WorldWideScience

Sample records for easy magnetization direction

  1. Detection of the Magnetic Easy Direction in Steels Using Induced Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Edgard M. Silva

    2016-12-01

    Full Text Available Conventional manufacturing processes cause plastic deformation that leads to magnetic anisotropy in processed materials. A deeper understanding of materials characterization under rotational magnetization enables engineers to optimize the overall volume, mass, and performance of devices such as electrical machines in industry. Therefore, it is important to find the magnetic easy direction of the magnetic domains in a simple and straightforward manner. The Magnetic easy direction can be obtained through destructive tests such as the Epstein frame method and the Single Sheet Tester by taking measurements in regions of irreversible magnetization usually called domains. In the present work, samples of rolled SAE 1045 steel (formed by perlite and ferrite microstructures were submitted to induced magnetic fields in the reversibility region of magnetic domains to detect the magnetic easy direction. The magnetic fields were applied to circular samples with different thicknesses and angles varying from 0° to 360° with steps of 45°. A square sample with a fixed thickness was also tested. The results showed that the proposed non-destructive approach is promising to evaluate the magnetic anisotropy in steels independently of the geometry of the sample. The region studied presented low induction losses and was affected by magnetic anisotropy, which did not occur in other works that only took into account regions of high induction losses.

  2. Rare earth permanent magnet with easy magnetization

    International Nuclear Information System (INIS)

    Kim, A.S.; Camp, F.E.

    1998-01-01

    Rare earth permanent magnets have high energy products and coercivities, and thus the volume miniaturization of magnetic devices has been possible with improved magnetic performance. Although the high energy products of these rare earth permanent magnets provide substantial advantages for magnetic design and application, the strong magnetic force of the magnetized magnets makes assembly difficult. Therefore, a special device is needed to assemble the magnetized magnets. On the other hand, unmagnetized magnets are assembled and then they are magnetized. The assembled magnets are generally more difficult to magnetize than unassembled magnets because a much less effective magnetic field may be applied to them. This is particularly true for the rare earth permanent magnets because they usually need a much higher magnetic field to be fully magnetized than alnico or ferrite magnets. To obtain optimum magnetic properties, the required minimum magnetizing fields for SmCo 5 , Sm 2 TM 17 and Nd 2 Fe 14 B magnets were reported as 25-30 kOe, 45-60 kOe and 25-30 kOe, respectively. If the required magnetizing field for full saturation could be lowered, the effective utilization of magnetic properties would be maximized and the magnetic design option could be expanded with reduced restrictions. To meet this demand, we have sought to lower the field required for full magnetic saturation, and found that an increase in Dy content in R-(Fe,Co,Cu)-B type magnets lowers the field required for full saturation as well as improves the temperature stability. By increasing the H ci with Dy addition from 14 kOe to 24 and 34 kOe, the field required for full magnetic saturation decreases from about 20 to 15 and 10 kOe, respectively. This dual benefit will open up new application areas with more freedom for magnet design options. The mechanism for the lower magnetizing fields will be discussed. (orig.)

  3. Effect of alignment of easy axes on dynamic magnetization of immobilized magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Takashi, E-mail: t_yoshi@ees.kyushu-u.ac.jp [Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Matsugi, Yuki; Tsujimura, Naotaka; Sasayama, Teruyoshi; Enpuku, Keiji [Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Viereck, Thilo; Schilling, Meinhard; Ludwig, Frank [Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig 38106 (Germany)

    2017-04-01

    In some biomedical applications of magnetic nanoparticles (MNPs), the particles are physically immobilized. In this study, we explore the effect of the alignment of the magnetic easy axes on the dynamic magnetization of immobilized MNPs under an AC excitation field. We prepared three immobilized MNP samples: (1) a sample in which easy axes are randomly oriented, (2) a parallel-aligned sample in which easy axes are parallel to the AC field, and (3) an orthogonally aligned sample in which easy axes are perpendicular to the AC field. First, we show that the parallel-aligned sample has the largest hysteresis in the magnetization curve and the largest harmonic magnetization spectra, followed by the randomly oriented and orthogonally aligned samples. For example, 1.6-fold increase was observed in the area of the hysteresis loop of the parallel-aligned sample compared to that of the randomly oriented sample. To quantitatively discuss the experimental results, we perform a numerical simulation based on a Fokker-Planck equation, in which probability distributions for the directions of the easy axes are taken into account in simulating the prepared MNP samples. We obtained quantitative agreement between experiment and simulation. These results indicate that the dynamic magnetization of immobilized MNPs is significantly affected by the alignment of the easy axes. - Highlights: • We clarify how the alignment of easy axis of MNP affects the AC magnetization. • Parallel-aligned immobilized MNPs exhibit the largest AC hysteresis loop. • Parallel-aligned immobilized MNPs exhibit the largest harmonic magnetization spectra. • The AC magnetization is strongly affected by the alignment of the easy axes.

  4. On the estimation of the magnetic easy axis in pipeline steels using magnetic Barkhausen noise

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ortiz, P. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Instituto Politécnico Nacional, UPALM Edif. Z-4 3 Piso, Zacatenco, Mexico D.F. 07738 (Mexico); Pérez-Benitez, J.A., E-mail: benitez_edl@yahoo.es [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Instituto Politécnico Nacional, UPALM Edif. Z-4 3 Piso, Zacatenco, Mexico D.F. 07738 (Mexico); Espina-Hernández, J.H. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Instituto Politécnico Nacional, UPALM Edif. Z-4 3 Piso, Zacatenco, Mexico D.F. 07738 (Mexico); Caleyo, F.; Hallen, J.M. [Departamento de Ingeniería Metalúrgica, ESIQIE, UPALM Edif. 7, Instituto Politécnico Nacional, Zacatenco, C.P. 07738 México D.F. (Mexico)

    2015-01-15

    A method for determination of the magnetic easy axis of the Roll Magnetic Anisotropy in API-5L steels is proposed. The method is based on the fact that the angular dependence of the energy corresponding to the main peak of the Magnetic Barkhausen signal presents uniaxial anisotropy with its easy axis parallel to the rolling direction, independently of the angular dependence of the magnetocrystalline energy in the materials. The proposal is also justified based on the analysis of the influence of microstructural changes, produced by hot-rolling on the domain wall dynamics. - Highlights: • Propose a method for finding the easy axis of roll magnetic anisotropy. • Study of the causes of multi-axial anisotropy of MBN energy in API-5L steels. • Analyze the causes of the roll magnetic anisotropy.

  5. On the estimation of the magnetic easy axis in pipeline steels using magnetic Barkhausen noise

    International Nuclear Information System (INIS)

    Martínez-Ortiz, P.; Pérez-Benitez, J.A.; Espina-Hernández, J.H.; Caleyo, F.; Hallen, J.M.

    2015-01-01

    A method for determination of the magnetic easy axis of the Roll Magnetic Anisotropy in API-5L steels is proposed. The method is based on the fact that the angular dependence of the energy corresponding to the main peak of the Magnetic Barkhausen signal presents uniaxial anisotropy with its easy axis parallel to the rolling direction, independently of the angular dependence of the magnetocrystalline energy in the materials. The proposal is also justified based on the analysis of the influence of microstructural changes, produced by hot-rolling on the domain wall dynamics. - Highlights: • Propose a method for finding the easy axis of roll magnetic anisotropy. • Study of the causes of multi-axial anisotropy of MBN energy in API-5L steels. • Analyze the causes of the roll magnetic anisotropy

  6. Effect of alignment of easy axes on dynamic magnetization of immobilized magnetic nanoparticles

    Science.gov (United States)

    Yoshida, Takashi; Matsugi, Yuki; Tsujimura, Naotaka; Sasayama, Teruyoshi; Enpuku, Keiji; Viereck, Thilo; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    In some biomedical applications of magnetic nanoparticles (MNPs), the particles are physically immobilized. In this study, we explore the effect of the alignment of the magnetic easy axes on the dynamic magnetization of immobilized MNPs under an AC excitation field. We prepared three immobilized MNP samples: (1) a sample in which easy axes are randomly oriented, (2) a parallel-aligned sample in which easy axes are parallel to the AC field, and (3) an orthogonally aligned sample in which easy axes are perpendicular to the AC field. First, we show that the parallel-aligned sample has the largest hysteresis in the magnetization curve and the largest harmonic magnetization spectra, followed by the randomly oriented and orthogonally aligned samples. For example, 1.6-fold increase was observed in the area of the hysteresis loop of the parallel-aligned sample compared to that of the randomly oriented sample. To quantitatively discuss the experimental results, we perform a numerical simulation based on a Fokker-Planck equation, in which probability distributions for the directions of the easy axes are taken into account in simulating the prepared MNP samples. We obtained quantitative agreement between experiment and simulation. These results indicate that the dynamic magnetization of immobilized MNPs is significantly affected by the alignment of the easy axes.

  7. Direct characterization of commercial lecithins by easy ambient sonic-spray ionization mass spectrometry.

    Science.gov (United States)

    Fernandes, Gabriel D; Alberici, Rosana M; Pereira, Gustavo G; Cabral, Elaine C; Eberlin, Marcos N; Barrera-Arellano, Daniel

    2012-12-01

    Commercial lecithins are composed mainly of phospholipids and triacylglycerols. The analysis of the commercial lecithins, including their fraction of phospholipids, normally involves laborious and expensive protocols. Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is shown to be an efficient technique for the analysis of lipids. Samples of commercial lecithins including standards, refined, deoiled and modified soy lecithin were tested. Characteristic profiles of phosphatidylcholines and triacylglycerols are detected by EASI(+)-MS, whereas EASI(-)-MS provided phosphatidylethanolamines, glycophospholipids and free fatty acids profiles. Acetylated lecithins also displayed characteristic acetylated derivatives. EASI-MS data was also compared to MALDI-MS, and found to display richer compositional information. The industrial process applied to lecithin fabrication was also characterised via typical EASI-MS profiles. EASI-MS both in its positive and negative ion modes offers a direct, fast and efficient technique able to characterise commercial lecithin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Voltage control of a magnetization easy axis in piezoelectric/ferromagnetic hybrid films

    International Nuclear Information System (INIS)

    Kim, Sang-Koog; Lee, Jeong-Won; Shin, Sung-Chul; Song, Han Wook; Lee, Chang Ho; No, Kwangsoo

    2003-01-01

    We have established a spontaneous magnetization-axis switching in ferromagnetic films by applying a low voltage to a piezoelectric layer in a newly developed hybrid system comprised of the ferromagnetic and piezoelectric films. The magnetization easy axis along which a spontaneous magnetization is oriented, is readily switchable by a voltage without applying an external magnetic field through both the inverse magnetostrictive and piezoelectric effects of CoPd and lead-zirconate-titanate alloy films, respectively. This challenging work provides a new way into the memory writing as well as storage means of ultrahigh bit densities in nonvolatile magnetic random access memory

  9. Current-Induced Switching of a Single-Molecule Magnet with Arbitrary Oriented Easy Axis

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2007-01-01

    The main objective of this work is to investigate theoretically how tilting of an easy axis of a single-molecule magnet (SMM) from the orientation collinear with magnetic moments of the leads affects the switching process induced by current flowing through the system. To do this we consider a model system that consists of a SMM embedded in the nonmagnetic barrier of a magnetic tunnel junction. The anisotropy axis of the SMM forms an arbitrary angle with magnetic moments of the leads (the latt...

  10. Using injection molding and reversible bonding for easy fabrication of magnetic cell trapping and sorting devices

    Science.gov (United States)

    Royet, David; Hériveaux, Yoann; Marchalot, Julien; Scorretti, Riccardo; Dias, André; Dempsey, Nora M.; Bonfim, Marlio; Simonet, Pascal; Frénéa-Robin, Marie

    2017-04-01

    Magnetism and microfluidics are two key elements for the development of inexpensive and reliable tools dedicated to high-throughput biological analysis and providing a large panel of applications in domains ranging from fundamental biology to medical diagnostics. In this work, we introduce a simple protocol, relying on injection molding and reversible bonding for fabrication of magnetic cell trapping and sorting devices using only standard soft-lithography equipment. Magnetic strips or grids made of Polydimethylsiloxane (PDMS) doped with hard (NdFeB) or soft (carbonyl iron) magnetic powders were integrated at the bottom of whole PDMS chips. Preliminary results show the effective deviation/trapping of magnetic beads or magnetically-labeled bacteria as the sample flows through the microchannel, proving the potential of this rapid prototyping approach for easy fabrication of magnetic cell sorters.

  11. Using injection molding and reversible bonding for easy fabrication of magnetic cell trapping and sorting devices

    Energy Technology Data Exchange (ETDEWEB)

    Royet, David; Hériveaux, Yoann; Marchalot, Julien; Scorretti, Riccardo [Univ Lyon, ECL, UCB Lyon1, CNRS, Ampere, F-69134 Ecully (France); Dias, André; Dempsey, Nora M. [Univ. Grenoble Alpes - CNRS, Inst Neel, F-38042 Grenoble (France); Bonfim, Marlio [Universidade Federal do Paraná, DELT, Curitiba (Brazil); Simonet, Pascal; Frénéa-Robin, Marie [Univ Lyon, ECL, UCB Lyon1, CNRS, Ampere, F-69134 Ecully (France)

    2017-04-01

    Magnetism and microfluidics are two key elements for the development of inexpensive and reliable tools dedicated to high-throughput biological analysis and providing a large panel of applications in domains ranging from fundamental biology to medical diagnostics. In this work, we introduce a simple protocol, relying on injection molding and reversible bonding for fabrication of magnetic cell trapping and sorting devices using only standard soft-lithography equipment. Magnetic strips or grids made of Polydimethylsiloxane (PDMS) doped with hard (NdFeB) or soft (carbonyl iron) magnetic powders were integrated at the bottom of whole PDMS chips. Preliminary results show the effective deviation/trapping of magnetic beads or magnetically-labeled bacteria as the sample flows through the microchannel, proving the potential of this rapid prototyping approach for easy fabrication of magnetic cell sorters. - Highlights: • Soft and hard magnetic PDMS composites were microstructured by injection molding. • Tunable or autonomous magnetic microdevices can be fabricated using this approach. • Continuous-flow bacterial cell trapping and deviation were demonstrated.

  12. Using injection molding and reversible bonding for easy fabrication of magnetic cell trapping and sorting devices

    International Nuclear Information System (INIS)

    Royet, David; Hériveaux, Yoann; Marchalot, Julien; Scorretti, Riccardo; Dias, André; Dempsey, Nora M.; Bonfim, Marlio; Simonet, Pascal; Frénéa-Robin, Marie

    2017-01-01

    Magnetism and microfluidics are two key elements for the development of inexpensive and reliable tools dedicated to high-throughput biological analysis and providing a large panel of applications in domains ranging from fundamental biology to medical diagnostics. In this work, we introduce a simple protocol, relying on injection molding and reversible bonding for fabrication of magnetic cell trapping and sorting devices using only standard soft-lithography equipment. Magnetic strips or grids made of Polydimethylsiloxane (PDMS) doped with hard (NdFeB) or soft (carbonyl iron) magnetic powders were integrated at the bottom of whole PDMS chips. Preliminary results show the effective deviation/trapping of magnetic beads or magnetically-labeled bacteria as the sample flows through the microchannel, proving the potential of this rapid prototyping approach for easy fabrication of magnetic cell sorters. - Highlights: • Soft and hard magnetic PDMS composites were microstructured by injection molding. • Tunable or autonomous magnetic microdevices can be fabricated using this approach. • Continuous-flow bacterial cell trapping and deviation were demonstrated.

  13. BNL Direct Wind Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  14. Soliton–antisoliton interaction in a parametrically driven easy-plane magnetic wire

    Energy Technology Data Exchange (ETDEWEB)

    Urzagasti, D., E-mail: deterlino@yahoo.com [Instituto de Investigaciones Físicas, UMSA, P.O. Box 8635, La Paz (Bolivia, Plurinational State of); Aramayo, A. [Instituto de Investigaciones Físicas, UMSA, P.O. Box 8635, La Paz (Bolivia, Plurinational State of); Laroze, D. [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Max Planck Institute for Polymer Research, 55021 Mainz (Germany)

    2014-07-11

    In the present work we study the soliton–antisoliton interaction in an anisotropic easy-plane magnetic wire forced by a transverse uniform and oscillatory magnetic field. This system is described in the continuous framework by the Landau–Lifshitz–Gilbert equation. We find numerically that the spatio-temporal magnetization field exhibits both annihilative and repulsive soliton–antisoliton interactions. We also describe this system with the aim of the associated Parametrically Driven and Damped Nonlinear Schrödinger amplitude equation and give an approximate analytical solution that roughly describes the repulsive interaction. - Highlights: • We study the interactions of solitons with opposite polarity with the LLG equation. • We found that there exists both annihilative and repulsive interactions. • Similar results we found for the Parametrically Driven and Damped NLS equation. • We obtain an approximate analytical solution for the repulsive interaction.

  15. Organization dependent collective magnetic properties of secondary nanostructures with differential spatial ordering and magnetic easy axis orientation

    Energy Technology Data Exchange (ETDEWEB)

    Saikia, K. [Department of Physics, Tezpur University (Central University), Tezpur 784028 (India); Sarma, D.D. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Deb, P., E-mail: pdeb@tezu.ernet.in [Department of Physics, Tezpur University (Central University), Tezpur 784028 (India)

    2016-06-15

    Achieving control on the formation of different organization states of magnetic nanoparticles is crucial to harness their organization dependent physical properties in desired ways. In this study, three organization states of iron oxide nanoparticles (γ-Fe{sub 2}O{sub 3}), defining as (i) assembly (ii) network aggregate and (iii) cluster, have been developed by simply changing the solvent evaporation conditions. All three systems have retained the same phase and polydispersity of primary particles. Magnetic measurements show that the partial alignment of the easy axes of the particles in the network system due to the stacking aggregation morphology can result in significant enhancement of the coercivity and remanence values, while the opposite is obtained for the cluster system due to the random orientation of easy axes. Partial alignment in the aggregate system also results in noticeable non-monotonic field dependence of ZFC peak temperature (T{sub peak}). The lowest value of the blocking temperature (T{sub B}) for the cluster system is related to the lowering of the effective anisotropy due to the strongest demagnetizing effect. FC (Field cooled) memory effect was observed to be decreasing with the increasing strength of dipolar interaction of organization states. Therefore, the stacking aggregation and the cluster formation are two interesting ways of magnetic nanoparticles organization for modulating collective magnetic properties significantly, which can have renewed application potentials from recording devices to biomedicine. - Highlights: • Three organization states of magnetic nanoparticles were developed. • Aggregation enhances the H{sub c} and M{sub r}/M{sub s,} while spherical clustering shows opposite. • Organization morphology hardly effects on FC memory effect. • Developed secondary systems can have renewed application potentials in wide spectrum.

  16. Ligand-based transport resonances of single-molecule-magnet spin filters: Suppression of Coulomb blockade and determination of easy-axis orientation

    Science.gov (United States)

    Rostamzadeh Renani, Fatemeh; Kirczenow, George

    2011-11-01

    We investigate single-molecule-magnet transistors (SMMTs) with ligands that support transport resonances. We find the lowest unoccupied molecular orbitals of Mn12-benzoate SMMs (with and without thiol or methyl-sulfide termination) to be on ligands, the highest occupied molecular orbitals being on the Mn12 magnetic core. We predict gate-controlled switching between Coulomb blockade and coherent resonant tunneling in SMMTs based on such SMMs, strong spin filtering by the SMM in both transport regimes, and that if such switching is observed, then the magnetic easy axis of the SMM is parallel to the direction of the current through the SMM.

  17. An easy way to measure accurately the direct magnetoelectric voltage coefficient of thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Poullain, Gilles, E-mail: gilles.poullain@ensicaen.fr; More-Chevalier, Joris; Cibert, Christophe; Bouregba, Rachid

    2017-01-15

    Tb{sub x}Dy{sub 1−x}Fe{sub 2}/Pt/Pb(Zr{sub x}, Ti{sub 1−x})O{sub 3} thin films were grown on Pt/TiO{sub 2}/SiO{sub 2}/Si substrate by multi-target sputtering. The magnetoelectric voltage coefficient α{sup Η}{sub ΜΕ} was determined at room temperature using a lock-in amplifier. By adding, in series in the circuit, a capacitor of the same value as that of the device under test, we were able to demonstrate that the magnetoelectric device behaves as a voltage source. Furthermore, a simple way to subtract the stray voltage arising from the flow of eddy currents in the measurement set-up, is proposed. This allows the easy and accurate determination of the true magnetoelectric voltage coefficient. A large α{sup Η}{sub ΜΕ} of 8.3 V/cm. Oe was thus obtained for a Terfenol-D/Pt/PZT thin film device, without DC magnetic field nor mechanical resonance. - Highlights: • Magnetoelectric device behaves as a voltage source. • A simple way to subtract eddy currents during the measurement, is proposed.

  18. Characterization of anti-theft devices directly from the surface of banknotes via easy ambient sonic spray ionization mass spectrometry.

    Science.gov (United States)

    Schmidt, Eduardo Morgado; Franco, Marcos Fernando; Cuelbas, Claudio José; Zacca, Jorge Jardim; de Carvalho Rocha, Werickson Fortunato; Borges, Rodrigo; de Souza, Wanderley; Sawaya, Alexandra Christine Helena Frankland; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento

    2015-09-01

    Using Brazilian banknotes as a test case, forensic examination and identification of Rhodamine B dye anti-theft device (ATD) staining on banknotes were performed. Easy ambient sonic spray ionization mass spectrometry (EASI-MS) was used since it allows fast and simple analysis with no sample preparation providing molecular screening of the surface with direct desorption and ionization of the security dye. For a more accurate molecular characterization of the ATD dye, Q Exactive Orbitrap™ Fourier transform (tandem) mass spectrometry using eletrospray ionization (ESI-HRMS/MS) was also applied. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Transformation from an easy-plane to an easy-axis antiferromagnetic structure in the mixed rare-earth ferroborates Pr x Y1-x Fe3(BO3)4: magnetic properties and crystal field calculations.

    Science.gov (United States)

    Pankrats, A I; Demidov, A A; Ritter, C; Velikanov, D A; Semenov, S V; Tugarinov, V I; Temerov, V L; Gudim, I A

    2016-10-05

    The magnetic structure of the mixed rare-earth system Pr x Y1-x Fe3(BO3)4 (x  =  0.75, 0.67, 0.55, 0.45, 0.25) was studied via magnetic and resonance measurements. These data evidence the successive spin reorientation from the easy-axis antiferromagnetic structure formed in PrFe3(BO3)4 to the easy-plane one of YFe3(BO3)4 associated with the weakening of the magnetic anisotropy of the Pr subsystem due to its diamagnetic dilution by nonmagnetic Y. This reorientation occurs through the formation of an inclined magnetic structure, as was confirmed by our previous neutron research in the range of x  =  0.67 ÷ 0.45. In the compounds with x  =  0.75 and 0.67 whose magnetic structure is close to the easy-axis one, a two-step spin reorientation takes place in the magnetic field H||c. Such a peculiarity is explained by the formation of an interjacent inclined magnetic structure with magnetic moments of Fe ions located closer to the basal plane than in the initial state, with these intermediate states remaining stable in some ranges of the magnetic field. An approach based on a crystal field model for the Pr(3+) ion and the molecular-field approximation is used to describe the magnetic characteristics of the system Pr x Y1-x Fe3(BO3)4. With the parameters of the d-d and f-d exchange interactions, of the magnetic anisotropy of the iron subsystem and of the crystal field parameters of praseodymium thus determined, it is possible to achieve a good agreement between the experimental and calculated temperature and field dependences of the magnetization curves (up to 90 kOe) and magnetic susceptibilities (2-300 K).

  20. Heisenberg magnetic chain with single-ion easy-plane anisotropy: Hubbard operators approach

    International Nuclear Information System (INIS)

    Spirin, D.V.; Fridman, Y.A.

    2003-01-01

    We investigate the gap in excitation spectrum of one-dimensional S=1 ferro- and antiferromagnets with easy-plane single-ion anisotropy. The self-consistent modification of Hubbard operators approach which enables to account single-site term exactly is used. For antiferromagnetic model we found Haldane phase that exists up to point D=4J (where D is anisotropy parameter, J is exchange coupling), while quadrupolar phase realizes at larger values of anisotropy. Our results specify those of Golinelli et al. (Phys. Rev. B. 45 (1992) 9798), where similar model was studied. Besides the method gives gap value closer to numerical estimations than usual spin-wave theories

  1. Thin resolver using the easy magnetization axis of the grain-oriented silicon steel as an angle indicator

    Directory of Open Access Journals (Sweden)

    Jisho Oshino

    2017-05-01

    Full Text Available A new type of thin resolver is presented, in which the easy axis of the magnetic anisotropy in the grain-oriented silicon steel is used as an angle indicator. The total thickness including a rotor, PCB coils and a back yoke can be made less than 4 mm. With a rotor of 50 mm diameter, a good linear response (non-linearity error < 0.4% between the mechanical angle input and the electrical angle output has been obtained. The influence of a weak magnetic anisotropy in the non-grain-oriented silicon steel used for the back yoke on the accuracy of the resolver can be deleted by the method proposed in this paper.

  2. Direct nanofabrication and transmission electron microscopy on a suite of easy-to-prepare ultrathin film substrates

    International Nuclear Information System (INIS)

    Allred, Daniel B.; Zin, Melvin T.; Ma, Hong; Sarikaya, Mehmet; Baneyx, Francois; Jen, Alex K.-Y.; Schwartz, Daniel T.

    2007-01-01

    A high-yield, easy to master method for preparing electron transparent metal, oxide, and carbon ultrathin film substrates suitable for direct nano/micro-fabrication and transmission electron microscopy (TEM) is presented. To demonstrate the versatility of these substrates for fabrication processes, we use e-beam lithography, self-assembled colloidal and protein templates, and microcontact printing to create patterned masks for subsequent electrodeposition of two dimensional and three dimensional structures. The electrodeposited structures range in scale from a few nanometers to a few micrometers in characteristic dimensions. Because fabrication occurs directly on ultrathin films, TEM analysis of the resulting materials and buried interfaces is straightforward without any destructive sample preparation. We show that all the normal TEM analytical methods (imaging, diffraction, electron and X-ray spectroscopies) are compatible with the fabricated structures and the thin film substrates. These electron transparent substrates have largely rendered the need for TEM sample preparation on fabricated structures obsolete in our lab

  3. A Direct Search for Dirac Magnetic Monopoles

    Energy Technology Data Exchange (ETDEWEB)

    Mulhearn, Michael James [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2004-10-01

    Magnetic monopoles are highly ionizing and curve in the direction of the magnetic field. A new dedicated magnetic monopole trigger at CDF, which requires large light pulses in the scintillators of the time-of-flight system, remains highly efficient to monopoles while consuming a tiny fraction of the available trigger bandwidth. A specialized offline reconstruction checks the central drift chamber for large dE/dx tracks which do not curve in the plane perpendicular to the magnetic field. We observed zero monopole candidate events in 35.7 pb-1 of proton-antiproton collisions at √s = 1.96 TeV. This implies a monopole production cross section limit σ < 0.2 pb for monopoles with mass between 100 and 700 GeV, and, for a Drell-Yan like pair production mechanism, a mass limit m > 360 GeV.

  4. Magnetic blocking direct-recovery efficiency

    International Nuclear Information System (INIS)

    Whealton, J.H.; Wooten, J.H.; McGaffey, R.W.

    1981-10-01

    The ion recovery efficiency of a transverse magnetic field monochromatic direct recovery device intended for intense neutral beams is examined theoretically by solving a Poisson-Vlasov equation. An optimum in recovery efficiency is obtained for finite ion current density and excess initial speed

  5. Enchondroma vs. chondrosarcoma: A simple, easy-to-use, new magnetic resonance sign

    International Nuclear Information System (INIS)

    Vanel, Daniel; Kreshak, Jennifer; Larousserie, Frédérique; Alberghini, Marco; Mirra, Joe; De Paolis, Massimiliano; Picci, Piero

    2013-01-01

    Introduction: There is no clear radiologic or pathologic agreement on the differences between enchondroma and conventional chondrosarcoma, which has huge therapeutic consequences. Microscopically, an enchondroma is composed of “islands of intramedullary hyaline cartilage surrounded by marrow fat”, and a chondrosarcoma a “diffuse cartilaginous replacement (invasion) of the marrow which leads to complete ‘trapping’ of host lamellar bone trabeculae.” The marrow around islands of cartilage should be detectable on magnetic resonance imaging (MR). Enchondroma may be the precursor of chondrosarcoma; benign cartilaginous islands are often seen microscopically at the periphery of chondrosarcoma. We attempted to detect these islands at the periphery of chondrosarcomas on MR and correlate them microscopically. Materials and methods: We examined our database for all patients with a chondrosarcoma of the long and flat bones between 1990 and 2007. Only those with a preoperative MR who underwent an en bloc resection were included, yielding 32 patients. We looked for low-signal islands surrounded by high (fat) signal on T1-weighted images, and high-signal islands surrounded by low signal on T2-weighted fat saturated images at the periphery of the main tumour mass. Microscopic correlation was performed in all cases. Results: On microscopy, there were 23 conventional chondrosarcomas, nine dedifferentiated. Peripheral islands surrounded by fat were detected on MR in 19 cases, corresponding to benign cartilage in 18 cases and to the benign scar of a needle biopsy tract in one. There were no peripheral islands detected radiographically or microscopically in 13 cases. Conclusion: Cartilaginous islands microscopically detected at the periphery of some chondrosarcomas are easily and reliably diagnosed on MR

  6. Enchondroma vs. chondrosarcoma: A simple, easy-to-use, new magnetic resonance sign

    Energy Technology Data Exchange (ETDEWEB)

    Vanel, Daniel, E-mail: daniel.vanel@ior.it [Department of Research, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Pathology, Istituto Ortopedico Rizzoli, Bologna (Italy); Kreshak, Jennifer [Department of Pathology, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Orthopaedic Oncology, Istituto Ortopedico Rizzoli, Bologna (Italy); Larousserie, Frédérique [Department of Pathology, Istituto Ortopedico Rizzoli, Bologna (Italy); Université Paris Descartes, Sorbonne Paris Cité, Paris (France); Alberghini, Marco; Mirra, Joe [Department of Pathology, Istituto Ortopedico Rizzoli, Bologna (Italy); De Paolis, Massimiliano [Department of Orthopaedic Oncology, Istituto Ortopedico Rizzoli, Bologna (Italy); Picci, Piero [Department of Research, Istituto Ortopedico Rizzoli, Bologna (Italy)

    2013-12-01

    Introduction: There is no clear radiologic or pathologic agreement on the differences between enchondroma and conventional chondrosarcoma, which has huge therapeutic consequences. Microscopically, an enchondroma is composed of “islands of intramedullary hyaline cartilage surrounded by marrow fat”, and a chondrosarcoma a “diffuse cartilaginous replacement (invasion) of the marrow which leads to complete ‘trapping’ of host lamellar bone trabeculae.” The marrow around islands of cartilage should be detectable on magnetic resonance imaging (MR). Enchondroma may be the precursor of chondrosarcoma; benign cartilaginous islands are often seen microscopically at the periphery of chondrosarcoma. We attempted to detect these islands at the periphery of chondrosarcomas on MR and correlate them microscopically. Materials and methods: We examined our database for all patients with a chondrosarcoma of the long and flat bones between 1990 and 2007. Only those with a preoperative MR who underwent an en bloc resection were included, yielding 32 patients. We looked for low-signal islands surrounded by high (fat) signal on T1-weighted images, and high-signal islands surrounded by low signal on T2-weighted fat saturated images at the periphery of the main tumour mass. Microscopic correlation was performed in all cases. Results: On microscopy, there were 23 conventional chondrosarcomas, nine dedifferentiated. Peripheral islands surrounded by fat were detected on MR in 19 cases, corresponding to benign cartilage in 18 cases and to the benign scar of a needle biopsy tract in one. There were no peripheral islands detected radiographically or microscopically in 13 cases. Conclusion: Cartilaginous islands microscopically detected at the periphery of some chondrosarcomas are easily and reliably diagnosed on MR.

  7. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    Science.gov (United States)

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.

  8. Direct measurements of the magnetic entropy change

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Neves Bez, Henrique; von Moos, Lars

    2015-01-01

    An experimental device that can accurately measure the magnetic entropy change, Δs, as a function of temperature, T, and magnetic field, H, is presented. The magnetic field source is in this case a set of counter-rotating concentric Halbach-type magnets, which produce a highly homogeneous applied...... to the ambient are negligible in terms of the calorimetric determination of the magnetic entropy change, while the losses cannot be ignored when correcting for the actual sample temperature. We apply the device to two different types of samples; one is commercial grade Gd, i.e., a pure second-order phase...

  9. Laser direct writing (LDW of magnetic structures

    Directory of Open Access Journals (Sweden)

    Alaa Alasadi

    2018-05-01

    Full Text Available Laser direct writing (LDW has been used to pattern 90nm thick permalloy (Ni81Fe19 into 1-D and 2-D microstructures with strong shape anisotropy. Sub-nanosecond laser pulses were focused with a 0.75 NA lens to a 1.85μm diameter spot, to achieve a fluence of approximately 350 mJ.cm-2 and ablate the permalloy film. Computer-controlled sample scanning then allowed structures to be defined. Scan speeds were controlled to give 30% overlap between successive laser pulses and reduce the extent of width modulation in the final structures. Continuous magnetic wires that adjoined the rest of the film were fabricated with widths from 650 nm - 6.75μm and magneto-optical measurements showed coercivity reducing across this width range from 47 Oe to 11 Oe. Attempts to fabricate wires narrower than 650nm resulted in discontinuities in the wires and a marked decrease in coercivity. This approach is extremely rapid and was carried out in air, at room temperature and with no chemical processing. The 6-kHz laser pulse repetition rate allowed wire arrays across an area of 4 mm x 0.18 mm to be patterned in 85 s.

  10. Laser direct writing (LDW) of magnetic structures

    Science.gov (United States)

    Alasadi, Alaa; Claeyssens, F.; Allwood, D. A.

    2018-05-01

    Laser direct writing (LDW) has been used to pattern 90nm thick permalloy (Ni81Fe19) into 1-D and 2-D microstructures with strong shape anisotropy. Sub-nanosecond laser pulses were focused with a 0.75 NA lens to a 1.85μm diameter spot, to achieve a fluence of approximately 350 mJ.cm-2 and ablate the permalloy film. Computer-controlled sample scanning then allowed structures to be defined. Scan speeds were controlled to give 30% overlap between successive laser pulses and reduce the extent of width modulation in the final structures. Continuous magnetic wires that adjoined the rest of the film were fabricated with widths from 650 nm - 6.75μm and magneto-optical measurements showed coercivity reducing across this width range from 47 Oe to 11 Oe. Attempts to fabricate wires narrower than 650nm resulted in discontinuities in the wires and a marked decrease in coercivity. This approach is extremely rapid and was carried out in air, at room temperature and with no chemical processing. The 6-kHz laser pulse repetition rate allowed wire arrays across an area of 4 mm x 0.18 mm to be patterned in 85 s.

  11. Shaping magnetic fields to direct therapy to ears and eyes.

    Science.gov (United States)

    Shapiro, B; Kulkarni, S; Nacev, A; Sarwar, A; Preciado, D; Depireux, D A

    2014-07-11

    Magnetic fields have the potential to noninvasively direct and focus therapy to disease targets. External magnets can apply forces on drug-coated magnetic nanoparticles, or on living cells that contain particles, and can be used to manipulate them in vivo. Significant progress has been made in developing and testing safe and therapeutic magnetic constructs that can be manipulated by magnetic fields. However, we do not yet have the magnet systems that can then direct those constructs to the right places, in vivo, over human patient distances. We do not yet know where to put the external magnets, how to shape them, or when to turn them on and off to direct particles or magnetized cells-in blood, through tissue, and across barriers-to disease locations. In this article, we consider ear and eye disease targets. Ear and eye targets are too deep and complex to be targeted by a single external magnet, but they are shallow enough that a combination of magnets may be able to direct therapy to them. We focus on how magnetic fields should be shaped (in space and time) to direct magnetic constructs to ear and eye targets.

  12. Effect of a high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys

    International Nuclear Information System (INIS)

    Li, Xi; Gagnoud, Annie; Wang, Jiang; Li, Xiaolong; Fautrelle, Yves; Ren, Zhongming; Lu, Xionggang; Reinhart, Guillaume; Nguyen-Thi, Henri

    2014-01-01

    The effect of an axial high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys was investigated. The experimental results indicated that the magnetic field induced the destabilization of the liquid–solid interface and the formation of a band-like structure. The magnetic field also caused the disruption of the columnar η-Zn and ε-Zn 5 Cu dendrites. As the applied magnetic field increased, the columnar-to-equiaxed transition occurred, and the size of the equiaxed grains gradually decreased. The magnetic effects, the magnetic moment and the thermoelectric magnetic effects during the directional solidification of Zn–Cu peritectic alloys under an axial magnetic field were studied. Regular ε-Zn 5 Cu hexagons appeared on the transverse section of the sample fabricated with a high magnetic field (i.e. 16 T). In addition, electron backscatter diffraction analysis revealed that the 〈0 0 0 1〉-crystal direction of the Zn 5 Cu crystal is not only its easy magnetization direction but also its preferred growth direction. The thermoelectric magnetic effects were numerically simulated. The results indicated that a thermoelectric magnetic force acts on the solid near the liquid–solid interface and increases linearly with an increase in the magnetic field. As the effect of the magnetic moment arising from the magnetic crystalline anisotropy is eliminated, the thermoelectric magnetic effect has a substantial effect on the solidification structure. Therefore, the destabilization of the liquid–solid interface and the disruption of the dendrites during directional solidification under the magnetic field are primarily due to the thermoelectric magnetic force acting on the solid

  13. Future Directions for Transuranic Single Molecule Magnets

    Directory of Open Access Journals (Sweden)

    Nicola Magnani

    2018-02-01

    Full Text Available Single Molecule Magnets (SMMs based on transition metals and rare earths have been the object of considerable attention for the past 25 years. These systems exhibit slow relaxation of the magnetization, arising from a sizeable anisotropy barrier, and magnetic hysteresis of purely molecular origin below a given blocking temperature. Despite initial predictions that SMMs based on 5f-block elements could outperform most others, the results obtained so far have not met expectations. Exploiting the versatile chemistry of actinides and their favorable intrinsic magnetic properties proved, indeed, to be more difficult than assumed. However, the large majority of studies reported so far have been dedicated to uranium molecules, thus leaving the largest part of the 5f-block practically unexplored. Here, we present a short review of the progress achieved up to now and discuss some options for a possible way forward.

  14. Easy, fast and environmental friendly method for the simultaneous extraction of the 16 EPA PAHs using magnetic molecular imprinted polymers (mag-MIPs).

    Science.gov (United States)

    Villar-Navarro, Mercedes; Martín-Valero, María Jesús; Fernández-Torres, Rut Maria; Callejón-Mochón, Manuel; Bello-López, Miguel Ángel

    2017-02-15

    An easy and environmental friendly method, based on the use of magnetic molecular imprinted polymers (mag-MIPs) is proposed for the simultaneous extraction of the 16 U.S. EPA polycyclic aromatic hydrocarbons (PAHs) priority pollutants. The mag-MIPs based extraction protocol is simple, more sensitive and low organic solvent consuming compared to official methods and also adequate for those PAHs more retained in the particulate matter. The new proposed extraction method followed by HPLC determination has been validated and applied to different types of water samples: tap water, river water, lake water and mineral water. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Simulation of magnetic induction distribution in a coaxial linear motor with axial and radial direction of permanent magnets magnetization

    Directory of Open Access Journals (Sweden)

    G.M. Golenkov

    2014-03-01

    Full Text Available The paper presents results of computer simulation and experimental study of magnetic induction distribution in a coaxial linear motor air gap throughout the length of the runner active part at different heights of the air gap between the runner and the inductor magnetic core for motors with axial and radial direction of the permanent magnets magnetization.

  16. SERPENTINE COIL TOPOLOGY FOR BNL DIRECT WIND SUPERCONDUCTING MAGNETS

    International Nuclear Information System (INIS)

    PARKER, B.; ESCALLIER, J.

    2005-01-01

    Serpentine winding, a recent innovation developed at BNL for direct winding superconducting magnets, allows winding a coil layer of arbitrary multipolarity in one continuous winding process and greatly simplifies magnet design and production compared to the planar patterns used before. Serpentine windings were used for the BEPC-II Upgrade and JPARC magnets and are proposed to make compact final focus magnets for the EC. Serpentine patterns exhibit a direct connection between 2D body harmonics and harmonics derived from the integral fields. Straightforward 2D optimization yields good integral field quality with uniformly spaced (natural) coil ends. This and other surprising features of Serpentine windings are addressed in this paper

  17. Direct Model Reference Adaptive Control for a Magnetic Bearing

    Energy Technology Data Exchange (ETDEWEB)

    Durling, Mike [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1999-11-01

    A Direct Model Reference Adaptive Controller (DMRAC) is applied to a magnetic bearing test stand. The bearing of interest is the MBC 500 Magnetic Bearing System manufactured by Magnetic Moments, LLC. The bearing model is presented in state space form and the system transfer function is measured directly using a closed-loop swept sine technique. Next, the bearing models are used to design a phase-lead controller, notch filter and then a DMRAC. The controllers are tuned in simulations and finally are implemented using a combination of MATLAB, SIMULINK and dSPACE. The results show a successful implementation of a DMRAC on the magnetic bearing hardware.

  18. Centimeter-order view for magnetic domain imaging with local magnetization direction by longitudinal Kerr effect

    Directory of Open Access Journals (Sweden)

    Sakae Meguro

    2016-05-01

    Full Text Available An observation system of centimeter-order of view of magnetic domain with local magnetization direction was developed by designing a telecentric optical system of finite design through the extension of microscope technology. The field of view realized in the developed system was 1.40 × 1.05 cm as suppressing defocus and distortion. Detection of the local magnetization direction has become possible by longitudinal Kerr observation from the orthogonal two directions. This system can be applied to the domain observation of rough surface samples and time resolved analysis for soft magnetic materials such as amorphous foil strips and soft magnetic thin films.

  19. 1001 easy French phrases

    CERN Document Server

    McCoy, Heather

    2010-01-01

    The perfect companion for tourists and business travelers in France and other places where the French language is spoken, this book offers fast, effective communication. More than 1,000 basic words, phrases, and sentences cover everything from asking directions and renting a car to ordering dinner and finding a bank.Designed as a quick reference tool and an easy study guide, this inexpensive and easy-to-use book offers completely up-to-date terms for modern telecommunications, idioms, and slang. The contents are arranged for quick access to phrases related to greetings, transportation, shoppin

  20. SNR polarization and the direction of the magnetic field

    International Nuclear Information System (INIS)

    Milne, D.K.

    1988-01-01

    The authors are currently engaged in a program to map polarization in SNRs at 8.4 GHz. These results are compared with earlier Parkes 5 GHz maps to deduce the direction of magnetic field, Faraday rotation and depolarization

  1. Direct and non-destructive proof of authenticity for the 2nd generation of Brazilian real banknotes via easy ambient sonic spray ionization mass spectrometry.

    Science.gov (United States)

    Schmidt, Eduardo Morgado; Franco, Marcos Fernando; Regino, Karen Gomes; Lehmann, Eraldo Luiz; Arruda, Marco Aurélio Zezzi; de Carvalho Rocha, Werickson Fortunato; Borges, Rodrigo; de Souza, Wanderley; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento

    2014-12-01

    Using a desorption/ionization technique, easy ambient sonic-spray ionization coupled to mass spectrometry (EASI-MS), documents related to the 2nd generation of Brazilian Real currency (R$) were screened in the positive ion mode for authenticity based on chemical profiles obtained directly from the banknote surface. Characteristic profiles were observed for authentic, seized suspect counterfeit and counterfeited homemade banknotes from inkjet and laserjet printers. The chemicals in the authentic banknotes' surface were detected via a few minor sets of ions, namely from the plasticizers bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP), most likely related to the official offset printing process, and other common quaternary ammonium cations, presenting a similar chemical profile to 1st-generation R$. The seized suspect counterfeit banknotes, however, displayed abundant diagnostic ions in the m/z 400-800 range due to the presence of oligomers. High-accuracy FT-ICR MS analysis enabled molecular formula assignment for each ion. The ions were separated by 44 m/z, which enabled their characterization as Surfynol® 4XX (S4XX, XX=40, 65, and 85), wherein increasing XX values indicate increasing amounts of ethoxylation on a backbone of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Surfynol® 104). Sodiated triethylene glycol monobutyl ether (TBG) of m/z 229 (C10H22O4Na) was also identified in the seized counterfeit banknotes via EASI(+) FT-ICR MS. Surfynol® and TBG are constituents of inks used for inkjet printing. Copyright © 2014. Published by Elsevier Ireland Ltd.

  2. Effect of the PREPARE Website vs an Easy-to-Read Advance Directive on Advance Care Planning Documentation and Engagement Among Veterans: A Randomized Clinical Trial.

    Science.gov (United States)

    Sudore, Rebecca L; Boscardin, John; Feuz, Mariko A; McMahan, Ryan D; Katen, Mary T; Barnes, Deborah E

    2017-08-01

    Documentation rates of patients' medical wishes are often low. It is unknown whether easy-to-use, patient-facing advance care planning (ACP) interventions can overcome barriers to planning in busy primary care settings. To compare the efficacy of an interactive, patient-centered ACP website (PREPARE) with an easy-to-read advance directive (AD) to increase planning documentation. This was a comparative effectiveness randomized clinical trial from April 2013 to July 2016 conducted at multiple primary care clinics at the San Francisco VA Medical Center. Inclusion criteria were age of a least 60 years; at least 2 chronic and/or serious conditions; and 2 or more primary care visits; and 2 or more additional clinic, hospital, or emergency room visits in the last year. Participants were randomized to review PREPARE plus an easy-to-read AD or the AD alone. There were no clinician and/or system-level interventions or education. Research staff were blinded for all follow-up measurements. The primary outcome was new ACP documentation (ie, legal forms and/or discussions) at 9 months. Secondary outcomes included patient-reported ACP engagement at 1 week, 3 months, and 6 months using validated surveys of behavior change process measures (ie, 5-point knowledge, self-efficacy, readiness scales) and action measures (eg, surrogate designation, using a 0-25 scale). We used intention-to-treat, mixed-effects logistic and linear regression, controlling for time, health literacy, race/ethnicity, baseline ACP, and clustering by physician. The mean (SD) age of 414 participants was 71 (8) years, 38 (9%) were women, 83 (20%) had limited literacy, and 179 (43%) were nonwhite. No participant characteristic differed significantly among study arms at baseline. Retention at 6 months was 90%. Advance care planning documentation 6 months after enrollment was higher in the PREPARE arm vs the AD-alone arm (adjusted 35% vs 25%; odds ratio, 1.61 [95% CI, 1.03-2.51]; P = .04). PREPARE also resulted

  3. Ligand-based transport resonances of single-molecule magnet spin filters: Suppression of the Coulomb blockade and determination of the orientation of the magnetic easy axis

    OpenAIRE

    Renani, Fatemeh Rostamzadeh; Kirczenow, George

    2011-01-01

    We investigate single molecule magnet transistors (SMMTs) with ligands that support transport resonances. We find the lowest unoccupied molecular orbitals of Mn12-benzoate SMMs (with and without thiol or methyl-sulfide termination) to be on ligands, the highest occupied molecular orbitals being on the Mn12 magnetic core. We predict gate controlled switching between Coulomb blockade and coherent resonant tunneling in SMMTs based on such SMMs, strong spin filtering by the SMM in both transport ...

  4. Nanoscale layer-selective readout of magnetization direction from a magnetic multilayer using a spin-torque oscillator

    International Nuclear Information System (INIS)

    Suto, Hirofumi; Nagasawa, Tazumi; Kudo, Kiwamu; Mizushima, Koichi; Sato, Rie

    2014-01-01

    Technology for detecting the magnetization direction of nanoscale magnetic material is crucial for realizing high-density magnetic recording devices. Conventionally, a magnetoresistive device is used that changes its resistivity in accordance with the direction of the stray field from an objective magnet. However, when several magnets are near such a device, the superposition of stray fields from all the magnets acts on the sensor, preventing selective recognition of their individual magnetization directions. Here we introduce a novel readout method for detecting the magnetization direction of a nanoscale magnet by use of a spin-torque oscillator (STO). The principles behind this method are dynamic dipolar coupling between an STO and a nanoscale magnet, and detection of ferromagnetic resonance (FMR) of this coupled system from the STO signal. Because the STO couples with a specific magnet by tuning the STO oscillation frequency to match its FMR frequency, this readout method can selectively determine the magnetization direction of the magnet. (papers)

  5. Analysis of Magnetic Anisotropy and the Role of Magnetic Dilution in Triggering Single-Molecule Magnet (SMM) Behavior in a Family of CoII YIII Dinuclear Complexes with Easy-Plane Anisotropy.

    Science.gov (United States)

    Palacios, María A; Nehrkorn, Joscha; Suturina, Elizaveta A; Ruiz, Eliseo; Gómez-Coca, Silvia; Holldack, Karsten; Schnegg, Alexander; Krzystek, Jurek; Moreno, José M; Colacio, Enrique

    2017-08-25

    Three new closely related Co II Y III complexes of general formula [Co(μ-L)(μ-X)Y(NO 3 ) 2 ] (X - =NO 3 - 1, benzoate 2, or 9-anthracenecarboxylato 3) have been prepared with the compartmental ligand N,N',N''-trimethyl-N,N''-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H 2 L). In these complexes, Co II and Y III are triply bridged by two phenoxide groups belonging to the di-deprotonated ligand (L 2- ) and one ancillary anion X - . The change of the ancillary bridging group connecting Co II and Y III ions induces small differences in the trigonally distorted CoN 3 O 3 coordination sphere with a concomitant tuning of the magnetic anisotropy and intermolecular interactions. Direct current magnetic, high-frequency and -field EPR (HFEPR), frequency domain Fourier transform THz electron paramagnetic resonance (FD-FT THz-EPR) measurements, and ab initio theoretical calculations demonstrate that Co II ions in compounds 1-3 have large and positive D values (≈50 cm -1 ), which decrease with increasing the distortion of the pseudo-octahedral Co II coordination sphere. Dynamic ac magnetic susceptibility measurements indicate that compound 1 exhibits field-induced single-molecule magnet (SMM) behavior, whereas compounds 2 and 3 only display this behavior when they are magnetically diluted with diamagnetic Zn II (Zn/Co=10:1). In view of this, it is always advisable to use magnetically diluted complexes, in which intermolecular interactions and quantum tunneling of magnetism (QTM) would be at least partly suppressed, so that "hidden single-ion magnet (SIM)" behavior could emerge. Field- and temperature-dependence of the relaxation times indicate the prevalence of the Raman process in all these complexes above approximately 3 K. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. An Omni-Directional Wall-Climbing Microrobot with Magnetic Wheels Directly Integrated with Electromagnetic Micromotors

    Directory of Open Access Journals (Sweden)

    Xiaoning Tang

    2012-04-01

    Full Text Available This paper presents an omni-directional wall-climbing microrobot with magnetic wheels. The integral design with an actuator and adhesive is realized by integrating stators and rotors of an MEMS-based electromagnetic micromotor with a magnetic wheel. The omni-directional wall-climbing mechanism is designed by a set of steering gears and three standard magnetic wheels. The required torque and magnetic force for microrobot movement are derived by its static analysis. The size of the magnetic wheel is optimized, with consideration of its own design constraints, by ANSOFT and Pro/Engineer simulation so as to reduce unnecessary torque consumption under the same designed load. Related experiments demonstrate that the microrobot (diameter: 26mm; height: 16.4; mass: 7.2g; load capacity: 3g we have developed has a good wall-climbing ability and flexible mobility, and it can perform visual detection in a ferromagnetic environment.

  7. Direct Observation of Magnetocrystalline Anisotropy Tuning Magnetization Configurations in Uniaxial Magnetic Nanomaterials

    KAUST Repository

    Zhu, Shimeng; Fu, Jiecai; Li, Hongli; Zhu, Liu; Hu, Yang; Xia, Weixing; Zhang, Xixiang; Peng, Yong; Zhang, Junli

    2018-01-01

    Discovering the effect of magnetic anisotropy on the magnetization configurations of magnetic nanomaterials is essential and significant for not only enriching the fundamental knowledge of magnetics but also facilitating the designs of desired magnetic nanostructures for diverse technological applications, such as data storage devices, spintronic devices, and magnetic nanosensors. Herein, we present a direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials with hexagonal structure by means of three modeled samples. The magnetic configuration in polycrystalline BaFe12O19 nanoslice is a curling structure, revealing that the effect of magnetocrystalline anisotropy in uniaxial magnetic nanomaterials can be broken by forming an amorphous structure or polycrystalline structure with tiny grains. Both single crystalline BaFe12O19 nanoslice and individual particles of single-particle-chain BaFe12O19 nanowire appear in a single domain state, revealing a dominant role of magnetocrystalline anisotropy in the magnetization configuration of uniaxial magnetic nanomaterials. These observations are further verified by micromagnetic computational simulations.

  8. Direct Observation of Magnetocrystalline Anisotropy Tuning Magnetization Configurations in Uniaxial Magnetic Nanomaterials

    KAUST Repository

    Zhu, Shimeng

    2018-03-20

    Discovering the effect of magnetic anisotropy on the magnetization configurations of magnetic nanomaterials is essential and significant for not only enriching the fundamental knowledge of magnetics but also facilitating the designs of desired magnetic nanostructures for diverse technological applications, such as data storage devices, spintronic devices, and magnetic nanosensors. Herein, we present a direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials with hexagonal structure by means of three modeled samples. The magnetic configuration in polycrystalline BaFe12O19 nanoslice is a curling structure, revealing that the effect of magnetocrystalline anisotropy in uniaxial magnetic nanomaterials can be broken by forming an amorphous structure or polycrystalline structure with tiny grains. Both single crystalline BaFe12O19 nanoslice and individual particles of single-particle-chain BaFe12O19 nanowire appear in a single domain state, revealing a dominant role of magnetocrystalline anisotropy in the magnetization configuration of uniaxial magnetic nanomaterials. These observations are further verified by micromagnetic computational simulations.

  9. Light Magnetic Dark Matter in Direct Detection Searches

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Kouvaris, Christoforos; Panci, Paolo

    2012-01-01

    We study a fermionic Dark Matter particle carrying magnetic dipole moment and analyze its impact on direct detection experiments. In particular we show that it can accommodate the DAMA, CoGeNT and CRESST experimental results. Assuming conservative bounds, this candidate is shown not to be ruled out...

  10. Magnetically actuated bi-directional microactuators with permalloy and Fe/Pt hard magnet

    International Nuclear Information System (INIS)

    Pan, C.T.; Shen, S.C.

    2005-01-01

    Bi-directional polyimide (PI) electromagnetic microactuator with different geometries are designed, fabricated and tested. Fabrication of the electromagnetic microactuator consists of 10 μm thick Ni/Fe (80/20) permalloy deposition on the PI diaphragm by electroplating, high aspect ratio electroplating of copper planar coil with 10 μm in thickness, bulk micromachining, and excimer laser selective ablation. They were fabricated by a novel concept avoiding the etching selectivity and residual stress problems during wafer etching. A mathematical model is created by ANSYS software to analyze the microactuator. The external magnetic field intensity (H ext ) generated by the planar coil is simulated by ANSYS software. ANSYS software is used to predict the deflection angle of the microactuator. Besides, to provide bi-directional and large deflection angle of microactuator, hard magnet Fe/Pt is deposited at a low temperature of 300 deg. C by sputtering onto the PI diaphragm to produce a perpendicular magnetic anisotropic field. This magnetic field can enhance the interaction with H ext to induce attractive and repulsive bi-directional force to provide large displacement. The results of magnetic microactuator with and without hard magnets are compared and discussed. The preliminary result reveals that the electromagnetic microactuator with hard magnet shows a greater deflection angle than that without one

  11. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    Science.gov (United States)

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  12. Determination of multiple pesticides in fruits and vegetables using a modified quick, easy, cheap, effective, rugged and safe method with magnetic nanoparticles and gas chromatography tandem mass spectrometry.

    Science.gov (United States)

    Li, Yan-Fei; Qiao, Lu-Qin; Li, Fang-Wei; Ding, Yi; Yang, Zi-Jun; Wang, Ming-Lin

    2014-09-26

    Based on a modified quick, easy, cheap, effective, rugged and safe (QuEChERS) sample preparation method with Fe3O4 magnetic nanoparticles (MNPs) as the adsorbing material and gas chromatography-tandem mass spectrometry (GC-MS/MS) determination in multiple reaction monitoring (MRM) mode, we established a new method for the determination of multiple pesticides in vegetables and fruits. It was determined that bare MNPs have excellent function as adsorbent when purified, and it is better to be separated from the extract. The amount of MNPs influenced the clean-up performance and recoveries. To achieve the optimum performance of modified QuEChERS towards the target analytes, several parameters including the amount of the adsorbents and purification time were investigated. Under the optimum conditions, recoveries were evaluated in four representative matrices (tomato, cucumber, orange and apple) with the spiked concentrations of 10 μg kg(-1), 50 μg kg(-1)and 200 μg kg(-1) in all cases. The results showed that the recovery of 101 pesticides ranged between 71.5 and 111.7%, and the relative standard deviation was less than 10.5%. The optimum clean-up system improved the purification efficiency and simultaneously obtained satisfactory recoveries of multiple pesticides, including planar-ring pesticides. In short, the modified QuEChERS method in addition to MNPs used for removing impurities improved the speed of sample pre-treatment and exhibited an enhanced performance and purifying effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Magnetically insulated fission electric cells for direct energy conversion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Seidel, D.B.; Lipinski, R.J.; Rochau, G.E.; Brown, L.C.

    2003-01-01

    The principles of fission electric cells are reviewed. A detailed Monte Carlo model of the efficiency of a fission electric cell is presented and a theory of magnetically insulated fission electric cells (MIFECs) is developed. It is shown that the low operating voltages observed in previous MIFEC experiments were due to nonoptimal magnetic field profiles. Improved magnetic field profiles are presented. It is further shown that the large electric field present in a MIFEC limits the structure of the cathode and can lead to a displacement instability of the cathode toward the anode. This instability places constraints on the number of cells that can be strung together without some external cathode support. The large electric field stress also leads to electrical surface breakdown of the cathode. It is shown that this leads to the formation of a virtual cathode resulting in geometry constraints for spherical cells. Finally it is shown that the requirements of magnetic insulation and high efficiency leads to very low average density of the fissile material. Thus a reactor using fission electric cells for efficient direct energy conversion will be large and require a very large number of cells. This could be mitigated somewhat by the use of exotic fuels

  14. EASI graphics - Version II

    International Nuclear Information System (INIS)

    Allensworth, J.A.

    1984-04-01

    EASI (Estimate of Adversary Sequence Interruption) is an analytical technique for measuring the effectiveness of physical protection systems. EASI Graphics is a computer graphics extension of EASI which provides a capability for performing sensitivity and trade-off analyses of the parameters of a physical protection system. This document reports on the implementation of the Version II of EASI Graphics and illustrates its application with some examples. 5 references, 15 figures, 6 tables

  15. Optimal design method for magnetization directions of a permanent magnet array

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Seok [Center for Information Storage Device, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Yoo, Jeonghoon, E-mail: yoojh@yonsei.ac.k [School of Mechanical Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2010-08-15

    In many magnetic systems, the permanent magnet (PM) pattern has a great influence on their performance. This study proposes a systematic optimization method for designing discrete magnetization directions. While previous works have been mostly dependent on researchers' intuition, the developed method is systematic and can be applied to a two-dimensional PM-type eddy current brake model. The effectiveness of the method is confirmed, where the design's aim is to maximize the braking force on a moving conductor. The sensitivity analysis is accomplished by the adjoint variable method and the sequential linear programming is used as an optimizer. Several optimization results for various conditions through the proposed design method are compared to each other and the optimal magnet configuration for an eddy current brake is suggested.

  16. Towards a direct measurement of vacuum magnetic birefringence: PVLAS achievements

    Science.gov (United States)

    Della Valle, F.; Di Domenico, G.; Gastaldi, U.; Milotti, E.; Pengo, R.; Ruoso, G.; Zavattini, G.

    2010-11-01

    Nonlinear effects in vacuum have been predicted but never observed yet directly. The PVLAS collaboration has long been working on an apparatus aimed at detecting such effects by measuring vacuum magnetic birefringence. Unfortunately the sensitivity has been affected by unaccounted noise and systematics since the beginning. A new small prototype ellipsometer has been designed and characterized at the Department of Physics of the University of Ferrara, Italy entirely mounted on a single seismically isolated optical bench. With a finesse F = 414,000 and a cavity length L = 0.5 m we have reached the sensitivity of ψ=2ṡ101/√{Hz} given the laser power at the output of the ellipsometer of P = 24 mW. This record result, very close to the predicted limit, demonstrates the feasibility of reaching such sensitivities, and opens the way to designing a dedicated apparatus for a first detection of vacuum magnetic birefringence.

  17. Direct torsional actuation of microcantilevers using magnetic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Gosvami, Nitya Nand; Nalam, Prathima C.; Tam, Qizhan; Carpick, Robert W., E-mail: carpick@seas.upenn.edu [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Exarhos, Annemarie L.; Kikkawa, James M. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2014-09-01

    Torsional mode dynamic force microscopy can be used for a wide range of studies including mapping lateral contact stiffness, torsional frequency or amplitude modulation imaging, and dynamic friction measurements of various materials. Piezo-actuation of the cantilever is commonly used, but it introduces spurious resonances, limiting the frequency range that can be sampled, and rendering the technique particularly difficult to apply in liquid medium where the cantilever oscillations are significantly damped. Here, we demonstrate a method that enables direct torsional actuation of cantilevers with high uniformity over wide frequency ranges by attaching a micrometer-scale magnetic bead on the back side of the cantilever. We show that when beads are magnetized along the width of the cantilever, efficient torsional actuation of the cantilevers can be achieved using a magnetic field produced from a solenoid placed underneath the sample. We demonstrate the capability of this technique by imaging atomic steps on graphite surfaces in tapping mode near the first torsional resonance of the cantilever in dodecane. The technique is also applied to map the variations in the lateral contact stiffness on the surface of graphite and polydiacetylene monolayers.

  18. Serpentine Coil Topology for BNL Direct Wind Superconducting Magnets

    CERN Document Server

    Parker, Brett

    2005-01-01

    BNL direct wind technology, with the conductor pattern laid out without need for extra tooling (no collars, coil presses etc.) began with RHIC corrector production. RHIC patterns were wound flat and then wrapped on cylindrical support tubes. Later for the HERA-II IR magnets we improved conductor placement precision by winding directly on a support tube. To meet HERA-II space and field quality goals took sophisticated coil patterns, (some wound on tapered tubes). We denote such patterns, topologically equivalent to RHIC flat windings, "planar patterns." Multi-layer planar patterns run into trouble because it is hard to wind across existing turns and magnet leads get trapped at poles. So we invented a new "Serpentine" winding style, which goes around 360 degrees while the conductor winds back and forth on the tube. To avoid making solenoidal fields, we wind Serpentine layers in opposite handed pairs. With a Serpentine pattern each turn can have the same projection on the coil axis and integral field harmonics t...

  19. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J.G.; Goodman, K.W. [Lawrence Berkeley National Lab., CA (United States); Schumann, F.O. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1997-04-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.

  20. Determination of microturbulence enhanced electron collisionality in magnetized coaxial accelerator channels by direct magnetic field measurement

    International Nuclear Information System (INIS)

    Black, D.C.; Mayo, R.M.; Caress, R.W.

    1997-01-01

    A miniature magnetic probe array, consisting of 10 spatially separated coils, has been used to obtain profile information on the time varying magnetic field within the 2.54 cm wide flow channel of the coaxial plasma source experiment (CPS-1) [R. M. Mayo et al., Plasma Sources Sci. Technol. 4, 47 (1995)]. The magnetic field data have been used, together with a resistive, Hall magnetohydrodynamic (MHD) model of applied field distortion by the flowing plasma, to obtain estimates of the microturbulent enhancement to electron collisionality within the CPS-1 flow channel. These measurements provide direct experimental evidence of anomalous electron collisionality, a previously predicted effect in these devices. The anomaly parameter, a=ν an /ν cl , determined both from the distortion of contours of constant magnetic flux, and from local B θ and B z measurements scales with the classical electron magnetization parameter (Ω cl =ω ce /ν e cl ), indicating that collisionality plays a strong role in determining the level of anomalous transport in the plasma. When this anomaly parameter scaling is cast in terms of the ratio ν e cl /ω lh , it is found that the resistivity enhancement scales with ν e cl /ω lh , and becomes significant at ν e cl /ω lh ≤1, suggesting that a lower hybrid drift instability may be the responsible mechanism for enhanced transport. copyright 1997 American Institute of Physics

  1. Magnetic particle imaging: current developments and future directions

    Directory of Open Access Journals (Sweden)

    Panagiotopoulos N

    2015-04-01

    of different theories and technical approaches on the way to the actual implementation of the basic concept of MPI have been seen in the last few years. Research groups around the world are working on different scanner geometries, from closed bore systems to single-sided scanners, and use reconstruction methods that are either based on actual calibration measurements or on theoretical models. This review aims at giving an overview of current developments and future directions in MPI about a decade after its first appearance. Keywords: magnetic particle imaging, superparamagnetic iron oxide nanoparticles, magnetic particle spectrometer, peripheral nerve stimulation, cardiovascular interventions

  2. Easy-to-use interface

    International Nuclear Information System (INIS)

    Blattner, D O; Blattner, M M; Tong, Y.

    1999-01-01

    Easy-to-use interfaces are a class of interfaces that fall between public access interfaces and graphical user interfaces in usability and cognitive difficulty. We describe characteristics of easy-to-use interfaces by the properties of four dimensions: selection, navigation, direct manipulation, and contextual metaphors. Another constraint we introduced was to include as little text as possible, and what text we have will be in at least four languages. Formative evaluations were conducted to identify and isolate these characteristics. Our application is a visual interface for a home automation system intended for a diverse set of users. The design will be expanded to accommodate the visually disabled in the near future

  3. Direct magnetic field estimation based on echo planar raw data.

    Science.gov (United States)

    Testud, Frederik; Splitthoff, Daniel Nicolas; Speck, Oliver; Hennig, Jürgen; Zaitsev, Maxim

    2010-07-01

    Gradient recalled echo echo planar imaging is widely used in functional magnetic resonance imaging. The fast data acquisition is, however, very sensitive to field inhomogeneities which manifest themselves as artifacts in the images. Typically used correction methods have the common deficit that the data for the correction are acquired only once at the beginning of the experiment, assuming the field inhomogeneity distribution B(0) does not change over the course of the experiment. In this paper, methods to extract the magnetic field distribution from the acquired k-space data or from the reconstructed phase image of a gradient echo planar sequence are compared and extended. A common derivation for the presented approaches provides a solid theoretical basis, enables a fair comparison and demonstrates the equivalence of the k-space and the image phase based approaches. The image phase analysis is extended here to calculate the local gradient in the readout direction and improvements are introduced to the echo shift analysis, referred to here as "k-space filtering analysis." The described methods are compared to experimentally acquired B(0) maps in phantoms and in vivo. The k-space filtering analysis presented in this work demonstrated to be the most sensitive method to detect field inhomogeneities.

  4. Ultrasoft and High Magnetic Moment CoFe Films Directly Electrodeposited from a B-Reducer Contained Solution

    Directory of Open Access Journals (Sweden)

    Baoyu Zong

    2008-01-01

    Full Text Available A methodology to fabricate ultrasoft CoFe nano-/microfilms directly via electrodeposition from a semineutral iron sulfate solution is demonstrated. Using boron-reducer as the additive, the CoFe films become very soft with high magnetic moment. Typically, the film coercivity in the easy and hard axes is 6.5 and 2.5 Oersted, respectively, with a saturation polarization up to an average of 2.45 Tesla. Despite the softness, these shining and smooth films still display a high-anisotropic field of ~45 Oersted with permeability up to 104. This kind of films can potentially be used in current and future magnetic recording systems as well as microelectronic and biotechnological devices.

  5. Utilization Of Second Harmonisa Fluxgate For Two Dimension Direct Magnetic Field

    International Nuclear Information System (INIS)

    Limansyah, Ivan; Djamal, Mitra

    2003-01-01

    Fluxgate magnetic field sensor is a cheap, accurate and simple solution to measure DC external weak magnetic field. With adding some modification, this sensor can be used to measure amplitude and direction of the external magnetic field. By adding another pick up coils that orthogonal with ordinary pick up coils, two dimensions fluxgate magnetic field sensor can be build

  6. Directly obtained τ-phase MnAl, a high performance magnetic material for permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Hailiang, E-mail: hailiang.fang@kemi.uu.se [Inorganic Chemistry, Department of Chemistry – Ångström Laboratory, Uppsala University (Sweden); Kontos, Sofia [Solid State Physics, Department of Engineering Sciences, Uppsala University (Sweden); Ångström, Jonas; Cedervall, Johan [Inorganic Chemistry, Department of Chemistry – Ångström Laboratory, Uppsala University (Sweden); Svedlindh, Peter; Gunnarsson, Klas [Solid State Physics, Department of Engineering Sciences, Uppsala University (Sweden); Sahlberg, Martin [Inorganic Chemistry, Department of Chemistry – Ångström Laboratory, Uppsala University (Sweden)

    2016-05-15

    The metastable tetragonal τ-phase has been directly obtained from casting Mn{sub 0.54}Al{sub 0.46} and (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} using the drop synthesis method. The as-casted samples were ball milled to decrease the particle size and relaxed at 500 °C for 1 h. The phase composition, crystallographic parameters, magnetic properties and microstructure were systematically studied. The results reveal that the τ-phase could be directly obtained from drop synthesis. The highest M{sub s} of 117 emu/g was achieved in the (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} where the τ-phase was stabilized by doping with carbon. Carbon doping increased the c/a ratio of the τ-phase as it occupies specific interstitial positions (½, ½, 0) in the structure. Furthermore, ball milling increases the coercivity (H{sub c}) at the expense of a decrease in magnetic saturation (M{sub s}). The increase in coercivity is explained by a decrease of grain size in conjunction with domain wall pinning due to defects introduced during the ball milling process. - Graphical abstract: The tetragonal τ-phase has been directly obtained from casting Mn{sub 0.54}Al{sub 0.46} and (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} using the drop synthesis method. The phase composition, crystallographic parameters, magnetic properties and microstructure were systematically studied. The highest M{sub s} of 117 emu/g was achieved for (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} ball milling increases the coercivity (H{sub c}) at the expense of a decrease in magnetic saturation (M{sub s}). - Highlights: • The ferromagnetic τ-phase has been directly obtained from casting. • The highest M{sub s} of 117 emu/g was achieved for (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2}. • Ball milling increases the coercivity but decreases the magnetic saturation.

  7. An easy mold

    International Nuclear Information System (INIS)

    Kim, Nam Hun; Choe, Jong Sun

    1988-04-01

    This book deals with an easy mold, which introduces what is a mold kinds and classification of mold. It gives descriptions of easy theories such as basic knowledge on shearing work, clearance, power for punching and shear angle, basic knowledge for bending such as transform by bending, the minimal bending radius, spring back, the length of material, flexural strength for bending, fundamental knowledge for drawing work with transform of drawing and limitation of drawing.

  8. Direct detection of light anapole and magnetic dipole DM

    International Nuclear Information System (INIS)

    Nobile, Eugenio Del; Gelmini, Graciela B.; Huh, Ji-Haeng; Gondolo, Paolo

    2014-01-01

    We present comparisons of direct detection data for ''light WIMPs'' with an anapole moment interaction (ADM) and a magnetic dipole moment interaction (MDM), both assuming the Standard Halo Model (SHM) for the dark halo of our galaxy and in a halo-independent manner. In the SHM analysis we find that a combination of the 90% CL LUX and CDMSlite limits or the new 90% CL SuperCDMS limit by itself exclude the parameter space regions allowed by DAMA, CoGeNT and CDMS-II-Si data for both ADM and MDM. In our halo-independent analysis the new LUX bound excludes the same potential signal regions as the previous XENON100 bound. Much of the remaining signal regions is now excluded by SuperCDMS, while the CDMSlite limit is much above them. The situation is of strong tension between the positive and negative search results both for ADM and MDM. We also clarify the confusion in the literature about the ADM scattering cross section

  9. Direct fission fragment energy converter - Magnetic collimator option

    International Nuclear Information System (INIS)

    Tsvetkov, P. V.; Hart, R. R.

    2006-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. In addition to the extensive computational effort, the scaled prototype experimental proof-of-principle program was conducted to validate basic physics of the concept. The program was focused on electromagnetic components and experimental demonstration of performance. This paper summarizes the final results of the 6-years research program including both computational and experimental efforts. Potential future research and development and anticipated applications are discussed. (authors)

  10. AIRGAP MAGNETIC INDUCTION DISTRIBUTION IN A COAXIALLY-LINEAR SYNCHRONOUS MOTOR WITH AXIAL AND RADIAL DIRECTION OF THE RUNNER PERMANENT MAGNETS MAGNETIZATION

    Directory of Open Access Journals (Sweden)

    Abbasian Mohsen

    2013-02-01

    Full Text Available Results of theoretical and experimental research on magnetic induction distribution in the air gap of a coaxially-linear synchronous motor with reciprocal motion within the pole pitch and axial and radial direction of the permanent magnets magnetization are presented.

  11. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    Science.gov (United States)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-01

    This study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Second, using a newly developed proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors ˜ 5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. This study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.

  12. Design considerations for permanent magnet direct drive generators for wind energy applications

    NARCIS (Netherlands)

    Jassal, A.K.; Polinder, H.; Damen, M.E.C.; Versteegh, K.

    2012-01-01

    Permanent Magnet Direct Drive (PMDD) generators offer very high force density, high efficiency and low number of components. Due to these advantages, PMDD generators are getting popular in the wind energy industry especially for offshore application. Presence of permanent magnets gives magnetic

  13. Localized magnetic fields in arbitrary directions using patterned nanomagnets

    DEFF Research Database (Denmark)

    McNeil, Robert P G; Schneble, Jeff; Kataoka, Masaya

    2010-01-01

    Control of the local magnetic fields desirable for spintronics and quantum information technology is not well developed. Existing methods produce either moderately small local fields or one held orientation. We present designs of patterned magnetic elements that produce remanent fields of 50 mT (...

  14. French made nice & easy

    CERN Document Server

    REA, The Editors of

    2012-01-01

    Whether travelling to a foreign country or to your favorite international restaurant, this Nice & Easy guide gives you just enough of the language to get around and be understood. Much of the material in this book was developed for government personnel who are often assigned to a foreign country on a moment's notice and need a quick introduction to the language.

  15. Synthesis of Superparamagnetic Core-Shell Structure Supported Pd Nanocatalysts for Catalytic Nitrite Reduction with Enhanced Activity, No Detection of Undesirable Product of Ammonium, and Easy Magnetic Separation Capability.

    Science.gov (United States)

    Sun, Wuzhu; Yang, Weiyi; Xu, Zhengchao; Li, Qi; Shang, Jian Ku

    2016-01-27

    Superparamagnetic nanocatalysts could minimize both the external and internal mass transport limitations and neutralize OH(-) produced in the reaction more effectively to enhance the catalytic nitrite reduction efficiency with the depressed product selectivity to undesirable ammonium, while possess an easy magnetic separation capability. However, commonly used qusi-monodispersed superparamagnetic Fe3O4 nanosphere is not suitable as catalyst support for nitrite reduction because it could reduce the catalytic reaction efficiency and the product selectivity to N2, and the iron leakage could bring secondary contamination to the treated water. In this study, protective shells of SiO2, polymethylacrylic acid, and carbon were introduced to synthesize Fe3O4@SiO2/Pd, Fe3O4@PMAA/Pd, and Fe3O4@C/Pd catalysts for catalytic nitrite reduction. It was found that SiO2 shell could provide the complete protection to Fe3O4 nanosphere core among these shells. Because of its good dispersion, dense structure, and complete protection to Fe3O4, the Fe3O4@SiO2/Pd catalyst demonstrated the highest catalytic nitrite reduction activity without the detection of NH4(+) produced. Due to this unique structure, the activity of Fe3O4@SiO2/Pd catalysts for nitrite reduction was found to be independent of the Pd nanoparticle size or shape, and their product selectivity was independent of the Pd nanoparticle size, shape, and content. Furthermore, their superparamagnetic nature and high saturation magnetization allowed their easy magnetic separation from treated water, and they also demonstrated a good stability during the subsequent recycling experiment.

  16. English made easy

    CERN Document Server

    Crichton, Jonathan

    2013-01-01

    This is a fun and user–friendly way to learn English English Made Easy is a breakthrough in English language learning—imaginatively exploiting how pictures and text can work together to create understanding and help learners learn more productively. It gives learners easy access to the vocabulary, grammar and functions of English as it is actually used in a comprehensive range of social situations. Self–guided students and classroom learners alike will be delighted by the way they are helped to progress easily from one unit to the next, using a combination of pictures and text to discover for themselves how English works. The pictorial method used in this book is based on a thorough understanding of language structure and how language is successfully learned.English Made Easy, Volume 1 consists of a total of 20 units arranged in groups of five. The first four units presents language and provide learners the opportunities to practice as they learn. The first page of each unit has a list of all the word...

  17. English made easy

    CERN Document Server

    Crichton, Jonathan

    2013-01-01

    This is a fun and user–friendly way to learn EnglishEnglish Made Easy is a breakthrough in English language learning—imaginatively exploiting how pictures and text can work together to create understanding and help learners learn more productively. It gives learners easy access to the vocabulary, grammar and functions of English as it is actually used in a comprehensive range of social situations. Self–guided students and classroom learners alike will be delighted by the way they are helped to progress easily from one unit to the next, using a combination of pictures and text to discover for themselves how English works. The pictorial method used in this book is based on a thorough understanding of language structure and how language is successfully learned.English Made Easy, Volume 2 consists of a total of 20 units arranged in groups of five. The first four units presents language and provide learners the opportunities to practice as they learn. The first page of each unit has a list of all the words...

  18. Plasma flow measurement using directional Langmuir probe under weakly ion-magnetized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Kenichi; Okamoto, Atsushi [Graduate School of Science, Nagoya Univ., Nagoya (Japan); Yoshimura, Shinji; Tanaka, Masayoshi Y. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-07-01

    It is both experimentally and theoretically demonstrated that ion flow velocity at an arbitrary angle with respect to the magnetic field can be measured with a directional Langmuir probe. Based on the symmetry argument, we show that the effect of magnetic field on directional probe current is exactly canceled in determining the ion flow velocity, and obtain the generalized relation between flow velocity and directional probe currents valid for any flowing direction. The absolute value of the flow velocity is determined by an in situ calibration method of the probe. The applicability limit of the present method to a strongly ion-magnetized plasma is experimentally examined. (author)

  19. Direct observation of magnetization reversal of hot-deformed Nd-Fe-B magnet

    Science.gov (United States)

    Zhu, Xiaoyun; Tang, Xu; Pei, Ke; Tian, Yue; Liu, Jinjun; Xia, Weixing; Zhang, Jian; Liu, J. Ping; Chen, Renjie; Yan, Aru

    2018-01-01

    The dynamic magnetic domain structure in magnetization and demagnetization process of hot-deformed and NdCu-diffused Nd2Fe14B magnets were in-situ observed by Lorentz transmission electron microscopy (LTEM). The demagnetization process of hot-deformed sample is dominated by domain-wall pinning, while that of NdCu-diffused sample is mainly the magnetization reversal of single grains or grain aggregations. This firstly observed result gives an explicit evidence to understand the coercivity mechanism of magnetically segregated magnet. The effect of magnetic field of TEM on decrease in domain wall energy was theoretically analyzed, which helps to understand the in-situ observation process of magnetic materials.

  20. Direct observation of magnetization reversal of hot-deformed Nd-Fe-B magnet

    Directory of Open Access Journals (Sweden)

    Xiaoyun Zhu

    2018-01-01

    Full Text Available The dynamic magnetic domain structure in magnetization and demagnetization process of hot-deformed and NdCu-diffused Nd2Fe14B magnets were in-situ observed by Lorentz transmission electron microscopy (LTEM. The demagnetization process of hot-deformed sample is dominated by domain-wall pinning, while that of NdCu-diffused sample is mainly the magnetization reversal of single grains or grain aggregations. This firstly observed result gives an explicit evidence to understand the coercivity mechanism of magnetically segregated magnet. The effect of magnetic field of TEM on decrease in domain wall energy was theoretically analyzed, which helps to understand the in-situ observation process of magnetic materials.

  1. Relativity made relatively easy

    CERN Document Server

    Steane, Andrew M

    2012-01-01

    Relativity Made Relatively Easy presents an extensive study of Special Relativity and a gentle (but exact) introduction to General Relativity for undergraduate students of physics. Assuming almost no prior knowledge, it allows the student to handle all the Relativity needed for a university course, with explanations as simple, thorough, and engaging as possible.The aim is to make manageable what would otherwise be regarded as hard; to make derivations as simple as possible and physical ideas as transparent as possible. Lorentz invariants and four-vectors are introduced early on, but tensor not

  2. Easy instrumental analysis

    International Nuclear Information System (INIS)

    Ko, Myeong Su; Kim, Tae Hwa; Park, Gyu Hyeon; Yang, Jong Beom; Oh, Chang Hwan; Lee, Kyoung Hye

    2010-04-01

    This textbook describes instrument analysis in easy way with twelve chapters. The contents of the book are pH measurement on principle, pH meter, pH measurement, examples of the experiments, centrifugation, Absorptiometry, Fluorescent method, Atomic absorption analysis, Gas-chromatography, Gas chromatography-mass spectrometry, High performance liquid chromatography liquid chromatograph-mass spectrometry, Electrophoresis on practical case and analysis of the result and examples, PCR on principle, device, application and examples and Enzyme-linked immunosorbent assay with indirect ELISA, sandwich ELISA and ELISA reader.

  3. Nothing Great Is Easy

    OpenAIRE

    Stansbie, Lisa

    2014-01-01

    A solo exhibition of 13 pieces of art work.\\ud \\ud Nothing Great is Easy is an exhibition of sculpture, film, drawing and photography that proposes reconstructed narratives using the sport of swimming and in particular the collective interaction and identity of the channel swimmer. The work utilises the processes, rituals/rules, language and the apparatus of sport.\\ud \\ud “Nothing great is easy” are the words on the memorial to Captain Matthew Webb who was the first man to swim the English ch...

  4. Easy instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Myeong Su; Kim, Tae Hwa; Park, Gyu Hyeon; Yang, Jong Beom; Oh, Chang Hwan; Lee, Kyoung Hye

    2010-04-15

    This textbook describes instrument analysis in easy way with twelve chapters. The contents of the book are pH measurement on principle, pH meter, pH measurement, examples of the experiments, centrifugation, Absorptiometry, Fluorescent method, Atomic absorption analysis, Gas-chromatography, Gas chromatography-mass spectrometry, High performance liquid chromatography liquid chromatograph-mass spectrometry, Electrophoresis on practical case and analysis of the result and examples, PCR on principle, device, application and examples and Enzyme-linked immunosorbent assay with indirect ELISA, sandwich ELISA and ELISA reader.

  5. Helical waves in easy-plane antiferromagnets

    Science.gov (United States)

    Semenov, Yuriy G.; Li, Xi-Lai; Xu, Xinyi; Kim, Ki Wook

    2017-12-01

    Effective spin torques can generate the Néel vector oscillations in antiferromagnets (AFMs). Here, it is theoretically shown that these torques applied at one end of a normal AFM strip can excite a helical type of spin wave in the strip whose properties are drastically different from characteristic spin waves. An analysis based on both a Néel vector dynamical equation and the micromagnetic simulation identifies the direction of magnetic anisotropy and the damping factor as the two key parameters determining the dynamics. Helical wave propagation requires the hard axis of the easy-plane AFM to be aligned with the traveling direction, while the damping limits its spatial extent. If the damping is neglected, the calculation leads to a uniform periodic domain wall structure. On the other hand, finite damping decelerates the helical wave rotation around the hard axis, ultimately causing stoppage of its propagation along the strip. With the group velocity staying close to spin-wave velocity at the wave front, the wavelength becomes correspondingly longer away from the excitation point. In a sufficiently short strip, a steady-state oscillation can be established whose frequency is controlled by the waveguide length as well as the excitation energy or torque.

  6. Transcranial Magnetic Stimulation in Child Neurology: Current and Future Directions

    Science.gov (United States)

    Frye, Richard E.; Rotenberg, Alexander; Ousley, Molliann; Pascual-Leone, Alvaro

    2008-01-01

    Transcranial magnetic stimulation (TMS) is a method for focal brain stimulation based on the principle of electromagnetic induction, where small intracranial electric currents are generated by a powerful, rapidly changing extracranial magnetic field. Over the past 2 decades TMS has shown promise in the diagnosis, monitoring, and treatment of neurological and psychiatric disease in adults, but has been used on a more limited basis in children. We reviewed the literature to identify potential diagnostic and therapeutic applications of TMS in child neurology and also its safety in pediatrics. Although TMS has not been associated with any serious side effects in children and appears to be well tolerated, general safety guidelines should be established. The potential for applications of TMS in child neurology and psychiatry is significant. Given its excellent safety profile and possible therapeutic effect, this technique should develop as an important tool in pediatric neurology over the next decade. PMID:18056688

  7. Direct magnetic resonance arthrography of the canine elbow

    Directory of Open Access Journals (Sweden)

    Yauheni Zhalniarovich

    2017-01-01

    Full Text Available This study compares the effects of four dilutions of the gadolinium-containing contrast media (1:100; 1:400; 1:800; 1:1,200 administered to the elbow on the quality of magnetic resonance images. All the examined dilutions had a positive effect on image quality, and 1:800 was regarded as the optimal dilution of gadolinium for viewing the elbow because it imparted good contrast to the joint cavity without obliterating the contours of articular surfaces. Transverse, sagittal, and dorsal low-field magnetic resonance images were obtained in 24 canine cadaver front limbs. The musculus biceps brachii, m. triceps brachii, m. extensor carpi radialis, m. flexor carpi ulnaris, the articular surfaces, the medial coronoid process and the anconeal process of the ulna were well visualized by High Resolution Gradient Echo, XBONE T2 and Spin Echo T1 sequences in the sagittal plane. The biceps brachii, pronator teres, flexor carpi radialis, extensor digitorum communis, extensor carpi radialis, deltoid muscle and the articular surface of the medial condyle of the humerus were very well visualized by 3D SST1 and XBONE T2 sequences in the transverse plane. The triceps brachii muscle, extensor digitorum lateralis muscle, superficial digital flexor, deep digital flexor and the medial condyle of the humerus were very well visualized by the Spin Echo T1 sequence in the dorsal plane. This article describes for the first time the use of the gadolinium contrast agent administered to the canine elbow joint during magnetic resonance modality. Magnetic resonance arthrography can be a helpful visualization technique in treating canine soft tissue elbow injury.

  8. Dependence of the amount of open magnetic flux on the direction of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Akasofu, S.I.; Ahn, B.H.

    1980-01-01

    The power generated by the solar wind-magnetosphere dynamo is proportional to the amount of the open magnetic flux phi. It is difficult to use this fact in determining observationally the dependence of phi on the orientation of the interplanetary magnetic field vector. It is shown that, for a simple vacuum superposition of the earth's dipole field and a uniform magnetic field, PHI is very closely proportional to sin(theta/2) for a wide range of the intensity of the uniform field, where theta denotes the polar angle of the interplanetary magnetic field vector in the Y-Z plane of solar-magnetospheric coordinates. (author)

  9. Direct Imaging of a Toroidal Magnetic Field in the Inner Jet of NRAO 150

    Directory of Open Access Journals (Sweden)

    Sol N. Molina

    2016-11-01

    Full Text Available Most formation models and numerical simulations cause a helical magnetic field to form, accelerate and collimate jets in active galactic nuclei (AGN. For this reason, observational direct evidence for the existence of these helical magnetic fields is of special relevance. In this work, we present ultra- high-resolution observations of the innermost regions of the jet in the quasar NRAO150. We study the polarization structure and report evidence of a helical magnetic field.

  10. A Direct Search for Stable Magnetic Monopoles Produced in Positron-Proton Collisions at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Aplin, S.; Asmone, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, W.; Essenov, S.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Herrera, G.; Herynek, I.; Heuer, R.-D.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, H.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Koutouev, R.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kuckens, J.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leiner, B.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxeld, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Poschl, R.; Portheault, B.; Povh, B.; Prideaux, P.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.-C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Van Remortel, N.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Vujicic, B.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Wigmore, C.; Winter, G.-G.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zimmermann, J.; Zohrabyan, H.; Zomer, F.

    2005-01-01

    A direct search has been made for magnetic monopoles produced in e^+ p collisions at a centre of mass energy of 300 GeV at HERA. The beam pipe surrounding the interaction region in 1995-1997 was investigated using a SQUID magnetometer to look for stopped magnetic monopoles. During this time an integrated luminosity of 62 pb^{-1} was delivered. No magnetic monopoles were observed and charge and mass dependent upper limits on the e^+ p production cross section are set.

  11. Composite bonded magnets with controlled anisotropy directions prepared by viscous deformation technique

    International Nuclear Information System (INIS)

    Yamashita, Fumitoshi; Kawamura, Kiyomi; Okada, Yukihiro; Murakami, Hiroshi; Ogushi, Masaki; Nakano, Masaki; Fukunaga, Hirotoshi

    2007-01-01

    When a radially anisotropic rare earth bonded magnet for a rotor with a high (BH) max value is magnetized multi-polarly, its flux distributes rectangularly and increases a cogging torque. In order to overcome this difficulty, we newly developed highly dense Sm 2 Fe 17 N 3 and Nd 2 Fe 14 B-based composite bonded magnets with continuously controlled anisotropy directions by using a viscous deformation technique

  12. The application of bonded magnet MQP-0 on an electrical direct current motor

    International Nuclear Information System (INIS)

    Ridwan; Mujamilah; Gunawan

    2002-01-01

    Isotropic bonded magnet materials using NdFeB produced by rapid quench method, has advantages that can be easily adapted to the costumer demand. The synthesized bonded magnets are mixed of cpoxy resin or polyester as matrix binder with powder magnet of MQP-O The proportions of polymer and magnetic powder are 4060; 50:50; and 6040 volume % of magnet composites. The characterization of magnetic properties was determined by Vibrating Sample Magnetometer (VSM) at P3IB-BATAN and the density was measured by piknometer. The highest energy product maximum, (BH) m ax of magnet composite synthesized by P3IB-BATAN in this activity is 435 MGOeThe quality of magnet components has been tested empirically by changing the magnetic components of an electric direct current motor found in the local market by magnetic components synthesized by P 3IB-BA TAN. The max imum rotation resulted by using P3IB-BATAN is 40 0 00 rpm The magnetic components synthesized in these research activities are functionally work and comparatively the same with the magnetic components found in the local market as an import commodities

  13. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  14. Pretty Easy Pervasive Positioning

    DEFF Research Database (Denmark)

    Hansen, Rene; Wind, Rico; Jensen, Christian Søndergaard

    2009-01-01

    With the increasing availability of positioning based on GPS, Wi-Fi, and cellular technologies and the proliferation of mobile devices with GPS, Wi-Fi and cellular connectivity, ubiquitous positioning is becoming a reality. While offerings by companies such as Google, Skyhook, and Spotigo render...... positioning possible in outdoor settings, including urban environments with limited GPS coverage, they remain unable to offer accurate indoor positioning. We will demonstrate a software infrastructure that makes it easy for anybody to build support for accurate Wi-Fi based positioning in buildings. All...... that is needed is a building with Wi-Fi coverage, access to the building, a floor plan of the building, and a Wi-Fi enabled device. Specifically, we will explain the software infrastructure and the steps that must be completed to obtain support for positioning. And we will demonstrate the positioning obtained...

  15. Direct evidence of Ni magnetic moment in TbNi{sub 2}Mn—X-ray magnetic circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Yu, D.H., E-mail: dyu@ansto.gov.au [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, NSW 2234 (Australia); Huang, Meng-Jie [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Wang, J.L. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, NSW 2234 (Australia); School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra at the Australian Defense Force Academy, Sydney, ACT 2600 (Australia); Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia); Su, Hui-Chia; Lin, Hong-Ji; Chen, Chien-Te [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Campbell, S.J. [School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra at the Australian Defense Force Academy, Sydney, ACT 2600 (Australia)

    2014-12-15

    We have investigated the individual magnetic moments of Ni, Mn and Tb atoms in the intermetallic compound TbNi{sub 2}Mn in the Laves phase (magnetic phase transition temperature T{sub C} ∼131 K) by X-ray magnetic circular dichroism (XMCD) studies at 300 K, 80 K and 20 K. Analyses of the experimental results reveal that Ni atoms at 20 K in an applied magnetic field of 1 T carry an intrinsic magnetic moment of spin and orbital magnetic moment contributions 0.53±0.01 μ{sub B} and 0.05±0.01 μ{sub B}, respectively. These moment values are similar to those of the maximum saturated moment of Ni element. A very small magnetic moment of order <0.1 μ{sub B} has been measured for Mn. This suggests that Mn is antiferromagnetically ordered across the two nearly equally occupied sites of 16d and 8a. A magnetic moment of up to ∼0.3 μ{sub B} has been observed for the Tb atoms. Identification of a magnetic moment on the Ni atoms has provided further evidence for the mechanism of enhancement of the magnetic phase transition temperature in TbNi{sub 2}Mn compared with TbNi{sub 2} (T{sub C}∼37.5 K) and TbMn{sub 2} (T{sub C}∼54 K) due to rare earth–transition metal (R–T) and transition metal–transition metal (T–T) interactions. The behaviour of the X-ray magnetic circular dichroism spectra of TbNi{sub 2}Mn at 300 K, 80 K and 20 K – above and below the magnetic ordering temperature T{sub C} ∼131 K – is discussed. - Highlights: • We study the magnetic moment of TbNi{sub 2}Mn with XMCD. • We observe directly the Ni intrinsic magnetic moment in TbNi{sub 2}Mn. • We find that Mn ordered antiferromagnetically across the 16d and 8a sites. • We confirm the mechanism for increasing the magnetic phase transition temperature.

  16. Outcomes in spasticity after repetitive transcranial magnetic and transcranial direct current stimulations

    OpenAIRE

    Gunduz, Aysegul; Kumru, Hatice; Pascual-Leone, Alvaro

    2014-01-01

    Non-invasive brain stimulations mainly consist of repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Repetitive transcranial magnetic stimulation exhibits satisfactory outcomes in improving multiple sclerosis, stroke, spinal cord injury and cerebral palsy-induced spasticity. By contrast, transcranial direct current stimulation has only been studied in post-stroke spasticity. To better validate the efficacy of non-invasive brain stimulations in improving ...

  17. Magnetic shield effect simulation of superconducting film shield covering directly coupled HTS dc-SQUID magnetometer

    International Nuclear Information System (INIS)

    Terauchi, N.; Noguchi, S.; Igarashi, H.

    2011-01-01

    A superconducting film shield over a SQUID ring improves the robustness of the SQUID with respect to magnetic noise. Supercurrent in the SQUID magnetometer and the superconducting film shield were simulated. The superconducting film shield reduces the influence of the external magnetic field on the SQUID ring. An HTS SQUID is a high sensitive magnetic sensor. In recent years, the HTS SQUID is widely used in various applications. In some applications, high robustness with respect to magnetic noise is required to realize stable operation at outside of a magnetic shielding room. The target of this paper is a directly coupled HTS dc-SQUID magnetometer. To enhance the robustness of the SQUID magnetometer, use of a superconducting thin film shield has been proposed. The magnetic field directly penetrating the SQUID ring causes the change of the critical current of Josephson junction, and then the SQUID magnetometer transitions into inoperative state. In order to confirm the magnetic shield effect of the superconducting film shield, electromagnetic field simulation with 3D edge finite element method was performed. To simulate the high temperature superconductor, E-J characteristics and c-axis anisotropy are considered. To evaluate the effect of the superconducting film shield, an external magnetic field which is supposed to be a magnetic noise is applied. From the simulation results, the time transition of the magnetic flux penetrating the SQUID ring is investigated and the effect of the superconducting film shield is confirmed. The amplitude of the magnetic flux penetrating the SQUID ring can be reduced to about one-sixth since the superconducting film shield prevents the magnetic noise from directly penetrating the SQUID ring.

  18. Direct Assembly of Magnetic Janus Particles at a Droplet Interface

    NARCIS (Netherlands)

    Xie, Qingguang; Davies, Gary B.; Harting, Jens

    2017-01-01

    Self-assembly of nanoparticles at fluid-fluid interfaces is a promising route to fabricate functional materials from the bottom-up. However, directing and controlling particles into highly tunable and predictable structures, while essential, is a challenge. We present a liquid interface assisted

  19. Easy plane baby Skyrmions

    Science.gov (United States)

    Jäykkä, Juha; Speight, Martin

    2010-12-01

    The baby Skyrme model is studied with a novel choice of potential, V=(1)/(2)ϕ32. This “easy plane” potential vanishes at the equator of the target two-sphere. Hence, in contrast to previously studied cases, the boundary value of the field breaks the residual SO(2) internal symmetry of the model. Consequently, even the unit charge Skyrmion has only discrete symmetry and consists of a bound state of two half lumps. A model of long-range inter-Skyrmion forces is developed wherein a unit Skyrmion is pictured as a single scalar dipole inducing a massless scalar field tangential to the vacuum manifold. This model has the interesting feature that the two-Skyrmion interaction energy depends only on the average orientation of the dipoles relative to the line joining them. Its qualitative predictions are confirmed by numerical simulations. Global energy minimizers of charges B=1,…,14,18,32 are found numerically. Up to charge B=6, the minimizers have 2B half lumps positioned at the vertices of a regular 2B-gon. For charges B≥7, rectangular or distorted rectangular arrays of 2B half lumps are preferred, as close to square as possible.

  20. A new device for production measurements of field integral and field direction of SC dipole magnets

    International Nuclear Information System (INIS)

    Preissner, H.; Bouchard, R.; Luethke, P.; Makulski, A.; Meinke, R.; Nesteruk, K.

    1990-01-01

    The performance of all superconducting magnets for HERA is tested in the DESY magnet test facility and their magnetic field is measured. For dipole magnets the magnitude and the direction of the field is measured point by point along the axis with a mole-type probe which is transported through the beam pipe. The positioning of the probe is done via a toothed belt with an accuracy of 1 mm. The probe houses two Hall probes perpendicular to each other, a gravitational tilt sensor and an NMR probe. The field in the plateau is measured by NMR, the fringe field is measured by the Hall probes and the field direction relative to gravity is obtained from the ratio of the two Hall voltages and the tilt sensor. The field integral is determined with an accuracy of 10 -4 and the average field direction is measured with an accuracy of 0.2 mrad. 4 refs., 4 figs

  1. easyDiracGauginos

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Steven [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; CERN, Geneva (Switzerland); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-02-15

    A simple and natural model is presented that gives Dirac gauginos. The configuration is related to ''deconstructed gaugino mediation''. A high energy completion is provided based on existing ISS-like models of deconstructed gaugino mediation. This provides a complete picture of Dirac gauginos that includes the necessary extra adjoint fermions (generated as magnetic quarks of the ISS theory) and supersymmetry breaking (via the ISS mechanism). Moreover the screening of the scalar masses means that they can similar to or less than the gaugino masses, even though the supersymmetry breaking is driven by F-terms. (orig.)

  2. easyDiracGauginos

    International Nuclear Information System (INIS)

    Abel, Steven; Goodsell, Mark

    2011-02-01

    A simple and natural model is presented that gives Dirac gauginos. The configuration is related to ''deconstructed gaugino mediation''. A high energy completion is provided based on existing ISS-like models of deconstructed gaugino mediation. This provides a complete picture of Dirac gauginos that includes the necessary extra adjoint fermions (generated as magnetic quarks of the ISS theory) and supersymmetry breaking (via the ISS mechanism). Moreover the screening of the scalar masses means that they can similar to or less than the gaugino masses, even though the supersymmetry breaking is driven by F-terms. (orig.)

  3. Laser sub-Doppler cooling of atoms in an arbitrarily directed magnetic field

    International Nuclear Information System (INIS)

    Chang, Soo; Kwon, Taeg Yong; Lee, Ho Seong; Minogin, V.G.

    2002-01-01

    We analyze the influence of an arbitrarily directed uniform magnetic field on the laser sub-Doppler cooling of atoms. The analysis is done for a (3+5)-level atom excited by a σ + -σ - laser field configuration. Our analysis shows that the effects of the magnetic field depend strongly on the direction of the magnetic field. In an arbitrarily directed magnetic field the laser cooling configuration produces both the main resonance existing already at zero magnetic field and additional sub-Doppler resonances caused by two-photon and higher-order multiphoton processes. These sub-Doppler resonances are, however, well separated on the velocity scale if the Zeeman shift exceeds the widths of the resonances. This allows one to use the main sub-Doppler resonance for an effective laser cooling of atoms even in the presence of the magnetic field. The effective temperature of the atomic ensemble at the velocity of the main resonance is found to be almost the same as in the absence of the magnetic field. The defined structure of the multiphoton resonances may be of importance for the sub-Doppler laser cooling of atoms, atomic extraction from magneto-optical traps, and applications related to the control of atomic motion

  4. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    International Nuclear Information System (INIS)

    Park, Byeolteo; Myung, Hyun

    2014-01-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments. (paper)

  5. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    Science.gov (United States)

    Park, Byeolteo; Myung, Hyun

    2014-12-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments.

  6. Neutron methods for the direct determination of the magnetic induction in thick films

    Energy Technology Data Exchange (ETDEWEB)

    Kozhevnikov, S.V., E-mail: kozhevn@nf.jinr.ru [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Ott, F. [CEA, IRAMIS, Laboratoire Léon Brillouin, F-91191 Gif sur Yvette (France); CNRS, IRAMIS, Laboratoire Léon Brillouin, F-91191 Gif sur Yvette (France); Radu, F. [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein Strasse 15, D-12489 Berlin (Germany)

    2016-03-15

    We review different neutron methods which allow extracting directly the value of the magnetic induction in thick films: Larmor precession, Zeeman spatial beam-splitting and neutron spin resonance. Resulting parameters obtained by the neutron methods and standard magnetometry technique are presented and compared. The possibilities and specificities of the neutron methods are discussed. - Highlights: • We present neutron methods for investigations of the thick magnetic films. • It is the methods for the direct determination of the magnetic induction. • Magnetic induction in bulk, at single interface and in a single domain. • It is Larmor precession, Zeeman spatial beam-splitting and neutron spin resonance. • These methods are complementary to polarized neutron reflectometry.

  7. Easy Auto CAD

    International Nuclear Information System (INIS)

    Lee, Hyeon Jun

    1996-02-01

    This book explains Auto CAD easily, which introduces improved function in Auto CAD R 13, such as direct import and export of 3 DS pile, revised render order structure, and explanations of assist, view Draw, construct and modify. Next it gives descriptions of Auto CAD conception, application and system. The last part deals with line, arc, circle, ellipse, erase, undo, redo, redraw, line type, multi line, limits, zoom, move, copy, rotate, array, mirror, grid, snap, units, offset and poly line.

  8. The CHAOS-X Model and Uncertainty Values for Magnetic Directional Surveying

    DEFF Research Database (Denmark)

    Herland, E. V.; Finlay, Chris; Olsen, Nils

    2017-01-01

    surveying applications. The model is derived from more than one million satellite and ground-based observatory magnetic measurements and consists of modules representing internal sources (in the Earth's core and crust), mag-netospheric sources, and ionospheric sources. Compared with previous reference...... positional errors in magnetic directional surveying applications. The discrepancy between geomagnetic measurements and reference models are typically dominated by spatial variations caused by local geology. In applications requiring high accuracy, these variations can be taken into account by using...

  9. Investigating Non-Equilibrium Fluctuations of Nanocolloids in a Magnetic Field Using Direct Imaging Methods

    Science.gov (United States)

    Rice, Ashley; Oprisan, Ana; Oprisan, Sorinel; Rice-Oprisan College of Charleston Team

    Nanoparticles of iron oxide have a high surface area and can be controlled by an external magnetic field. Since they have a fast response to the applied magnetic field, these systems have been used for numerous in vivo applications, such as MRI contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, hyperthermia, drug delivery, and cell separation. We performed three direct imaging experiments in order to investigate the concentration-driven fluctuations using magnetic nanoparticles in the absence and in the presence of magnetic field. Our direct imaging experimental setup involved a glass cell filled with magnetic nanocolloidal suspension and water with the concentration gradient oriented against the gravitational field and a superluminescent diode (SLD) as the light source. Nonequilibrium concentration-driven fluctuations were recorded using a direct imaging technique. We used a dynamic structure factor algorithm for image processing in order to compute the structure factor and to find the power law exponents. We saw evidence of large concentration fluctuations and permanent magnetism. Further research will use the correlation time to approximate the diffusion coefficient for the free diffusion experiment. Funded by College of Charleston Department of Undergraduate Research and Creative Activities SURF grant.

  10. Learning the easy way.

    Science.gov (United States)

    1998-03-01

    This article describes the program activities of a 1-day seminar and training course that was organized by the Japan International Cooperation Agency (JICA). Participants included high-ranking government officials from education directorates from 12 countries and officers from the National Women's Education Center. The training course relied on two innovative IEC materials developed by JOICFP. The two IEC materials were portable, durable kits that provided visual guides to learning about reproductive health (RH). The Magnel Kit includes a metal white board with almost life-size illustrations of male and female reproductive organs and magnetized vinyl images that teach about the menstrual cycle, pregnancy stages, contraception, and sexually transmitted diseases. Maggie the Apron is a durable apron with transparent pockets for placing cards with images relating to menstruation, pregnancy, and contraception. The apron is light in weight, cost-effective, and easily folded for storage and portability. Participants were particularly interested in the use of the two IEC materials in adolescent sexual health education. The clear visual materials offer the option of teaching according to the level of understanding of the audience. The materials can be used in any country, since there are no printed texts or narration. The training introduced participants to a community-based approach to family planning and maternal-child health services, which were successful in Japan for raising the level of health. The approach is used by JOICFP in its program efforts in developing countries. The training introduced participants to the role of community women in promoting RH through the presentation of a case study from Bangladesh. Participants watched the JOICFP still-image video "Moni's Milestone," a story about a woman's life in Bangladesh, and a video on the family planning movement in Japan, "First Step in Family Planning in Japan."

  11. Real-time positioning technology in horizontal directional drilling based on magnetic gradient tensor measurement

    Science.gov (United States)

    Deng, Guoqing; Yao, Aiguo

    2017-04-01

    Horizontal directional drilling (HDD) technology has been widely used in Civil Engineering. The dynamic position of the drill bit during construction is one of significant facts determining the accuracy of the trajectory of HDD. A new method now has been proposed to detecting the position of drill bit by measuring the magnetic gradient tensor of the ground solenoid magnetic beacon. Compared with traditional HDD positioning technologies, this new model is much easier to apply with lower request for construction sites and higher positioning efficiency. A direct current (DC) solenoid as a magnetic dipole is placed on ground near the drill bit, and related sensors array which contains four Micro-electromechanical Systems (MEMS ) tri-axial magnetometers, one MEMS tri-axial accelerometer and one MEMS tri-axial gyroscope is set up for measuring the magnetic gradient tensor of the magnetic dipole. The related HDD positioning model has been established and simulation experiments have been carried out to verify the feasibility and reliability of the proposed method. The experiments show that this method has good positioning accuracy in horizontal and vertical direction, and totally avoid the impact of the environmental magnetic field. It can be found that the posture of the magnetic beacon will impact the remote positioning precision within valid positioning range, and the positioning accuracy is higher with longer baseline for limited space in drilling tools. The results prove that the relative error can be limited in 2% by adjusting position of the magnetic beacon, the layers of the enameled coil, the sensitive of magnetometers and the baseline distance. Conclusion can be made that this new method can be applied in HDD positioning with better effect and wider application range than traditional method.

  12. Vertical and lateral forces when a permanent magnet above a superconductor traverses in arbitrary directions

    Science.gov (United States)

    Yang, Yong

    2008-12-01

    In an actual levitation system composed of high temperature superconductors (HTSs) and permanent magnets (PMs), the levitating bodies may traverse in arbitrary directions. Many previous researchers assumed that the levitating bodies moved in a vertical direction or a lateral direction in order to simplify the problem. In this paper, the vertical and lateral forces acting on the PM are calculated by the modified frozen-image method when a PM above an HTS traverses in arbitrary directions. In order to study the effects of the movement directions on the vertical and lateral forces, comparisons of the forces that act on a PM traversing in a tilted direction with those that act on a PM traversing in a vertical direction or a lateral direction have been presented.

  13. Vertical and lateral forces when a permanent magnet above a superconductor traverses in arbitrary directions

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yong [Key Laboratory of Applied Superconductivity, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)], E-mail: yy@mail.iee.ac.cn

    2008-12-15

    In an actual levitation system composed of high temperature superconductors (HTSs) and permanent magnets (PMs), the levitating bodies may traverse in arbitrary directions. Many previous researchers assumed that the levitating bodies moved in a vertical direction or a lateral direction in order to simplify the problem. In this paper, the vertical and lateral forces acting on the PM are calculated by the modified frozen-image method when a PM above an HTS traverses in arbitrary directions. In order to study the effects of the movement directions on the vertical and lateral forces, comparisons of the forces that act on a PM traversing in a tilted direction with those that act on a PM traversing in a vertical direction or a lateral direction have been presented.

  14. Vertical and lateral forces when a permanent magnet above a superconductor traverses in arbitrary directions

    International Nuclear Information System (INIS)

    Yang Yong

    2008-01-01

    In an actual levitation system composed of high temperature superconductors (HTSs) and permanent magnets (PMs), the levitating bodies may traverse in arbitrary directions. Many previous researchers assumed that the levitating bodies moved in a vertical direction or a lateral direction in order to simplify the problem. In this paper, the vertical and lateral forces acting on the PM are calculated by the modified frozen-image method when a PM above an HTS traverses in arbitrary directions. In order to study the effects of the movement directions on the vertical and lateral forces, comparisons of the forces that act on a PM traversing in a tilted direction with those that act on a PM traversing in a vertical direction or a lateral direction have been presented.

  15. Development of Vmax III. Magnetic wall climbing robot with holonomic and omni-directional mobility

    International Nuclear Information System (INIS)

    Tsuru, Kiyoshi; Hirose, Shigeo

    2012-01-01

    Wall-climbing robots having holonomic and omni-directional mobility would enhance the manipulation performance of the mounted arm and enable it to execute various tasks on the surface of large structures. This study focuses on the wall-climbing robots having permanent magnet attractive units to stick to the surface of iron structure such as atomic reactors and discuss the development of a specific holonomic and omni-directional wall-climbing mechanisms. Basic driving mechanism of the wall-climbing robot is based on our former invention named Omni Disk which consists of multiple rollers attached to one side of a rotating disk and having a mechanism to direct the rollers to the same direction. We firstly discuss about the mechanical improvements of the Omni Disk to make it lightweight and low cost. We next discusses about four types of methods to attach permanent magnets to the wall-climbing robot and generates attractive force on the iron wall and select the best type based on the motion experiments about the constructed models. As the result of these considerations, we developed a holonomic and omni-directional wall-climbing robot named Vmax III which consists of three Omni Disks having permanent magnet at their center having the function to change the magnetic attractive force. By using the Vmax III, we studied about the relation among the magnetic attractive force of three Omni Disks, posture of the Vmax III and inclination angle of the iron wall and clarified the optimized distribution of the magnetic attractive force of the Omni Disks in different inclination of the iron wall. (author)

  16. Triangulation Made Easy

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, P

    2009-12-23

    We describe a simple and efficient algorithm for two-view triangulation of 3D points from approximate 2D matches based on minimizing the L2 reprojection error. Our iterative algorithm improves on the one by Kanatani et al. by ensuring that in each iteration the epipolar constraint is satisfied. In the case where the two cameras are pointed in the same direction, the method provably converges to an optimal solution in exactly two iterations. For more general camera poses, two iterations are sufficient to achieve convergence to machine precision, which we exploit to devise a fast, non-iterative method. The resulting algorithm amounts to little more than solving a quadratic equation, and involves a fixed, small number of simple matrixvector operations and no conditional branches. We demonstrate that the method computes solutions that agree to very high precision with those of Hartley and Sturm's original polynomial method, though achieves higher numerical stability and 1-4 orders of magnitude greater speed.

  17. Reduction of Cogging Torque in Dual Rotor Permanent Magnet Generator for Direct Coupled Wind Energy Systems

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions. PMID:25202746

  18. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    International Nuclear Information System (INIS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2016-01-01

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments

  19. Reduction of cogging torque in dual rotor permanent magnet generator for direct coupled wind energy systems.

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  20. Modulation of amplitude and latency of motor evoked potential by direction of transcranial magnetic stimulation

    Science.gov (United States)

    Sato, Aya; Torii, Tetsuya; Iwahashi, Masakuni; Itoh, Yuji; Iramina, Keiji

    2014-05-01

    The present study analyzed the effects of monophasic magnetic stimulation to the motor cortex. The effects of magnetic stimulation were evaluated by analyzing the motor evoked potentials (MEPs). The amplitude and latency of MEPs on the abductor pollicis brevis muscle were used to evaluate the effects of repetitive magnetic stimulation. A figure eight-shaped flat coil was used to stimulate the region over the primary motor cortex. The intensity of magnetic stimulation was 120% of the resting motor threshold, and the frequency of magnetic stimulation was 0.1 Hz. In addition, the direction of the current in the brain was posterior-anterior (PA) or anterior-posterior (AP). The latency of MEP was compared with PA and AP on initial magnetic stimulation. The results demonstrated that a stimulus in the AP direction increased the latency of the MEP by approximately 2.5 ms. MEP amplitude was also compared with PA and AP during 60 magnetic stimulations. The results showed that a stimulus in the PA direction gradually increased the amplitude of the MEP. However, a stimulus in the AP direction did not modulate the MEP amplitude. The average MEP amplitude induced from every 10 magnetic pulses was normalized by the average amplitude of the first 10 stimuli. These results demonstrated that the normalized MEP amplitude increased up to approximately 150%. In terms of pyramidal neuron indirect waves (I waves), magnetic stimulation inducing current flowing backward to the anterior preferentially elicited an I1 wave, and current flowing forward to the posterior elicited an I3 wave. It has been reported that the latency of the I3 wave is approximately 2.5 ms longer than the I1 wave elicitation, so the resulting difference in latency may be caused by this phenomenon. It has also been reported that there is no alteration of MEP amplitude at a frequency of 0.1 Hz. However, this study suggested that the modulation of MEP amplitude depends on stimulation strength and stimulation direction.

  1. Directional Solidification Microstructure of a Ni-Based Superalloy: Influence of a Weak Transverse Magnetic Field

    Directory of Open Access Journals (Sweden)

    Xu Li

    2015-06-01

    Full Text Available A Ni-based superalloy CMSX-6 was directionally solidified at various drawing speeds (5–20 μm·s−1 and diameters (4 mm, 12 mm under a 0.5 T weak transverse magnetic field. The results show that the application of a weak transverse magnetic field significantly modified the solidification microstructure. It was found that if the drawing speed was lower than 10 μm·s−1, the magnetic field caused extensive macro-segregation in the mushy zone, and a change in the mushy zone length. The magnetic field significantly decreases the size of γ’ and the content of γ-γ’ eutectic. The formation of macro-segregation under a weak magnetic field was attributed to the interdendritic solute transport driven by the thermoelectric magnetic convection (TEMC. The γ’ phase refinement could be attributed to a decrease in nucleation activation energy owing to the magnetic field during solid phase transformation. The change of element segregation is responsible for the content decrease of γ-γ’ eutectic.

  2. Performance evaluation of directly photovoltaic powered DC PM (direct current permanent magnet) motor – propeller thrust system

    International Nuclear Information System (INIS)

    Atlam, Ozcan; Kolhe, Mohan

    2013-01-01

    Photovoltaic (PV) powered directly coupled electro-mechanical system has wide applications (e.g. PV powered cooling fans in green houses, PV water pumping system, solar vehicles). The objective of this work is to analyse the operation of directly PV powered DC PM (direct current permanent magnet) motor – propeller system for selection of motor parameters. The performance of such system mainly depends on the incident solar radiation, operating cell temperature, DC motor and propeller load parameters. It is observed that the operating points of the PV DC PM motor – propeller system matches very closely with the maximum power points (MPPs) of the PV array, if the DC PM motor – propeller parameters have been properly selected. It is found that for a specific application of such type of system, matching of torque–speed operating points with respect to the maximum power points of PV array are very important. It is ascertained through results that the DC PM motor's armature resistance, magnetic field constant, starting current to overcome the starting torque and torque coefficient are the main parameters. In designing a PV powered DC PM motor for a specific application, selection of these parameters are important for maximum utilization of the PV array output. The results of this system are useful for designing of directly PV powered DC PM motor's for aerodynamic applications. - Highlights: • We analyse the performance of directly PV powered DC PM motor – propeller system. • We examine PV electro-mechanical system for selection of DC motor parameters. • Matching of torque–speed curve to maximum power points of PV array is important

  3. DIRECT OBSERVATION OF THE TURBULENT emf AND TRANSPORT OF MAGNETIC FIELD IN A LIQUID SODIUM EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Rahbarnia, Kian; Brown, Benjamin P.; Clark, Mike M.; Kaplan, Elliot J.; Nornberg, Mark D.; Rasmus, Alex M.; Taylor, Nicholas Zane; Forest, Cary B. [Department of Physics, University of Wisconsin-Madison, 1150 University Ave, Madison, WI 53706 (United States); Jenko, Frank; Limone, Angelo [Max-Planck-Institut fuer Plasmaphysik (IPP), EURATOM Association, D-85748 Garching (Germany); Pinton, Jean-Francois; Plihon, Nicolas; Verhille, Gautier, E-mail: kian.rahbarnia@ipp.mpg.de [Laboratoire de Physique de l' Ecole Normale Superieure de Lyon, CNRS and Universite de Lyon, F-69364 Lyon (France)

    2012-11-10

    For the first time, we have directly measured the transport of a vector magnetic field by isotropic turbulence in a high Reynolds number liquid metal flow. In analogy with direct measurements of the turbulent Reynolds stress (turbulent viscosity) that governs momentum transport, we have measured the turbulent electromotive force (emf) by simultaneously measuring three components of velocity and magnetic fields, and computed the correlations that lead to mean-field current generation. Furthermore, we show that this turbulent emf tends to oppose and cancel out the local current, acting to increase the effective resistivity of the medium, i.e., it acts as an enhanced magnetic diffusivity. This has important implications for turbulent transport in astrophysical objects, particularly in dynamos and accretion disks.

  4. DIRECT OBSERVATION OF THE TURBULENT emf AND TRANSPORT OF MAGNETIC FIELD IN A LIQUID SODIUM EXPERIMENT

    International Nuclear Information System (INIS)

    Rahbarnia, Kian; Brown, Benjamin P.; Clark, Mike M.; Kaplan, Elliot J.; Nornberg, Mark D.; Rasmus, Alex M.; Taylor, Nicholas Zane; Forest, Cary B.; Jenko, Frank; Limone, Angelo; Pinton, Jean-François; Plihon, Nicolas; Verhille, Gautier

    2012-01-01

    For the first time, we have directly measured the transport of a vector magnetic field by isotropic turbulence in a high Reynolds number liquid metal flow. In analogy with direct measurements of the turbulent Reynolds stress (turbulent viscosity) that governs momentum transport, we have measured the turbulent electromotive force (emf) by simultaneously measuring three components of velocity and magnetic fields, and computed the correlations that lead to mean-field current generation. Furthermore, we show that this turbulent emf tends to oppose and cancel out the local current, acting to increase the effective resistivity of the medium, i.e., it acts as an enhanced magnetic diffusivity. This has important implications for turbulent transport in astrophysical objects, particularly in dynamos and accretion disks.

  5. Direct torque control via feedback linearization for permanent magnet synchronous motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    The paper describes a direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drive that employs feedback linearization and uses sliding-mode and linear controllers. We introduce a new feedback linearization approach that yields a decoupled linear PMSM model with two state...

  6. Attainment of students’ conception in magnetic fields by using of direct observation and symbolic language ability

    Science.gov (United States)

    Desy Fatmaryanti, Siska; Suparmi; Sarwanto; Ashadi

    2017-11-01

    This study focuses on description attainment of students’ conception in the magnetic field. The conception was based by using of direct observation and symbolic language ability. The method used is descriptive quantitative research. The subject of study was about 86 students from 3 senior high school at Purworejo. The learning process was done by guided inquiry model. During the learning, students were required to actively investigate the concept of a magnetic field around a straight wire electrical current Data retrieval was performed using an instrument in the form of a multiple choice test reasoned and observation during the learning process. There was four indicator of direct observation ability and four indicators of symbolic language ability to grouping category of students conception. The results of average score showed that students conception about the magnitude more better than the direction of magnetic fields in view of symbolic language. From the observation, we found that students could draw the magnetic fields line not from a text book but their direct observation results. They used various way to get a good accuracy of observation results. Explicit recommendations are presented in the discussion section at the end of this paper.

  7. Marine magnetic anomalies over the Direction bank, off Bombay western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    SubbaRaju, L.V.; Subrahmanyam, V.

    Total magnetic intensity data were collected over the Direction Bank, off Bombay on the western continental shelf of India and the isomagnetic anomaly map prepared at a contour interval of 25nT show NNW-SSE trend resemble those of the Dharwarians...

  8. Current in the plasma moving in an arbitrary direction across a magnetic field

    International Nuclear Information System (INIS)

    Samokhin, M.V.

    1991-01-01

    Condition under which freezing-in equation is satisfied in case of arbitrarily changeable direction of rate of plasma flow across the magnetic field is considered. It is shown that in the ideally frozen-in plasma there should exist current independent on the flow rate

  9. A Comprehensive Review of Permanent Magnet Transverse Flux Machines for Direct Drive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Husain, Tausif [University of Akron; Hasan, Iftekhar [University of Akron; Sozer, Yilmaz [University of Akron; Husain, Iqbal [North Carolina State University

    2017-11-07

    The use of direct drive machines in renewable and industrial applications are increasing at a rapid rate. Transverse flux machines (TFM) are ideally suited for direct drive applications due to their high torque density. In this paper, a comprehensive review of the permanent magnet (PM) TFMs for direct drive applications is presented. The paper introduces TFMs and their operating principle and then reviews the different type of TFMs proposed in the literature. The TFMs are categorized according to the number of stator sides, types of stator cores and magnet arrangement in the rotor. The review covers different design topologies, materials used for manufacturing, structural and thermal analysis, modeling and design optimization and cogging torque minimization in TFMs. The paper also reviews various applications and comparisons for TFMs that have been presented in the literature.

  10. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    International Nuclear Information System (INIS)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-01-01

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency

  11. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish [Department of Electronics and Instrumentation Engineering, Institute of Technical Education and Research, Siksha ‘O’ Anushandhan University, Bhubaneswar 751030 (India)

    2015-09-28

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  12. High magnetic field science and its application in the United States current status and future directions

    CERN Document Server

    National Research Council of the National Academies

    2013-01-01

    The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the str...

  13. The Steens Mountain (Oregon) geomagnetic polarity transition: 1. Directional history, duration of episodes, and rock magnetism

    Science.gov (United States)

    Mankinen, Edward A.; Prevot, M.; Gromme, C. Sherman; Coe, Robert S.

    1985-01-01

    The thick sequence of Miocene lava flows exposed on Steens Mountain in southeastern Oregon is well known for containing a detailed record of a reversed‐to‐normal geomagnetic polarity transition. Paleomagnetic samples were obtained from the sequence for a combined study of the directional and intensity variations recorded; the paleointensity study is reported in a companion paper. This effort has resulted in the first detailed history of total geomagnetic field behavior during a reversal of polarity. A comparison of the directional variation history of the reversed and normal polarity intervals on either side of the transition with the Holocene record has allowed an estimate of the duration of these periods to be made. These time estimates were then used to calculate accumulation rates for the volcanic sequence and thereby provide a means for estimating time periods within the transition itself. The polarity transition was found to consist of two phases, each with quite different characteristics. At the onset of the first phase, a one‐third decrease in magnetic field intensity may have preceded the first intermediate field directions by about 600 years. Changes in field direction were confined near the local north‐south vertical plane when the actual reversal in direction occurred and normal polarity directions may have been attained within 550±150 years. The end of the first phase of the transition was marked by a brief (possibly 100–300 years) period with normal polarity and a pretransitional intensity which suggests a quasi‐normal dipole field structure existed during this interval. The second phase of the transition was characterized by a return to very low field intensities with the changes in direction describing a long counterclockwise loop in contrast to the earlier narrowly constrained changes. This second phase lasted 2900±300 years, and both normal directions and intensities were recovered at the same time. Both directional and intensity

  14. Improving the accuracy and reliability of MWD/magnetic-Wellbore-Directional surveying in the barents sea

    DEFF Research Database (Denmark)

    Edvardsen, I.; Nyrnes, E.; Johnsen, M. G.

    2014-01-01

    of nonmagnetic steel in the bottomhole assembly (BHA). To maintain azimuth uncertaintyat an acceptable level in northern areas, it is crucial that wellbore-directional-surveying requirements are given high priority and considered early during well planning. During the development phase of an oil and gas field...... magnetic-reference stations. The different land and sea configuration, distant offshore oil and gas fields, higher geomagnetic latitude, and different behavior of the magnetic field require the procedures to be reassessed before being applied to the Barents Sea. To reduce drilling delays, procedures must...... be implemented to enable efficient management of magnetic disturbances.In some areas of the Barents Sea, the management requires new equipment to be developed and tested before drilling, such as seabed magnetometer stations. One simple way to reduce drillstring interference is increasing the amount...

  15. Direct Observation of Domain-Wall Surface Tension by Deflating or Inflating a Magnetic Bubble

    Science.gov (United States)

    Zhang, Xueying; Vernier, Nicolas; Zhao, Weisheng; Yu, Haiming; Vila, Laurent; Zhang, Yue; Ravelosona, Dafiné

    2018-02-01

    The surface energy of a magnetic domain wall (DW) strongly affects its static and dynamic behaviors. However, this effect is seldom directly observed, and some of the related phenomena are not well understood. Moreover, a reliable method to quantify the DW surface energy is still absent. Here, we report a series of experiments in which the DW surface energy becomes a dominant parameter. We observe that a semicircular magnetic domain bubble can spontaneously collapse under the Laplace pressure induced by DW surface energy. We further demonstrate that the surface energy can lead to a geometrically induced pinning when the DW propagates in a Hall cross or from a nanowire into a nucleation pad. Based on these observations, we develop two methods to quantify the DW surface energy, which can be very helpful in the estimation of intrinsic parameters such as Dzyaloshinskii-Moriya interactions or exchange stiffness in magnetic ultrathin films.

  16. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.

    Science.gov (United States)

    Zhang, H-S; Komvopoulos, K

    2008-07-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.

  17. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization

    International Nuclear Information System (INIS)

    Zhang, H.-S.; Komvopoulos, K.

    2008-01-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp 3 ) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study

  18. Direct Driven Permanent Magnet Synchronous Generators with Diode Rectifiers for Use in Offshore Wind Turbines

    OpenAIRE

    Reigstad, Tor Inge

    2007-01-01

    This work is focused on direct-driven permanent magnets synchronous generators (PMSG) with diode rectifiers for use in offshore wind turbines. Reactive compensation of the generator, power losses and control of the generator are studied. Configurations for power transmission to onshore point of common connection are also considered. Costs, power losses, reliability and interface with the PMSG are discussed. The purpose of the laboratory tests and simulations are to learn how a PMSG with dio...

  19. Optimization of Magnetically Driven Directional Solidification of Silicon Using Artificial Neural Networks and Gaussian Process Models

    Czech Academy of Sciences Publication Activity Database

    Dropka, N.; Holeňa, Martin

    2017-01-01

    Roč. 471, 1 August (2017), s. 53-61 ISSN 0022-0248 R&D Projects: GA ČR GA17-01251S Institutional support: RVO:67985807 Keywords : computer simulation * fluid flows * magnetic fields * directional solidification * semiconducting silicon Subject RIV: IN - Informatics, Computer Science OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.751, year: 2016

  20. Image restoration from non-uniform magnetic field influence for direct Fourier NMR imaging

    International Nuclear Information System (INIS)

    Sekihara, K.; Kuroda, M.; Kohno, H.

    1984-01-01

    A new technique is proposed for NMR image restoration from the influence of main magnetic field non-uniformities. This technique is applicable to direct Fourier NMR imaging. The mathematical basis and details of this technique are fully described. Modification to include image restoration from non-linear field gradient influence is also presented. Computer simulation demonstrates the effectiveness of this technique for both Fourier zeugmatography and spin-warp imaging. (author)

  1. Inertial confinement fusion with direct electric generation by magnetic flux comparession

    International Nuclear Information System (INIS)

    Lasche, G.P.

    1983-01-01

    A high-power-density laser-fusion-reactor concept in investigated in which directed kinetic enery imparted to a large mass of liquid lithium--in which the fusion target is centrally located--is maximized. In turn, this kinetic energy is converted directly to electricity with, potentially, very high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the concept maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall can be many orders of magnitude less than is typical of D-T fusion reactor concepts

  2. Direct Magnetic Relief Recording Using As40S60: Mn-Se Nanocomposite Multilayer Structures.

    Science.gov (United States)

    Stronski, A; Achimova, E; Paiuk, O; Meshalkin, A; Prisacar, A; Triduh, G; Oleksenko, P; Lytvyn, P

    2017-12-01

    Processes of holographic recording of surface relief structures using As 2 S 3 :Mn-Se multilayer nanostructures as registering media were studied in this paper. Optical properties of As 2 S 3 :Mn, Se layers, and As 2 S 3 :Mn-Se multilayer nanostructures were investigated. Values of optical bandgaps were obtained from Tauc dependencies. Surface relief diffraction gratings were recorded. Direct one-stage formation of surface relief using multilayer nanostructures is considered. For the first time, possibility of direct formation of magnetic relief simultaneous with surface relief formation under optical recording using As 2 S 3 :Mn-Se multilayer nanostructures is shown.

  3. Correlation between magnetocapacitance effect and polarization flop direction in a slanted magnetic field in multiferroic helimagnets

    International Nuclear Information System (INIS)

    Abe, Nobuyuki; Sagayama, Hajime; Arima, Taka-hisa; Taniguchi, Kouji

    2011-01-01

    The relationship between the magnetocapacitance effect and rotation direction of electric polarization (P) in a canted magnetic field has been investigated for multiferroic RMnO 3 (R = Tb 1-x Dy x and Eu 0.6 Y 0.4 ). We observed a clear correlation between the enhancement of the magnetocapacitance effect and the rotation direction of P in a P-flop transition. These results indicate that the mobility and the stability of the 90 deg. domain wall in a P-flop transition are dominated by its thickness.

  4. Design Optimization and Site Matching of Direct-Drive Permanent Magnet Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, H.; Chen, Zhe

    2009-01-01

    This paper investigates the possible site matching of the direct-drive wind turbine concepts based on the electromagnetic design optimization of permanent magnet (PM) generator systems. Firstly, the analytical models of a three-phase radial-flux PM generator with a back-to-back power converter...... of the maximum wind energy capture, the rotor diameter and the rated wind speed of a direct-drive wind turbine with the optimum PM generator are determined. The annual energy output (AEO) is also presented using the Weibull density function. Finally, the maximum AEO per cost (AEOPC) of the optimized wind...... are presented. The optimum design models of direct-drive PM wind generation system are developed with an improved genetic algorithm, and a 500-kW direct-drive PM generator for the minimal generator active material cost is compared to demonstrate the effectiveness of the design optimization. Forty-five PM...

  5. Magnetic anisotropy induced by crystallographic orientation and morphological alignment in directionally-solidified eutectic Mn-Sb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Chang-Sheng [School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159 (China); Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Liu, Tie, E-mail: liutie@epm.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Dong, Meng; Wu, Chun; Shao, Jian-Guo; Wang, Qiang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China)

    2017-02-15

    The influences of the crystallographic orientation and morphological alignment upon the magnetic anisotropic behavior of polycrystalline materials were investigated. Microstructures obtained in eutectic Mn-Sb alloys via directional solidification simultaneously displayed crystallographic orientation and morphological alignment. Both the crystallographic orientation and the morphological alignment were able to induce magnetic anisotropy in the alloys, wherein the influence of the crystallographic orientation and the morphological alignment upon the magnetic anisotropic behavior of the alloys strongly depended upon their directions and exhibited either mutual promotion or competition. These findings may provide useful guidance for the fabrication design of functional magnetic materials. - Highlights: • We study effects of orientation in crystal and morphology on magnetic anisotropy. • Both orientation in crystal and morphology can induce magnetic anisotropy. • Their effects depend on direction and exhibit either mutual promotion or competition.

  6. MODELING OF OPERATION OF COAXIAL-LINEAR MOTORS WITH AXIAL AND RADIAL DIRECTIONS OF MAGNETIZATION OF PERMANENT MAGNETS IN DYNAMIC MODE

    Directory of Open Access Journals (Sweden)

    G.M. Golenkov

    2014-12-01

    Full Text Available Theoretical and experimental investigations of the amplitude, phase and inertia-power frequency characteristics of two types of coaxial-linear electric motors of back-and-forth motion with permanent magnets, which magnetization vector is directed axially and radially relative to the axis of the runner are carried out. The comparative analysis of characteristics of these motors is presented.

  7. Rapid learning of magnetic compass direction by C57BL/6 mice in a 4-armed 'plus' water maze.

    Directory of Open Access Journals (Sweden)

    John B Phillips

    Full Text Available Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180(° so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1 absence of alternative directional cues (2, rotation of magnetic field alignment, and (3 electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds.

  8. Rapid learning of magnetic compass direction by C57BL/6 mice in a 4-armed 'plus' water maze.

    Science.gov (United States)

    Phillips, John B; Youmans, Paul W; Muheim, Rachel; Sloan, Kelly A; Landler, Lukas; Painter, Michael S; Anderson, Christopher R

    2013-01-01

    Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180(°) so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds.

  9. Easy and flexible mixture distributions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Mabit, Stefan L.

    2013-01-01

    We propose a method to generate flexible mixture distributions that are useful for estimating models such as the mixed logit model using simulation. The method is easy to implement, yet it can approximate essentially any mixture distribution. We test it with good results in a simulation study...

  10. Visualizing Transcranial Direct Current Stimulation (tDCS) in vivo using Magnetic Resonance Imaging

    Science.gov (United States)

    Jog, Mayank Anant

    Transcranial Direct Current Stimulation (tDCS) is a low-cost, non-invasive neuromodulation technique that has been shown to treat clinical symptoms as well as improve cognition. However, no techniques exist at the time of research to visualize tDCS currents in vivo. This dissertation presents the theoretical framework and experimental implementations of a novel MRI technique that enables non-invasive visualization of the tDCS electric current using magnetic field mapping. The first chapter establishes the feasibility of measuring magnetic fields induced by tDCS currents. The following chapter discusses the state of the art implementation that can measure magnetic field changes in individual subjects undergoing concurrent tDCS/MRI. The final chapter discusses how the developed technique was integrated with BOLD fMRI-an established MRI technique for measuring brain function. By enabling a concurrent measurement of the tDCS current induced magnetic field as well as the brain's hemodynamic response to tDCS, our technique opens a new avenue to investigate tDCS mechanisms and improve targeting.

  11. Coordinated Low Voltage Ride through strategies for Permanent Magnet Direct Drive Synchronous Generators

    Directory of Open Access Journals (Sweden)

    Zhang Ge

    2016-01-01

    Full Text Available By analyzing the mechanism of the low voltage ride through on the permanent magnet direct drive synchronous wind power generating units, this paper proposes a coordinated control strategy for permanent magnet synchronous generator. In order to avoid over speed operation of the generation units, over voltage on DC capacitor and over current on convert, the improved pitch angle control and inverter control are used. When the grid voltage drops, the captured wind power is cut down by the variable pitch system, which limits the speed of the generator, the generator side converter keeps the DC capacitor voltage stabile; and the grid side converter provides reactive power to the grid to help the grid voltage recover. The control strategy does not require any additional hardware equipment, with existing control means, the unit will be able to realize low voltage ride through. Finally, based on Matlab/Simulink to build permanent magnet direct drive wind power generation system, the simulation results verify the correctness and effectiveness of the control strategy.

  12. Comparison of superconducting generators and permanent magnet generators for 10-MW direct-drive wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2016-01-01

    Large offshore direct-drive wind turbines of 10-MW power levels are being extensively proposed and studied because of a reduced cost of energy. Conventional permanent magnet generators currently dominating the direct-drive wind turbine market are still under consideration for such large wind...... turbines. In the meantime, superconducting generators (SCSGs) have been of particular interest to become a significant competitor because of their compactness and light weight. This paper compares the performance indicators of these two direct-drive generator types in the same 10-MW wind turbine under...... the same design and optimization method. Such comparisons will be interesting and insightful for commercialization of superconducting generators and for development of future wind energy industry, although SCSGs are still far from a high technology readiness level. The results show that the SCSGs may...

  13. A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2012-05-01

    Full Text Available This paper proposes a novel optimal current given (OCG maximum power point tracking (MPPT control strategy based on the theory of power feedback and hill climb searching (HCS for a permanent magnet direct drive wind energy conversion system (WECS. The presented strategy not only has the advantages of not needing the wind speed and wind turbine characteristics of the traditional HCS method, but it also improves the stability and accuracy of MPPT by estimating the exact loss torque. The OCG MPPT control strategy is first carried out by simulation, then an experimental platform based on the dSPACE1103 controller is built and a 5.5 kW permanent magnet synchronous generator (PMSG is tested. Furthermore, the proposed method is compared experimentally with the traditional optimum tip speed ratio (TSR MPPT control. The experiments verify the effectiveness of the proposed OCG MPPT strategy and demonstrate its better performance than the traditional TSR MPPT control.

  14. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    Science.gov (United States)

    Volegov, Petr L [Los Alamos, NM; Matlashov, Andrei N [Los Alamos, NM; Mosher, John C [Los Alamos, NM; Espy, Michelle A [Los Alamos, NM; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  15. Direct observation of stochastic domain-wall depinning in magnetic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Im, Mi-Young; Bocklage, Lars; Fischer, Peter; Meier, Guido

    2008-11-01

    The stochastic field-driven depinning of a domain wall pinned at a notch in a magnetic nanowire is directly observed using magnetic X-ray microscopy with high lateral resolution down to 15 nm. The depinning-field distribution in Ni{sub 80}Fe{sub 20} nanowires considerably depends on the wire width and the notch depth. The difference in the multiplicity of domain-wall types generated in the vicinity of a notch is responsible for the observed dependence of the stochastic nature of the domain wall depinning field on the wire width and the notch depth. Thus the random nature of the domain wall depinning process is controllable by an appropriate design of the nanowire.

  16. Geometric Control Over the Motion of Magnetic Domain Walls

    International Nuclear Information System (INIS)

    N.A. Sinitsyn; V.V. Dobrovitski; S. urazhdin; Avadh Saxena

    2008-01-01

    We propose a method that enables a precise control of magnetic patterns and relies only on the fundamental properties of the wire as well as on the choice of the path in the controlled parameter space but not on the rate of motion along this path. Possible experimental realizations of this mechanism are discussed. In particular, we show that the domain walls in magnetic nanowires can be translated by rotation of the magnetic easy axis or by applying pulses of magnetic field directed transverse to the magnetic easy axis

  17. Direct Torque Control System for Permanent Magnet Synchronous Machine with Fuzzy Speed Pi Regulator

    Science.gov (United States)

    Nabti, K.; Abed, K.; Benalla, H.

    2008-06-01

    The Permanent Magnet Synchronous Machine (PMSM) speed regulation with a conventional PI regulator reduces the speed control precision, increase the torque fluctuation, and consequentially low performances of the whole system. With utilisation of fuzzy logic method, this paper presents the self adaptation of conventional PI regulator parameters Kp and Ki (proportional and integral coefficients respectively), using to regulate the speed in Direct Torque Control strategy (DTC). The ripples of both torque and flux are reduced remarkable, small overshooting and good dynamic of the speed and torque. Simulation results verify the proposed method validity.

  18. Microscale magnetic compasses

    Science.gov (United States)

    Shiozawa, Hidetsugu; Zhang, Desai; Eisterer, Michael; Ayala, Paola; Pichler, Thomas; McCartney, Martha R.; Smith, David J.

    2017-09-01

    Microscale magnetic compasses have been synthesized with high yield. These ferromagnetic iron carbide nano-particles, which are encapsulated in a pair of parallel carbon needles, change their orientation in response to an external magnetic field. Electron holography reveals magnetic fields confined to the vicinity of the bicone-shaped particles, which are composed of only a few ferromagnetic domains. Aligned magnetically and encapsulated in an acrylate polymer matrix, these micro-compasses exhibit anisotropic bulk magnetic permeability with an easy axis normal to the needle direction that can be understood as a result of the anisotropic demagnetizing field of a non-spherical single-domain particle. This novel type of material with orthogonal magnetic and structural axes could be highly useful as magnetic components in electromagnetic wave absorbent materials and magnetorheological fluids.

  19. The activation system Easy 2007

    International Nuclear Information System (INIS)

    Forrest, R.A.; Kopecky, J.

    2007-01-01

    Full text of publication follows: Safety and waste management of materials for ITER, IFMIF and future power plants require detailed knowledge of the activation caused by irradiation with neutrons, or in the case of IFMIF, deuterons. The European Activation System (EASY) has been developed for such calculations and a new version (EASY-2007) was released earlier this year. This contains a large amount of nuclear data in the European Activation File (EAF-2007) covering neutron-, deuteron- and proton-induced cross sections (about 200,000 reactions have data extending up to 60 MeV), decay data (2,231 nuclides) and subsidiary data on e.g. biological hazards. These data are input to the FISPACT inventory code used to calculate the activation. Recent work has concentrated on the validation of EASY-2007 using integral and differential measurements; these studies are summarised showing examples of reactions agreeing with the experimental results and cases where the library data require further improvement. Integral data above 20 MeV are especially important in improving the library for IFMIF calculations. Using a previous version of EASY a study of the activation of all the elements enabled the identification of the reactions important in producing activation below 20 MeV. The list of 1,340 neutron-reactions producing the dominant radio-nuclides enables further studies to be focused on the important data. This study made extensive use of importance diagrams. This work has been extended to cover the energy region up to 60 MeV, and the new important radionuclides and reactions in this energy range are reported. Although the data above 20 MeV are important for IFMIF and are of interest because of their novelty, the traditional energy region below 20 MeV remains of great importance for most fusion applications. The testing of such large data libraries for reactions with no experimental data is necessary and results from the use of the recently developed method of Statistical

  20. New vector/scalar Overhauser DNP magnetometers POS-4 for magnetic observatories and directional oil drilling support

    Directory of Open Access Journals (Sweden)

    Sapunov V.A., Denisov A.Y., Saveliev D.V., Soloviev A.A., Khomutov S.Y., Borodin P.B., Narkhov E.D., Sergeev A.V., Shirokov A.N.

    2016-12-01

    Full Text Available This paper covers same results of the research directed at developing an absolute vector proton magnetometer POS-4 based on the switching bias magnetic fields methods. Due to the high absolute precision and stability magnetometer POS-4 found application not only for observatories and to directional drilling support of oi and gas well. Also we discuss the some basic errors of measurements and discuss the long-term experience in the testing of magnetic observatories ART and PARATUNKA.

  1. Direct Reconstruction of Two-Dimensional Currents in Thin Films from Magnetic-Field Measurements

    Science.gov (United States)

    Meltzer, Alexander Y.; Levin, Eitan; Zeldov, Eli

    2017-12-01

    An accurate determination of microscopic transport and magnetization currents is of central importance for the study of the electric properties of low-dimensional materials and interfaces, of superconducting thin films, and of electronic devices. Current distribution is usually derived from the measurement of the perpendicular component of the magnetic field above the surface of the sample, followed by numerical inversion of the Biot-Savart law. The inversion is commonly obtained by deriving the current stream function g , which is then differentiated in order to obtain the current distribution. However, this two-step procedure requires filtering at each step and, as a result, oversmooths the solution. To avoid this oversmoothing, we develop a direct procedure for inversion of the magnetic field that avoids use of the stream function. This approach provides enhanced accuracy of current reconstruction over a wide range of noise levels. We further introduce a reflection procedure that allows for the reconstruction of currents that cross the boundaries of the measurement window. The effectiveness of our approach is demonstrated by several numerical examples.

  2. A digital receiver module with direct data acquisition for magnetic resonance imaging systems.

    Science.gov (United States)

    Tang, Weinan; Sun, Hongyu; Wang, Weimin

    2012-10-01

    A digital receiver module for magnetic resonance imaging (MRI) with detailed hardware implementations is presented. The module is based on a direct sampling scheme using the latest mixed-signal circuit design techniques. A single field-programmable gate array chip is employed to perform software-based digital down conversion for radio frequency signals. The modular architecture of the receiver allows multiple acquisition channels to be implemented on a highly integrated printed circuit board. To maintain the phase coherence of the receiver and the exciter in the context of direct sampling, an effective phase synchronization method was proposed to achieve a phase deviation as small as 0.09°. The performance of the described receiver module was verified in the experiments for both low- and high-field (0.5 T and 1.5 T) MRI scanners and was compared to a modern commercial MRI receiver system.

  3. Modeling of the Direct Current Generator Including the Magnetic Saturation and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Alfonso J. Mercado-Samur

    2013-11-01

    Full Text Available In this paper the inclusion of temperature effect on the field resistance on the direct current generator model DC1A, which is valid to stability studies is proposed. First, the linear generator model is presented, after the effect of magnetic saturation and the change in the resistance value due to temperature produced by the field current are included. The comparison of experimental results and model simulations to validate the model is used. A direct current generator model which is a better representation of the generator is obtained. Visual comparison between simulations and experimental results shows the success of the proposed model, because it presents the lowest error of the compared models. The accuracy of the proposed model is observed via Modified Normalized Sum of Squared Errors index equal to 3.8979%.

  4. Complete Fourier Direct Magnetic Resonance Imaging (CFD-MRI for Diffusion MRI

    Directory of Open Access Journals (Sweden)

    Alpay eÖzcan

    2013-04-01

    Full Text Available The foundation for an accurate and unifying Fourier based theory of diffusion weighted magnetic resonance imaging (DW-MRI is constructed by carefully re-examining the first principles of DW-MRI signal formation and deriving its mathematical model from scratch. The derivations are specifically obtained for DW-MRI signal by including all of its elements (e.g., imaging gradients using complex values. Particle methods are utilized in contrast to conventional partial differential equations approach. The signal is shown to be the Fourier transform of the joint distribution of number of the magnetic moments (at a given location at the initial time and magnetic moment displacement integrals. In effect, the k-space is augmented by three more dimensions, corresponding to the frequency variables dual to displacement integral vectors. The joint distribution function is recovered by applying the Fourier transform to the complete high-dimensional data set. In the process, to obtain a physically meaningful real valued distribution function, phase corrections are applied for the re-establishment of Hermitian symmetry in the signal. Consequently, the method is fully unconstrained and directly presents the distribution of displacement integrals without any assumptions such as symmetry or Markovian property. The joint distribution function is visualized with isosurfaces, which describe the displacement integrals, overlaid on the distribution map of the number of magnetic moments with low mobility. The model provides an accurate description of the molecular motion measurements via DW-MRI. The improvement of the characterization of tissue microstructure leads to a better localization, detection and assessment of biological properties such as white matter integrity. The results are demonstrated on the experimental data obtained from an ex-vivo baboon brain.

  5. The effect of current flow direction on motor hot spot allocation by transcranial magnetic stimulation.

    Science.gov (United States)

    Stephani, Caspar; Paulus, Walter; Sommer, Martin

    2016-01-01

    The objective of this study was to investigate the significance of pulse configurations and current direction for corticospinal activation using transcranial magnetic stimulation (TMS). In 11 healthy subjects (8 female), a motor map for the motor evoked potentials (MEPs) recorded from the first dorsal interosseus (FDI), abductor digiti minimi (ADM), extensor carpi radialis, and biceps brachii (BB) muscles of the dominant side was established. Starting from a manually determined hot spot of the FDI representation, we measured MEPs at equal oriented points on an hexagonal grid, with 7 MEPs recorded at each point, using the following pulse configurations: posteriorly directed monophasic (Mo-P), anteriorly directed monophasic (Mo-A), biphasic with the more relevant second cycle oriented posteriorly (Bi-P) as well as a reversed biphasic condition (Bi-A). For each pulse configuration, a hot spot was determined and a center of gravity (CoG) was calculated. We found that the factor current direction had an effect on location of the CoG-adjusted hot spot in the cranio-caudal axis but not in the latero-medial direction with anteriorly directed pulses locating the CoG more anteriorly and vice versa. In addition, the CoG for the FDI was more laterally than the cortical representations for the abductor digiti minimi (ADM) and extensor carpi radialis (ECR) which were registered as well. The results indicate that direction of the current pulse should be taken into account for determination of the motor representation of a muscle by TMS. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. Dependence of direct losses and trapping properties with the magnetic configuration in TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers, M.

    1998-05-01

    The former studies concerning direct losses, disymmetries, trapping and radial electric field effects for intermediate energy ions have been extended to several magnetic configurations in TJ-II. In the absence of electric field there are strong similarities in the behaviour of all configurations: disymmetries, loss distributions at plasma border, radial and angular profiles, etc. Generally the differences are only quantitative and dominated by the magnetic ripple at border, that is clearly related with the configuration radius. This qualitative similarity disappears in the presence of a radial electric field. The field resonance are at the origin of these differences. A simple model reproduces correctly the ordering and degree of influence of these resonances. Except when the 0 resonance predominates the los distributions at plasma border move always in the direction of the induced poloidal rotation. The los radial profiles are strongly affected by the -2 Resonance, that can provoke the appearance of lost passing ions well inside the plasma. Instead the radial and angular profiles for trapping are only slightly affected by the -2 Resonance, while the 0 Resonance has a very strong influence there

  7. Magnetic properties of a HoCo10Ti2 single crystal

    International Nuclear Information System (INIS)

    Janssen, Y.; Tegus, O.; Klaasse, J.C.P.; Brueck, E.; Buschow, K.H.J.; Boer, F.R. de

    2001-01-01

    The magnetic properties of single-crystalline easy-axis ThMn 12 -type ferrimagnetic HoCo 10 Ti 2 have been studied. At 4.2 K, the magnetization process with the field applied along the easy c-axis is completely different from that, with the field applied perpendicular to it. The bending process of the initially antiparallel Ho and Co magnetic moments, that is observed in the latter measurement, is briefly described in terms of mean-field theory. Furthermore, when the field is applied in the hard magnetization direction, the bending process has directly been observed by means of measurement of the transversal magnetization

  8. Words Do Come Easy (Sometimes)

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Petersen, Anders; Vangkilde, Signe Allerup

    multiple stimuli are presented simultaneously: Are words treated as units or wholes in visual short term memory? Using methods based on a Theory of Visual Attention (TVA), we measured perceptual threshold, visual processing speed and visual short term memory capacity for words and letters, in two simple...... a different pattern: Letters are perceived more easily than words, and this is reflected both in perceptual processing speed and short term memory capacity. So even if single words do come easy, they seem to enjoy no advantage in visual short term memory....

  9. How easy the invention is

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yeon Jung

    2002-05-15

    This book deals with the inventions invented by kids such as a utility helmet, a useful drawing board, automatic safe device, telephone for the blind, a peaceful washboard, roly poly milk bottle, seat belt with height control, gas hose to prevent thief, portable magic soap, useful bus handle, convent desk, a paper cup attached a spoon, a useful washboard, dressing room using moveable small cymbals, fluorescent light which is easy to put in a new one, rods for night, curtain for cars, spray shampoo, and a good calendar.

  10. How easy the invention is

    International Nuclear Information System (INIS)

    Wang, Yeon Jung

    2002-05-01

    This book deals with the inventions invented by kids such as a utility helmet, a useful drawing board, automatic safe device, telephone for the blind, a peaceful washboard, roly poly milk bottle, seat belt with height control, gas hose to prevent thief, portable magic soap, useful bus handle, convent desk, a paper cup attached a spoon, a useful washboard, dressing room using moveable small cymbals, fluorescent light which is easy to put in a new one, rods for night, curtain for cars, spray shampoo, and a good calendar.

  11. Strict rules for easy transition

    International Nuclear Information System (INIS)

    Roggen, M.

    2003-01-01

    The energy companies soon start tests to assess whether their information systems are ready to enable easy transition of retail clients from one energy supplier to another starting early next year. Having learnt a great deal from its experience with the liberalisation of the market for medium-sized business clients, power trade organisation EnergieNed has decided to run a support program named Spoed. (Dutch for Speed) to support the final stage of the liberalisation process. A Reference model has been prepared, on the basis of which energy companies can now test the mutual exchange of switch data [nl

  12. Multidimensional coherent spectroscopy made easy

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, Kenan; Stone, Katherine W.; Turner, Daniel B. [Department of Chemistry, Massachusetts Institute of Technology, 77 Mass Ave. 6-026 Cambridge, MA 02139 (United States); Nelson, Keith A. [Department of Chemistry, Massachusetts Institute of Technology, 77 Mass Ave. 6-026 Cambridge, MA 02139 (United States)], E-mail: kanelson@mit.edu

    2007-11-15

    We have demonstrated a highly efficient fully coherent 2D spectrometer based on 2D pulse shaping and Fourier beam shaping. The versatility of the design allows one to measure different 2D spectral surfaces consecutively. Easy alignment, inherent phase stability, rotating wave frame detection, and arbitrary waveform generation in all of the beams are important features of this design. We have demonstrated the functionality of the 2D spectrometer by measuring a 2D spectral surface of a GaAs quantum well.

  13. Multidimensional coherent spectroscopy made easy

    International Nuclear Information System (INIS)

    Gundogdu, Kenan; Stone, Katherine W.; Turner, Daniel B.; Nelson, Keith A.

    2007-01-01

    We have demonstrated a highly efficient fully coherent 2D spectrometer based on 2D pulse shaping and Fourier beam shaping. The versatility of the design allows one to measure different 2D spectral surfaces consecutively. Easy alignment, inherent phase stability, rotating wave frame detection, and arbitrary waveform generation in all of the beams are important features of this design. We have demonstrated the functionality of the 2D spectrometer by measuring a 2D spectral surface of a GaAs quantum well

  14. Directionality analysis on functional magnetic resonance imaging during motor task using Granger causality.

    Science.gov (United States)

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2012-01-01

    Directionality analysis of signals originating from different parts of brain during motor tasks has gained a lot of interest. Since brain activity can be recorded over time, methods of time series analysis can be applied to medical time series as well. Granger Causality is a method to find a causal relationship between time series. Such causality can be referred to as a directional connection and is not necessarily bidirectional. The aim of this study is to differentiate between different motor tasks on the basis of activation maps and also to understand the nature of connections present between different parts of the brain. In this paper, three different motor tasks (finger tapping, simple finger sequencing, and complex finger sequencing) are analyzed. Time series for each task were extracted from functional magnetic resonance imaging (fMRI) data, which have a very good spatial resolution and can look into the sub-cortical regions of the brain. Activation maps based on fMRI images show that, in case of complex finger sequencing, most parts of the brain are active, unlike finger tapping during which only limited regions show activity. Directionality analysis on time series extracted from contralateral motor cortex (CMC), supplementary motor area (SMA), and cerebellum (CER) show bidirectional connections between these parts of the brain. In case of simple finger sequencing and complex finger sequencing, the strongest connections originate from SMA and CMC, while connections originating from CER in either direction are the weakest ones in magnitude during all paradigms.

  15. Magnetic separations in biotechnology.

    Science.gov (United States)

    Borlido, L; Azevedo, A M; Roque, A C A; Aires-Barros, M R

    2013-12-01

    Magnetic separations are probably one of the most versatile separation processes in biotechnology as they are able to purify cells, viruses, proteins and nucleic acids directly from crude samples. The fast and gentle process in combination with its easy scale-up and automation provide unique advantages over other separation techniques. In the midst of this process are the magnetic adsorbents tailored for the envisioned target and whose complex synthesis spans over multiple fields of science. In this context, this article reviews both the synthesis and tailoring of magnetic adsorbents for bioseparations as well as their ultimate application. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Magnetic resonance direct thrombus imaging of the evolution of acute deep vein thrombosis of the leg.

    Science.gov (United States)

    Westerbeek, R E; Van Rooden, C J; Tan, M; Van Gils, A P G; Kok, S; De Bats, M J; De Roos, A; Huisman, M V

    2008-07-01

    Accurate diagnosis of acute recurrent deep vein thrombosis (DVT) is relevant to avoid improper diagnosis and unnecessary life-long anticoagulant treatment. Compression ultrasound has high accuracy for a first episode of DVT, but is often unreliable in suspected recurrent disease. Magnetic resonance direct thrombus imaging (MR DTI) has been shown to accurately detect acute DVT. The purpose of this prospective study was to determine the MR signal change during 6 months follow-up in patients with acute DVT. This study was a prospective study of 43 consecutive patients with a first episode of acute DVT demonstrated by compression ultrasound. All patients underwent MR DTI. Follow-up was performed with MR-DTI and compression ultrasound at 3 and 6 months respectively. All data were coded, stored and assessed by two blinded observers. MR direct thrombus imaging identified acute DVT in 41 of 43 patients (sensitivity 95%). There was no abnormal MR-signal in controls, or in the contralateral extremity of patients with DVT (specificity 100%). In none of the 39 patients available at 6 months follow-up was the abnormal MR-signal at the initial acute DVT observed, whereas in 12 of these patients (30.8%) compression ultrasound was still abnormal. Magnetic resonance direct thrombus imaging normalizes over a period of 6 months in all patients with diagnosed DVT, while compression ultrasound remains abnormal in a third of these patients. MR-DTI may potentially allow for accurate detection in patients with acute suspected recurrent DVT, and this should be studied prospectively.

  17. DEPENDENCE OF SOLAR-WIND POWER SPECTRA ON THE DIRECTION OF THE LOCAL MEAN MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Podesta, J. J.

    2009-01-01

    Wavelet analysis can be used to measure the power spectrum of solar-wind fluctuations along a line in any direction (θ, φ) with respect to the local mean magnetic field B 0 . This technique is applied to study solar-wind turbulence in high-speed streams in the ecliptic plane near solar minimum using magnetic field measurements with a cadence of eight vectors per second. The analysis of nine high-speed streams shows that the reduced spectrum of magnetic field fluctuations (trace power) is approximately azimuthally symmetric about B 0 in both the inertial range and dissipation range; in the inertial range the spectra are characterized by a power-law exponent that changes continuously from 1.6 ± 0.1 in the direction perpendicular to the mean field to 2.0 ± 0.1 in the direction parallel to the mean field. The large uncertainties suggest that the perpendicular power-law indices 3/2 and 5/3 are both consistent with the data. The results are similar to those found by Horbury et al. at high heliographic latitudes. Comparisons between solar-wind observations and the theories of strong incompressible MHD turbulence developed by Goldreich and Sridhar and Boldyrev are not rigorously justified because these theories only apply to turbulence with vanishing cross-helicity although the normalized cross-helicity of solar-wind turbulence is not negligible. Assuming these theories can be generalized in such a way that the three-dimensional wavevector spectra have similar functional forms when the cross-helicity is nonzero, then for the interval of Ulysses data analyzed by Horbury et al. the ratio of the spectra perpendicular and parallel to B 0 is more consistent with the Goldreich and Sridhar scaling P perpendicular /P || ∝ ν 1/3 than with the Boldyrev scaling ν 1/2 . The analysis of high-speed streams in the ecliptic plane does not yield a reliable measurement of this scaling law. The transition from a turbulent MHD-scale energy cascade to a kinetic Alfven wave (KAW

  18. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie; Zhu, Mi [Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-09-14

    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when the orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.

  19. Design and experimental validation for direct-drive fault-tolerant permanent-magnet vernier machines.

    Science.gov (United States)

    Liu, Guohai; Yang, Junqin; Chen, Ming; Chen, Qian

    2014-01-01

    A fault-tolerant permanent-magnet vernier (FT-PMV) machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs). This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM), the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis.

  20. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    International Nuclear Information System (INIS)

    Ahmed, D; Ahmad, A

    2013-01-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  1. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    Science.gov (United States)

    Ahmed, D.; Ahmad, A.

    2013-06-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  2. Current control for magnetized plasma in direct-current plasma-immersion ion implantation

    International Nuclear Information System (INIS)

    Tang Deli; Chu, Paul K.

    2003-01-01

    A method to control the ion current in direct-current plasma-immersion ion implantation (PIII) is reported for low-pressure magnetized inductively coupled plasma. The ion current can be conveniently adjusted by applying bias voltage to the conducting grid that separates plasma formation and implantation (ion acceleration) zones without the need to alter the rf input power, gas flux, or other operating conditions. The ion current that diminishes with an increase in grid bias in magnetized plasmas can be varied from 48 to 1 mA by increasing the grid voltage from 0 to 70 V at -50 kV sample bias and 0.5 mTorr hydrogen pressure. High implantation voltage and monoenergetic immersion implantation can now be achieved by controlling the ion current without varying the macroscopic plasma parameters. The experimental results and interpretation of the effects are presented in this letter. This technique is very attractive for PIII of planar samples that require on-the-fly adjustment of the implantation current at high implantation voltage but low substrate temperature. In some applications such as hydrogen PIII-ion cut, it may obviate the need for complicated sample cooling devices that must work at high voltage

  3. Direct and quadrature inductances measurement of the permanent magnetic linear synchronous machines

    Energy Technology Data Exchange (ETDEWEB)

    Li Liyi [Electrical Engineering Dept./Harbin Institute of Technology, Harbin 150000 (China); Hong Junjie, E-mail: wizard0663@126.co [School of Engineering/Sun Yat-Sen University, Guangzhou 510006 (China); Wu Hongxing; Kou Baoquan; Liu Rizhong [Electrical Engineering Dept./Harbin Institute of Technology, Harbin 150000 (China)

    2011-05-15

    Research highlights: {yields} The d- and q-axis inductances are derived theoretically. {yields} The new measurement principle of the d- and q-axis inductances is analyzed. {yields} A corresponding measuring circuit is developed. {yields} Measurement results match those of the FEM well. -- Abstract: Permanent magnetic linear synchronous machines (PMLSMs) are playing a more important role either in transportation systems or magnetic launch systems, for the excellent advantages. It is indispensable to high performance controllers that some machine parameters are known such as the direct axis (d-axis) and quadrature axis (q-axis) inductances. In this paper, self and mutual inductances of the three-phase winding are deduced by basic electric machinery theory, and the measured inductances are analyzed since the mutual inductances and the corresponding terminals among three-phase windings are changing as different phase winding is concerned. The d- and q-axis inductances are measured with the designed circuit, and the experimental measurement method is validated by the comparison between the experimental and finite element method (FEM) results.

  4. Theoretical approach to direct resonant inelastic X-ray scattering on magnets and superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Pasquale

    2015-10-26

    The capability to probe the dispersion of elementary spin, charge, orbital, and lattice excitations has positioned resonant inelastic X-ray scattering (RIXS) at the forefront of photon science. In this work, we will investigate how RIXS can contribute to a deeper understanding of the orbital properties and of the pairing mechanism in unconventional high-temperature superconductors. In particular, we show how direct RIXS spectra of magnetic excitations can reveal long-range orbital correlations in transition metal compounds, by discriminating different kind of orbital order in magnetic and antiferromagnetic systems. Moreover, we show how RIXS spectra of quasiparticle excitations in superconductors can measure the superconducting gap magnitude, and reveal the presence of nodal points and phase differences of the superconducting order parameter on the Fermi surface. This can reveal the properties of the underlying pairing mechanism in unconventional superconductors, in particular cuprates and iron pnictides, discriminating between different superconducting order parameter symmetries, such as s,d (singlet pairing) and p wave (triplet pairing).

  5. Direct and quadrature inductances measurement of the permanent magnetic linear synchronous machines

    International Nuclear Information System (INIS)

    Li Liyi; Hong Junjie; Wu Hongxing; Kou Baoquan; Liu Rizhong

    2011-01-01

    Research highlights: → The d- and q-axis inductances are derived theoretically. → The new measurement principle of the d- and q-axis inductances is analyzed. → A corresponding measuring circuit is developed. → Measurement results match those of the FEM well. -- Abstract: Permanent magnetic linear synchronous machines (PMLSMs) are playing a more important role either in transportation systems or magnetic launch systems, for the excellent advantages. It is indispensable to high performance controllers that some machine parameters are known such as the direct axis (d-axis) and quadrature axis (q-axis) inductances. In this paper, self and mutual inductances of the three-phase winding are deduced by basic electric machinery theory, and the measured inductances are analyzed since the mutual inductances and the corresponding terminals among three-phase windings are changing as different phase winding is concerned. The d- and q-axis inductances are measured with the designed circuit, and the experimental measurement method is validated by the comparison between the experimental and finite element method (FEM) results.

  6. Self-generated magnetic fields in direct-drive implosion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Igumenshchev, I. V.; Nilson, P. M.; Goncharov, V. N. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Zylstra, A. B.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-06-15

    Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA Laser Facility were investigated employing radiography with ∼10- to 60-MeV protons. The experiment used plastic-shell targets with imposed surface defects (glue spots, wires, and mount stalks), which enhance self-generated fields. The fields were measured during the 1-ns laser drive with an on-target intensity ∼10{sup 15} W/cm{sup 2}. Proton radiographs show multiple ring-like structures produced by electric fields ∼10{sup 7} V/cm and fine structures from surface defects, indicating self-generated fields up to ∼3 MG. These electric and magnetic fields show good agreement with two-dimensional magnetohydrodynamic simulations when the latter include the ∇T{sub e} × ∇n{sub e} source, Nernst convection, and anisotropic resistivity. The simulations predict that self-generated fields affect heat fluxes in the conduction zone and, through this, affect the growth of local perturbations.

  7. Design and Experimental Validation for Direct-Drive Fault-Tolerant Permanent-Magnet Vernier Machines

    Directory of Open Access Journals (Sweden)

    Guohai Liu

    2014-01-01

    Full Text Available A fault-tolerant permanent-magnet vernier (FT-PMV machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs. This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM, the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis.

  8. Loss evaluation and design optimisation for direct driven permanent magnet synchronous generators for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Sandra; Bernhoff, Hans [Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity, Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden)

    2011-01-15

    When designing a generator for a wind turbine it is important to adapt the generator to the source, i.e. the wind conditions at the specific site. Furthermore, the variable speed operation of the generator needs to be considered. In this paper, electromagnetic losses in direct driven permanent magnet synchronous generators are evaluated through simulations. Six different generators are compared to each other. The simulations are performed by using an electromagnetic model, solved in a finite element environment and a control model developed in MATLAB. It is shown that when designing a generator it is important to consider the statistical wind distribution, control system, and aerodynamic efficiency in order to evaluate the performance properly. In this paper, generators with high overload capability are studied since they are of interest for this specific application. It is shown that a generator optimised for a minimum of losses will have a high overload capability. (author)

  9. Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Sheshukova, S. E.; Romanenko, D. V.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)

    2015-11-16

    We experimentally demonstrate spin waves coupling in two laterally adjacent magnetic stripes. By the means of Brillouin light scattering spectroscopy, we show that the coupling efficiency depends both on the magnonic waveguides' geometry and the characteristics of spin-wave modes. In particular, the lateral confinement of coupled yttrium-iron-garnet stripes enables the possibility of control over the spin-wave propagation characteristics. Numerical simulations (in time domain and frequency domain) reveal the nature of intermodal coupling between two magnonic stripes. The proposed topology of multimode magnonic coupler can be utilized as a building block for fabrication of integrated parallel functional and logic devices such as the frequency selective directional coupler or tunable splitter, enabling a number of potential applications for planar magnonics.

  10. Determination of magnetic field direction in tokamaks from laser-induced Lyman-α fluorescence

    International Nuclear Information System (INIS)

    Voslamber, D.

    1988-04-01

    Resonant laser scattering in the Lyman-α line of hydrogen is investigated as a possible tool for measuring the magnetic field direction in tokamak plasmas. The method is based on the depolarisation-dependence of the scattering process. Limitations arising from depolarising collisions are studied in detail by employing a previously developed theory for the collisional redistribution of light. An error analysis is performed to derive the expected experimental precision under various plasma conditions and for laser energies ranging between 1 micronJ and 10 mJ. This analysis also includes the measurement of neutral hydrogen densities. It is shown that with presently available laser powers application of the method would be restricted to the border regions of the plasma. Application to the central regions would require further developments in laser technology, especially with regard to higher powers at the wavelength of Lyman-α and (or) to fast repetition rates

  11. A Novel Method to Magnetic Flux Linkage Optimization of Direct-Driven Surface-Mounted Permanent Magnet Synchronous Generator Based on Nonlinear Dynamic Analysis

    Directory of Open Access Journals (Sweden)

    Qian Xie

    2016-07-01

    Full Text Available This paper pays attention to magnetic flux linkage optimization of a direct-driven surface-mounted permanent magnet synchronous generator (D-SPMSG. A new compact representation of the D-SPMSG nonlinear dynamic differential equations to reduce system parameters is established. Furthermore, the nonlinear dynamic characteristics of new D-SPMSG equations in the process of varying magnetic flux linkage are considered, which are illustrated by Lyapunov exponent spectrums, phase orbits, Poincaré maps, time waveforms and bifurcation diagrams, and the magnetic flux linkage stable region of D-SPMSG is acquired concurrently. Based on the above modeling and analyses, a novel method of magnetic flux linkage optimization is presented. In addition, a 2 MW D-SPMSG 2D/3D model is designed by ANSYS software according to the practical design requirements. Finally, five cases of D-SPMSG models with different magnetic flux linkages are simulated by using the finite element analysis (FEA method. The nephograms of magnetic flux density are agreement with theoretical analysis, which both confirm the correctness and effectiveness of the proposed approach.

  12. Direct Observation of Room-Temperature Stable Magnetism in LaAlO3/SrTiO3 Heterostructures.

    Science.gov (United States)

    Yang, Ming; Ariando; Zhou, Jun; Asmara, Teguh Citra; Krüger, Peter; Yu, Xiao Jiang; Wang, Xiao; Sanchez-Hanke, Cecilia; Feng, Yuan Ping; Venkatesan, T; Rusydi, Andrivo

    2018-03-21

    Along with an unexpected conducting interface between nonmagnetic insulating perovskites LaAlO 3 and SrTiO 3 (LaAlO 3 /SrTiO 3 ), striking interfacial magnetisms have been observed in LaAlO 3 /SrTiO 3 heterostructures. Interestingly, the strength of the interfacial magnetic moment is found to be dependent on oxygen partial pressures during the growth process. This raises an important, fundamental question on the origin of these remarkable interfacial magnetic orderings. Here, we report a direct evidence of room-temperature stable magnetism in a LaAlO 3 /SrTiO 3 heterostructure prepared at high oxygen partial pressure by using element-specific soft X-ray magnetic circular dichroism at both Ti L 3,2 and O K edges. By combining X-ray absorption spectroscopy at both Ti L 3,2 and O K edges and first-principles calculations, we qualitatively ascribe that this strong magnetic ordering with dominant interfacial Ti 3+ character is due to the coexistence of LaAlO 3 surface oxygen vacancies and interfacial (Ti Al -Al Ti ) antisite defects. On the basis of this new understanding, we revisit the origin of the weak magnetism in LaAlO 3 /SrTiO 3 heterostructures prepared at low oxygen partial pressures. Our calculations show that LaAlO 3 surface oxygen vacancies are responsible for the weak magnetism at the interface. Our result provides direct evidence on the presence of room-temperature stable magnetism and a novel perspective to understand magnetic and electronic reconstructions at such strategic oxide interfaces.

  13. Easy Bruising: Common as You Age

    Science.gov (United States)

    Healthy Lifestyle Healthy aging If you're experiencing easy bruising, you might have questions about what's causing the ... 04, 2017 Original article: http://www.mayoclinic.org/healthy-lifestyle/healthy-aging/in-depth/easy-bruising/art-20045762 . ...

  14. Direct observation of magnetic domains by Kerr microscopy in a Ni-Mn-Ga magnetic shape-memory alloy

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy; Heczko, Oleg; Schaefer, R.

    2017-01-01

    Roč. 95, č. 14 (2017), s. 1-5, č. článku 144431. ISSN 2469-9950 R&D Projects: GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : shape memory * magnetic domains * Kerr microscopy * N-Mn-Ga alloy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  15. Direct characterization of cotton fabrics treated with di-epoxide by nuclear magnetic resonance.

    Science.gov (United States)

    Xiao, Min; Chéry, Joronia; Keresztes, Ivan; Zax, David B; Frey, Margaret W

    2017-10-15

    A non-acid-based, di-functional epoxide, neopentyl glycol diglycidyl ether (NPGDGE), was used to modify cotton fabrics. Direct characterization of the modified cotton was conducted by Nuclear Magnetic Resonance (NMR) without grinding the fabric into a fine powder. NaOH and MgBr 2 were compared in catalyzing the reaction between the epoxide groups of NPGDGE and the hydroxyl groups of cellulose. Possible reaction routes were discussed. Scanning electron microscopy (SEM) images showed that while the MgBr 2 -catalyzed reaction resulted in self-polymerization of NPGDGE, the NaOH-catalyzed reaction did not. Fourier transform infrared spectroscopy (FTIR) showed that at high NaOH concentration cellulose restructures from allomorph I to II. NMR studies verified the incorporation of NPGDGE into cotton fabrics with a clear NMR signal, and confirmed that at higher NaOH concentration the efficiency of grafting of NPGDGE was increased. This demonstrates that use of solid state NMR directly on woven fabric samples can simultaneously characterize chemical modification and crystalline polymorph of cotton. No loss of tensile strength was observed for cotton fabrics modified with NPGDGE. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Inkjet Printing of High Aspect Ratio Superparamagnetic SU-8 Microstructures with Preferential Magnetic Directions

    Directory of Open Access Journals (Sweden)

    Loïc Jacot-Descombes

    2014-08-01

    Full Text Available Structuring SU-8 based superparamagnetic polymer composite (SPMPC containing Fe3O4 nanoparticles by photolithography is limited in thickness due to light absorption by the nanoparticles. Hence, obtaining thicker structures requires alternative processing techniques. This paper presents a method based on inkjet printing and thermal curing for the fabrication of much thicker hemispherical microstructures of SPMPC. The microstructures are fabricated by inkjet printing the nanoparticle-doped SU-8 onto flat substrates functionalized to reduce the surface energy and thus the wetting. The thickness and the aspect ratio of the printed structures are further increased by printing the composite onto substrates with confinement pedestals. Fully crosslinked microstructures with a thickness up to 88.8 μm and edge angle of 112° ± 4° are obtained. Manipulation of the microstructures by an external field is enabled by creating lines of densely aggregated nanoparticles inside the composite. To this end, the printed microstructures are placed within an external magnetic field directly before crosslinking inducing the aggregation of dense Fe3O4 nanoparticle lines with in-plane and out-of-plane directions.

  17. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing

    Directory of Open Access Journals (Sweden)

    Yudan Wang

    2017-04-01

    Full Text Available The drilling length is an important parameter in the process of horizontal directional drilling (HDD exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  18. Transcranial magnetic stimulation-induced global propagation of transient phase resetting associated with directional information flow

    Directory of Open Access Journals (Sweden)

    Masahiro eKawasaki

    2014-03-01

    Full Text Available Electroencephalogram (EEG phase synchronization analyses can reveal large-scale communication between distant brain areas. However, it is not possible to identify the directional information flow between distant areas using conventional phase synchronization analyses. In the present study, we applied transcranial magnetic stimulation (TMS to the occipital area in subjects who were resting with their eyes closed, and analyzed the spatial propagation of transient TMS-induced phase resetting by using the transfer entropy (TE, to quantify the causal and directional flow of information. The time-frequency EEG analysis indicated that the theta (5 Hz phase locking factor (PLF reached its highest value at the distant area (the motor area in this study, with a time lag that followed the peak of the transient PLF enhancements of the TMS-targeted area at the TMS onset. PPI (phase-preservation index analyses demonstrated significant phase resetting at the TMS-targeted area and distant area. Moreover, the TE from the TMS-targeted area to the distant area increased clearly during the delay that followed TMS onset. Interestingly, the time lags were almost coincident between the PLF and TE results (152 vs. 165 ms, which provides strong evidence that the emergence of the delayed PLF reflects the causal information flow. Such tendencies were observed only in the higher-intensity TMS condition, and not in the lower-intensity or sham TMS conditions. Thus, TMS may manipulate large-scale causal relationships between brain areas in an intensity-dependent manner. We demonstrated that single-pulse TMS modulated global phase dynamics and directional information flow among synchronized brain networks. Therefore, our results suggest that single-pulse TMS can manipulate both incoming and outgoing information in the TMS-targeted area associated with functional changes.

  19. Panel discussion: Future directions in magnetic fusion--comments of John Sheffield, Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Sheffield, J.

    1992-01-01

    I will discuss two important issues for the US magnetic fusion program: the role of alternate magnetic configurations to the tokamak, and factors which need to be considered in planning the evolution of the US program

  20. Effect of grain boundary phase on the magnetization reversal process of nanocrystalline magnet using large-scale micromagnetic simulation

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2018-05-01

    Full Text Available We investigated the effects of grain boundary phases on magnetization reversal in permanent magnets by performing large-scale micromagnetic simulations based on Landau–Lifshitz–Gilbert equation under a periodic boundary. We considered planar grain boundary phases parallel and perpendicular to an easy axis of the permanent magnet and assumed the saturation magnetization and exchange stiffness constant of the grain boundary phase to be 10% and 1%, respectively, for Nd2Fe14B grains. The grain boundary phase parallel to the easy axis effectively inhibits propagation of magnetization reversal. In contrast, the domain wall moves across the grain boundary perpendicular to the easy axis. These properties of the domain wall motion are explained by dipole interaction, which stabilizes the antiparallel magnetic configuration in the direction perpendicular to the magnetization orientation. On the other hand, the magnetization is aligned in the same direction by the dipole interaction parallel to the magnetization orientation. This anisotropy of the effect of the grain boundary phase shows that improvement of the grain boundary phase perpendicular to the easy axis effectively enhances the coercivity of permanent magnets.

  1. Using Kerr microscopy for direct observation of magnetic domains in Ni–Mn–Ga magnetic shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Perevertov, Oleksiy; Král, D.; Veis, M.; Soldatov, I.V.; Schäfer, R.

    2017-01-01

    Roč. 53, č. 11 (2017), s. 1-5, č. článku 2502605. ISSN 0018-9464 R&D Projects: GA ČR GA16-00043S; GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : ferroelastic domains * Kerr magneto-optical microscopy * magnetic domain structure * martensite Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.243, year: 2016

  2. In Situ Studies and Magnetic Properties of the Cmcm Polymorph of LiCoPO4 with a Hierarchical Dumbbell-Like Morphology Synthesized by Easy Single-Step Polyol Synthesis

    Directory of Open Access Journals (Sweden)

    Carlos Alarcón-Suesca

    2016-11-01

    Full Text Available LiCoPO4 (LCP exists in three different structural modifications: LCP-Pnma (olivine structure, LCP-Pn21a (KNiPO4 structure type, and LCP-Cmcm (Na2CrO4 structure type. The synthesis of the LCP-Cmcm polymorph has been reported via high pressure/temperature solid-state methods and by microwave-assisted solvothermal synthesis. Phase transitions from both LCP-Pn21a and LCP-Cmcm to LCP-Pnma upon heating indicates a metastable behavior. However, a precise study of the structural changes during the heating process and the magnetic properties of LCP-Cmcm are hitherto unknown. Herein, we present the synthesis and characterization of LCP-Cmcm via a rapid and facile soft-chemistry approach using two different kinetically controlled pathways, solvothermal and polyol syntheses, both of which only require relatively low temperatures (~200 °C. Additionally, by polyol, method a dumbbell-like morphology is obtained without the use of any additional surfactant or template. A temperature-dependent in situ powder XRD shows a transition from LCP-Cmcm at room temperature to LCP-Pnma and finally to LCP-Pn21a at 575 and 725 °C, respectively. In addition to that, the determination of the magnetic susceptibility as a function of temperature indicates a long-range antiferromagnetic order below TN = 11 K at 10 kOe and 9.1 K at 25 kOe. The magnetization curves suggests the presence of a metamagnetic transition.

  3. Ionization and acoustical instability of a low temperature magnetized plasma in a combined (direct and alternating) electrical field

    International Nuclear Information System (INIS)

    Andropov, V.G.; Sinkevich, O.A.

    1983-01-01

    It is shown that the ionization front which moves through a gas along a magnetic field in a combined electrical field, which lies in the plane of the front, may be unstable, as a result of the development of an ionization instability in the plasma behind the front. The criterion of instability of the ionization front does not greatly differ from the criterion of instability of an infinite plasma. The ionization front in the magnetic field is stable only in an electrical field of circular polarization or in a combined field in which the direct and alternating electrical fields are orthogonal and the Joule heat liberation from them is equal. The generation of sound is possible in a magnetized plasma in an alternating electrical field orthogonal to a magnetic due to the parametric acoustical instability at the frequency of the external electrical field. 8 refs

  4. Magnetic resonance direct thrombus imaging differentiates acute recurrent ipsilateral deep vein thrombosis from residual thrombosis.

    Science.gov (United States)

    Tan, Melanie; Mol, Gerben C; van Rooden, Cornelis J; Klok, Frederikus A; Westerbeek, Robin E; Iglesias Del Sol, Antonio; van de Ree, Marcel A; de Roos, Albert; Huisman, Menno V

    2014-07-24

    Accurate diagnostic assessment of suspected ipsilateral recurrent deep vein thrombosis (DVT) is a major clinical challenge because differentiating between acute recurrent thrombosis and residual thrombosis is difficult with compression ultrasonography (CUS). We evaluated noninvasive magnetic resonance direct thrombus imaging (MRDTI) in a prospective study of 39 patients with symptomatic recurrent ipsilateral DVT (incompressibility of a different proximal venous segment than at the prior DVT) and 42 asymptomatic patients with at least 6-month-old chronic residual thrombi and normal D-dimer levels. All patients were subjected to MRDTI. MRDTI images were judged by 2 independent radiologists blinded for the presence of acute DVT and a third in case of disagreement. The sensitivity, specificity, and interobserver reliability of MRDTI were determined. MRDTI demonstrated acute recurrent ipsilateral DVT in 37 of 39 patients and was normal in all 42 patients without symptomatic recurrent disease for a sensitivity of 95% (95% CI, 83% to 99%) and a specificity of 100% (95% CI, 92% to 100%). Interobserver agreement was excellent (κ = 0.98). MRDTI images were adequate for interpretation in 95% of the cases. MRDTI is a sensitive and reproducible method for distinguishing acute ipsilateral recurrent DVT from 6-month-old chronic residual thrombi in the leg veins. © 2014 by The American Society of Hematology.

  5. Wada-test, functional magnetic resonance imaging and direct electrical stimulation - brain mapping methods

    International Nuclear Information System (INIS)

    Minkin, K.; Tanova, R.; Busarski, A.; Penkov, M.; Penev, L.; Hadjidekov, V.

    2009-01-01

    Modern neurosurgery requires accurate preoperative and intraoperative localization of brain pathologies but also of brain functions. The presence of individual variations in healthy subjects and the shift of brain functions in brain diseases provoke the introduction of various methods for brain mapping. The aim of this paper was to analyze the most widespread methods for brain mapping: Wada-test, functional magnetic resonance imaging (fMRI) and intraoperative direct electrical stimulation (DES). This study included 4 patients with preoperative brain mapping using Wada-test and fMRI. Intraoperative mapping with DES during awake craniotomy was performed in one case. The histopathological diagnosis was low-grade glioma in 2 cases, cortical dysplasia (1 patient) and arteriovenous malformation (1 patient). The brain mapping permits total lesion resection in three of four patients. There was no new postoperative deficit despite surgery near or within functional brain areas. Brain plasticity provoking shift of eloquent areas from their usual locations was observed in two cases. The brain mapping methods allow surgery in eloquent brain areas recognized in the past as 'forbidden areas'. Each method has advantages and disadvantages. The precise location of brain functions and pathologies frequently requires combination of different brain mapping methods. (authors)

  6. Highly efficient power system based on direct fission fragment energy conversion utilizing magnetic collimation

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; Parish, Theodore A.

    2003-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Consistent analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. The calculated energy conversion efficiencies for the presented designs without a thermodynamic cycle and with the heavy water cycle are 52% and 62%, respectively. The analysis indicates that efficiencies up to 90% are potentially achievable. (author)

  7. Facile directing agent-free synthesis and magnetism of nanocrystalline Fe–Ni alloy with tunable shape

    International Nuclear Information System (INIS)

    Mohamed, Marwa A.A.

    2014-01-01

    Highlights: • Simple directing agent-free wet chemical method for high-yield synthesis of nc Fe-Ni particles with tunable shape. • The alloy morphology is controlled by varying synthesis conditions; concentration of metal ions and pH of reaction. • Synthesis conditions control the final shape of alloy particles via controlling their growth rate and capping with OH − ions. • The alloy magnetic behavior is driven away from soft magnetic toward hard one, by particles anisotropy and size reduction. • The branched wires morphology can be considered a new morphology of distinctive magnetic behavior, for nc Fe-Ni alloy. - Abstract: This article reports the synthesis of nanocrystalline (nc) Fe 20 Ni 80 particles with tunable shape, using a heterogeneous directing agent-free aqueous wet chemical method of mild synthesis conditions. The particle morphology has been controlled by varying synthesis conditions. The results demonstrate that the morphology of alloy particles changes from quasi-isotropic to anisotropic architecture by decreasing concentration of metal ions or increasing pH of reaction solution. Deep interpretations of such phenomena are reported. Magnetic behavior of the alloy is driven away from soft magnetic and toward hard magnetic behavior, by anisotropy and size reduction of alloy particles. This broadens practical applications of nc Fe 20 Ni 80 alloy. Overall, the study provides an effective economical way for high-yield synthesis of nc Fe–Ni particles with tailored shape and subsequently magnetic properties for a specific technological application. Additionally, it adds a new morphology, highly branched wires, of distinctive magnetic behavior to the known morphologies of nc Fe–Ni particles

  8. Design of an Axial-Flux permanent magnet machine for an in-wheel direct drive application

    NARCIS (Netherlands)

    Bastiaens, K.; Jansen, J.W.; Jumayev, S.; Lomonova, E.A.

    2017-01-01

    This paper concerns the optimization and comparison of six different axial-flux permanent magnet (AFPM) machine topologies for an in-wheel direct drive application. The objective of the optimization is to reach maximum power density, which is of essence for an in-wheel motor. The machine topologies

  9. High coercivity microcrystalline Nd-rich Nd–Fe–Co–Al–B bulk magnets prepared by direct copper mold casting

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.Z.; Hong, Y. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Fang, X.G. [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510640 (China); Qiu, Z.G.; Zhong, X.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Gao, X.S. [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510640 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2016-06-15

    High coercivity Nd{sub 25}Fe{sub 40}Co{sub 20}Al{sub 15−x}B{sub x} (x=7–15) hard magnets were prepared by a simple process of injection casting. Different from many previous investigations on nanocomposite compositions, the magnets in this work contain hard magnetic Nd{sub 2}(FeCoAl){sub 14}B, Nd-rich, and Nd{sub 1+ε}(FeCo){sub 4}B{sub 4} phases. The magnetic properties, phase evolution, and microstructure of the as-cast and annealed magnets were investigated. As the boron content increased from 7 to 11 at%, the intrinsic coercivity H{sub cj} of the as-cast magnet increased from 816 to 1140 kA/m. The magnets annealed at 750 °C have shown more regular and smaller grains than the as-cast alloys, especially for the x=11 alloy. The high intrinsic coercivities for the annealed alloys with x=8~11 result from the presence of small-sized grains in the microstructure. The highest H{sub cj} of 1427 kA/m was obtained for the heat treated alloy with x=10. This work provides an alternative approach for preparing fully dense Nd-rich bulk hard magnets with relatively good properties. - Highlights: • 2 mm hard magnetic Nd{sub 25}Fe{sub 40}Co{sub 20}Al{sub 15−x}B{sub x} rods were prepared by direct casting. • High coercivity of 1.78 T was achieved in x=11 sample after heat treatment. • Small grains are responsible for the significant increase in H{sub C} after annealing. • Nd{sub 2}Fe{sub 14}B grains with two different sizes lead to two-step demagnetization process.

  10. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions

    Science.gov (United States)

    Tan, Cher Heng; Venkatesh, Sudhakar Kundapur

    2016-01-01

    Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including non-alcoholic fatty liver disease, will be elaborated. PMID:27563019

  11. Organized single-molecule magnets: direct observation of new Mn12 derivatives on gold

    International Nuclear Information System (INIS)

    Cornia, A.; Fabretti, A.C.; Pacchioni, M.; Zobbi, L.; Bonacchi, D.; Caneschi, A.; Gatteschi, D.; Biagi, R.; Del Pennino, U.; De Renzi, V.; Gurevich, L.; Zant, H.S.J. van der

    2004-01-01

    Gold adsorbates of the dodecamanganese(III,IV) single-molecule magnet (SMM) [Mn 12 O 12 (L) 16 (H 2 O) 4 ] where L=16-(acetylthio)hexadecanoate have been prepared and investigated by X-ray photoelectron spectroscopy and scanning tunneling microscopy (STM). The successful imaging of Mn 12 molecules by STM represents a first step toward the magnetic addressing of individual SMMs and the development of molecule-based devices for magnetic information storage

  12. Direct URCA-processes in neutron star quark core with strong magnetic field.

    Directory of Open Access Journals (Sweden)

    Belyaev Vasily

    2017-01-01

    In evaluations, the strength of magnetic field corresponds to the case, where the quarks of medium occupy a lot of Landau levels, while the electrons are in ground Landau level. The analytical dependence of neutrino emissivity on chemical potentials of quarks and electrons, temperature and magnetic field strength is obtained and briefly discussed. The result could be important in application to a massive strongly magnetized neutron star with quark core.

  13. Measurement of magnetic fields in the direct proximity of power line conductors

    International Nuclear Information System (INIS)

    Mamishev, A.V.; Russell, B.D.

    1995-01-01

    Modeling and managing of power frequency magnetic fields requires verification of theory with actual measurements. Measurements only at ground level are not always sufficient for comprehensive studies. The technique and the results of three-dimensional mapping of the power frequency magnetic fields high above ground level are presented in this paper. Comparative calculations illustrate relevance and approximations of the existing theoretical approach to field modeling. The influence of harmonics on the elliptical rotation of the magnetic field vector is illustrated. The possibility of use of the magnetic fields for the power line proximity detection is discussed

  14. Direct measurement of the impulse in a magnetic thrust chamber system for laser fusion rocket

    Energy Technology Data Exchange (ETDEWEB)

    Maeno, Akihiro; Yamamoto, Naoji; Nakashima, Hideki [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1 Kasuga-kouen, Kasuga, Fukuoka 816-8580 (Japan); Fujioka, Shinsuke; Johzaki, Tomoyuki [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-087 (Japan); Mori, Yoshitaka [Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202 (Japan); Sunahara, Atsushi [Institute for Laser Technology, Suita, Osaka 565-087 (Japan)

    2011-08-15

    An experiment is conducted to measure an impulse for demonstrating a magnetic thrust chamber system for laser fusion rocket. The impulse is produced by the interaction between plasma and magnetic field. In the experiment, the system consists of plasma and neodymium permanent magnets. The plasma is created by a single-beam laser aiming at a polystyrene spherical target. The impulse is 1.5 to 2.2 {mu}Ns by means of a pendulum thrust stand, when the laser energy is 0.7 J. Without magnetic field, the measured impulse is found to be zero. These results indicate that the system for generating impulse is working.

  15. Easy boundary definition for EGUN

    International Nuclear Information System (INIS)

    Becker, R.

    1989-01-01

    The relativistic electron optics program EGUN has reached a broad distribution, and many users have asked for an easier way of boundary input. A preprocessor to EGUN has been developed that accepts polygonal input of boundary points, and offers features such as rounding off of corners, shifting and squeezing of electrodes and simple input of slanted Neumann boundaries. This preprocessor can either be used on a PC that is linked to a mainframe using the FORTRAN version of EGUN, or in connection with the version EGNc, which also runs on a PC. In any case, direct graphic response on the PC greatly facilitates the creation of correct input files for EGUN. (orig.)

  16. Easy boundary definition for EGUN

    Science.gov (United States)

    Becker, R.

    1989-06-01

    The relativistic electron optics program EGUN [1] has reached a broad distribution, and many users have asked for an easier way of boundary input. A preprocessor to EGUN has been developed that accepts polygonal input of boundary points, and offers features such as rounding off of corners, shifting and squeezing of electrodes and simple input of slanted Neumann boundaries. This preprocessor can either be used on a PC that is linked to a mainframe using the FORTRAN version of EGUN, or in connection with the version EGNc, which also runs on a PC. In any case, direct graphic response on the PC greatly facilitates the creation of correct input files for EGUN.

  17. Easy boundary definition for EGUN

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R. (Frankfurt Univ. (Germany, F.R.). Inst. fuer Angewandte Physik)

    1989-06-01

    The relativistic electron optics program EGUN has reached a broad distribution, and many users have asked for an easier way of boundary input. A preprocessor to EGUN has been developed that accepts polygonal input of boundary points, and offers features such as rounding off of corners, shifting and squeezing of electrodes and simple input of slanted Neumann boundaries. This preprocessor can either be used on a PC that is linked to a mainframe using the FORTRAN version of EGUN, or in connection with the version EGNc, which also runs on a PC. In any case, direct graphic response on the PC greatly facilitates the creation of correct input files for EGUN. (orig.).

  18. Bias magnetic field and test period dependences of direct and converse magnetoelectric hysteresis of tri-layered magnetoelectric composite

    Science.gov (United States)

    Zhou, Yun; Li, Xiao-Hong; Wang, Jian-Feng; Zhou, Hao-Miao; Cao, Dan; Jiao, Zhi-Wei; Xu, Long; Li, Qi-Hao

    2018-04-01

    The direct and converse magnetoelectric hysteresis behavior for a tri-layered composite has been comparatively investigated and significant similarities have been observed. The results show that both the direct and converse magnetoelectric hysteresis is deeply affected by the bias magnetic field and test period. The test time hysteresis caused by a fast varying bias magnetic field can be reduced by prolonging the test period. The observed coercive field, remanence, and ratio of remanence of the direct and converse magnetoelectric effects with the test period obey an exponential decay law. A hysteretic nonlinear magnetoelectric theoretical model for the symmetrical tri-layered structure has been proposed based on a nonlinear constitutive model and pinning effect. The numerical calculation shows that the theoretical results are in good agreement with the experimental results. These findings not only provide insight into the examination and practical applications of magnetoelectric materials, but also propose a theoretical frame for studying the hysteretic characteristics of the magnetoelectric effect.

  19. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  20. submitter Direct Drive and Eddy Current Septa Magnet Designs for CERN's PSB Extraction at 2 GeV

    CERN Document Server

    Szoke, Z; Balhan, B; Baud, C; Borburgh, J; Hourican, M; Masson, T; Prost, A

    2016-01-01

    In the framework of the LIU project, new septa magnets have been designed between CERN's PS booster (PSB) extraction and PS injection. The upgraded devices are to deal with the increased beam energy from 1.4 to 2 GeV at extraction of the PSB. The direct drive recombination septa in the PSB transfer line to the PS and the eddy current PS injection septum together with a bumper at injection have been investigated using finite-element software. For the recombination magnets, an increase in magnet length is sufficient to obtain the required deflection; however, for the PS injection elements, a more novel solution is necessary to also achieve increased robustness to extend the expected lifetime of the pulsed device. The injection septum will share the same vacuum vessel with an injection bumper, and both magnets will be located adjacent to each other. The new PS injection magnet will be the first septum operated at CERN based on eddy current technology. The magnetic modeling of the devices, the comparison of the p...

  1. Direct Drive and Eddy Current Septa Magnet Designs for CERN’s PSB Extraction at 2 GeV

    CERN Multimedia

    Szoke, Zsolt; Balhan, Bruno; Baud, Cedric; Borburgh, Jan; Hourican, Michael; Masson, Thierry; Prost, Antoine

    2015-01-01

    In the framework of the LIU project, new septa magnets have been designed between CERN’s PS Booster (PSB) extraction and PS injection. The upgraded devices are to deal with the increased beam energy from 1.4 GeV to 2 GeV at extraction of the PSB. The direct drive recombination septa in the PSB transfer line to the PS, the eddy current PS injection septum together with a bumper at injection have been investigated using finite element software. For the recombination magnets an increase in magnet length is sufficient to obtain the required deflection; however, for the PS injection elements a more novel solution is necessary to also achieve increased robustness to extend the expected lifetime of the pulsed device. The injection septum will share the same vacuum vessel with an injection bumper and both magnets will be located adjacent to each other. The new PS injection magnet will be the first septum operated at CERN based on eddy current technology. The magnetic modelling of the devices, the comparison of the ...

  2. A Novel Rotor and Stator Magnetic Fields Direct-Orthogonalized Vector Control Scheme for the PMSM Servo System

    Directory of Open Access Journals (Sweden)

    Shi-Xiong Zhang

    2014-02-01

    Full Text Available Permanent Magnet Synchronous motor (PMSM has received widespread acceptance in recent years. In this paper, a new rotor and stator Magnetic Fields Direct-Orthogonalized Vector Control (MFDOVC scheme is proposed for PMSM servo system. This method simplified the complex calculation of traditional vector control, a part of the system resource is economized. At the same time, through the simulation illustration validation, the performance of PMSM servo system with the proposed MFDOVC scheme can achieve the same with the complex traditional vector control method, but much simpler calculation is implemented using the proposed method.

  3. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched 28Si

    Directory of Open Access Journals (Sweden)

    Guilherme Tosi

    2014-08-01

    Full Text Available Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.

  4. Design and Comparison of a Novel Stator Interior Permanent Magnet Generator for Direct-Drive Wind Turbines

    DEFF Research Database (Denmark)

    Zhang, Johan Xi; Chen, Zhe; Cheng, M.

    2007-01-01

    A novel stator interior permanent magnet generator (SIPMG) is presented. A modular stator design is used for convenience in manufacture and maintenance. The generator has the advantages of rugged rotor and concentrated winding design whereas the torque ripple is smaller than that produced...... by a doubly salient machine. Several low-speed multi-pole SIPMGs are designed for direct-drive wind turbines with ratings from 3 to 10 MW. Comparisons between the SIPMG and rotor-surface-mounted permanent magnet synchronous generator (PMSG) show that the SIPMGs have about 120% torque density and 78% cost per...

  5. Strategic Scenario Construction Made Easy

    DEFF Research Database (Denmark)

    Duus, Henrik Johannsen

    2016-01-01

    insights from the area of strategic forecasting (of which scenario planning is a proper subset) and experiences gained from a recent course in that area to develop a simpler, more direct, hands-on method for scenario construction and to provide several ideas for scenario construction that can be used......Scenario planning is a well-known way to develop corporate strategy by creating multiple images of alternative futures. Yet although scenario planning grew from very hands-on strategy development efforts in the military and from operations research dedicated to solving practical problems, the use...... of scenarios in business has, in many cases, remained a cumbersome affair. Very often a large group of consultants, employees and staff is involved in the development of scenarios and strategies, thus making the whole process expensive in terms of time, money and human resources. In response, this article uses...

  6. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  7. Tunneling anisotropic magnetoresistance in single-molecule magnet junctions

    Science.gov (United States)

    Xie, Haiqing; Wang, Qiang; Jiao, Hujun; Liang, J.-Q.

    2012-08-01

    We theoretically investigate quantum transport through single-molecule magnet (SMM) junctions with ferromagnetic and normal-metal leads in the sequential regime. The current obtained by means of the rate-equation gives rise to the tunneling anisotropic magnetoresistance (TAMR), which varies with the angle between the magnetization direction of ferromagnetic lead and the easy axis of SMM. The angular dependence of TAMR can serve as a probe to determine experimentally the easy axis of SMM. Moreover, it is demonstrated that both the magnitude and the sign of TAMR are tunable by the bias voltage, suggesting a new spin-valve device with only one magnetic electrode in molecular spintronics.

  8. Organized single-molecule magnets: direct observation of new Mn{sub 12} derivatives on gold

    Energy Technology Data Exchange (ETDEWEB)

    Cornia, A.; Fabretti, A.C.; Pacchioni, M.; Zobbi, L. E-mail: lzobbi@unimo.it; Bonacchi, D.; Caneschi, A.; Gatteschi, D.; Biagi, R.; Del Pennino, U.; De Renzi, V.; Gurevich, L.; Zant, H.S.J. van der

    2004-05-01

    Gold adsorbates of the dodecamanganese(III,IV) single-molecule magnet (SMM) [Mn{sub 12}O{sub 12}(L){sub 16}(H{sub 2}O){sub 4}] where L=16-(acetylthio)hexadecanoate have been prepared and investigated by X-ray photoelectron spectroscopy and scanning tunneling microscopy (STM). The successful imaging of Mn{sub 12} molecules by STM represents a first step toward the magnetic addressing of individual SMMs and the development of molecule-based devices for magnetic information storage.

  9. Evaluation of occupational exposure to ELF magnetic fields at power plants in Greece in the context of European directives

    International Nuclear Information System (INIS)

    Christopoulou, Maria; Govari, Chrysa; Tsaprouni, Panagiota; Karabetsos, Efthymios

    2015-01-01

    The scope of this paper is to comparatively present the extremely low-frequency (ELF) measurements performed at four power plants in Greece, focusing on: (a) the worst-case exposure conditions, (b) the existence of magnetic field harmonic components, (c) the technical similarities among the power plants and (d) comparison of the measured percentages of reference levels at typical working areas in the power plants. A detailed measurement methodology is proposed, including broadband on-site inspection of the working areas, weighted averaged root-mean-square and peak values of magnetic flux density, percentage of reference levels, according to 1998 ICNIRP guidelines and harmonic analysis of the multi-frequency magnetic fields. During the analysis of the occupational exposure in all power plants, the new Directive 2013/35/EU has been taken into account. The study concludes by proposing a mapping procedure of working areas into certain zones, in order to take measures for workers safety. (authors)

  10. Microstructural, magnetic and magnetostrictive properties of Tb0.3Dy0.7Fe1.95 prepared by solidification in a high magnetic field

    International Nuclear Information System (INIS)

    Liu Tie; Liu Yin; Wang Qiang; Gao Pengfei; He Jicheng; Iwai, Kazuhiko

    2013-01-01

    The microstructure evolution and magnetization and magnetostriction properties of Tb 0.3 Dy 0.7 Fe 1.95 alloy solidified in a high magnetic field were investigated. A cellular microstructure was produced, with the grains highly aligned along the direction of the magnetic field. The (Tb,Dy)Fe 2 phase was highly oriented, with its 〈1 1 1〉 axis along the magnetic field direction. The easy magnetization direction of the alloy lay along the magnetic field direction. The magnetostriction at room temperature significantly increased to double that of the sample prepared without high magnetic field; in addition, a sharp rise in the initial magnetostriction at low fields was observed. Applying a high magnetic field during the solidification process is proposed as an effective route for fabricating 〈1 1 1〉 oriented Tb–Dy–Fe compounds, and improving their magnetic and magnetostrictive properties. (paper)

  11. Direct conversion of fusion energy into the electric one in the 'Dragon' magnetic confinement system

    International Nuclear Information System (INIS)

    Glagolev, V.M.; Timofeev, A.V.

    1993-01-01

    It is shown that recuperator in which the thermal energy of particles is transformed into electric oue under drift in crossed fields is naturally coupled with dragontype magnetic confinement system, so the recuperation process can be initiated in the dragon magnetic field. A number of questions occuring under analysis of recuperator-dragon system is considered, including the dynamics of particle transfer to the recuperator, the share of particles entering the recuperator, the effect of rotational transform and the recuperation efficiency

  12. An Easy Method for Plant Polysome Profiling.

    Science.gov (United States)

    Lecampion, Cécile; Floris, Maïna; Fantino, Jean Raphaël; Robaglia, Christophe; Laloi, Christophe

    2016-08-28

    Translation of mRNA to protein is a fundamental and highly regulated biological process. Polysome profiling is considered as a gold standard for the analysis of translational regulation. The method described here is an easy and economical way for fractionating polysomes from various plant tissues. A sucrose gradient is made without the need for a gradient maker by sequentially freezing each layer. Cytosolic extracts are then prepared in a buffer containing cycloheximide and chloramphenicol to immobilize the cytosolic and chloroplastic ribosomes to mRNA and are loaded onto the sucrose gradient. After centrifugation, six fractions are directly collected from the bottom to the top of the gradient, without piercing the ultracentrifugation tube. During collection, the absorbance at 260 nm is read continuously to generate a polysome profile that gives a snapshot of global translational activity. Fractions are then pooled to prepare three different mRNA populations: the polysomes, mRNAs bound to several ribosomes; the monosomes, mRNAs bound to one ribosome; and mRNAs that are not bound to ribosomes. mRNAs are then extracted. This protocol has been validated for different plants and tissues including Arabidopsis thaliana seedlings and adult plants, Nicotiana benthamiana, Solanum lycopersicum, and Oryza sativa leaves.

  13. Direct spectroscopic evidence for competition between thermal molecular agitation and magnetic field in a tetrameric protein in aqueous solution

    Science.gov (United States)

    Calabrò, Emanuele; Magazù, Salvatore

    2018-05-01

    Samples of a typical tetrameric protein, the hemoglobin, at the concentration of 150 mg/ml in bidistilled water solution, were exposed to a uniform magnetic field at 200 mT at different temperatures of 15∘C, 40∘C and 65∘C. Fourier Transform Infrared Spectroscopy was used to analyze the response of the secondary structure of the protein to both stress agents, heating and static magnetic field. The most relevant result which was observed was the significant increasing in intensity of the Amide I band after exposure to the uniform magnetic field at the room temperature of 15∘C. This result can be explained assuming that protein's α-helices aligned along the direction of the applied magnetic field due to their large dipole moment, inducing the alignment of the entire protein. Increasing of temperature up to 40∘C and 65∘C induced a significant reduction of the increasing in intensity of the Amide I band. This effect may be easily explained assuming that Brownian motion of the protein in water solution caused by thermal molecular agitation increased with increasing of temperature, contrasting the effect of the torque of the magnetic field applied to the protein in water solution.

  14. The Direct Effect of Toroidal Magnetic Fields on Stellar Oscillations: An Analytical Expression for the General Matrix Element

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, René; Schad, Ariane; Roth, Markus [Kiepenheuer-Institut für Sonnenphysik, Schöneckstraße 6, D-79104 Freiburg (Germany)

    2017-09-10

    Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.

  15. Self-vibration cancellation of a novel bi-directional magnetized NdFeB/magnetostrictive/piezoelectric laminate.

    Science.gov (United States)

    Leung, Chung Ming; Wang, Feifei; Wang, Ya

    2016-06-01

    A novel magnetoelectric (ME) laminated composite structure is proposed in this work, aiming to provide a good self-vibration cancellation performance under the magnetic field detection environment. The proposed structure consists of two Terfenol-D magnetostrictive alloy plates which are revised and length-magnetized by two NdFeB magnets bonded on the top surface of a thickness-polarized Pb(Zr, Ti)O3 (PZT) ceramic plate with separate electrodes. Experiments have shown that great vibration suppression up to 44 dB under harmonic disturbance was observed. The ME coefficient of the proposed structure also reaches up to ∼29 mV/Oe at non-resonance frequency and 758 mV/Oe at resonance frequency of 79 kHz which is ∼2 times larger than the traditional L-T Terfenol-D/PZT bilayer configuration of the same scale. Such performance improvement is achieved based on the bi-directional magnetic field bias (HBias) of two NdFeB magnets in magnetostrictive layer, internal in-series electrical wire connection in piezoelectric layer. The proposed design has great potential to be used for industrial applications associated with heavy environmental vibration noise.

  16. Self-vibration cancellation of a novel bi-directional magnetized NdFeB/magnetostrictive/piezoelectric laminate

    Science.gov (United States)

    Leung, Chung Ming; Wang, Feifei; Wang, Ya

    2016-06-01

    A novel magnetoelectric (ME) laminated composite structure is proposed in this work, aiming to provide a good self-vibration cancellation performance under the magnetic field detection environment. The proposed structure consists of two Terfenol-D magnetostrictive alloy plates which are revised and length-magnetized by two NdFeB magnets bonded on the top surface of a thickness-polarized Pb(Zr, Ti)O3 (PZT) ceramic plate with separate electrodes. Experiments have shown that great vibration suppression up to 44 dB under harmonic disturbance was observed. The ME coefficient of the proposed structure also reaches up to ˜29 mV/Oe at non-resonance frequency and 758 mV/Oe at resonance frequency of 79 kHz which is ˜2 times larger than the traditional L-T Terfenol-D/PZT bilayer configuration of the same scale. Such performance improvement is achieved based on the bi-directional magnetic field bias (HBias) of two NdFeB magnets in magnetostrictive layer, internal in-series electrical wire connection in piezoelectric layer. The proposed design has great potential to be used for industrial applications associated with heavy environmental vibration noise.

  17. Magnetic interactions between nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Hansen, Mikkel Fougt; Frandsen, Cathrine

    2010-01-01

    We present a short overview of the influence of inter-particle interactions on the properties of magnetic nanoparticles. Strong magnetic dipole interactions between ferromagnetic or ferrimagnetic particles, that would be superparamagnetic if isolated, can result in a collective state...... of nanoparticles. This collective state has many similarities to spin-glasses. In samples of aggregated magnetic nanoparticles, exchange interactions are often important and this can also lead to a strong suppression of superparamagnetic relaxation. The temperature dependence of the order parameter in samples...... of strongly interacting hematite nanoparticles or goethite grains is well described by a simple mean field model. Exchange interactions between nanoparticles with different orientations of the easy axes can also result in a rotation of the sub-lattice magnetization directions....

  18. Direct Observations of Magnetic Flux Rope Formation during a Solar Coronal Mass Ejection

    Science.gov (United States)

    Song, H.; Zhang, J.; Chen, Y.; Cheng, X.

    2014-12-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre existing MFR scenario. There is almost no reported observation about MFR formation during the eruption. In this presentation, we present an intriguing observation of a solar eruptive event with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows a detailed formation process of the MFR during the eruption. The process started with the expansion of a low lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly-formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved-in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (~ 10 MK), presumably a MFR, producing a CME. We suggest that two spatially-separated magnetic reconnections occurred in this event, responsible for producing the flare and the hot blob (CME), respectively.

  19. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    International Nuclear Information System (INIS)

    Song, H. Q.; Chen, Y.; Zhang, J.; Cheng, X.

    2014-01-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  20. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Song, H. Q.; Chen, Y. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); Cheng, X., E-mail: hqsong@sdu.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China)

    2014-09-10

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  1. Transcranial magnetic stimulation with a half-sine wave pulse elicits direction-specific effects in human motor cortex

    DEFF Research Database (Denmark)

    Jung, Nikolai H; Delvendahl, Igor; Pechmann, Astrid

    2012-01-01

    Transcranial magnetic stimulation (TMS) commonly uses so-called monophasic pulses where the initial rapidly changing current flow is followed by a critically dampened return current. It has been shown that a monophasic TMS pulse preferentially excites different cortical circuits in the human motor...... hand area (M1-HAND), if the induced tissue current has a posterior-to-anterior (PA) or anterior-to-posterior (AP) direction. Here we tested whether similar direction-specific effects could be elicited in M1-HAND using TMS pulses with a half-sine wave configuration....

  2. Design and application of permanent magnet flux sources for mechanical testing of magnetoactive elastomers at variable field directions.

    Science.gov (United States)

    Hiptmair, F; Major, Z; Haßlacher, R; Hild, S

    2015-08-01

    Magnetoactive elastomers (MAEs) are a class of smart materials whose mechanical properties can be rapidly and reversibly changed by an external magnetic field. Due to this tunability, they are useable for actuators or in active vibration control applications. An extensive magnetomechanical characterization is necessary for MAE material development and requires experiments under cyclic loading in uniform but variable magnetic fields. MAE testing apparatus typically rely on fields of adjustable strength, but fixed (transverse) direction, often provided by electromagnets. In this work, two permanent magnet flux sources were developed as an add-on for a modular test stand, to allow for mechanical testing in uniform fields of variable direction. MAE specimens, based on a silicone matrix with isotropic and anisotropic carbonyl iron particle distributions, were subjected to dynamic mechanical analysis under different field and loading configurations. The magneto-induced increase of stiffness and energy dissipation was determined by the change of the hysteresis loop area and dynamic modulus values. A distinct influence of the composite microstructure and the loading state was observed. Due to the very soft and flexible matrix used for preparing the MAE samples, the material stiffness and damping behavior could be varied over a wide range via the applied field direction and intensity.

  3. Soft modes in the easy plane pyrochlore antiferromagnet

    International Nuclear Information System (INIS)

    Champion, J D M; Holdsworth, P C W

    2004-01-01

    Thermal fluctuations lift the high ground state degeneracy of the classical nearest neighbour pyrochlore antiferromagnet, with easy plane anisotropy, giving a first-order phase transition to a long range ordered state. We show, from spin wave analysis and numerical simulation, that even below this transition a continuous manifold of states, of dimension N 2/3 , exist (N is the number of degrees of freedom). As the temperature goes to zero a further 'order by disorder' selection is made from this manifold. The pyrochlore antiferromagnet Er 2 Ti 2 O 7 is believed to have an easy plane anisotropy and is reported to have the same magnetic structure. This is perhaps surprising, given that the dipole interaction lifts the degeneracy of the classical model in favour of a different structure. We interpret our results in the light of these facts

  4. Self running actuators moving in the same direction as the exciting magnetic field

    International Nuclear Information System (INIS)

    Enokizono, M.; Todaka, T.; Goto, K.

    1998-01-01

    This paper presents two kinds of drive units whose rotation axes are parallel to the exciting outer magnetic field. One is a hard-material-type that uses permanent magnets and silicon steel sheets to obtain the radial components of the field strength, and the other is a soft-material-type that uses the vibration of an amorphous ribbon to induce a rotational force. These drive units were developed to improve the freedom of movement of sensing devices. By combining the developed units with conventional ones, it will be possible to control the movement of devices freely by means of the outer magnetic field. In this paper, the basic characteristics of the drive units and their applicability are discussed. (author)

  5. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-01-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  6. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    Science.gov (United States)

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-03-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  7. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu

    2018-03-29

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  8. Estimating Accurate Target Coordinates with Magnetic Resonance Images by Using Multiple Phase-Encoding Directions during Acquisition.

    Science.gov (United States)

    Kim, Minsoo; Jung, Na Young; Park, Chang Kyu; Chang, Won Seok; Jung, Hyun Ho; Chang, Jin Woo

    2018-06-01

    Stereotactic procedures are image guided, often using magnetic resonance (MR) images limited by image distortion, which may influence targets for stereotactic procedures. The aim of this work was to assess methods of identifying target coordinates for stereotactic procedures with MR in multiple phase-encoding directions. In 30 patients undergoing deep brain stimulation, we acquired 5 image sets: stereotactic brain computed tomography (CT), T2-weighted images (T2WI), and T1WI in both right-to-left (RL) and anterior-to-posterior (AP) phase-encoding directions. Using CT coordinates as a reference, we analyzed anterior commissure and posterior commissure coordinates to identify any distortion relating to phase-encoding direction. Compared with CT coordinates, RL-directed images had more positive x-axis values (0.51 mm in T1WI, 0.58 mm in T2WI). AP-directed images had more negative y-axis values (0.44 mm in T1WI, 0.59 mm in T2WI). We adopted 2 methods to predict CT coordinates with MR image sets: parallel translation and selective choice of axes according to phase-encoding direction. Both were equally effective at predicting CT coordinates using only MR; however, the latter may be easier to use in clinical settings. Acquiring MR in multiple phase-encoding directions and selecting axes according to the phase-encoding direction allows identification of more accurate coordinates for stereotactic procedures. © 2018 S. Karger AG, Basel.

  9. DIRECT DETECTION OF THE HELICAL MAGNETIC FIELD GEOMETRY FROM 3D RECONSTRUCTION OF PROMINENCE KNOT TRAJECTORIES

    Energy Technology Data Exchange (ETDEWEB)

    Zapiór, Maciej; Martinez-Gómez, David, E-mail: zapior.maciek@gmail.com [Physics Department, University of the Balearic Islands, Cra. de Valldemossa, km 7.5. Palma (Illes Balears), E-07122 (Spain)

    2016-02-01

    Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1–3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 10{sup 9} A.

  10. Direct Detection of the Helical Magnetic Field Geometry from 3D Reconstruction of Prominence Knot Trajectories

    Science.gov (United States)

    Zapiór, Maciej; Martínez-Gómez, David

    2016-02-01

    Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1-3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 109 A.

  11. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaozhi; Yue, Zhenxing, E-mail: yuezhx@mail.tsinghua.edu.cn; Meng, Siqin; Yuan, Lixin [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-28

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup ¯}0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s} of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup ¯}0)//α-Fe{sub 2}O{sub 3}(112{sup ¯}0)//Al{sub 2}O{sub 3}(112{sup ¯}0)

  12. A direct search for stable magnetic monopoles produced in positron proton collisions at HERA

    Czech Academy of Sciences Publication Activity Database

    Aktas, A.; Andreev, V.; Anthonis, T.; Cvach, Jaroslav; Herynek, Ivan; Reimer, Petr; Sedlák, Kamil; Zálešák, Jaroslav

    2005-01-01

    Roč. 41, - (2005), s. 133-144 ISSN 1434-6044 Institutional research plan: CEZ:AV0Z10100502 Keywords : HI experiment * ep scattering * magnetic monopoles Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.209, year: 2005

  13. Direct observation of the thermal demagnetization of magnetic vortex structures in nonideal magnetite recorders

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Muxworthy, Adrian R.; Kovács, András

    2016-01-01

    The thermal demagnetization of pseudo-single-domain (PSD) magnetite (Fe3O4) particles, which govern the magnetic signal in many igneous rocks, is examined using off-axis electron holography. Visualization of a vortex structure held by an individual Fe3O4 particle (~250nm in diameter) during in situ...

  14. Novel Technique for Direct Measurement of the Plasma Diffusion Coefficient in Magnetized Plasma

    Czech Academy of Sciences Publication Activity Database

    Brotánková, Jana; Martines, E.; Adámek, Jiří; Stöckel, Jan; Popa, G.; Costin, C.; Ionita, G.; Schrittwieser, R.; Van Oost, G.

    2008-01-01

    Roč. 48, 5-7 (2008), s. 418-423 ISSN 0863-1042. [International Workshop on Electrical Probes in Magnetized Plasmas/7th./. Praha, 22.07.2007-25.07.2007] Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * probe diagnostics * diffusion coefficient Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.250, year: 2008

  15. Physics over easy Breakfasts with Beth and physics

    CERN Document Server

    Azaroff, L V

    2010-01-01

    During a sequence of meals, the author relates the principal features of physics in easy-to-understand conversations with his wife Beth. Beginning with the studies of motion by Galileo and Newton through to the revolutionary theories of relativity and quantum mechanics in the 20th century, all important aspects of electricity, energy, magnetism, gravity and the structure of matter and atoms are explained and illustrated. The second edition similarly recounts the more recent application of these theories to nanoparticles, Bose-Einstein condensates, quantum entanglement and quantum computers. By

  16. Effect of phase-encoding direction on group analysis of resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Mori, Yasuo; Miyata, Jun; Isobe, Masanori; Son, Shuraku; Yoshihara, Yujiro; Aso, Toshihiko; Kouchiyama, Takanori; Murai, Toshiya; Takahashi, Hidehiko

    2018-05-17

    Echo-planar imaging is a common technique used in functional magnetic resonance imaging (fMRI), however it suffers from image distortion and signal loss because of large susceptibility effects that are related to the phase-encoding direction of the scan. Despite this relationship, the majority of neuroimaging studies have not considered the influence of phase-encoding direction. Here, we aimed to clarify how phase-encoding direction can affect the outcome of an fMRI connectivity study of schizophrenia. Resting-state fMRI using anterior to posterior (A-P) and posterior to anterior (P-A) directions was used to examine 25 patients with schizophrenia (SC) and 37 matched healthy controls (HC). We conducted a functional connectivity analysis using independent component analysis and performed three group comparisons: A-P vs. P-A (all participants), SC vs. HC for the A-P and P-A datasets, and the interaction between phase-encoding direction and participant group. The estimated functional connectivity differed between the two phase-encoding directions in areas that were more extensive than those where signal loss has been reported. Although functional connectivity in the SC group was lower than that in the HC group for both directions, the A-P and P-A conditions did not exhibit the same specific pattern of differences. Further, we observed an interaction between participant group and the phase-encoding direction in the left temporo-parietal junction and left fusiform gyrus. Phase-encoding direction can influence the results of functional connectivity studies. Thus, appropriate selection and documentation of phase-encoding direction will be important in future resting-state fMRI studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  18. First-cut design of an all-superconducting 100-T direct current magnet.

    Science.gov (United States)

    Iwasa, Yukikazu; Hahn, Seungyong

    2013-12-16

    A 100-T magnetic field has heretofore been available only in pulse mode. This first-cut design demonstrates that a 100-T DC magnet (100 T) is possible. We base our design on: Gadolinium-based coated superconductor; a nested-coil formation, each a stack of double-pancake coils with the no-insulation technique; a band of high-strength steel over each coil; and a 12-T radial-field limit. The 100 T, a 20 mm cold bore, 6-m diameter, 17-m height, with a total of 12 500-km long superconductor, stores an energy of 122 GJ at its 4.2-K operating current of 2400 A. It requires a 4.2-K cooling power of 300 W.

  19. Complex remanent magnetization in the Kızılkaya ignimbrite (central Anatolia): Implication for paleomagnetic directions

    Science.gov (United States)

    Agrò, Alessandro; Zanella, Elena; Le Pennec, Jean-Luc; Temel, Abidin

    2017-04-01

    site-mean paleomagnetic direction is consistent with data from the literature. At a few other sites, the remanence is more complex: the direction moves along a great circle during demagnetization and no stable end-point is reached. The occurrence of oxidized Ti-magnetite or hematite as well as two remanence components with overlapping coercivity and blocking temperature spectra suggest that the Kızılkaya ignimbrite acquired first a thermal remanent magnetization and then, during the final cooling or a short time later, a secondary remanent magnetization component which is interpreted as a CRM acquired during post-emplacement devitrification processes. Notwithstanding the Kızılkaya ignimbrite is a single cooling unit, its magnetic properties suffered substantial variations laterally and vertically within the deposit. The Kızılkaya case shows that thick pyroclastic deposits should be sampled using a stratigraphic approach, at different sites and different stratigraphic heights at each individual sampling location, otherwise, under-sampling may significantly affect the paleomagnetic results. When sampling is performed on a short duration or on very poorly preserved deposits we recommend drilling the lower-central portion in the most strongly welded and devitrified facies. Such sampling strategy avoids complications arising from the potential presence of a pervasive secondary CRM masking the original ChRM.

  20. Investigation on the Possible Use of Magnetic Bearings in Large Direct Drive Wind Turbines

    NARCIS (Netherlands)

    Shrestha, G.; Polinder, H.; Bang, D.; Jassal, A.K.; Ferreira, J.A.

    2009-01-01

    A direct drive generator used in wind turbine has high energy yield compared to other drivetrain topologies and low maintenance is expected as the technology matures. On the other hand direct drive generator weight and size increases rapidly when scaled up to larger units. This paper will

  1. Influence of magnetic disorders on quantum anomalous Hall effect in magnetic topological insulator films beyond the two-dimensional limit

    Science.gov (United States)

    Xing, Yanxia; Xu, Fuming; Cheung, King Tai; Sun, Qing-feng; Wang, Jian; Yao, Yugui

    2018-04-01

    Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetic topological insulator (MTI) thin films fabricated on magnetically doped {({{Bi}},{{Sb}})}2{{{Te}}}3. In an MTI thin film with the magnetic easy axis along the normal direction (z-direction), orientations of magnetic dopants are randomly distributed around the magnetic easy axis, acting as magnetic disorders. With the aid of the non-equilibrium Green's function and Landauer–Büttiker formalism, we numerically study the influence of magnetic disorders on QAHE in an MTI thin film modeled by a three-dimensional tight-binding Hamiltonian. It is found that, due to the existence of gapless side surface states, QAHE is protected even in the presence of magnetic disorders as long as the z-component of magnetic moment of all magnetic dopants are positive. More importantly, such magnetic disorders also suppress the dissipation of the chiral edge states and enhance the quality of QAHE in MTI films. In addition, the effect of magnetic disorders depends very much on the film thickness, and the optimal influence is achieved at certain thickness. These findings are new features for QAHE in three-dimensional systems, not present in two-dimensional systems.

  2. Spin Hall magnetoresistance at the interface between platinum and cobalt ferrite thin films with large magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    Takeshi Tainosho

    2017-05-01

    Full Text Available The recently discovered spin Hall magnetoresistance (SMR effect is a useful means to obtain information on the magnetization process at the interface between a nonmagnetic metal and ferromagnetic insulators. We report the SMR measurements at the interface between platinum and cobalt ferrite thin films for samples with two different preferential directions of magnetization (out-of-plane and in-plane. The directional difference of the magnetic easy axis does not seem to influence the value of SMR.

  3. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    International Nuclear Information System (INIS)

    Sun, Bolu; Gou, Xiaodan; Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping; Hu, Fangdi

    2017-01-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s −1 , respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10 −7 to 1.0 × 10 −4 mol/L with detection limit (S/N = 3)of 4.3 × 10 −8 mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM. • The proposed

  4. Direct measurement of magnon temperature: new insight into magnon-phonon coupling in magnetic insulators.

    Science.gov (United States)

    Agrawal, M; Vasyuchka, V I; Serga, A A; Karenowska, A D; Melkov, G A; Hillebrands, B

    2013-09-06

    We present spatially resolved measurements of the magnon temperature in a magnetic insulator subject to a thermal gradient. Our data reveal an unexpectedly close correspondence between the spatial dependencies of the exchange magnon and phonon temperatures. These results indicate that if--as is currently thought--the transverse spin Seebeck effect is caused by a temperature difference between the magnon and phonon baths, it must be the case that the magnon temperature is spectrally nonuniform and that the effect is driven by the sparsely populated dipolar region of the magnon spectrum.

  5. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bolu [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Xiaodan [School of Chemistry and Chemical Engineering, Nanjing University, 210046 (China); Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China)

    2017-05-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s{sup −1}, respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10{sup −7} to 1.0 × 10{sup −4} mol/L with detection limit (S/N = 3)of 4.3 × 10{sup −8} mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM.

  6. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  7. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  8. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  9. Hall effect in a strong magnetic field: Direct comparisons of compressible magnetohydrodynamics and the reduced Hall magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2010-01-01

    In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.

  10. Direct observation of cation distributions of ideal inverse spinel CoFe2O4 nanofibres and correlated magnetic properties

    KAUST Repository

    Zeng, Xue

    2017-04-25

    Low-dimensional spinel ferrites have recently attracted increasing attention because their tunable magnetic properties make them attractive candidates as spin-filtering tunnel barriers in spintronic devices and as magnetic components in artificial multiferroic heterostructures. Although we know that the distribution of cations (Fe3+ and Co2+) in a spinel structure governs its magnetic properties, their distribution in the so-called ideal inverse spinel structure of a ferrite, CoFe2O4, has not yet been imaged with sub-ångstrom resolution. In this work, we fill this gap in evidence by reporting a direct observation of the distribution of cations in an ideal inverse spinel structure of CoFe2O4 nanofibres using aberration-corrected transmission electron microscopy (TEM). The ordering of Co2+ and Fe3+ at the octahedral sites imaged along either [001], [011] or [-112] orientation was identified as 1 : 1, in accordance with the ideal inverse spinel structure. The saturation magnetisation calculated based on the crystal structure as determined from the TEM image is in good agreement with that measured experimentally on the spinel CoFe2O4 nanofibres, further confirming results from TEM.

  11. Useful oriented immobilization of antibodies on chimeric magnetic particles: direct correlation of biomacromolecule orientation with biological activity by AFM studies.

    Science.gov (United States)

    Marciello, Marzia; Filice, Marco; Olea, David; Velez, Marisela; Guisan, José M; Mateo, Cesar

    2014-12-16

    The preparation and performance of a suitable chimeric biosensor based on antibodies (Abs) immobilized on lipase-coated magnetic particles by means of a standing orienting strategy are presented. This novel system is based on hydrophobic magnetic particles coated with modified lipase molecules able to orient and further immobilize different Abs in a covalent way without any previous site-selective chemical modification of biomacromolecules. Different key parameters attending the process were studied and optimized. The optimal preparation was performed using a controlled loading (1 nmol Ab g(-1) chimeric support) at pH 9 and a short reaction time to recover a biological activity of about 80%. AFM microscopy was used to study and confirm the Abs-oriented immobilization on lipase-coated magnetic particles and the final achievement of a highly active and recyclable chimeric immune sensor. This direct technique was demonstrated to be a powerful alternative to the indirect immunoactivity assay methods for the study of biomacromolecule-oriented immobilizations.

  12. Magnetic reconnection simulation using the 2.5D em [electromagnetic] direct implicit code AVANTI

    International Nuclear Information System (INIS)

    Hewett, D.W.; Francis, G.E.; Max, C.E.

    1988-01-01

    Collisionless reconnection of magnetic field lines depends upon electron inertia effects and details of the electron and ion distribution functions, thus requiring a kinetic description of both. Though traditional explicit PIC techniques provide this description in principle, they are severely limited in parameters by time step constraints. This parameter regime has been expanded by using the recently constructed 2.5 D electromagnetic code AVANTI in this work. The code runs stably with arbitrarily large Δt and is quite robust with respect to large fluctuations occurring due to small numbers of particles per cell. We have found several qualitatively new features. The reconnection process is found to occur in distinct stages: early spontaneous reconnection fed by the free energy of an initial anisotropy in the electron component, coalescence of the resulting small-scale filaments of electron current, accompanied by electron jetting, and oscillatory flow of electrons through the magnetic X-point, superposed on continuing nonlinear growth of ion-mediated reconnection. The time evolution of stage is strongly dependent on M i /m e . 12 refs., 6 figs

  13. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    International Nuclear Information System (INIS)

    Lasche, G.P.

    1988-01-01

    A method for recovering energy in an inertial confinement fusion reactor having a reactor chamber and a sphere forming means positioned above an opening in the reactor chamber is described, comprising: embedding a fusion target fuel capsule having a predetermined yield in the center of a hollow solid lithium tube and subsequently embedding the hollow solid lithium tube in a liquid lithium medium; using the sphere forming means for forming the liquid lithium into a spherical shaped liquid lithium mass having a diameter smaller than the length of the hollow solid lithium tube with the hollow solid lithium tube being positioned along a diameter of the spherical shaped mass, providing the spherical shaped liquid lithium mass with the fusion fuel target capsule and hollow solid lithium tube therein as a freestanding liquid lithium shaped spherical shaped mass without any external means for maintaining the spherical shape by dropping the liquid lithium spherical shaped mass from the sphere forming means into the reactor chamber; producing a magnetic field in the reactor chamber; imploding the target capsule in the reactor chamber to produce fusion energy; absorbing fusion energy in the liquid lithium spherical shaped mass to convert substantially all the fusion energy to shock induced kinetic energy of the liquid lithium spherical shaped mass which expands the liquid lithium spherical shaped mass; and compressing the magnetic field by expansion of the liquid lithium spherical shaped mass and recovering useful energy

  14. Anisotropy of out-of-phase magnetic susceptibility of rocks as a tool for direct determination of magnetic subfabrics of some minerals: an introductory study

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Chadima, Martin; Ježek, J.; Pokorný, J.

    2017-01-01

    Roč. 208, č. 1 (2017), s. 385-402 ISSN 0956-540X R&D Projects: GA AV ČR IAAX00130801 Institutional support: RVO:67985831 Keywords : magnetic and electrical properties * magnetic fabrics and anisotropy * magnetic mineralogy and petrology * rock and mineral magnetism Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.414, year: 2016

  15. Diagnosing upper extremity deep vein thrombosis with non-contrast-enhanced Magnetic Resonance Direct Thrombus Imaging: A pilot study.

    Science.gov (United States)

    Dronkers, C E A; Klok, F A; van Haren, G R; Gleditsch, J; Westerlund, E; Huisman, M V; Kroft, L J M

    2018-03-01

    Diagnosing upper extremity deep vein thrombosis (UEDVT) can be challenging. Compression ultrasonography is often inconclusive because of overlying anatomic structures that hamper compressing veins. Contrast venography is invasive and has a risk of contrast allergy. Magnetic Resonance Direct Thrombus Imaging (MRDTI) and Three Dimensional Turbo Spin-echo Spectral Attenuated Inversion Recovery (3D TSE-SPAIR) are both non-contrast-enhanced Magnetic Resonance Imaging (MRI) sequences that can visualize a thrombus directly by the visualization of methemoglobin, which is formed in a fresh blood clot. MRDTI has been proven to be accurate in diagnosing deep venous thrombosis (DVT) of the leg. The primary aim of this pilot study was to test the feasibility of diagnosing UEDVT with these MRI techniques. MRDTI and 3D TSE-SPAIR were performed in 3 pilot patients who were already diagnosed with UEDVT by ultrasonography or contrast venography. In all patients, UEDVT diagnosis could be confirmed by MRDTI and 3D TSE-SPAIR in all vein segments. In conclusion, this study showed that non-contrast MRDTI and 3D TSE-SPAIR sequences may be feasible tests to diagnose UEDVT. However diagnostic accuracy and management studies have to be performed before these techniques can be routinely used in clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Simultaneous multislice magnetic resonance fingerprinting (SMS-MRF) with direct-spiral slice-GRAPPA (ds-SG) reconstruction.

    Science.gov (United States)

    Ye, Huihui; Cauley, Stephen F; Gagoski, Borjan; Bilgic, Berkin; Ma, Dan; Jiang, Yun; Du, Yiping P; Griswold, Mark A; Wald, Lawrence L; Setsompop, Kawin

    2017-05-01

    To develop a reconstruction method to improve SMS-MRF, in which slice acceleration is used in conjunction with highly undersampled in-plane acceleration to speed up MRF acquisition. In this work two methods are employed to efficiently perform the simultaneous multislice magnetic resonance fingerprinting (SMS-MRF) data acquisition and the direct-spiral slice-GRAPPA (ds-SG) reconstruction. First, the lengthy training data acquisition is shortened by employing the through-time/through-k-space approach, in which similar k-space locations within and across spiral interleaves are grouped and are associated with a single set of kernel. Second, inversion recovery preparation (IR prepped), variable flip angle (FA), and repetition time (TR) are used for the acquisition of the training data, to increase signal variation and to improve the conditioning of the kernel fitting. The grouping of k-space locations enables a large reduction in the number of kernels required, and the IR-prepped training data with variable FA and TR provide improved ds-SG kernels and reconstruction performance. With direct-spiral slice-GRAPPA, tissue parameter maps comparable to that of conventional MRF were obtained at multiband (MB) = 3 acceleration using t-blipped SMS-MRF acquisition with 32-channel head coil at 3 Tesla (T). The proposed reconstruction scheme allows MB = 3 accelerated SMS-MRF imaging with high-quality T 1 , T 2 , and off-resonance maps, and can be used to significantly shorten MRF acquisition and aid in its adoption in neuro-scientific and clinical settings. Magn Reson Med 77:1966-1974, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Interpreting Histograms. As Easy as It Seems?

    Science.gov (United States)

    Lem, Stephanie; Onghena, Patrick; Verschaffel, Lieven; Van Dooren, Wim

    2014-01-01

    Histograms are widely used, but recent studies have shown that they are not as easy to interpret as it might seem. In this article, we report on three studies on the interpretation of histograms in which we investigated, namely, (1) whether the misinterpretation by university students can be considered to be the result of heuristic reasoning, (2)…

  18. Magnetic Separation for the Direct Observation of Mineral-Associated Microbial Diversity

    Science.gov (United States)

    Harrison, B. K.; Orphan, V.

    2006-12-01

    Previous studies have demonstrated that microorganisms may selectively colonize mineral surfaces in diverse environments. Mineral substrates may serve as an important source of limiting nutrients or provide electron acceptors and donors for dissimilatory reactions. This work presents a new method for characterizing the microbial diversity associated with specific components in environmental samples. Minerals are concentrated from the bulk sample according to magnetic susceptibility, resulting in compositionally distinct partitions. The microbial communities associated with these partitions are subsequently characterized using molecular techniques. Initial testing of samples from active and dormant hydrothermal chimney structures from the Lau and Fiji Basins show that mineral components may be concentrated from bulk samples without concealing pre-existing patterns of selective colonization. 16S gene surveys from environmental clone libraries reveal distinct colonization patterns for thermophilic archaea and bacteria between sulfide mineral partitions. This method offers a unique tool discerning the role of mineral composition in surface-associated diversity.

  19. Skyrmion robustness in noncentrosymmetric magnets with axial symmetry: The role of anisotropy and tilted magnetic fields

    Science.gov (United States)

    Leonov, A. O.; Kézsmárki, I.

    2017-12-01

    We investigate the stability of Néel skyrmions against tilted magnetic fields in polar magnets with uniaxial anisotropy ranging from easy-plane to easy-axis type. We construct the corresponding phase diagrams and investigate the internal structure of skewed skyrmions with displaced cores. We find that moderate easy-plane anisotropy increases the stability range of Néel skyrmions for fields along the symmetry axis, while moderate easy-axis anisotropy enhances their robustness against tilted magnetic fields. We stress that the direction along which the skyrmion cores are shifted depends on the symmetry of the underlying crystal lattice. The cores of Néel skyrmions, realized in polar magnets with Cn v symmetry, are displaced either along or opposite to the off-axis (in-plane) component of the magnetic field depending on the rotation sense of the magnetization, dictated by the sign of the Dzyaloshinskii constant. The core shift of antiskyrmions, present in noncentrosymmetric magnets with D2 d symmetry, depends on the in-plane orientation of the magnetic field and can be parallel, antiparallel, or perpendicular to it. We argue that the role of anisotropy in magnets with axially symmetric crystal structure is different from that in cubic helimagnets. Our results can be applied to address recent experiments on polar magnets with C3 v symmetry, GaV4S8 and GaV4Se8 , and Mn1.4Pt0.9Pd0.1Sn with D2 d symmetry.

  20. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    Science.gov (United States)

    Suhariningsih; Basuki Notobroto, Hari; Winarni, Dwi; Achmad Hussein, Saikhu; Anggono Prijo, Tri

    2017-05-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice (mus musculus), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared.

  1. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    International Nuclear Information System (INIS)

    Suhariningsih; Prijo, Tri Anggono; Notobroto, Hari Basuki; Winarni, Dwi; Hussein, Saikhu Achmad

    2017-01-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice ( mus musculus ), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared. (paper)

  2. Method and apparatus for sensing a desired component of an incident magnetic field using magneto resistive elements biased in different directions

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    1999-01-01

    A method and apparatus for sensing a desired component of a magnetic field using an isotropic magnetoresistive material. This is preferably accomplished by providing a bias field that is parallel to the desired component of the applied magnetic field. The bias field is applied in a first direction relative to a first set of magnetoresistive sensor elements, and in an opposite direction relative to a second set of magnetoresistive sensor elements. In this configuration, the desired component of the incident magnetic field adds to the bias field incident on the first set of magnetoresistive sensor elements, and subtracts from the bias field incident on the second set of magnetoresistive sensor elements. The magnetic field sensor may then sense the desired component of the incident magnetic field by simply sensing the difference in resistance of the first set of magnetoresistive sensor elements and the second set of magnetoresistive sensor elements.

  3. Design of Transverse Flux Permanent Magnet Machines for Large Direct-Drive Wind Turbines

    NARCIS (Netherlands)

    Bang, D.

    2010-01-01

    In order to maximize the energy harnessed, to minimize the cost, to improve the power quality and to ensure safety together with the growth of the size, various wind turbine concepts have been developed during last three decades. Different generator systems such as geared and direct-drive generator

  4. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    NARCIS (Netherlands)

    Yildirim, O.; Gang, T.; Kinge, S.S.; Reinhoudt, David; Blank, David H.A.; van der Wiel, Wilfred Gerard; Rijnders, Augustinus J.H.M.; Huskens, Jurriaan

    2010-01-01

    FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs

  5. Magnetic Reconnection Processes Involving Modes Propagating in the Ion Diamagnetic Velocity Direction

    Science.gov (United States)

    Buratti, P.; Coppi, B.; Pucella, G.; Zhou, T.

    2013-10-01

    Experiments in weakly collisional plasma regimes, (e.g. neutral beam heated plasmas in the H-regime), measuring the Doppler shift associated with the plasma local rotation, have shown that the toroidal mode phase velocity vph in the frame with Er = 0 is in the direction of the ion diamagnetic velocity. For ohmically heated plasmas, with higher collisionalities, vph in the laboratory frame is in the direction of the electron diamagnetic velocity, but plasma rotation is reversed as well, and vph, in the Er = 0 frame, is in the ion diamagnetic velocity direction. Theoretically, two classes of reconnecting modes should emerge: drift-tearing modes and ``inductive modes'' that depend on the effects of a finite plasma inductivity. The former modes, with vph in the direction of the electron diamagnetic velocity, require the pre-excitation of a different kind of mode in order to become unstable in weakly collisional regimes. The second kind of modes has a growth rate associated with the relevant finite ion viscosity. A comprehensive theory is presented. Sponsored in part by the US DOE.

  6. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  7. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  8. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  9. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  10. Templating Biomineralization: Surface Directed Protein Self-assembly and External Magnetic Field Stimulation of Osteoblasts

    Science.gov (United States)

    Ba, Xiaolan

    Biomineralization is a wide-spread phenomenon in the biological systems, which is the process of mineral formation by organisms through interaction between its organic contents and the inorganic minerals. The process is essential in a broad spectrum of biological phenomena ranging from bone and tooth formation to pathological mineralization under hypoxic conditions or cancerous formations. In this thesis I studied biomineralization at the earliest stages in order to obtain a better understanding of the fundamental principals involved. This knowledge is essential if we want to engineer devices which will increase bone regeneration or prevent unwanted mineral deposits. Extracellular matrix (ECM) proteins play an essential role during biomineralization in bone and engineered tissues. In this dissertation, I present an approach to mimic the ECM in vitro to probe the interactions of these proteins with calcium phosphate mineral and with each other. Early stage of mineralization is investigated by mechanical properties of the protein fibers using Scanning Probe Microscopy (SPM) and Shear Modulation Force Microscopy (SMFM). The development of mineral crystals on the protein matrices is also characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Grazing Incidence X-ray Diffraction (GIXRD). The results demonstrate complementary actions of the two ECM proteins to collect cations and template calcium phosphate mineral, respectively. Magnets have been clinically used as an "induction source" in various bone or orthodontic treatments. However, the mechanism and effects of magnetic fields remain unclear. In this dissertation, I also undertake the present investigation to study the effects of 150 mT static magnetic fields (SMF) on ECM development and cell biomineralization using MC3T3-E1 osteobalst-like cells. Early stage of biomineralization is characterized by SPM, SMFM and confocal laser scanning microscopy (CSLM). Late stage of

  11. Lattice and magnetic anisotropies in uranium intermetallic compounds

    DEFF Research Database (Denmark)

    Havela, L.; Mašková, S.; Adamska, A.

    2013-01-01

    Examples of UNiAlD and UCoGe illustrate that the soft crystallographic direction coincides quite generally with the shortest U-U links in U intermetallics. Added to existing experimental evidence on U compounds it leads to a simple rule, that the easy magnetization direction and the soft crystall...... crystallographic direction (in the sense of highest compressibility under hydrostatic pressure) must be mutually orthogonal....

  12. Dark Matter Direct Searches and the Anomalous Magnetic Moment of Muon

    CERN Document Server

    Lahanas, Athanasios B; Spanos, V C; CERN. Geneva

    2001-01-01

    In the framework of the Constrained Minimal Supersymmetric Standard Model (CMSSM) we discuss the impact of the recent experimental information, especially from E821 Brookhaven experiment on $g_{\\mu}-2$ along with the light Higgs boson mass bound from LEP, to the Dark Matter direct searches. Imposing these experimental bounds, the maximum value of the spin-independent neutralino-nucleon cross section turns out to be of the order of $10^{-8}$ pb for large values of $\\tan\\beta$ and low $M_{1/2}, m_0$. The effect of the recent experimental bounds is to decrease the maximum value of the cross section by about an order of magnitude, demanding the analogous sensitivity from the direct Dark Matter detection experiments.

  13. Direct metabolic fingerprinting of commercial herbal tinctures by nuclear magnetic resonance spectroscopy and mass spectrometry.

    Science.gov (United States)

    Politi, Matteo; Zloh, Mire; Pintado, Manuela E; Castro, Paula M L; Heinrich, Michael; Prieto, Jose M

    2009-01-01

    Tinctures are widely used liquid pharmaceutical preparations traditionally obtained by maceration of one or more medicinal plants in ethanol-water solutions. Such a process results in the extraction of virtually hundreds of structurally diverse compounds with different polarities. Owing to the large chemical diversity of the constituents present in the herbal tinctures, the analytical tools used for the quality control of tinctures are usually optimised only for the detection of single chemical entities or specific class of compounds. In order to overcome the major limitations of the current methods used for analysis of tinctures, a new methodological approach based on NMR spectroscopy and MS spectrometry has been tested with different commercial tinctures. Diffusion-edited 1H-NMR (1D DOSY) and 1H-NMR with suppression of the ethanol and water signals have been applied here for the first time to the direct analysis of commercial herbal tinctures derived from Echinacea purpurea, Hypericum perforatum, Ginkgo biloba and Valeriana officinalis. The direct injection of the tinctures in the MS detector in order to obtain the corresponding metabolic profiles was also performed. Using both NMR and MS methods it was possible, without evaporation or separation steps, to obtain a metabolic fingerprint able to distinguish between tinctures prepared with different plants. Batch-to-batch homogeneity, as well as degradation after the expiry date of a batch, was also investigated. The techniques proposed here represent fast and convenient direct analyses of medicinal herbal tinctures.

  14. Nuclear magnetic relaxation and origins of RMN signals from GdAl2

    International Nuclear Information System (INIS)

    Santos Oliveira Junior, I. dos.

    1988-12-01

    The intermetallic compound GdAl 2 crystallizes in the cubic Laves phase C15. It is a simple ferromagnet below 176K. The easy direction of magnetization in this compound is such that the Al ions are distributed among two magnetically inequivalent sites. The pulsed NMR technique was used to study the origin of the signals from these two sites and the nuclear magnetic relaxation. (author) [pt

  15. Model-based magnetization retrieval from holographic phase images

    Energy Technology Data Exchange (ETDEWEB)

    Röder, Falk, E-mail: f.roeder@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Vogel, Karin [Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Wolf, Daniel [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Hellwig, Olav [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); AG Magnetische Funktionsmaterialien, Institut für Physik, Technische Universität Chemnitz, D-09126 Chemnitz (Germany); HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wee, Sung Hun [HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wicht, Sebastian; Rellinghaus, Bernd [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2017-05-15

    The phase shift of the electron wave is a useful measure for the projected magnetic flux density of magnetic objects at the nanometer scale. More important for materials science, however, is the knowledge about the magnetization in a magnetic nano-structure. As demonstrated here, a dominating presence of stray fields prohibits a direct interpretation of the phase in terms of magnetization modulus and direction. We therefore present a model-based approach for retrieving the magnetization by considering the projected shape of the nano-structure and assuming a homogeneous magnetization therein. We apply this method to FePt nano-islands epitaxially grown on a SrTiO{sub 3} substrate, which indicates an inclination of their magnetization direction relative to the structural easy magnetic [001] axis. By means of this real-world example, we discuss prospects and limits of this approach. - Highlights: • Retrieval of the magnetization from holographic phase images. • Magnetostatic model constructed for a magnetic nano-structure. • Decomposition into homogeneously magnetized components. • Discretization of a each component by elementary cuboids. • Analytic solution for the phase of a magnetized cuboid considered. • Fitting a set of magnetization vectors to experimental phase images.

  16. Review- Magnetic orientation and magnetic anisotropy in paramagnetic layered oxides containing rare-earth ions

    Directory of Open Access Journals (Sweden)

    Shigeru Horii, Atsushi Ishihara, Takayuki Fukushima, Tetsuo Uchikoshi, Hiraku Ogino, Tohru S Suzuki, Yoshio Sakka, Jun-ichi Shimoyama and Kohji Kishio

    2009-01-01

    Full Text Available The magnetic anisotropies and easy axes of magnetization at room temperature were determined, and the effects of rare-earth (RE ions were clarified for RE-based cuprates, RE-doped bismuth-based cuprates and RE-doped Bi-based cobaltite regarding the grain orientation by magnetic field. The easy axis, determined from the powder orientation in a static field of 10 T, depended qualitatively on the type of RE ion for all three systems. On the other hand, the magnetization measurement of the c-axis oriented powders, aligned in static or rotating fields, revealed that the type of RE ion strongly affected not only the directions of the easy axis but also the absolute value of magnetic anisotropy, and an appropriate choice of RE ion is required to minimize the magnetic field used for grain orientation. We also studied the possibility of triaxial grain orientation in high-critical-temperature superconductors by a modulated oval magnetic field. In particular, triaxial orientation was attempted in a high-oxygen-pressure phase of orthorhombic RE-based cuprates Y2Ba4Cu7Oy. Although the experiment was performed in epoxy resin, which is not practical, in-plane alignment within 3° was achieved.

  17. Magnetic Resonance Imaging in Aneurysmal Subarachnoid Hemorrhage: Current Evidence and Future Directions.

    Science.gov (United States)

    Nelson, Sarah E; Sair, Haris I; Stevens, Robert D

    2018-04-09

    Aneurysmal subarachnoid hemorrhage (aSAH) is associated with an unacceptably high mortality and chronic disability in survivors, underscoring a need to validate new approaches for treatment and prognosis. The use of advanced imaging, magnetic resonance imaging (MRI) in particular, could help address this gap given its versatile capacity to quantitatively evaluate and map changes in brain anatomy, physiology and functional activation. Yet there is uncertainty about the real value of brain MRI in the clinical setting of aSAH. In this review, we discuss current and emerging MRI research in aSAH. PubMed was searched from inception to June 2017, and additional studies were then chosen on the basis of relevance to the topics covered in this review. Available studies suggest that brain MRI is a feasible, safe, and valuable testing modality. MRI detects brain abnormalities associated with neurologic examination, outcomes, and aneurysm treatment and thus has the potential to increase knowledge of aSAH pathophysiology as well as to guide management and outcome prediction. Newer pulse sequences have the potential to reveal structural and physiological changes that could also improve management of aSAH. Research is needed to confirm the value of MRI-based biomarkers in clinical practice and as endpoints in clinical trials, with the goal of improving outcome for patients with aSAH.

  18. System Efficiency Improvement for Electric Vehicles Adopting a Permanent Magnet Synchronous Motor Direct Drive System

    Directory of Open Access Journals (Sweden)

    Chengming Zhang

    2017-12-01

    Full Text Available To improve the endurance mileage of electric vehicles (EVs, it is important to decrease the energy consumption of the Permanent Magnet Synchronous Motor (PMSM drive system. This paper proposes a novel loss optimization control strategy named system efficiency improvement control which can optimize both inverter and motor losses. A nonlinear power converter loss model is built to fit the nonlinear characteristics of power devices. This paper uses double Fourier integral analysis to analytically calculate the fundamental and harmonic components of motor current by which the fundamental motor loss and harmonic motor loss can be accurately analyzed. From these loss models, a whole-frequency-domain system loss model is derived and presented. Based on the system loss model, the system efficiency improvement control method applies the genetic algorithm to adjust the motor current and PWM frequency together to optimize the inverter and motor losses by which the system efficiency can be significantly improved without seriously influence on the system stability over the whole operation range of EVs. The optimal effects of system efficiency is verified by the experimental results in both Si-IGBT-based PMSM system and SiC-MOSFET-based system.

  19. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  20. Proton magnetic resonance chemical shift imaging (1H CSI)-directed stereotactic biopsy

    International Nuclear Information System (INIS)

    Son, B.-C.; Kim, B.-C.; Kang, J.-K.; Choi, B.-G.; Kim, E.-N.; Baik, H.-M.; Choe, B.-Y.; Naruse, S.

    2001-01-01

    Introduction. To add metabolic information during stereotactic biopsy target selection, the authors adopted proton chemical shift imaging ( 1 H CSI)-directed stereotactic biopsy. Currently, proton single voxel spectroscopy (SVS) technique has been reported in stereotactic biopsy. We performed 1 H CSI in combination with a stereotactic headframe and selected targets according to local metabolic information, and evaluated the pathological results. Patients and Method. The 1 H CSI-directed stereotactic biopsy was performed in four patients. 1 H CSI and conventional Gd-enhancement stereotactic MRI were performed simultaneously after the fitting of a stereotactic frame. After reconstructing the metabolic maps of N-acetylaspartate (NAA)/phosphocreatine (Cr), phosphocholine (Cho)/Cr, and Lactate/Cr ratios, focal areas of increased Cho/Cr ratio and Lac/Cr ratios were selected as target sites in the stereotactic MR images. Result. 1 H CSI is possible with the stereotactic headframe in place. No difficulty was experienced performing 1 H CSI or making a diagnosis. Pathological samples taken from areas of increased Cho/Cr ratios and decreased NAA/Cr ratios provided information upon increased cellularity, mitoses and cellular atypism, and facilitated diagnosis. Pathological samples taken from areas of increased Lac/ Cr ratio snowed predominant feature of necrosis. Conclusion. 1 H CSI was feasible with the stereotactic headframe in place. The final pathological results obtained were concordant with the local metabolic information from 1 H CSI. We believe that 1 H CSI-directed stereotactic biopsy has the potential to significantly improve the accuracy of stereotactic biopsy targeting. (author)

  1. Direct chill casting of aluminium alloys under electromagnetic interaction by permanent magnet assembly

    Science.gov (United States)

    Bojarevičs, Andris; Kaldre, Imants; Milgrāvis, Mikus; Beinerts, Toms

    2018-05-01

    Direct chill casting is one of the methods used in industry to obtain good microstructure and properties of aluminium alloys. Nevertheless, for some alloys grain structure is not optimal. In this study, we offer the use of electromagnetic interaction to modify melt convection near the solidification interface. Solidification under various electromagnetic interactions has been widely studied, but usually at low solidification velocity and high thermal gradient. This type of interaction may succeed fragmentation of dendrite arms and transport of solidification nuclei thus leading to improved material structure and properties. Realization of experimental small-scale crystallizer and electromagnetic system has been described in this article.

  2. The European Activation System. EASY-2001 overview

    International Nuclear Information System (INIS)

    Forrest, R.A.

    2001-03-01

    This document gives an overview of the European Activation System (EASY) as released in 2001. EASY-2001 consists of a wide range of codes, data and documentation all aimed at satisfying the objective of calculating the response of materials irradiated in a neutron flux. It is designed to investigate fusion devices that will act as intense sources of high energy (14 MeV) neutrons and cause significant activation of the surrounding materials. However, the very general nature of the calculational method and the data libraries means that it is applicable (with some reservations) to all situations (e.g. fission reactors or neutron sources) where materials are exposed to neutrons below 20 MeV

  3. Fixed point algebras for easy quantum groups

    DEFF Research Database (Denmark)

    Gabriel, Olivier; Weber, Moritz

    2016-01-01

    Compact matrix quantum groups act naturally on Cuntz algebras. The first author isolated certain conditions under which the fixed point algebras under this action are Kirchberg algebras. Hence they are completely determined by their K-groups. Building on prior work by the second author,we prove...... that free easy quantum groups satisfy these conditions and we compute the K-groups of their fixed point algebras in a general form. We then turn to examples such as the quantum permutation group S+ n,the free orthogonal quantum group O+ n and the quantum reflection groups Hs+ n. Our fixed point......-algebra construction provides concrete examples of free actions of free orthogonal easy quantum groups,which are related to Hopf-Galois extensions....

  4. Aromaticity and stability going in opposite directions: An energetic, structural, magnetic and electronic study of aminopyrimidines

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Galvão, Tiago L.P.; Rocha, Inês M.; Santos, Ana Filipa L.O.M.

    2012-01-01

    Highlights: ► Δ f H m o (cr) of 2,4-diaminopyrimidine and 2,4,6-triaminopyrimidine were obtained by combustion calorimetry. ► Sublimation thermodynamics of the compounds was studied by Knudsen effusion technique. ► Ab initio computational calculations were performed for mono-, di- and triaminopyrimidine isomers. ► Molecular energetics were correlated with several criteria of aromaticity. ► The influence of intramolecular hydrogen bonds was explored. - Abstract: The relation between molecular energetics and aromaticity was investigated for the interaction between the amino functional group and the nitrogen atoms of the pyridine and pyrimidine rings, using experimental thermodynamic techniques and computational geometries, enthalpies, chemical shifts, atomic charges and the Quantum Theory of Atoms in Molecules. 2,4-diaminopyrimidine and 2,4,6-triaminopyrimidine were studied by static bomb combustion calorimetry and Knudsen effusion technique. The derived gaseous-phase enthalpies of formation together with the enthalpies of formation of the three isomers of aminopyridine reported in the literature, were compared with the calculated computationally ones and extended to other diamino- and triaminopyrimidine isomers using the MP2/6-311++G(d,p) level of theory. The results were analyzed in terms of enthalpy of interaction between substituents and, due to the absence of meaningful stereochemical hindrance, strong inductive effects, or intramolecular hydrogen bonds according to QTAIM results, the resonance electron delocalization plays an almost exclusive role in the very exothermic enthalpies obtained. Therefore, this enthalpy of interaction was used as an experimental energetic measure of resonance effects and analyzed in terms of aromaticity. It was found that more conjugation between substituents means less aromaticity according to the magnetic (NICS) and electronic (Shannon) criteria, but more aromaticity according to the geometric (HOMA) criterion.

  5. Quantification of mechanical ventricular dyssynchrony. Direct comparison of velocity-encoded and cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Muellerleile, K.; Baholli, L.; Groth, M.

    2011-01-01

    Purpose: The preoperative assessment of mechanical dyssynchrony can help to improve patient selection in candidates for cardiac resynchronization therapy (CRT). The present study compared the performance of velocity-encoded (VENC) MRI to cine-magnetic resonance imaging (MRI) for quantifying mechanical ventricular dyssynchrony. Materials and Methods: VENC-MRI and cine-MRI were performed in 20 patients with heart failure NYHA class III and reduced ejection fraction (median: 24 %, interquartile range: 18 - 28 %) before CRT device implantation. The interventricular mechanical delay (IVMD) was assessed by VENC-MRI as the temporal difference between the onset of aortic and pulmonary flow. Intraventricular dyssynchrony was quantified by cine-MRI, using the standard deviation of time to maximal wall thickening in sixteen left ventricular segments (SDt-16). The response to CRT was assessed in a six-month follow-up. Results: 14 patients (70 %) clinically responded to CRT. A similar accuracy was found to predict the response to CRT by measurements of the IVMD and SDt-16 (75 vs. 70 %; p = ns). The time needed for data analysis was significantly shorter for the IVMD at 1.69 min (interquartile range: 1.66 - 1.88 min) compared to 9.63 min (interquartile range: 8.92 - 11.63 min) for the SDt-16 (p < 0.0001). Conclusion: Measurements of the IVMD by VENC-MRI and the SDt-16 by cine-MRI provide a similar accuracy to identify clinical responders to CRT. However, data analysis of the IVMD is significantly less time-consuming compared to data analysis of the SDt-16. (orig.)

  6. Functional Magnetic Resonance Imaging of Goal-Directed Reaching in Children with Autism Spectrum Disorders: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Nicole M. G. Salowitz

    2014-04-01

    Full Text Available An unanswered question concerning the neural basis of autism spectrum disorders (ASD is how sensorimotor deficits in individuals with ASD are related to abnormalities of brain function. We previously described a robotic joystick and video game system that allows us to record functional magnetic resonance images (FMRI while adult humans make goal-directed wrist motions. We anticipated several challenges in extending this approach to studying goal-directed behaviors in children with ASD and in typically developing (TYP children. In particular we were concerned that children with autism may express increased levels of anxiety as compared to typically developing children due to the loud sounds and small enclosed space of the MRI scanner. We also were concerned that both groups of children might become restless during testing, leading to an unacceptable amount of head movement. Here we performed a pilot study evaluating the extent to which autistic and typically developing children exhibit anxiety during our experimental protocol as well as their ability to comply with task instructions. Our experimental controls were successful in minimizing group differences in drop-out due to anxiety. Kinematic performance and head motion also were similar across groups. Both groups of children engaged cortical regions (frontal, parietal, temporal, occipital while making goal-directed movements. In addition, the ASD group exhibited task-related correlations in subcortical regions (cerebellum, thalamus, whereas correlations in the TYP group did not reach statistical significance in subcortical regions. Four distinct regions in frontal cortex showed a significant group difference such that TYP children exhibited positive correlations between the hemodynamic response and movement, whereas children with ASD exhibited negative correlations. These findings demonstrate feasibility of simultaneous application of robotic manipulation and functional imaging to study goal-directed

  7. Nuclear magnetic resonance spectroscopic investigation of anode exhaust of direct methanol fuel cells without isotope enrichment

    International Nuclear Information System (INIS)

    Byun, Young Seok; Hwang, Reo Yun; Han, Ochee

    2016-01-01

    Fuel cells are devices that electrochemically convert the chemical energy of fuels such as natural gas, gasoline, and methanol, into electricity. Fuel cells more efficiently use energy than internal combustion engines and do not produce undesirable pollutants, such as NO_x ,SO_x and particulates. Fuel cells can be distinguished from one another by their electrolytes. Among the various direct alcohol fuel cells, direct methanol fuel cells (DMFCs) have been developed most. However, DMFCs have several practical problems such as methanol crossove r from an anode to a cathode and slow methanol oxidation reaction rates. Therefore, understanding the electrochemical reaction mechanisms of DMFCs may provide clues to solve these problems, and various analytical methods have been employed to examine these mechanisms. We demonstrated that "1H and "1"3C NMR spectroscopy can be used for analyzing anode exhausts of DMFCs operated with methanol without any isotope enrichment. However, the low sensitivity of NMR spectroscopy hindered our efforts to detect minor reaction intermediates. Therefore, sensitivity enhancement techniques such as dynamic nuclear polarization (DNP) NMR methods and/or presaturation methods to increase the dynamic range of the proton spectra by pre-saturating large water signals, are expected to be useful to detect low-concentration species

  8. Nuclear magnetic resonance spectroscopic investigation of anode exhaust of direct methanol fuel cells without isotope enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Young Seok; Hwang, Reo Yun; Han, Ochee [Western Seoul Center, Korea Basic Science Institute, Seoul (Korea, Republic of)

    2016-12-15

    Fuel cells are devices that electrochemically convert the chemical energy of fuels such as natural gas, gasoline, and methanol, into electricity. Fuel cells more efficiently use energy than internal combustion engines and do not produce undesirable pollutants, such as NO{sub x} ,SO{sub x} and particulates. Fuel cells can be distinguished from one another by their electrolytes. Among the various direct alcohol fuel cells, direct methanol fuel cells (DMFCs) have been developed most. However, DMFCs have several practical problems such as methanol crossove r from an anode to a cathode and slow methanol oxidation reaction rates. Therefore, understanding the electrochemical reaction mechanisms of DMFCs may provide clues to solve these problems, and various analytical methods have been employed to examine these mechanisms. We demonstrated that {sup 1}H and {sup 13}C NMR spectroscopy can be used for analyzing anode exhausts of DMFCs operated with methanol without any isotope enrichment. However, the low sensitivity of NMR spectroscopy hindered our efforts to detect minor reaction intermediates. Therefore, sensitivity enhancement techniques such as dynamic nuclear polarization (DNP) NMR methods and/or presaturation methods to increase the dynamic range of the proton spectra by pre-saturating large water signals, are expected to be useful to detect low-concentration species.

  9. Dynamic Facial Expression of Emotion Made Easy

    OpenAIRE

    Broekens, Joost; Qu, Chao; Brinkman, Willem-Paul

    2012-01-01

    Facial emotion expression for virtual characters is used in a wide variety of areas. Often, the primary reason to use emotion expression is not to study emotion expression generation per se, but to use emotion expression in an application or research project. What is then needed is an easy to use and flexible, but also validated mechanism to do so. In this report we present such a mechanism. It enables developers to build virtual characters with dynamic affective facial expressions. The mecha...

  10. Planar graphical models which are easy

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory; Chernyak, Vladimir [WAYNE STATE UNIV

    2009-01-01

    We describe a rich family of binary variables statistical mechanics models on planar graphs which are equivalent to Gaussian Grassmann Graphical models (free fermions). Calculation of partition function (weighted counting) in the models is easy (of polynomial complexity) as reduced to evaluation of determinants of matrixes linear in the number of variables. In particular, this family of models covers Holographic Algorithms of Valiant and extends on the Gauge Transformations discussed in our previous works.

  11. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P. [Udaipur Solar Observatory, Physical Research Laboratory, Badi Road, Dewali, Udaipur 313 001 (India); Zhang, J., E-mail: vema@prl.res.in [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States)

    2014-12-20

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  12. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    International Nuclear Information System (INIS)

    Vemareddy, P.; Zhang, J.

    2014-01-01

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare

  13. Switching the uniaxial magnetic anisotropy by ion irradiation induced compensation

    Science.gov (United States)

    Yuan, Ye; Amarouche, Teyri; Xu, Chi; Rushforth, Andrew; Böttger, Roman; Edmonds, Kevin; Campion, Richard; Gallagher, Bryan; Helm, Manfred; Jürgen von Bardeleben, Hans; Zhou, Shengqiang

    2018-04-01

    In the present work, the uniaxial magnetic anisotropy of GaMnAsP is modified by helium ion irradiation. According to the micro-magnetic parameters, e.g. resonance fields and anisotropy constants deduced from ferromagnetic resonance measurements, a rotation of the magnetic easy axis from out-of-plane [0 0 1] to in-plane [1 0 0] direction is achieved. From the application point of view, our work presents a novel avenue in modifying the uniaxial magnetic anisotropy in GaMnAsP with the possibility of lateral patterning by using lithography or focused ion beam.

  14. Modal analysis of a grid-connected direct-drive permanent magnet synchronous generator wind turbine system

    DEFF Research Database (Denmark)

    Tan, Jin; Wang, Xiao Ru; Chen, Zhe

    2013-01-01

    In order to study the stability of a grid-connected direct-drive permanent magnet synchronous generator (PMSG) wind turbine systems, this paper presents the modal analysis of a PMSG wind turbine system. A PMSG model suitable for small signal stability analysis is presented. The modal properties...... of a grid-connected PMSG wind turbine system are studied. Then the comprehensive impacts of the shaft model, shaft parameters, operation points and lengths of the transmission line on the modal characteristic of the system are investigated by the eigenvalue analysis method. Meanwhile, the corresponding...... analysis. It offers a better understanding about the essence of the stability of grid-connected PMSG wind turbine system....

  15. Direct evidence for an orbital magnetic quadrupole twist mode in nuclei

    International Nuclear Information System (INIS)

    Reitz, B.; Frekers, D.

    2002-02-01

    The reactions 58 Ni(e,e') and 58 Ni(p,p') have been studied at kinematics favorable for the excitation of J π = 2 - states by isovector spin-flip transitions with ΔL = 1. There are states at an excitation energy E x ∼ 10 MeV which are strongly excited in electron scattering but not in proton scattering, suggesting a predominantly orbital character. This is taken as direct evidence for the so-called twist mode in nuclei in which different layers of nuclear fluid in the upper and lower hemisphere counterrotate against each other. Microscopic quasiparticle-phonon model calculations which predict sizable orbital M2 strength at his excitation energy yield indeed a current flow pattern of the strongest transitions consistent with a twist-like motion. (orig.)

  16. Magnetic field induced random pulse trains of magnetic and acoustic noises in martensitic single-crystal Ni2MnGa

    Science.gov (United States)

    Daróczi, Lajos; Piros, Eszter; Tóth, László Z.; Beke, Dezső L.

    2017-07-01

    Jerky magnetic and acoustic noises were evoked in a single variant martensitic Ni2MnGa single crystal (produced by uniaxial compression) by application of an external magnetic field along the hard magnetization direction. It is shown that after reaching the detwinning threshold, spontaneous reorientation of martensite variants (twins) leads not only to acoustic emission but magnetic two-directional noises as well. At small magnetic fields, below the above threshold, unidirectional magnetic emission is also observed and attributed to a Barkhausen-type noise due to magnetic domain wall motions during magnetization along the hard direction. After the above first run, in cycles of decreasing and increasing magnetic field, at low-field values, weak, unidirectional Barkhausen noise is detected and attributed to the discontinuous motion of domain walls during magnetization along the easy magnetization direction. The magnetic noise is also measured by constraining the sample in the same initial variant state along the hard direction and, after the unidirectional noise (as obtained also in the first run), a two-directional noise package is developed and it is attributed to domain rotations. From the statistical analysis of the above noises, the critical exponents, characterizing the power-law behavior, are calculated and compared with each other and with the literature data. Time correlations within the magnetic as well as acoustic signals lead to a common scaled power function (with β =-1.25 exponent) for both types of signals.

  17. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  18. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  19. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  20. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  1. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Guus Rijnders

    2010-03-01

    Full Text Available FePt nanoparticles (NPs were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(onates were used as an adsorbate to form self-assembled monolayers (SAMs on alumina to direct the assembly of NPs onto the surface. The Al2O3 substrates were functionalized with aminobutylphosphonic acid (ABP or phosphonoundecanoic acid (PNDA SAMs or with poly(ethyleneimine (PEI as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al2O3, which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al2O3 surface and controlling the immersion time of the modified Al2O3 substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N2/4%H2 led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices.

  2. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  3. In-vivo Imaging of Magnetic Fields Induced by Transcranial Direct Current Stimulation (tDCS) in Human Brain using MRI

    Science.gov (United States)

    Jog, Mayank V.; Smith, Robert X.; Jann, Kay; Dunn, Walter; Lafon, Belen; Truong, Dennis; Wu, Allan; Parra, Lucas; Bikson, Marom; Wang, Danny J. J.

    2016-10-01

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique that applies mA currents at the scalp to modulate cortical excitability. Here, we present a novel magnetic resonance imaging (MRI) technique, which detects magnetic fields induced by tDCS currents. This technique is based on Ampere’s law and exploits the linear relationship between direct current and induced magnetic fields. Following validation on a phantom with a known path of electric current and induced magnetic field, the proposed MRI technique was applied to a human limb (to demonstrate in-vivo feasibility using simple biological tissue) and human heads (to demonstrate feasibility in standard tDCS applications). The results show that the proposed technique detects tDCS induced magnetic fields as small as a nanotesla at millimeter spatial resolution. Through measurements of magnetic fields linearly proportional to the applied tDCS current, our approach opens a new avenue for direct in-vivo visualization of tDCS target engagement.

  4. Magnetic

    Directory of Open Access Journals (Sweden)

    Essam Aboud

    2015-06-01

    Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300–500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend with some minor trends in EW direction.

  5. Transition from columnar to point pinning in coated conductors: critical currents that are independent of magnetic field direction

    International Nuclear Information System (INIS)

    Zuev, Yuri L; Hun Wee, Sung; Christen, David K

    2012-01-01

    We identify a sharp crossover in the vortex pinning of a high-temperature superconductor with nanocolumnar stacks of precipitates as strong vortex pinning centers. Above a particular, temperature-dependent field B X (T) the vortex response is no longer determined by the nanocolumns, and is instead determined by point-like pinning. This crossover is evident as a change in the dependence of the critical current density on the angle between the applied magnetic field and the nanocolumns. It also leads to the field-orientation-independent power law index n of the E–J curves. Below the transition, there is a strong maximum in J C when the field is aligned parallel to the columns and n depends on field direction. Above the transition, n is independent of the field direction and there is a J C minimum for H parallel to the columns. We discuss a possible mechanism for such behavior change, as well as testing and confirming a prediction that the crossover must become very broad at high temperatures and low fields. (paper)

  6. An easy guide to factor analysis

    CERN Document Server

    Kline, Paul

    2014-01-01

    Factor analysis is a statistical technique widely used in psychology and the social sciences. With the advent of powerful computers, factor analysis and other multivariate methods are now available to many more people. An Easy Guide to Factor Analysis presents and explains factor analysis as clearly and simply as possible. The author, Paul Kline, carefully defines all statistical terms and demonstrates step-by-step how to work out a simple example of principal components analysis and rotation. He further explains other methods of factor analysis, including confirmatory and path analysis, a

  7. Competitive Clientelism, Easy Financing and Weak Capitalists

    DEFF Research Database (Denmark)

    Whitfield, Lindsay

    productive capitalists; and (3) easy access to financing for the state and the ruling coalition from foreign aid, mining and cocoa bean exports. As a result, ruling elites’ policy actions did not prioritize the development of new productive sectors (or upgrading of old ones), but were geared towards......Ghana has exhibited rather strong economic growth since the 1980s, but little transformation of the productive structure of its economy. The paper argues that ruling elites’ policy choices are shaped by their political survival strategies. In turn, these strategies are shaped by (1...... in significant productive sector investments....

  8. 'German Angst' vs 'Danish Easy Going'?

    DEFF Research Database (Denmark)

    Fersch, Barbara

    2012-01-01

    national lines. Whereas insecurity and its related fear and anxiety played a huge role in the German interviews (‘German Angst’), the Danish freelancers attached less importance to the topic of insecurity and showed almost no sign of related anxiety (‘Danish Easy-going’). Some reasons for this can be found...... in the different social security backgrounds and welfare state programmes of the two countries, but these differences cannot explain the very different ways of talking about and dealing with the topic. Therefore, I suggest that the differences can be understood in the context of trust as a multi...

  9. PHP Solutions Dynamic Web Design Made Easy

    CERN Document Server

    Powers, David

    2010-01-01

    This is the second edition of David Power's highly-respected PHP Solutions: Dynamic Web Design Made Easy. This new edition has been updated by David to incorporate changes to PHP since the first edition and to offer the latest techniques - a classic guide modernized for 21st century PHP techniques, innovations, and best practices. You want to make your websites more dynamic by adding a feedback form, creating a private area where members can upload images that are automatically resized, or perhaps storing all your content in a database. The problem is, you're not a programmer and the thought o

  10. 6 Sigma DFSS technique with easy practice

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-15

    This book describes 6 Sigma DFSS technique which is easy to use. These are the titles of the contents : new demand, the reason that DFSS needs, when is DFSS used?, DMAIC and DMADV and the bastion for achievement of 6 sigma, new trouble, chief, Chang's new store, plan on kalguksu development propel, customers are holding the key, CTQ refinement, process capability evaluation, setting goal, finding of conception of optimum design, finding of design element, the last gateway, and it's time for a DFSS!.

  11. Development of a tensile-stress-induced anisotropy in amorphous magnetic thin films

    International Nuclear Information System (INIS)

    Mandal, K.; Vazquez, M.; Garcia, D.; Castano, F.J.; Prados, C.; Hernando, A.

    2000-01-01

    Magnetic anisotropy was induced in positive magnetostrictive Fe 80 B 20 and negative magnetostrictive Co 75 Si 15 B 10 thin films by developing a tensile stress within the samples. The films were grown on the concave surfaces of mechanically bowed glass substrates. On releasing the substrates from the substrate holders, a tensile stress was developed within the samples that modified the domain structure. As a result of it, a magnetic easy axis parallel to the direction of the stress was induced in FeB sample whereas in CoSiB sample the induced easy axis was perpendicular to the direction of the developed stress. To produce magnetic multilayers with crossed anisotropy, FeB/CoSiB bilayers and FeB/Cu/CoSiB trilayers were grown on bowed substrates. The study of magnetic properties of the multilayers indicates the development of crossed anisotropy within them, particularly when the magnetic layers are separated by a nonmagnetic Cu layer

  12. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  13. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  14. Does migratory distance affect fuelling in a medium-distance passerine migrant?: results from direct and step-wise simulated magnetic displacements

    Directory of Open Access Journals (Sweden)

    Mihaela Ilieva

    2016-03-01

    Full Text Available In birds, fat accumulation before and during migration has been shown to be endogenously controlled and tuned by, among other factors, the Earth's magnetic field. However, our knowledge about the influence of the geomagnetic field on the fuelling in migrating birds is still limited to just a few nocturnally migrating passerine species. In order to study if variations of the magnetic field can also influence the fuelling of both day- and night-migrating passerines, we caught first-year dunnocks (Prunella modularis and subjected them to three magnetic field conditions simulated by a system of magnetic coils: (1 local geomagnetic field of southern Sweden, (2 magnetic field corresponding to the centre of the expected wintering area, and (3 magnetic field met at the northern limit of the species' breeding distribution. We did not find a difference in mass increase between the birds kept in a local magnetic field and a field resembling their wintering area, irrespectively of the mode of magnetic displacement, i.e. direct or step-wise. However, the dunnocks magnetically displaced north showed a lower rate of fuelling in comparison to the control group, probably due to elevated activity. Compared with previous studies, our results suggest that the fuelling response to magnetic displacements during the migration period is specific to the eco-physiological situation. Future studies need to address if there is an effect of magnetic field manipulation on the level of migratory activity in dunnocks and how widespread the influence of local geomagnetic field parameters is on fuelling decisions in different bird species, which have different migratory strategies, distances and migration history.

  15. Local Directional Probability Optimization for Quantification of Blurred Gray/White Matter Junction in Magnetic Resonance Image

    Directory of Open Access Journals (Sweden)

    Xiaoxia Qu

    2017-09-01

    Full Text Available The blurred gray/white matter junction is an important feature of focal cortical dysplasia (FCD lesions. FCD is the main cause of epilepsy and can be detected through magnetic resonance (MR imaging. Several earlier studies have focused on computing the gradient magnitude of the MR image and used the resulting map to model the blurred gray/white matter junction. However, gradient magnitude cannot quantify the blurred gray/white matter junction. Therefore, we proposed a novel algorithm called local directional probability optimization (LDPO for detecting and quantifying the width of the gray/white matter boundary (GWB within the lesional areas. The proposed LDPO method mainly consists of the following three stages: (1 introduction of a hidden Markov random field-expectation-maximization algorithm to compute the probability images of brain tissues in order to obtain the GWB region; (2 generation of local directions from gray matter (GM to white matter (WM passing through the GWB, considering the GWB to be an electric potential field; (3 determination of the optimal local directions for any given voxel of GWB, based on iterative searching of the neighborhood. This was then used to measure the width of the GWB. The proposed LDPO method was tested on real MR images of patients with FCD lesions. The results indicated that the LDPO method could quantify the GWB width. On the GWB width map, the width of the blurred GWB in the lesional region was observed to be greater than that in the non-lesional regions. The proposed GWB width map produced higher F-scores in terms of detecting the blurred GWB within the FCD lesional region as compared to that of FCD feature maps, indicating better trade-off between precision and recall.

  16. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eibofner, Frank; Wojtczyk, Hanne; Graf, Hansjörg, E-mail: hansjoerg.graf@med.uni-tuebingen.de, E-mail: drGraf@t-online.de [Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany); Clasen, Stephan [Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany)

    2014-06-15

    Purpose: Instrument visualization in interventional magnetic resonance imaging (MRI) is commonly performed via susceptibility artifacts. Unfortunately, this approach suffers from limited conspicuity in inhomogeneous tissue and disturbed spatial encoding. Also, susceptibility artifacts are controllable only by sequence parameters. This work presents the basics of a new visualization method overcoming such problems by applying sequence-triggered direct current (DC) pulses in spin-echo (SE) imaging. SE phase images allow for background free current path localization. Methods: Application of a sequence-triggered DC pulse in SE imaging, e.g., during a time period between radiofrequency excitation and refocusing, results in transient field inhomogeneities. Dependent on the additional z-magnetic field from the DC, a phase offset results despite the refocusing pulse. False spatial encoding is avoided by DC application during periods when read-out or slice-encoding gradients are inactive. A water phantom containing a brass conductor (water equivalent susceptibility) and a titanium needle (serving as susceptibility source) was used to demonstrate the feasibility. Artifact dependence on current strength and orientation was examined. Results: Without DC, the brass conductor was only visible due to its water displacement. The titanium needle showed typical susceptibility artifacts. Applying triggered DC pulses, the phase offset of spins near the conductor appeared. Because SE phase images are homogenous also in regions of persistent field inhomogeneities, the position of the conductor could be determined with high reliability. Artifact characteristic could be easily controlled by amperage leaving sequence parameters unchanged. For an angle of 30° between current and static field visualization was still possible. Conclusions: SE phase images display the position of a conductor carrying pulsed DC free from artifacts caused by persistent field inhomogeneities. Magnitude and phase

  17. Impairment of preoperative language mapping by lesion location: a functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study.

    Science.gov (United States)

    Ille, Sebastian; Sollmann, Nico; Hauck, Theresa; Maurer, Stefanie; Tanigawa, Noriko; Obermueller, Thomas; Negwer, Chiara; Droese, Doris; Boeckh-Behrens, Tobias; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M

    2015-08-01

    Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions. Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions. The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%). Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.

  18. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible

    Science.gov (United States)

    Chen, Ruirun; Yang, Yaohua; Gong, Xue; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2017-12-01

    The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density ( B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC ( h 1) and the charge height ( h 2), which emerges at the middle of coils ( h c) when the relationship of h c < h 1 + h 2 < h c + δ is satisfied. Lower frequency and smaller charge diameter can improve the uniformity of the magnetic field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

  19. An easy method for plant polysome profiling

    DEFF Research Database (Denmark)

    Lecampion, Cécile; Floris, Maina Huguette Joséphine; Fantino, Jean Raphaël

    2016-01-01

    are then pooled to prepare three different mRNA populations: the polysomes, mRNAs bound to several ribosomes; the monosomes, mRNAs bound to one ribosome; and mRNAs that are not bound to ribosomes. mRNAs are then extracted. This protocol has been validated for different plants and tissues including Arabidopsis......Translation of mRNA to protein is a fundamental and highly regulated biological process. Polysome profiling is considered as a gold standard for the analysis of translational regulation. The method described here is an easy and economical way for fractionating polysomes from various plant tissues....... A sucrose gradient is made without the need for a gradient maker by sequentially freezing each layer. Cytosolic extracts are then prepared in a buffer containing cycloheximide and chloramphenicol to immobilize the cytosolic and chloroplastic ribosomes to mRNA and are loaded onto the sucrose gradient. After...

  20. Parallel programming with Easy Java Simulations

    Science.gov (United States)

    Esquembre, F.; Christian, W.; Belloni, M.

    2018-01-01

    Nearly all of today's processors are multicore, and ideally programming and algorithm development utilizing the entire processor should be introduced early in the computational physics curriculum. Parallel programming is often not introduced because it requires a new programming environment and uses constructs that are unfamiliar to many teachers. We describe how we decrease the barrier to parallel programming by using a java-based programming environment to treat problems in the usual undergraduate curriculum. We use the easy java simulations programming and authoring tool to create the program's graphical user interface together with objects based on those developed by Kaminsky [Building Parallel Programs (Course Technology, Boston, 2010)] to handle common parallel programming tasks. Shared-memory parallel implementations of physics problems, such as time evolution of the Schrödinger equation, are available as source code and as ready-to-run programs from the AAPT-ComPADRE digital library.

  1. Direct observation of high-spin states in manganese dimer and trimer cations by x-ray magnetic circular dichroism spectroscopy in an ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Zamudio-Bayer, V. [Physikalisches Institut, Universität Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg (Germany); Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Hirsch, K.; Langenberg, A.; Kossick, M. [Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Ławicki, A.; Lau, J. T., E-mail: tobias.lau@helmholtz-berlin.de [Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Terasaki, A. [Cluster Research Laboratory, Toyota Technological Institute, 717-86 Futamata, Ichikawa, Chiba 272-0001 (Japan); Department of Chemistry, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Issendorff, B. von [Physikalisches Institut, Universität Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg (Germany)

    2015-06-21

    The electronic structure and magnetic moments of free Mn{sub 2}{sup +} and Mn{sub 3}{sup +} are characterized by 2p x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap that is coupled to a synchrotron radiation beamline. Our results directly show that localized magnetic moments of 5 μ{sub B} are created by 3d{sup 5}({sup 6}S) states at each ionic core, which are coupled ferromagnetically to form molecular high-spin states via indirect exchange that is mediated in both cases by a delocalized valence electron in a singly occupied 4s derived antibonding molecular orbital with an unpaired spin. This leads to total magnetic moments of 11 μ{sub B} for Mn{sub 2}{sup +} and 16 μ{sub B} for Mn{sub 3}{sup +}, with no contribution of orbital angular momentum.

  2. Magnetic ordering in arrays of one-dimensional nanoparticle chains

    International Nuclear Information System (INIS)

    Serantes, D; Baldomir, D; Pereiro, M; Hernando, B; Prida, V M; Sanchez Llamazares, J L; Zhukov, A; Ilyn, M; Gonzalez, J

    2009-01-01

    The magnetic order in parallel-aligned one-dimensional (1D) chains of magnetic nanoparticles is studied using a Monte Carlo technique. If the easy anisotropy axes are collinear along the chains a macroscopic mean-field approach indicates antiferromagnetic (AFM) order even when no interparticle interactions are taken into account, which evidences that a mean-field treatment is inadequate for the study of the magnetic order in these highly anisotropic systems. From the direct microscopic analysis of the evolution of the magnetic moments, we observe spontaneous intra-chain ferromagnetic (FM)-type and inter-chain AFM-type ordering at low temperatures (although not completely regular) for the easy-axes collinear case, whereas a random distribution of the anisotropy axes leads to a sort of intra-chain AFM arrangement with no inter-chain regular order. When the magnetic anisotropy is neglected a perfectly regular intra-chain FM-like order is attained. Therefore it is shown that the magnetic anisotropy, and particularly the spatial distribution of the easy axes, is a key parameter governing the magnetic ordering type of 1D-nanoparticle chains.

  3. POTENTIAL FOR RARE EARTH ELEMENT RESOURCE EFFICIENCY IMPROVEMENTS IN PERMANENT MAGNET MOTORS THROUGH AN EXTENSION OF THE ELECTRIC MOTOR PRODUCT GROUP REGULATION UNDER THE EU ECODESIGN DIRECTIVE

    OpenAIRE

    Machacek, Erika; Dalhammar, Carl

    2013-01-01

    It has been proposed that the EU Ecodesign Directive can promote resource efficiency through relevant ecodesign requirements. This paper examines the potential for rare earth element (REE) resource efficiency improvements in the event the current regulation for electric motors under the Ecodesign Directive is to be extended to comprise REE-based permanent magnet motors. The research is based on literature studies, questionnaires and semi-structured interviews with representatives from industr...

  4. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  5. MAGNET

    CERN Document Server

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  6. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  7. Windowed direct exponential curve resolution quantification of nuclear magnetic resonance spectroscopy with applications to amniotic fluid metabonomics

    International Nuclear Information System (INIS)

    Botros, L.L.

    2007-01-01

    This thesis presents a quantitative protocol of proton nuclear magnetic resonance ( 1 H NMR) that allows the determination of human amniotic fluid metabolite concentrations, which are then used in a metabonomic study to establish patient health during gestation. 1 H NMR free inductive decays (FIDs) of 258 human amniotic fluid samples from a 500MHz spectrometer are acquired. Quantitative analyses methods in both the frequency- and time-domain are carried out and compared. Frequency-domain analysis is accomplished by integration of the metabolite peaks before and after the inclusion of a known standard addition of alanine. Time-domain analysis is accomplished by the direct exponential curve resolution algorithm (DECRA). Both techniques are assessed by applications to calibration biological solutions and a simulated data set. The DECRA method proves to be a more accurate and precise route for quantitative analysis, and is included in the developed protocol. Well-defined peaks of various components are visible in the frequency-domain 1 H NMR spectra, including lactate, alanine, acetate, citrate, choline, glycine, and glucose. All are quantified with the proposed protocol. Statistical t-test and notched box and whisker plots are used to compare means of metabolite concentrations for diabetic and normal patients. Glucose, glycine, and choline are all found to correlate with gestational diabetes mellitus early in gestation. With further development, time-domain quantitative 1 H NMR has potential to become a robust diagnostic tool for gestational health. (author)

  8. Windowed direct exponential curve resolution quantification of nuclear magnetic resonance spectroscopy with applications to amniotic fluid metabonomics

    Energy Technology Data Exchange (ETDEWEB)

    Botros, L.L

    2007-07-01

    This thesis presents a quantitative protocol of proton nuclear magnetic resonance ({sup 1}H NMR) that allows the determination of human amniotic fluid metabolite concentrations, which are then used in a metabonomic study to establish patient health during gestation. {sup 1}H NMR free inductive decays (FIDs) of 258 human amniotic fluid samples from a 500MHz spectrometer are acquired. Quantitative analyses methods in both the frequency- and time-domain are carried out and compared. Frequency-domain analysis is accomplished by integration of the metabolite peaks before and after the inclusion of a known standard addition of alanine. Time-domain analysis is accomplished by the direct exponential curve resolution algorithm (DECRA). Both techniques are assessed by applications to calibration biological solutions and a simulated data set. The DECRA method proves to be a more accurate and precise route for quantitative analysis, and is included in the developed protocol. Well-defined peaks of various components are visible in the frequency-domain {sup 1}H NMR spectra, including lactate, alanine, acetate, citrate, choline, glycine, and glucose. All are quantified with the proposed protocol. Statistical t-test and notched box and whisker plots are used to compare means of metabolite concentrations for diabetic and normal patients. Glucose, glycine, and choline are all found to correlate with gestational diabetes mellitus early in gestation. With further development, time-domain quantitative {sup 1}H NMR has potential to become a robust diagnostic tool for gestational health. (author)

  9. Pressure pain thresholds increase after preconditioning 1 Hz repetitive transcranial magnetic stimulation with transcranial direct current stimulation.

    Science.gov (United States)

    Moloney, Tonya M; Witney, Alice G

    2014-01-01

    The primary motor cortex (M1) is an effective target of non-invasive cortical stimulation (NICS) for pain threshold modulation. It has been suggested that the initial level of cortical excitability of M1 plays a key role in the plastic effects of NICS. Here we investigate whether transcranial direct current stimulation (tDCS) primed 1 Hz repetitive transcranial magnetic stimulation (rTMS) modulates experimental pressure pain thresholds and if this is related to observed alterations in cortical excitability. 15 healthy, male participants received 10 min 1 mA anodal, cathodal and sham tDCS to the left M1 before 15 min 1 Hz rTMS in separate sessions over a period of 3 weeks. Motor cortical excitability was recorded at baseline, post-tDCS priming and post-rTMS through recording motor evoked potentials (MEPs) from right FDI muscle. Pressure pain thresholds were determined by quantitative sensory testing (QST) through a computerized algometer, on the palmar thenar of the right hand pre- and post-stimulation. Cathodal tDCS-primed 1 Hz-rTMS was found to reverse the expected suppressive effect of 1 Hz rTMS on cortical excitability; leading to an overall increase in activity (ppain thresholds (ppain. This study demonstrates that priming the M1 before stimulation of 1 Hz-rTMS modulates experimental pressure pain thresholds in a safe and controlled manner, producing a form of analgesia.

  10. Studies on density dependence of charge separation in a direct energy converter using slanted Cusp magnetic field

    International Nuclear Information System (INIS)

    Munakata, Yoshiro; Kawaguchi, Takashi; Takeno, Hiromasa; Yasaka, Yasuyoshi; Ichimura, Kazuya; Nakashima, Yousuke

    2012-01-01

    In an advanced fusion, fusion-produced charged particles must be separated from each other for efficient energy conversion to electricity. The CuspDEC performs this function of separation and direct energy conversion. Analysis of working characteristics of CuspDEC on plasma density is an important subject. This paper summarizes and discusses experimental and theoretical works for high density plasma by using a small scale experimental device employing a slanted cusp magnetic field. When the incident plasma is low-density, good separation of the charged particles can be accomplished and this is explained by the theory based on a single particle motion. In high density plasma, however, this theory cannot be always applied due to space charge effects. In the experiment, as gradient of the field line increases, separation capability of the charged particles becomes higher. As plasma density becomes higher, however, separation capability becomes lower. This can be qualitatively explained by using calculations of the modified Störmer potential including space charge potential. (author)

  11. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin; Gary, D. E. [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Bastian, T. S., E-mail: bin.chen@cfa.harvard.edu [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2014-10-20

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  12. Direct Evidence of an Eruptive, Filament-hosting Magnetic Flux Rope Leading to a Fast Solar Coronal Mass Ejection

    Science.gov (United States)

    Chen, Bin; Bastian, T. S.; Gary, D. E.

    2014-10-01

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  13. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    International Nuclear Information System (INIS)

    Chen, Bin; Gary, D. E.; Bastian, T. S.

    2014-01-01

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  14. Direct observation of enhanced magnetism in individual size- and shape-selected 3 d transition metal nanoparticles

    Science.gov (United States)

    Kleibert, Armin; Balan, Ana; Yanes, Rocio; Derlet, Peter M.; Vaz, C. A. F.; Timm, Martin; Fraile Rodríguez, Arantxa; Béché, Armand; Verbeeck, Jo; Dhaka, R. S.; Radovic, Milan; Nowak, Ulrich; Nolting, Frithjof

    2017-05-01

    Magnetic nanoparticles are critical building blocks for future technologies ranging from nanomedicine to spintronics. Many related applications require nanoparticles with tailored magnetic properties. However, despite significant efforts undertaken towards this goal, a broad and poorly understood dispersion of magnetic properties is reported, even within monodisperse samples of the canonical ferromagnetic 3 d transition metals. We address this issue by investigating the magnetism of a large number of size- and shape-selected, individual nanoparticles of Fe, Co, and Ni using a unique set of complementary characterization techniques. At room temperature, only superparamagnetic behavior is observed in our experiments for all Ni nanoparticles within the investigated sizes, which range from 8 to 20 nm. However, Fe and Co nanoparticles can exist in two distinct magnetic states at any size in this range: (i) a superparamagnetic state, as expected from the bulk and surface anisotropies known for the respective materials and as observed for Ni, and (ii) a state with unexpected stable magnetization at room temperature. This striking state is assigned to significant modifications of the magnetic properties arising from metastable lattice defects in the core of the nanoparticles, as concluded by calculations and atomic structural characterization. Also related with the structural defects, we find that the magnetic state of Fe and Co nanoparticles can be tuned by thermal treatment enabling one to tailor their magnetic properties for applications. This paper demonstrates the importance of complementary single particle investigations for a better understanding of nanoparticle magnetism and for full exploration of their potential for applications.

  15. A model for the magnetic domain structure of Gd at 77K

    International Nuclear Information System (INIS)

    Corner, W.D.; Saad, F.M.; Jones, D.W.; Jordan, R.G.

    1978-01-01

    Magnetic domain structures have been observed on planes perpendicular to the c and b axes of Gd crystals at 77K. Various types of domain boundary which might be found in an easy-cone ferromagnet are discussed. A model is presented which is consistent with observations. In this the easy-cone structure is maintained, but it is assumed that owing to the lower basal-plane anisotropy the magnetization component in the basal plane may change in direction within a single domain. (author)

  16. Spin-reorientation and anisotropy of the magnetization in single crystalline Ho2Co15Si2

    International Nuclear Information System (INIS)

    Tegus, O.

    2000-01-01

    We have studied the magnetic properties of a Ho 2 Co 15 Si 2 single crystal. The easy magnetization direction is parallel to the c-axis in an extended temperature region below the Curie temperature. A spin-reorientation transition takes place at 323 K, leading to an easy magnetization direction perpendicular to the c-axis below this temperature. We have compared the present results with those obtained previously on various R 2 Co 17 single crystals and found that Si substitution not only leads to a sign reversal in the Co sublattice anisotropy but also leads to a substantial anisotropy of the saturation magnetization. Sign and magnitude of the magnetization anisotropy are conserved during the spin-reorientation transition. (orig.)

  17. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  18. An Evolving Worldview: Making Open Source Easy

    Science.gov (United States)

    Rice, Z.

    2017-12-01

    NASA Worldview is an interactive interface for browsing full-resolution, global satellite imagery. Worldview supports an open data policy so that academia, private industries and the general public can use NASA's satellite data to address Earth science related issues. Worldview was open sourced in 2014. By shifting to an open source approach, the Worldview application has evolved to better serve end-users. Project developers are able to have discussions with end-users and community developers to understand issues and develop new features. Community developers are able to track upcoming features, collaborate on them and make their own contributions. Developers who discover issues are able to address those issues and submit a fix. This reduces the time it takes for a project developer to reproduce an issue or develop a new feature. Getting new developers to contribute to the project has been one of the most important and difficult aspects of open sourcing Worldview. After witnessing potential outside contributors struggle, a focus has been made on making the installation of Worldview simple to reduce the initial learning curve and make contributing code easy. One way we have addressed this is through a simplified setup process. Our setup documentation includes a set of prerequisites and a set of straightforward commands to clone, configure, install and run. This presentation will emphasize our focus to simplify and standardize Worldview's open source code so that more people are able to contribute. The more people who contribute, the better the application will become over time.

  19. Phospholipid micelle-based magneto-plasmonic nanoformulation for magnetic field-directed, imaging-guided photo-induced cancer therapy.

    Science.gov (United States)

    Ohulchanskyy, Tymish Y; Kopwitthaya, Atcha; Jeon, Mansik; Guo, Moran; Law, Wing-Cheung; Furlani, Edward P; Kim, Chulhong; Prasad, Paras N

    2013-11-01

    We present a magnetoplasmonic nanoplatform combining gold nanorods (GNR) and iron-oxide nanoparticles within phospholipid-based polymeric nanomicelles (PGRFe). The gold nanorods exhibit plasmon resonance absorbance at near infrared wavelengths to enable photoacoustic imaging and photothermal therapy, while the Fe3O4 nanoparticles enable magnetophoretic control of the nanoformulation. The fabricated nanoformulation can be directed and concentrated by an external magnetic field, which provides enhancement of a photoacoustic signal. Application of an external field also leads to enhanced uptake of the magnetoplasmonic formulation by cancer cells in vitro. Under laser irradiation at the wavelength of the GNR absorption peak, the PGRFe formulation efficiently generates plasmonic nanobubbles within cancer cells, as visualized by confocal microscopy, causing cell destruction. The combined magnetic and plasmonic functionalities of the nanoplatform enable magnetic field-directed, imaging-guided, enhanced photo-induced cancer therapy. In this study, a nano-formulation of gold nanorods and iron oxide nanoparticles is presented using a phospholipid micelle-based delivery system for magnetic field-directed and imaging-guided photo-induced cancer therapy. The gold nanorods enable photoacoustic imaging and photothermal therapy, while the Fe3O4 nanoparticles enable magnetophoretic control of the formulation. This and similar systems could enable more precise and efficient cancer therapy, hopefully in the near future, after additional testing. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Transcranial magnetic stimulation and transcranial direct current stimulation: treatments for cognitive and neuropsychiatric symptoms in the neurodegenerative dementias?

    Science.gov (United States)

    2014-01-01

    Introduction Two methods of non-invasive brain stimulation, transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), have demonstrable positive effects on cognition and can ameliorate neuropsychiatric symptoms such as depression. Less is known about the efficacy of these approaches in common neurodegenerative diseases. In this review, we evaluate the effects of TMS and tDCS upon cognitive and neuropsychiatric symptoms in the major dementias, including Alzheimer’s disease (AD), vascular dementia (VaD), dementia with Lewy bodies (DLB), Parkinson’s disease with dementia (PDD), and frontotemporal dementia (FTD), as well as the potential pre-dementia states of Mild Cognitive Impairment (MCI) and Parkinson’s disease (PD). Methods PubMed (until 7 February 2014) and PsycINFO (from 1967 to January Week 3 2014) databases were searched in a semi-systematic manner in order to identify relevant treatment studies. A total of 762 studies were identified and 32 studies (18 in the dementias and 14 in PD populations) were included. Results No studies were identified in patients with PDD, FTD or VaD. Of the dementias, 13 studies were conducted in patients with AD, one in DLB, and four in MCI. A total of 16 of the 18 studies showed improvements in at least one cognitive or neuropsychiatric outcome measure. Cognitive or neuropsychiatric improvements were observed in 12 of the 14 studies conducted in patients with PD. Conclusions Both TMS and tDCS may have potential as interventions for the treatment of symptoms associated with dementia and PD. These results are promising; however, available data were limited, particularly within VaD, PDD and FTD, and major challenges exist in order to maximise the efficacy and clinical utility of both techniques. In particular, stimulation parameters vary considerably between studies and are likely to subsequently impact upon treatment efficacy. PMID:25478032

  1. Pressure pain thresholds increase after preconditioning 1 Hz repetitive transcranial magnetic stimulation with transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Tonya M Moloney

    Full Text Available BACKGROUND: The primary motor cortex (M1 is an effective target of non-invasive cortical stimulation (NICS for pain threshold modulation. It has been suggested that the initial level of cortical excitability of M1 plays a key role in the plastic effects of NICS. OBJECTIVE: Here we investigate whether transcranial direct current stimulation (tDCS primed 1 Hz repetitive transcranial magnetic stimulation (rTMS modulates experimental pressure pain thresholds and if this is related to observed alterations in cortical excitability. METHOD: 15 healthy, male participants received 10 min 1 mA anodal, cathodal and sham tDCS to the left M1 before 15 min 1 Hz rTMS in separate sessions over a period of 3 weeks. Motor cortical excitability was recorded at baseline, post-tDCS priming and post-rTMS through recording motor evoked potentials (MEPs from right FDI muscle. Pressure pain thresholds were determined by quantitative sensory testing (QST through a computerized algometer, on the palmar thenar of the right hand pre- and post-stimulation. RESULTS: Cathodal tDCS-primed 1 Hz-rTMS was found to reverse the expected suppressive effect of 1 Hz rTMS on cortical excitability; leading to an overall increase in activity (p<0.001 with a parallel increase in pressure pain thresholds (p<0.01. In contrast, anodal tDCS-primed 1 Hz-rTMS resulted in a corresponding decrease in cortical excitability (p<0.05, with no significant effect on pressure pain. CONCLUSION: This study demonstrates that priming the M1 before stimulation of 1 Hz-rTMS modulates experimental pressure pain thresholds in a safe and controlled manner, producing a form of analgesia.

  2. Tuning stress-induced magnetic anisotropy and high frequency properties of FeCo films deposited on different curvature substrates

    International Nuclear Information System (INIS)

    Wang, Z.K.; Feng, E.X.; Liu, Q.F.; Wang, J.B.; Xue, D.S.

    2012-01-01

    It is important to control magnetic anisotropy of ferromagnetic materials. In this work, FeCo thin films are deposited on the curving substrates by electrochemical deposition to adjust the stress-induced magnetic anisotropy. The compressive stress is produced in the as-deposited films after the substrates are flattened. A simplified theoretical model of ferromagnetic resonance is utilized to measure the intrinsic magnetic anisotropy field and saturation magnetization. The results show that the stress-induced magnetic anisotropy and the resonance frequency increase with the increase of substrate curvature. The induced easy axis is perpendicular to the compressive stress direction.

  3. Superconducting flat tape cable magnet

    Science.gov (United States)

    Takayasu, Makoto

    2015-08-11

    A method for winding a coil magnet with the stacked tape cables, and a coil so wound. The winding process is controlled and various shape coils can be wound by twisting about the longitudinal axis of the cable and bending following the easy bend direction during winding, so that sharp local bending can be obtained by adjusting the twist pitch. Stack-tape cable is twisted while being wound, instead of being twisted in a straight configuration and then wound. In certain embodiments, the straight length should be half of the cable twist-pitch or a multiple of it.

  4. EZID: Long term identifiers made easy (Invited)

    Science.gov (United States)

    Starr, J.

    2013-12-01

    Scholarly research is producing ever increasing amounts of digital research data, and this data should be managed throughout the research life cycle both as part of good scientific practice, but also to comply with funder mandates, such as the 2013 OSTP Public Access Memo (http://www.whitehouse.gov/sites/default/files/microsites/ostp/ostp_public_access_memo_2013.pdf). By assigning unique and persistent identifiers to data objects, data managers can gain control and flexibility over what can be a daunting task. This is due to the fact that the objects can be moved to new locations without disruption to links, as long as the identifier target is maintained. EZID is a tool that makes assigning and maintaining unique, persistent identifiers easy. It was designed and built by California Digital Library (CDL) and has both a user interface and a RESTful API. EZID currently offers services for two globally unique, persistent identifier schemes: Digital Object Identifiers (DOIs) and Archival Resource Keys (ARKs). DOIs are identifiers originating from the publishing world and are in widespread use for journal articles. CDL is able to offer DOIs because of being a founding member of DataCite (http://www.datacite.org/), an international consortium established to provide easier access to scientific research data on the Internet. ARKs are identifiers originating from the library, archive and museum community. Like DOIs, they become persistent when the objects and identifier forwarding information is maintained. DOIs and ARKs have a key role in data management and, therefore, in data management plans. DOIs are the recommended identifier for use in data citation, and ARKs provide the maximum flexibility needed for data documentation and management throughout the early phases of a project. The two identifier schemes are able to be used together, and EZID is made to work with both. EZID clients, coming from education, research, government, and the private sector, are utilizing the

  5. Detailed Study of Closed Stator Slots for a Direct-Driven Synchronous Permanent Magnet Linear Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Erik Lejerskog

    2014-01-01

    Full Text Available The aim of this paper is to analyze how a permanent magnet linear generator for wave power behaves when the stator slots are closed. The usual design of stator geometry is to use open slots to maintain a low magnetic leakage flux between the stator teeth. By doing this, harmonics are induced in the magnetic flux density in the air-gap due to slotting. The closed slots are designed to cause saturation, to keep the permeability low. This reduces the slot harmonics in the magnetic flux density, but will also increase the flux leakage between the stator teeth. An analytical model has been created to study the flux through the closed slots and the result compared with finite element simulations. The outcome shows a reduction of the cogging force and a reduction of the harmonics of the magnetic flux density in the air-gap. It also shows a small increase of the total magnetic flux entering the stator and an increased magnetic flux leakage through the closed slots.

  6. Educational simulator app and web page for exploring Nuclear and Compass Magnetic Resonance

    OpenAIRE

    Hanson, Lars G.

    2016-01-01

    A graphical app and browser-based simulator, CompassMR, was developed for initial Magnetic Resonance (MR) education. It is available at http://drcmr.dk/CompassMR/ and executes directly in most browsers with no further need for software. Easy access and a simple user interface invite student experimentation that improves understanding of basic MR phenomena. The simulator is used to introduce and explore electromagnetism, magnetic dipoles, static and radiofrequency fields, Compass MR, the free ...

  7. Direct characterization of spin-transfer switching of nano-scale magnetic tunnel junctions using a conductive atomic force microscope

    International Nuclear Information System (INIS)

    Lee, Jia-Mou; Yang, Dong-Chin; Lee, Ching-Ming; Ye, Lin-Xiu; Chang, Yao-Jen; Wu, Te-ho; Lee, Yen-Chi; Wu, Jong-Ching

    2013-01-01

    We present an alternative method of spin-transfer-induced magnetization switching for magnetic tunnel junctions (MTJs) using a conductive atomic force microscope (CAFM) with pulsed current. The nominal MTJ cells' dimensions were 200 × 400 nm 2 . The AFM probes were coated with a Pt layer via sputtering to withstand up to several milliamperes. The pulsed current measurements, with pulse duration varying from 5 to 300 ms, revealed a magnetoresistance ratio of up to 120%, and an estimated intrinsic switching current density, based on the thermal activation model, of 3.94 MA cm −2 . This method demonstrates the potential skill to characterize nanometre-scale magnetic devices. (paper)

  8. Investigation of structure and magnetic properties of cobalt-nickel and manganese ferrites nanoparticles synthesized in direct micelles of sodium dodecyl sulphate system

    International Nuclear Information System (INIS)

    Fedosyuk, V.M.; Mirgorod, Yu.A.

    2016-01-01

    Results of investigation of the crystal structure and magnetic properties of the nanoparticles of transition metals ferrites (cobalt, nickel, manganese) synthesized by unified methods using direct sodium dodecyl sulfate micelles are presented. Crystal structure of the samples was investigated by X-ray diffraction on DRON-3M (in the CuKa-radiation). Particle size was investigated by transmission electron microscopy on microscope JEOL JEM-1011 (accelerating voltage 100 kV). All powders contain nanoparticles of the same size in the range 2-6 nm. Magnetic properties of the samples were estimated from temperature and field dependences of the magnetization. All samples exhibit properties of superparamagnets with different blocking temperatures below 45 K. (authors).

  9. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry

    Science.gov (United States)

    Law, K. F. F.; Bailly-Grandvaux, M.; Morace, A.; Sakata, S.; Matsuo, K.; Kojima, S.; Lee, S.; Vaisseau, X.; Arikawa, Y.; Yogo, A.; Kondo, K.; Zhang, Z.; Bellei, C.; Santos, J. J.; Fujioka, S.; Azechi, H.

    2016-02-01

    A kilo-tesla level, quasi-static magnetic field (B-field), which is generated with an intense laser-driven capacitor-coil target, was measured by proton deflectometry with a proper plasma shielding. Proton deflectometry is a direct and reliable method to diagnose strong, mm3-scale laser-produced B-field; however, this was not successful in the previous experiment. A target-normal-sheath-accelerated proton beam is deflected by Lorentz force in the laser-produced magnetic field with the resulting deflection pattern recorded on a radiochromic film stack. A 610 ± 30 T of B-field amplitude was inferred by comparing the experimental proton pattern with Monte-Carlo calculations. The amplitude and temporal evolutions of the laser-generated B-field were also measured by a differential magnetic probe, independently confirming the proton deflectometry measurement results.

  10. 'Fixed-axis' magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field?

    Science.gov (United States)

    Phillips, John B; Borland, S Chris; Freake, Michael J; Brassart, Jacques; Kirschvink, Joseph L

    2002-12-01

    Experiments were carried out to investigate the earlier prediction that prolonged exposure to long-wavelength (>500 nm) light would eliminate homing orientation by male Eastern red-spotted newts Notophthalmus viridescens. As in previous experiments, controls held in outdoor tanks under natural lighting conditions and tested in a visually uniform indoor arena under full-spectrum light were homeward oriented. As predicted, however, newts held under long-wavelength light and tested under either full-spectrum or long-wavelength light (>500 nm) failed to show consistent homeward orientation. The newts also did not orient with respect to the shore directions in the outdoor tanks in which they were held prior to testing. Unexpectedly, however, the newts exhibited bimodal orientation along a more-or-less 'fixed' north-northeast-south-southwest magnetic axis. The orientation exhibited by newts tested under full-spectrum light was indistinguishable from that of newts tested under long-wavelength light, although these two wavelength conditions have previously been shown to differentially affect both shoreward compass orientation and homing orientation. To investigate the possibility that the 'fixed-axis' response of the newts was mediated by a magnetoreception mechanism involving single-domain particles of magnetite, natural remanent magnetism (NRM) was measured from a subset of the newts. The distribution of NRM alignments with respect to the head-body axis of the newts was indistinguishable from random. Furthermore, there was no consistent relationship between the NRM of individual newts and their directional response in the overall sample. However, under full-spectrum, but not long-wavelength, light, the alignment of the NRM when the newts reached the 20 cm radius criterion circle in the indoor testing arena (estimated by adding the NRM alignment measured from each newt to its magnetic bearing) was non-randomly distributed. These findings are consistent with the earlier

  11. Micromagnetic simulation of anisotropic grain boundary diffusion for sintered Nd-Fe-B magnets

    Science.gov (United States)

    Li, W.; Zhou, Q.; Zhao, L. Z.; Wang, Q. X.; Zhong, X. C.; Liu, Z. W.

    2018-04-01

    A systematic investigation on the anisotropic grain boundary diffusion in sintered Nd-Fe-B magnets is carried out by micromagnetic simulation. The results indicate that the critical reason for the anisotropic diffusion effect is not the difference in the amount of Dy diffused along different directions but the macroscopic demagnetizing field. The diffusion parallel to the easy axis from both pole surfaces of the magnet can increase the nucleation fields in the two major regions with large macroscopic demagnetizing fields, where the reverse domains can nucleate easily. As a consequence, the grain boundary diffusion along the directions parallel to the easy axis from two pole surfaces is more effective to improve the coercivity of the magnets than that along other directions. It is also found that, to enhance the coercivity, only a limited diffusion depth is required. The present result is in good agreement with the recent experimental findings.

  12. Magnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac Ba-F-Fe deposits (France)

    Science.gov (United States)

    Sizaret, Stanislas; Chen, Yan; Chauvet, Alain; Marcoux, Eric; Touray, Jean Claude

    2003-02-01

    This study presents a possible use of anisotropy of magnetic susceptibility (AMS) to describe the mineralizing process in hydrothermal systems. Ba-F-Fe-rich deposits within the Chaillac Basin are on the southern border of the Paris Basin. In these deposits hydrothermal textures and tectonic structures have been described in veins, sinters, and sandstone cemented by hydrothermal goethite. 278 oriented cores from 24 sites have been collected in these formations. In addition, a lateritic duricrust superimposed on the hydrothermal formation has been sampled. Rock magnetic investigations show that the principal magnetic carrier is goethite for the hydrothermal mineralization and for the laterite level. The AMS measurements show distinguishable behaviors in the different mineralogical and geological contexts. The K1 magnetic lineation (maximum axis) is strongly inclined for the vertical veins. For the horizontally mineralized sinters, the magnetic lineation is almost horizontal with an azimuth similar to the sedimentary flow direction. The AMS of goethite-rich sandstone close to the veins shows strongly inclined K1 as they are probably influenced by the vertical veins; however, when the distance from the vein is larger than 1 m, the AMS presents rather horizontal K1 directions, parallel to the sedimentary flow. The laterite has a foliation dominance of AMS with vertically well-grouped K3 axes and scattered K1 and K2 axes. Field structural observations suggest that the ore deposit is mainly controlled by EW extension tectonics associated with NS trending normal faults. Combining the AMS results on the deposit with vein textures and field data a model is proposed in which AMS results are interpreted in terms of hydrothermal fluid flow. This work opens a new investigation field to constrain hydrodynamic models using the AMS method. Textural study combined with efficient AMS fabric measurements should be used for systematic investigation to trace flow direction in fissures

  13. Amperometric carbohydrate antigen 19-9 immunosensor based on three dimensional ordered macroporous magnetic Au film coupling direct electrochemistry of horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); Chen, Xiaojun, E-mail: chenxj_njut@126.com [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China); Tang, Yin [Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang 215600 (China); Ge, Lingna; Guo, Buhua [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); Yao, Cheng, E-mail: yaochengnjut@163.com [College of Sciences, Nanjing Tech University, Nanjing 211816 (China)

    2014-03-01

    Highlights: • Three dimensional ordered macroporous magnetic electrode was newly used in electrochemical immunosensor. • The large surface area of macroporous magnetic electrode could improve the immobilized amount of antibody. • Au nanoparticles functionalized SBA-15 was used to immobilize enzyme labeled Ab₂ and enzyme. • Macroporous magnetic electrode and Au nanoparticles composite facilitated the direct electron transfer of enzyme. • The immunoassay avoided adding electron transfer mediator, simplifying the procedure. Abstract: A sandwich-type electrochemical immunosensor for the detection of carbohydrate antigen 19-9 (CA 19-9) antigen based on the immobilization of primary antibody (Ab₁) on three dimensional ordered macroporous magnetic (3DOMM) electrode, and the direct electrochemistry of horseradish peroxidase (HRP) that was used as both the label of secondary antibody (Ab₂) and the blocking reagent. The 3DOMM electrode was fabricated by introducing core–shell Au–SiO₂@Fe₃O₄ nanospheres onto the surface of three dimensional ordered macroporous (3DOM) Au electrode via the application of an external magnet. Au nanoparticles functionalized SBA-15 (Au@SBA-15) was conjugated to the HRP labeled secondary antibody (HRP-Ab₂) through the Au–SH or Au–NH₃⁺ interaction, and HRP was also used as the block reagent. The formation of antigen–antibody complex made the combination of Au@SBA-15 and 3DOMM exhibit remarkable synergistic effects for accelerating direct electron transfer (DET) between HRP and the electrode. Under the optimal conditions, the DET current signal increased proportionally to CA 19-9 concentration in the range of 0.05 to 15.65 U mL⁻¹ with a detection limit of 0.01 U mL⁻¹. Moreover, the immunosensor showed high selectivity, good stability, satisfactory reproducibility and regeneration. Importantly, the developed method was used to assay clinical serum specimens, achieving a good relation with those obtained from

  14. EASY-2005.1, European Neutron Activation System

    International Nuclear Information System (INIS)

    Forrest, R.A.; Sublet, Jean-Christophe

    2008-01-01

    1 - Description of program or function: The EASY-2005 (European Activation System) consists of a wide range of codes, data and documentation all aimed at satisfying the objective of calculating the response of materials irradiated in a neutron flux. The main difference from the previous version is the upper energy limit which has increased from 20 to 60 MeV. It is designed to investigate both fusion devices and accelerator based materials test facilities that will act as intense sources of high energy neutrons causing significant activation of the surrounding materials. The very general nature of the calculational method and the data libraries means that it is applicable (with some reservations) to all situations (e.g. fission reactors or neutron sources) where materials are exposed to neutrons below 60 MeV. EASY can be divided into two parts: data and code development tools and user tools and data. The former are required to develop the latter, but EASY users only need to be able to use the inventory code FISPACT and be aware of the contents of the EAF library (the data source). The complete EASY package contains the FISPACT-2005 inventory code, the EAF-2005 library, and the EASY User Interface. The activation package EASY-2005 [1] is the result of significant development to extend the upper energy range from 20 to 60 MeV so that it is capable of being used for IFMIF calculations. The EAF-2005 library contains 62,637 reactions, almost five times more than in EAF-2003 (12,617). Such a large increase means that some mistakes may exist in the new file that need to be corrected. Because of these shortcomings and for other reasons explained below, a maintenance release, EAF-2005.1 has been produced. A deuteron-induced cross section library was also included for the first time, and can be used with EASY to enable calculations of the activation due to deuterons [2]. This library is included in the EASY-2005.1 maintenance release as is a new version of the FISPACT code

  15. Study of the magnetic properties of Tb(Cosub(1-x)Nisub(x))sub(5) compounds

    International Nuclear Information System (INIS)

    Pirogov, A.N.; Kelarev, V.V.; Ermolenko, A.S.; Chuev, V.V.; Sidorov, S.K.; Artamonova, A.M.

    1982-01-01

    The crystal and magnetic structures of Tb(Cosub(1-x)Nisub(x))sub(5) compounds are investigated by neutron-diffraction and magnetic techniques. It is shown that the Ni ions occupy predominantly the 2c positions and the Co ions 3g positions in the crystal unit of the CaCu 5 type of structure. The magnetic phase diagram is set up. From an analysis of the concentration dependence of the magnetizations of the 2c- and 3g-sublattices it is concluded that the magnetic moments at the Co ions are constant. The magnetic moment of the Ni ions in the compounds studied are found to depend on the concentration x. Estimations based on the assumption of constancy of the R-R and R-Co exchange interaction energies indicate that Co-Co interactions contribute significantly to the Curie temperature of compounds with a low Co content (x=0.8). It is found that the temperature dependence of the magnetization of the 2c-sublattice is related to the direction of the easy magnetization axis of the crystal, a consequence being a jump of the magnetization in the easy plane - easy axis transition. On this basis it is concluded that Co atoms in the 2c positions give the major contribution to the magnetic anisotropy of Co sublattice for compounds of the RCo 5 type

  16. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Directory of Open Access Journals (Sweden)

    Yoshitaka Maeda

    2017-05-01

    Full Text Available In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D magnetic properties (properties under the arbitrary alternating and the rotating flux conditions of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  17. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Science.gov (United States)

    Maeda, Yoshitaka; Urata, Shinya; Nakai, Hideo; Takeuchi, Yuuya; Yun, Kyyoul; Yanase, Shunji; Okazaki, Yasuo

    2017-05-01

    In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D) magnetic properties (properties under the arbitrary alternating and the rotating flux conditions) of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  18. Evidence of demyelination in mild cognitive impairment and dementia using a direct and specific magnetic resonance imaging measure of myelin content.

    Science.gov (United States)

    Bouhrara, Mustapha; Reiter, David A; Bergeron, Christopher M; Zukley, Linda M; Ferrucci, Luigi; Resnick, Susan M; Spencer, Richard G

    2018-04-18

    We investigated brain demyelination in aging, mild cognitive impairment (MCI), and dementia using magnetic resonance imaging of myelin. Brains of young and old controls and old subjects with MCI, Alzheimer's disease, or vascular dementia were scanned using our recently developed myelin water fraction (MWF) mapping technique, which provides greatly improved accuracy over previous comparable methods. Maps of MWF, a direct and specific myelin measure, and relaxation times and magnetization transfer ratio, indirect and nonspecific measures, were constructed. MCI subjects showed decreased MWF compared with old controls. Demyelination was greater in Alzheimer's disease or vascular dementia. As expected, decreased MWF was accompanied by decreased magnetization transfer ratio and increased relaxation times. The young subjects showed greater myelin content than the old subjects. We believe this to be the first demonstration of myelin loss in MCI, Alzheimer's disease, and vascular dementia using a method that provides a quantitative magnetic resonance imaging-based measure of myelin. Our findings add to the emerging evidence that myelination may represent an important biomarker for the pathology of MCI and dementia. This study supports the investigation of the role of myelination in MCI and dementia through use of this quantitative magnetic resonance imaging approach in clinical studies of disease progression, relationship of functional status to myelination status, and therapeutics. Furthermore, mapping MWF may permit myelin to serve as a therapeutic target in clinical trials. Copyright © 2018. Published by Elsevier Inc.

  19. Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation.

    Science.gov (United States)

    Ille, Sebastian; Sollmann, Nico; Hauck, Theresa; Maurer, Stefanie; Tanigawa, Noriko; Obermueller, Thomas; Negwer, Chiara; Droese, Doris; Zimmer, Claus; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M

    2015-07-01

    Repetitive navigated transcranial magnetic stimulation (rTMS) is now increasingly used for preoperative language mapping in patients with lesions in language-related areas of the brain. Yet its correlation with intraoperative direct cortical stimulation (DCS) has to be improved. To increase rTMS's specificity and positive predictive value, the authors aim to provide thresholds for rTMS's positive language areas. Moreover, they propose a protocol for combining rTMS with functional MRI (fMRI) to combine the strength of both methods. The authors performed multimodal language mapping in 35 patients with left-sided perisylvian lesions by using rTMS, fMRI, and DCS. The rTMS mappings were conducted with a picture-to-trigger interval (PTI, time between stimulus presentation and stimulation onset) of either 0 or 300 msec. The error rates (ERs; that is, the number of errors per number of stimulations) were calculated for each region of the cortical parcellation system (CPS). Subsequently, the rTMS mappings were analyzed through different error rate thresholds (ERT; that is, the ER at which a CPS region was defined as language positive in terms of rTMS), and the 2-out-of-3 rule (a stimulation site was defined as language positive in terms of rTMS if at least 2 out of 3 stimulations caused an error). As a second step, the authors combined the results of fMRI and rTMS in a predefined protocol of combined noninvasive mapping. To validate this noninvasive protocol, they correlated its results to DCS during awake surgery. The analysis by different rTMS ERTs obtained the highest correlation regarding sensitivity and a low rate of false positives for the ERTs of 15%, 20%, 25%, and the 2-out-of-3 rule. However, when comparing the combined fMRI and rTMS results with DCS, the authors observed an overall specificity of 83%, a positive predictive value of 51%, a sensitivity of 98%, and a negative predictive value of 95%. In comparison with fMRI, rTMS is a more sensitive but less specific

  20. Large magnetoresistance in a directionally solidified Ni44.5Co5.1Mn37.1In13.3 magnetic shape memory alloy

    Science.gov (United States)

    Li, Zongbin; Hu, Wei; Chen, Fenghua; Zhang, Mingang; Li, Zhenzhuang; Yang, Bo; Zhao, Xiang; Zuo, Liang

    2018-04-01

    Polycrystalline Ni44.5Co5.1Mn37.1In13.3 alloy with coarse columnar-shaped grains and 〈0 0 1〉A preferred orientation was prepared by directional solidification. Due to the strong magnetostructural coupling, inverse martensitic transformation can be induced by the magnetic field, resulting in large negative magnetoresistance up to -58% under the field of 3 T. Such significant field controlled functional behaviors should be attributed to the coarse grains and strong preferred orientation in the directionally solidified alloy.

  1. A new approach to magnetic circuit analysis and its application to the optimal design of a bi-directional magnetorheological brake

    International Nuclear Information System (INIS)

    Nguyen, Phuong-Bac; Choi, Seung-Bok

    2011-01-01

    This paper proposes a new approach to modeling the magnetic circuit of an MR brake and applies it to explore an engineering optimization problem. The MR brake used in this work is a bi-directional type whose range of braking torque varies from negative to positive values. The model of the bi-directional MR brake can be split into two components: the mechanical part and the magnetic circuit. While the mechanical part is modeled using Bingham's equation, an approach to modeling the magnetic circuit is proposed in this work. For verification of the effectiveness of this method, an optimal design aiming to minimize the mass subjected to the geometric and desired torque constraints is undertaken. In order to solve such an optimization problem, which consists of numerous constraints and potential local optima, a particle swarm optimization (PSO) algorithm in combination with a gradient-based repair method is proposed. The optimal solution of the problem obtained from the proposed method is then investigated and compared with that obtained from finite element analysis (FEA). In addition, an experiment on a manufactured bi-directional MR brake with the optimal parameters is undertaken to validate the accuracy of the proposed analysis methodology

  2. The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging

    Science.gov (United States)

    Rauscher, P.; Betz, B.; Hauptmann, J.; Wetzig, A.; Beyer, E.; Grünzweig, C.

    2016-12-01

    The performance and degree of efficiency of transformers are directly determined by the bulk magnetic properties of grain oriented electrical steel laminations. The core losses can be improved by post manufacturing methods, so-called domain refinement techniques. All these methods induce mechanical or thermal stress that refines the domain structure. The most commonly used technique is laser scribing due to the no-contact nature and the ease of integration in existing production systems. Here we show how directional neutron dark-field imaging allows visualizing the impact of laser scribing on the bulk and supplementary domain structure. In particular, we investigate the domain formation during magnetization of samples depending on laser treatment parameters such as laser energy and line distances. The directional dark-field imaging findings were quantitatively interpreted in the context with global magnetic hysteresis measurements. Especially we exploit the orientation sensitivity in the dark-field images to distinguish between different domain structures alignment and their relation to the laser scribing process.

  3. Radial cracks and fracture mechanism of radially oriented ring 2:17 type SmCo magnets

    International Nuclear Information System (INIS)

    Tian Jianjun; Pan Dean; Zhou Hao; Yin Fuzheng; Tao Siwu; Zhang Shengen; Qu Xuanhui

    2009-01-01

    Radially oriented ring 2:17 type SmCo magnets have different microstructure in the radial direction (easy magnetization) and axial direction (hard magnetization). The structure of the cross-section in radial direction is close-packed atomic plane, which shows cellular microstructure. The microstructure of the cross-section in axial direction consists of a mixture of rhombic microstructure and parallel lamella phases. So the magnets have obvious anisotropy of thermal expansion in different directions. The difference of the thermal expansion coefficients reaches the maximum value at 830-860 deg. C, which leads to radial cracks during quenching. The magnets have high brittlement because there are fewer slip systems in crystal structure. The fracture is brittle cleavage fracture.

  4. Magnetic tri-axial orientation in (Y1-xErx)2Ba4Cu7O15-y superconductors

    International Nuclear Information System (INIS)

    Horii, S.; Okuhira, S.; Yamaki, M.; Haruta, M.; Maeda, T.; Shimoyama, J.

    2011-01-01

    (Y 1-x Er x ) 2 Ba 4 Cu 7 O 15-y [(Y,Er)247] was synthesized for clarifying a magnetic role of Er ion. The three magnetization axes of (Y,Er)247 were obtained from tri-axial orientation using a modulated rotation magnetic field. Magnetic anisotropy of Er ion is roughly ten times higher than that for Y247 at room temperature. Importance of rare-earth ions was shown for reduction of required magnetic fields in the tri-axial magnetic orientation. We report the tri-axial grain-orientation effects under a modulated rotation magnetic field for (Y 1-x Er x ) 2 Ba 4 Cu 7 O y [(Y, Er)247]. The magnetic easy axis at room temperature was drastically changed around x ∼ 0.1; however, the Er-doping levels for the conversion of magnetic easy axes from the c-axis to the ab-direction and from the a- to b-axes were quite different. Tri-axial single-ion magnetic anisotropy of Er 3+ was roughly 10 times greater than tri-axial magnetic anisotropy generated by both the superconducting CuO 2 plane and the blocking Cu-O chain layer. An appropriate choice of rare-earth (RE) ions in RE-based cuprate superconductors enables the reduction of the required magnetic field for the production of bulks and thick films based on the magnetic orientation technique.

  5. The growth of a single crystal of Sr3CuIrO6 and its magnetic ...

    Indian Academy of Sciences (India)

    field. (zfc) dc as well as ac χ(T) (figure 1) for the two crystal orientations stated above, we infer that the easy axis of magnetization lies normal to the [101] direction. For comparison, in figures 1a and 1c we display the corresponding dc and ac ...

  6. Influence of deposition field on the magnetic anisotropy in epitaxial Co70Fe30 films on GaAs(001)

    International Nuclear Information System (INIS)

    Hindmarch, A.T.; Arena, D.; Dempsey, K.J.; Henini, M.; Marrows, C.H.

    2010-01-01

    The effect of the application of a magnetic field during deposition of epitaxial Co 70 Fe 30 onto GaAs(001) is shown; we find an initially counterintuitive result. For field applied along the interfacial uniaxial hard axis the relative effective uniaxial magnetic anisotropy is increased by a factor of two in comparison to both field along the uniaxial easy axis, or no field; usually, application of a deposition field results in a uniaxial easy axis parallel to this field direction. We show that the deposition field changes the maximal projection of the atomic orbital magnetic moments onto the easy axis, which corresponds to a deposition field induced shift in the Helmholtz free-energy landscape of the system.

  7. Distributed model predictive control made easy

    CERN Document Server

    Negenborn, Rudy

    2014-01-01

    The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems.   This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those ...

  8. Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis

    Czech Academy of Sciences Publication Activity Database

    Pulišová, Petra; Kováč, J.; Voigt, A.; Raschman, P.

    2013-01-01

    Roč. 341, september (2013), s. 93-99 ISSN 0304-8853 Institutional support: RVO:61388980 Keywords : Precipitation in microemulsion s * Ferrite nano-powder * Magnetic properties * ZFC * FC measurements Subject RIV: CA - Inorganic Chemistry Impact factor: 2.002, year: 2013

  9. Direct search for Dirac magnetic monopoles in pp collisions at square root s = 1.96 TeV.

    Science.gov (United States)

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Carter, A; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cruz, A; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciverez, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Kordas, K; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schieferdecker, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Dennis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, Y; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-05-26

    We search for pair-produced Dirac magnetic monopoles in 35.7 pb(-1) of proton-antiproton collisions at square root s = 1.96 TeV with the Collider Detector at Fermilab (CDF). We find no monopole candidates corresponding to a 95% confidence-level cross-section limit sigma 360 GeV/c2.

  10. Direct observation of cation distributions of ideal inverse spinel CoFe2O4 nanofibres and correlated magnetic properties

    KAUST Repository

    Zeng, Xue; Zhang, Junwei; Zhu, Shimeng; Deng, Xia; Ma, Hongbin; Zhang, Junli; Zhang, Qiang; Li, Peng; Xue, Desheng; Mellors, Nigel J; Zhang, Xixiang; Peng, Yong

    2017-01-01

    multiferroic heterostructures. Although we know that the distribution of cations (Fe3+ and Co2+) in a spinel structure governs its magnetic properties, their distribution in the so-called ideal inverse spinel structure of a ferrite, CoFe2O4, has not yet been

  11. Magnetic levitation and its application for education devices based on YBCO bulk superconductors

    Science.gov (United States)

    Yang, W. M.; Chao, X. X.; Guo, F. X.; Li, J. W.; Chen, S. L.

    2013-10-01

    A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN2 temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.

  12. EasyDIAg: A tool for easy determination of interrater agreement.

    Science.gov (United States)

    Holle, Henning; Rein, Robert

    2015-09-01

    Reliable measurements are fundamental for the empirical sciences. In observational research, measurements often consist of observers categorizing behavior into nominal-scaled units. Since the categorization is the outcome of a complex judgment process, it is important to evaluate the extent to which these judgments are reproducible, by having multiple observers independently rate the same behavior. A challenge in determining interrater agreement for timed-event sequential data is to develop clear objective criteria to determine whether two raters' judgments relate to the same event (the linking problem). Furthermore, many studies presently report only raw agreement indices, without considering the degree to which agreement can occur by chance alone. Here, we present a novel, free, and open-source toolbox (EasyDIAg) designed to assist researchers with the linking problem, while also providing chance-corrected estimates of interrater agreement. Additional tools are included to facilitate the development of coding schemes and rater training.

  13. EasyPipes - Final/annual report; EasyPipes - Rapport final/annuel

    Energy Technology Data Exchange (ETDEWEB)

    Gallinelli, P.; Thomann, P.; Weber, W. [University of Geneva, Geneva (Switzerland); Hollmuller, P. [University of Lisbon, Lisbon (Portugal)

    2009-06-15

    This report describes follow-up activities in the field of design of buried air-to-ground heat exchangers for ventilated low-energy buildings. Such heat exchangers preheat the inlet air in winter and cool it in summer, contributing to significantly reduce the energy consumption and improve indoor thermal comfort. They have been extensively studied at the University of Geneva, Switzerland by P. Hollmuller, B. Lachal et al. since 2001. The corresponding reports can be found in the ETDE data base. The present and latest report of the series deals with implemented improvements of the computer simulation program for the dimensioning of such heat exchangers. A previous, experimentally and analytically validated version, based on TRNSYS formalism, was not enough user-friendly for architects and engineers in the practice. A new interface called EasyPipes, based on the windows input and output formalism and including graphical features, has been developed. Details are reported on.

  14. Analysis of the Usage of Magnetic Force-directed Approach and Visual Techniques for Interactive Context-based Drawing of Multi-attributed Graphs

    Directory of Open Access Journals (Sweden)

    Zabiniako Vitaly

    2014-12-01

    Full Text Available In this article, the authors perform an analysis in order to assess adaptation of magnetic force-directed algorithms for context-based information extraction from multi-attributed graphs during visualization sessions. Theoretic standings behind magnetic force-directed approach are stated together with review on how particular features of respective algorithms in combination with appropriate visual techniques are especially suitable for improved processing and presenting of knowledge that is captured in form of graphs. The complexity of retrieving multi-attributed information within the proposed approach is handled with dedicated tools, such as selective attraction of nodes to MFE (Magnetic Force Emitter based on search criteria, localization of POI (Point of Interest regions, graph node anchoring, etc. Implicit compatibility of aforementioned tools with interactive nature of data exploration is distinguished. Description of case study, based on bibliometric network analysis is given, which is followed by the review of existing related works in this field. Conclusions are made and further studies in the field of visualization of multi-attributed graphs are defined.

  15. Magnetic fabric and flow direction in the Ediacaran Imider dyke swarms (Eastern Anti-Atlas, Morocco), inferred from the Anisotropy of Magnetic Susceptibility (AMS)

    Science.gov (United States)

    Otmane, Khadija; Errami, Ezzoura; Olivier, Philippe; Berger, Julien; Triantafyllou, Antoine; Ennih, Nasser

    2018-03-01

    Located in the Imiter Inlier (Eastern Saghro, Anti-Atlas, Morocco), Ediacaran volcanic dykes have been studied for their petrofabric using Anisotropy of Magnetic Susceptibility (AMS) technique. Four dykes, namely TF, TD, FF and FE show andesitic compositions and are considered to belong to the same dyke swarm. They are oriented respectively N25E, N40E, N50E, and N10E and have been emplaced during a first tectonic event. The dyke FW, oriented N90E displays a composition of alkali basalt and its emplacement is attributed to a subsequent tectonic event. These rocks are propylitized under greenschist facies conditions forming a secondary paragenesis constituted by calcite, chlorite, epidote and sericite. The dykes TF, TD, FF and FE are sub-volcanic calc-alkaline, typical of post-collisional basalts/andesites, belonging to plate margin andesites. The FW dyke shows a within-plate basalt signature; alkaline affinity reflecting a different petrogenetic process. The thermomagnetic analyses show a dominantly ferromagnetic behaviour in the TF dyke core carried by single domain Ti-poor magnetite, maghemite and pyrrhotite. The dominantly paramagnetic susceptibilities in TF dyke rims and TD, FE, FF and FW dykes are controlled by ilmenite, amphibole, pyroxene and chlorite. The magnetic fabrics of the Imider dykes, determined by our AMS study, allows us to reconstitute the tectonic conditions which prevailed during the emplacement of these two generations of volcanic dykes. The first tectonic event was characterized by a roughly NE-SW compression and the second tectonic event is characterized by an E-W shortening followed by a relaxation recording the end of the Pan-African orogeny in the eastern Anti-Atlas.

  16. STRATEGI PEMASARAN PAKET WISATA DI BALI EASY HOLIDAY DENPASAR BALI

    Directory of Open Access Journals (Sweden)

    Erick Kevin Perangin-Angin

    2017-07-01

    Full Text Available This Journal aimed to know the strengths and weaknesses of the internal environment and opportunities as well as threats from the external environment and create strategies and marketing programs that can be applied in the Bali Easy Holiday. The technique data collection using observation, interview, questionnaire, the study of literature and documentation study. Sampling techniques using a purposive sampling. Data analysis techniques using qualitative descriptive analysis and Likert scale analysis. The results of this research are obtaining indicators of strengths and weaknesses of internal environment and the opportunities and threats of weaknesses in Bali Easy Holiday. Bali Easy Holiday gains 16 indicators of strengths and 4 indicators of weaknesses in Bali Easy Holiday. Bali Easy Holiday gains 9 indicators of opportunities 5 indicators of threats in Bali Easy Holiday. Marketing strategies can be applied to Bali Easy Holiday, namely : the creation of strategy and product development, market development strategies, promotion strategy, a strategy of improved human resources, the strategy of market penetration strategies, improvement of the quality of products and services and pricing strategies. This research has some advice for Bali Easy Holiday is to increase the intensity of promotion, provide ease reservations and payments to consumers, renew tour packages, provide affordable rates to customers and formed a marketing division.

  17. Thickness dependence of voltage-driven magnetization switching in FeCo/PI/piezoelectric actuator heterostructures

    Science.gov (United States)

    Cui, B. S.; Guo, X. B.; Wu, K.; Li, D.; Zuo, Y. L.; Xi, L.

    2016-03-01

    Strain mediated magnetization switching of ferromagnetic/substrate/piezoelectric actuator heterostructures has become a hot issue due to the advantage of low-power consumption. In this work, Fe65Co35 thin films were deposited on a flexible polyamides (PI) substrate, which has quite low Young’s module (~4 GPa for PI as compared to ~180 GPa for Si) and benefits from complete transfer of the strain from the piezoelectric actuator to magnetic thin films. A complete 90° transition of the magnetic easy axis was realized in 50 nm thick FeCo films under the voltage of 70 V, while a less than 90° rotation angle of the magnetic easy axis direction was observed in other samples, which was ascribed to the distribution of the anisotropy field and/or the orthogonal misalignment between stress induced anisotropy and original uniaxial anisotropy. A model considering two uniaxial anisotropies with orthogonal arrangement was used to quantitatively understand the observed results and the linear-like voltage dependent anisotropy field, especially for 10 nm FeCo films, in which the switching mechanism along the easy axis direction can be explained by the domain wall depinning model. It indicates that the magnetic domain-wall movement velocity may be controlled by strain through tuning the energy barrier of the pinning in heterostructures. Moreover, voltage-driven 90° magnetization switching with low-power consumption was achieved in this work.

  18. Thickness dependence of voltage-driven magnetization switching in FeCo/PI/piezoelectric actuator heterostructures

    International Nuclear Information System (INIS)

    Cui, B S; Guo, X B; Wu, K; Li, D; Zuo, Y L; Xi, L

    2016-01-01

    Strain mediated magnetization switching of ferromagnetic/substrate/piezoelectric actuator heterostructures has become a hot issue due to the advantage of low-power consumption. In this work, Fe 65 Co 35 thin films were deposited on a flexible polyamides (PI) substrate, which has quite low Young’s module (∼4 GPa for PI as compared to ∼180 GPa for Si) and benefits from complete transfer of the strain from the piezoelectric actuator to magnetic thin films. A complete 90° transition of the magnetic easy axis was realized in 50 nm thick FeCo films under the voltage of 70 V, while a less than 90° rotation angle of the magnetic easy axis direction was observed in other samples, which was ascribed to the distribution of the anisotropy field and/or the orthogonal misalignment between stress induced anisotropy and original uniaxial anisotropy. A model considering two uniaxial anisotropies with orthogonal arrangement was used to quantitatively understand the observed results and the linear-like voltage dependent anisotropy field, especially for 10 nm FeCo films, in which the switching mechanism along the easy axis direction can be explained by the domain wall depinning model. It indicates that the magnetic domain-wall movement velocity may be controlled by strain through tuning the energy barrier of the pinning in heterostructures. Moreover, voltage-driven 90° magnetization switching with low-power consumption was achieved in this work. (paper)

  19. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    Science.gov (United States)

    Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean's critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  20. Phase dynamics of oscillating magnetizations coupled via spin pumping

    Science.gov (United States)

    Taniguchi, Tomohiro

    2018-05-01

    A theoretical formalism is developed to simultaneously solve equation of motion of the magnetizations in two ferromagnets and the spin-pumping induced spin transport equation. Based on the formalism, a coupled motion of the magnetizations in a self-oscillation state is studied. The spin pumping is found to induce an in-phase synchronization of the magnetizations for the oscillation around the easy axis. For an out-of-plane self-oscillation around the hard axis, on the other hand, the spin pumping leads to an in-phase synchronization in a small current region, whereas an antiphase synchronization is excited in a large current region. An analytical theory based on the phase equation reveals that the phase difference between the magnetizations in a steady state depends on the oscillation direction, clockwise or counterclockwise, of the magnetizations.

  1. RECOVERY OF IRON FROM LOW-GRADE HEMATITE ORE USING COAL-BASED DIRECT REDUCTION FOLLOWED BY MAGNETIC SEPARATION

    Directory of Open Access Journals (Sweden)

    N. Alavifard

    2016-09-01

    Full Text Available In the present work, iron recovery from a low-grade hematite ore (containing less than 40% iron, which is not applicable in common methods of ironmaking, was studied. Non-coking coal was used as reducing agent. Reduction experiments were performed under various coal to hematite ratios and temperatures. Reduction degree was calculated using the gravimetric method. Reduced samples were subjected to magnetic separation followed by X-ray diffraction analysis. Total iron content, degree of metallization and recovery efficiency in magnetic part were determined by quantitative chemical analysis, which were obtained about 82%, 95% and 64% respectively under optimal conditions. CaO as an additive improved ore reducibility and separation efficiency. The microstructure of reduced samples and final products were analyzed by scanning electron microscopy. Final product with a high degree of metallization can be used in steel making furnaces and charging of blast furnaces which can improve production efficiency and decrease coke usage.

  2. High-order Two-Fluid Plasma Solver for Direct Numerical Simulations of Magnetic Flows with Realistic Transport Phenomena

    Science.gov (United States)

    Li, Zhaorui; Livescu, Daniel

    2017-11-01

    The two-fluid plasma equations with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating term have been solved by using the sixth-order non-dissipative compact scheme for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows have been tested against a series of canonical problems, such as Alfven-Whistler dispersion relation, electromagnetic plasma shock, magnetic reconnection, etc. For all test cases, grid convergence tests have been conducted to achieve fully resolved results. The roles of heat flux, viscosity, resistivity, Hall and Biermann battery effects, are investigated for the canonical flows studied.

  3. Manufacturing methods and magnetic characteristics of magnetic wood

    International Nuclear Information System (INIS)

    Oka, H.; Hojo, A.; Osada, H.; Namizaki, Y.; Taniuchi, H.

    2004-01-01

    The relationship between wood construction and DC magnetic characteristics for three types of magnetic wood was experimentally investigated. The results show that the magnetic characteristics of each type of magnetic wood are dependent on the magnetic materials, the density of the magnetic material and the construction of the wood. Furthermore, it was determined that the relationship between the fiber direction and the magnetic path direction of the magnetic wood influenced the wood's magnetic characteristics

  4. Relationships between magnetic susceptibility of limestones and sea level change ("direct relationship and major crises on the Earth")

    Czech Academy of Sciences Publication Activity Database

    Hladil, Jindřich; Slavík, Ladislav; Koptíková, Leona; Schnabl, Petr; Vacek, F.; Bábek, O.; Geršl, M.

    2008-01-01

    Roč. 34, 4/6 (2008), s. 1343596-1343596 ISSN 0161-6951. [International Geological Congress /33./. 06.08.2008-14.08.2008, Oslo] R&D Projects: GA AV ČR IAA300130702; GA AV ČR(CZ) KJB300130613; GA AV ČR KJB307020602 Institutional research plan: CEZ:AV0Z30130516 Keywords : magnetic suceptibility * limestone * impurity * ocean-atmosperic circulation * past global crises Subject RIV: DB - Geology ; Mineralogy

  5. Behavior of current sheets at directional magnetic discontinuities in the solar wind at 0.72 AU

    Czech Academy of Sciences Publication Activity Database

    Zhang, T. L.; Russell, C. T.; Zambelli, W.; Vörös, Zoltán; Wang, C.; Cao, J. B.; Jian l, L. K.; Strangeway, R. J.; Balikhin, M.; Baumjohann, W.; Delva, M.; Volwerk, M.; Glassmeier, K.; H.

    2008-01-01

    Roč. 35, č. 24 (2008), L24102/1-L24102/5 ISSN 0094-8276 Grant - others:Austrian Wissenschaftfonds(AT) P20131-N16; NNSFC(CN) 40628003; 973 Program(CN) 2006CB806305; NASA (US) NNG06GC62G Institutional research plan: CEZ:AV0Z30420517 Keywords : solar wind * current sheets * magnetic annihilation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.959, year: 2008

  6. Direct current force sensing device based on compressive spring, permanent magnet, and coil-wound magnetostrictive/piezoelectric laminate.

    Science.gov (United States)

    Leung, Chung Ming; Or, Siu Wing; Ho, S L

    2013-12-01

    A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.

  7. The IBA Easy-E-Beam™ Integrated Processing System

    Science.gov (United States)

    Cleland, Marshall R.; Galloway, Richard A.; Lisanti, Thomas F.

    2011-06-01

    IBA Industrial Inc., (formerly known as Radiation Dynamics, Inc.) has been making high-energy and medium-energy, direct-current proton and electron accelerators for research and industrial applications for many years. Some industrial applications of high-power electron accelerators are the crosslinking of polymeric materials and products, such as the insulation on electrical wires, multi-conductor cable jackets, heat-shrinkable plastic tubing and film, plastic pipe, foam and pellets, the partial curing of rubber sheet for automobile tire components, and the sterilization of disposable medical devices. The curing (polymerization and crosslinking) of carbon and glass fiber-reinforced composite plastic parts, the preservation of foods and the treatment of waste materials are attractive possibilities for future applications. With electron energies above 1.0 MeV, the radiation protection for operating personnel is usually provided by surrounding the accelerator facility with thick concrete walls. With lower energies, steel and lead panels can be used, which are substantially thinner and more compact than the equivalent concrete walls. IBA has developed a series of electron processing systems called Easy-e-Beam™ for the medium energy range from 300 keV to 1000 keV. These systems include the shielding as an integral part of a complete radiation processing facility. The basic concepts of the electron accelerator, the product processing equipment, the programmable control system, the configuration of the radiation shielding and some performance characteristics are described in this paper.

  8. The IBA Easy-E-Beam Integrated Processing System

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Galloway, Richard A.; Lisanti, Thomas F.

    2011-01-01

    IBA Industrial Inc., (formerly known as Radiation Dynamics, Inc.) has been making high-energy and medium-energy, direct-current proton and electron accelerators for research and industrial applications for many years. Some industrial applications of high-power electron accelerators are the crosslinking of polymeric materials and products, such as the insulation on electrical wires, multi-conductor cable jackets, heat-shrinkable plastic tubing and film, plastic pipe, foam and pellets, the partial curing of rubber sheet for automobile tire components, and the sterilization of disposable medical devices. The curing (polymerization and crosslinking) of carbon and glass fiber-reinforced composite plastic parts, the preservation of foods and the treatment of waste materials are attractive possibilities for future applications. With electron energies above 1.0 MeV, the radiation protection for operating personnel is usually provided by surrounding the accelerator facility with thick concrete walls. With lower energies, steel and lead panels can be used, which are substantially thinner and more compact than the equivalent concrete walls. IBA has developed a series of electron processing systems called Easy-e-Beam for the medium energy range from 300 keV to 1000 keV. These systems include the shielding as an integral part of a complete radiation processing facility. The basic concepts of the electron accelerator, the product processing equipment, the programmable control system, the configuration of the radiation shielding and some performance characteristics are described in this paper.

  9. Self-assembly of multiferroic core-shell particulate nanocomposites through DNA-DNA hybridization and magnetic field directed assembly of superstructures

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasulu, Gollapudi; Srinivasan, Gopalan, E-mail: srinivas@oakland.edu, E-mail: chavez@oakland.edu [Department of Physics, Oakland University, Rochester, MI 48309-4401 (United States); Lochbiler, Thomas A.; Panda, Manashi; Chavez, Ferman A., E-mail: srinivas@oakland.edu, E-mail: chavez@oakland.edu [Department of Chemistry, Oakland University, Rochester, MI 48309-4401 (United States)

    2016-04-15

    Multiferroic composites of ferromagnetic and ferroelectric phases are of importance for studies on mechanical strain mediated coupling between the magnetic and electric subsystems. This work is on DNA-assisted self-assembly of superstructures of such composites with nanometer periodicity. The synthesis involved oligomeric DNA-functionalized ferroelectric and ferromagnetic nanoparticles, 600 nm BaTiO{sub 3} (BTO) and 200 nm NiFe{sub 2}O{sub 4} (NFO), respectively. Mixing BTO and NFO particles, possessing complementary DNA sequences, resulted in the formation of ordered core-shell heteronanocomposites held together by DNA hybridization. The composites were imaged by scanning electron microscopy and scanning microwave microscopy. The presence of heteroassemblies along with core-shell architecture is clearly observed. The reversible nature of the DNA hybridization allows for restructuring the composites into mm-long linear chains and 2D-arrays in the presence of a static magnetic field and ring-like structures in a rotating-magnetic field. Strong magneto-electric (ME) coupling in as-assembled composites is evident from static magnetic field H induced polarization and low-frequency magnetoelectric voltage coefficient measurements. Upon annealing the nanocomposites at high temperatures, evidence for the formation of bulk composites with excellent cross-coupling between the electric and magnetic subsystems is obtained by H-induced polarization and low-frequency ME voltage coefficient. The ME coupling strength in the self-assembled composites is measured to be much stronger than in bulk composites with randomly distributed NFO and BTO prepared by direct mixing and sintering.

  10. A novel safety device with metal counter meshing gears discriminator directly driven by axial flux permanent magnet micromotors based on MEMS technology

    Science.gov (United States)

    Zhang, Weiping; Chen, Wenyuan; Zhao, Xiaolin; Li, Shengyong; Jiang, Yong

    2005-08-01

    In a novel safety device based on MEMS technology for high consequence systems, the discriminator consists of two groups of metal counter meshing gears and two pawl/ratchet wheel mechanisms. Each group of counter meshing gears is onepiece and driven directly by an axial flux permanent magnet micromotor respectively. The energy-coupling element is an optical shutter with two collimators and a coupler wheel. The safety device's probability is less than 1/106. It is fabricated by combination of an LiGA-like process and precision mechanical engineering. The device has simple structure, few dynamic problems, high strength and strong reliability.

  11. Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

    Energy Technology Data Exchange (ETDEWEB)

    Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

    2010-09-01

    A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

  12. Direct coupling of a liquid chromatograph to a continuous flow hydrogen nuclear magnetic resonance detector for analysis of petroleum and synthetic fuels

    International Nuclear Information System (INIS)

    Haw, J.F.; Glass, T.E.; Hausler, D.W.; Motell, E.; Dorn, H.C.

    1980-01-01

    Initial results obtained for a flow 1 H nuclear magnetic resonance (NMR) detector directly coupled to a liquid chromatography unit are described. Results achieved for a model mixture and several jet fuel samples are discussed. Chromatographic separation of alkanes, alkylbenzenes, and substituted naphthalenes present in the jet fuel samples are easily identified with the 1 H NMR detector. Results with our present flow 1 H NMR insert indicate that 5-Hz linewidths are readily obtainable for typical chromatographic flow rates. The limitations and advantages of this liquid chromatography detector are compared with more commonly employed detectors (e.g., refractive index detectors). 11 figures

  13. Very low speed performance of active flux based sensorless control: interior permanent magnet synchronous motor vector control versus direct torque and flux control

    DEFF Research Database (Denmark)

    Paicu, M. C.; Boldea, I.; Andreescu, G. D.

    2009-01-01

    This study is focused on very low speed performance comparison between two sensorless control systems based on the novel ‘active flux' concept, that is, the current/voltage vector control versus direct torque and flux control (DTFC) for interior permanent magnet synchronous motor (IPMSM) drives...... with space vector modulation (SVM), without signal injection. The active flux, defined as the flux that multiplies iq current in the dq-model torque expression of all ac machines, is easily obtained from the stator-flux vector and has the rotor position orientation. Therefore notable simplification...

  14. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    International Nuclear Information System (INIS)

    Wang, Lijun; Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2015-01-01

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region

  15. A FULL STUDY ON THE SUN–EARTH CONNECTION OF AN EARTH-DIRECTED CME MAGNETIC FLUX ROPE

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, Panditi [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore-560 034 (India); Mishra, Wageesh, E-mail: vemareddy@iiap.res.in, E-mail: wageesh@ustc.edu.cn [Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei-230026 (China)

    2015-11-20

    We present an investigation of an eruption event of a coronal mass ejection (CME) magnetic flux rope (MFR) from the source active region (AR) NOAA 11719 on 2013 April 11 utilizing observations from the Solar Dynamic Observatory, the Solar Terrestrial Relations Observatory, the Solar and Heliospheric Observatory, and the WIND spacecraft. The source AR consists of a pre-existing sigmoidal structure stacked over a filament channel which is regarded as an MFR system. EUV observations of low corona suggest further development of this MFR system by added axial flux through tether-cutting reconnection of loops at the middle of the sigmoid under the influence of continuous slow flux motions for two days. Our study implies that the MFR system in the AR is initiated to upward motion by kink instability and further driven by torus instability. The CME morphology, captured in simultaneous three-point coronagraph observations, is fitted with a Graduated Cylindrical Shell (GCS) model and discerns an MFR topology with its orientation aligning with a magnetic neutral line in the source AR. This MFR expands self-similarly and is found to have source AR twist signatures in the associated near-Earth magnetic cloud (MC). We further derived the kinematics of this CME propagation by employing a plethora of stereoscopic as well as single-spacecraft reconstruction techniques. While stereoscopic methods perform relatively poorly compared to other methods, fitting methods worked best in estimating the arrival time of the CME compared to in situ measurements. Supplied with the values of constrained solar wind velocity, drag parameter, and three-dimensional kinematics from the GCS fit, we construct CME kinematics from the drag-based model consistent with in situ MC arrival.

  16. A FULL STUDY ON THE SUN–EARTH CONNECTION OF AN EARTH-DIRECTED CME MAGNETIC FLUX ROPE

    International Nuclear Information System (INIS)

    Vemareddy, Panditi; Mishra, Wageesh

    2015-01-01

    We present an investigation of an eruption event of a coronal mass ejection (CME) magnetic flux rope (MFR) from the source active region (AR) NOAA 11719 on 2013 April 11 utilizing observations from the Solar Dynamic Observatory, the Solar Terrestrial Relations Observatory, the Solar and Heliospheric Observatory, and the WIND spacecraft. The source AR consists of a pre-existing sigmoidal structure stacked over a filament channel which is regarded as an MFR system. EUV observations of low corona suggest further development of this MFR system by added axial flux through tether-cutting reconnection of loops at the middle of the sigmoid under the influence of continuous slow flux motions for two days. Our study implies that the MFR system in the AR is initiated to upward motion by kink instability and further driven by torus instability. The CME morphology, captured in simultaneous three-point coronagraph observations, is fitted with a Graduated Cylindrical Shell (GCS) model and discerns an MFR topology with its orientation aligning with a magnetic neutral line in the source AR. This MFR expands self-similarly and is found to have source AR twist signatures in the associated near-Earth magnetic cloud (MC). We further derived the kinematics of this CME propagation by employing a plethora of stereoscopic as well as single-spacecraft reconstruction techniques. While stereoscopic methods perform relatively poorly compared to other methods, fitting methods worked best in estimating the arrival time of the CME compared to in situ measurements. Supplied with the values of constrained solar wind velocity, drag parameter, and three-dimensional kinematics from the GCS fit, we construct CME kinematics from the drag-based model consistent with in situ MC arrival

  17. Disaggregation and separation dynamics of magnetic particles in a microfluidic flow under an alternating gradient magnetic field

    Science.gov (United States)

    Cao, Quanliang; Li, Zhenhao; Wang, Zhen; Qi, Fan; Han, Xiaotao

    2018-05-01

    How to prevent particle aggregation in the magnetic separation process is of great importance for high-purity separation, while it is a challenging issue in practice. In this work, we report a novel method to solve this problem for improving the selectivity of size-based separation by use of a gradient alternating magnetic field. The specially designed magnetic field is capable of dynamically adjusting the magnetic field direction without changing the direction of magnetic gradient force acting on the particles. Using direct numerical simulations, we show that particles within a certain center-to-center distance are inseparable under a gradient static magnetic field since they are easy aggregated and then start moving together. By contrast, it has been demonstrated that alternating repulsive and attractive interaction forces between particles can be generated to avoid the formation of aggregations when the alternating gradient magnetic field with a given alternating frequency is applied, enabling these particles to be continuously separated based on size-dependent properties. The proposed magnetic separation method and simulation results have the significance for fundamental understanding of particle dynamic behavior and improving the separation efficiency.

  18. Magnetic interactions, bonding, and motion of positive muons in magnetite

    International Nuclear Information System (INIS)

    Boekema, C.; Lichti, R.L.; Brabers, V.A.M.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E.

    1985-01-01

    Positive-muon behavior in magnetite is investigated by the muon-spin-rotation technique. The observed muon relaxation rate in zero applied field, in conjunction with the measured local field, allows us to separate muon-motion effects from phase transitions associated with magnetite. The local magnetic field is observed to be 4.02 kOe directed along the axis, the easy axis of magnetization. Possible origins of this field are discussed in terms which include local muon diffusion and a supertransfer hyperfine interaction resulting from muon-oxygen bonding. An anomaly in the muon hyperfine interactions is observed at 247 K

  19. Analysis and Optimization of a Novel 2-D Magnet Array with Gaps and Staggers for a Moving-Magnet Planar Motor

    Science.gov (United States)

    Chen, Xuedong; Zeng, Lizhan

    2018-01-01

    This paper presents a novel 2-D magnet array with gaps and staggers, which is especially suitable for magnetically levitated planar motor with moving magnets. The magnetic flux density distribution is derived by Fourier analysis and superposition. The influences of gaps and staggers on high-order harmonics and flux density were analyzed, and the optimized design is presented. Compared with the other improved structures based on traditional Halbach magnet arrays, the proposed design has the lowest high-order harmonics percentage, and the characteristics of flux density meet the demand of high acceleration in horizontal directions. It is also lightweight and easy to manufacture. The proposed magnet array was built, and the calculation results have been verified with experiment. PMID:29300323

  20. Wood construction and magnetic characteristics of impregnated type magnetic wood

    International Nuclear Information System (INIS)

    Oka, Hideo; Hojo, Atsushi; Seki, Kyoushiro; Takashiba, Toshio

    2002-01-01

    The results of experiments involving the AC and DC magnetic characteristics of impregnated type magnetic wood were studied by taking into consideration the wood construction and fiber direction. The experimental results show that the sufficient amount of impregnated magnetic fluid varies depending on the fiber direction and length, and the grain face of the wood material. The impregnated type magnetic wood sample that is fully impregnated by magnetic fluid has a 60% saturation magnetization compared to the saturation magnetization of magnetic fluid. Samples for which the wood fiber direction was the same as the direction of the magnetic path had a higher magnetization intensity and permeability

  1. Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields.

    Science.gov (United States)

    Garcia-Cossio, Eliana; Witkowski, Matthias; Robinson, Stephen E; Cohen, Leonardo G; Birbaumer, Niels; Soekadar, Surjo R

    2016-10-15

    Transcranial direct current stimulation (tDCS) can influence cognitive, affective or motor brain functions. Whereas previous imaging studies demonstrated widespread tDCS effects on brain metabolism, direct impact of tDCS on electric or magnetic source activity in task-related brain areas could not be confirmed due to the difficulty to record such activity simultaneously during tDCS. The aim of this proof-of-principal study was to demonstrate the feasibility of whole-head source localization and reconstruction of neuromagnetic brain activity during tDCS and to confirm the direct effect of tDCS on ongoing neuromagnetic activity in task-related brain areas. Here we show for the first time that tDCS has an immediate impact on slow cortical magnetic fields (SCF, 0-4Hz) of task-related areas that are identical with brain regions previously described in metabolic neuroimaging studies. 14 healthy volunteers performed a choice reaction time (RT) task while whole-head magnetoencephalography (MEG) was recorded. Task-related source-activity of SCFs was calculated using synthetic aperture magnetometry (SAM) in absence of stimulation and while anodal, cathodal or sham tDCS was delivered over the right primary motor cortex (M1). Source reconstruction revealed task-related SCF modulations in brain regions that precisely matched prior metabolic neuroimaging studies. Anodal and cathodal tDCS had a polarity-dependent impact on RT and SCF in primary sensorimotor and medial centro-parietal cortices. Combining tDCS and whole-head MEG is a powerful approach to investigate the direct effects of transcranial electric currents on ongoing neuromagnetic source activity, brain function and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-06

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and integration into microsystems. In5 addition, the nanocomposite benefits from the high elasticity and easy patterning of the polymer-based material, leading to a corrosion-resistant, flexible material that can be used to realize extreme sensitivity. In combination with magnetic sensor elements patterned underneath the nanocomposite, the nanocomposite device realizes highly sensitive and power efficient flexible artificial cilia sensors for flow measurement or tactile sensing.

  3. Application and Prospect of Superconducting High Gradient Magnetic Separation in Disposal of Micro-fine Tailings

    Science.gov (United States)

    Yang, Changqiao; Li, Suqin; Guo, Zijie; Kong, Jiawei

    2017-12-01

    Magnetic separation technology is playing an increasingly important role in the field of environmental protection such as waste gas, waste water and solid waste treatment. As a new type of solid waste treatment technology, superconducting high gradient magnetic separation (HGMS) is mainly applied in the separation of micro-fine weakly magnetic particles because of the advantages of high separation efficiency, energy saving, simple equipment and easy automation. In this paper, the basic principle of superconducting HGMS was firstly introduced, then the research status of scholars at home and aboard on the disposal of micro-fine tailings were summarized. Finally, the direction of development for HGMS was put forward.

  4. Magnetic stripes and holes: Complex domain patterns in perforated films with weak perpendicular anisotropy

    Directory of Open Access Journals (Sweden)

    F. Valdés-Bango

    2017-05-01

    Full Text Available Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.

  5. Magnetic stripes and holes: Complex domain patterns in perforated films with weak perpendicular anisotropy

    Science.gov (United States)

    Valdés-Bango, F.; Vélez, M.; Alvarez-Prado, L. M.; Alameda, J. M.; Martín, J. I.

    2017-05-01

    Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.

  6. Search for signatures of magnetically-induced alignment in the arrival directions measured by the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Nyklíček, Michal; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr; Vícha, Jakub

    2012-01-01

    Roč. 35, č. 6 (2012), 354-361 ISSN 0927-6505 R&D Projects: GA MŠk LC527; GA MŠk(CZ) 1M06002; GA AV ČR KJB100100904; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : ultra-high energy cosmic rays * Pierre Auger Observatory * arrival directions Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.777, year: 2012 http://www. science direct.com/ science /article/pii/S0927650511001915

  7. Dynamical Monte Carlo investigation of spin reversal and nonequilibrium magnetization of single-molecule magnets

    Science.gov (United States)

    Liu, Gui-Bin; Liu, Bang-Gui

    2010-10-01

    In this paper, we combine thermal effects with Landau-Zener (LZ) quantum tunneling effects in a dynamical Monte Carlo (DMC) framework to produce satisfactory magnetization curves of single-molecule magnet (SMM) systems. We use the giant spin approximation for SMM spins and consider regular lattices of SMMs with magnetic dipolar interactions (MDIs). We calculate spin-reversal probabilities from thermal-activated barrier hurdling, direct LZ tunneling, and thermal-assisted LZ tunnelings in the presence of sweeping magnetic fields. We do systematical DMC simulations for Mn12 systems with various temperatures and sweeping rates. Our simulations produce clear step structures in low-temperature magnetization curves, and our results show that the thermally activated barrier hurdling becomes dominating at high temperature near 3 K and the thermal-assisted tunnelings play important roles at intermediate temperature. These are consistent with corresponding experimental results on good Mn12 samples (with less disorders) in the presence of little misalignments between the easy axis and applied magnetic fields, and therefore our magnetization curves are satisfactory. Furthermore, our DMC results show that the MDI, with the thermal effects, have important effects on the LZ tunneling processes, but both the MDI and the LZ tunneling give place to the thermal-activated barrier hurdling effect in determining the magnetization curves when the temperature is near 3 K. This DMC approach can be applicable to other SMM systems and could be used to study other properties of SMM systems.

  8. Calibrating EASY-Care independence scale to improve accuracy

    Science.gov (United States)

    Jotheeswaran, A. T.; Dias, Amit; Philp, Ian; Patel, Vikram; Prince, Martin

    2016-01-01

    Background there is currently limited support for the reliability and validity of the EASY-Care independence scale, with little work carried out in low- or middle-income countries. Therefore, we assessed the internal construct validity and hierarchical and classical scaling properties among frail dependent older people in the community. Objective we assessed the internal construct validity and hierarchical and classical scaling properties among frail dependent older people in the community. Methods three primary care physicians administered EASY-Care comprehensive geriatric assessment for 150 frail and/or dependent older people in the primary care setting. A Mokken model was applied to investigate hierarchical scaling properties of EASY-Care independence scale, and internal consistency (Cronbach's alpha) of the scale was also examined. Results we found that EASY-Care independence scale is highly internally consistent and is a strong hierarchical scale, hence providing strong evidence for unidimensionality. However, two items in the scale (unable to use telephone and manage finances) had much lower item Loevinger H coefficients than others. Exclusion of these two items improved the overall internal consistency of the scale. Conclusions the strong performance of the EASY-Care independence scale among community-dwelling frail older people is encouraging. This study confirms that EASY-Care independence scale is highly internally consistent and a strong hierarchical scale. PMID:27496925

  9. Fully dense anisotropic nanocomposite Sm(Co,Fe,Zr,Cu,B)z (z=7.5-12) magnets

    International Nuclear Information System (INIS)

    Huang, M.Q.; Turgut, Z.; Wheeler, B.; Lee, D.; Liu, S.; Ma, B.M.; Peng, Y.G.; Chu, S.Y.; Laughlin, D.E.; Horwath, J.C.; Fingers, R.T.

    2005-01-01

    Fully dense anisotropic nanocomposite Sm(Co 0.58 Fe 0.31 Zr 0.05 Cu 0.04 B 0.02 ) z (z=7.5-12) magnets have been synthesized via rapid hot pressing and hot deformation processes. The highest (BH) max ∼10.6 MGOe was observed for a magnet with z=10. X-ray diffraction and M-H measurements indicated that the easy magnetization direction of magnets prefers to be in the hot pressing direction. Transmission electron microscopy investigation confirmed that plastic deformation is an important route for forming magnetic anisotropy in the Sm-Co-type nanocomposite magnets. Some stripe and/or platelike patterns have been observed inside the nanograins (50-200 nm), which may present as twins, and stacking faults. The (0001) twins have been observed in the 2:17R phase

  10. Modulated magnetic structure of an inhomogeneous stressed single crystal FeBO3

    International Nuclear Information System (INIS)

    Sharipiv, M.Z.; Dzhuraev, D.R.; Sokolov, B.Yu.; Kurbanov, M.

    2010-01-01

    With the help of low-symmetry mechanical stresses, we induced an additional spatially inhomogeneous anisotropy in the basal plane of a single crystal FeBO 3 . By the magnetooptical method, we study the effect of an inhomogeneous magnetic anisotropy on the magnetic state of this easy-plane weak ferromagnetic. It is established that, at the magnetization of inhomogeneously stressed FeBO 3 in the basal plane near some separated direction, the crystal transits from the homogeneous state into a spatially modulated magnetic state. The latter can be represented in the form of a static spin wave, in which a local vector of ferromagnetism oscillates near the direction of the mean magnetization of a crystal, by remaining in the basal plane.

  11. Non collinear magnetic phase of the inhomogeneously stressed FeBO3 monocrystals

    International Nuclear Information System (INIS)

    Sharipov, M.Z.

    2011-01-01

    With the help of low-symmetry mechanical stresses, an additional spatially inhomogeneous anisotropy in the basal plane of a single crystal FeBO 3 has been induced. By the magnetooptical method, an effect of the inhomogeneous magnetic anisotropy on the magnetic state of this easy-plane weak ferromagnetic has been investigated. It is established that at the magnetization of inhomogeneously stressed FeBO 3 in the basal plane near the separated direction, the crystal turns from the homogeneous state into a spatially modulated magnetic state. The latter can be represented in the form of a static spin wave, in which a local vector of ferromagnetism oscillates near the direction of the mean magnetization of a crystal, remaining in the basal plane. (authors)

  12. Magnetic anisotropy of MnAs-films on GaAs(0 0 1) studied with ferromagnetic resonance

    International Nuclear Information System (INIS)

    Lindner, J.; Tolinski, T.; Lenz, K.; Kosubek, E.; Wende, H.; Baberschke, K.; Ney, A.; Hesjedal, T.; Pampuch, C.; Koch, R.; Daeweritz, L.; Ploog, K.H.

    2004-01-01

    Thin films of MnAs grown on GaAs(0 0 1) show a self-organized structure of coexisting ferromagnetic α- and paramagnetic β-MnAs stripes in the temperature interval from 10 to 40 deg. C. We quantify the magnetic anisotropies of the α-stripes via ferromagnetic resonance and superconducting quantum interference device magnetometry for samples with thicknesses of 57 and 165 nm. The easy axis of magnetization is found to be located perpendicular to the stripe direction, whereas the direction parallel to the stripes is a hard one. While the intrinsic anisotropies show a bulk-like behavior and explain the direction of the hard axis, the key to understanding the direction of the easy axis is given by the demagnetizing fields due to the stripe formation

  13. Magnetic anisotropies in ultrathin bismuth iron garnet films

    International Nuclear Information System (INIS)

    Popova, Elena; Franco Galeano, Andres Felipe; Deb, Marwan; Warot-Fonrose, Bénédicte; Kachkachi, Hamid; Gendron, François; Ott, Frédéric

    2013-01-01

    Ultrathin bismuth iron garnet Bi 3 Fe 5 O 12 films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi 3 Fe 5 O 12 films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi 3 Fe 5 O 12 films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi 3 Fe 5 O 12 were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed

  14. Magnetic anisotropies in ultrathin bismuth iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Elena, E-mail: popova@physique.uvsq.fr [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Franco Galeano, Andres Felipe [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Deb, Marwan [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Warot-Fonrose, Bénédicte [Centre d' Elaboration de Matériaux et d' Etudes Structurales (CEMES), CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS–Universidad de Zaragoza (Spain); Kachkachi, Hamid [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Gendron, François [Institut des NanoSciences de Paris (INSP), CNRS/Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, Boîte courrier 840, 75252 Paris Cedex 05 (France); Ott, Frédéric [Laboratoire Léon Brillouin (LLB), CNRS/CEA, Bâtiment 563, CEA Saclay, 91191 Gif sur Yvette Cedex (France); and others

    2013-06-15

    Ultrathin bismuth iron garnet Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi{sub 3}Fe{sub 5}O{sub 12} films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi{sub 3}Fe{sub 5}O{sub 12} were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed.

  15. Testing of the permanent magnet material Mn-Al-C for potential use in propulsion motors for electric vehicles

    Science.gov (United States)

    Abdelnour, Z.; Mildrun, H.; Strant, K.

    1981-01-01

    The development of Mn-Al-C permanent magnets is reviewed. The general properties of the material are discussed and put into perspective relative to alnicos and ferrites. The traction motor designer's demands of a permanent magnet for potential use in electric vehicle drives are reviewed. Tests determined magnetic design data and mechanical strength properties. Easy axis hysteresis and demagnetization curves, recoil loops and other minor loop fields were measured over a temperature range from -50 to 150 C. Hysteresis loops were also measured for three orthogonal directions (the one easy and two hard axes of magnetization). Extruded rods of three different diameters were tested. The nonuniformity of properties over the cross section of the 31 mm diameter rod was studied. Mechanical compressive and bending strength at room temperature was determined on individual samples from the 31 mm rod.

  16. Effects of low-frequency magnetic field on grain boundary segregation in horizontal direct chill casting of 2024 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Effects of low frequency electromagnetic field on grain boundary segregation in horizontal direct chill (HDC)casting process was investigated experimentally. The grain boundary segregation and microstructures of the ingots,which manufactured by conventional HDC casting and low frequency electromagnetic HDC casting were compared.Results show that low frequency electromagnetic field significantly refines the microstructures and reduces grain boundary segregation. Decreasing electromagnetic frequency or increasing electromagnetic intensity has great effects in reducing grain boundary segregation. Meanwhile, the governing mechanisms were discussed.

  17. Repetitive transcranial magnetic stimulation and transcranial direct-current stimulation in neuropathic pain due to radiculopathy: a randomized sham-controlled comparative study.

    Science.gov (United States)

    Attal, Nadine; Ayache, Samar S; Ciampi De Andrade, Daniel; Mhalla, Alaa; Baudic, Sophie; Jazat, Frédérique; Ahdab, Rechdi; Neves, Danusa O; Sorel, Marc; Lefaucheur, Jean-Pascal; Bouhassira, Didier

    2016-06-01

    No study has directly compared the effectiveness of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS) in neuropathic pain (NP). In this 2-centre randomised double-blind sham-controlled study, we compared the efficacy of 10-Hz rTMS and anodal 2-mA tDCS of the motor cortex and sham stimulation contralateral to the painful area (3 daily sessions) in patients with NP due to lumbosacral radiculopathy. Average pain intensity (primary outcome) was evaluated after each session and 5 days later. Secondary outcomes included neuropathic symptoms and thermal pain thresholds for the upper limbs. We used an innovative design that minimised bias by randomly assigning patients to 1 of 2 groups: active rTMS and tDCS or sham rTMS and tDCS. For each treatment group (active or sham), the order of the sessions was again randomised according to a crossover design. In total, 51 patients were screened and 35 (51% women) were randomized. Active rTMS was superior to tDCS and sham in pain intensity (F = 2.89 and P = 0.023). Transcranial direct-current stimulation was not superior to sham, but its analgesic effects were correlated to that of rTMS (P = 0.046), suggesting common mechanisms of action. Repetitive transcranial magnetic stimulation lowered cold pain thresholds (P = 0.04) and its effect on cold pain was correlated with its analgesic efficacy (P = 0.006). However, rTMS had no impact on individual neuropathic symptoms. Thus, rTMS is more effective than tDCS and sham in patients with NP due to lumbosacral radiculopathy and may modulate the sensory and affective dimensions of pain.

  18. Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor.

    Science.gov (United States)

    Pakapongpan, Saithip; Poo-Arporn, Rungtiva P

    2017-07-01

    A novel approach of the immobilization of a highly selective and stable glucose biosensor based on direct electrochemistry was fabricated by a self-assembly of glucose oxidase (GOD) on reduced graphene oxide (RGO) covalently conjugated to magnetic nanoparticles (Fe 3 O 4 NPs) modified on a magnetic screen-printed electrode (MSPE). The RGO-Fe 3 O 4 nanocomposite has remarkable enhancement in large surface areas, is favorable environment for enzyme immobilization, facilitates electron transfer between enzymes and electrode surfaces and possesses superparamagnetism property. The morphology and electrochemical properties of RGO-Fe 3 O 4 /GOD were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, cyclic voltammetry (CV) and amperometry. The modified electrode was a fast, direct electron transfer with an apparent electron transfer rate constant (k s ) of 13.78s -1 . The proposed biosensor showed fast amperometric response (3s) to glucose with a wide linear range from 0.05 to 1mM, a low detection limit of 0.1μM at a signal to noise ratio of 3 (S/N=3) and good sensitivity (5.9μA/mM). The resulting biosensor has high stability, good reproducibility, excellent selectivity and successfully applied detection potential at -0.45V. This mediatorless glucose sensing used the advantages of covalent bonding and self-assembly as a new approach for immobilizing enzymes without any binder. It would be worth noting that it opens a new avenue for fabricating excellent electrochemical biosensors. This is a new approach that reporting the immobilization of glucose oxidase on reduced graphene oxide (RGO) covalently conjugated to magnetic nanoparticles (Fe 3 O 4 NPs) by electrostatic interaction and modified screen printed electrode. We propose the reagentless with fabrication method without binder and adhesive agents for immobilized enzyme. Fe 3 O 4 NPs increasing surface area to enhance the immobilization and prevent

  19. Magnetic-field-dependent morphology of self-organized Fe on stepped Si(111) surfaces

    International Nuclear Information System (INIS)

    Cougo dos Santos, M.; Geshev, J.; Pereira, L. G.; Schmidt, J. E.

    2009-01-01

    The present work reports on Fe thin films grown on vicinal Si(111) substrates via rf magnetron sputtering. The dependencies of the growth mode and magnetic properties of the obtained iron nanostructures on both crystallographic surface orientation and on the direction of the very weak stray magnetic field from the magnetron gun were studied. Scanning tunneling microscopy images showed strong dependence of the Fe grains' orientation on the stray field direction in relation to the substrate's steps demonstrating that, under appropriately directed magnetic field, Si surfaces can be used as templates for well-defined self-assembled iron nanostructures. Magneto-optical Kerr effect hysteresis loops showed an easy-axis coercivity almost one order of magnitude smaller for the film deposited with stray field applied along the steps, accompanied with a change in the magnetization reversal mode. Phenomenological models involving coherent rotation and/or domain-wall unpinning were used for the interpretation of these results.

  20. The use of an axial flux permanent magnet in-wheel direct drive in an electric bicycle

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, P.R. [Norwegian University of Science and Technology, Trondheim (Norway). Dept. of Electrical Power Engineering; Patterson, D.; O' Keefe, C.; Swenson, J. [Northern Territory University, Darwin (Australia). NT Centre for Energy Research

    2001-03-01

    The research described in this paper concentrates on the development of an electronic converter. Successful completion of this converter provides the final component for the larger electric bicycle project. The controller developed for the bicycle is rated at 400 W and is hard-switched. It uses MOSFETs as power switching devices. There are three Hall effect sensors placed 120 electrical degrees apart from each other in the motor for velocity and position sensing. The torque generated by the machine is controlled by hysteresis band current control. In order for the motor/controller to be commercially viable, particular attention was paid to the costs of the controller. The result, an efficient yet cheap controller. Measurement of efficiency is difficult in high performance power electronic controllers (Patterson DJA very high efficiency controller for an axial flux permanent magnet wheel drive in a solar powered vehicle. 2nd IEEE International Conference on Power Electronics Drives and Energy Systems for Industrial Growth, IEEE PEDES '98, Perth, 30th November-3rd December, 1998). The paper includes discussion of a calorimetric method for measurement. (author)

  1. The effect of Co content on the structure and the magnetic properties of Co{sub x}Ni{sub 1−x} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qin [Department of Applied Physics, Hebei University of Technology, Tianjin 300401 (China); Wang, Zhi-Jun [Hebei Chemical and Pharmaceutical Vocational Technology College, Shijiazhuang 050026 (China); Wang, Yong-Guo [Department of Public Foundation, Tianjin Youth Professional College, Tianjin 300350 (China); Sun, Hui-Yuan, E-mail: huiyuansun@126.com [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China)

    2016-12-01

    Co{sub x}Ni{sub 1−x} (x=0–0.5) nanotube arrays with different component contents were prepared by Electrodeposition Method. X-ray diffraction (XRD) measurement indicates that low Co content (x≤0.5) does not change their crystal structure. The direction of easy magnetization changes from being parallel with to being perpendicular to the direction of the nanotube axes, with Co content increasing from 0 to 0.5. This study suggests that the drastic change of magnetic anisotropy is attributed to the competition between the shape and magnetocrystalline anisotropies. - Highlights: • Co{sub x}Ni{sub 1–x}(x=0~0.5) nanotube arrays were prepared by a DC electrodeposition method. • The direction of easy magnetization changes with Co content increasing. • It suggests that the competition between shape and magnetocrystalline anisotropies.

  2. Magnetic anisotropy and anisotropic ballistic conductance of thin magnetic wires

    International Nuclear Information System (INIS)

    Sabirianov, R.

    2006-01-01

    The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μ B , while the orbital moment as high as 0.5 μ B . The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5x4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment

  3. Electrodeposited Ni-W magnetic thin films with columnar nanocrystallites

    International Nuclear Information System (INIS)

    Sulitanu, N.; Brinza, F.

    2002-01-01

    Nanocrystalline Ni-W thin films (140 nm) containing from zero to 18 wt % W were electrolytically prepared and structural and magnetic characterized. XRD, SEM and TEM investigations have revealed that all segregated Ni columns are fcc-type whose [111] axis is oriented perpendicular to the film plane and have 140 nm in height and 6-27 nm in diameter. Depending on film composition, two types of nanostructures were observed: (a) single-phase nanostructure ( i nterphases , namely W enriched particles boundaries, and (b) two-phase nanostructure (7-18 wt %) in which a second Ni-W amorphous phase or even amorphous-disordered mixture separates the magnetic columnar Ni nanocrystallites (d = 6-14 nm). The columnar crystallites have an easy magnetization direction along their long axis mainly due to the in-plane internal biaxial stresses. Magnetic characteristics of prepared thin films are presented. (Authors)

  4. Correlations between the orientation of magnetic recording media determined by Moessbauer spectroscopy and magnetic methods

    International Nuclear Information System (INIS)

    Pott, R.A.; Koch, W.; Leitner, L.

    1986-01-01

    The orientation of the easy magnetization axis of magnetic particles is a key parameter of the recording performance of magnetic recording media. Usually the orientation is measured by magnetic methods, but the applicability of the Moessbauer Spectroscopy has also been shown in the past. The authors show and discuss the correlations between the results obtained by magnetic and Moessbauer measurements for the example of several magnetic tapes. They demonstrate that by a combination of both methods one is even able to estimate the mean canting angles distribution width of the easy axis of magnetization. (Auth.)

  5. A prospective, comparative study of magnetic resonance cholangipancreatography and direct cholangiography in the diagnosis of biliary diseases

    International Nuclear Information System (INIS)

    Fernandez, E.; Falco, J.; Martin, J.; Brullet, E.; Campo, R.; Espinos, J.; Darnell, A.

    2001-01-01

    To assess the sensitivity and specificity of magnetic resonance cholangiopancreatography (MRCP) as a noninvasive diagnostic technique, comparing it with endoscopic retrograde cholangiopancreatography (ERCP) and percutaneous transhepatic cholangiography (PTHC) in the diagnosis of biliary disease, focusing particularly on patients with choledocholithiasis. Between June 1997 and february 1998, 109 patients referred by the Corporacio Sanitaria del Parc Tauli and the Hospital Mutua de terrasa in Barcelona, Spain were evaluated. MRCP and ERCP or PTHC were performed in every case, always in that order and separated by a maximum of 7 days. Twenty-four patients were excluded from the study for different reasons, leaving a series of 85 patients. All the studies were performed with a 1-Tesla Siemens Magneton Impact Expert using half-fourier single-short turbo spin-echo (HASTE) and rapid acquisition with relaxation enhancement (RARE) methods in several coronal and axial planes. The MRCP readings were carried out by consensus by two radiologists who are experts in the assessment of diseases of the digestive tract. In this series of 85 patients; MCRP showed a sensitivity of 98.4%, a specificity of 94.7%, a positive predictive value of 98.4% and a negative predictive value of 94.7% for the detection of biliary diseases. For the detection choledocholithiasis, these values were 100%, 89.5%, 88% and 100%, respectively. MRCP is extremely reliable in the diagnosis of biliary diseases, especially in cases of choledocholithiasis. Its high negative predictive value obviates the need for other invasive diagnostic tests. (Author) 30 refs

  6. Improvement of myocardial perfusion reserve detected by cardiovascular magnetic resonance after direct endomyocardial implantation of autologous bone marrow cells in patients with severe coronary artery disease

    Directory of Open Access Journals (Sweden)

    Lau Chu-Pak

    2010-01-01

    Full Text Available Abstract Background Recent studies suggested that bone marrow (BM cell implantation in patients with severe chronic coronary artery disease (CAD resulted in modest improvement in symptoms and cardiac function. This study sought to investigate the functional changes that occur within the chronic human ischaemic myocardium after direct endomyocardial BM cells implantation by cardiovascular magnetic resonance (CMR. Methods and Results We compared the interval changes of left ventricular ejection fraction (LVEF, myocardial perfusion reserve and the extent of myocardial scar by using late gadolinium enhancement CMR in 12 patients with severe CAD. CMR was performed at baseline and at 6 months after catheter-based direct endomyocardial autologous BM cell (n = 12 injection to viable ischaemic myocardium as guided by electromechanical mapping. In patients randomized to receive BM cell injection, there was significant decrease in percentage area of peri-infarct regions (-23.6%, P = 0.04 and increase in global LVEF (+9.0%, P = 0.02, the percentage of regional wall thickening (+13.1%, P= 0.04 and MPR (+0.25%, P = 0.03 over the target area at 6-months compared with baseline. Conclusions Direct endomyocardial implantation of autologous BM cells significantly improved global LVEF, regional wall thickening and myocardial perfusion reserve, and reduced percentage area of peri-infarct regions in patients with severe CAD.

  7. Magnetic resonance direct thrombus imaging at 3 T field strength in patients with lower limb deep vein thrombosis: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, S.A. [Imaging Sciences Department, Imperial College, Hammersmith Hospital, London (United Kingdom); O' Regan, D.P. [Imaging Sciences Department, Imperial College, Hammersmith Hospital, London (United Kingdom)]. E-mail: declan.oregan@imperial.ac.uk; Gibson, D. [Imaging Department, Hammersmith Hospitals NHS Trust, London (United Kingdom); Cunningham, C. [Imaging Department, Hammersmith Hospitals NHS Trust, London (United Kingdom); Fitzpatrick, J. [Imaging Sciences Department, Imperial College, Hammersmith Hospital, London (United Kingdom); Allsop, J. [Imaging Sciences Department, Imperial College, Hammersmith Hospital, London (United Kingdom); Larkman, D.J. [Imaging Sciences Department, Imperial College, Hammersmith Hospital, London (United Kingdom); Hajnal, J.V. [Imaging Sciences Department, Imperial College, Hammersmith Hospital, London (United Kingdom)

    2006-03-15

    AIM: To investigate the feasibility of imaging lower limb deep vein thrombosis using magnetic resonance imaging (MRI) at 3.0 T magnetic field strength with an optimized a T1 magnetization prepared rapid gradient echo technique (MP-RAGE) in patients with normal volunteers as controls. MATERIALS AND METHODS: Patients with deep vein thrombosis (n=4), thrombophlebitis (n=2) and healthy volunteers (n=9) were studied. MRI of the distal thigh and upper calf was performed at 3.0 T with MP-RAGE using two pre-pulses to suppress blood and fat (flip angle 15{sup o}, echo time 5 ms, and repetition time 10 ms). A qualitative analysis was performed for detection of thrombi and image quality. Contrast-to-noise ratios were determined in thrombosed and patent veins. RESULTS: Thrombi were clearly visible as high-signal intensity structures with good suppression of the anatomical background. A blinded reader accurately diagnosed 15 out of 16 cases. The contrast-to-noise ratio measurements showed a positive contrast of thrombus over background muscle 16.9 (SD 4.3, 95% CI: 12.5-21.3) and a negative contrast of the lumen to muscle in patent veins of normal volunteers -7.8 (SD 4.3, 95% CI: -11.1 to -4.5), with p=0.0015. CONCLUSION: Thrombi generate high signal intensity at 3.0 T allowing for their direct visualization if flowing blood, stationary blood and fat are sufficiently suppressed. This preliminary data supports the development of these techniques for other vascular applications.

  8. Ferrofluid of magnetic clay and menthol based deep eutectic solvent: Application in directly suspended droplet microextraction for enrichment of some emerging contaminant explosives in water and soil samples.

    Science.gov (United States)

    Zarei, Ali Reza; Nedaei, Maryam; Ghorbanian, Sohrab Ali

    2018-06-08

    In this work, for the first time, ferrofluid of magnetic montmorillonite nanoclay and deep eutectic solvent was prepared and coupled with directly suspended droplet microextraction. Incorporation of ferrofluid in a miniaturized sample preparation technique resulted in achieving high extraction efficiency while developing a green analytical method. The prepared ferrofluid has strong sorbing properties and hydrophobic characteristics. In this method, a micro-droplet of ferrofluid was suspended into the vortex of a stirring aqueous solution and after completing the extraction process, was easily separated from the solution by a magnetic rod without any operational problems. The predominant experimental variables affecting the extraction efficiency of explosives were evaluated. Under optimal conditions, the limits of detection were in the range 0.22-0.91 μg L -1 . The enrichment factors were between 23 and 93 and the relative standard deviations were <10%. The relative recoveries were ranged from 88 to 104%. This method was successfully applied for the extraction and preconcentration of explosives in water and soil samples, followed their determination by high performance liquid chromatography with ultraviolet detection (HPLC-UV). Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Magnetic properties of 2D nickel nanostrips: structure dependent magnetism and Stoner criterion

    International Nuclear Information System (INIS)

    Kashid, Vikas; Shah, Vaishali; Salunke, H G; Mokrousov, Yuriy; Blügel, Stefan

    2015-01-01

    We have investigated different geometries of two-dimensional (2D) infinite length Ni nanowires of increasing width using spin density functional theory calculations. Our simulations demonstrate that the parallelogram motif is the most stable and structures that incorporate the parallelogram motif are more stable as compared to rectangular structures. The wires are conducting and the conductance channels increase with increasing width. The wires have a non-linear behavior in the ballistic anisotropic magnetoresistance ratios (BAMR) with respect to the magnetization directions. All 2D nanowires as well as Ni (1 1 1) and Ni (1 0 0) monolayer investigated are ferromagnetic under the Stoner criterion and exhibit enhanced magnetic moments as compared to bulk Ni and the respective Ni monolayers. The easy axis for all nickel nanowires under investigation is observed to be along the wire axis. The double rectangular nanowire exhibits a magnetic anomaly with a smaller magnetic moment when compared to Ni (1 0 0) monolayer and is the only structure with an easy axis perpendicular to the wire axis. The Stoner parameter which has been known to be structure independent in bulk and surfaces is found to vary with the structure and the width of the nanowires. The less stable rectangular and rhombus shaped nanowires have a higher ferromagnetic strength than parallelogram shaped nanowires. (paper)

  10. Studies for the electro-magnetic calorimeter {\\em SplitCal} for the SHiP experiment at CERN with shower direction reconstruction capability

    CERN Document Server

    2018-01-01

    This paper describes the basic ideas and the first simulation results of a new electro-magnetic calorimeter concept, named {\\it SplitCal}, aimed at optimising the measurement of photon direction in fixed-target experiment configuration, with high photon detection efficiency. This calorimeter was designed for the invariant mass reconstruction of axion-like particles decaying into two photons in the mass range 200~MeV to 1~GeV for the proposed proton beam dump experiment SHiP at CERN. Preliminary results indicate that angular resolutions better than obtained by past experiments can be achieved with this design. An implementation of this concept with real technologies is under study.

  11. Feasibility of a laser or charged-particle-beam fusion-reactor concept with direct electric generation by magnetic-flux compression

    International Nuclear Information System (INIS)

    Lasche, G.P.

    1983-06-01

    A new concept for an inertial-confinement fusion reactor is described which, because of its fundamentally different approach to blanket geometry and energy conversion, makes possible a unique combination of high efficiency, high power density, and low radioactivity. The conventional blanket is replaced with a liquid-density mass of lithium contiguously surrounding the fusion yield. This compact blanket configuration produces the maximum shock-induced kinetic energy in liquid metal and the maximum neutron absorption per unit mass. The shock-induced kinetic energy of the liquid lithium is converted directly to electricity with high efficiency by work done against a pulsed normal-conducting magnetic field applied to the exterior of the lithium

  12. Analysis and Design of a Permanent-Magnet Outer-Rotor Synchronous Generator for a Direct-Drive Vertical-Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    H. A. Lari

    2014-12-01

    Full Text Available In Permanent-Magnet Synchronous Generators (PMSGs the reduction of cogging torque is one of the most important problems in their performance and evaluation. In this paper, at first, a direct-drive vertical-axis wind turbine is chosen. According to its nominal value operational point, necessary parameters for the generator is extracted. Due to an analytical method, four generators with different pole-slot combinations are designed. Average torque, torque ripple and cogging torque are evaluated based on finite element method. The combination with best performance is chosen and with the analysis of variation of effective parameters on cogging torque, and introducing a useful method, an improved design of the PMSG with lowest cogging torque and maximum average torque is obtained. The results show a proper performance and a correctness of the proposed method.

  13. Studies for the electro-magnetic calorimeter SplitCal for the SHiP experiment at CERN with shower direction reconstruction capability

    Science.gov (United States)

    Bonivento, Walter M.

    2018-02-01

    This paper describes the basic ideas and the first simulation results of a new electro-magnetic calorimeter concept, named SplitCal, aimed at optimising the measurement of photon direction in fixed-target experiment configuration, with high photon detection efficiency. This calorimeter was designed for the invariant mass reconstruction of axion-like particles decaying into two photons in the mass range 200 MeV to 1 GeV for the proposed proton beam dump experiment SHiP at CERN. Preliminary results indicate that angular resolutions better than obtained by past experiments can be achieved with this design. An implementation of this concept with real technologies is under study.

  14. The Study of Fuzzy Proportional Integral Controllers Based on Improved Particle Swarm Optimization for Permanent Magnet Direct Drive Wind Turbine Converters

    Directory of Open Access Journals (Sweden)

    Yancai Xiao

    2016-05-01

    Full Text Available In order to meet the requirements of high precision and fast response of permanent magnet direct drive (PMDD wind turbines, this paper proposes a fuzzy proportional integral (PI controller associated with a new control strategy for wind turbine converters. The purpose of the control strategy is to achieve the global optimization for the quantization factors, ke and kec, and scale factors, kup and kui, of the fuzzy PI controller by an improved particle swarm optimization (PSO method. Thus the advantages of the rapidity of the improved PSO and the robustness of the fuzzy controller can be fully applied in the control process. By conducting simulations for 2 MW PMDD wind turbines with Matlab/Simulink, the performance of the fuzzy PI controller based on the improved PSO is demonstrated to be obviously better than that of the PI controller or the fuzzy PI controller without using the improved PSO under the situation when the wind speed changes suddenly.

  15. Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic 13C magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Befroy, Douglas E; Perry, Rachel J; Jain, Nimit

    2014-01-01

    that rates of mitochondrial oxidation and anaplerosis in human liver can be directly determined noninvasively. Using this approach, we found the mean rates of hepatic tricarboxylic acid (TCA) cycle flux (VTCA) and anaplerotic flux (VANA) to be 0.43 ± 0.04 μmol g(-1) min(-1) and 0.60 ± 0.11 μmol g(-1) min(-1......), respectively, in twelve healthy, lean individuals. We also found the VANA/VTCA ratio to be 1.39 ± 0.22, which is severalfold lower than recently published estimates using an indirect approach. This method will be useful for understanding the pathogenesis of nonalcoholic fatty liver disease and type 2 diabetes...

  16. Domain walls dynamics in the amorphous ribbon with a helical magnetic anisotropy

    International Nuclear Information System (INIS)

    Zhmetko, D.N.; Savin, V.V.; Lemish, P.V.; Troschenkov, Y.N.

    2006-01-01

    The damping mechanism for motion of domain walls, which form the sandwich structure and move from the middle plane of the ribbon to opposite surfaces during the dynamic magnetization reversal, have been investigated. The difference between the real and ideal sandwich domain structure, the actual distribution of the anisotropy easy directions through the ribbon thickness and the M-bar s deviation from local easy directions under the action of applied magnetic field have been taken into account. It was revealed that the maximum of the total damping coefficient β tot (x) near the half-way of the domain wall run is due to the influence of the magnetic stray fields. These fields have a character of irregular oscillations and are directed approximately perpendicular to the local easy direction of the ribbon layer through which the domain wall propagates. The damping coefficient β e.c. (x) determined by eddy-currents has the maximal value close to the ribbon middle and decreases linearly to zero when the domain wall approaches the ribbon surface

  17. Investigation of the spin-1 honeycomb antiferromagnet BaNi2V2O8 with easy-plane anisotropy

    Science.gov (United States)

    Klyushina, E. S.; Lake, B.; Islam, A. T. M. N.; Park, J. T.; Schneidewind, A.; Guidi, T.; Goremychkin, E. A.; Klemke, B.; Mânsson, M.

    2017-12-01

    The magnetic properties of the two-dimensional, S =1 honeycomb antiferromagnet BaNi2V2O8 have been comprehensively studied using dc susceptibility measurements and inelastic neutron scattering techniques. The magnetic excitation spectrum is found to be dispersionless within experimental resolution between the honeycomb layers, while it disperses strongly within the honeycomb plane where it consists of two gapped spin-wave modes. The magnetic excitations are compared to linear spin-wave theory allowing the Hamiltonian to be determined. The first- and second-neighbor magnetic exchange interactions are antiferromagnetic and lie within the ranges 10.90 meV ≤Jn≤13.35 meV and 0.85 meV ≤Jn n≤1.65 meV, respectively. The interplane coupling Jout is four orders of magnitude weaker than the intraplane interactions, confirming the highly two-dimensional magnetic behavior of this compound. The sizes of the energy gaps are used to extract the magnetic anisotropies and reveal substantial easy-plane anisotropy and a very weak in-plane easy-axis anisotropy. Together these results reveal that BaNi2V2O8 is a candidate compound for the investigation of vortex excitations and Berezinsky-Kosterliz-Thouless phenomenon.

  18. "RMP Evaluations, Course Easiness, and Grades: Are They Related?"

    Directory of Open Access Journals (Sweden)

    Syed A. Rizvi

    2015-10-01

    Full Text Available This paper investigates the relationship between the student evaluations of the instructors at the RateMyProfessors.com (RMP website and the average grades awarded by those instructors. As of Spring 2012, the RMP site included evaluations of 538 full-and part-time instructors at the College of Staten Island (CSI. We selected the evaluations of the 419 instructors who taught at CSI for at least two semesters from Fall 2009 to Spring 2011 and had at least ten evaluations. This research indicates that there is a strong correlation between RMP's overall evaluation and easiness scores. However, the perceived easiness of an instructor/course does not always result in higher grades for students. Furthermore, we found that the instructors who received high overall evaluation and easiness scores (4.0 to 5.0 at the RMP site do not necessarily award high grades. This is a very important finding as it disputes the argument that instructors receive high evaluations because they are easy or award high grades. On the other hand, instructors of the courses that are perceived to be difficult (RMP easiness score of 3.0 or less are likely to be tough graders. However, instructors who received moderate overall evaluation and easiness scores (between 3.0 and 4.0 the RMP site had a high correlation between these scores and average grade awarded by those instructors. Finally, our research shows that the instructors in non-STEM disciplines award higher grades than the instructors in STEM disciplines. Non-STEM instructors also received higher overall evaluations than their STEM counterparts and non-STEM courses were perceived easier by the students than STEM courses.

  19. Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions.

    Science.gov (United States)

    Fenchel, Michael; Nael, Kambiz; Deshpande, Vibhas S; Finn, J Paul; Kramer, Ulrich; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard

    2006-09-01

    The aim of the present study was to assess the feasibility of renal magnetic resonance angiography at 3.0 T using a phased-array coil system with 32-coil elements. Specifically, high parallel imaging factors were used for an increased spatial resolution and anatomic coverage of the whole abdomen. Signal-to-noise values and the g-factor distribution of the 32 element coil were examined in phantom studies for the magnetic resonance angiography (MRA) sequence. Eleven volunteers (6 men, median age of 30.0 years) were examined on a 3.0-T MR scanner (Magnetom Trio, Siemens Medical Solutions, Malvern, PA) using a 32-element phased-array coil (prototype from In vivo Corp.). Contrast-enhanced 3D-MRA (TR 2.95 milliseconds, TE 1.12 milliseconds, flip angle 25-30 degrees , bandwidth 650 Hz/pixel) was acquired with integrated generalized autocalibrating partially parallel acquisition (GRAPPA), in both phase- and slice-encoding direction. Images were assessed by 2 independent observers with regard to image quality, noise and presence of artifacts. Signal-to-noise levels of 22.2 +/- 22.0 and 57.9 +/- 49.0 were measured with (GRAPPAx6) and without parallel-imaging, respectively. The mean g-factor of the 32-element coil for GRAPPA with an acceleration of 3 and 2 in the phase-encoding and slice-encoding direction, respectively, was 1.61. High image quality was found in 9 of 11 volunteers (2.6 +/- 0.8) with good overall interobserver agreement (k = 0.87). Relatively low image quality with higher noise levels were encountered in 2 volunteers. MRA at 3.0 T using a 32-element phased-array coil is feasible in healthy volunteers. High diagnostic image quality and extended anatomic coverage could be achieved with application of high parallel imaging factors.

  20. Urethrogram-directed Stereotactic Body Radiation Therapy (SBRT for Clinically Localized Prostate Cancer in Patients with Contraindications to Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Ima ePaydar

    2015-09-01

    Full Text Available Purpose: Magnetic resonance imaging (MRI-directed stereotactic body radiation therapy (SBRT has been established as a safe and effective treatment for prostate cancer. For patients with contraindications to MRI, CT-urethrogram is an alternative imaging approach to identify the location of the prostatic apex to guide treatment. This study sought to evaluate the safety of urethrogram-directed SBRT for prostate cancer.Methods: Between February 2009 and January 2014, 31 men with clinically localized prostate cancer were treated definitively with urethrogram-directed SBRT with or without supplemental intensity modulated radiation therapy (IMRT at Georgetown University Hospital. SBRT was delivered either as a primary treatment of 35-36.25 Gray (Gy in 5 fractions or as a boost of 19.5 Gy in 3 fractions followed by supplemental conventionally fractionated intensity modulated radiation therapy (45-50.4 Gy. Toxicities were recorded and scored using the Common Terminology Criteria for Adverse Events version 4.0 (CTCAE v.4.0.Results: The median patient age was 70 years with a median prostate volume of 38 cc. The median follow-up was 3.7 years. The patients were elderly (Median age = 70, and comorbidities were common (Carlson Comorbidity Index > 2 in 36%. 71% of patients utilized alpha agonists prior to treatment, and 9.7% had prior procedures for benign prostatic hyperplasia (BPH. The 3-year actuarial incidence rates of > Grade 3 GU toxicity and > Grade 2 GI toxicity were 3.2% and 9.7%, respectively. There were no Grade 4 or 5 toxicities.Conclusions: MRI is the preferred imaging modality to guide prostate SBRT treatment. However, urethrogram-directed SBRT is a safe alternative for the treatment of patients with prostate cancer who are unable to undergo MRI.

  1. Magnetic Resonance Elastography: Measurement of Hepatic Stiffness Using Different Direct Inverse Problem Reconstruction Methods in Healthy Volunteers and Patients with Liver Disease.

    Science.gov (United States)

    Saito, Shigeyoshi; Tanaka, Keiko; Hashido, Takashi

    2016-02-01

    The purpose of this study was to compare the mean hepatic stiffness values obtained by the application of two different direct inverse problem reconstruction methods to magnetic resonance elastography (MRE). Thirteen healthy men (23.2±2.1 years) and 16 patients with liver diseases (78.9±4.3 years; 12 men and 4 women) were examined for this study using a 3.0 T-MRI. The healthy volunteers underwent three consecutive scans, two 70-Hz waveform and a 50-Hz waveform scans. On the other hand, the patients with liver disease underwent scanning using the 70-Hz waveform only. The MRE data for each subject was processed twice for calculation of the mean hepatic stiffness (Pa), once using the multiscale direct inversion (MSDI) and once using the multimodel direct inversion (MMDI). There were no significant differences in the mean stiffness values among the scans obtained with two 70-Hz and different waveforms. However, the mean stiffness values obtained with the MSDI technique (with mask: 2895.3±255.8 Pa, without mask: 2940.6±265.4 Pa) were larger than those obtained with the MMDI technique (with mask: 2614.0±242.1 Pa, without mask: 2699.2±273.5 Pa). The reproducibility of measurements obtained using the two techniques was high for both the healthy volunteers [intraclass correlation coefficients (ICCs): 0.840-0.953] and the patients (ICC: 0.830-0.995). These results suggest that knowledge of the characteristics of different direct inversion algorithms is important for longitudinal liver stiffness assessments such as the comparison of different scanners and evaluation of the response to fibrosis therapy.

  2. Strongly anisotropic and complex magnetic behavior in EuRhGe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bednarchuk, Oleksandr; Kaczorowski, Dariusz, E-mail: D.Kaczorowski@int.pan.wroc.pl

    2015-10-15

    Single crystals of EuRhGe{sub 3} were studied by means of magnetic susceptibility, magnetization, heat capacity, resistivity and magnetoresistance measurements, performed in wide ranges of temperature and magnetic field strength. The compound was characterized as a Curie–Weiss paramagnet, due to divalent Eu ions, that orders antiferromagnetically at T{sub N} = 11.3 K. In the ordered state, EuRhGe{sub 3} exhibits strong magnetic anisotropy. The magnetic moments are probably nearly confined within the ab plane of the tetragonal crystallographic unit cell, and the magnetic propagation vector is likely perpendicular to this plane. The bulk thermodynamic and transport data concordantly suggest that in zero magnetic field the magnetic structure of EuRhGe{sub 3} is incommensurate with the chemical one and bears an amplitude-modulated character. In external magnetic field applied within the easy magnetization plane, two other magnetic structures were detected, each of them having an antiferromagnetic nature. - Highlights: • High-quality single crystals of EuRhGe{sub 3} were prepared. • Low-temperature physical behavior was studied along the main crystallographic directions. • Magnetic phase diagrams for B || ab and B || c were derived • EuRhGe{sub 3} was found highly anisotropic despite L = 0 electronic ground state. • As many as three distinct AFM phases were evidenced for B || ab.

  3. Design of large permanent magnetized synchronous electric machines: Low speed, high torque machines - generator for direct driven wind turbine - motor for rim driven thruster

    Energy Technology Data Exchange (ETDEWEB)

    Kroevel, Oeystein

    2011-02-15

    This work presents the design of two prototype permanent magnetized electric machines for two different applications where large permanent magnet machines might be used. Existing technology have been used as the fundament for new design and adapted to new applications, contributing, hopefully, to the development of better and more environmental friendly energy conversion. The first application presented is represented with a prototype made in cooperation with the industry in which a PM-motor is integrated into a propeller unit. Both because of the industrial connection, and the integration between the PM-motor and the propeller, the choices made for the PM-motor are conservative trying to reduce the risk. The direct rim driven thruster prototype includes a surface mounted radial flux permanent magnet machine (SM RFPM) with fractional slot winding with a q around 1. Other engineering features were introduced to make the integration of propeller and motor feasible, but without the PM-machine the thruster would not have reached the performance demand. An important part of the project was to show that the SM RFPM enables this solution, providing high performance with a large air gap. The prototype has been tested in sea, under harsh conditions, and even though the magnets have been exposed directly to sea water and been visible corroded, the electric motor still performs well within the specifications. The second application is represented with a prototype PM-generator for wind turbines. This is an example of a new, very low speed high torque machine. The generator is built to test phenomena regarding concentrated coils, and as opposed to the first application, being a pure academic university project, its success is not connected to its performance, but with the prototype's ability to expose the phenomena in question. The prototype, or laboratory model, of the generator for direct driven wind turbines features SM RFPM with concentrated coils (CC). An opportunity

  4. PLD growth of CoPd thin films and characterization of their magnetic properties by magneto optical Kerr effect

    Science.gov (United States)

    Sedrpooshan, Mehran; Ahmadvand, Hossein; Ranjbar, Mehdi; Salamati, Hadi

    2018-06-01

    CoPd alloy thin films with different thicknesses and Co/Pd ratios have been deposited on Si (100) substrate by pulsed laser deposition (PLD). The magnetic properties were investigated by using the magneto-optical Kerr effect (MOKE) in both longitudinal and polar geometries. The results show that the films with thickness in the range of 6-24 nm, deposited at a low substrate temperature of 200 °C, are mostly magnetized in the plane of film. Higher deposition temperature forces the magnetic easy axis to orient in the perpendicular direction of the films.

  5. SCEW: a Microsoft Excel add-in for easy creation of survival curves.

    Science.gov (United States)

    Khan, Haseeb Ahmad

    2006-07-01

    Survival curves are frequently used for reporting survival or mortality outcomes of experimental pharmacological/toxicological studies and of clinical trials. Microsoft Excel is a simple and widely used tool for creation of numerous types of graphic presentations however it is difficult to create step-wise survival curves in Excel. Considering the familiarity of clinicians and biomedical scientists with Excel, an algorithm survival curves in Excel worksheet (SCEW) has been developed for easy creation of survival curves directly in Excel worksheets. The algorithm has been integrated in the form of Excel add-in for easy installation and usage. The program is based on modification of frequency data for binary break-up using the spreadsheet formula functions whereas a macro subroutine automates the creation of survival curves. The advantages of this program are simple data input, minimal procedural steps and the creation of survival curves in the familiar confines of Excel.

  6. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    Science.gov (United States)

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  7. An effective algorithm for computing global sensitivity indices (EASI)

    International Nuclear Information System (INIS)

    Plischke, Elmar

    2010-01-01

    We present an algorithm named EASI that estimates first order sensitivity indices from given data using Fast Fourier Transformations. Hence it can be used as a post-processing module for pre-computed model evaluations. Ideas for the estimation of higher order sensitivity indices are also discussed.

  8. An Easy Way to Show Memory Color Effects.

    Science.gov (United States)

    Witzel, Christoph

    2016-01-01

    This study proposes and evaluates a simple stimulus display that allows one to measure memory color effects (the effect of object knowledge and memory on color perception). The proposed approach is fast and easy and does not require running an extensive experiment. It shows that memory color effects are robust to minor variations due to a lack of color calibration.

  9. Five Easy Principles to Make Math Moments Count

    Science.gov (United States)

    Cutler, Carrie S.

    2011-01-01

    Preschool children are learning so many skills--how to cut with scissors, zip zippers, recognize the alphabet and their names, and share toys with others. A strong academic curriculum also requires that children learn more about math (National Council of Teachers of Mathematics [NCTM], 2000). By following the five easy principles outlined here,…

  10. An Easy-to-Assemble Three-Part Galvanic Cell

    Science.gov (United States)

    Eggen, Per-Odd; Skaugrud, Brit

    2015-01-01

    The galvanic cell presented in this article is made of only three parts, is easy to assemble, and can light a red light emitting diode (LED). The three cell components consist of a piece of paper with copper sulfate, a piece of paper with sodium sulfate, and a piece of magnesium ribbon. Within less than 1 h, students have time to discuss the…

  11. Myopia Glasses and Optical Power Estimation: An Easy Experiment

    Science.gov (United States)

    Ribeiro, Jair Lúcio Prados

    2015-01-01

    Human eye optics is a common high school physics topic and students usually show a great interest during our presentation of this theme. In this article, we present an easy way to estimate a diverging lens' optical power from a simple experiment involving myopia eyeglasses and a smartphone flashlight.

  12. Rapid mixing chemical oxidative polymerization: an easy route to ...

    Indian Academy of Sciences (India)

    Administrator

    (SDCNTs)/PANI nanofibres (NFs) has been prepared using an easy in situ rapid mixing chemical ... SDCNTs thin film was obtained using thermal chemical vapour deposition method in ... In the next step, 250 mL of aqueous HCl was taken in a.

  13. An Easy Way to Show Memory Color Effects

    OpenAIRE

    Witzel, Christoph

    2016-01-01

    This study proposes and evaluates a simple stimulus display that allows one to measure memory color effects (the effect of object knowledge and memory on color perception). The proposed approach is fast and easy and does not require running an extensive experiment. It shows that memory color effects are robust to minor variations due to a lack of color calibration.

  14. For easy sleep along the shore: Making hazard warnings more ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-27

    Jan 27, 2011 ... For easy sleep along the shore: Making hazard warnings more effective ... to alert the public; local leaders trained to make the right decisions; .... and the sirens sound, its people will have the motivation and the capacity to act?

  15. Gel Electrophoresis--The Easy Way for Students

    Science.gov (United States)

    VanRooy, Wilhelmina; Sultana, Khalida

    2010-01-01

    This article describes a simple, inexpensive, easy to conduct gel-electrophoresis activity using food dyes. It is an alternative to the more expensive counterparts which require agarose gel, DNA samples, purchased chamber and Tris-borate-EDTA buffer. We suggest some learning activities for senior biology students along with comments on several…

  16. Technical Manual: easyCBM. Technical Report #1408

    Science.gov (United States)

    Anderson, Daniel; Alonzo, Julie; Tindal, Gerald; Farley, Dan; Irvin, P. Shawn; Lai, Cheng-Fei; Saven, Jessica L.; Wray, Kraig A.

    2014-01-01

    Since the easyCBM© learning system was first published in 2006, over $8 million of federal funding (both from the Office of Special Education Programs and more recently from the Institute of Education Sciences) has been used to develop, study, and refine the assessments available on the system. This Technical Manual summarizes the ongoing research…

  17. easyCBM Norms. 2014 Edition. Technical Report #1409

    Science.gov (United States)

    Saven, Jessica L.; Tindal, Gerald; Irvin, P. Shawn; Farley, Dan; Alonzo, Julie

    2014-01-01

    Previous norms for the easyCBM assessment system were computed using scores from all students who took each measure for every grade and benchmark season (fall, winter, and spring). During the 2013-­14 school year, new national norms were developed to more accurately (proportionately) represent reading and mathematics performance by two variables:…

  18. EASY-2005: Validation and new tools for data checking

    International Nuclear Information System (INIS)

    Forrest, R.A.; Kopecky, J.

    2007-01-01

    The European Activation System (EASY) has been developed for activation calculations within the Fusion Technology programme. It comprises the EAF nuclear data libraries and the FISPACT inventory code. EASY-2005 contains about five times more neutron-induced reactions (62,637) than the previous version; due to an increase in the upper energy limit from 20 to 60 MeV. Many measurements of activation in well-defined neutron spectra have been made; these integral results are used to validate EAF. Details of the validation covering 453 reactions are given. Model calculations were used to produce the majority of the data, and the large number of reactions, and the lack of experimental data, make it necessary to develop new checking tools. Within the SAFEPAQ-II code, the new methodology of statistical analysis of cross sections (SACS) has been developed. This enables various quantities such as maximum cross section (σ max ) to be plotted as a function of asymmetry parameter (s) for each reaction type. Such plots show well-defined trends and inconsistent data for a particular reaction can readily be identified. The use of integral data and SACS for improvement are discussed, in relation to the maintenance version, EASY-2005.1 and the planned new version, EASY-2007

  19. Factors facilitating and inhibiting implementation of easy accessible sporting programs.

    NARCIS (Netherlands)

    Ooms, L.; Veenhof, C.

    2012-01-01

    Introduction: The organized sport sector has been identified as a potential setting for physical activity promotion. In The Netherlands, ten national sporting organizations were funded to develop and implement easy accessible sporting programs, especially for the least active population groups. A

  20. Design of High-Efficiency and Low-Cost Six-Phase Permanent Magnet Synchronous Generator for Direct-Drive Small-Scale Wind Power Application

    Directory of Open Access Journals (Sweden)

    M. E. Moazzen

    2017-06-01

    Full Text Available Permanent magnet synchronous generators (PMSG have a huge potential for direct-drive wind power applications. Therefore, optimal design of these generators is necessary to maximize their efficiency and to reduce their manufacturing cost and total volume. In this paper, an optimal design of a six-phase 3.5 KW direct-drive PMSG to generate electricity for domestic needs is performed. The aim of optimal design is to reduce the manufacturing cost, losses and total volume of PMSG. To find the best design, single/multi-objective design optimization is carried out. Cuckoo optimization algorithm (COA is adopted to solve the optimization problem. Comparison between the results of the single-objective and multi-objective models shows that simultaneous optimization of manufacturing cost, losses and total volume leads to more suitable design for PMSG. Finally, finite-element method (FEM is employed to validate the optimal design, which show a good agreement between the theoretical work and simulation results.

  1. Tailoring of Perpendicular Magnetic Anisotropy in Dy13Fe87 Thin Films with Hexagonal Antidot Lattice Nanostructure

    Directory of Open Access Journals (Sweden)

    Mohamed Salaheldeen

    2018-04-01

    Full Text Available In this article, the magnetic properties of hexagonally ordered antidot arrays made of Dy13Fe87 alloy are studied and compared with corresponding ones of continuous thin films with the same compositions and thicknesses, varying between 20 nm and 50 nm. Both samples, the continuous thin films and antidot arrays, were prepared by high vacuum e-beam evaporation of the alloy on the top-surface of glass and hexagonally self-ordered nanoporous alumina templates, which serve as substrates, respectively. By using a highly sensitive magneto-optical Kerr effect (MOKE and vibrating sample magnetometer (VSM measurements an interesting phenomenon has been observed, consisting in the easy magnetization axis transfer from a purely in-plane (INP magnetic anisotropy to out-of-plane (OOP magnetization. For the 30 nm film thickness we have measured the volume hysteresis loops by VSM with the easy magnetization axis lying along the OOP direction. Using magnetic force microscopy measurements (MFM, there is strong evidence to suggest that the formation of magnetic domains with OOP magnetization occurs in this sample. This phenomenon can be of high interest for the development of novel magnetic and magneto-optic perpendicular recording patterned media based on template-assisted deposition techniques.

  2. Ultrafast Magnetization Dynamics of SrRuO3 Thin Films

    International Nuclear Information System (INIS)

    Langner, Matthew C.

    2009-01-01

    Itinerant ferromagnet SrRuO3 has drawn interest from physicists due to its unusual transport and magnetic properties as well as from engineers due to its low resistivity and good lattice-matching to other oxide materials. The exact electronic structure remains a mystery, as well as details of the interactions between magnetic and electron transport properties. This thesis describes the use of time-resolved magneto-optical Kerr spectroscopy to study the ferromagnetic resonance of SrRuO3 thin films, where the ferromagnetic resonance is initiated by a sudden change in the easy axis direction in response to a pump pulse. The rotation of the easy axis is induced by laser heating, taking advantage of a temperature-dependent easy axis direction in SrRuO3 thin films. By measuring the change in temperature of the magnetic system in response to the laser pulse, we find that the specific heat is dominated by magnons up to unusually high temperature, ∼ 100 K, and thermal diffusion is limited by a boundary resistance between the film and the substrate that is not consistent with standard phonon reflection and scattering models. We observe a high FMR frequency, 250 GHz, and large Gilbert damping parameter, alpha ∼ 1, consistent with strong spin-orbit coupling. We observe a time-dependent change in the easy axis direction on a ps time-scale, and we find that parameters associated with the change in easy axis, as well as the damping parameter, have a non-monotonic temperature dependence similar to that observed in anomalous Hall measurements.

  3. Effect of mechanical stress on the magnetic properties of amorphous Fe-B ribbons

    International Nuclear Information System (INIS)

    Kecer, J.; Novak, L.

    2011-01-01

    From this point of view, we have dealt with the effect of mechanical stress in this work. It is one of the variables, together with an external magnetic field and temperature, in which it can be expected a significant impact on changes in magnetic properties of amorphous ferromagnets prepared by rapid quenching of the melt. Internal tensions, significantly affecting the magnetic parameters, are introduced into the material already under preparation. Although the rate of internal stresses in amorphous tape is high, we can see significant changes in the measured magnetic parameters induced by mechanical stresses. By applying mechanical stress on amorphous sample Fe 84 B 16 , is highlighted the impact of internal stresses in the direction of stress, which induces the direction of axis of easy magnetising and it results in filling the hysteresis loop to the J axis, coercivity values decreasing by half, constant of magnetoelastic anisotropy decreasing by half and change in the value of magnetostriction. (authors)

  4. Modified fractal iron oxide magnetic nanostructure: A novel and high performance platform for redox protein immobilization, direct electrochemistry and bioelectrocatalysis application.

    Science.gov (United States)

    Bagheri, Hasan; Ranjbari, Elias; Amiri-Aref, Mohaddeseh; Hajian, Ali; Ardakani, Yalda Hosseinzadeh; Amidi, Salimeh

    2016-11-15

    A novel biosensing platform based on fractal-pattern of iron oxides magnetic nanostructures (FIOMNs) and mixed hemi/ad-micelle of sodium dodecyl sulfate (SDS) was designed for the magnetic immobilization of hemoglobin (Hb) at a screen printed carbon electrode (SPCE). The FIOMNs was successfully synthesized through hydrothermal approach and characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). In order to provide guidelines for the mixed hemi/ad-micelle formation, zeta-potential isotherms were investigated. The construction steps of the biosensor were evaluated by electrochemical impedance spectroscopy, cyclic voltammetry and Fourier transform infrared spectroscopy. Direct electron transfer of Hb incorporated into the biocomposite film was realized with a pair of quasi-reversible redox peak at the formal potential of -0.355V vs. Ag/AgCl attributing to heme Fe(III)/Fe(II) redox couple. The results suggested that synergistic functions regarding to the hyper-branched and multidirectional structure of FIOMNs and the dual interaction ability of mixed hemi/ad-micelle array of SDS molecules not only induce an effective electron transfer between the Hb and the underlying electrode (high heterogeneous electron transfer rate constant of 2.08s(-1)) but also provide powerful and special microenvironment for the adsorption of the redox proteins. Furthermore, the biosensor displayed an excellent performance to the electrocatalytic reduction of H2O2 with a detection limit of 0.48µM and Michaelis-Menten constant (Km) value of 44.2µM. The fabricated biosensor represented the features of sensitivity, disposable design, low sample volume, rapid and simple preparation step, and acceptable anti-interferences, which offer great perspectives for the screen-determination of H2O2 in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Magnetic structure and dispersion relation of the S =1/2 quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8 in a transverse magnetic field

    Science.gov (United States)

    Matsuda, M.; Onishi, H.; Okutani, A.; Ma, J.; Agrawal, H.; Hong, T.; Pajerowski, D. M.; Copley, J. R. D.; Okunishi, K.; Mori, M.; Kimura, S.; Hagiwara, M.

    2017-07-01

    BaCo2V2O8 consists of Co chains in which a Co2 + ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo2V2O8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis. We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 X X Z antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.

  6. In-plane magnetic anisotropy and temperature dependence of switching field in (Ga, Mn) as ferromagnetic semiconductors.

    Science.gov (United States)

    Kamara, S; Terki, F; Dumas, R; Dehbaoui, M; Sadowski, J; Galéra, R M; Tran, Q-H; Charar, S

    2012-06-01

    We explore the magnetic anisotropy of GaMnAs ferromagnetic semiconductor by Planar Hall Effect (PHE) measurements. Using low magnitude of applied magnetic field (i.e., when the magnitude H is smaller than both cubic Hc and uniaxial Hu anisotropy field), we have observed various shapes of applied magnetic field direction dependence of Planar Hall Resistance (PHR). In particular, in two regions of temperature. At T Tc/2 the "zigzag-shape" signal of PHR. They reflect different magnetic anisotropy and provide information about magnetization reversal process in GaMnAs ferromagnetic semiconductor. The theoretical model calculation of PHR based on the free energy density reproduces well the experimental data. We report also the temperature dependence of anisotropy constants and magnetization orientations. The transition of easy axis from biaxial to uniaxiale axes has been observed and confirmed by SQUID measurements.

  7. Magnetic Properties of Fe(001) Thin Films on GaAs(001) Deposited by RF Magnetron Sputtering

    International Nuclear Information System (INIS)

    Ikeya, Hirokazu; Takahashi, Yutaka; Inaba, Nobuyuki; Kirino, Fumiyoshi; Ohtake, Mitsuru; Futamoto, Masaaki

    2011-01-01

    Fe thin films, down to 6 nm thick, were prepared on GaAs(001) substrates by RF magnetron sputtering. The x-ray diffraction (XRD) analyses show that the epitaxial thin films of Fe(001) were grown with cube-on-cube orientation on GaAs(001). Magnetic properties were investigated by vibrating sample magnetometry (VSM) and ferromagnetic resonance (FMR) spectroscopy. The magnetization curves obtained by applying in-plane magnetic fields indicate that easy (hard) direction is along [100] ([110]) and the saturation magnetization is close to the bulk values. The in-plane magnetic anisotropy measured by FMR shows four-fold symmetry, as expected for bcc Fe. We did not observe the in-plane uniaxial magnetic anisotropy reported on the MBE-grown Fe films on GaAs substrates.

  8. Beam testing of the lab model 2700 head magnet

    International Nuclear Information System (INIS)

    Hutcheon, R.M.; Gillies, B.A.

    1981-07-01

    A modern cancer therapy electron accelerator unit must satisfy many design constraints, one of which is the isocentric height above floor level. Usually 130 cm is considered the maximum height at which a nurse can work with a patient. The advent of higher energy machines has increasingly made this more difficult to achieve, as higher magnetic fields are required in the magnet that directs the beam onto the patient. A new 270 0 doubly achromatic magnet configuration has been developed which minimizes the isocentre height for a given maximum energy and maximum magnetic field. The system is an asymmetric two magnet configuration, with zero field index, equal fields and a bend of greater than 180 0 in the first magnet. It is compact, easy to manufacture and relatively insensitive to assembly tolerances. Energy defining slits are easily incorporated in the design and can readily be radiation shielded. Input and output beam matching and steering is easily accomplished with a compact input quadrupole doublet and small steering windings. The design and bench testing of such a head magnet for a 25 MeV electron accelerator is described in report AECL-7057. The present report details the testing of the magnet at both 10 and 21 MeV using the variable energy electron beam from the Therac 25 cancer therapy accelerator

  9. Easy to implement diagnostics of a glow dielectric barrier discharge

    International Nuclear Information System (INIS)

    Massines, F.; Segur, P.

    2001-01-01

    It is relatively easier to generate plasma at atmospheric pressure rather than low pressure. In retaliation, due to the short mean free path of different particles, the diagnostics giving microscopic characteristics are more difficult to implement. This, for example, is the case of Langmuir probe or mass spectrometry although solutions have been put forward. Likewise, the strong contribution of the excited state quenching can render optical characterization result interpretation difficult. Nevertheless, there are easy to implement basic diagnostics like optical emission spectroscopy, the ultra rapid photography or the discharge current measurement. A possible approach to get to the microscopic data consists in associating the experimental results with the results of a numerical model. This is the approach undertaken for the study of a glow dielectric barrier discharge (DBD) and is described in the following text in order to illustrate the possibilities of those easy to implement diagnostics supported by the analysis of surfaces having interacted with the plasma

  10. UNESCO to blame:Reality or easy escape?

    OpenAIRE

    Pereira Roders, A Ana; Grigolon, AB Anna

    2015-01-01

    “UNESCO to blame” is a trend often observed in scholarly works. In those studies UNESCO is accused to privilege Eurocentric standards on heritage conservation. Is this reality or an easy escape? Can this trend be noted in other UNESCO reference texts? This article seeks to answer this question by studying the two main inscription-based conventions and their contribution to heritage management, while performing a data analysis on the countries behind these conventions, and their roles over tim...

  11. STRATEGI PEMASARAN PAKET WISATA DI BALI EASY HOLIDAY DENPASAR BALI

    OpenAIRE

    Erick Kevin Perangin-Angin; I Putu Sudana; I Nyoman Sudiarta

    2017-01-01

    This Journal aimed to know the strengths and weaknesses of the internal environment and opportunities as well as threats from the external environment and create strategies and marketing programs that can be applied in the Bali Easy Holiday. The technique data collection using observation, interview, questionnaire, the study of literature and documentation study. Sampling techniques using a purposive sampling. Data analysis techniques using qualitative descriptive analysis and Likert scale an...

  12. An easy explanation book on glossary of nuclear energy

    International Nuclear Information System (INIS)

    Seo, Du Hwan; Seo, Gyeong Won

    2011-03-01

    This book mentions about 260 words of nuclear energy, which include general term of nuclear energy, nuclear reactor, nuclear fuel and technique for concentration, using of nuclear energy, radiation and measurement, radwaste disposal, development plan on nuclear energy and international bodies. This book is useful for students studying nuclear energy and radiation and those who are interested in nuclear field to research in easy access.

  13. EASI on the HP-25, HP-65, and HP-67

    International Nuclear Information System (INIS)

    Sasser, D.W.

    1977-05-01

    EASI (Estimate of Adversary Sequence Interruption) is an effective, simple method which has been developed for use in evaluating physical security systems. The usefulness of the method is enhanced by the fact that it can be implemented on a programmable pocket calculator. A program for the Texas Instruments SR-52 programmable pocket calculator has been developed and reported upon elsewhere. The purpose of this report is to provide programs for the Hewlett-Packard programmable pocket calculators

  14. OTTER: An Optimized Transit Tool And Easy Reference

    Science.gov (United States)

    2016-03-01

    TRANSIT TOOL AND EASY REFERENCE Warren Korban Blackburn Lieutenant Commander, United States Navy B.A., Thomas Edison State College, 2003...B.S.A.S.T., Thomas Edison State College, 2004 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN...application. Each of these technologies adds to the efficiency of the fleet. As RADM Thomas Eccles said, “No single technology will enable the Navy to

  15. Direct measurement of the field from a magnetic recording head using an InAs Hall sensor on a contact write/read tester

    International Nuclear Information System (INIS)

    Gokemeijer, N.J.; Clinton, T.W.; Crawford, T.M.; Johnson, Mark

    2005-01-01

    At 1 Tbit/in 2 areal density magnetic recording dimensions, reliable magnetic field metrology does not exist. One technique to map the spatial profile of the magnetic field of a write head is to use a contact read/write tester. A magnetic recording head is brought into contact with a Hall sensor, and is subsequently scanned with nm resolution. For a 300 nm track width longitudinal recording head, the magnetic field of the head was mapped. Measurements include the down track field gradient and cross-track field profile and the current-field transfer curve. These results suggest this technique offers a viable write field metrology

  16. easyDAS: Automatic creation of DAS servers

    Directory of Open Access Journals (Sweden)

    Jimenez Rafael C

    2011-01-01

    Full Text Available Abstract Background The Distributed Annotation System (DAS has proven to be a successful way to publish and share biological data. Although there are more than 750 active registered servers from around 50 organizations, setting up a DAS server comprises a fair amount of work, making it difficult for many research groups to share their biological annotations. Given the clear advantage that the generalized sharing of relevant biological data is for the research community it would be desirable to facilitate the sharing process. Results Here we present easyDAS, a web-based system enabling anyone to publish biological annotations with just some clicks. The system, available at http://www.ebi.ac.uk/panda-srv/easydas is capable of reading different standard data file formats, process the data and create a new publicly available DAS source in a completely automated way. The created sources are hosted on the EBI systems and can take advantage of its high storage capacity and network connection, freeing the data provider from any network management work. easyDAS is an open source project under the GNU LGPL license. Conclusions easyDAS is an automated DAS source creation system which can help many researchers in sharing their biological data, potentially increasing the amount of relevant biological data available to the scientific community.

  17. Magnetic anisotropy and magnetostriction in nanocrystalline Fe–Al alloys obtained by melt spinning technique

    Energy Technology Data Exchange (ETDEWEB)

    García, J.A.; Carrizo, J. [Depto. de Física de la Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Elbaile, L., E-mail: elbaile@uniovi.es [Depto. de Física de la Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Lago-Cachón, D.; Rivas, M. [Depto. de Física de la Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Castrillo, D. [Depto. de Ciencias de los Materiales de la Universidad de Oviedo, c/Independencia, 33004 Oviedo (Spain); Pierna, A.R. [Depto. de Ingeniería Química y Medio Ambiente, EUPSS, UPV/EHU, San Sebastián (Spain)

    2014-12-15

    A study about the magnetic anisotropy and magnetostriction in ribbons of composition Fe{sub 81}Al{sub 19} and Fe{sub 70}Al{sub 30} obtained by the melt spinning technique is presented. The hysteresis loops indicate that the easy magnetization direction lies in both cases on the plane of the ribbon. Torque magnetometry measurements show that the in-plane magnetic anisotropy constant results 10100 J m{sup −3} and 490 J m{sup −3} for the Fe{sub 81}Al{sub 19} and Fe{sub 70}Al{sub 30} respectively. After a thermal treatment of 2 h at 473 K to remove the residual stresses, the in-plane magnetic anisotropy constants falls down to 2500 J m{sup −3} in the first composition and remains the same in the second one, while the easy direction remains the same. Measurements of the magnetostriction and the residual stresses of both ribbons allow us to explain the above mentioned results about the magnetic anisotropy and to conclude that the residual stresses via magnetostriction are the main source of magnetic anisotropy in the case of Fe{sub 81}Al{sub 19} ribbon but they do not influence this property in the ribbon of composition Fe{sub 70}Al{sub 30}. - Highlights: • The origin of magnetic anisotropy of Fe{sub 81}Al{sub 19} and Fe{sub 70}Al{sub 30} ribbons has been studied. • The magnetic anisotropy lies in the plane of the ribbons. • A huge difference in magnetic anisotropy between two ribbons has been observed. • Magnetostriction and residual stresses explain the magnetic anisotropy in Fe{sub 81}Al{sub 19} ribbon.

  18. Kinematics of Mass Transport Deposits revealed by magnetic fabrics

    Science.gov (United States)

    Weinberger, R.; Levi, T.; Alsop, G. I.; Marco, S.

    2017-08-01

    The internal deformation and movement directions of Mass Transport Deposits (MTDs) are key factors in understanding the kinematics and dynamics of their emplacement. Although these are relatively easy to recover from well-bedded sediments, they are more difficult to deduce from massive beds without visible strain markers. In order to test the applicability of using anisotropy of magnetic susceptibility (AMS) to determine MTD movement, we compare AMS fabrics, with structural measurements of visible kinematic indicators. Our case study involves the structural analysis of slumped lake sediments extensively exposed in MTDs within the Dead Sea Basin. Structural analyses of MTDs outcropping for >100 km reveal radial transport directions toward the basin depocenter. We show that the AMS fabrics display the same transport directions as inferred from structural analyses. Based on this similarity, we outline a robust procedure to obtain the transport direction of slumped MTDs from AMS fabrics. Variations in the magnetic fabrics and anisotropies in fold-thrust systems within the slumps match the various structural domains. We therefore suggest that magnetic fabrics and anisotropy variations in drill cores may reflect internal deformation within the slumps rather than different slumps. Obtaining magnetic fabrics from MTDs provides a viable way to infer the transport directions and internal deformation of MTDs and reconstruct the basin depocenter in ancient settings. The present results also have implications beyond the kinematics of MTDs, as their geometry resembles fold-thrust systems in other geological settings, scales, and tectonic environments.

  19. Rotor Speed Control of a Direct-Driven Permanent Magnet Synchronous Generator-Based Wind Turbine Using Phase-Lag Compensators to Optimize Wind Power Extraction

    Directory of Open Access Journals (Sweden)

    Ester Hamatwi

    2017-01-01

    Full Text Available Due to the intermittent nature of wind, the wind power output tends to be inconsistent, and hence maximum power point tracking (MPPT is usually employed to optimize the power extracted from the wind resource at a wide range of wind speeds. This paper deals with the rotor speed control of a 2 MW direct-driven permanent magnet synchronous generator (PMSG to achieve MPPT. The proportional-integral (PI, proportional-derivative (PD, and proportional-integral-derivative (PID controllers have widely been employed in MPPT studies owing to their simple structure and simple design procedure. However, there are a number of shortcomings associated with these controllers; the trial-and-error design procedure used to determine the P, I, and D gains presents a possibility for poorly tuned controller gains, which reduces the accuracy and the dynamic performance of the entire control system. Moreover, these controllers’ linear nature, constricted operating range, and their sensitivity to changes in machine parameters make them ineffective when applied to nonlinear and uncertain systems. On the other hand, phase-lag compensators are associated with a design procedure that is well defined from fundamental principles as opposed to the aforementioned trial-and-error design procedure. This makes the latter controller type more accurate, although it is not well developed yet, and hence it is the focus of this paper. The simulation results demonstrated the effectiveness of the proposed MPPT controller.

  20. Functional interaction between right parietal and bilateral frontal cortices during visual search tasks revealed using functional magnetic imaging and transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Amanda Ellison

    Full Text Available The existence of a network of brain regions which are activated when one undertakes a difficult visual search task is well established. Two primary nodes on this network are right posterior parietal cortex (rPPC and right frontal eye fields. Both have been shown to be involved in the orientation of attention, but the contingency that the activity of one of these areas has on the other is less clear. We sought to investigate this question by using transcranial direct current stimulation (tDCS to selectively decrease activity in rPPC and then asking participants to perform a visual search task whilst undergoing functional magnetic resonance imaging. Comparison with a condition in which sham tDCS was applied revealed that cathodal tDCS over rPPC causes a selective bilateral decrease in frontal activity when performing a visual search task. This result demonstrates for the first time that premotor regions within the frontal lobe and rPPC are not only necessary to carry out a visual search task, but that they work together to bring about normal function.