we show that activation of Notch pathway on BM-PC improved wound healing in vivo through angiogenesis induction. Conversely, inoculation of BM-PC pre-treated with a gamma secretase inhibitor (GSI into wounded mice failed to induce angiogenesis at the wound site and did not promote wound healing, presumably due to a lower frequency of BM-PC at the wound area. Our data suggests that Notch pathway regulates BM-PC adhesion to ECM at sites of vascular repair and that it also regulates the capacity of BM-PC to stimulate angiogenesis and to promote wound healing. Drug targeting of the Notch pathway on BM-PC may thus represent a novel strategy to modulate neo-angiogenesis and vessel repair.

  18. Arabidopsis CPR5 independently regulates seed germination and postgermination arrest of development through LOX pathway and ABA signaling.

    Directory of Open Access Journals (Sweden)

    Guilan Gao

    Full Text Available The phytohormone abscisic acid (ABA and the lipoxygenases (LOXs pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently.

  19. Negative regulation of TLR-signaling pathways by activating transcription factor-3.

    Science.gov (United States)

    Whitmore, Mark M; Iparraguirre, Amaya; Kubelka, Lindsey; Weninger, Wolfgang; Hai, Tsonwin; Williams, Bryan R G

    2007-09-15

    Activating transcription factor-3 (ATF3) is rapidly induced by LPS in mouse macrophages and regulates TLR4 responses. We show that ATF3 is rapidly induced by various TLRs in mouse macrophages and plasmacytoid dendritic cells (DCs), as well as plasmacytoid and myeloid subsets of human DCs. In primary macrophages from mice with a targeted deletion of the atf3 gene (ATF3-knockout (KO)), TLR-stimulated levels of IL-12 and IL-6 were elevated relative to responses in wild-type macrophages. Similarly, targeted deletion of atf3 correlated with enhanced responsiveness of myeloid DCs to TLR activation as measured by IL-12 secretion. Ectopic expression of ATF3 antagonized TLR-stimulated IL-12p40 activation in a reporter assay. In vivo, CpG-oligodeoxynucleotide, a TLR9 agonist, given i.p. to ATF3-KO mice resulted in enhanced cytokine production from splenocytes. Furthermore, while ATF3-KO mice challenged with a sublethal dose of PR8 influenza virus were delayed in body weight recovery in comparison to wild type, the ATF3-KO mice showed higher titers of serum neutralizing Ab against PR8 5 mo postinfection. Thus, ATF3 behaves as a negative regulatory transcription factor in TLR pathways and, accordingly, deficiency in atf3 alters responses to immunological challenges in vivo. ATF3 dysregulation merits further exploration in diseases such as type I diabetes and cancer, where altered innate immunity has been implicated in their pathogenesis.

  20. RNA sequencing analysis of human podocytes reveals glucocorticoid regulated gene networks targeting non-immune pathways

    Science.gov (United States)

    Jiang, Lulu; Hindmarch, Charles C. T.; Rogers, Mark; Campbell, Colin; Waterfall, Christy; Coghill, Jane; Mathieson, Peter W.; Welsh, Gavin I.

    2016-01-01

    Glucocorticoids are steroids that reduce inflammation and are used as immunosuppressive drugs for many diseases. They are also the mainstay for the treatment of minimal change nephropathy (MCN), which is characterised by an absence of inflammation. Their mechanisms of action remain elusive. Evidence suggests that immunomodulatory drugs can directly act on glomerular epithelial cells or ‘podocytes’, the cell type which is the main target of injury in MCN. To understand the nature of glucocorticoid effects on non-immune cell functions, we generated RNA sequencing data from human podocyte cell lines and identified the genes that are significantly regulated in dexamethasone-treated podocytes compared to vehicle-treated cells. The upregulated genes are of functional relevance to cytoskeleton-related processes, whereas the downregulated genes mostly encode pro-inflammatory cytokines and growth factors. We observed a tendency for dexamethasone-upregulated genes to be downregulated in MCN patients. Integrative analysis revealed gene networks composed of critical signaling pathways that are likely targeted by dexamethasone in podocytes. PMID:27774996

  1. Apigenin induces the apoptosis and regulates MAPK signaling pathways in mouse macrophage ANA-1 cells.

    Directory of Open Access Journals (Sweden)

    Yuexia Liao

    Full Text Available Apigenin is a naturally occurring plant flavonoid that possesses antioxidant, anti-cancer and anti-inflammatory properties. However, there are few reports has been done on the ability of apigenin to induce apoptosis in macrophages. In this study, mouse macrophage ANA-1 cells were incubated with different concentrations of apigenin. The cell viability was determined by an MTT assay. The cell apoptosis were analyzed by flow cytometric analysis. Apoptosis were also analyzed using a TUNEL assay and a DNA ladder. The level of intracellular ROS was detected using a dichlorofluorescein -diacetate probe. The expression levels of apoptosis-related proteins were detected by western blot analysis. The results showed that apigenin decreased the viability of ANA-1 cells and induced apoptosis in a dose- and time-dependent manner. Apigenin increased the level of intracellular ROS, downregulated the expression of Bcl-2 and upregulated the expression of caspase-3 and caspase-8 in ANA-1 cells. Furthermore, apigenin downregulated the expression of phospho-ERK and phospho-JNK, upregulated the expression of phospho-p38 and had no significant effect on the expression of Bax, ERK, JNK and p38. The results suggested that apigenin induced cell apoptosis in mouse macrophage ANA-1 cells may via increasing intracellular ROS, regulating the MAPK pathway, and then inhibiting Bcl-2 expression.

  2. Apigenin induces the apoptosis and regulates MAPK signaling pathways in mouse macrophage ANA-1 cells.

    Science.gov (United States)

    Liao, Yuexia; Shen, Weigan; Kong, Guimei; Lv, Houning; Tao, Wenhua; Bo, Ping

    2014-01-01

    Apigenin is a naturally occurring plant flavonoid that possesses antioxidant, anti-cancer and anti-inflammatory properties. However, there are few reports has been done on the ability of apigenin to induce apoptosis in macrophages. In this study, mouse macrophage ANA-1 cells were incubated with different concentrations of apigenin. The cell viability was determined by an MTT assay. The cell apoptosis were analyzed by flow cytometric analysis. Apoptosis were also analyzed using a TUNEL assay and a DNA ladder. The level of intracellular ROS was detected using a dichlorofluorescein -diacetate probe. The expression levels of apoptosis-related proteins were detected by western blot analysis. The results showed that apigenin decreased the viability of ANA-1 cells and induced apoptosis in a dose- and time-dependent manner. Apigenin increased the level of intracellular ROS, downregulated the expression of Bcl-2 and upregulated the expression of caspase-3 and caspase-8 in ANA-1 cells. Furthermore, apigenin downregulated the expression of phospho-ERK and phospho-JNK, upregulated the expression of phospho-p38 and had no significant effect on the expression of Bax, ERK, JNK and p38. The results suggested that apigenin induced cell apoptosis in mouse macrophage ANA-1 cells may via increasing intracellular ROS, regulating the MAPK pathway, and then inhibiting Bcl-2 expression.

  3. SOX2–LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors

    Science.gov (United States)

    Cimadamore, Flavio; Amador-Arjona, Alejandro; Chen, Connie; Huang, Chun-Teng; Terskikh, Alexey V.

    2013-01-01

    The transcription factor SRY (sex-determining region)-box 2 (SOX2) is an important functional marker of neural precursor cells (NPCs) and plays a critical role in self-renewal and neuronal differentiation; however, the molecular mechanisms underlying its functions are poorly understood. Using human embryonic stem cell-derived NPCs to model neurogenesis, we found that SOX2 is required to maintain optimal levels of LIN28, a well-characterized suppressor of let-7 microRNA biogenesis. Exogenous LIN28 expression rescued the NPC proliferation deficit, as well as the early but not the late stages of the neurogenic deficit associated with the loss of SOX2. We found that SOX2 binds to a proximal site in the LIN28 promoter region and regulates LIN28 promoter acetylation, likely through interactions with the histone acetyltransferase complex. Misexpression of let-7 microRNAs in NPCs reduced proliferation and inhibited neuronal differentiation, phenocopying the loss of SOX2. In particular, we identified let-7i as a novel and potent inhibitor of neuronal differentiation that targets MASH1 and NGN1, two well-characterized proneural genes. In conclusion, we discovered the SOX2–LIN28/let-7 pathway as a unique molecular mechanism governing NPC proliferation and neurogenic potential. PMID:23884650

  4. SOX2-LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors.

    Science.gov (United States)

    Cimadamore, Flavio; Amador-Arjona, Alejandro; Chen, Connie; Huang, Chun-Teng; Terskikh, Alexey V

    2013-08-06

    The transcription factor SRY (sex-determining region)-box 2 (SOX2) is an important functional marker of neural precursor cells (NPCs) and plays a critical role in self-renewal and neuronal differentiation; however, the molecular mechanisms underlying its functions are poorly understood. Using human embryonic stem cell-derived NPCs to model neurogenesis, we found that SOX2 is required to maintain optimal levels of LIN28, a well-characterized suppressor of let-7 microRNA biogenesis. Exogenous LIN28 expression rescued the NPC proliferation deficit, as well as the early but not the late stages of the neurogenic deficit associated with the loss of SOX2. We found that SOX2 binds to a proximal site in the LIN28 promoter region and regulates LIN28 promoter acetylation, likely through interactions with the histone acetyltransferase complex. Misexpression of let-7 microRNAs in NPCs reduced proliferation and inhibited neuronal differentiation, phenocopying the loss of SOX2. In particular, we identified let-7i as a novel and potent inhibitor of neuronal differentiation that targets MASH1 and NGN1, two well-characterized proneural genes. In conclusion, we discovered the SOX2-LIN28/let-7 pathway as a unique molecular mechanism governing NPC proliferation and neurogenic potential.

  5. The M-type receptor PLA2R regulates senescence through the p53 pathway.

    Science.gov (United States)

    Augert, Arnaud; Payré, Christine; de Launoit, Yvan; Gil, Jesus; Lambeau, Gérard; Bernard, David

    2009-03-01

    Senescence is a stable proliferative arrest induced by various stresses such as telomere erosion, oncogenic or oxidative stress. Compelling evidence suggests that it acts as a barrier against tumour development. Describing new mechanisms that favour an escape from senescence can thus reveal new insights into tumorigenesis. To identify new genes controlling the senescence programme, we performed a loss-of-function genetic screen in primary human fibroblasts. We report that knockdown of the M-type receptor PLA2R (phospholipase A2 receptor) prevents the onset of replicative senescence and diminishes stress-induced senescence. Interestingly, expression of PLA2R increases during replicative senescence, and its ectopic expression results in premature senescence. We show that PLA2R regulates senescence in a reactive oxygen species-DNA damage-p53-dependent manner. Taken together, our study identifies PLA2R as a potential new tumour suppressor gene crucial in the induction of cellular senescence through the activation of the p53 pathway.

  6. miR-486 suppresses the development of osteosarcoma by regulating PKC-δ pathway.

    Science.gov (United States)

    He, Ming; Wang, Guangbin; Jiang, Linlin; Qiu, Chuang; Li, Bin; Wang, Jiashi; Fu, Yonghui

    2017-05-01

    Osteosarcoma is one of the most highly malignant types of cancer in adolescents and young adults with a high mortality rate. Despite advances in surgery, radiation therapy and chemotherapy, the prognosis for patients with osteosarcoma has not significantly improved over the past several decades. It is necessary to find new indicators of prognosis and therapeutic targets of osteosarcoma. Through the analysis of 40 osteosarcoma tissues, we found that the expression of miR‑486 was low and the expression of PKC‑δ was high in osteosarcoma. Median survival of patients with low expression of miR-486 (30 months) was shorter than the patients with higher expression of miR‑486 (40 months). We further found that miR-486 can inhibit the targeting of PKC‑δ signaling pathways, and this inhibition can inhibit the growth and invasion of osteosarcoma cells. After transfection of miR‑486 for 24 h, the proliferation of osteosarcoma cells was inhibited by ~20%, and the migration was inhibited by ~15%. In the present investigation, we demonstrated that miR‑486 is negatively associated with the expression of PKC-δ and could regulate the development of osteosarcoma. miR-486 may be a potential target for the treatment of osteosarcoma.

  7. Rare Copy Number Variants Identified Suggest the Regulating Pathways in Hypertension-Related Left Ventricular Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Hoh Boon-Peng

    Full Text Available Left ventricular hypertrophy (LVH is an independent risk factor for cardiovascular morbidity and mortality, and a powerful predictor of adverse cardiovascular outcomes in the hypertensive patients. It has complex multifactorial and polygenic basis for its pathogenesis. We hypothesized that rare copy number variants (CNVs contribute to the LVH pathogenesis in hypertensive patients. Copy number variants (CNV were identified in 258 hypertensive patients, 95 of whom had LVH, after genotyping with a high resolution SNP array. Following stringent filtering criteria, we identified 208 rare, or private CNVs that were only present in our patients with hypertension related LVH. Preliminary findings from Gene Ontology and pathway analysis of this study confirmed the involvement of the genes known to be functionally involved in cardiac development and phenotypes, in line with previously reported transcriptomic studies. Network enrichment analyses suggested that the gene-set was, directly or indirectly, involved in the transcription factors regulating the "foetal cardiac gene programme" which triggered the hypertrophic cascade, confirming previous reports. These findings suggest that multiple, individually rare copy number variants altering genes may contribute to the pathogenesis of hypertension-related LVH. In summary, we have provided further supporting evidence that rare CNV could potentially impact this common and complex disease susceptibility with lower heritability.

  8. Multiple Signaling Pathways Regulate Yeast Cell Death during the Response to Mating Pheromones

    Science.gov (United States)

    Zhang, Nan-Nan; Dudgeon, Drew D.; Paliwal, Saurabh; Levchenko, Andre; Grote, Eric

    2006-01-01

    Mating pheromones promote cellular differentiation and fusion of yeast cells with those of the opposite mating type. In the absence of a suitable partner, high concentrations of mating pheromones induced rapid cell death in ∼25% of the population of clonal cultures independent of cell age. Rapid cell death required Fig1, a transmembrane protein homologous to PMP-22/EMP/MP20/Claudin proteins, but did not require its Ca2+ influx activity. Rapid cell death also required cell wall degradation, which was inhibited in some surviving cells by the activation of a negative feedback loop involving the MAP kinase Slt2/Mpk1. Mutants lacking Slt2/Mpk1 or its upstream regulators also underwent a second slower wave of cell death that was independent of Fig1 and dependent on much lower concentrations of pheromones. A third wave of cell death that was independent of Fig1 and Slt2/Mpk1 was observed in mutants and conditions that eliminate calcineurin signaling. All three waves of cell death appeared independent of the caspase-like protein Mca1 and lacked certain “hallmarks” of apoptosis. Though all three waves of cell death were preceded by accumulation of reactive oxygen species, mitochondrial respiration was only required for the slowest wave in calcineurin-deficient cells. These findings suggest that yeast cells can die by necrosis-like mechanisms during the response to mating pheromones if essential response pathways are lacking or if mating is attempted in the absence of a partner. PMID:16738305

  9. A TIGAR-regulated metabolic pathway is critical for protection of brain ischemia.

    Science.gov (United States)

    Li, Mei; Sun, Meiling; Cao, Lijuan; Gu, Jin-hua; Ge, Jianbin; Chen, Jieyu; Han, Rong; Qin, Yuan-Yuan; Zhou, Zhi-Peng; Ding, Yuqiang; Qin, Zheng-Hong

    2014-05-28

    TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits glycolysis and increases the flow of pentose phosphate pathway (PPP), which generates NADPH and pentose. We hypothesized that TIGAR plays a neuroprotective role in brain ischemia as neurons do not rely on glycolysis but are vulnerable to oxidative stress. We found that TIGAR was highly expressed in brain neurons and was rapidly upregulated in response to ischemia/reperfusion insult in a TP53-independent manner. Overexpression of TIGAR in normal mice with lentivirus reduced ischemic neuronal injury, whereas lentivirus-mediated TIGAR knockdown aggravated it. In cultured primary neurons, increasing TIGAR expression reduced oxygen and glucose deprivation (OGD)/reoxygenation-induced injury, whereas decreasing its expression worsened the injury. The glucose 6-phosphate dehydrogenase was upregulated in mouse and cellular models of stroke, and its upregulation was further enhanced by overexpression of TIGAR. Supplementation of NADPH also reduced ischemia/reperfusion brain injury and alleviated TIGAR knockdown-induced aggravation of ischemic injury. In animal and cellular stroke models, ischemia/reperfusion increased mitochondrial localization of TIGAR. OGD/reoxygenation-induced elevation of ROS, reduction of GSH, dysfunction of mitochondria, and activation of caspase-3 were rescued by overexpression of TIGAR or supplementation of NADPH, while knockdown of TIGAR aggravated these changes. Together, our results show that TIGAR protects ischemic brain injury via enhancing PPP flux and preserving mitochondria function, and thus may be a valuable therapeutic target for ischemic brain injury.

  10. Drosophila MOF regulates DIAP1 and induces apoptosis in a JNK dependent pathway.

    Science.gov (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Koteswara Rao, G; Bag, Indira; Bhadra, Utpal; Pal-Bhadra, Manika

    2016-03-01

    Histone modulations have been implicated in various cellular and developmental processes where in Drosophila Mof is involved in acetylation of H4K16. Reduction in the size of larval imaginal discs is observed in the null mutants of mof with increased apoptosis. Deficiency involving Hid, Reaper and Grim [H99] alleviated mof (RNAi) induced apoptosis in the eye discs. mof (RNAi) induced apoptosis leads to activation of caspases which is suppressed by over expression of caspase inhibitors like P35 and Diap1 clearly depicting the role of caspases in programmed cell death. Also apoptosis induced by knockdown of mof is rescued by JNK mutants of bsk and tak1 indicating the role of JNK in mof (RNAi) induced apoptosis. The adult eye ablation phenotype produced by ectopic expression of Hid, Rpr and Grim, was restored by over expression of Mof. Accumulation of Mof at the Diap1 promoter 800 bp upstream of the transcription start site in wild type larvae is significantly higher (up to twofolds) compared to mof (1) mutants. This enrichment coincides with modification of histone H4K16Ac indicating an induction of direct transcriptional up regulation of Diap1 by Mof. Based on these results we propose that apoptosis triggered by mof (RNAi) proceeds through a caspase-dependent and JNK mediated pathway.

  11. A karyopherin alpha2 nuclear transport pathway is regulated by glucose in hepatic and pancreatic cells.

    Science.gov (United States)

    Cassany, Aurélia; Guillemain, Ghislaine; Klein, Christophe; Dalet, Véronique; Brot-Laroche, Edith; Leturque, Armelle

    2004-01-01

    We studied the role of the karyopherin alpha2 nuclear import carrier (also known as importin alpha2) in glucose signaling. In mhAT3F hepatoma cells, GFP-karyopherin alpha2 accumulated massively in the cytoplasm within minutes of glucose extracellular addition and returned to the nucleus after glucose removal. In contrast, GFP-karyopherin alpha1 distribution was unaffected regardless of glucose concentration. Glucose increased GFP-karyopherin alpha2 nuclear efflux by a factor 80 and its shuttling by a factor 4. These glucose-induced movements were not due to glycolytic ATP production. The mechanism involved was leptomycin B-insensitive, but phosphatase- and energy-dependent. HepG2 and COS-7 cells displayed no glucose-induced GFP-karyopherin alpha2 movements. In pancreatic MIN-6 cells, the glucose-induced movements of karyopherin alpha2 and the stimulation of glucose-induced gene transcription were simultaneously lost between passages 28 and 33. Thus, extracellular glucose regulates a nuclear transport pathway by increasing the nuclear efflux and shuttling of karyopherin alpha2 in cells in which glucose can stimulate the transcription of sugar-responsive genes.

  12. Octopamine Neuromodulation Regulates Gr32a-Linked Aggression and Courtship Pathways in Drosophila Males

    Science.gov (United States)

    Andrews, Jonathan C.; Fernández, María Paz; Yu, Qin; Leary, Greg P.; Leung, Adelaine K. W.; Kavanaugh, Michael P.; Kravitz, Edward A.; Certel, Sarah J.

    2014-01-01

    Chemosensory pheromonal information regulates aggression and reproduction in many species, but how pheromonal signals are transduced to reliably produce behavior is not well understood. Here we demonstrate that the pheromonal signals detected by Gr32a-expressing chemosensory neurons to enhance male aggression are filtered through octopamine (OA, invertebrate equivalent of norepinephrine) neurons. Using behavioral assays, we find males lacking both octopamine and Gr32a gustatory receptors exhibit parallel delays in the onset of aggression and reductions in aggression. Physiological and anatomical experiments identify Gr32a to octopamine neuron synaptic and functional connections in the suboesophageal ganglion. Refining the Gr32a-expressing population indicates that mouth Gr32a neurons promote male aggression and form synaptic contacts with OA neurons. By restricting the monoamine neuron target population, we show that three previously identified OA-FruM neurons involved in behavioral choice are among the Gr32a-OA connections. Our findings demonstrate that octopaminergic neuromodulatory neurons function as early as a second-order step in this chemosensory-driven male social behavior pathway. PMID:24852170

  13. Octopamine neuromodulation regulates Gr32a-linked aggression and courtship pathways in Drosophila males.

    Directory of Open Access Journals (Sweden)

    Jonathan C Andrews

    2014-05-01

    Full Text Available Chemosensory pheromonal information regulates aggression and reproduction in many species, but how pheromonal signals are transduced to reliably produce behavior is not well understood. Here we demonstrate that the pheromonal signals detected by Gr32a-expressing chemosensory neurons to enhance male aggression are filtered through octopamine (OA, invertebrate equivalent of norepinephrine neurons. Using behavioral assays, we find males lacking both octopamine and Gr32a gustatory receptors exhibit parallel delays in the onset of aggression and reductions in aggression. Physiological and anatomical experiments identify Gr32a to octopamine neuron synaptic and functional connections in the suboesophageal ganglion. Refining the Gr32a-expressing population indicates that mouth Gr32a neurons promote male aggression and form synaptic contacts with OA neurons. By restricting the monoamine neuron target population, we show that three previously identified OA-Fru(M neurons involved in behavioral choice are among the Gr32a-OA connections. Our findings demonstrate that octopaminergic neuromodulatory neurons function as early as a second-order step in this chemosensory-driven male social behavior pathway.

  14. Circadian and Dopaminergic Regulation of Fatty Acid Oxidation Pathway Genes in Retina and Photoreceptor Cells

    Science.gov (United States)

    Vancura, Patrick; Wolloscheck, Tanja; Baba, Kenkichi; Tosini, Gianluca; Iuvone, P. Michael; Spessert, Rainer

    2016-01-01

    The energy metabolism of the retina might comply with daily changes in energy demand and is impaired in diabetic retinopathy—one of the most common causes of blindness in Europe and the USA. The aim of this study was to investigate putative adaptation of energy metabolism in healthy and diabetic retina. Hence expression analysis of metabolic pathway genes was performed using quantitative polymerase chain reaction, semi-quantitative western blot and immunohistochemistry. Transcriptional profiling of key enzymes of energy metabolism identified transcripts of mitochondrial fatty acid β-oxidation enzymes, i.e. carnitine palmitoyltransferase-1α (Cpt-1α) and medium chain acyl-CoA dehydrogenase (Acadm) to display daily rhythms with peak values during daytime in preparations of the whole retina and microdissected photoreceptors. The cycling of both enzymes persisted in constant darkness, was dampened in mice deficient for dopamine D4 (D4) receptors and was altered in db/db mice—a model of diabetic retinopathy. The data of the present study are consistent with circadian clock-dependent and dopaminergic regulation of fatty acid oxidation in retina and its putative disturbance in diabetic retina. PMID:27727308

  15. Pycnogenol attenuates atherosclerosis by regulating lipid metabolism through the TLR4-NF-κB pathway.

    Science.gov (United States)

    Luo, Hong; Wang, Jing; Qiao, Chenhui; Ma, Ning; Liu, Donghai; Zhang, Weihua

    2015-10-23

    Atherosclerosis is a leading cause of death worldwide and is characterized by lipid-laden foam cell formation. Recently, pycnogenol (PYC) has drawn much attention because of its prominent effect on cardiovascular disease (CVD). However, its protective effect against atherosclerosis and the underlying mechanism remains undefined. Here PYC treatment reduced areas of plaque and lipid deposition in atherosclerotic mice, concomitant with decreases in total cholesterol and triglyceride levels and increases in HDL cholesterol levels, indicating a potential antiatherosclerotic effect of PYC through the regulation of lipid levels. Additionally, PYC preconditioning markedly decreased foam cell formation and lipid accumulation in lipopolysaccharide (LPS)-stimulated human THP-1 monocytes. A mechanistic analysis indicated that PYC decreased the lipid-related protein expression of adipose differentiation-related protein (ADRP) and adipocyte lipid-binding protein (ALBP/aP2) in a dose-dependent manner. Further analysis confirmed that PYC attenuated LPS-induced lipid droplet formation via ADRP and ALBP expression through the Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) pathway, because pretreatment with anti-TLR4 antibody or a specific inhibitor of NF-κB (PDTC) strikingly mitigated the LPS-induced increase in ADRP and ALBP. Together, our results provide insight into the ability of PYC to attenuate bacterial infection-triggered pathological processes associated with atherosclerosis. Thus PYC may be a potential lead compound for the future development of antiatherosclerotic CVD therapy.

  16. Obestatin enhances in vitro generation of pancreatic islets through regulation of developmental pathways.

    Directory of Open Access Journals (Sweden)

    Alessandra Baragli

    Full Text Available Availability of large amounts of in vitro generated β-cells may support replacement therapy in diabetes. However, methods to obtain β-cells from stem/progenitor cells are limited by inefficient endocrine differentiation. We have recently shown that the ghrelin gene product obestatin displays beneficial effects on pancreatic β-cell survival and function. Obestatin prevents β-cell apoptosis, preserves β-cell mass and stimulates insulin secretion in vitro and in vivo, in both normal and diabetic conditions. In the present study, we investigated whether obestatin may promote in vitro β-cell generation from mouse pancreatic islet-derived precursor cells. Treatment of cultured islets of Langerhans with obestatin (i enriched cells expressing the mesenchymal/neuronal marker nestin, which is associated with pancreatic precursors; (ii increased cell survival and reduced apoptosis during precursor selection; (iii promoted the generation of islet-like cell clusters (ICCs with increased insulin gene expression and C-peptide secretion. Furthermore, obestatin modulated the expression of fibroblast growth factor receptors (FGFRs, Notch receptors and neurogenin 3 (Ngn3 during islet-derived precursor cell selection and endocrine differentiation. These results indicate that obestatin improves the generation of functional β-cells/ICCs in vitro, suggesting implications for cell-based replacement therapy in diabetes. Moreover, obestatin may play a role in regulating pathways involved in pancreas development and regeneration.

  17. Downregulation of CDK-8 inhibits colon cancer hepatic metastasis by regulating Wnt/β-catenin pathway.

    Science.gov (United States)

    Cai, Wen-Song; Shen, Fei; Feng, Zhe; Chen, Ji-Wei; Liu, Qi-Cai; Li, Er-Mao; Xu, Bo; Cao, Jie

    2015-08-01

    Liver metastasis is a major cause of mortality from colon cancer. To investigate the role of cyclin-dependent kinase 8 (CDK8) in the progression of colon cancer hepatic metastasis. In this present study, human colon cancer HCT116 or HCT116-LUC-GFP cells were transfected with Lentiviral vector-mediated knockdown of CDK-8. After transfection, metastasis and invasion potential of colon cancer cell was investigated by wound healing and transwell invasion assays, respectively. A mice model of colon cancer liver metastases was established and observed with bioluminescence imaging. The protein expression of CDK-8, β-catenin, E2F1, MMP-7 and E-cadherin in liver tissues were detected by Western Blot. Our results revealed that lentiviral vector-mediated knockdown of CDK-8 inhibited metastasis and invasion of colon cancer cells in vitro and in vivo, respectively. Protein expression of CDK-8, β-catenin, MMP-7 and E-cadherin were inhibited, but protein expression of E2F1 was enhanced. In sum, our data provided compelling evidence that CDK-8 played a significant role in colon cancer hepatic metastasis by regulating the Wnt/β-catenin signal pathway and might sever as a potential therapeutic target for colon cancer patients.

  18. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants

    Directory of Open Access Journals (Sweden)

    Mohammad-Zaman Nouri

    2015-08-01

    Full Text Available Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants,especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C3 or C4, type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress.

  19. NERP-2 regulates gastric acid secretion and gastric emptying via the orexin pathway.

    Science.gov (United States)

    Namkoong, Cherl; Toshinai, Koji; Waise, T M Zaved; Sakoda, Hideyuki; Sasaki, Kazuki; Ueta, Yoichi; Kim, Min-Seon; Minamino, Naoto; Nakazato, Masamitsu

    2017-02-16

    Neuroendocrine regulatory peptide (NERP)-2 is derived from a distinct region of VGF, a neurosecretory protein originally identified as a product of a nerve growth factor-responsive gene in rat PC12 cells. Colocalization of NERP-2 with orexin-A in the lateral hypothalamus increases orexin-A-induced feeding and energy expenditure in both rats and mice. Orexigenic and anorectic peptides in the hypothalamus modulate gastric function. In this study, we investigated the effect of NERP-2 on gastric function in rats. Intracerebroventricular administration of NERP-2 to rats increased gastric acid secretion and gastric emptying, whereas peripheral administration did not affect gastric function. NERP-2-induced gastric acid secretion and gastric emptying were blocked by an orexin 1 receptor antagonist, SB334867. NERP-2 also induced Fos expression in the lateral hypothalamus and the dorsomotor nucleus of the vagus X, which are key sites in the central nervous system for regulation of gastric function. Atropine, a blocker of vagal efferent signal transduction, completely blocked NERP-2-induced gastric acid secretion. These results demonstrate that central administration of NERP-2 activates the orexin pathway, resulting in elevated gastric acid secretion and gastric emptying.

  20. Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways.

    Science.gov (United States)

    Wang, Shixuan; Livingston, Man J; Su, Yunchao; Dong, Zheng

    2015-04-01

    Primary cilium is an organelle that plays significant roles in a number of cellular functions ranging from cell mechanosensation, proliferation, and differentiation to apoptosis. Autophagy is an evolutionarily conserved cellular function in biology and indispensable for cellular homeostasis. Both cilia and autophagy have been linked to different types of genetic and acquired human diseases. Their interaction has been suggested very recently, but the underlying mechanisms are still not fully understood. We examined autophagy in cells with suppressed cilia and measured cilium length in autophagy-activated or -suppressed cells. It was found that autophagy was repressed in cells with short cilia. Further investigation showed that MTOR activation was enhanced in cilia-suppressed cells and the MTOR inhibitor rapamycin could largely reverse autophagy suppression. In human kidney proximal tubular cells (HK2), autophagy induction was associated with cilium elongation. Conversely, autophagy inhibition by 3-methyladenine (3-MA) and chloroquine (CQ) as well as bafilomycin A1 (Baf) led to short cilia. Cilia were also shorter in cultured atg5-knockout (KO) cells and in atg7-KO kidney proximal tubular cells in mice. MG132, an inhibitor of the proteasome, could significantly restore cilium length in atg5-KO cells, being concomitant with the proteasome activity. Together, the results suggest that cilia and autophagy regulate reciprocally through the MTOR signaling pathway and ubiquitin-proteasome system.

  1. The Hippo Pathway Regulates Stem Cells During Homeostasis and Regeneration of the Flatworm Macrostomum Lignano

    NARCIS (Netherlands)

    Demircan, Turan; Berezikov, Eugene

    2013-01-01

    The Hippo pathway orchestrates activity of stem cells during development and tissue regeneration and is crucial for controlling organ size. However, roles of the Hippo pathway in highly regenerative organisms, such as flatworms, are unknown. Here we show that knockdown of the Hippo pathway core gene

  2. The Hippo pathway regulates stem cells during homeostasis and regeneration of the flatworm Macrostomum lignano

    NARCIS (Netherlands)

    Demircan, T.; Berezikov, E.

    2013-01-01

    The Hippo pathway orchestrates activity of stem cells during development and tissue regeneration and is crucial for controlling organ size. However, roles of the Hippo pathway in highly regenerative organisms, such as flatworms, are unknown. Here we show that knockdown of the Hippo pathway core gene

  3. Distinct pathways regulated by RET and estrogen receptor in luminal breast cancer demonstrate the biological basis for combination therapy.

    Science.gov (United States)

    Spanheimer, Philip M; Cyr, Anthony R; Gillum, Matthew P; Woodfield, George W; Askeland, Ryan W; Weigel, Ronald J

    2014-04-01

    We investigated directed therapy based on TFAP2C-regulated pathways to inform new therapeutic approaches for treatment of luminal breast cancer. TFAP2C regulates the expression of genes characterizing the luminal phenotype including ESR1 and RET, but pathway cross talk and potential for distinct elements have not been characterized. Activation of extracellular signal-regulated kinases (ERK) and AKT was assessed using phosphorylation-specific Western blot. Cell proliferation was measured with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] after siRNA (small interfering RNA) gene knockdown or drug treatment. Cell cycle, Ki-67, and cleaved caspase 3 were measured by fluorescence-activated cell sorting. Tumorigenesis was assessed in mice xenografts. Knockdown of TFAP2C or RET inhibited GDNF (glial cell line-derived neurotrophic factor)-mediated activation of ERK and AKT in MCF-7 cells. Similarly, sunitinib, a small-molecule inhibitor of RET, blocked GDNF-mediated activation of ERK and AKT. Inhibition of RET either by gene knockdown or by treatment with sunitinib or vandetanib reduced RET-dependent growth of luminal breast cancer cells. Interestingly, knockdown of TFAP2C, which controls both ER (estrogen receptor) and RET, demonstrated a greater effect on cell growth than either RET or ER alone. Parallel experiments using treatment with tamoxifen and sunitinib confirmed the increased effectiveness of dual inhibition of the ER and RET pathways in regulating cell growth. Whereas targeting the ER pathway altered cell proliferation, as measured by Ki-67 and S-phase, anti-RET primarily increased apoptosis, as demonstrated by cleaved caspase 3 and increased TUNEL (terminal deoxyneucleotidyl transferase dUTP nick end labeling) expression in xenografts. ER and RET primarily function through distinct pathways regulating proliferation and cell survival, respectively. The findings inform a therapeutic approach based on combination therapy with antiestrogen and

  4. A minimal dose of electrically induced muscle activity regulates distinct gene signaling pathways in humans with spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Michael A Petrie

    Full Text Available Paralysis after a spinal cord injury (SCI induces physiological adaptations that compromise the musculoskeletal and metabolic systems. Unlike non-SCI individuals, people with spinal cord injury experience minimal muscle activity which compromises optimal glucose utilization and metabolic control. Acute or chronic muscle activity, induced through electrical stimulation, may regulate key genes that enhance oxidative metabolism in paralyzed muscle. We investigated the short and long term effects of electrically induced exercise on mRNA expression of human paralyzed muscle. We developed an exercise dose that activated the muscle for only 0.6% of the day. The short term effects were assessed 3 hours after a single dose of exercise, while the long term effects were assessed after training 5 days per week for at least one year (adherence 81%. We found a single dose of exercise regulated 117 biological pathways as compared to 35 pathways after one year of training. A single dose of electrical stimulation increased the mRNA expression of transcriptional, translational, and enzyme regulators of metabolism important to shift muscle toward an oxidative phenotype (PGC-1α, NR4A3, IFRD1, ABRA, PDK4. However, chronic training increased the mRNA expression of specific metabolic pathway genes (BRP44, BRP44L, SDHB, ACADVL, mitochondrial fission and fusion genes (MFF, MFN1, MFN2, and slow muscle fiber genes (MYH6, MYH7, MYL3, MYL2. These findings support that a dose of electrical stimulation (∼10 minutes/day regulates metabolic gene signaling pathways in human paralyzed muscle. Regulating these pathways early after SCI may contribute to reducing diabetes in people with longstanding paralysis from SCI.

  5. Postsynaptic localization of PSD-95 is regulated by all three pathways downstream of TrkB signaling.

    Science.gov (United States)

    Yoshii, Akira; Constantine-Paton, Martha

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) and its receptor TrkB regulate synaptic plasticity. TrkB triggers three downstream signaling pathways; Phosphatidylinositol 3-kinase (PI3K), Phospholipase Cγ (PLCγ) and Mitogen activated protein kinases/Extracellular signal-regulated kinases (MAPK/ERK). We previously showed two distinct mechanisms whereby BDNF-TrkB pathway controls trafficking of PSD-95, which is the major scaffold at excitatory synapses and is critical for synapse maturation. BDNF activates the PI3K-Akt pathway and regulates synaptic delivery of PSD-95 via vesicular transport (Yoshii and Constantine-Paton, 2007). BDNF-TrkB signaling also triggers PSD-95 palmitoylation and its transport to synapses through the phosphorylation of the palmitoylation enzyme ZDHHC8 by a protein kinase C (PKC; Yoshii etal., 2011). The second study used PKC inhibitors chelerythrine as well as a synthetic zeta inhibitory peptide (ZIP) which was originally designed to block the brain-specific PKC isoform protein kinase Mϖ (PKMϖ). However, recent studies raise concerns about specificity of ZIP. Here, we assessed the contribution of TrkB and its three downstream pathways to the synaptic distribution of endogenous PSD-95 in cultured neurons using chemical and genetic interventions. We confirmed that TrkB, PLC, and PI3K were critical for the postsynaptic distribution of PSD-95. Furthermore, suppression of MAPK/ERK also disrupted PSD-95 expression. Next, we examined the contribution of PKC. While both chelerythrine and ZIP suppressed the postsynaptic localization of PSD-95, RNA interference for PKMϖ did not have a significant effect. This result suggests that the ZIP peptide, widely used as the "specific" PKMϖ antagonist by many investigators may block a PKC variant other than PKMϖ such as PKCλ/ι. Our results indicate that TrkB regulates postsynaptic localization of PSD-95 through all three downstream pathways, but also recommend further work to identify other PKC variants that

  6. The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway.

    Science.gov (United States)

    Bento, Carla F; Ashkenazi, Avraham; Jimenez-Sanchez, Maria; Rubinsztein, David C

    2016-06-09

    Forms of Parkinson's disease (PD) are associated with lysosomal and autophagic dysfunction. ATP13A2, which is mutated in some types of early-onset Parkinsonism, has been suggested as a regulator of the autophagy-lysosome pathway. However, little is known about the ATP13A2 effectors and how they regulate this pathway. Here we show that ATP13A2 depletion negatively regulates another PD-associated gene (SYT11) at both transcriptional and post-translational levels. Decreased SYT11 transcription is controlled by a mechanism dependent on MYCBP2-induced ubiquitination of TSC2, which leads to mTORC1 activation and decreased TFEB-mediated transcription of SYT11, while increased protein turnover is regulated by SYT11 ubiquitination and degradation. Both mechanisms account for a decrease in the levels of SYT11, which, in turn, induces lysosomal dysfunction and impaired degradation of autophagosomes. Thus, we propose that ATP13A2 and SYT11 form a new functional network in the regulation of the autophagy-lysosome pathway, which is likely to contribute to forms of PD-associated neurodegeneration.

  7. Urothelial endocytic vesicle recycling and lysosomal degradative pathway regulated by lipid membrane composition.

    Science.gov (United States)

    Grasso, E J; Calderón, R O

    2013-02-01

    The urothelium, a specialized epithelium that covers the mucosa cell surface of the urinary bladder, undergoes dramatic morphological changes during the micturition cycle that involve a membrane apical traffic. This traffic was first described as a lysosomal pathway, in addition to the known endocytosis/exocytosis membrane recycling. In an attempt to understand the role of membrane lipid composition in those effects, we previously described the lipid-dependent leakage of the endocytosed vesicle content. In this work, we demonstrated clear differences in the traffic of both the fluid probe and the membrane-bound probe in urothelial umbrella cells by using spectrofluorometry and/or confocal and epifluorescence microscopy. Different membrane lipid compositions were established by using three diet formulae enriched in oleic acid, linoleic acid and a commercial formula. Between three and five animals for each dietary treatment were used for each analysis. The decreased endocytosis of both fluid and membrane-bound probes (approximately 32 and 49 % lower, respectively) in oleic acid-derived umbrella cells was concomitant with an increased recycling (approximately 4.0 and 3.7 times, respectively) and diminished sorting to the lysosome (approximately 23 and 37 %, respectively) when compared with the control umbrella cells. The higher intravesicular pH and the impairment of the lysosomal pathway of oleic acid diet-derived vesicles compared to linoleic acid diet-derived vesicles and control diet-derived vesicles correlate with our findings of a lower V-ATPase activity previously reported. We integrated the results obtained in the present and previous work to determine the sorting of endocytosed material (fluid and membrane-bound probes) into the different cell compartments. Finally, the weighted average effect of the individual alterations on the intracellular distribution was evaluated. The results shown in this work add evidences for the modulatory role of the membrane

  8. Brassica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway.

    Science.gov (United States)

    Zhao, Bo; Li, Haitao; Li, Juanjuan; Wang, Bo; Dai, Cheng; Wang, Jing; Liu, Kede

    2017-04-01

    Identification and characterization of a semi-dwarfing gene ds-3 encoding a mutant DELLA protein regulating plant height through gibberellin signaling pathway. Lodging is one of the most important factors causing severe yield loss in oilseed rape. Utilization of semi-dwarf varieties has been proved the most effective way to increase lodging resistance and yield in many crops. To develop semi-dwarf germplasm in oilseed rape, we identified a semi-dwarf mutant ds-3 which showed a reduced response to phytohormones gibberellins (GAs). Genetic analysis indicated the dwarfism was controlled by a single semi-dominant gene, ds-3. The DS-3 gene was mapped to a genomic region on chromosome C07, which is syntenic to the region of a previously identified semi-dwarf gene ds-1 (BnaA06.RGA). In this region, DS-3 (BnaC07.RGA) gene was identified to encode a DELLA protein that functions as a repressor in GA signaling pathway. A substitution of proline to leucine was identified in ds-3 in the conserved VHYNP motif, which is essential for GA-dependent interaction between gibberellin receptor GID1 and DELLA proteins. Segregation analysis in the F2 population derived from the cross between ds-1 and ds-3 demonstrated that BnaA06.RGA displayed a stronger effect on plant height than BnaC07.RGA, indicating that different RGA genes may play different roles in stem elongation. In addition to BnaA06.RGA and BnaC07.RGA, two more RGA genes (BnaA09.RGA and BnaC09.RGA) were identified in the Brassica napus (B. napus) genome. Reverse-transcription polymerase chain reaction (RT-PCR) and yeast two-hybrid (Y2H) assays suggest that both BnaA09.RGA and BnaC09.RGA are transcribed in leaves and stems and can mediate GA signaling in vivo. These genes represent potential targets for screening ideal semi-dwarfing alleles for oilseed rape breeding.

  9. Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila.

    Science.gov (United States)

    Fernández, Beatriz García; Gaspar, Pedro; Brás-Pereira, Catarina; Jezowska, Barbara; Rebelo, Sofia Raquel; Janody, Florence

    2011-06-01

    The conserved Hippo tumor suppressor pathway is a key kinase cascade that controls tissue growth by regulating the nuclear import and activity of the transcription co-activator Yorkie. Here, we report that the actin-Capping Protein αβ heterodimer, which regulates actin polymerization, also functions to suppress inappropriate tissue growth by inhibiting Yorkie activity. Loss of Capping Protein activity results in abnormal accumulation of apical F-actin, reduced Hippo pathway activity and the ectopic expression of several Yorkie target genes that promote cell survival and proliferation. Reduction of two other actin-regulatory proteins, Cofilin and the cyclase-associated protein Capulet, cause abnormal F-actin accumulation, but only the loss of Capulet, like that of Capping Protein, induces ectopic Yorkie activity. Interestingly, F-actin also accumulates abnormally when Hippo pathway activity is reduced or abolished, independently of Yorkie activity, whereas overexpression of the Hippo pathway component expanded can partially reverse the abnormal accumulation of F-actin in cells depleted for Capping Protein. Taken together, these findings indicate a novel interplay between Hippo pathway activity and actin filament dynamics that is essential for normal growth control.

  10. TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål).

    Science.gov (United States)

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhou, Qiang

    2016-03-28

    The "target of rapamycin" (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens.

  11. Mechanism for regulation of the putrescine utilization pathway by the transcription factor PuuR in Escherichia coli K-12.

    Science.gov (United States)

    Nemoto, Naoki; Kurihara, Shin; Kitahara, Yuzuru; Asada, Kei; Kato, Kenji; Suzuki, Hideyuki

    2012-07-01

    In Escherichia coli, putrescine is metabolized to succinate for use as a carbon and nitrogen source by the putrescine utilization pathway (Puu pathway). One gene in the puu gene cluster encodes a transcription factor, PuuR, which has a helix-turn-helix DNA-binding motif. DNA microarray analysis of an E. coli puuR mutant, in which three amino acid residues in the helix-turn-helix DNA binding motif of PuuR were mutated to alanine to eliminate DNA binding of PuuR, suggested that PuuR is a negative regulator of puu genes. Results of gel shift and DNase I footprint analyses suggested that PuuR binds to the promoter regions of puuA and puuD. The binding of wild-type PuuR to a DNA probe containing PuuR recognition sites was diminished with increasing putrescine concentrations in vitro. These results suggest that PuuR regulates the intracellular putrescine concentration by the transcriptional regulation of genes in the Puu pathway, including puuR itself. The puu gene cluster is found in E. coli and closely related enterobacteria, but this gene cluster is uncommon in other bacterial groups. E. coli and related enterobacteria may have gained the Puu pathway as an adaptation for survival in the mammalian intestine, an environment in which polyamines exist at relatively high concentrations.

  12. Mammalian mitogen-activated protein kinase pathways are regulated through formation of specific kinase-activator complexes.

    Science.gov (United States)

    Zanke, B W; Rubie, E A; Winnett, E; Chan, J; Randall, S; Parsons, M; Boudreau, K; McInnis, M; Yan, M; Templeton, D J; Woodgett, J R

    1996-11-22

    Mammalian cells contain at least three signaling systems which are structurally related to the mitogen-activated protein kinase (MAPK) pathway. Growth factors acting through Ras primarily stimulate the Raf/MEK/MAPK cascade of protein kinases. In contrast, many stress-related signals such as heat shock, inflammatory cytokines, and hyperosmolarity induce the MEKK/SEK(MKK4)/SAPK(JNK) and/or the MKK3 or MKK6/p38(hog) pathways. Physiological agonists of these pathway types are either qualitatively or quantitatively distinct, suggesting few common proximal signaling elements, although past studies performed in vitro, or in cells using transient over-expression, reveal interaction between the components of all three pathways. These studies suggest a high degree of cross-talk apparently not seen in vivo. We have examined the possible molecular basis of the differing agonist profiles of these three MAPK pathways. We report preferential association between MAP kinases and their activators in eukaryotic cells. Furthermore, using the yeast 2-hybrid system, we show that association between these components can occur independent of additional eukaryotic proteins. We show that SAPK(JNK) or p38(hog) activation is specifically impaired by co-expression of cognate dominant negative MAP kinase kinase mutants, demonstrating functional specificity at this level. Further divergence and insulation of the stress pathways occurs proximal to the MAPK kinases since activation of the MAPK kinase kinase MEKK results in SAPK(JNK) activation but does not cause p38(hog) phosphorylation. Therefore, in intact cells, the three MAPK pathways may be independently regulated and their components show specificity in their interaction with cognate cascade members. The degree of intermolecular specificity suggests that mammalian MAPK signaling pathways may remain distinct without the need for specific scaffolding proteins to sequester components of individual pathways.

  13. The Ras/Raf/MEK/Extracellular Signal-Regulated Kinase Pathway Induces Autocrine-Paracrine Growth Inhibition via the Leukemia Inhibitory Factor/JAK/STAT Pathway

    OpenAIRE

    Park, Jong-In; Strock, Christopher J.; Ball, Douglas W.; Nelkin, Barry D.

    2003-01-01

    Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF express...

  14. Angelica polymorpha Maxim Induces Apoptosis of Human SH-SY5Y Neuroblastoma Cells by Regulating an Intrinsic Caspase Pathway.

    Science.gov (United States)

    Rahman, Md Ataur; Bishayee, Kausik; Huh, Sung-Oh

    2016-02-01

    Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-3β activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy.

  15. The regulation of p53 up-regulated modulator of apoptosis by JNK/c-Jun pathway in β-amyloid-induced neuron death.

    Science.gov (United States)

    Akhter, Rumana; Sanphui, Priyankar; Das, Hrishita; Saha, Pampa; Biswas, Subhas Chandra

    2015-09-01

    Neuronal loss in selective areas of brain underlies the pathology of Alzheimer's disease (AD). Recent evidences place oligomeric β-amyloid (Aβ) central to the disease. However, mechanism of neuron death in response to Aβ remains elusive. Activation of the c-Jun N-terminal kinase (JNK) pathway and induction of the AP-1 transcription factor c-Jun are reported in AD. However, targets of JNK/c-Jun in Aβ-induced neuron death are mostly unknown. Our study shows that pro-apoptotic proteins, Bim (Bcl-2 interacting mediator of cell death) and Puma (p53 up-regulated modulator of apoptosis) are targets of c-Jun in Aβ-treated neurons. We demonstrate that the JNK/c-Jun pathway is activated, in cultures of cortical neurons following treatment with oligomeric Aβ and in AD transgenic mice, and that inhibition of this pathway by selective inhibitor blocks induction of Puma by Aβ. We also find that both JNK and p53 pathways co-operatively regulate Puma expression in Aβ-treated neurons. Moreover, we identified a novel AP1-binding site on rat puma gene which is necessary for direct binding of c-Jun with Puma promoter. Finally, we find that knocking down of c-Jun by siRNA provides significant protection from Aβ toxicity and that induction of Bim and Puma by Aβ in neurons requires c-Jun. Taken together, our results suggest that both Bim and Puma are target of c-Jun and elucidate the intricate regulation of Puma expression by JNK/c-Jun and p53 pathways in neurons upon Aβ toxicity. JNK/c-Jun pathway is shown to be activated in neurons of the Alzheimer's disease (AD) brain and plays a vital role in neuron death in AD models. However, downstream targets of c-Jun in this disease have not been thoroughly elucidated. Our study shows that two important pro-apoptotic proteins, Bim (Bcl-2 interacting mediator of cell death) and Puma (p53 up-regulated modulator of apoptosis) are targets of c-Jun in Aβ-treated neurons. We demonstrate that the JNK/c-jun pathway is activated, in cultures

  16. Tyrosine Phosphorylation Based Homo-dimerization of Arabidopsis RACK1A Proteins Regulates Oxidative Stress Signaling Pathways in Yeast.

    Science.gov (United States)

    Sabila, Mercy; Kundu, Nabanita; Smalls, Deana; Ullah, Hemayet

    2016-01-01

    Scaffold proteins are known as important cellular regulators that can interact with multiple proteins to modulate diverse signal transduction pathways. RACK1 (Receptor for Activated C Kinase 1) is a WD-40 type scaffold protein, conserved in eukaryotes, from Chlamydymonas to plants and humans, plays regulatory roles in diverse signal transduction and stress response pathways. RACK1 in humans has been implicated in myriads of neuropathological diseases including Alzheimer and alcohol addictions. Model plant Arabidopsis thaliana genome maintains three different RACK1 genes termed RACK1A, RACK1B, and RACK1C with a very high (85-93%) sequence identity among them. Loss of function mutation in Arabidopsis indicates that RACK1 proteins regulate diverse environmental stress signaling pathways including drought and salt stress resistance pathway. Recently deduced crystal structure of Arabidopsis RACK1A- very first among all of the RACK1 proteins, indicates that it can potentially be regulated by post-translational modifications, like tyrosine phosphorylations and sumoylation at key residues. Here we show evidence that RACK1A proteins, depending on diverse environmental stresses, are tyrosine phosphorylated. Utilizing site-directed mutagenesis of key tyrosine residues, it is found that tyrosine phosphorylation can potentially dictate the homo-dimerization of RACK1A proteins. The homo-dimerized RACK1A proteins play a role in providing UV-B induced oxidative stress resistance. It is proposed that RACK1A proteins ability to function as scaffold protein may potentially be regulated by the homo-dimerized RACK1A proteins to mediate diverse stress signaling pathways.

  17. Insulin/IGF-I regulation of necdin and brown adipocyte differentiation via CREB- and FoxO1-associated pathways

    DEFF Research Database (Denmark)

    Cypess, Aaron M; Zhang, Hongbin; Schulz, Tim J

    2011-01-01

    Brown adipose tissue plays an important role in obesity, insulin resistance, and diabetes. We have previously shown that the transition from brown preadipocytes to mature adipocytes is mediated in part by insulin receptor substrate (IRS)-1 and the cell cycle regulator protein necdin. In this study...... with specific consensus sequences in the proximal region. Based on these results, we propose that insulin/IGF-I act through IRS-1 phosphorylation to stimulate differentiation of brown preadipocytes via two complementary pathways: 1) the Ras-ERK1/2 pathway to activate CREB and 2) the phosphoinositide 3 kinase...

  18. Autoimmune Regulator Expression in DC2.4 Cells Regulates the NF-κB Signaling and Cytokine Expression of the Toll-Like Receptor 3 Pathway

    Directory of Open Access Journals (Sweden)

    Jitong Sun

    2016-12-01

    Full Text Available Autoimmune regulator (Aire mutations result in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED, which manifests as multi-organ autoimmunity and chronic mucocutaneous candidiasis (CMC. Indendritic cells (DCs, pattern recognition receptors (PRR, such as Toll-like receptors (TLRs, are closely involved in the recognition of various pathogens, activating the intercellular signaling pathway, followed by the activation of transcription factors and the expression of downstream genes, which take part in mediating the immune response and maintaining immune tolerance. In this study, we found that Aire up-regulated TLR3 expression and modulated the downstream cytokine expression and nuclear factor-κB (NF-κB of the TLR3 signaling pathway.

  19. Pathway-level acceleration of glycogen catabolism by a response regulator in the cyanobacterium Synechocystis species PCC 6803.

    Science.gov (United States)

    Osanai, Takashi; Oikawa, Akira; Numata, Keiji; Kuwahara, Ayuko; Iijima, Hiroko; Doi, Yoshiharu; Saito, Kazuki; Hirai, Masami Yokota

    2014-04-01

    Response regulators of two-component systems play pivotal roles in the transcriptional regulation of responses to environmental signals in bacteria. Rre37, an OmpR-type response regulator, is induced by nitrogen depletion in the unicellular cyanobacterium Synechocystis species PCC 6803. Microarray and quantitative real-time polymerase chain reaction analyses revealed that genes related to sugar catabolism and nitrogen metabolism were up-regulated by rre37 overexpression. Protein levels of GlgP(slr1367), one of the two glycogen phosphorylases, in the rre37-overexpressing strain were higher than those of the parental wild-type strain under both nitrogen-replete and nitrogen-depleted conditions. Glycogen amounts decreased to less than one-tenth by rre37 overexpression under nitrogen-replete conditions. Metabolome analysis revealed that metabolites of the sugar catabolic pathway and amino acids were altered in the rre37-overexpressing strain after nitrogen depletion. These results demonstrate that Rre37 is a pathway-level regulator that activates the metabolic flow from glycogen to polyhydroxybutyrate and the hybrid tricarboxylic acid and ornithine cycle, unraveling the mechanism of the transcriptional regulation of primary metabolism in this unicellular cyanobacterium.

  20. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    Science.gov (United States)

    Xu, Dong-bei; Chen, Ming; Ma, Ya-nan; Xu, Zhao-shi; Li, Lian-cheng; Chen, Yao-feng; Ma, You-zhi

    2015-01-01

    Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2) was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1), were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44), were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  1. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Dong-bei Xu

    Full Text Available Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2 was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1, were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44, were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  2. Minimal and inducible regulation of tissue factor pathway inhibitor-2 in human gliomas.

    Science.gov (United States)

    Konduri, Santhi D; Osman, Francis Ali; Rao, Chilukuri N; Srinivas, Harish; Yanamandra, Niranjan; Tasiou, Anastasia; Dinh, Dzung H; Olivero, William C; Gujrati, Meena; Foster, Donald C; Kisiel, Walter; Kouraklis, Gregory; Rao, Jasti S

    2002-01-31

    Tissue factor pathway inhibitor-2 (TFPI-2), a serine protease inhibitor abundant in the extra cellular matrix, is highly expressed in non-invasive cells but undetectable levels in highly invasive human glioma cells. The mechanisms responsible for its transcriptional regulation are not well elucidated. In this study, we made several deletion constructs from a 3.6 kb genomic fragment from Hs683 cells containing the 5'-flanking region of the TFPI-2 gene, transiently transfected with these constructs into non-invasive (Hs683) and highly invasive (SNB19) human glioma cells, and assessed their expression by using a luciferase reporter gene. Three constructs showed high promoter activity (pTF5, -670 to +1; pTF6, -312 to +1; pTF2, -1511 to +1). Another construct, pTF8 (-81 to +1), showed no activity. PTF9, a variant of pTF5 in which a further 231 bp fragment (-312 to -81) was deleted, from the [-670 to +1] pTF5 region, also showed no promoter activity. Hence, (-312 to -81) this region is essential for the transcription of TFPI-2 in glioma cells. Sequencing of this promoter region revealed that it has a high G+C content, contains potential SP1 and AP1 binding motifs, and lacks canonical TATA and CAAT boxes immediately upstream of the major transcriptional initiation site, although CAAT boxes were found about -3000 bp upstream of the transcription start site. We also found a strong repressor in the region between -927 to -1181, upstream of the major transcriptional initiation site, followed by positive elements or enhancers between -1511 to -1181. These positive elements masked the silencer effect. Finally TFPI-2 was induced in Hs683 cells transfected with the pTF6 construct (-312 to +1) and stimulated with phorbol-12-myristate-13-acetate (PMA). We conclude that the -312 to +1 region is critical for the minimal and inducible regulation of TFPI-2 in non-invasive (Hs683) and highly invasive (SNB19) human glioma cell lines.

  3. VDR Activation Reduces Proteinuria and High-Glucose-Induced Injury of Kidneys and Podocytes by Regulating Wnt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jia Guo

    2017-08-01

    Full Text Available Background: Diabetic nephropathy (DN is a major cause of end-stage renal disease and proteinuria is one of the most prominent clinical manifestations. The expression of Vitamin D receptor (VDR in patients with chronic kidney diseases was decreased, while VDR agonists could partially alleviate the proteinuria of DN in animal models. The present study was designed to determine the expression of VDR in renal tissues and its relationship with proteinuria the diabetic model db/db mice. Methods: The regulation effects of VDR on the Wnt signaling pathway were analyzed using RNA interference and VDR agonist paricalcitol. Results: With the increase in age of the db/db mice, the VDR protein and mRNA levels in renal tissues were decreased, proteinuria increased, and the protein and mRNA levels of GSK-3β of and β-catenin increased. Paricalcitol treatment resulted in the up-regulation of VDR and down-regulation of GSK-3β and β-catenin, indicating that VDR had a regulatory effect on the Wnt signaling pathway. Conclusion: VDR activation could reduce proteinuria of DN mice and alleviate high-glucose-induced injury of kidneys and podocytes by regulating the key molecules of Wnt signaling pathway.

  4. The Heparan and Heparin Metabolism Pathway is Involved in Regulation of Fatty Acid Composition

    Directory of Open Access Journals (Sweden)

    Zhihua Jiang, Jennifer J. Michal, Xiao-Lin Wu, Zengxiang Pan, Michael D. MacNeil

    2011-01-01

    Full Text Available Six genes involved in the heparan sulfate and heparin metabolism pathway, DSEL (dermatan sulfate epimerase-like, EXTL1 (exostoses (multiple-like 1, HS6ST1 (heparan sulfate 6-O-sulfotransferase 1, HS6ST3 (heparan sulfate 6-O-sulfotransferase 3, NDST3 (N-deacetylase/N-sulfotransferase (heparan glucosaminyl 3, and SULT1A1 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1, were investigated for their associations with muscle lipid composition using cattle as a model organism. Nineteen single nucleotide polymorphisms (SNPs/multiple nucleotide length polymorphisms (MNLPs were identified in five of these six genes. Six of these mutations were then genotyped on 246 Wagyu x Limousin F2 animals, which were measured for 5 carcass, 6 eating quality and 8 fatty acid composition traits. Association analysis revealed that DSEL, EXTL1 and HS6ST1 significantly affected two stearoyl-CoA desaturase activity indices, the amount of conjugated linoleic acid (CLA, and the relative amount of saturated fatty acids (SFA and monounsaturated fatty acids (MUFA in skeletal muscle (P<0.05. In particular, HS6ST1 joined our previously reported SCD1 and UQCRC1 genes to form a three gene network for one of the stearoyl-CoA desaturase activity indices. These results provide evidence that genes involved in heparan sulfate and heparin metabolism are also involved in regulation of lipid metabolism in bovine muscle. Whether the SNPs affected heparan sulfate proteoglycan structure is unknown and warrants further investigation.

  5. PARM-1 promotes cardiomyogenic differentiation through regulating the BMP/Smad signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Naohiko [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Takahashi, Tomosaburo, E-mail: ttaka@koto.kpu-m.ac.jp [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Ogata, Takehiro; Adachi, Atsuo; Imoto-Tsubakimoto, Hiroko [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Ueyama, Tomomi, E-mail: toueyama-circ@umin.ac.jp [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Matsubara, Hiroaki [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer PARM-1 expression is induced during cardiomyogenesis. Black-Right-Pointing-Pointer PARM-1 expression precedes Nkx2.5 and Tbx5 during cardiomyogenesis. Black-Right-Pointing-Pointer PARM-1 activates BMP/Smad signaling. Black-Right-Pointing-Pointer PARM-1 enhances cardiac specification, resulting in promoted cardiomyogenesis. -- Abstract: PARM-1, prostatic androgen repressed message-1, is an endoplasmic reticulum (ER) molecule that is involved in ER stress-induced apoptosis in cardiomyocytes. In this study, we assessed whether PARM-1 plays a role in the differentiation of stem cells into cardiomyocytes. While PARM-1 was not expressed in undifferentiated P19CL6 embryonic carcinoma cells, PARM-1 expression was induced during cardiomyogenic differentiation. This expression followed expression of mesodermal markers, and preceded expression of cardiac transcription factors. PARM-1 overexpression did not alter the expression of undifferentiated markers and the proliferative property in undifferentiated P19CL6 cells. Expression of cardiac transcription factors during cardiomyogenesis was markedly enhanced by overexpression of PARM-1, while expression of mesodermal markers was not altered, suggesting that PARM-1 is involved in the differentiation from the mesodermal lineage to cardiomyocytes. Furthermore, overexpression of PARM-1 induced BMP2 mRNA expression in undifferentiated P19CL6 cells and enhanced both BMP2 and BMP4 mRNA expression in the early phase of cardiomyogenesis. PARM-1 overexpression also enhanced phosphorylation of Smads1/5/8. Thus, PARM-1 plays an important role in the cardiomyogenic differentiation of P19CL6 cells through regulating BMP/Smad signaling pathways, demonstrating a novel role of PARM-1 in the cardiomyogenic differentiation of stem cells.

  6. Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention.

    Science.gov (United States)

    Chun, Kyung-Soo; Surh, Young-Joon

    2004-09-15

    Expression of cyclooxygenase-2 (COX-2) has been reported to be elevated in human colorectal adenocarcinoma and other tumors, including those of breast, cervical, prostate, and lung. Genetic knock-out or pharmacological inhibition of COX-2 has been shown to protect against experimentally-induced carcinogenesis. Results from epidemiological and laboratory studies indicate that regular intake of selective COX-2 inhibitors reduces the risk of several forms of human malignancies. Thus, it is conceivable that targeted inhibition of abnormally or improperly elevated COX-2 provides one of the most effective and promising strategies for cancer chemoprevention. The COX-2 promoter contains a TATA box and binding sites for several transcription factors including nuclear factor-kappaB (NF-kappaB), nuclear factor for interleukin-6/CCAAT enhancer-binding protein (NF-IL6/C/EBP) and cyclic AMP response element (CRE) binding protein. Upregulation of COX-2 is mediated by a variety of stimuli including tumor promoters, oncogenes, and growth factors. Stimulation of either protein kinase C (PKC) or Ras signaling enhances mitogen-activated protein kinase (MAPK) activity, which, in turn, activates transcription of cox-2. Celecoxib, the first US FDA approved selective COX-2 inhibitor, initially developed for the treatment of adult rheumatoid arthritis and osteoarthritis, has been reported to reduce the formation of polyps in patients with familial adenomatous polyposis. This COX-2 specific inhibitor also protects against experimentally-induced carcinogenesis, but the underlying molecular mechanisms are poorly understood. The present review covers the signal transduction pathways responsible for regulating COX-2 expression as novel molecular targets of chemopreventive agents with celecoxib as a specific example.

  7. Caveolin interacts with Trk A and p75(NTR) and regulates neurotrophin signaling pathways.

    Science.gov (United States)

    Bilderback, T R; Gazula, V R; Lisanti, M P; Dobrowsky, R T

    1999-01-01

    Neurotrophins signal through Trk tyrosine kinase receptors and the low-affinity neurotrophin receptor p75(NTR). We have shown previously that activation of Trk A tyrosine kinase activity can inhibit p75(NTR)-dependent sphingomyelin hydrolysis, that caveolae are a localized site for p75(NTR) signaling, and that caveolin can directly interact with p75(NTR). The ability of caveolin to also interact with tyrosine kinase receptors and inhibit their activity led us to hypothesize that caveolin expression may modulate interactions between neurotrophin signaling pathways. PC12 cells were transfected with caveolin that was expressed efficiently and targeted to the appropriate membrane domains. Upon exposure to nerve growth factor (NGF), caveolin-PC12 cells were unable to develop extensive neuritic processes. Caveolin expression in PC12 cells was found to diminish the magnitude and duration of Trk A activation in vivo. This inhibition may be due to a direct interaction of caveolin with Trk A, because Trk A co-immunoprecipitated with caveolin from Cav-Trk A-PC12 cells, and a glutathione S-transferase-caveolin fusion protein bound to Trk A and inhibited NGF-induced autophosphorylation in vitro. Furthermore, the in vivo kinetics of the inhibition of Trk A tyrosine kinase activity by caveolin expression correlated with an increased ability of NGF to induce sphingomyelin hydrolysis through p75(NTR). In summary, our results suggest that the interaction of caveolin with neurotrophin receptors may have functional consequences in regulating signaling through p75(NTR) and Trk A in neuronal and glial cell populations.

  8. Arctigenin enhances swimming endurance of sedentary rats partially by regulation of antioxidant pathways.

    Science.gov (United States)

    Wu, Ruo-ming; Sun, Yan-yan; Zhou, Ting-ting; Zhu, Zhi-yuan; Zhuang, Jing-jing; Tang, Xuan; Chen, Jing; Hu, Li-hong; Shen, Xu

    2014-10-01

    Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan found in traditional Chinese herbs, has been determined to exhibit a variety of pharmacological activities, including anti-tumor, anti-inflammation, neuroprotection, and endurance enhancement. In the present study, we investigated the antioxidation and anti-fatigue effects of arctigenin in rats. Rat L6 skeletal muscle cell line was exposed to H2O2 (700 μmol/L), and ROS level was assayed using DCFH-DA as a probe. Male SD rats were injected with arctigenin (15 mg·kg(-1)·d(-1), ip) for 6 weeks, and then the weight-loaded forced swimming test (WFST) was performed to evaluate their endurance. The levels of antioxidant-related genes in L6 cells and the skeletal muscles of rats were analyzed using real-time RT-PCR and Western blotting. Incubation of L6 cells with arctigenin (1, 5, 20 μmol/L) dose-dependently decreased the H2O2-induced ROS production. WFST results demonstrated that chronic administration of arctigenin significantly enhanced the endurance of rats. Furthermore, molecular biology studies on L6 cells and skeletal muscles of the rats showed that arctigenin effectively increased the expression of the antioxidant-related genes, including superoxide dismutase (SOD), glutathione reductase (Gsr), glutathione peroxidase (GPX1), thioredoxin (Txn) and uncoupling protein 2 (UCP2), through regulation of two potential antioxidant pathways: AMPK/PGC-1α/PPARα in mitochondria and AMPK/p53/Nrf2 in the cell nucleus. Arctigenin efficiently enhances rat swimming endurance by elevation of the antioxidant capacity of the skeletal muscles, which has thereby highlighted the potential of this natural product as an antioxidant in the treatment of fatigue and related diseases.

  9. An amphipathic alpha-helix in the prodomain of cocaine and amphetamine regulated transcript peptide precursor serves as its sorting signal to the regulated secretory pathway.

    Directory of Open Access Journals (Sweden)

    Elías H Blanco

    Full Text Available Cocaine and Amphetamine Regulated Transcript (CART peptides are anorexigenic neuropeptides. The L34F mutation in human CART peptide precursor (proCART has been linked to obesity (Yanik et al. Endocrinology 147: 39, 2006. Decrease in CART peptide levels in individuals carrying the L34F mutation was attributed to proCART subcellular missorting. We studied proCART features required to enter the regulated secretory pathway. The subcellular localization and the secretion mode of monomeric EGFP fused to the full-length or truncated forms of human proCART transiently transfected in PC12 cells were analyzed. Our results showed that the N-terminal 1-41 fragment of proCART was necessary and sufficient to sort proCART to the regulated secretory pathway. In silico modeling predicted an alpha-helix structure located between residues 24-37 of proCART. Helical wheel projection of proCART alpha-helix showed an amphipathic configuration. The L34F mutation does not modify the amphipathicity of proCART alpha-helix and consistently proCARTL34F was efficiently sorted to the regulated secretory pathway. However, four additional mutations to proCARTL34F that reduced its alpha-helix amphipathicity resulted in the missorting of the mutated proCART toward the constitutive secretory pathway. These findings show that an amphipathic alpha-helix is a key cis-structure for the proCART sorting mechanism. In addition, our results indicate that the association between L34F mutation and obesity is not explained by proCART missorting.

  10. A Lexical Framework for Semantic Annotation of Positive and Negative Regulation Relations in Biomedical Pathways

    DEFF Research Database (Denmark)

    Zambach, Sine; Lassen, Tine

    presented here, we analyze 6 frequently used verbs denoting the regulation relations regulates, positively regulates and negatively regulates through corpus analysis, and propose a formal representation of the acquired knowledge as domain speci¯c semantic frames. The acquired knowledge patterns can thus...

  11. Brain-derived neurotrophic factor activation of extracellular signal-regulated kinase is autonomous from the dominant extrasynaptic NMDA receptor extracellular signal-regulated kinase shutoff pathway.

    Science.gov (United States)

    Mulholland, P J; Luong, N T; Woodward, J J; Chandler, L J

    2008-01-24

    NMDA receptors bidirectionally modulate extracellular signal-regulated kinase (ERK) through the coupling of synaptic NMDA receptors to an ERK activation pathway that is opposed by a dominant ERK shutoff pathway thought to be coupled to extrasynaptic NMDA receptors. In the present study, synaptic NMDA receptor activation of ERK in rat cortical cultures was partially inhibited by the highly selective NR2B antagonist Ro25-6981 (Ro) and the less selective NR2A antagonist NVP-AAM077 (NVP). When Ro and NVP were added together, inhibition appeared additive and equal to that observed with the NMDA open-channel blocker MK-801. Consistent with a selective coupling of extrasynaptic NMDA receptors to the dominant ERK shutoff pathway, pre-block of synaptic NMDA receptors with MK-801 did not alter the inhibitory effect of bath-applied NMDA on ERK activity. Lastly, in contrast to a complete block of synaptic NMDA receptor activation of ERK by extrasynaptic NMDA receptors, activation of extrasynaptic NMDA receptors had no effect upon ERK activation by brain-derived neurotrophic factor. These results suggest that the synaptic NMDA receptor ERK activation pathway is coupled to both NR2A and NR2B containing receptors, and that the extrasynaptic NMDA receptor ERK inhibitory pathway is not a non-selective global ERK shutoff.

  12. Alpha-2-glycoprotein 1(AZGP1 regulates biological behaviors of LoVo cells by down-regulating mTOR signaling pathway and endogenous fatty acid synthesis.

    Directory of Open Access Journals (Sweden)

    Ligong Chang

    Full Text Available AZGP1 is a multifaceted protein associated with lipid mobilization, a process that is regulated by FASN and other metabolic pathways such as mTOR signaling. The active mTOR signaling pathway has been found to be involved in a variety of tumors. However, it remains unclear whether it is involved in the regulation of AZGP1 and FASN. An AZGP1-expressing plasmid was transfected into a human colorectal cancer cell line (LoVo with a low expression of AZGP1. The expression of AZGP1, FASN, eIF4E, p-mTOR, p-S6,and S6K1 were measured by Western blot analysis, and target genes were detected by RT-PCR. Cell proliferation was studied using the MTT and colony formation assays. The analysis of apoptosis and the cell cycle phase were assessed by flow cytometry. The capacity of cell migration was investigated using the transwell migration assay. We found that the expression of AZGP1 was up-regulated while the expression of FASN, eIF4E, p-mTOR, p-S6, and S6K1 were down-regulated in LoVo cells after AZGP1 was expressed. The proliferation of malignant cells was reduced in AZGP1-overexpression cells, which is consistent with an increased in the G2-arrest and apoptosis rate. Furthermore, the migration of AZGP1-overexpression cells was decreased. The overexpression of AZGP1 suppressed the activation of the mTOR pathway and endogenous FASN-regulated fatty acid synthesis, mitigating the malignant phenotype of LoVo cells. Herein, we provide evidence that AZGP1 may constitute a novel tumor suppressor for LoVo colorectal cancer cells.

  13. Alpha-2-glycoprotein 1(AZGP1) regulates biological behaviors of LoVo cells by down-regulating mTOR signaling pathway and endogenous fatty acid synthesis.

    Science.gov (United States)

    Chang, Ligong; Tian, Xiaoqiang; Lu, Yinghui; Jia, Min; Wu, Peng; Huang, Peilin

    2014-01-01

    AZGP1 is a multifaceted protein associated with lipid mobilization, a process that is regulated by FASN and other metabolic pathways such as mTOR signaling. The active mTOR signaling pathway has been found to be involved in a variety of tumors. However, it remains unclear whether it is involved in the regulation of AZGP1 and FASN. An AZGP1-expressing plasmid was transfected into a human colorectal cancer cell line (LoVo) with a low expression of AZGP1. The expression of AZGP1, FASN, eIF4E, p-mTOR, p-S6,and S6K1 were measured by Western blot analysis, and target genes were detected by RT-PCR. Cell proliferation was studied using the MTT and colony formation assays. The analysis of apoptosis and the cell cycle phase were assessed by flow cytometry. The capacity of cell migration was investigated using the transwell migration assay. We found that the expression of AZGP1 was up-regulated while the expression of FASN, eIF4E, p-mTOR, p-S6, and S6K1 were down-regulated in LoVo cells after AZGP1 was expressed. The proliferation of malignant cells was reduced in AZGP1-overexpression cells, which is consistent with an increased in the G2-arrest and apoptosis rate. Furthermore, the migration of AZGP1-overexpression cells was decreased. The overexpression of AZGP1 suppressed the activation of the mTOR pathway and endogenous FASN-regulated fatty acid synthesis, mitigating the malignant phenotype of LoVo cells. Herein, we provide evidence that AZGP1 may constitute a novel tumor suppressor for LoVo colorectal cancer cells.

  14. Regulation of aromatics biodegradation by rhl quorum sensing system through induction of catechol meta-cleavage pathway.

    Science.gov (United States)

    Yong, Yang-Chun; Zhong, Jian-Jiang

    2013-05-01

    The mechanism for quorum sensing (QS) regulation on aromatics degradation was investigated. Deletion of rhl QS system resulted in a significant decrease in aromatics biodegradation as well as the activity of catechol 2,3-dioxygenase (C23O, key enzyme for catechol meta-cleavage pathway) in Pseudomonas aeruginosa CGMCC1.860. Interestingly, this repression could be relieved by N-butyryl homoserine lactone (the signaling molecule of rhl QS system) addition. In accordance, the transcription level of nahH (the gene encoding C23O) and nahR (transcriptional activator) also responded to rhl perturbation in a similar way. The results indicated that rhl QS system positively controlled the catechol meta-cleavage pathway, and hence improved aromatics biodegradation. It suggested manipulation of QS system could be a promising strategy to tune the catechol cleavage pathway and to control aromatics biodegradation.

  15. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.

    Science.gov (United States)

    Linares, Daniel M; del Río, Beatriz; Ladero, Victor; Redruello, Begoña; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2013-07-01

    Lactococcus lactis is the lactic acid bacterium most widely used by the dairy industry as a starter for the manufacture of fermented products such as cheese and buttermilk. However, some strains produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The proteins involved in this pathway, including those necessary for agmatine uptake and conversion into putrescine, are encoded by the aguB, aguD, aguA and aguC genes, which together form an operon. This paper reports the mechanism of regulation of putrescine biosynthesis in L. lactis. It is shown that the aguBDAC operon, which contains a cre site at the promoter of aguB (the first gene of the operon), is transcriptionally regulated by carbon catabolic repression (CCR) mediated by the catabolite control protein CcpA.

  16. Tyrosine pathway regulation is host-mediated in the pea aphid symbiosis during late embryonic and early larval development

    DEFF Research Database (Denmark)

    Rabatel, Andréane; Febvay, Gérard; Gaget, Karen;

    2013-01-01

    embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes...... encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data...... are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together...

  17. MAPK Signal Transduction Pathway Regulation: A Novel Mechanism of Rat HSC-T6 Cell Apoptosis Induced by FUZHENGHUAYU Tablet

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2013-01-01

    Full Text Available FUZHENGHUAYU Tablets have been widely used in the treatment of liver fibrosis in China. Here, we investigate the apoptotic effect of FUZHENGHUAYU Tablet in rat liver stellate cell line HSC-T6. HSC-T6 cells were incubated with control serum or drug serum from rats fed with 0.9% NaCl or FUZHENGHUAYU Tablet, respectively. Cells exposed to drug serum showed higher proportions of early and late apoptotic cells than controls. The mRNA levels of collagens I and III, TGF-β1 and α-SMA were reduced by drug serum compared to control serum. Differentially expressed mRNAs and miRNAs were analyzed by microarray and sequencing, respectively. We identified 334 differentially expressed mRNAs and also 60 GOs and two pathways related to the mRNAs. Seventy-five differentially expressed miRNAs were down-regulated by drug serum and 1963 target genes were predicted. 134 GOs up-regulated in drug serum group were linked to miRNA targets, and drug serum also regulated 43 miRNA signal transduction pathways. Protein levels were evaluated by Western blot. Drug serum down-regulated (phospho-SAPK/JNK/(SAPK/JNK and up-regulated phospho-p38/p38 ratios. The study showed that FUZHENGHUAYU Tablet induced apoptosis in rat HSC-T6 cells possibly in part by activating p38 and inhibiting SAPK/JNK.

  18. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair.

    Science.gov (United States)

    Mikhed, Yuliya; Görlach, Agnes; Knaus, Ulla G; Daiber, Andreas

    2015-08-01

    Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.

  19. Parathyroid hormone-related protein regulates integrin α6 and β4 levels via transcriptional and post-translational pathways.

    Science.gov (United States)

    Bhatia, Vandanajay; Mula, Ramanjaneya V R; Falzon, Miriam

    2013-06-10

    Parathyroid hormone-related protein (PTHrP) enhances prostate cancer (CaP) growth and metastasis in vivo. PTHrP also increases cell survival and migration, and upregulates pro-invasive integrin α6β4 expression. We used the human CaP cell lines C4-2 and PC-3 as model systems to study the mechanisms via which PTHrP regulates α6β4 levels. We report that PTHrP regulates α6 and β4 levels via a transcriptional pathway; β4 regulation involves the NF-κB pathway. PTHrP also regulates β4 levels at the post-translational level. PTHrP inhibits caspase-3 and -7 activities. Post-translational regulation of β4 by PTHrP is mediated via attenuation of its proteolytic cleavage by these caspases. Since α6 dimerizes with β4, increased β4 levels result in elevated α6 levels. Suppressing β4 using siRNA attenuates the effect of caspase inhibition on apoptosis and cell migration. These results provide evidence of a link between PTHrP, integrin α6β4 levels as a function of caspase activity, and cell survival and migration. Targeting PTHrP in CaP cancer, thereby reversing the effect on caspase activity and α6β4 levels, may thus prove therapeutically beneficial. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair

    Directory of Open Access Journals (Sweden)

    Yuliya Mikhed

    2015-08-01

    Full Text Available Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α and mRNA binding proteins (e.g. GAPDH, HuR is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications. By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.

  1. Changes in the regulation of the Notch signaling pathway are temporally correlated with regenerative failure in the mouse cochlea

    Directory of Open Access Journals (Sweden)

    Juan Cristobal Maass

    2015-03-01

    Full Text Available Sensorineural hearing loss is most commonly caused by the death of hair cells in the organ of Corti, and once lost, mammalian hair cells do not regenerate. In contrast, other vertebrates such as birds can regenerate hair cells by stimulating division and differentiation of neighboring supporting cells. We currently know little of the genetic networks which become active in supporting cells when hair cells die and that are activated in experimental models of hair cell regeneration.. Several studies have shown that neonatal mammalian cochlear supporting cells are able to trans-differentiate into hair cells when cultured in conditions in which the Notch signaling pathway is blocked. We now show that the ability of cochlear supporting cells to trans-differentiate declines precipitously after birth, such that supporting cells from six-day-old mouse cochlea are entirely unresponsive to a blockade of the Notch pathway. We show that this trend is seen regardless of whether the Notch pathway is blocked with gamma secretase inhibitors, or by antibodies against the Notch1 receptor, suggesting that the action of gamma secretase inhibitors on neonatal supporting cells is likely to be by inhibiting Notch receptor cleavage. The loss of responsiveness to inhibition of the Notch pathway in the first postnatal week is due in part to a down-regulation of Notch receptors and ligands, and we show that this down-regulation persists in the adult animal, even under conditions of noise damage. Our data suggest that the Notch pathway is used to establish the repeating pattern of hair cells and supporting cells in the organ of Corti, but is not required to maintain this cellular mosaic once the production of hair cells and supporting cells is completed. Our results have implications for the proposed used of Notch pathway inhibitors in hearing restoration therapies.

  2. Regulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage

    Directory of Open Access Journals (Sweden)

    Peng Yan

    2017-09-01

    Full Text Available Objective(s: AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1 signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI. Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subjected to mechanical injury (MI in vitro. The apoptosis in spinal cord tissue and neurons was assessed by TUNEL staining and Hoechst 33342 staining, respectively. The autophagy-related proteins levels were detected by Western blot. The activation of AMPK/SIRT1 pathway was determined by Western blot and immunohistochemical staining. Results: We found that the apoptosis of spinal cord tissue and cell damage of spinal cord neurons was obvious after the trauma. The ratio of LC3II/LC3I and level of p62 were first increased significantly and then decreased after the trauma in vivo and in vitro, indicating the defect in autophagy. The levels of p-AMPK and SIRT1 were increased obviously after the trauma in vivo and in vitro. Further activation of the AMPK/SIRT1 pathway by pretreatment with resveratrol, a confirmed activator of the AMPK/SIRT1 pathway, alleviated the cell damage and promoted the autophagy flux via downregulation of p62 in spinal cord neurons at 24 hr after MI. Conclusion: Our results demonstrate that regulation of autophagy by AMPK/SIRT1 pathway can restrain spinal cord neurons damage, which may be a potential intervention of SCI.

  3. Hepatic and Nephric NRF2 Pathway Up-Regulation, an Early Antioxidant Response, in Acute Arsenic-Exposed Mice

    Directory of Open Access Journals (Sweden)

    Jinlong Li

    2015-10-01

    Full Text Available Inorganic arsenic (iAs, a proven human carcinogen, damages biological systems through multiple mechanisms, one of them being reactive oxygen species (ROS production. NRF2 is a redox-sensitive transcription factor that positively regulates the genes of encoding antioxidant and detoxification enzymes to neutralize ROS. Although NRF2 pathway activation by iAs has been reported in various cell types, however, the experimental data in vivo are very limited and not fully elucidated in humans. The present investigation aimed to explore the hepatic and nephric NRF2 pathway upregulation in acute arsenic-exposed mice in vivo. Our results showed 10 mg/kg NaAsO2 elevated the NRF2 protein and increased the transcription of Nrf2 mRNA, as well as up-regulated NRF2 downstream targets HO-1, GST and GCLC time- and dose-dependently both in the liver and kidney. Acute NaAsO2 exposure also resulted in obvious imbalance of oxidative redox status represented by the increase of GSH and MDA, and the decrease of T-AOC. The present investigation reveals that hepatic and nephric NRF2 pathway expression is an early antioxidant defensive response upon iAs exposure. A better knowledge about the NRF2 pathway involvment in the cellular response against arsenic could help improve the strategies for reducing the cellular toxicity related to this metalloid.

  4. The IMD innate immunity pathway of Drosophila influences somatic sex determination via regulation of the Doa locus.

    Science.gov (United States)

    Zhao, Yunpo; Cocco, Claudia; Domenichini, Severine; Samson, Marie-Laure; Rabinow, Leonard

    2015-11-15

    The IMD pathway induces the innate immune response to infection by gram-negative bacteria. We demonstrate strong female-to-male sex transformations in double mutants of the IMD pathway in combination with Doa alleles. Doa encodes a protein kinase playing a central role in somatic sex determination through its regulation of alternative splicing of dsx transcripts. Transcripts encoding two specific Doa isoforms are reduced in Rel null mutant females, supporting our genetic observations. A role for the IMD pathway in somatic sex determination is further supported by the induction of female-to-male sex transformations by Dredd mutations in sensitized genetic backgrounds. In contrast, mutations in either dorsal or Dif, the two other NF-κB paralogues of Drosophila, display no effects on sex determination, demonstrating the specificity of IMD signaling. Our results reveal a novel role for the innate immune IMD signaling pathway in the regulation of somatic sex determination in addition to its role in response to microbial infection, demonstrating its effects on alternative splicing through induction of a crucial protein kinase.

  5. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway.

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-04-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.

  6. The cross-pathway control system regulates production of the secondary metabolite toxin, sirodesmin PL, in the ascomycete, Leptosphaeria maculans

    Directory of Open Access Journals (Sweden)

    Fox Ellen M

    2011-07-01

    Full Text Available Abstract Background Sirodesmin PL is a secondary metabolite toxin made by the ascomycetous plant pathogen, Leptosphaeria maculans. The sirodesmin biosynthetic genes are clustered in the genome. The key genes are a non-ribosomal peptide synthetase, sirP, and a pathway-specific transcription factor, sirZ. Little is known about regulation of sirodesmin production. Results Genes involved in regulation of sirodesmin PL in L. maculans have been identified. Two hundred random insertional T-DNA mutants were screened with an antibacterial assay for ones producing low levels of sirodesmin PL. Three such mutants were isolated and each transcribed sirZ at very low levels. One of the affected genes had high sequence similarity to Aspergillus fumigatus cpcA, which regulates the cross-pathway control system in response to amino acid availability. This gene was silenced in L. maculans and the resultant mutant characterised. When amino acid starvation was artificially-induced by addition of 3-aminotriazole for 5 h, transcript levels of sirP and sirZ did not change in the wild type. In contrast, levels of sirP and sirZ transcripts increased in the silenced cpcA mutant. After prolonged amino acid starvation the silenced cpcA mutant produced much higher amounts of sirodesmin PL than the wild type. Conclusions Production of sirodesmin PL in L. maculans is regulated by the cross pathway control gene, cpcA, either directly or indirectly via the pathway-specific transcription factor, sirZ.

  7. Differential regulation of BDNF, synaptic plasticity and sprouting in the hippocampal mossy fiber pathway of male and female rats

    OpenAIRE

    SCHARFMAN, HELEN E.; MacLusky, Neil J.

    2013-01-01

    Many studies have described potent effects of BDNF, 17β-estradiol or androgen on hippocampal synapses and their plasticity. Far less information is available about the interactions between 17β-estradiol and BDNF in hippocampus, or interactions between androgen and BDNF in hippocampus. Here we review the regulation of BDNF in the mossy fiber pathway, a critical part of hippocampal circuitry. We discuss the emerging view that 17β-estradiol upregulates mossy fiber BDNF synthesis in the adult fem...

  8. Transcriptome profiling shows gene regulation patterns in a flavonoid pathway in response to exogenous phenylalanine in Boesenbergia rotunda cell culture.

    Science.gov (United States)

    Md-Mustafa, Noor Diyana; Khalid, Norzulaani; Gao, Huan; Peng, Zhiyu; Alimin, Mohd Firdaus; Bujang, Noraini; Ming, Wong Sher; Mohd-Yusuf, Yusmin; Harikrishna, Jennifer A; Othman, Rofina Yasmin

    2014-11-18

    Panduratin A extracted from Boesenbergia rotunda is a flavonoid reported to possess a range of medicinal indications which include anti-dengue, anti-HIV, anti-cancer, antioxidant and anti-inflammatory properties. Boesenbergia rotunda is a plant from the Zingiberaceae family commonly used as a food ingredient and traditional medicine in Southeast Asia and China. Reports on the health benefits of secondary metabolites extracted from Boesenbergia rotunda over the last few years has resulted in rising demands for panduratin A. However large scale extraction has been hindered by the naturally low abundance of the compound and limited knowledge of its biosynthetic pathway. Transcriptome sequencing and digital gene expression (DGE) analysis of native and phenylalanine treated Boesenbergia rotunda cell suspension cultures were carried out to elucidate the key genes differentially expressed in the panduratin A biosynthetic pathway. Based on experiments that show increase in panduratin A production after 14 days post treatment with exogenous phenylalanine, an aromatic amino acid derived from the shikimic acid pathway, total RNA of untreated and 14 days post-phenylalanine treated cell suspension cultures were extracted and sequenced using next generation sequencing technology employing an Illumina-Solexa platform. The transcriptome data generated 101, 043 unigenes with 50, 932 (50.41%) successfully annotated in the public protein databases; including 49.93% (50, 447) in the non-redundant (NR) database, 34.63% (34, 989) in Swiss-Prot, 24,07% (24, 316) in Kyoto Encyclopedia of Genes and Genomes (KEGG) and 16.26% (16, 426) in Clusters of Orthologous Groups (COG). Through DGE analysis, we found that 14, 644 unigenes were up-regulated and 14, 379 unigenes down-regulated in response to exogenous phenylalanine treatment. In the phenylpropanoid pathway leading to the proposed panduratin A production, 2 up-regulated phenylalanine ammonia-lyase (PAL), 3 up-regulated 4-coumaroyl

  9. Granulocyte colony-stimulating factor regulates JNK pathway to alleviate damage after cerebral ischemia reperfusion

    Institute of Scientific and Technical Information of China (English)

    LI Ya-guo; LIU Xiao-li; ZHENG Chao-bo

    2013-01-01

    cerebral ischemia reperfusion-damaged cortex and hippocampus was significantly decreased in all G-CSF-treated rats (P <0.05).However,between the long-acting and short-acting G-CSF sets,there were no significant differences found in the activity of P-JNK and P-c-jun in the cortex,hippocampus and striate body (P >0.05).Conclusions Hypodermic injection of 50 μg/kg G-CSF attenuated the damage caused by cerebral ischemia reperfusion in rats,which might be associated with down-regulated activation of the P-JNK and P-c-jun pathway after cerebral ischemia reperfusion.Long-acting G-CSF may be a novel choice for both clinical and basic research in treating cerebral ischemia.

  10. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways.

    Science.gov (United States)

    Bhattacharya, Santanu; Pal, Krishnendu; Sharma, Anil K; Dutta, Shamit K; Lau, Julie S; Yan, Irene K; Wang, Enfeng; Elkhanany, Ahmed; Alkharfy, Khalid M; Sanyal, Arunik; Patel, Tushar C; Chari, Suresh T; Spaller, Mark R; Mukhopadhyay, Debabrata

    2014-01-01

    GAIP interacting protein C terminus (GIPC) is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer.

  11. Chronic up-regulation of the SHH pathway normalizes some developmental effects of trisomy in Ts65Dn mice.

    Science.gov (United States)

    Dutka, Tara; Hallberg, Dorothy; Reeves, Roger H

    2015-02-01

    Down Syndrome (DS) is a highly complex developmental genetic disorder caused by trisomy for human chromosome 21 (Hsa21). All individuals with DS exhibit some degree of brain structural changes and cognitive impairment; mouse models such as Ts65Dn have been instrumental in understanding the underlying mechanisms. Several phenotypes of DS might arise from a reduced response of trisomic cells to the Sonic Hedgehog (SHH) growth factor. If all trisomic cells show a similar reduced response to SHH, then up-regulation of the pathway in trisomic cells might ameliorate multiple DS phenotypes. We crossed Ptch1tm1Mps/+ mice, in which the canonical SHH pathway is expected to be up-regulated in every SHH-responsive cell due to the loss of function of one allele of the pathway suppressor, Ptch1, to the Ts65Dn DS model and assessed the progeny for possible rescue of multiple DS-related phenotypes. Down-regulation of Ptch produced several previously unreported effects on development by itself, complicating interpretation of some phenotypes, and a number of structural or behavioral effects of trisomy were not compensated by SHH signaling. However, a deficit in a nest-building task was partially restored in Ts;Ptch+/- mice, as were the structural anomalies of the cerebellum seen in Ts65Dn mice. These results extend the body of evidence indicating that reduced response to SHH in trisomic cells and tissues contributes to various aspects of the trisomic phenotype.

  12. Role of the ANKMY2-FKBP38 axis in regulation of the Sonic hedgehog (Shh) signaling pathway.

    Science.gov (United States)

    Saita, Shotaro; Shirane, Michiko; Ishitani, Tohru; Shimizu, Nobuyuki; Nakayama, Keiichi I

    2014-09-12

    Sonic hedgehog (Shh) is a secreted morphogen that controls the patterning and growth of various tissues in the developing vertebrate embryo, including the central nervous system. Ablation of the FK506-binding protein 38 (FKBP38) gene results in activation of the Shh signaling pathway in mouse embryos, but the molecular mechanism by which FKBP38 suppresses Shh signaling has remained unclear. With the use of a proteomics approach, we have now identified ANKMY2, a protein with three ankyrin repeats and a MYND (myeloid, Nervy, and DEAF-1)-type Zn(2+) finger domain, as a molecule that interacts with FKBP38. Co-immunoprecipitation analysis confirmed that endogenous FKBP38 and ANKMY2 interact in the mouse brain. Depletion or overexpression of ANKMY2 resulted in down- and up-regulation of Shh signaling, respectively, in mouse embryonic fibroblasts. Furthermore, combined depletion of both FKBP38 and ANKMY2 attenuated Shh signaling in these cells, suggesting that ANKMY2 acts downstream of FKBP38 to activate the Shh signaling pathway. Targeting of the zebrafish ortholog of mouse Ankmy2 (ankmy2a) in fish embryos with an antisense morpholino oligonucleotide conferred a phenotype reflecting loss of function of the Shh pathway, suggesting that the regulation of Shh signaling by ANKMY2 is conserved between mammals and fish. Our findings thus indicate that the FKBP38-ANKMY2 axis plays a key role in regulation of Shh signaling in vivo.

  13. Fructose-1,6-bisphosphatase is a novel regulator of Wnt/β-Catenin pathway in breast cancer.

    Science.gov (United States)

    Li, Kaichun; Ying, Mingzhen; Feng, Dan; Du, Jie; Chen, Shiyu; Dan, Bing; Wang, Cuihua; Wang, Yajie

    2016-12-01

    Fructose-1,6-bisphosphatase (FBP1), the rate-limiting enzyme in gluconeogenesis, is a tumor suppressor that frequently down-regulated in cancers, especially breast cancer. Here, we provide both supporting and contradicting evidences about the expression pattern and function of FBP1 in breast cancer. Data mining of Oncomine database showed that FBP1 is commonly up-regulated in tumor tissues compared with non-tumor tissues regardless of histological type. Analysis of a large-scale cohort derived from Kaplan-Meier Plotter showed that lower FBP1 expression associated with poor clinical outcome. Genetic silencing of FBP1 reduced aerobic glycolysis and the malignant potential of breast cancer cells. Gene set enrichment analysis (GSEA) of the expression profiles of breast cancer cells (n=59) revealed that cells exhibiting high expression of FBP1 had a lower activity of Wnt/β-Catenin pathway. FBP1 down-regulation enhanced the activity of Wnt/β-Catenin pathway and increased the level of its downstream targets, including c-Myc and MMP7. Collectively, our findings indicate that elevated FBP1 is a critical modulator in breast cancer progression by altering glucose metabolism and the activity of Wnt/β-Catenin pathway.

  14. The FERM-domain protein Expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie.

    Science.gov (United States)

    Badouel, Caroline; Gardano, Laura; Amin, Nancy; Garg, Ankush; Rosenfeld, Robyn; Le Bihan, Thierry; McNeill, Helen

    2009-03-01

    The Hippo kinase pathway plays a central role in growth regulation and tumor suppression from flies to man. The Hippo/Mst kinase phosphorylates and activates the NDR family kinase Warts/Lats, which phosphorylates and inhibits the transcriptional activator Yorkie/YAP. Current models place the FERM-domain protein Expanded upstream of Hippo kinase in growth control. To understand how Expanded regulates Hippo pathway activity, we used affinity chromatography and mass spectrometry to identify Expanded-binding proteins. Surprisingly we find that Yorkie is the major Expanded-binding protein in Drosophila S2 cells. Expanded binds Yorkie at endogenous levels via WW-domain-PPxY interactions, independently of Yorkie phosphorylation at S168, which is critical for 14-3-3 binding. Expanded relocalizes Yorkie from the nucleus, abrogating its nuclear activity, and it can regulate growth downstream of warts in vivo. These data lead to a new model whereby Expanded functions downstream of Warts, in concert with 14-3-3 proteins to sequester Yorkie in the cytoplasm, inhibiting growth activity of the Hippo pathway.

  15. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Santanu Bhattacharya

    Full Text Available GAIP interacting protein C terminus (GIPC is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer.

  16. Two distinct signaling pathways regulate peroxynitrite-induced apoptosis in PC12 cells.

    Science.gov (United States)

    Shacka, J J; Sahawneh, M A; Gonzalez, J D; Ye, Y-Z; D'Alessandro, T L; Estévez, A G

    2006-09-01

    The mechanisms of peroxynitrite-induced apoptosis are not fully understood. We report here that peroxynitrite-induced apoptosis of PC12 cells requires the simultaneous activation of p38 and JNK MAP kinase, which in turn activates the intrinsic apoptotic pathway, as evidenced by Bax translocation to the mitochondria, cytochrome c release to the cytoplasm and activation of caspases, leading to cell death. Peroxynitrite induces inactivation of the Akt pathway. Furthermore, overexpression of constitutively active Akt inhibits both peroxynitrite-induced Bax translocation and cell death. Peroxynitrite-induced death was prevented by overexpression of Bcl-2 and by cyclosporin A, implicating the involvement of the intrinsic apoptotic pathway. Selective inhibition of mixed lineage kinase (MLK), p38 or JNK does not attenuate the decrease in Akt phosphorylation showing that inactivation of the Akt pathway occurs independently of the MLK/MAPK pathway. Together, these results reveal that peroxynitrite-induced activation of the intrinsic apoptotic pathway involves interactions with the MLK/MAPK and Akt signaling pathways.

  17. Pathway analysis of Pichia pastoris to elucidate methanol metabolism and its regulation for production of recombinant proteins.

    Science.gov (United States)

    Unrean, Pornkamol

    2014-01-01

    This research rationally analyzes metabolic pathways of Pichia pastoris to study the metabolic flux responses of this yeast under methanol metabolism. A metabolic model of P. pastoris was constructed and analyzed by elementary mode analysis (EMA). EMA was used to comprehensively identify the cell's metabolic flux profiles and its underlying regulation mechanisms for the production of recombinant proteins from methanol. Change in phenotypes and flux profiles during methanol adaptation with varying feed mixture of glycerol and methanol was examined. EMA identified increasing and decreasing fluxes during the glycerol-methanol metabolic shift, which well agreed with experimental observations supporting the validity of the metabolic network model. Analysis of all the identified pathways also led to the determination of the metabolic capacities as well as the optimum metabolic pathways for recombinant protein synthesis during methanol induction. The network sensitivity analysis revealed that the production of proteins can be improved by manipulating the flux ratios at the pyruvate branch point. In addition, EMA suggested that protein synthesis is optimum under hypoxic culture conditions. The metabolic modeling and analysis presented in this study could potentially form a valuable knowledge base for future research on rational design and optimization of P. pastoris by determining target genes, pathways, and culture conditions for enhanced recombinant protein synthesis. The metabolic pathway analysis is also of considerable value for production of therapeutic proteins by P. pastoris in biopharmaceutical applications. © 2013 American Institute of Chemical Engineers.

  18. Gene expression analysis of canonical Wnt pathway transcriptional regulators during early morphogenesis of the facial region in the mouse embryo.

    Science.gov (United States)

    Vendrell, Victor; Summerhurst, Kristen; Sharpe, James; Davidson, Duncan; Murphy, Paula

    2009-06-01

    Structures and features of the face, throat and neck are formed from a series of branchial arches that grow out along the ventrolateral aspect of the embryonic head. Multiple signalling pathways have been implicated in patterning interactions that lead to species-specific growth and differentiation within the branchial region that sculpt these features. A direct role for Wnt signalling in particular has been shown. The spatial and temporal distribution of Wnt pathway components contributes to the operation of the signalling system. We present the precise distribution of gene expression of canonical Wnt pathway transcriptional regulators, Tcf1, Lef1, Tcf3, Tcf4 and beta-catenin between embryonic day (E) 9.5 and 11.5. In situ hybridization combined with Optical Projection Tomography was used to record and compare distribution of transcripts in 3D within the developing branchial arches. This shows widespread yet very specific expression of the gene set indicating that all genes contribute to proper patterning of the region. Tcf1 and Lef1 are more prominent in rostral arches, particularly at later ages, and Tcf3 and Tcf4 are in general expressed more deeply (medial/endodermal aspect) in the arches than Tcf1 and Lef1. Comparison with Wnt canonical pathway readout patterns shows that the relationship between the expression of individual transcription factors and activation of the pathway is not simple, indicating complexity and flexibility in the signalling system.

  19. Mechanism of Notch Pathway Activation and Its Role in the Regulation of Olfactory Plasticity in Drosophila melanogaster.

    Science.gov (United States)

    Kidd, Simon; Lieber, Toby

    2016-01-01

    The neural plasticity of sensory systems is being increasingly recognized as playing a role in learning and memory. We have previously shown that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila melanogaster olfactory receptor neurons (ORNs) for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. In this paper we address how long-term exposure to odor activates Notch and how Notch in conjunction with chronic odor mediates olfactory plasticity. We show that upon chronic odor exposure a non-canonical Notch pathway mediates an increase in the volume of glomeruli by a mechanism that is autonomous to ORNs. In addition to activating a pathway that is autonomous to ORNs, chronic odor exposure also activates the Notch ligand Delta in second order projection neurons (PNs), but this does not appear to require acetylcholine receptor activation in PNs. Delta on PNs then feeds back to activate canonical Notch signaling in ORNs, which restricts the extent of the odor induced increase in glomerular volume. Surprisingly, even though the pathway that mediates the increase in glomerular volume is autonomous to ORNs, nonproductive transsynaptic Delta/Notch interactions that do not activate the canonical pathway can block the increase in volume. In conjunction with chronic odor, the canonical Notch pathway also enhances cholinergic activation of PNs. We present evidence suggesting that this is due to increased acetylcholine release from ORNs. In regulating physiological plasticity, Notch functions solely by the canonical pathway, suggesting that there is no direct connection between morphological and physiological plasticity.

  20. Mechanism of Notch Pathway Activation and Its Role in the Regulation of Olfactory Plasticity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Simon Kidd

    Full Text Available The neural plasticity of sensory systems is being increasingly recognized as playing a role in learning and memory. We have previously shown that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila melanogaster olfactory receptor neurons (ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. In this paper we address how long-term exposure to odor activates Notch and how Notch in conjunction with chronic odor mediates olfactory plasticity. We show that upon chronic odor exposure a non-canonical Notch pathway mediates an increase in the volume of glomeruli by a mechanism that is autonomous to ORNs. In addition to activating a pathway that is autonomous to ORNs, chronic odor exposure also activates the Notch ligand Delta in second order projection neurons (PNs, but this does not appear to require acetylcholine receptor activation in PNs. Delta on PNs then feeds back to activate canonical Notch signaling in ORNs, which restricts the extent of the odor induced increase in glomerular volume. Surprisingly, even though the pathway that mediates the increase in glomerular volume is autonomous to ORNs, nonproductive transsynaptic Delta/Notch interactions that do not activate the canonical pathway can block the increase in volume. In conjunction with chronic odor, the canonical Notch pathway also enhances cholinergic activation of PNs. We present evidence suggesting that this is due to increased acetylcholine release from ORNs. In regulating physiological plasticity, Notch functions solely by the canonical pathway, suggesting that there is no direct connection between morphological and physiological plasticity.

  1. Dietary-Induced Signals That Activate the Gonadal Longevity Pathway during Development Regulate a Proteostasis Switch in Caenorhabditis elegans Adulthood

    Directory of Open Access Journals (Sweden)

    Netta Shemesh

    2017-08-01

    Full Text Available Cell-non-autonomous signals dictate the functional state of cellular quality control systems, remodeling the ability of cells to cope with stress and maintain protein homeostasis (proteostasis. One highly regulated cell-non-autonomous switch controls proteostatic capacity in Caenorhabditis elegans adulthood. Signals from the reproductive system down-regulate cyto-protective pathways, unless countered by signals reporting on germline proliferation disruption. Here, we utilized dihomo-γ-linolenic acid (DGLA that depletes the C. elegans germline to ask when cell-non-autonomous signals from the reproductive system determine somatic proteostasis and whether such regulation is reversible. We found that diet supplementation of DGLA resulted in the maintenance of somatic proteostasis after the onset of reproduction. DGLA-dependent proteostasis remodeling was only effective if animals were exposed to DGLA during larval development. A short exposure of 16 h during the second to fourth larval stages was sufficient and required to maintain somatic proteostasis in adulthood but not to extend lifespan. The reproductive system was required for DGLA-dependent remodeling of proteostasis in adulthood, likely via DGLA-dependent disruption of germline stem cells. However, arachidonic acid (AA, a somatic regulator of this pathway that does not require the reproductive system, presented similar regulatory timing. Finally, we showed that DGLA- and AA-supplementation led to activation of the gonadal longevity pathway but presented differential regulatory timing. Proteostasis and stress response regulators, including hsf-1 and daf-16, were only activated if exposed to DGLA and AA during development, while other gonadal longevity factors did not show this regulatory timing. We propose that C. elegans determines its proteostatic fate during development and is committed to either reproduction, and thus present restricted proteostasis, or survival, and thus present robust

  2. Dietary-Induced Signals That Activate the Gonadal Longevity Pathway during Development Regulate a Proteostasis Switch in Caenorhabditis elegans Adulthood

    Science.gov (United States)

    Shemesh, Netta; Meshnik, Lana; Shpigel, Nufar; Ben-Zvi, Anat

    2017-01-01

    Cell-non-autonomous signals dictate the functional state of cellular quality control systems, remodeling the ability of cells to cope with stress and maintain protein homeostasis (proteostasis). One highly regulated cell-non-autonomous switch controls proteostatic capacity in Caenorhabditis elegans adulthood. Signals from the reproductive system down-regulate cyto-protective pathways, unless countered by signals reporting on germline proliferation disruption. Here, we utilized dihomo-γ-linolenic acid (DGLA) that depletes the C. elegans germline to ask when cell-non-autonomous signals from the reproductive system determine somatic proteostasis and whether such regulation is reversible. We found that diet supplementation of DGLA resulted in the maintenance of somatic proteostasis after the onset of reproduction. DGLA-dependent proteostasis remodeling was only effective if animals were exposed to DGLA during larval development. A short exposure of 16 h during the second to fourth larval stages was sufficient and required to maintain somatic proteostasis in adulthood but not to extend lifespan. The reproductive system was required for DGLA-dependent remodeling of proteostasis in adulthood, likely via DGLA-dependent disruption of germline stem cells. However, arachidonic acid (AA), a somatic regulator of this pathway that does not require the reproductive system, presented similar regulatory timing. Finally, we showed that DGLA- and AA-supplementation led to activation of the gonadal longevity pathway but presented differential regulatory timing. Proteostasis and stress response regulators, including hsf-1 and daf-16, were only activated if exposed to DGLA and AA during development, while other gonadal longevity factors did not show this regulatory timing. We propose that C. elegans determines its proteostatic fate during development and is committed to either reproduction, and thus present restricted proteostasis, or survival, and thus present robust proteostasis

  3. DMPD: Negative regulation of cytoplasmic RNA-mediated antiviral signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18703349 Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Komur...Show Negative regulation of cytoplasmic RNA-mediated antiviral signaling. PubmedID 18703349 Title Negative r...egulation of cytoplasmic RNA-mediated antiviral signaling. Authors Komuro A, Bamm

  4. DMPD: PI3K and negative regulation of TLR signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12860525 PI3K and negative regulation of TLR signaling. Fukao T, Koyasu S. Trends I...mmunol. 2003 Jul;24(7):358-63. (.png) (.svg) (.html) (.csml) Show PI3K and negative regulation of TLR signal...ing. PubmedID 12860525 Title PI3K and negative regulation of TLR signaling. Authors Fukao T, Koyasu S. Publi

  5. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetran...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation o

  6. DMPD: Toll-like receptors regulation of viral infection and disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18280610 Toll-like receptors regulation of viral infection and disease. Thompson JM...how Toll-like receptors regulation of viral infection and disease. PubmedID 18280610 Title Toll-like recepto...rs regulation of viral infection and disease. Authors Thompson JM, Iwasaki A. Pub

  7. DMPD: Receptor tyrosine kinases and the regulation of macrophage activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14726496 Receptor tyrosine kinases and the regulation of macrophage activation. Cor...(.csml) Show Receptor tyrosine kinases and the regulation of macrophage activation. PubmedID 14726496 Title ...Receptor tyrosine kinases and the regulation of macrophage activation. Authors Co

  8. DMPD: Interferon gene regulation: not all roads lead to Tolls. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16095970 Interferon gene regulation: not all roads lead to Tolls. Jefferies CA, Fit...zgerald KA. Trends Mol Med. 2005 Sep;11(9):403-11. (.png) (.svg) (.html) (.csml) Show Interferon gene regulation: not all road...s lead to Tolls. PubmedID 16095970 Title Interferon gene regulation: not all roads lead to

  9. DMPD: Regulation of cytokine signaling by SOCS family molecules. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14644140 Regulation of cytokine signaling by SOCS family molecules. Fujimoto M, Nak...a T. Trends Immunol. 2003 Dec;24(12):659-66. (.png) (.svg) (.html) (.csml) Show Regulation of cytokine signaling by SOCS family... molecules. PubmedID 14644140 Title Regulation of cytokine signaling by SOCS family molec

  10. DMPD: The SAP family of adaptors in immune regulation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15541655 The SAP family of adaptors in immune regulation. Latour S, Veillette A. Se...min Immunol. 2004 Dec;16(6):409-19. (.png) (.svg) (.html) (.csml) Show The SAP family of adaptors in immune ...regulation. PubmedID 15541655 Title The SAP family of adaptors in immune regulation. Authors Latour S, Veill

  11. DMPD: Regulation of endogenous apolipoprotein E secretion by macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18388328 Regulation of endogenous apolipoprotein E secretion by macrophages. Kockx ...svg) (.html) (.csml) Show Regulation of endogenous apolipoprotein E secretion by macrophages. PubmedID 18388...328 Title Regulation of endogenous apolipoprotein E secretion by macrophages. Aut

  12. DMPD: Iron regulation of hepatic macrophage TNFalpha expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11841920 Iron regulation of hepatic macrophage TNFalpha expression. Tsukamoto H. Fr...ee Radic Biol Med. 2002 Feb 15;32(4):309-13. (.png) (.svg) (.html) (.csml) Show Iron regulation of hepatic macrophage TNFalpha expres...sion. PubmedID 11841920 Title Iron regulation of hepatic macrophage TNFalpha express

  13. The Cell Death Pathway Regulates Synapse Elimination through Cleavage of Gelsolin in Caenorhabditis elegans Neurons

    Directory of Open Access Journals (Sweden)

    Lingfeng Meng

    2015-06-01

    Full Text Available Synapse elimination occurs in development, plasticity, and disease. Although the importance of synapse elimination has been documented in many studies, the molecular mechanisms underlying this process are unclear. Here, using the development of C. elegans RME neurons as a model, we have uncovered a function for the apoptosis pathway in synapse elimination. We find that the conserved apoptotic cell death (CED pathway and axonal mitochondria are required for the elimination of transiently formed clusters of presynaptic components in RME neurons. This function of the CED pathway involves the activation of the actin-filament-severing protein, GSNL-1. Furthermore, we show that caspase CED-3 cleaves GSNL-1 at a conserved C-terminal region and that the cleaved active form of GSNL-1 promotes its actin-severing ability. Our data suggest that activation of the CED pathway contributes to selective elimination of synapses through disassembly of the actin filament network.

  14. Phytochrome and retrograde signalling pathways coverage to antogonistically regulate a light-induced transcription network

    Science.gov (United States)

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde and photosensory-receptor signaling has remained undefined. Here, we show that the phytochrome (phy) and retrograde signaling pathways converge a...

  15. Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway.

    Science.gov (United States)

    Wang, Jianbo; Mark, Sharayne; Zhang, Xiaohui; Qian, Dong; Yoo, Seung-Jong; Radde-Gallwitz, Kristen; Zhang, Yanping; Lin, Xi; Collazo, Andres; Wynshaw-Boris, Anthony; Chen, Ping

    2005-09-01

    The mammalian auditory sensory organ, the organ of Corti, consists of sensory hair cells with uniformly oriented stereocilia on the apical surfaces and has a distinct planar cell polarity (PCP) parallel to the sensory epithelium. It is not certain how this polarity is achieved during differentiation. Here we show that the organ of Corti is formed from a thicker and shorter postmitotic primordium through unidirectional extension, characteristic of cellular intercalation known as convergent extension. Mutations in the PCP pathway interfere with this extension, resulting a shorter and wider cochlea as well as misorientation of stereocilia. Furthermore, parallel to the homologous pathway in Drosophila melanogaster, a mammalian PCP component Dishevelled2 shows PCP-dependent polarized subcellular localization across the organ of Corti. Taken together, these data suggest that there is a conserved molecular mechanism for PCP pathways in invertebrates and vertebrates and indicate that the mammalian PCP pathway might directly couple cellular intercalations to PCP establishment in the cochlea.

  16. Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover

    DEFF Research Database (Denmark)

    Hong, Xin; Nguyen, Thanh Hung; Chen, Qingfeng;

    2014-01-01

    Cancer genomes accumulate numerous genetic and epigenetic modifications. Yet, human cellular transformation can be accomplished by a few genetically defined elements. These elements activate key pathways required to support replicative immortality and anchorage independent growth, a predictor of ...

  17. Mechanistic relationship between the vagal afferent pathway, central nervous system and peripheral organs in appetite regulation

    National Research Council Canada - National Science Library

    Ueno, Hiroaki; Nakazato, Masamitsu

    2016-01-01

    .... Of such peptides, gut peptides are known to bind to receptors at the vagal afferent pathway terminal that extend into the mucosal layer of the digestive tract, modulate the electrical activity...

  18. 植物MEP途径的代谢调控机制%Multiple Regulation Mechanisms of MEP Pathway in Plant

    Institute of Scientific and Technical Information of China (English)

    张松涛; 陈红丽; 崔红; 杨惠娟; 刘国顺

    2012-01-01

    Terpenoids metabolism is one of the most important pathways of secondary metabolism in plant. The regulatory mechanisms that modulate this metabolic route will determine plant growth and development, resistance, quality and other aspects. The terpene precursors are synthesized by the 2-C-Methyl-D-E-rythritol-4-Phosphate (MEP) pathway in plant plastids. Recent studies have shown that, many genes involved in MEP pathway are not only regulated by multiple genes encoding and the transcript level,but also by post-transcriptional mechanism. Post-transcriptional regulation is a novel regulation mechanism described recently for this way and the mechanism is not clear. We review here various regulatory mechanisms of MEP pathway in plant, especially the mechanism and signal molecular that may be involved in post-transcriptional regulation,which may provide the theory basis for the research of regulation in this pathway.%萜类代谢途径是植物中最重要的次生代谢途径之一,对其有效的调控决定着植物的生长发育、抗性及品质等各个方面.植物中类萜合成的前体物在质体中是由2-C-甲基-D-赤藓糖醇-4-磷酸(2-C-Methyl-D-Erythritol-4-Phosphate,MEP)途径合成的,MEP途径中的许多基因除了受到多基因编码和转录水平的调节外,还受到转录后调节机制的调节,而转录后调节是一种新发现的调节方式,其机制还不是很清楚.该文重点对近年来国内外有关植物MEP途径的多种调节方式,尤其是转录后调节的调节机制及其可能参与的信号分子方面的研究进展进行综述,为植物的MEP途径的代谢调控提供参考.

  19. Regulation of dual glycolytic pathways for fructose metabolism in heterofermentative Lactobacillus panis PM1.

    Science.gov (United States)

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2013-12-01

    Lactobacillus panis PM1 belongs to the group III heterofermentative lactobacilli that use the 6-phosphogluconate/phosphoketolase (6-PG/PK) pathway as their central metabolic pathway and are reportedly unable to grow on fructose as a sole carbon source. We isolated a variant PM1 strain capable of sporadic growth on fructose medium and observed its distinctive characteristics of fructose metabolism. The end product pattern was different from what is expected in typical group III lactobacilli using the 6-PG/PK pathway (i.e., more lactate, less acetate, and no mannitol). In addition, in silico analysis revealed the presence of genes encoding most of critical enzymes in the Embden-Meyerhof (EM) pathway. These observations indicated that fructose was metabolized via two pathways. Fructose metabolism in the PM1 strain was influenced by the activities of two enzymes, triosephosphate isomerase (TPI) and glucose 6-phosphate isomerase (PGI). A lack of TPI resulted in the intracellular accumulation of dihydroxyacetone phosphate (DHAP) in PM1, the toxicity of which caused early growth cessation during fructose fermentation. The activity of PGI was enhanced by the presence of glyceraldehyde 3-phosphate (GAP), which allowed additional fructose to enter into the 6-PG/PK pathway to avoid toxicity by DHAP. Exogenous TPI gene expression shifted fructose metabolism from heterolactic to homolactic fermentation, indicating that TPI enabled the PM1 strain to mainly use the EM pathway for fructose fermentation. These findings clearly demonstrate that the balance in the accumulation of GAP and DHAP determines the fate of fructose metabolism and the activity of TPI plays a critical role during fructose fermentation via the EM pathway in L. panis PM1.

  20. Neuronal development in Caenorhabditis elegans is regulated by inhibition of an MLK MAP kinase pathway.

    Science.gov (United States)

    Baker, Scott T; Turgeon, Shane M; Tulgren, Erik D; Wigant, Jeanne; Rahimi, Omeed; Opperman, Karla J; Grill, Brock

    2015-01-01

    We show that loss-of-function mutations in kinases of the MLK-1 pathway (mlk-1, mek-1, and kgb-1/jnk) function cell-autonomously in neurons to suppress defects in synapse formation and axon termination caused by rpm-1 loss of function. Our genetic analysis also suggests that the phosphatase PPM-1, like RPM-1, is a potential inhibitor of kinases in the MLK-1 pathway.

  1. miR-339-5p regulates the p53 tumor-suppressor pathway by targeting MDM2

    DEFF Research Database (Denmark)

    Jansson, M D; Djodji Damas, Nkerorema; Lees, M

    2014-01-01

    MicroRNAs (miRNAs) regulate many key cancer-relevant pathways and may themselves possess oncogenic or tumor-suppressor functions. Consequently, miRNA dysregulation has been shown to be a prominent feature in many human cancers. The p53 tumor suppressor acts as a negative regulator of cell...... proliferation in response to stress and represents the most commonly lost and mutated gene in human cancers. The function of p53 is inhibited by the MDM2 oncoprotein. Using a high-throughput screening approach, we identified miR-339-5p as a regulator of the p53 pathway. We demonstrate that this regulation...... inhibition of miR-339-5p function perturbs the p53 response in cancer cells, allowing an increased proliferation rate. In addition, miR-339-5p expression is downregulated in tumors harboring wild-type TP53, suggesting that reduction of miR-339-5p level helps to suppress the p53 response in p53-competent...

  2. JNK/c-Jun signaling pathway mediates the fluoride-induced down-regulation of MMP-20 in vitro

    Science.gov (United States)

    Zhang, Yan; Li, Wu; Chi, Hae Sun; Chen, James; DenBesten, Pamela K.

    2008-01-01

    Delayed removal of amelogenins, which are initially hydrolyzed by matrix metalloproteinase MMP-20, is a characteristic of enamel fluorosis. In this study, we investigated the regulation of MMP-20 and possible effects of fluoride on MMP-20 expression in human ameloblast lineage cells. Protein expression and signaling pathways of human ameloblast lineage cells, exposed to 10 μM fluoride, were compared to control cells without fluoride exposure. The role of activator protein-1 in MMP-20 regulation was analyzed by DNA-protein affinity precipitation and luciferase reporter gene assays. MMP-20 protein levels in human ameloblast lineage cells decreased in the presence of fluoride, while amelogenin and TIMP-2 were not altered. Fluoride also decreased the transcription of a luciferase reporter gene driven by the MMP-20 promoter. Down-regulation of MMP-20 by fluoride was related to suppression of JNK/c-Jun phosphorylation. In contrast, the JNK activator elevated the expression of MMP-20. Three c-Jun binding sites on the MMP-20 promoter were identified for the first time, and were occupied by c-Jun as MMP-20 was induced. Deletion of any one of AP-1 binding sites on the MMP-20 promoter significantly reduced the transcription of downstream luciferase reporter. These in vitro findings suggest that c-Jun is a key regulatory element for MMP-20 expression, and human ameloblast lineage cells can respond to fluoride by down-regulating MMP-20 transcription through the JNK/c-Jun signaling pathway. PMID:17611094

  3. Regulation of skeletal muscle energy/nutrient-sensing pathways during metabolic adaptation to fasting in healthy humans.

    Science.gov (United States)

    Wijngaarden, Marjolein A; Bakker, Leontine E H; van der Zon, Gerard C; 't Hoen, Peter A C; van Dijk, Ko Willems; Jazet, Ingrid M; Pijl, Hanno; Guigas, Bruno

    2014-11-15

    During fasting, rapid metabolic adaptations are required to maintain energy homeostasis. This occurs by a coordinated regulation of energy/nutrient-sensing pathways leading to transcriptional activation and repression of specific sets of genes. The aim of the study was to investigate how short-term fasting affects whole body energy homeostasis and skeletal muscle energy/nutrient-sensing pathways and transcriptome in humans. For this purpose, 12 young healthy men were studied during a 24-h fast. Whole body glucose/lipid oxidation rates were determined by indirect calorimetry, and blood and skeletal muscle biopsies were collected and analyzed at baseline and after 10 and 24 h of fasting. As expected, fasting induced a time-dependent decrease in plasma insulin and leptin levels, whereas levels of ketone bodies and free fatty acids increased. This was associated with a metabolic shift from glucose toward lipid oxidation. At the molecular level, activation of the protein kinase B (PKB/Akt) and mammalian target of rapamycin pathways was time-dependently reduced in skeletal muscle during fasting, whereas the AMP-activated protein kinase activity remained unaffected. Furthermore, we report some changes in the phosphorylation and/or content of forkhead protein 1, sirtuin 1, and class IIa histone deacetylase 4, suggesting that these pathways might be involved in the transcriptional adaptation to fasting. Finally, transcriptome profiling identified genes that were significantly regulated by fasting in skeletal muscle at both early and late time points. Collectively, our study provides a comprehensive map of the main energy/nutrient-sensing pathways and transcriptomic changes during short-term adaptation to fasting in human skeletal muscle.

  4. Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling

    Science.gov (United States)

    León-Morcillo, Rafael Jorge; Ángel, José; Martín-Rodríguez; Vierheilig, Horst; Ocampo, Juan Antonio; García-Garrido, José Manuel

    2012-01-01

    The establishment of an arbuscular mycorrhizal (AM) symbiotic interaction is a successful strategy for the promotion of substantial plant growth, development, and fitness. Numerous studies have supported the hypothesis that plant hormones play an important role in the establishment of functional AM symbiosis. Particular attention has been devoted to jasmonic acid (JA) and its derivates, which are believed to play a major role in AM symbiosis. Jasmonates belong to a diverse class of lipid metabolites known as oxylipins that include other biologically active molecules. Recent transcriptional analyses revealed up-regulation of the oxylipin pathway during AM symbiosis in mycorrhizal tomato roots and indicate a key regulatory role for oxylipins during AM symbiosis in tomato, particularly those derived from the action of 9-lipoxygenases (9-LOXs). Continuing with the tomato as a model, the spatial and temporal expression pattern of genes involved in the 9-LOX pathway during the different stages of AM formation in tomato was analysed. The effects of JA signalling pathway changes on AM fungal colonization were assessed and correlated with the modifications in the transcriptional profiles of 9-LOX genes. The up-regulation of the 9-LOX oxylipin pathway in mycorrhizal wild-type roots seems to depend on a particular degree of AM fungal colonization and is restricted to the colonized part of the roots, suggesting that these genes could play a role in controlling fungal spread in roots. In addition, the results suggest that this strategy of the plant to control AM fungi development within the roots is at least partly dependent on JA pathway activation. PMID:22442425

  5. Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis.

    Science.gov (United States)

    Giacoppo, Sabrina; Pollastro, Federica; Grassi, Gianpaolo; Bramanti, Placido; Mazzon, Emanuela

    2017-01-01

    This study was aimed to investigate whether treatment with purified cannabidiol (CBD) may counteract the development of experimental multiple sclerosis (MS), by targeting the PI3K/Akt/mTOR pathway. Although the PI3K/Akt/mTOR pathway was found to be activated by cannabinoids in several immune and non-immune cells, currently, there is no data about the effects of CBD in the PI3K/Akt/mTOR activity in MS. Experimental Autoimmune Encephalomyelitis (EAE), the most common model of MS, was induced in C57BL/6 mice by immunization with myelin oligodendroglial glycoprotein peptide (MOG)35-55. After EAE onset, which occurs approximately 14days after disease induction, mice were daily intraperitoneally treated with CBD (10mg/kg mouse) and observed for clinical signs of EAE. At 28days from EAE-induction, mice were euthanized and spinal cord tissues were sampled to perform immunohistochemical evaluations and western blot analysis. Our results showed a clear downregulation of the PI3K/Akt/mTOR pathway following EAE induction. CBD treatment was able to restore it, increasing significantly the phosphorylation of PI3K, Akt and mTOR. Also, an increased level of BNDF in CBD-treated mice seems to be involved in the activation of PI3K/Akt/mTOR pathway. In addition, our data demonstrated that therapeutic efficacy of CBD treatment is due to reduction of pro-inflammatory cytokines, like IFN-γ and IL-17 together with an up-regulation of PPARγ. Finally, CBD was found to promote neuronal survival by inhibiting JNK and p38 MAP kinases. These results provide an interesting discovery about the regulation of the PI3K/Akt/mTOR pathway by cannabidiol administration, that could be a new potential therapeutic target for MS management.

  6. Rapamycin (Sirolimus) alters mechanistic target of rapamycin pathway regulation and microRNA expression in mouse meiotic spermatocytes.

    Science.gov (United States)

    Mukherjee, A; Koli, S; Reddy, K V R

    2015-09-01

    Mechanistic target of rapamycin (mTOR) is a signal transduction pathway that modulates translation initiation in several animals including mammals. Rapamaycin, an allosteric inhibitor of mTOR pathway, is often used as an immunosuppressive drug following kidney transplantation and causes gonadal dysfunction and defects in spermatogenesis. The molecular mechanism behind rapamycin-mediated testicular dysfunction is not known. We have therefore explored the contribution of rapamycin in mTOR regulation and microRNA (miRNA) expression in mouse spermatocytes, the intermediate stage of spermatogenesis, where meiosis takes place. In the present study, we optimized the isolation of highly pure and viable spermatocytes by flow sorting, treated them with rapamycin, and investigated the expression of mTOR and downstream effector molecules. Western blot and immunocytochemical analysis confirm that rapamycin treatment suppresses mTOR and phopsphorylated P70S6 kinase activities in spermatocytes, but not that of phosphorylated 4E-binding protein 1. Also, rapamycin treatment modulates the expression of several spermatocyte-specific miRNAs. To complement these finding an in vivo study was also performed. In silico prediction of target genes of these miRNAs and their functional pathway analysis revealed that, several of them are involved in crucial biological process, cellular process and catalytic activities. miRNA-transcription factor (TF) network analysis enlisted different TFs propelling the transcription machineries of these miRNAs. In silico prediction followed by quatitative real-time PCR revealed two of these TFs namely, PU.1 and CCCTC binding factor (CTCF) are down and upregulated, respectively, which may be the reason of the altered expression of miRNAs following rapamycin treatment. In conclusion, for the first time, the present study provides insight into how rapamycin regulates mTOR pathway and spermatocyte-specific miRNA expression which in turn, regulate expression of

  7. Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility

    Science.gov (United States)

    Wang, Zhongyuan; Wu, Yanping; Wang, Haifeng; Zhang, Yangqing; Mei, Lin; Fang, Xuexun; Zhang, Xudong; Zhang, Fang; Chen, Hongbo; Liu, Ying; Jiang, Yuyang; Sun, Shengnan; Zheng, Yi; Li, Na; Huang, Laiqiang

    2014-01-01

    Expression of receptor for hyaluronan-mediated motility (RHAMM), a breast cancer susceptibility gene, is tightly controlled in normal tissues but elevated in many tumors, contributing to tumorigenesis and metastases. However, how the expression of RHAMM is regulated remains elusive. Statins, inhibitors of mevalonate metabolic pathway widely used for hypercholesterolemia, have been found to also have antitumor effects, but little is known of the specific targets and mechanisms. Moreover, Hippo signaling pathway plays crucial roles in organ size control and cancer development, yet its downstream transcriptional targets remain obscure. Here we show that RHAMM expression is regulated by mevalonate and Hippo pathways converging onto Yes-associated protein (YAP)/TEAD, which binds RHAMM promoter at specific sites and controls its transcription and consequently breast cancer cell migration and invasion (BCCMI); and that simvastatin inhibits BCCMI via targeting YAP-mediated RHAMM transcription. Required for ERK phosphorylation and BCCMI, YAP-activated RHAMM transcription is dependent on mevalonate and sensitive to simvastatin, which modulate RHAMM transcription by modulating YAP phosphorylation and nuclear-cytoplasmic localization. Further, modulation by mevalonate/simvastatin of YAP-activated RHAMM transcription requires geranylgeranylation, Rho GTPase activation, and actin cytoskeleton rearrangement, but is largely independent of MST and LATS kinase activity. These findings from in vitro and in vivo investigations link mevalonate and Hippo pathways with RHAMM as a downstream effector, a YAP-transcription and simvastatin-inhibition target, and a cancer metastasis mediator; uncover a mechanism regulating RHAMM expression and cancer metastases; and reveal a mode whereby simvastatin exerts anticancer effects; providing potential targets for cancer therapeutic agents. PMID:24367099

  8. Electroacupuncture at PC6 (Neiguan Improves Extracellular Signal-Regulated Kinase Signaling Pathways Through the Regulation of Neuroendocrine Cytokines in Myocardial Hypertrophic Rats

    Directory of Open Access Journals (Sweden)

    Jia Li

    2012-01-01

    Full Text Available Electroacupuncture (EA therapy has been widely accepted as a useful therapeutic technique with low or no risk in the clinical prevention of cardiac hypertrophy. However, the signaling transduction mechanism underlying this effect remains unclear. The current study investigates the effects of EA on the signaling pathways of myocardial hypertrophy (MH in rats. Up to 40 3-month-old Sprague-Dawley (SD rats were randomly divided into normal, model, PC6 (Neiguan, and LI4 (Hegu groups, with ten rats in each group. All the rats except for the normal group received 3 mg/kg⋅d of isoprinosine hydrochloride (ISO injection into the back skin. The rats in the PC6 and LI4 groups received EA for 14 days. On the 15th day, electrocardiograms were recorded, and the ultrastructure of the myocardial cells was observed. The myocardial hypertrophy indices (MHIs, electrocardiograph (ECG, ultrastructure observation, levels of plasma angiotensin II (Ang II and endothelin (ET, as well as protein expression of extracellular signal-regulated kinase (ERK, and phosphorylation extracellular signal regulating kinase (p-ERK in the left ventricular myocardial tissue were measured. The results indicated that EA can improve cardiac function in MH rats by modulating upstream neuroendocrine cytokines that regulate the ERK signaling pathways.

  9. Long non-coding RNA ANRIL is up-regulated in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongxue [Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Department of Urology, Hospital of Xinjiang Production and Construction Corps, Urumqi 830002 (China); Li, Xuechao; Song, Yarong; Zhang, Peng; Xiao, Yajun [Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Xing, Yifei, E-mail: yifei_xing@163.com [Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2015-11-13

    Antisense non-coding RNA in the INK4 locus (ANRIL) is a member of long non-coding RNAs and has been reported to be dysregulated in several human cancers. However, the role of ANRIL in bladder cancer remains unclear. This present study aimed to investigate whether and how ANRIL involved in bladder cancer. Our results showed up-regulation of ANRIL in bladder cancer tissues versus the corresponding adjacent non-tumor tissues. To explore the specific mechanisms, ANRIL was silenced by small interfering RNA or short hairpin RNA transfection in human bladder cancer T24 and EJ cells. Knockdown of ANRIL repressed cell proliferation and increased cell apoptosis, along with decreased expression of Bcl-2 and increased expressions of Bax, cytoplasmic cytochrome c and Smac and cleaved caspase-9, caspase-3 and PARP. However, no change of cleaved caspase-8 level was observed. Furthermore, in vivo experiment confirmed that knockdown of ANRIL inhibited tumorigenic ability of EJ cells in nude mice. Meanwhile, in accordance with in vitro study, knockdown of ANRIL inhibited expression of Bcl-2 and up-regulated expressions of Bax and cleaved caspase-9, but did not affect cleaved caspase-8 level. In conclusion, we first report that ANRIL possibly serves as an oncogene in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic apoptosis pathway. - Highlights: • We first report the role of ANRIL in bladder cancer. • ANRIL is obviously up-regulated in bladder cancer tissues. • ANRIL regulates bladder cancer cell proliferation and cell apoptosis through the intrinsic pathway.

  10. SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Kohjima, Motoyuki; Higuchi, Nobito; Kato, Masaki; Kotoh, Kazuhiro; Yoshimoto, Tsuyoshi; Fujino, Tatsuya; Yada, Masayoshi; Yada, Ryoko; Harada, Naohiko; Enjoji, Munechika; Takayanagi, Ryoichi; Nakamuta, Makoto

    2008-04-01

    Nonalcoholic fatty liver disease (NAFLD) is a common liver disease whose prevalence has increased markedly. We reported previously that fatty acid synthesis was enhanced in NAFLD with the accumulation of fatty acids. To clarify the disorder, we evaluated the expression of genes regulating fatty acid synthesis by real-time PCR using samples from NAFLD (n=22) and normal liver (control; n=10). A major regulator of fatty acids synthesis is sterol regulatory element-binding protein-1c (SREBP-1c). Its expression was significantly higher in NAFLD, nearly 5-fold greater than the controls. SREBP-1c is positively regulated by insulin signaling pathways, including insulin receptor substrate (IRS)-1 and -2. In NAFLD, IRS-1 expression was enhanced and correlated positively with SREBP-1c expression. In contrast, IRS-2 expression decreased by 50% and was not correlated with SREBP-1c. Forkhead box protein A2 (Foxa2) is a positive regulator of fatty acid oxidation and is itself negatively regulated by IRSs. Foxa2 expression increased in NAFLD and showed a negative correlation with IRS-2, but not with IRS-1, expression. It is known that SREBP-1c is negatively regulated by AMP-activated protein kinase (AMPK) but expression levels of AMPK in NAFLD were almost equal to those of the controls. These data indicate that, in NAFLD, insulin signaling via IRS-1 causes the up-regulation of SREBP1-c, leading to the increased synthesis of fatty acids by the hepatocytes; negative feedback regulation via AMPK does not occur and the activation of Foxa2, following a decrease of IRS-2, up-regulates fatty acid oxidation.

  11. Ganoderma atrum polysaccharide evokes antitumor activity via cAMP-PKA mediated apoptotic pathway and down-regulation of Ca(2+)/PKC signal pathway.

    Science.gov (United States)

    Zhang, Shenshen; Nie, Shaoping; Huang, Danfei; Huang, Jianqin; Feng, Yanling; Xie, Mingyong

    2014-06-01

    Ganoderma atrum polysaccharide (PSG-1) has been commonly suggested as a candidate for prevention and therapy of cancer. We investigated the antitumor effect and the underlying molecular mechanisms of PSG-1. The results showed that PSG-1 inhibited tumor growth and resulted in tumor cell apoptosis in vivo. Here, the data revealed that PSG-1 caused a markedly increase in cAMP and PKA activities, rather than cGMP and PKC. Moreover, the treatment of PSG-1 induced a dramatic increase in the protein level of PKA. In contrast, the expression of PKC and intracellular [Ca(2+)]i were inhibited. Our study also revealed that treatment with PSG-1 increased the spleen and thymus weights, lymphocyte proliferation and macrophage phagocytic activity in tumor-bearing mice. Taken together, we conclude that PSG-1 could inhibit the tumor growth, possibly in part by enhancing the induction of apoptosis through cAMP-PKA signaling pathway and down-regulation of Ca(2+)/PKC signal pathway, activating host immune function in S180-bearing mice.

  12. bHLH142 regulates various metabolic pathway-related genes to affect pollen development and anther dehiscence in rice

    Science.gov (United States)

    Ranjan, Rajeev; Khurana, Reema; Malik, Naveen; Badoni, Saurabh; Parida, Swarup K.; Kapoor, Sanjay; Tyagi, Akhilesh K.

    2017-01-01

    Apposite development of anther and its dehiscence are important for the reproductive success of the flowering plants. Recently, bHLH142, a bHLH transcription factor encoding gene of rice has been found to show anther-specific expression and mutant analyses suggest its functions in regulating tapetum differentiation and degeneration during anther development. However, our study on protein level expression and gain-of-function phenotype revealed novel aspects of its regulation and function during anther development. Temporally dissimilar pattern of bHLH142 transcript and polypeptide accumulation suggested regulation of its expression beyond transcriptional level. Overexpression of bHLH142 in transgenic rice resulted in indehiscent anthers and aborted pollen grains. Defects in septum and stomium rupture caused anther indehiscence while pollen abortion phenotype attributed to abnormal degeneration of the tapetum. Furthermore, RNA-Seq-based transcriptome analysis of tetrad and mature pollen stage anthers of wild type and bHLH142OEplants suggested that it might regulate carbohydrate and lipid metabolism, cell wall modification, reactive oxygen species (ROS) homeostasis and cell death-related genes during rice anther development. Thus, bHLH142 is an anther-specific gene whose expression is regulated at transcriptional and post-transcriptional/translational levels. It plays a role in pollen maturation and anther dehiscence by regulating expression of various metabolic pathways-related genes. PMID:28262713

  13. Oxymatrine attenuated isoproterenol-induced heart failure in rats via regulation of COX-2/PGI2 pathway.

    Science.gov (United States)

    Zhou, Ru; Xu, Qingbin; Xu, Yehua; Xiong, Aiqin; Wang, Yang; Ma, Ping

    2016-12-01

    Oxymatrine (OMT) is an active constituent of traditional Chinese herb Sophora japonica Ait which has been shown to exert potent anti-inflammatory,anti-oxidant and anti-fibrosis properties. Our previous studies have demonstrated that OMT has protective effects on isoproterenol-induced heart failure in rats through regulation of DDAH/ADMA metabolism pathway.In this study,we further investigated whether OMT could attenuate isoproterenol-induced heart failure through the regulation of COX-2/PGI2 pathway. Heart failure was induced in Sprague-Dawley rats by 5mg/kg isoproterenol subcutaneous injection for 7days. The rats were maintained on normal diet and randomly divided into five groups: control, isoproterenol, isoproterenol with OMT (50, 100mg/kg), and OMT alone groups (n=12 in each group). Serum brain natruretic peptide (BNP, a heart failure biomarker), histopathological variables, expression of Cytosolic phospholipase A2 (cPLA2), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and Prostacyclin synthase (PGIS) were analysed. Administration of OMT significantly reduced the increased BNP in plasm of isoproterenol-induced rats, attenuated cardiac fibrosis,suppressed overexpression of myocardial COX-1 expression, up-regulated COX-2 and PGIS expression, but had no effects on isoproterenol-induced elevated protein cPLA2. And compared with control group, any indexes in sham rats treated with OMT (100mg/kg) alone were unaltered. These results demonstrated that OMT has cardioprotective effects on isoproterenol-induced heart failure in rats by regulating COX-2/PGI2 pathway. Copyright © 2016. Published by Elsevier Masson SAS.

  14. Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells

    Science.gov (United States)

    Karlic, Heidrun; Thaler, Roman; Gerner, Christopher; Grunt, Thomas; Proestling, Katharina; Haider, Florian; Varga, Franz

    2015-01-01

    The mevalonate pathway provides metabolites for post-translational modifications such as farnesylation, which are critical for the activity of RAS downstream signaling. Subsequently occurring regulatory processes can induce an aberrant stimulation of DNA methyltransferase (DNMT1) as well as changes in histone deacetylases (HDACs) and microRNAs in many cancer cell lines. Inhibitors of the mevalonate pathway are increasingly recognized as anticancer drugs. Extensive evidence indicates an intense cross-talk between signaling pathways, which affect growth, differentiation, and apoptosis either directly or indirectly via epigenetic mechanisms. Herein, we show data obtained by novel transcriptomic and corresponding methylomic or proteomic analyses from cell lines treated with pharmacologic doses of respective inhibitors (i.e., simvastatin, ibandronate). Metabolic pathways and their epigenetic consequences appear to be affected by a changed concentration of NADPH. Moreover, since the mevalonate metabolism is part of a signaling network, including vitamin D metabolism or fatty acid synthesis, the epigenetic activity of associated pathways is also presented. This emphasizes the far-reaching epigenetic impact of metabolic therapies on cancer cells and provides some explanation for clinical observations, which indicate the anticancer activity of statins and bisphosphonates. PMID:25978957

  15. Mammalian target of rapamycin complex 2 signaling pathway regulates transient receptor potential cation channel 6 in podocytes.

    Directory of Open Access Journals (Sweden)

    Fangrui Ding

    Full Text Available Transient receptor potential cation channel 6 (TRPC6 is a nonselective cation channel, and abnormal expression and gain of function of TRPC6 are involved in the pathogenesis of hereditary and nonhereditary forms of renal disease. Although the molecular mechanisms underlying these diseases remain poorly understood, recent investigations revealed that many signaling pathways are involved in regulating TRPC6. We aimed to examine the effect of the mammalian target of rapamycin (mTOR complex (mTOR complex 1 [mTORC1] or mTOR complex 2 [mTORC2] signaling pathways on TRPC6 in podocytes, which are highly terminally differentiated renal epithelial cells that are critically required for the maintenance of the glomerular filtration barrier. We applied both pharmacological inhibitors of mTOR and specific siRNAs against mTOR components to explore which mTOR signaling pathway is involved in the regulation of TRPC6 in podocytes. The podocytes were exposed to rapamycin, an inhibitor of mTORC1, and ku0063794, a dual inhibitor of mTORC1 and mTORC2. In addition, specific siRNA-mediated knockdown of the mTORC1 component raptor and the mTORC2 component rictor was employed. The TRPC6 mRNA and protein expression levels were examined via real-time quantitative PCR and Western blot, respectively. Additionally, fluorescence calcium imaging was performed to evaluate the function of TRPC6 in podocytes. Rapamycin displayed no effect on the TRPC6 mRNA or protein expression levels or TRPC6-dependent calcium influx in podocytes. However, ku0063794 down-regulated the TRPC6 mRNA and protein levels and suppressed TRPC6-dependent calcium influx in podocytes. Furthermore, knockdown of raptor did not affect TRPC6 expression or function, whereas rictor knockdown suppressed TRPC6 protein expression and TRPC6-dependent calcium influx in podocytes. These findings indicate that the mTORC2 signaling pathway regulates TRPC6 in podocytes but that the mTORC1 signaling pathway does not appear

  16. A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway.

    Directory of Open Access Journals (Sweden)

    Laurence M Wood

    Full Text Available Ataxia Telangiectasia (A-T is an inherited immunodeficiency disorder wherein mutation of the ATM kinase is responsible for the A-T pathogenesis. Although the precise role of ATM in A-T pathogenesis is still unclear, its function in responding to DNA damage has been well established. Here we demonstrate that in addition to its role in DNA repair, ATM also regulates proteasome-mediated protein turnover through suppression of the ISG15 pathway. This conclusion is based on three major pieces of evidence: First, we demonstrate that proteasome-mediated protein degradation is impaired in A-T cells. Second, we show that the reduced protein turnover is causally linked to the elevated expression of the ubiquitin-like protein ISG15 in A-T cells. Third, we show that expression of the ISG15 is elevated in A-T cells derived from various A-T patients, as well as in brain tissues derived from the ATM knockout mice and A-T patients, suggesting that ATM negatively regulates the ISG15 pathway. Our current findings suggest for the first time that proteasome-mediated protein degradation is impaired in A-T cells due to elevated expression of the ISG15 conjugation pathway, which could contribute to progressive neurodegeneration in A-T patients.

  17. Traditional Chinese medicine suppresses left ventricular hypertrophy by targeting extracellular signal-regulated kinases signaling pathway in spontaneously hypertensive rats

    Science.gov (United States)

    Xiong, Xingjiang; Yang, Xiaochen; Duan, Lian; Liu, Wei; Zhang, Yun; Liu, Yongmei; Wang, Pengqian; Li, Shengjie; Li, Xiaoke

    2017-01-01

    Chinese herbal medicine Bu-Shen-Jiang-Ya decoction (BSJYD) is reported to be beneficial for hypertension. Over expression of extracellular signal regulated kinases (ERK) pathway plays an important role in left ventricular hypertrophy (LVH). This study aimed to observe effects of BSJYD on LVH in spontaneously hypertensive rats (SHRs) and explore its possible mechanism on regulation of ERK pathway. Sixty 12-week-old SHRs were randomly allocated into 5 groups: BSJYD high dose group, middle dose group, low dose group, captopril group, and control group. Besides, a control group of Wistar-Kyoto rats was established. All rats were treated for 8 weeks. Systolic blood pressure (SBP), heart rate (HR), pathology, and left ventricular mass index (LVMI) were measured. Western blotting and Real-time PCR were used to assess the expressions of BDNF, Ras, ERK1/2, and c-fox levels. SBP and HR were significantly decreased compared with the control group and LVMI was markedly improved by BSJYD treatment in a dose-dependent manner. BSJYD inhibited the expression of BDNF, Ras, ERK1/2, and c-fox mRNA in LVH. In conclusion, BSJYD suppressed hypertension-induced cardiac hypertrophy by inhibiting the expression of ERK pathway. These changes in gene expression may be a possible mechanism by which BSJYD provides myocardial protection from hypertension. PMID:28225023

  18. Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-D-erythritol 4-phosphate pathway.

    Science.gov (United States)

    Guevara-García, Arturo; San Román, Carolina; Arroyo, Analilia; Cortés, María Elena; de la Luz Gutiérrez-Nava, María; León, Patricia

    2005-02-01

    The biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the two building blocks for isoprenoid biosynthesis, occurs by two independent pathways in plants. The mevalonic pathway operates in the cytoplasm, and the methyl-d-erythritol 4-phosphate (MEP) pathway operates in plastids. Plastidic isoprenoids play essential roles in plant growth and development. Plants must regulate the biosynthesis of isoprenoids to fulfill metabolic requirements in specific tissues and developmental conditions. The regulatory events that modulate the plant MEP pathway are not well understood. In this article, we demonstrate that the CHLOROPLAST BIOGENESIS6 (CLB6) gene, previously shown to be required for chloroplast development, encodes 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase, the last-acting enzyme of the MEP pathway. Comparative analysis of the expression levels of all MEP pathway gene transcripts and proteins in the clb6-1 mutant background revealed that posttranscriptional control modulates the levels of different proteins in this central pathway. Posttranscriptional regulation was also found during seedling development and during fosmidomycin inhibition of the pathway. Our results show that the first enzyme of the pathway, 1-deoxy-d-xylulose 5-phosphate synthase, is feedback regulated in response to the interruption of the flow of metabolites through the MEP pathway.

  19. Structure, func