WorldWideScience

Sample records for eastern sierra nevada

  1. Mechanical Effects of Normal Faulting Along the Eastern Escarpment of the Sierra Nevada, California

    Science.gov (United States)

    Martel, S. J.; Logan, J. M.; Stock, G. M.

    2013-12-01

    Here we test whether the regional near-surface stress field in the Sierra Nevada, California, and the near-surface fracturing that heavily influences the Sierran landscape are a mechanical response to normal faulting along its eastern escarpment. A compilation of existing near-surface stress measurements for the central Sierra Nevada, together with three new measurements, shows the most compressive horizontal stresses are 3-21 MPa, consistent with the widespread distribution of sheeting joints (near-surface fractures subparallel to the ground surface). In contrast, a new stress measurement at Aeolian Buttes in the Mono Basin, east of the range front fault system, reveals a horizontal principal tension of 0.014 MPa, consistent with the abundant vertical joints there. To evaluate mechanical effects of normal faulting, we modeled both normal faults and grabens in three ways: (1) dislocations of specified slip in an elastic half-space, (2) frictionless sliding surfaces in an elastic half-space; and (3) faults in thin elastic beams resting on an inviscid fluid. The different mechanical models predict concave upward flexure and widespread near-surface compressive stresses in the Sierra Nevada that surpass the measurements even for as little as 1 km of normal slip along the eastern escarpment, which exhibits 1-3 km of structural and topographic relief. The models also predict concave downward flexure of the bedrock floors and horizontal near-surface tensile stresses east of the escarpment. The thin-beam models account best for the topographic relief of the eastern escarpment and the measured stresses given current best estimates for the rheology of the Sierran lithosphere. Our findings collectively indicate that the regional near-surface stress field and the widespread near-surface fracturing directly reflect the mechanical response to normal faulting along the eastern escarpment. These results have broad scientific and engineering implications for slope stability

  2. Vertical Distribution of Ozone and Nitric Acid Vapor on the Mammoth Mountain, Eastern Sierra Nevada, California

    OpenAIRE

    2002-01-01

    In August and September 1999 and 2000, concentrations of ozone (O3) and nitric acid vapor (HNO3) were monitored at an elevation gradient (2184–3325 m) on the Mammoth Mountain, eastern Sierra Nevada, California. Passive samplers were used for monitoring exposure to tropospheric O3 and HNO3 vapor. The 2-week average O3 concentrations ranged between 45 and 72 ppb, while HNO3 concentrations ranged between 0.06 and 0.52 μg/m3. Similar ranges of O3 and HNO3 were determined for 2 years of the study....

  3. Climate, rain shadow, and human-use influences on fire regimes in the eastern Sierra Nevada, California, USA

    Science.gov (United States)

    M.P. North; K.M. van de Water; S.L. Stephens; B.M. Collins

    2009-01-01

    There have been few fire history studies of eastern Sierra Nevada forests in California, USA, where a steep elevation gradient, rain shadow conditions, and forest stand isolation may produce different fire regimes than those found on the range’s western slope. We investigated historic fire regimes and potential climate influences on four forest types ranging in...

  4. GPS Imaging of Sierra Nevada Uplift

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.; Kreemer, C.

    2015-12-01

    Recent improvements in the scope and precision of GPS networks across California and Nevada have allowed for uplift of the Sierra Nevada to be observed directly. Much of the signal, in the range of 1 to 2 mm/yr, has been attributed to lithospheric scale rebound following massive groundwater withdrawal in the San Joaquin Valley in southern California, exacerbated by drought since 2011. However, natural tectonic deformation associated with long term uplift of the range may also contribute to the observed signal. We have developed new algorithms that enhance the signal of Sierra Nevada uplift and improve our ability to interpret and separate natural tectonic signals from anthropogenic contributions. We apply our new Median Interannual Difference Adjusted for Skewness (MIDAS) algorithm to the vertical times series and a inverse distance-weighted median spatial filtering and Delaunay-based interpolation to despeckle the rate map. The resulting spatially continuous vertical rate field is insensitive to outliers and steps in the GPS time series, and omits isolated features attributable to unstable stations or unrepresentative rates. The resulting vertical rate field for California and Nevada exhibits regionally coherent signals from the earthquake cycle including interseismic strain accumulation in Cascadia, postseismic relaxation of the mantle from recent large earthquakes in central Nevada and southern California, groundwater loading changes, and tectonic uplift of the Sierra Nevada and Coast Ranges. Uplift of the Sierra Nevada extends from the Garlock Fault in the south to an indefinite boundary in the north near the latitude of Mt. Lassen to the eastern Sierra Nevada range front in Owen's Valley. The rates transition to near zero in the southern Walker Lane. The eastern boundary of uplift coincides with the highest strain rates in the western Great Basin, suggesting higher normal fault slip rates and a component of tectonic uplift of the Sierra Nevada.

  5. Climate and hillslope degradation vary in concert; 85 ka to present, eastern Sierra Nevada, CA, USA

    Science.gov (United States)

    Madoff, Risa D.; Putkonen, Jaakko

    2016-08-01

    Degradation in the landscape results when the interactions of climate, substrate, and biota dislodge and transport sediment that is mantling landforms. Rates of degradation through time control landform stability and resiliency. Therefore, records of past degradation rates can be used to inform us on how a given landscape responded to significant changes in past climates. For example, climate has varied at many temporal scales, and some of the largest recent shifts enabled the glacial advances and retreats in time scales of 20-100 ka. Therefore, it is reasonable to expect that the rate of landscape degradation has also varied at similar time scales. However, the general hillslope diffusion equation that is commonly used to model cross-profiles of hillslopes on time scales of thousands to tens of thousands of years typically relies on a constant and optimized rate parameter to generate a model cross-profile approximating the current observed landform cross-profile. Using a time-varying diffusivity parameter, we generated three separate degradation scenarios for the Mono Basin moraine in the eastern Sierra Nevada, CA, USA, in order to assess the potential impact of varying past climates on sediment transport. We used published paleoclimate records in the study area and modern rates of surface degradation from climates that correspond broadly to those paleoclimates. The results indicate that, in this case, the climate driven and, therefore, time-dependent degradation model produces a good fit between the modeled and observed landform profiles. Results showed that, when the surface elevations of the reference case (constant optimized diffusivity) were compared through time to the surface elevations of the time-dependent model, the differences were relatively small. The largest deviation was found to occur during the Last Glacial Maximum (LGM). We found that for investigations into the geological effects of climate change in glacial and polar regions, the use of time

  6. Distrubution of the Endocrine Disruptor Nonylphenol and the Effects of Topographical Sheilding in an Eastern Sierra Nevada Mountain Drainage

    Science.gov (United States)

    Lyons, R. A.; Van de Bittner, K.; Morgan Jones, S.

    2013-12-01

    Nonylphenol is a biodegradation product of nonylphenol polyethoxylates, a pervasive compound used in many industrial processes and notably in pesticides as a surfactant. Nonylphenol has been shown to act as an endocrine disruptor at low concentrations. It causes hermaphrodism, birth defects, and high mortality in fish, frogs and other amphibians. The Sierra Nevada Mountains separate the Central Valley in the west from the high desert of Mono Country on the east side of the state of California. The Central Valley represents some of the most heavily cultivated agricultural land in the United States. San Joaquin County alone had an annual pesticide use of over 8 million pounds in 2009 according to the Pesticide Action Network, compared with 4800 pounds in Mono County the same year. Fragile alpine ecosystems in the Sierra Nevadas may be highly susceptible to the effects of endocrine disruptors like nonylphenol. The distribution of nonylphenol is affected by localized topography in a steep walled montane canyon in the Eastern Sierra Nevada Mountains, Convict Creek canyon. The concentration of nonylphenol in snow and surface water increases as the elevation in Convict Creek canyon decreases in an easterly direction from not detectable at the highest elevations to as much as .01mg/L in water and 1.8 mg/L in snow at the lowest elevations. The steep head wall of Convict Creek canyon, facing southeast, provides shielding to the higher elevation lakes from deposition of compounds and particulate matter. As a canyon becomes less steep and broader, more nonylphenol is deposited. Identifying these deposition patterns may assist in determining amphibian and fish populations that are at higher risk of negative impact from these compounds.

  7. Sierra Nevada Subregional Boundary - Sierra Nevada Conservancy [ds542

    Data.gov (United States)

    California Department of Resources — Sierra Nevada Conservancy (SNC) boundary. The boundary was mapped to correspond with statute AB 2600 (2004) and as re-defined in AB 1201 (2005). Work on the boundary...

  8. Sierra Nevada (Granada, Spain)

    DEFF Research Database (Denmark)

    Gilgado, José D.; Enghoff, Henrik; Tinaut, Alberto;

    2015-01-01

    Millipedes (Diplopoda), with a few notable exceptions, are poor dispersers, showing a very high degree of endemicity, not the least in mountains. The first samplings of the Mesovoid Shallow Substratum (MSS) of the higher altitudes of the Sierra Nevada Mountains (Baetic System, Southern Spain) have...... of Ceratosphys cryodeserti Gilgado, Mauriès & Enghoff n. sp. are here provided, as well as the first data on the humidity and temperature fluctuations in the MSS of this high mountain. The new species is similar to other Baetico-Riffan species, while the only previously known congener from the region, C...... led to the discovery of a high number of millipedes, each of the species present showing a different degree of establishment in this subterranean environment. An update of the knowledge on the millipedes of this region, the first data of the millipede communities in the MSS and the description...

  9. Integrated Kinematic Analysis of GPS and Fault Slip Data in the Eastern California Shear Zone, Walker Lane and Sierra Nevada

    Science.gov (United States)

    Hammond, W. C.; Thatcher, W.

    2001-12-01

    The Sierra Nevada (SN) microplate moves roughly N50?W with respect to North America (NA), around an Euler pole that lies in the Pacific (PA) basin to the west and south. Its motion is indicative of processes governing the deformation of the Walker Lane and Eastern California Shear Zone, accommodating east to west expansion of the Basin and Range and approximately 25% of PA/NA dextral shear. To date, estimates for the location of the SN/NA pole obtained by GPS, VLBI and geologic data differ by at least 30 degrees [e.g. Argus and Gordon, 1996; Hearn and Humphreys, 1998]. The difference between these poles may, in part, be attributable to the type of data used in the analyses. The GPS determined velocity field potentially contains artifacts of the earthquake cycle such as recoverable elastic deformation preceded by slip at depth, fault creep, and viscoelastic relaxation following earthquakes on block bounding faults. We use Global Positioning System (GPS), fault strike and slip rate data to constrain the kinematics of the eastern boundary of the Sierra Nevada (SN) microplate, and western Basin and Range province of western North America. Data include previously published GPS measurements [Bennet et al., 1998; Thatcher et al., 1999; Gan et al., 2000; Svarc et al., submitted manuscript 2001], recently collected GPS data, and recently compiled fault maps of Nevada and California that include fault strike, slip sense and slip rate estimates. GPS velocities are refined with the Quasi Observation Combination Analysis algorithm of Dong et al. From these data we constrain the spatial variation in the rate and style of deformation throughout the region, and identify components of the deformation that are relevant to interaction of the PA/NA transform margin and Basin and Range extension. Using two-dimensional viscoelastic finite elements we derive kinematic models representative of the instantaneous (GPS) time scale, in preparation for future modeling of the longer term

  10. The Eastern delta-fan deposits on the Granada Basin as tectonic indicators of the Sierra Nevada uplift (Betic Cordillera, South Spain)

    Science.gov (United States)

    Roldán, Francisco Javier; Azañon, Jose Miguel; Mateos, Rosa Maria

    2014-05-01

    A geological mapping in detail of the Eastern sector of the Granada Basin (South Spain) reveals two different groups of Gilbert delta-fans related to the Sierra Nevada uplift. The first group, in the southern part and with a surface of 6 km2, has three major coarsening-upward sequences. They are composed of very coarse deposits, those of conglomerates, sands and silts. Progradational strata units to the basin have been observed. The dominantly fluvial facies association has locally developed shallow marine foreset deposits (partially with reef colonization) as well as topset red soils (Dabrio, et al., 1978; Braga et a., 1990; García-García, et al., 1999) . All the sequences are discordant over marine facies (calcarenites) dated over 8,26 Ma (Late Tortonian). The second group, in the northern part and with an extension of 12 km2, has similar characteristics, but some of the boulders have ostreids and lamellibranchs species which reveal their former position in a previous marine environment. The Sierra Nevada uplift caused the remobilization of these boulders, being transported by debris-flow inside the delta-fan bodies (García-García, et al., 2006). The dating of ostreids shells with Sr techniques reveals ages over 7,13, 6,61 and 5,45 Ma, from the lower to the upper delta-fan deposits, which are related to the three main sequences observed and with three major tectonic pulses during the Late Miocene. These interpretations are in agreement with apatite fision-track studies carried out in some boulders of these coarse delta-fan deposits (Clark and Dempster, 2013). They reveal a detailed record of Neogene denudation from the Sierra Nevada basement and with uplift periods between 5,45Ma- 2 Ma. The latest pulses affected the delta-fan sediments given rise to new fan systems in the Granada Basin (Alhambra Formation). The thoroughly study of the Miocene delta-fan sediments allows us to conclude that they were related to a sin-sedimentary tectonic activity linked to the

  11. MISR Sees the Sierra Nevadas in Stereo

    Science.gov (United States)

    2000-01-01

    These MISR images of the Sierra Nevada mountains near the California-Nevada border were acquired on August 12, 2000 during Terra orbit 3472. On the left is an image from the vertical-viewing (nadir) camera. On the right is a stereo 'anaglyph' created using the nadir and 45.6-degree forward-viewing cameras, providing a three-dimensional view of the scene when viewed with red/blue glasses. The red filter should be placed over your left eye. To facilitate the stereo viewing, the images have been oriented with north toward the left.Some prominent features are Mono Lake, in the center of the images; Walker Lake, to its left; and Lake Tahoe, near the lower left. This view of the Sierra Nevadas includes Yosemite, Kings Canyon, and Sequoia National Parks. Mount Whitney, the highest peak in the contiguous 48 states (elev. 14,495 feet), is visible near the righthand edge. Above it (to the east), the Owens Valley shows up prominently between the Sierra Nevada and Inyo ranges.Precipitation falling as rain or snow on the Sierras feeds numerous rivers flowing southwestward into the San Joaquin Valley. The abundant fields of this productive agricultural area can be seen along the lower right; a large number of reservoirs that supply water for crop irrigation are apparent in the western foothills of the Sierras. Urban areas in the valley appear as gray patches; among the California cities that are visible are Fresno, Merced, and Modesto.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  12. Increased precipitation acidity in the central Sierra Nevada

    Science.gov (United States)

    Byron, Earl R.; Axler, Richard P.; Goldman, Charles R.

    Between 1979 and 1986, precipitation acidity increased significantly on the crest of the central Sierra Nevada. Variation in precipitation pH was closely associated with change in nitrate concentrations but not to sulfate. This area of the Sierra Nevada crest contains many acid-sensitive, poorly buffered lakes and ponds which can be adversely affected by increasing precipitation acidity.

  13. Sierra Nevada Rock Glaciers: Biodiversity Refugia in a Warming World?

    Science.gov (United States)

    Millar, C. I.; Westfall, R. D.

    2007-12-01

    Rock glaciers and related periglacial rock-ice features (RIFs) are common landforms in high, dry mountain ranges, and widely distributed throughout canyons of the Sierra Nevada, California, USA (Millar & Westfall, in press). Due to insulating rock carapaces, active rock glaciers (ice-cored) have been documented to maintain ice longer, and thus contribute to more enduring hydrologic output, under past warming climates than typical ice glaciers. This function has been suggested for the coming century. We propose a broader hydrologic and ecologic role for RIFs as temperatures rise in the future. For the Sierra Nevada, we suggest that canyons with either active or relict RIFs (Holocene and Pleistocene) maintain water longer and distribute water more broadly than canyons that were scoured by ice glaciers and are defined by primary river and lake systems. RIFs provide persistent, distributed water for extensive wetland habitat, rare in these otherwise barren, high, and dry locations. We mapped and assessed the area of wetlands surrounding active and relict RIFs from the central eastern Sierra Nevada; from these we delineated wetland vegetation community types and recorded plant species found in RIF-supported wetlands. Mid-elevation RIFs, likely inactive or with transient ice, develop soil patches on their rock matrix. At the Barney Rock Glacier (Duck Pass, Mammoth Crest), we inventoried plant species on all soil patches, and measured cover for each species per patch and total plant cover for the rock glacier. RIF landforms also appear to support high-elevation mammals. We show that American beaver (Castor canadensis) is associated with canyons dominated by active or relict RIFs and propose that the articulating, persistent, and distributed nature of streams makes dam-building easier than other canyons. Beavers further contribute to maintaining water and creating wetland habitat in upper watersheds by engineering ponds and marshes, and contributing to riparian extent. We

  14. Ammonia at Blodgett Forest, Sierra Nevada, USA

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Marc L.; Littlejohn, David

    2007-11-06

    Ammonia is a reactive trace gas that is emitted in large quantities by animal agriculture and other sources in California, which subsequently forms aerosol particulate matter, potentially affecting visibility, climate, and human health. We performed initial measurements of NH{sub 3} at the Blodgett Forest Research Station (BFRS) during a two week study in June, 2006. The site is used for ongoing air quality research and is a relatively low-background site in the foothills of the Sierra Nevada. Measured NH{sub 3} mixing ratios were quite low (< 1 to {approx} 2 ppb), contrasting with typical conditions in many parts of the Central Valley. Eddy covariance measurements showed NH{sub 3} fluxes that scaled with measured NH{sub 3} mixing ratio and calculated aerodynamic deposition velocity, suggesting dry deposition is a significant loss mechanism for atmospheric NH{sub 3} at BFRS. A simple model of NH{sub 3} transport to the site supports the hypothesis that NH{sub 3} is transported from the Valley to BFRS, but deposits on vegetation during the summer. Further work is necessary to determine whether the results obtained in this study can be generalized to other seasons.

  15. Contaminant studies in the Sierra Nevadas

    Science.gov (United States)

    Sparling, D.W.; Fellers, G.

    2002-01-01

    full text: Several species of anuran amphibians (frogs and toads) are experiencing severe population declines in even seemingly pristine areas of the Sierra Mountains of California. Among the most severely depressed species are the redlegged frog, the foothill and mountain yellow-legged frogs, the Yosemite toad, and the Cascades frog. Several factors, such as habitat fragmentation, introduced predators (especially fish), and disease, have been linked to these declines. But recent evidence from a USGS-led study shows that contaminants are a primary factor. During the past three years, researchers from the USGS Patuxent Wildlife Research Center, the Western Ecology Research Center, the USDA Beltsville Agriculture Research Center, and the Texas A&M University have teamed up to conduct an extensive study on airborne pesticides and their effects on amphibian populations in the Sierra Nevada Mountains. Previous work on environmental chemistry demonstrated that pesticides from the intensely agricultural Central Valley of California are being blown into the more pristine Sierra Nevada Mountains, especially around Sequoia and Yosemite National Parks. Several pesticides, including diazinon, chlorpyrifos, malathion and endosulfan, can be measured in snow, rainfall, and pond waters in these national parks. With the exception of endosulfan, these pesticides affect and even kill both invertebrates and vertebrate species by inhibiting cholinesterase, an enzyme essential to proper nervous system functioning. In the summer of 2001, we published a paper showing that these same pesticides are now found in adults and the tadpoles of Pacific treefrogs. The results of this landmark study showed that more than 50 percent of the tadpoles and adults sampled in Yosemite and Sequoia National Parks had detectable levels of diazinon or chlorpyrifos and that 86 percent of the Pacific treefrogs sampled in the Lake Tahoe region had detectable levels of endosulfan. In contrast, frogs that were

  16. Deep Crustal Earthquakes and Repeating Earthquakes in the West-Central Sierra Nevada, Western USA

    Science.gov (United States)

    Hurd, O.; Frassetto, A.; Zandt, G.; Gilbert, H.; Jones, C.; Owens, T. J.

    2006-12-01

    The Sierra Nevada EarthScope Project (SNEP) is a multiple institution, collaborative research project focused on investigating the structure and evolution of the Sierra Nevada batholith in eastern California. The first phase of the project (summer 2005-summer 2006) saw the deployment of over forty (40) broadband seismometers spanning the central Sierra Nevada from Fresno, California to just south of the Lake Tahoe region. These seismic stations recorded many small, local earthquakes in both the western foothills and high Sierra Nevada that were mostly located from 20 to 120 km north of Fresno and were not present in other regional catalogs. Seismicity in this region is notable because it occurs in the interior of a plate away from major known faults. Ninety (90) events were picked on as many as 20 SNEP stations and located. These events occurred from late May 2005 to late January 2006 at a rate of ~10 per month and were located between 10 and 35 km depth. Many of the events fall within two distinct clusters beneath the array. The first cluster contains ~45 events and is located 30-70 km east of Merced, California and 30-90 km north of Fresno, California. The second represents ~30 events and is centered about the southern Yosemite National Park region. Average depth of the events in the first cluster is ~27 km compared to ~16 km for the events in the second. Past studies have found that events from similar locations in the western Sierra Nevada foothills exhibited ML magnitudes from 0 to 3.2 and had focal mechanisms displaying strike-slip faulting combined with normal and reverse components (Wong and Savage, 1983, BSSA). Direct comparison between waveforms of picked events occurring in small clusters (2-5 events) found that some events had nearly identical waveforms. This suggests similar rupture locations and characteristics despite the events having occurred a couple days to several weeks apart.

  17. 75 FR 76975 - 2015 Resource Pool-Sierra Nevada Region

    Science.gov (United States)

    2010-12-10

    ... allocations pursuant to its 2004 Power Marketing Plan (Marketing Plan) for the Sierra Nevada Customer Service... its Marketing Plan for SNR in the Federal Register (64 FR 34417, June 25, 1999). The Marketing Plan... Washoe Project beginning January 1, 2005, and continuing through December 31, 2024. The Marketing Plan...

  18. Catastrophic rockfalls and rockslides in the Sierra Nevada, USA

    Science.gov (United States)

    Wieczorek, Gerald F.; Evans, Stephen G.; DeGraff, Jerome V.

    2002-01-01

    Despite having a low recorded historical incidence of landsliding, the Sierra Nevada has undergone large prehistoric and historical rockfalls and rockslides that could be potentially catastrophic if they occurred today in the more densely populated parts of the region. Several large documented rockfall and rockslides have been triggered either by strong seismic shaking or long periods of unusually wet weather; however, in several instances no obvious triggering event can be identified. The glaciated topography of the higher elevations of the SierraNevada has produced many relatively small falls and slides within relatively hard, massively jointed, granitic rocks; however, where exposed to weathering for long periods after glaciation, the oversteepened rock slopes are prone to uncommonly large falls and slides. At lower elevations on the nonglaciated slopes of the Sierra Nevada, rockslides commonly occur within more weathered granitic rocks, where the strength of the rock mass is typically affected by joint weathering and alteration of the intact rock to saprolite. Historical large rock-falls and rockslides in the Sierra Nevada have created additional secondary natural hazards, including debris flows and floods from the breaching of landslide dams that can be as hazardous as the initial rockfalls and rockslides.

  19. Deformation of the late Miocene to Pliocene Inyo Surface, eastern Sierra region, California

    Science.gov (United States)

    Jayko, A.S.

    2009-01-01

    A middle and late Miocene erosion surface, the Inyo Surface, underlies late Miocene mafic flows in the White Mountains and late Miocene and (or) early Pliocene flows elsewhere in the eastern Sierra region. The Inyo Surface is correlated with an erosion surface that underlies late Miocene mafic flows in the central and northern Sierra Nevada. The mafic flows had outpourings similar to flood basalts, although of smaller volume, providing paleohorizontal and paleolowland indicators. The flows filed and locally topped the existing landscape forming broad plateau-like flats. Topographic relief in the region was characterized by weathered and rounded slopesp rior to late Miocene mafic magmatism. Relicts of the older landscape lie adjacent to late Miocene and early Pliocene basalt-covered lowlands that now occur within the crests of ranges that have 2500-3000 m relief and dramatically steep escarpments. Late Miocene mafic flows that lie on the crest of the Sierra Nevada adjacent to the White Mountains predate significant activity on the Sierra Nevada frontal fault zone. These deposits and accompanying erosion surfaces provide excellent strain markers for reconstructing part of the Walker Lane north of the Garlock fault and west of the Amargosa drainage, here referred to as the eastern Sierra region. The Inyo Surface is a compound erosional surface that records at least four major erosion events during the Cenozoic. These four surfaces were first recognized on the Kern Plateau and named from oldest to youngest, the Summit Upland, the Subsummit Plateau, the Chagoopa Plateau, and the Canyon. The three older surfaces have also been subsequently modifi ed by Pleistocene glaciation. The compound erosion surface, which is locally overlain by late Miocene mafic flows in the northern and central Sierra Nevada, is here referred to as the Lindgren Surface. Correlatives in the eastern Sierra region are found in the White Mountains, Inyo Mountains, Darwin Plateau, Coso Range, and

  20. Constraints on the history and topography of the Northeastern Sierra Nevada from a Neogene sedimentary basin in the Reno-Verdi area, Western Nevada

    Science.gov (United States)

    Trexler, James; Cashman, Patricia; Cosca, Michael

    2012-01-01

    Neogene (Miocene–Pliocene) sedimentary rocks of the northeastern Sierra Nevada were deposited in small basins that formed in response to volcanic and tectonic activity along the eastern margin of the Sierra. These strata record an early phase (ca. 11–10 Ma) of extension and rapid sedimentation of boulder conglomerates and debrites deposited on alluvial fans, followed by fluvio-lacustrine sedimentation and nearby volcanic arc activity but tectonic quiescence, until ~ 2.6 Ma. The fossil record in these rocks documents a warmer, wetter climate featuring large mammals and lacking the Sierran orographic rain shadow that dominates climate today on the eastern edge of the Sierra. This record of a general lack of paleo-relief across the eastern margin of the Sierra Nevada is consistent with evidence presented elsewhere that there was not a significant topographic barrier between the Pacific Ocean and the interior of the continent east of the Sierra before ~ 2.6 Ma. However, these sediments do not record an integrated drainage system either to the east into the Great Basin like the modern Truckee River, or to the west across the Sierra like the ancestral Feather and Yuba rivers. The Neogene Reno-Verdi basin was one of several, scattered endorheic (i.e., internally drained) basins occupying this part of the Cascade intra-arc and back-arc area.

  1. 75 FR 44942 - 2015 Resource Pool-Sierra Nevada Customer Service Region

    Science.gov (United States)

    2010-07-30

    ... Nevada Customer Service Region AGENCY: Western Area Power Administration, DOE. ACTION: Notice of Proposed... the Sierra Nevada Customer Service Region (SNR) in the Federal Register on June 25, 1999. The... Anderson, Power Marketing Manager, Sierra Nevada Customer Service Region, Western Area Power Administration...

  2. Rangewide glaciation in the Sierra Nevada, California

    Science.gov (United States)

    Moore, James G.; Moring, Barry C.

    2013-01-01

    The 600-km-long Sierra Nevada underwent extensive Pleistocene glaciation except for its southernmost 100 km. Presently, ∼1700 small glaciers and ice masses near the crest of the range occur above 3250 m in elevation; these covered an area of ∼50 km2 in 1972. Fourteen of the largest glaciers decreased by about one half in area during the period from 1900 to 2004. Rock glaciers, generally glacial ice covered by 1–10 m of rockfall debris, occur in about the same span of the range as ice and permanent snowfields. They are, on average, lower by 200–300 m, apparently because of the insulating layer of rocky rubble that protects their internal ice from the sun’s heat and from wind. The principal Pleistocene glacial stages are the Sherwin (ca. 820 ka), Tahoe (170–130 and ca. 70 ka), Tioga (14–28 ka), and Recess Peak (13 ka). Some 7040 glacial lakes, produced primarily by quarrying from bedrock, were mostly exposed after recession of the Tioga glacial stage. The lakes largely mark the area of primary snow accumulation. Below the lower limit of the lakes, ice flowed downward into river-cut canyons, forming major trunk glaciers within the zone of ablation. The range is in general a westward-tilted block upfaulted on its east side. Therefore, the main late Pleistocene trunk glaciers (Tahoe/Tioga) west of the crest extend 25–60 km, whereas those east of the crest extend only 5–20 km. Because of higher precipitation northward, glacial features such as the toes of existing glaciers and rock glaciers, as well as the late season present-day snowline, all decrease in elevation northward. Likewise, the elevation of the lower limit of glacial lakes, an indication of the zone of snow accumulation during the late Pleistocene, decreases about the same degree. This similarity suggests that the overall climate patterns of the late Pleistocene, though cooler, were similar to those of today. The east slope glaciers show a similar northward depression, but they are ∼500

  3. The Mono Arch, eastern Sierra region, California: Dynamic topography associated with upper-mantle upwelling?

    Science.gov (United States)

    Jayko, A.S.

    2009-01-01

    A broad, topographic flexure localized east of and over the central and southern Sierra Nevada, herein named the Mono Arch, apparently represents crustal response to lithospheric and/or upper-mantle processes, probably dominated by mantle upwelling within the continental interior associated Pacific-North American plate-boundary deformation. This zone of flexure is identified through comparison between the topographic characteristics of the active Cascade volcanic arc and backarc regions with the analogous former arc and backarc in the Sierra Nevada and eastern Sierra Nevada. Serial topographic profiles measured normal to the modern Cascade backarc reveal an accordance of topographic lows defined by valley floors with an average minimum elevation of ???1400-1500m for over 175km to the southeast. Although the accordance drops in elevation slightly to the south, the modern Cascade backarc region is remarkably level, and is characterized by relief up to ???750m above this baseline elevation. By contrast, serial topographic profiles over the former arc and backarc transitions of the eastern Sierra region exhibit a regional anticlinal warping defined by accordant valley floors and by a late Miocene-early Pliocene erosion surface and associated deposits. The amplitude of this flexure above regionally flat baseline elevations to the east varies spatially along the length of the former Sierran arc, with a maximum of ???1000m centred over the Bridgeport Basin. The total zone of flexure is approximately 350km long N-S and 100km wide E-W, and extends from Indian Wells Valley in the south to the Sonora Pass region in the north. Previous geophysical, petrologic, and geodetic studies suggest that the Mono Arch overlies a zone of active mantle upwelling. This region also represents a zone crustal weakness formerly exploited by the middle-to-late Miocene arc and is presently the locus of seismic and volcanic activities. This seismic zone, which lies east of the Sierra Nevada block

  4. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA.

    Science.gov (United States)

    Boyd, Oliver S; Jones, Craig H; Sheehan, Anne F

    2004-07-30

    Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, suggesting a previously unsuspected coherence in the lithospheric removal process.

  5. Color and 3D views of the Sierra Nevada mountains

    Science.gov (United States)

    2002-01-01

    A stereo 'anaglyph' created using the nadir and 45.6-degree forward-viewing cameras provides a three-dimensional view of the scene when viewed with red/blue glasses. The red filter should be placed over your left eye. To facilitate the stereo viewing, the images have been oriented with north toward the left. Some prominent features are Mono Lake, in the center of the image; Walker Lake, to its left; and Lake Tahoe, near the lower left. This view of the Sierra Nevadas includes Yosemite, Kings Canyon, and Sequoia National Parks. Mount Whitney, the highest peak in the contiguous 48 states (elev. 14,495 feet), is visible near the righthand edge. Above it (to the east), the Owens Valley shows up prominently between the Sierra Nevada and Inyo ranges. Precipitation falling as rain or snow on the Sierras feeds numerous rivers flowing southwestward into the San Joaquin Valley. The abundant fields of this productive agricultural area can be seen along the lower right; a large number of reservoirs that supply water for crop irrigation are apparent in the western foothills of the Sierras. Urban areas in the valley appear as gray patches; among the California cities that are visible are Fresno, Merced, and Modesto.

  6. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift

    Science.gov (United States)

    Hammond, William C.; Blewitt, Geoffrey; Kreemer, Corné

    2016-10-01

    We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.

  7. The surface of crystalline basement, Great Valley and Sierra Nevada, California: A digital map database

    Science.gov (United States)

    Wentworth, Carl M.; Fisher, G. Reid; Levine, Paia; Jachens, Robert C.

    1995-01-01

    Crystalline basement in central California extends westward from the exposed Sierra Nevada beneath the sedimentary fill of the Great Valley and under the eastern edge of the Coast Ranges at mid-crustal depth. The surface of this basement is defined from three types of control: in the Sierra Nevada from the topography itself, beneath the eastern two thirds of the Great Valley in considerable detail from numerous wells drilled for oil and gas, and beneath the western San Joaquin Valley in less detail from seismic reflection and refraction profiles. Together, these data demonstrate that the surface of crystalline rock is continuous from the exposed rock in the mountains to the top of high-velocity rock buried deep beneath the eastern front of the southern Coast Ranges. This report presents a compilation of data through 1985 that define the surface of this crystalline basement, a contour map of the surface, and the lithology of the basement rock sampled by many of the wells. The compilation was begun as part of the investigation of the 1983 Coalinga earthquake, and was subsequently converted to digital form and extended to the whole of the Great Valley and Sierra Nevada. The main purpose was to explore and document the shape and continuity of the basement surface and to determine the relation of the surface to the tectonic wedge hypothesis (Wentworth and others, 1984; Wentworth and Zoback, 1989). Available basement samples from wells - principally the thin-section collection of May and Hewitt (1948) preserved by the California Academy of Sciences - were also reexamined by cooperating petrologists in an effort to distinguish wells that bottomed in ophiolitic rocks.

  8. Nitrogen dynamics of spring-fed wetland ecosystems of the Sierra Nevada foothills oak woodland

    Science.gov (United States)

    Randall D. Jackson; Barbara Allen-Diaz

    2002-01-01

    Spring-fed wetlands are small, highly productive, patchy ecosystems nested within the oak woodland/annual grassland matrix of the Sierra Nevada foothills. In an effort to place these wetlands in a landscape context, we described seasonal variation (1999-2000 growing season) in nitrogen cycling parameters at 6 spring-fed wetland sites of the Sierra Nevada foothill oak...

  9. Deposition patterns and transport mechanisms for the endocrine disruptor 4-nonylphenol across the Sierra Nevada Mountains, California.

    Science.gov (United States)

    Lyons, Rebecca; Van de Bittner, Kyle; Morgan-Jones, Sean

    2014-12-01

    Dust and particulate distribution patterns are shifting as global climate change brings about longer drought periods. Particulates act as vehicles for long range transport of organic pollutants, depositing at locations far from their source. Nonylphenol, a biodegradation product of nonylphenol polyethoxylate, is a known endocrine disruptor. Nonylphenol polyethoxylate enters the environment as an inert ingredient in pesticide sprays, potentially traveling great distances from its application site. This is of concern when a highly agricultural region, California's Central Valley, lies adjacent to sensitive areas like the Eastern Sierra Nevada Mountains. The distribution and transport mechanisms for 4-nonylphenol were investigated in Eastern Sierra Nevada canyons. Regions close to canyon headwalls showed trace amounts of 4-nonylphenol in surface water, snow, and atmospheric deposition. Exposed areas had yearly average concentrations as high as 9 μg/L. Distribution patterns are consistent with particulate-bound transport. This suggests with increasing drought periods, higher levels of persistent organic pollutants are likely.

  10. Interaction of an Introduced Predator with Future Effects of Climate Change in the Recruitment Dynamics of the Imperiled Sierra Nevada Yellow-legged Frog (Rana sierrae)

    Science.gov (United States)

    I Lacan; Kathleen R. Matthews; K.V. Feldman

    2008-01-01

    Between-year variation in snowpack (from 20 to 200% of average) and summer rainfall cause large fluctuations in volume of small lakes in the higher elevation (> 3000 m) Sierra Nevada, which are important habitat for the imperiled Sierra Nevada Yellow-legged Frog, Rana sierrae. Climate change (global warming) is predicted to increase these...

  11. Plutonism in the central part of the Sierra Nevada Batholith, California

    Science.gov (United States)

    Bateman, Paul C.

    1992-01-01

    The Sierra Nevada batholith comprises the plutonic rocks of Mesozoic age that underlie most of the Sierra Nevada, a magnificent mountain range that originated in the Cenozoic by the westward tilting of a huge block of the Earth's crust. Scattered intrusions west of the batholith in the western metamorphic belt of the Sierra Nevada and east of the Sierra Nevada in the Benton Range and the White and Inyo Mountains are satellitic to but not strictly parts of the Sierra Nevada batholith. Nevertheless, all the plutonic rocks are related in origin. The batholith lies along the west edge of the Paleozoic North American craton, and Paleozoic and early Mesozoic oceanic crust underlies its western margin. It was emplaced in strongly deformed but weakly metamorphosed strata ranging in age from Proterozoic to Cretaceous. Sedimentary rocks of Proterozoic and Paleozoic age crop out east of the batholith in the White and Inyo Mountains, and metamorphosed sedimentary and volcanic rocks of Paleozoic and Mesozoic age crop out west of the batholith in the western metamorphic belt. A few large and many small, generally elongate remnants of metamorphic rocks lie within the batholith. Sparse fossils from metasedimentary rocks and isotopic ages for metavolcanic rocks indicate that the metamorphic rocks in the remnants range in age from Early Cambrian to Early Cretaceous. Within the map area (the Mariposa 1 0 by 2 0 quadrangle), the bedding, cleavage, and axial surfaces of folds generally trend about N. 35 0 W., parallel to the long axis of the Sierra Nevada. The country rocks comprise strongly deformed but generally coherent sequences; however, some units in the western metamorphic belt may partly consist of melanges. Most sequences are in contact with other sequences, at least for short distances, but some sequences within the batholith are bounded on one or more sides by plutonic rocks. Proterozoic and Paleozoic sedimentary strata east of the Sierra Nevada and Paleozoic strata in

  12. Modeling Patterns of Precipitation Phase in the Central Sierra Nevada

    Science.gov (United States)

    Strikas, O.; Pavelsky, T.

    2013-12-01

    Snowpack provides 75% of summer hydrologic flow in the western United States. This summer flow is vitally important in California, the country's leading producer of agriculture, with $43.5 billion dollars in cash receipts in 2011. Snowpack in the California Sierra Nevada has declined by approximately half from 1900 to 1990. In this study, we use the Weather Research and Forecasting (WRF) regional climate model at a 3km resolution to understand the critical temperature window at which both snow and rain fall for the Central Sierra Nevada during the 2002 water year. Results suggest that temperature and snow fraction [snowfall / (snowfall + rainfall)] share a logistic relationship with the snow fraction being 1 until approximately 272 K, then the snow fraction decreases by approximately 22%/K leveling at 0 snow fraction at 276.5 K. We further examine the spatial patterns of temperatures, precipitation amounts, and precipitation types in the Sierra Nevada to determine the areas of greatest potential snow to rain transition under a future warmer climate. Preliminary results suggest that the high risk areas are at the low to mid elevations. This research provides evidence that even a minor increase in temperature (+0.5 K) will yield changes in spring and summer hydrographs for the region. The spatial variability of IPCC temperature regime change for 2050 and 2100 will be downscaled for a higher resolution prediction of precipitation. It is currently under investigation how the proposed IPCC (A1 and B2) predictions of climate change for the region by 2050 (+2.7 K; +1.6 K ) and 2100 (+4.4 K; +2.7 K) will alter the corresponding annual river hydrographs. Given the complex topography of the Sierra Nevada, several spatial interpolations using GIS and statistical algorithms will be executed to render this high resolution (3km) output. Other future work with collaborators intends to model the agricultural risk associated with our predicted changes. This plot demonstrates the

  13. Uranium-lead isotopic ages from the Sierra Nevada Batholith, California

    Science.gov (United States)

    Chen, James H.; Moore, James G.

    1982-06-01

    This study provides new information on the timing and distribution of Mesozoic magmatic events in the Sierra Nevada batholithic complex chiefly between 36° and 37°N. latitude. U-Pb ages have been determined for 133 zircon and 7 sphene separates from 82 samples of granitoid rocks. Granitoid rocks in this area range in age from 217 to 80 m.y. Triassic intrusions are restricted to the east side of the batholith; Jurassic plutons occur south of the Triassic plutons east of the Sierra Nevada, as isolated masses within the Cretaceous batholith, and in the western foothills of the range; Cretaceous plutons form a continuous belt along the axis of the batholith and occur as isolated masses east of the Sierra Nevada. No granitic intrusions were emplaced for 37 m.y. east of the Sierra Nevada following the end of Jurassic plutonism. However, following emplacement of the eastern Jurassic granitoids, regional extension produced a fracture system at least 350 km long into which the dominantly mafic, calc-alkalic Independence dike swarm was intruded 148 m.y. ago. The dike fractures probably represents a period of regional crustal extension caused by a redistribution of the regional stress pattern accompanying the Nevadan orogeny. Intrusion of Cretaceous granitic plutons began in large volume about 120 m.y. ago in the western Sierra Nevada and migrated steadily eastward for 40 m.y. at a rate of 2.7 mm/y. This slow and constant migration indicates remarkably uniform conditions of subduction with perhaps downward migration of parent magma generation or a slight flattening of the subduction zone. Such steady conditions could be necessary for the production of large batholithic complexes such as the Sierra Nevada. The abrupt termination of plutonism 80 m.y. ago may have resulted from an increased rate of convergence of the American and eastern Pacific plates and dramatic flattening of the subduction zone. U-Pb ages of the Giant Forest-alaskite sequence in Sequoia National Park are

  14. Juan Carandell Pericay (1893-1937 y Sierra Nevada

    Directory of Open Access Journals (Sweden)

    Antonio López Ontiveros

    2000-01-01

    Full Text Available Juan Carandell Pericay (1893-1937, geólogo y geógrafo ligado a la Institución Libre de Enseñanza, escribió unos trescientos títulos, con una actividad científica e intelectual muy polifacética: geología, geografía física, humana y regional, libros de viaje y excursiones pedagógicas, semiología gráfica, divulgación científica y otras actividades intelectuales y artísticas. Una parte significativa de dichas obras estuvo dedicada a las Béticas, en general, y a Sierra Nevada en particular. Aspectos considerados por Carandell sobre Sierra Nevada son los relativos a su geología, geomorfología y tectónica, la erosión y sus causas físicas y humanas, la geografía humana –con especial importancia para el tema del hábitat– y otra variada gama de temas entre los que merece mención la faceta de las representaciones del paisaje, en todas las cuales demostró no sólo sus sólidos conocimientos geológicos y geográficos, sino incluso una calidad artística más que apreciable.

  15. Surface uplift and atmospheric flow deflection in the Late Cenozoic southern Sierra Nevada

    Science.gov (United States)

    Mix, H.; Caves, J. K.; Winnick, M.; Ritch, A. J.; Reilly, S.; Chamberlain, C. P.

    2016-12-01

    Given the intimate links between topography, tectonics, climate and biodiversity, considerable effort has been devoted to developing robust elevation histories of orogens. In particular, quantitative geochemical reconstructions using stable oxygen and hydrogen isotopes have been applied to many of the world's mountain belts. Yet after decades of study, determining the Cenozoic surface uplift history of the Sierra Nevada remains a challenge. While geological and geophysical evidence suggests the southern Sierra underwent 1-2 km of Late Cenozoic surface uplift, stable isotope paleoaltimetry studies to date have been restricted to the Basin and Range interior. Recent advances in atmospheric modeling have suggested that such stable isotope records from leeward sites can be affected by the complicating role that sufficiently elevated topography such as the southern (High) Sierra plays in diverting atmospheric circulation. In order to examine the potential role of these terrain blocking effects, we produced stable isotope records from three Late Cenozoic sedimentary basins in the Eastern Sierra and Basin and Range: 1) Authigenic clay minerals in the Mio-Pliocene Verdi Basin (VB), 2) Fluvial and lacustrine carbonates from the Plio-Pleistocene Coso Basin (CB), and 3) Miocene to Holocene pedogenic, fluvial and lacustrine carbonates of Fish Lake Valley (FLV). Whereas both the VB (near present-day Reno) and CB (southern Owens Valley) receive input of water directly from the Sierra crest, FLV is a region of proposed reconvergence of moisture in the Basin and Range. The oxygen isotope records in both CB and FLV increase during the Neogene by approximately 2 ‰, while the hydrogen isotope record of the VB decreases by <10 ‰. These results are consistent with a modestly-elevated Paleogene Sierra of 2 km over which air masses traversed and underwent orographic rainout and Rayleigh distillation. A Neogene pulse of uplift in the southern Sierra could have driven modern flow

  16. Critical Habitat for the Sierra Nevada Bighorn Sheep (Ovis canadensis californiana)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data identify the areas designated as critical habitat for the Sierra Nevada Bighorn Sheep. Critical habitat for the species occurs in twelve units: Mount...

  17. Critical Habitat for the Sierra Nevada Bighorn Sheep (Ovis canadensis californiana)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data identify the areas designated as critical habitat for the Sierra Nevada Bighorn Sheep. Critical habitat for the species occurs in twelve units: Mount...

  18. Synoptic and mesoscale controls on Sierra Nevada rain shadow intensity

    Science.gov (United States)

    Hatchett, B.; Kaplan, M.; Rutz, J. J.; Garner, C.

    2016-12-01

    The Sierra Nevada of California casts one of the world's greatest rain shadows with windward-leeside precipitation differences approaching an order of magnitude. Leeside rivers and terminal lakes provide critical water resources for ecosystem services and human consumptive use in this water-limited environment. They also offer important archives of paleohydroclimatic change. Understanding the drivers of rain shadow intensity represents an important step in properly evaluating how leeside hydrology will respond to projected climate change and for interpreting increasingly well spatially distributed paleoproxy evidence of past hydroclimates. Recent theoretical and modeling studies have shown rain shadow intensity to be controlled by multiscalar dynamics during storms such as the vertical structure of mountain waves, the presence of mid-level moisture, and position of the warm sector with respect to the mountain crest. Here, we provide a 35-year station-based climatology of strong and weak rain shadow events for the central Sierra Nevada during extended winter (November-April). Wetter (drier) years in leeside basins are characterized by higher (lower) fractions of lee-crest precipitation suggesting weaker (stronger) rain shadow effects during precipitation events. In general, as contributions of precipitation on the climatological top 5% of wet days increases, rain shadow intensity decreases. This suggests a key role for atmospheric rivers in weakening the rain shadow. A separate population of very dry years is found, regardless of number of dry days, when no precipitation is contributed by the climatological top 5% of wet days. These years show stronger rain shadow effects with few exceptions. Using the North American Regional Reanalysis and both surface and satellite-based remote sensing data in conjunction with the derived rain shadow climatology, we demonstrate the additional importance of atmospheric rivers, offshore and upstream mesoscale convection, and

  19. Los recursos humanos en un espacio natural protegido: Sierra Nevada

    Directory of Open Access Journals (Sweden)

    Ma. Enriqueta Cózar

    2000-01-01

    Full Text Available Sierra Nevada, como todas las áreas de montaña españolas y gran parte del territorio interior andaluz, ha experimentado durante el siglo XX un considerable retroceso demográfico. La población con la que llega al umbral del siglo XXI es una cuarta parte más pequeña que la registrada en 1900 y un tercio inferior a la de 1950. Diversos y complejos factores, tanto internos como externos al área de montaña, de carácter más económico que demográfico, fueron los desencadenantes de una fuerte emigración. La gran pérdida de población ha originado cambios trascendentales en la demografía y en la actividad económica de Sierra Nevada. En la actualidad, la población de este espacio protegido se caracteriza por una desequilibrada distribución en el territorio, un escaso crecimiento natural, un acelerado envejecimiento y una actividad mayoritariamente terciaria. La declaración, en Julio de 1989, como espacio natural protegido bajo la figura de Parque Natural, y la más reciente de Parque Nacional, apenas ha modificado la inercia demográfica regresiva de la mayor parte de sus municipios; tan sólo se ha podido apreciar una cierta tendencia a la estabilización demográfica de la población total del macizo

  20. Polychlorinated biphenyls and toxaphene in Pacific tree frog tadpoles (Hyla regilla) from the California Sierra Nevada, USA.

    Science.gov (United States)

    Angermann, Jeffrey E; Fellers, Gary M; Matsumura, Fumio

    2002-10-01

    Pacific tree frog (Hyla regilla) tadpoles were collected throughout the Sierra Nevada mountain range, California, USA, in 1996 and 1997 and analyzed for the presence of polychlorinated biphenyls (PCBs) and toxaphene. Whole-tadpole sigma PCB levels ranged from 244 ng/g (wet wt) at lower elevations on the western slope to 1.6 ng/g high on the eastern slope, whereas sigma toxaphene levels ranged from 15.6 to 1.5 ng/g. Linear regression of PCB and toxaphene residue levels versus elevation indicated a significant relationship, with an r2 value of 0.33 for PCB and 0.45 for toxaphene indicating a significant elevation effect on PCB and toxaphene bioaccumulation in Sierra Nevada H. regilla. Tadpole samples from sites in east-facing versus west-facing drainage basins showed significant differences in PCB and toxaphene residue levels, suggesting the possibility of a rain-shadow effect in the long-range atmospheric transport of these contaminants to the Sierra Nevada Mountains.

  1. Monitoring lichens diversity and climatic change in Sierra Nevada (Spain

    Directory of Open Access Journals (Sweden)

    Fernández Calzado, M.ª R.

    2013-12-01

    Full Text Available Lichens are common organisms in high mountain zones, where they play an important role in ecosystem balance. In recent years, the increasing interest in understanding more about their interactions with abiotic factors has prompted several investigations, some of which have proved their value as bioindicators of climatic conditions. In this context, focusing on climatic change effects on high mountain vascular plants and supported by the Global Observation Research Initiative in Alpine Environments project (GLORIA, we have monitored for the first time the lichens biodiversity in Sierra Nevada with the intention of studying the alterations caused by the process of climatic change. The aim of this paper is to explain the monitoring experience developed on the massif and contribute to the first results from the biodiversity and statistical analysis of the sampling data.Los líquenes son organismos comunes en las zonas de alta montaña donde juegan un importante papel en el equilibrio de los ecosistemas. En los últimos años, el creciente interés por entender más acerca de sus interacciones con los factores abióticos ha motivado diversas investigaciones, algunas de las cuales han demostrado su valor como bioindicadores de las condiciones climáticas. En este contexto, centrándonos en los efectos del cambio climático en plantas vasculares de alta montaña y respaldados por el proyecto “Iniciativa para la investigación y el seguimiento global de los ambientes alpinos (GLORIA”, se ha monitorizado por primera vez la diversidad de líquenes en Sierra Nevada con la intención de estudiar las posibles alteraciones que esta pueda sufrir causadas por el proceso de cambio climático. El objetivo de este artículo es el de dar a conocer la experiencia de seguimiento en el macizo y aportar los primeros resultados procedentes del análisis, tanto de la biodiversidad como estadístico, de los datos de muestreo.

  2. California spotted owls: Chapter 5 in Managing Sierra Nevada forests

    Science.gov (United States)

    Roberts, Suzanne C.; Brooks, Matthew L.

    2012-01-01

    California spotted owls (Strix occidentalis occidentalis) are habitat specialists that are strongly associated with late-successional forests. For nesting and roosting, they require large trees and snags embedded in a stand with a complex forest structure (Blakesley et al. 2005, Gutiérrez et al. 1992, Verner et al. 1992b). In mixedconifer forests of the Sierra Nevada, California spotted owls typically nest and roost in stands with high canopy closure (≥75 percent) [Note: when citing studies, we use terminology consistent with Jennings et al. (1999), however, not all studies properly distinguish between canopy cover and closure and often use the terms interchangeably (see chapter 14 for clarification)] and an abundance of large trees (>24 in (60 cm) diameter at breast height [d.b.h.]) (Bias and Gutiérrez 1992, Gutiérrez et al. 1992, LaHaye et al. 1997, Moen and Gutiérrez 1997, Verner et al. 1992a). The California spotted owl guidelines (Verner et al. 1992b) effectively summarized much of the information about nesting and roosting habitat. Since that report, research on the California spotted owl has continued with much of the new information concentrated in five areas: population trends, barred owl (Strix varia) invasion, climate effects, foraging habitat, and owl response to fire.

  3. Sierra Nevada Batholith: The batholith was generated within a synclinorium.

    Science.gov (United States)

    Bateman, P C; Eaton, J P

    1967-12-15

    The Sierra Nevada batholith is localized in the axial region of a complex faulted synclinorium that coincides with a downfold in the Mohorovicic discontinuity and in P-wave velocity boundaries within the crust. Observed P-wave velocities are compatible with downward increase in the proportion of diorite, quartz diorite, and calcic granodiorite relative to quartz monzonite and granite in the upper crust, with amphibolite or gabbro-basalt in the lower crust, and with periodotite in the upper mantle. The synclinorium was formed in Paleozoic and Mesozoic strata during early and middle Mesozoic time in a geosyncline marginal to the continent. Granitic magmas are believed to have formed in the lower half of the crust at depths of 25 to 45 kilometers or more, primarily as a result of high radiogenic heat production in the thickened prism of crustal rocks. Magma was generated at different times in different places as the locus of down-folding shifted. It rose into the upper crust because it was less dense than rock of the same composition or residual refractory rocks. Refractory rocks and crystals that were not melted and early crystallized mafic minerals that settled from the rising magma thickened the lower crust. Wall and roof rocks settled around, and perhaps through, the rising magma and provided space for its continued rise. Erosion followed each magmatic episode, and 10 to 12 kilometers of rock may have been eroded away since the Jurassic and 7 to 10 kilometers since the early Late Cretaceous.

  4. Seed germination of Sierra Nevada postfire chaparral species

    Science.gov (United States)

    Keeley, Jon E.; McGinnis, Thomas W.; Bollens, Kim A.

    2005-01-01

    The California chaparral community has a rich flora of species with different mechanisms for cuing germination to postfire conditions. Here we report further germination experiments that elucidate the response of several widespread shrub species whose germination response was not clear and include other species from the Sierra Nevada, which have not previously been included in germination studies. The shrubs Adenostoma fasciculatum and Eriodictyon crassifolium and the postfire annualMentzelia dispersa exhibited highly significant germination in response to smoke treatments, with some enhanced germination in response to heating as well. The shrubs Fremontodendron californicum and Malacothamnus fremontii were stimulated only by heat-shock treatments. Seeds buried in the soil for one year exhibited substantially higher germination for controls and most treatments. In the case of two postfire annuals, Mimulus bolanderi and M. gracilipes, germination of fresh seed was significantly greater with smoke or heating but after soil storage, over two-thirds of the control seeds germinated and treatment effects were not significant. These two annuals are generally restricted to postfire conditions and it is suggested that control germination of soil-stored seed may be a light-response (which was not tested here) as previously reported for another chaparral species in that genus.

  5. 77 FR 45 - Endangered and Threatened Wildlife and Plants; 90-Day Finding on a Petition To List Sierra Nevada...

    Science.gov (United States)

    2012-01-03

    ... that Sierra Nevada red fox is threatened by salmon poisoning disease, disease transmission by domestic... bloody diarrhea, with a 90 percent mortality rate if untreated (Rikihisa et al. 1991, p. 1928). The... warranted due to transmission of SPD. We will review the possible effects of SPD to Sierra Nevada red fox...

  6. Ecología de la fauna silvestre de la sierra nevada y la Sierra del Ajusco

    OpenAIRE

    M. A. Hernández García; Sánchez González, A; D. Granados Sánchez; G. F. López Ríos

    2004-01-01

    Se presenta un estudio sobre la fauna silvestre de la Sierra del Ajusco y la Sierra Nevada, localizadas dentro de la Faja Volcánica Transmexicana (FVT), en la porción oriental del límite meridional de la Cuenca de México. La enorme riqueza biológica de esta zona que rodea la zona metropolitana de la ciudad de México, uno de los mayores complejos urbanos del mundo, ha sobrevivido durante décadas al impacto de la urbanización de las áreas forestales, explotación de recursos naturales, contamina...

  7. Dataset of Passerine bird communities in a Mediterranean high mountain (Sierra Nevada, Spain)

    Science.gov (United States)

    Pérez-Luque, Antonio Jesús; Barea-Azcón, José Miguel; Álvarez-Ruiz, Lola; Bonet-García, Francisco Javier; Zamora, Regino

    2016-01-01

    Abstract In this data paper, a dataset of passerine bird communities is described in Sierra Nevada, a Mediterranean high mountain located in southern Spain. The dataset includes occurrence data from bird surveys conducted in four representative ecosystem types of Sierra Nevada from 2008 to 2015. For each visit, bird species numbers as well as distance to the transect line were recorded. A total of 27847 occurrence records were compiled with accompanying measurements on distance to the transect and animal counts. All records are of species in the order Passeriformes. Records of 16 different families and 44 genera were collected. Some of the taxa in the dataset are included in the European Red List. This dataset belongs to the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area. PMID:26865820

  8. Population dynamics of the California spotted owl in the Sierra Nevada, California

    Science.gov (United States)

    J.A. Blakesley; M.E. Seamans; M.M. Connor; A.B. Franklin; G.C. White; R.J. Gutierrez; J.E. Hines; J.D. Nichols; T.E. Munton; D.W.H. Shaw; J.J. Keane; G.N. Steger; T.L. McDonald

    2010-01-01

    The California spotted owl (Strix occidentalis occidentalis) is the only spotted owl subspecies not listed as threatened or endangered under the United States Endangered Species Act despite petitions to list it as threatened. We conducted a meta-analysis of population data for 4 populations in the southern Cascades and Sierra Nevada, California,...

  9. PARTITIONING OF WATER FLUX IN A SIERRA NEVADA PONDEROSA PINE PLANTATION. (R826601)

    Science.gov (United States)

    The weather patterns of the west side of the Sierra Nevada Mountains (cold, wet winters and hot, dry summers) strongly influence how water is partitioned between transpiration and evaporation and result in a specific strategy of water use by ponderosa pine trees (Pinus pond...

  10. Mercury in Tadpoles Collected from Remote Alpine Sites in the Southern Sierra Nevada Mountains, California, USA

    Science.gov (United States)

    Amphibians in alpine wetlands of the Sierra Nevada mountains comprise key components of an aquatic-terrestrial food chain, and mercury contamination is a concern because concentrations in fish from this regin exceed thresholds of risk to piscivorous wildlife. Total mercury conc...

  11. Señales del cambio global en el sitio LTER-Sierra Nevada

    Directory of Open Access Journals (Sweden)

    A.J. Pérez-Luque

    2016-01-01

    Full Text Available La investigación ecológica a largo plazo proporciona información útil para comprender las complejas dinámicas de los sistemas naturales. Esto se hace especialmente importante en las regiones de montaña como Sierra Nevada, que presenta un fuerte gradiente de condiciones ambientales en una escala espacial pequeña. En el sitio LTER-Sierra Nevada se ha implementado un programa de seguimiento a largo plazo que, junto con la integración de información ecológica sobre los ecosistemas nevadenses, está permitiendo evaluar los efectos del cambio global en esta región de montaña. En este trabajo presentamos algunos resultados de los impactos del cambio global sobre los ecosistemas nevadenses, obtenidos tras varios años de implantación del Observatorio del Cambio Global de Sierra Nevada. Además de una evaluación temporal de los principales motores de cambio global (clima y usos del suelo, presentamos varios casos de estudio del impacto del cambio global sobre la componente biótica y socioeconómica de los ecosistemas de Sierra Nevada.

  12. Achieving a nexus of science, management, and policy in the Sierra Nevada

    Science.gov (United States)

    Peter A. Stine; Dennis D. Murphy

    2004-01-01

    The policies and strategies that guide the use and management of lands in the Sierra Nevada ecoregion depend on objective scientific information. In recent years, the region has attracted increasing attention from visitors, developers, environmentalists, businesses, scientists, and politicians as well as local residents, resource managers, and research groups. And the...

  13. Concentration-discharge relationships in headwater streams of the Sierra Nevada, California

    Science.gov (United States)

    Carolyn T. Hunsaker; Dale W. Johnson

    2017-01-01

    We examined streamwater concentration-discharge relationships for eight small, forest watersheds ranging in elevation from 1,485 to 2,465 m in the southern Sierra Nevada. These headwater streams revealed nearly chemostatic behavior by current definitions for K+, Ca...

  14. Quantifying the Effects of Wildfire Severity on Snow Water Equivalent in the Sierra Nevada

    Science.gov (United States)

    Nguyen, A.; Cunningham, S.; Sodergren, C.; Anzelc, J.; Cate, N.; Arya, V.

    2015-12-01

    Snowpack in the Sierra Nevada is a crucial component of the California water supply. Climate change effects on forest ecosystems in this region have reduced snowpack and resulted in earlier snowmelt. Wildfire frequency and severity in the Sierra Nevada have also increased, due to higher temperatures, drought, and a legacy of fire suppression policies leading to fuel loads augmented beyond the historic range of variability. These combined factors have the potential to severely impact California water supply. Using 2014 California Basin Characterization Model (BCM) climate data and automated classification of various Landsat imagery, this study geospatially quantified the effects of low, moderate, and high- severity wildfire on snowpack and snow water equivalent (SWE) in the Sierra Nevada. An assessment of modeled SWE data were also conducted to examine its usefulness in better understanding areas effected by wildfire. Results indicate little to no significant change in post-fire SWE for high and moderate severity wildfire, however, delineated a significant decrease in post-fire SWE in the low severity wildfire. Additionally, tests show little no significant change in fractional snow cover post-fire. This use of remote sensing and modeled data will assist in decision and policy making related to management of forest ecosystems and water resources within the Sierra Nevada.

  15. Dense Root Removal by Asymmetric Delamination in Sierra Nevada, California: Insights from Numerical Modeling

    Science.gov (United States)

    Valera, J.; Negredo, A. M.; Billen, M.

    2008-12-01

    Recent studies provide compelling evidence for an event of removal of lithospheric mantle in southern -and possibly central- Sierra Nevada (SN) mountains, California (Zandt et al., Nature, 431, 2004). A sequential history of foundering of the ultramafic root of the Sierra Nevada batholith, with a pronounced asymmetric flow, is proposed to explain a number of geophysical and geological observations, including a fast seismic velocity in the mantle located to the west of the SN crest, a gap in the Moho, recent subsidence and tilting of the Sierra Nevada, and a change in mineralogy of the xenolith population recorded at the surface. In the present study we focus on the quantitative evaluation of this conceptual model. We apply new thermo- mechanical algorithms, developed in MATLAB code, suitable to study the temporal evolution of laterally migrating lithospheric delamination. The motion equation, formulated in terms of the stream function, and the coupled thermal equation are solved applying finite difference techniques. Our physical modeling is shown to properly reproduce the first order features of the conceptual model for lithospheric delamination in the Sierra Nevada. We investigate the evolution of a dense ultramafic root, which brings about a Rayleigh-Taylor gravitational instability. Following our preliminary results, the presence of a fluid-weakened lithosphere, located just east of Sierra Nevada, is required to reproduce the asymmetric development of this instability, as previously proposed by Zandt et al. (2004). This weak rheology zone, which is modeled by means of a reduced viscosity, is shown to enable the ascent of asthenospheric material and westward propagation of delamination. Our predictions are also consistent with the previous inference of the V-shaped cone of crust being dragged down into the downwelling mantle (i.e., the Moho gap). Present results highlight that viscous drag is also likely responsible for present-day surface subsidence.

  16. Structure and regional significance of the Late Permian(?) Sierra Nevada - Death Valley thrust system, east-central California

    Science.gov (United States)

    Stevens, C.H.; Stone, P.

    2005-01-01

    An imbricate system of north-trending, east-directed thrust faults of late Early Permian to middle Early Triassic (most likely Late Permian) age forms a belt in east-central California extending from the Mount Morrison roof pendant in the eastern Sierra Nevada to Death Valley. Six major thrust faults typically with a spacing of 15-20 km, original dips probably of 25-35??, and stratigraphic throws of 2-5 km compose this structural belt, which we call the Sierra Nevada-Death Valley thrust system. These thrusts presumably merge into a de??collement at depth, perhaps at the contact with crystalline basement, the position of which is unknown. We interpret the deformation that produced these thrusts to have been related to the initiation of convergent plate motion along a southeast-trending continental margin segment probably formed by Pennsylvanian transform truncation. This deformation apparently represents a period of tectonic transition to full-scale convergence and arc magmatism along the continental margin beginning in the Late Triassic in central California. ?? 2005 Elsevier B.V. All rights reserved.

  17. Calibrating Late Quaternary terrestrial climate signals: radiometrically dated pollen evidence from the southern Sierra Nevada, USA

    Science.gov (United States)

    Litwin, Ronald J.; Smoot, Joseph P.; Durika, Nancy J.; Smith, George I.

    1999-01-01

    We constructed a radiometrically calibrated proxy record of Late Pleistocene and Holocene climate change exceeding 230,000 yr duration, using pollen profiles from two cores taken through age-equivalent dry lakes - one core having greater age control (via 230Th alpha mass-spectrometry) and the other having greater stratigraphic completeness. The better dated of these two serial pollen records (Searles Lake) served as a reference section for improving the effective radiometric age control in a nearby and more complete pollen record (Owens Lake) because they: (1) are situated ~90 km apart in the same drainage system (on, and immediately leeward of, the eastern flank of the Sierra Nevada), and (2) preserved strikingly similar pollen profiles and concordant sequences of sedimentological changes. Pollen assemblages from both lakes are well preserved and diverse, and document serial changes in Late Pleistocene and Holocene plant zone distribution and composition in the westernmost Great Basin; they consist of taxa now inhabiting montane forest, woodland, steppe, and desert-scrub environments. The studied core intervals are interpreted here to be the terrestrial equivalent of marine δ18O stages 1 through 9; these pollen profiles now appear to be among the best radiometrically dated Late Pleistocene records of terrestrial climate change known.

  18. Timing and new geomorphologic evidence of the last deglaciation stages in Sierra Nevada (southern Spain)

    Science.gov (United States)

    Palacios, David; Gómez-Ortiz, Antonio; Andrés, Nuria; Salvador, Ferrán; Oliva, Marc

    2016-10-01

    The main objective of this research is to improve knowledge of the deglaciation stages in Sierra Nevada (southern Spain) by applying 36Cl cosmogenic exposure dating to 28 samples from moraine and fossil rock glacier boulders and glacial polished surfaces, in 5 glaciated valleys around Veleta Peak (3396 m asl; 37°03‧02″N 3°20‧54″W). The results show that shortly before the Last Glacial Maximum (LGM) and during the LGM, the heads of the glacial valleys were occupied by ice tongues, with possible glacial transfluence between the valleys. After 19 ka, a major glacial regression started, but glaciers during the Oldest Dryas (OD) expanded again and refilled the valley bottoms. The glacial advances of the pre-LGM, LGM and OD formed polygenic moraine systems. During the Bølling-Allerød the glaciers receded and probably disappeared. Thereafter, the valley bottoms remained ice-free. During the Younger Dryas (YD) small glaciers developed again, but only in cirques shaped on east-facing slopes. Subsequently, these glaciers started retreating towards their valley heads and finally disappeared completely. With the onset of the Holocene, rock glaciers developed inside the deglaciated cirques on the eastern slopes of some valleys, but only under the most active and protected headwalls did large complex rock glaciers develop and remained active until the mid-Holocene.

  19. Potential increase in floods in California's Sierra Nevada under future climate projections

    Science.gov (United States)

    Das, T.; Dettinger, M.D.; Cayan, D.R.; Hidalgo, H.G.

    2011-01-01

    California's mountainous topography, exposure to occasional heavily moisture-laden storm systems, and varied communities and infrastructures in low lying areas make it highly vulnerable to floods. An important question facing the state-in terms of protecting the public and formulating water management responses to climate change-is "how might future climate changes affect flood characteristics in California?" To help address this, we simulate floods on the western slopes of the Sierra Nevada Mountains, the state's primary catchment, based on downscaled daily precipitation and temperature projections from three General Circulation Models (GCMs). These climate projections are fed into the Variable Infiltration Capacity (VIC) hydrologic model, and the VIC-simulated streamflows and hydrologic conditions, from historical and from projected climate change runs, allow us to evaluate possible changes in annual maximum 3-day flood magnitudes and frequencies of floods. By the end of the 21st Century, all projections yield larger-than-historical floods, for both the Northern Sierra Nevada (NSN) and for the Southern Sierra Nevada (SSN). The increases in flood magnitude are statistically significant (at p rain and less as snow. Increases in antecedent winter soil moisture also play a role in some areas. Thus, a complex, as-yet unpredictable interplay of several different climatic influences threatens to cause increased flood hazards in California's complex western Sierra landscapes. ?? 2011 Springer Science+Business Media B.V.

  20. Composition of modern sand from the Sierra Nevada, California, USA: Implications for actualistic petrofacies of continental-margin magmatic arcs

    OpenAIRE

    Ingersoll, Raymond V.; Eastmond, Daniel J.

    2007-01-01

    The Sierra Nevada of California represents the roots of a long-lived magmatic arc (primarily Cretaceous) that is presently being dissected as the range is uplifted, beginning in the south and progressing northward. This dissection is occurring concurrently with northward migration of the Mendocino triple junction, south of which magmatic-arc activity is absent, and north of which magmatic-arc activity continues. A north-to-south transect along the Sierra Nevada represents transitions of activ...

  1. Etnometodología para la comprensión y el manejo de la Enfermedad de Chagas en las poblaciones indígenas Wiwa asentadas en la vertiente suroriental de la Sierra Nevada de Santa Marta Ethno-methodology to comprehension and management of Chagas disease in Wiwa indigenous communities placed in south-eastern slope from Sierra Nevada de Santa Marta, Colombia

    Directory of Open Access Journals (Sweden)

    Leonardo Alberto Ríos-Osorio

    2012-06-01

    Full Text Available El objetivo de este trabajo fue establecer prevalencia de la Enfermedad de Chagas en las comunidades Wiwa de la Sierra Nevada de Santa Marta trascendiendo el modelo de investigación biomédica sustentado en el paradigma positivista, e involucrando la dimensión sociocultural y ambiental que caracteriza este fenómeno, desde la sostenibilidad como un nuevo paradigma de las ciencias. Se realizó un muestreo probabilístico de las 15 comunidades Wiwa asentadas en la zona de San Juan del César, Departamento de la Guajira, se realizaron los procedimientos biomédicos definidos para investigaciones epidemiológicas, paralelamente se realizaron procedimientos culturales desde el saber tradicional de las comunidades Wiwa, garantizando la armonía de las comunidades ante la agresión biomédica de su espacio ambiental, social y cultural. Se obtuvo una prevalencia de 33.5%, concordante con las cifras de Enfermedad de Chagas encontradas en las otras vertientes de la sierra, reflejando condiciones similares que predisponen a la presencia de la enfermedad. Se estableció como esta enfermedad es inexistente en el sistema médico tradicional de los Wiwa, y sólo el insecto vector es reconocido aunque no considerado como agente perturbador de la salud de las comunidades. A partir de la consideración del vector como eje integrador de las dos culturas se describen las características sociales, ambientales y culturales que definen la Enfermedad de Chagas en los Wiwa y de esta forma, la posibilidad de su comprensión y manejo desde factores complementarios al modelo biomédico.The goal of this research was to establish Chagas Disease prevalence in Wiwa communities of Sierra Nevada de Santa Marta, beyond biomedical research model supported in positivist paradigm, towards sustainability as a new paradigm of science, by which this phenomenon has a social, cultural and environmental dimensions. A probabilistic sample was made it in 15 Wiwa communities placed in San

  2. Population dynamics of spotted owls in the Sierra Nevada, California

    Science.gov (United States)

    Blakesley, J.A.; Seamans, M.E.; Conner, M.M.; Franklin, A.B.; White, Gary C.; Gutierrez, R.J.; Hines, J.E.; Nichols, J.D.; Munton, T.E.; Shaw, D.W.H.; Keane, J.J.; Steger, G.N.; McDonald, T.L.

    2010-01-01

    The California spotted owl (Strix occidentalis occidentalis) is the only spotted owl subspecies not listed as threatened or endangered under the United States Endangered Species Act despite petitions to list it as threatened. We conducted a meta-analysis of population data for 4 populations in the southern Cascades and Sierra Nevada, California, USA, from 1990 to 2005 to assist a listing evaluation by the United States Fish and Wildlife Service. Our study areas (from N to S) were on the Lassen National Forest (LAS), Eldorado National Forest (ELD), Sierra National Forest (SIE), and Sequoia and Kings Canyon National Parks (SKC). These study areas represented a broad spectrum of habitat and management conditions in these mountain ranges. We estimated apparent survival probability, reproductive output, and rate of population change for spotted owls on individual study areas and for all study areas combined (meta-analysis) using model selection or model-averaging based on maximum-likelihood estimation. We followed a formal protocol to conduct this analysis that was similar to other spotted owl meta-analyses. Consistency of field and analytical methods among our studies reduced confounding methodological effects when evaluating results. We used 991 marked spotted owls in the analysis of apparent survival. Apparent survival probability was higher for adult than for subadult owls. There was little difference in apparent survival between male and female owls. Model-averaged mean estimates of apparent survival probability of adult owls varied from 0.811 ?? 0.021 for females at LAS to 0.890 ?? 0.016 for males at SKC. Apparent survival increased over time for owls of all age classes at LAS and SIE, for adults at ELD, and for second-year subadults and adults at SKC. The meta-analysis of apparent survival, which included only adult owls, confirmed an increasing trend in survival over time. Survival rates were higher for owls on SKC than on the other study areas. We analyzed data

  3. Airborne Pesticides as an Unlikely Cause for Population Declines of Alpine Frogs in the Sierra Nevada, California

    Science.gov (United States)

    Airborne pesticides from the Central Valley of California have been implicated as a cause for population declines of several amphibian species, with the strongest evidence for the mountain yellow-legged frog complex (Rana muscosa and R. sierrae) in the Sierra Nevada. We measured...

  4. Airborne Pesticides as an Unlikely Cause for Population Declines of Alpine Frogs in the Sierra Nevada, California

    Science.gov (United States)

    Airborne pesticides from the Central Valley of California have been implicated as a cause for population declines of several amphibian species, with the strongest evidence for the mountain yellow-legged frog complex (Rana muscosa and R. sierrae) in the Sierra Nevada. We measured...

  5. Near-roof structure and crack-seal emplacement, Colosseum pluton, Sierra Nevada, California

    Science.gov (United States)

    Bartley, J. M.; Glazner, A. F.; Coleman, D. S.

    2011-12-01

    Field evidence from diverse localities indicates that dike-like granitic plutons are emplaced by magmatic crack-seal, yielding plutons that are essentially huge composite dikes. Plutons that are equant in map view may also form by crack-seal from increments that are subhorizontal and vertically stacked, but field evidence to assess this hypothesis is scarce. Here we present evidence that the Late Cretaceous, granitic Colosseum pluton of Moore (1963), which crops out along the Sierra Nevada crest southwest of Big Pine, California, may have been emplaced as horizontal sheets by crack-seal. The equant outcrop pattern of the elliptical, 2x3 km Colosseum pluton as mapped by Moore (1963) mainly reflects Pleistocene glacial erosion that cut ~600 m down through the pluton's gently sloping roof contact. Moore mapped a steep eastern contact with the Spook pluton, but our field observations suggest that the Spook and Colosseum plutons may be the same. This would imply that the pluton is much larger and that the map pattern is not elliptical. Additionally, the exposed intrusive contact everywhere dips gently, but the eastern intrusive contact has been cut off by the Sierran frontal fault. If so, up to 2.5 km of largely unexplored vertical relief in the pluton is exposed on the eastern escarpment of the Sierra Nevada. Geologic and bulk magnetic susceptibility mapping of near-roof rocks revealed the following. (1) Although the intrusive contact sharply truncates wall-rock foliation, xenoliths are absent, even at contacts, indicating that stoping was an insignificant process. (2) The pluton contains a subhorizontal sheet of leucogranite that is broadly concordant with the roof but bounded both above and below by more typical biotite granodiorite. This sheet may represent one or more intrusive increments. (3) Along the western contact, thin tabular apophyses of the pluton intrude its subvertically layered and foliated roof. Although some of these dip steeply and are concordant

  6. Holocene hydrologic variability in the Sierra Nevada from D/H ratios in leaf waxes

    Science.gov (United States)

    Street, J. H.; Sessions, A. L.; Anderson, R. S.; Welker, J. M.; Paytan, A.

    2009-12-01

    Large-scale atmospheric circulation patterns and underlying ocean conditions in the Northeastern Pacific have a strong bearing on continental climate conditions and water availability in California on seasonal to decadal timescales, as demonstrated in the instrumental record. However, the nature and pacing of the relationship between ocean-atmosphere processes and hydrologic variability in California remain poorly understood over longer timescales and during past climate regimes of the Holocene and late Pleistocene, particularly in the large Sacramento-San Joaquin River watershed draining the western Sierra Nevada. The continuous ~20,000-yr sedimentary record recovered from Swamp Lake, a small mid-elevation (1554 m) lake in Yosemite NP, provides a rare opportunity to reconstruct hydrologic variability in the central Sierra Nevada at high resolution (Mt. Logan ice core record and drought cycles northern and central California.

  7. Thymus × pseudogranatensis (Labiatae, nuevo híbrido para Sierra Nevada (España

    Directory of Open Access Journals (Sweden)

    Lorite, Juan

    2011-12-01

    Full Text Available Thymus × pseudogranatensis Vizoso, F.B. Navarro & Lorite, a new spontaneous hybrid of Th. granatensis Boiss. subsp. granatensis and Th. zygis L. subsp. gracilis (Boiss. R. Morales, collected in the dolomitic areas of Sierra Nevada (SE Spain, is described. Morphological characters of the new nothospecies are analysed and its distribution and ecology are discussed.Se describe Thymus × pseudogranatensis Vizoso, F.B. Navarro & Lorite, un nuevo híbrido entre Th. granatensis Boiss. subsp. granatensis y Th. zygis L. subsp. gracilis (Boiss. R. Morales, colectado en la orla dolomítica de Sierra Nevada (SE de España. Se analizan los caracteres morfológicos de la nueva notoespecie y se aportan detalles sobre su hábitat y distribución.

  8. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California forests.

    Science.gov (United States)

    McGinnis, Thomas W.; Shook, Christine D.; Keeley, Jon E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  9. Hydrologic response and watershed sensitivity to climate warming in California's Sierra Nevada.

    Science.gov (United States)

    Null, Sarah E; Viers, Joshua H; Mount, Jeffrey F

    2010-04-01

    This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2 degrees, 4 degrees, and 6 degrees C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds.

  10. Hydrologic response and watershed sensitivity to climate warming in California's Sierra Nevada.

    Directory of Open Access Journals (Sweden)

    Sarah E Null

    Full Text Available This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2 degrees, 4 degrees, and 6 degrees C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds.

  11. Ten Years of Forest Cover Change in the Sierra Nevada Detected Using Landsat Satellite Image Analysis

    Science.gov (United States)

    Potter, Christopher S.

    2014-01-01

    A detailed geographic record of recent vegetation regrowth and disturbance patterns in forests of the Sierra Nevada remains a gap that can be filled with remote sensing data. Landsat (TM) imagery was analyzed to detect 10 years of recent changes (between 2000 and 2009) in forest vegetation cover for areas burned by wildfires between years of 1995 to 1999 in the region. Results confirmed the prevalence of regrowing forest vegetation during the period 2000 and 2009 over 17% of the combined burned areas.

  12. Resilience Through Disturbance: Effects of Wildfire on Vegetation and Water Balance in the Sierra Nevadas

    Science.gov (United States)

    Boisrame, G. F. S.; Thompson, S. E.; Stephens, S.; Collins, B.; Tague, N.

    2015-12-01

    A century of fire suppression in the Western United States has drastically altered the historically fire-adapated ecology in California's Sierra Nevada Mountains. Fire suppression is understood to have increased the forest cover, as well as the stem density, canopy cover and water demand of montane forests, reducing resilience of the forests to drought, and increasing the risk of catastrophic fire by drying the landscape and increasing fuel loads. The potential to reverse these trends by re-introducing fire into the Sierra Nevada is highly promising, but the likely effects on vegetation structure and water balance are poorly quantified. The Illilouette Creek Basin in Yosemite National Park represents a unique experiment in the Sierra Nevada, in which managers have moved from fire suppression to allowing a near-natural fire regime to prevail since 1972. Changes in vegetation structure in the Illilouette since the restoration of natural burning provides a unique opportunity to examine how frequent, mixed severity fires can reshape the Sierra Nevada landscape. We characterize these changes from 1969 to the present using a combination of Landsat products and high-resolution aerial imagery. We describe how the landscape structure has changed in terms of vegetation composition and its spatial organization, and explore the drivers of different post-fire vegetation type transitions (e.g. forest to shrubland vs. forest to meadow). By upscaling field data using vegetation maps and Landsat wetness indices, we explore how these vegetation transitions have impacted the water balance of the Illilouette Creek Basin, potentially increasing its resilience in the face of drought, climate change, and catastrophic fire. In a region that is adapted to frequent disturbance from fire, this work helps us understand how allowing such natural disturbances to take place can increase the sustainability of diverse landscapes in the long term.

  13. New Records of Phlebotomine Sandflies (Diptera: Psychodidae at Sierra Nevada de Santa Marta, Colombia

    Directory of Open Access Journals (Sweden)

    Eduar Elías BEJARANO

    2014-09-01

    Full Text Available NUEVOS HALLAZGOS DE FLEBOTOMÍNEOS (DIPTERA: PSYCHODIDAE EN LA SIERRA NEVADA DE SANTA MARTA, COLOMBIAEl componente entomológico de la leishmaniasis ha sido poco estudiado en la Sierra Nevada de Santa Marta, Colombia, incluido el departamento del Magdalena, donde a la fecha están registradas trece especies de Lutzomyia. En la presente nota se informa el hallazgo de tres especies y un subgénero más en la región. Se recolectaron 885 flebotomíneos en Seywiaka y las veredas Las Tinajas y Calabazo, estribaciones de la Sierra Nevada de Santa Marta (117-130 m.s.n.m.. El 84% de los ejemplares se obtuvieron con trampa CDC, el 11% con trampa Shannon y el 5% fueron capturados, en reposo, con un dispositivo eléctrico de succión.  Se identificaron nueve especies, Lu. gomezi, Lu. panamensis, Lu. trinidadensis, Lu. carpenteri, Lu. evansi, Lu. dysponeta, Lu. dubitans, Lu. shannoni, y Lu. micropyga, la más abundante fue Lu. gomezi (69%, seguida por Lu. panamensis (14%. También se recolectaron ejemplares de la serie Lu. osornoi del subgénero Helcocyrtomyia. Entre el material hallado sobresalen Lu. carpenteri, Lu. dubitans y Lu. dysponeta como primeros registros para el departamento del Magdalena, además de Lu. (Helcocyrtomyia sp., que representa el primer hallazgo del subgénero en el Caribe colombiano.

  14. Cretaceous plutonic rocks in the Donner Lake-Cisco Grove area, northern Sierra Nevada, California

    Science.gov (United States)

    Kulow, Matthew J.; Hanson, Richard E.; Girty, Gary H.; Girty, Melissa S.; Harwood, David S.

    1998-01-01

    The northernmost occurrences of extensive, glaciated exposures of the Sierra Nevada batholith occur in the Donner Lake-Cisco Grove area of the northern Sierra Nevada. The plutonic rocks in this area, which are termed here the Castle Valley plutonic assemblage, crop out over an area of 225 km2 and for the most part are shown as a single undifferentiated mass on previously published geological maps. In the present work, the plutonic assemblage is divided into eight separate intrusive units or lithodemes, two of which each consist of two separate plutons. Compositions are dominantly granodiorite and tonalite, but diorite and granite form small plutons in places. Spectacular examples of comb layering and orbicular texture occur in the diorites. U-Pb zircon ages have been obtained for all but one of the main units and range from ~120 to 114 Ma, indicating that the entire assemblage was emplaced in a narrow time frame in the Early Cretaceous. This is consistent with abundant field evidence that many of the individual phases were intruded penecontemporaneously. The timing of emplacement correlates with onset of major Cretaceous plutonism in the main part of the Sierra Nevada batholith farther south. The emplacement ages also are similar to isotopic ages for gold-quartz mineralization in the Sierran foothills west of the study area, suggesting a direct genetic relationship between the voluminous Early Cretaceous plutonism and hydrothermal gold mineralization.

  15. Interactions among wildland fires in a long-established Sierra Nevada natural fire area

    Science.gov (United States)

    Collins, B.M.; Miller, J.D.; Thode, A.E.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L.

    2009-01-01

    We investigate interactions between successive naturally occurring fires, and assess to what extent the environments in which fires burn influence these interactions. Using mapped fire perimeters and satellite-based estimates of post-fire effects (referred to hereafter as fire severity) for 19 fires burning relatively freely over a 31-year period, we demonstrate that fire as a landscape process can exhibit self-limiting characteristics in an upper elevation Sierra Nevada mixed conifer forest. We use the term 'self-limiting' to refer to recurring fire as a process over time (that is, fire regime) consuming fuel and ultimately constraining the spatial extent and lessening fire-induced effects of subsequent fires. When the amount of time between successive adjacent fires is under 9 years, and when fire weather is not extreme (burning index classes (unchanged, low, moderate, high). This is in contrast to a recent study demonstrating increasing high-severity burning throughout the Sierra Nevada from 1984 to 2006, which suggests freely burning fires over time in upper elevation Sierra Nevada mixed conifer forests can regulate fire-induced effects across the landscape. This information can help managers better anticipate short- and long-term effects of allowing naturally ignited fires to burn, and ultimately, improve their ability to implement Wildland Fire Use programs in similar forest types. ?? 2008 Springer Science+Business Media, LLC.

  16. On the relative contributions of wind vs. animals to seed dispersal of four Sierra Nevada pines.

    Science.gov (United States)

    Vander Wall, Stephen B

    2008-07-01

    Selective pressures that influence the form of seed dispersal syndromes are poorly understood. Morphology of plant propagules is often used to infer the means of dispersal, but morphology can be misleading. Several species of pines, for example, have winged seeds adapted for wind dispersal but owe much of their establishment to scatter-hoarding animals. Here the relative importance of wind vs. animal dispersal is assessed for four species of pines of the eastern Sierra Nevada that have winged seeds but differed in seed size: lodgepole pine (Pinus contorta murrayana, 8 mg); ponderosa pine (Pinus ponderosa ponderosa, 56 mg); Jeffrey pine (Pinus jeffreyi, 160 mg); and sugar pine (Pinus lambertiana, 231 mg). Pre-dispersal seed mortality eliminated much of the ponderosa pine seed crop (66%), but had much less effect on Jeffrey pine (32% of seeds destroyed), lodgepole pine (29%), and sugar pine (7%). When cones opened most filled seeds were dispersed by wind. Animals removed > 99% of wind-dispersed Jeffrey and sugar pine seeds from the ground within 60 days, but animals gathered only 93% of lodgepole pine seeds and 38% of ponderosa pine seeds during the same period. Animals gathered and scatter hoarded radioactively labeled ponderosa, Jeffrey, and sugar pine seeds, making a total of 2103 caches over three years of study. Only three lodgepole pine caches were found. Caches typically contained 1-4 seeds buried 5-20 mm deep, depths suitable for seedling emergence. Although Jeffrey and sugar pine seeds are initially wind dispersed, nearly all seedlings arise from animal caches. Lodgepole pine is almost exclusively wind dispersed, with animals acting as seed predators. Animals treated ponderosa pine in an intermediate fashion. Two-phased dispersal of large, winged pine seeds appears adaptive; initial wind dispersal helps to minimize pre-dispersal seed mortality whereas scatter hoarding by animals places seeds in sites with a higher probability of seedling establishment.

  17. Arsenic and mercury contamination related to historical goldmining in the Sierra Nevada, California

    Science.gov (United States)

    Alpers, Charles N.

    2017-01-01

    Arsenic (As) is a naturally occurring constituent in low-sulphide gold-quartz vein deposits, the dominant deposit type for lode mines in the Sierra Nevada Foothills (SNFH) gold (Au) province of California. Concentrations of naturally occurring mercury (Hg) in the SNFH Au province are low, but extensive use and loss of elemental Hg during amalgamation processing of ore from lode and placer Au deposits led to widespread contamination of Hg in the Sierra Nevada foothills and downstream areas, such as the Sacramento–San Joaquin Delta and San Francisco Bay. This review paper provides an overview of As and Hg contamination related to historical Au mining in the Sierra Nevada of California. It summarizes the geology, mineralogy, and geochemistry of the Au deposits, and provides information on specific areas where detailed studies have been done in association with past, ongoing, and planned remediation activities related to the environmental As and Hg contamination.Arsenic is a naturally occurring constituent in low-sulphide Au-quartz vein deposits, the dominant deposit type for lode mines in the Sierra Nevada Foothills (SNFH) Au province (Ashley 2002). Because of elevated concentrations of As in accessory iron-sulphide minerals including arsenopyrite (FeAsS) and arsenian pyrite (Fe(S,As)2), As is commonly a contaminant of concern in lode Au mine waste, including waste rock and mill tailings. The principal pathways of human As exposure from mine waste include ingestion of soil or drinking water, and inhalation of dust in contaminated areas (Mitchell 2014).Concentrations of naturally occurring Hg in the SNFH Au province are low, but extensive use and loss of elemental Hg during amalgamation processing of ore from lode and placer Au deposits (Churchill 2000) led to widespread contamination of Hg in the Sierra Nevada foothills and downstream areas, such as the Sacramento–San Joaquin Delta and San Francisco Bay (Alpers et al. 2005a). Conversion of Hg to monomethylmercury

  18. Is the Isabella anomaly a fossil slab or the foundered lithospheric root of the Sierra Nevada batholith?

    Science.gov (United States)

    Hoots, C. R.; Schmandt, B.; Clayton, R. W.; Hansen, S. M.; Dougherty, S. L.

    2015-12-01

    The Isabella Anomaly is a volume of relatively high seismic velocity upper mantle beneath the southern Great Valley in California. We deployed ~45 broadband seismometers in central California to test two main hypotheses for the origin of the Isabella Anomaly. One suggests that the Isabella Anomaly is the foundered lithospheric root of the southern Sierra Nevada batholith, which delaminated on account of eclogite-rich composition and translated westward as it began to sink into the asthenosphere. The other hypothesis suggests that the Isabella Anomaly is a fossil slab fragment attached to the Monterey microplate that lies offshore of central California and thus it is mechanically coupled to the Pacific plate. Prior seismic imaging with ~70 km station spacing cannot resolve the landward termination of Monterey microplate lithosphere beneath coastal California or where/if the Isabella Anomaly is attached to North America lithosphere beneath the Great Valley. The new temporary broadband array consists of 40 broadband seismometers with ~7 km spacing extending from the central California coast to the western Sierra Nevada batholith, plus some outliers to fill gaps in the regional network coverage. The temporary array was initially deployed in early 2014 and will continue to record until October 2015 so the complete data are not yet available. Preliminary Ps scattered wave images show an abrupt ~6 km increase in Moho depth eastward across the San Andreas fault, a strong positive impedance contrast that dips westward from ~7-25 km beneath Great Valley, and a sharp Moho with a slight westward dip beneath the western edge of the Sierra Nevada batholith. Apparently low impedance contrast characterizes the Moho beneath the eastern Great Valley and foothills, consistent with near mantle velocities in the lower crust. Processing of the cumulative data that will be available in October 2015 and incorporation of new tomography models into scattered wave imaging are needed before

  19. Changes in precipitating snow chemistry with location and elevation in the California Sierra Nevada

    Science.gov (United States)

    Creamean, Jessie M.; Axson, Jessica L.; Bondy, Amy L.; Craig, Rebecca L.; May, Nathaniel W.; Shen, Hongru; Weber, Michael H.; Pratt, Kerri A.; Ault, Andrew P.

    2016-06-01

    Orographic snowfall in the Sierra Nevada Mountains is an important source of water for California and can vary significantly on an annual basis. The microphysical properties of orographic clouds and subsequent formation of precipitation are impacted, in part, by aerosols of varying size, number, and chemical composition, which are incorporated into clouds formed along the Sierra barrier. Herein, the physicochemical properties and sources of insoluble residues and soluble ions found in precipitation samples were explored for three sites of variable elevation in the Sierra Nevada during the 2012-2013 winter season. Residues were characterized using a suite of physicochemical techniques to determine the size-resolved number concentrations and associated chemical composition. A transition in the aerosol sources that served as cloud seeds or were scavenged in-cloud and below-cloud was observed as a function of location and elevation. Anthropogenic influence from the Central Valley was dominant at the two lowest elevation sites (1900 and 2200 m above mean sea level (AMSL)), whereas long-range transported mineral dust was a larger contributor at the highest elevation site where cleaner conditions were observed (2600 m AMSL). The residues and soluble ions observed provide insight into how multiple aerosol sources can impact cloud and precipitation formation processes, even over relatively small spatial scales. The transition with increasing elevation to aerosols that serve as ice nucleating particles may impact the properties and extent of snowfall in remote mountain regions where snowpack provides a vital supply of water.

  20. Latest extension of the Laujar fault in a convergence setting (Sierra Nevada, Betic Cordillera)

    Science.gov (United States)

    Martínez-Martos, Manuel; Galindo-Zaldívar, Jesus; Sanz de Galdeano, Carlos; García-Tortosa, Francisco Juan; Martínez-Moreno, Francisco José; Ruano, Patricia; González-Castillo, Lourdes; Azañón, José Miguel

    2017-02-01

    The present-day relief of the Betic Cordillera formed since the Late Miocene through the regional N-S to NW-SE Africa-Eurasia convergence that developed large folds. The Laujar Fault Zone is a south-dipping E-W oriented structure located at the northern boundary of the Alpujarran Corridor Neogene intramontane basin, which separates Sierra Nevada and Sierra de Gador antiforms, in the Internal Zones of the Betic Cordillera. The fault zone acted in a first stage as a dextral strike-slip fault. Currently it moves as a normal fault evidenced by striated calcretes, also in agreement with regional continuous GPS (CGPS) data that support the hypothesis of an active N-S extension in the fault area. In order to analyse the deep geometry of the Laujar Fault Zone, we combined several geophysical techniques (gravity, magnetic, electric resistivity tomography and audio-magnetotelluric data) with field geological observations. Fault surfaces seem to join at a southward-dipping shallow detachment level, including faults covered by the sedimentary infill. The fault zone was developed in a previously weakened area by wrench faults parallel to the Alpujarran Corridor. The recent normal activity of this fault zone may be a consequence of a change in the Africa-Eurasia convergence orientation, which implies a decrease in the N-S compression component. This structure along the southern limb of Sierra Nevada antiform evidences the gravitational collapse of previously thickened crust in a regional compressional context simultaneous to metamorphic core uplift.

  1. Patterns of endemism along an elevation gradient in Sierra Nevada (Spain and Lefka Ori (Crete, Greece

    Directory of Open Access Journals (Sweden)

    Fernández-Calzado, R.

    2013-12-01

    Full Text Available Aim: High mountains in the Mediterranean region of Europe are particularly rich in endemic vascular plants. We aimed to compare the altitudinal patterns of vascular plant species richness and the proportion of endemic species in two Mediterranean region: Lefka Ori on the island of Crete (Greece and Sierra Nevada on the Iberian peninsula. Location: Sierra Nevada, Granada (Spain; Lefka Ori, Crete (Greece. Methods: Data from standardised permanent plots settings on summit sites (comprising eight plot sectors, covering the upeermost 10 altitudinal metres of different elevations were used (GLORIA Multi-Summit approach; www.gloria.ac.at. Species numbers, rates of endemic species, and soils temperature were compared by means of ANCOVA and linear regression. Results: The two regions, though climatically similar, showed strikingly different patterns: In Sierra Nevada, the proportion of endemic vascular plants (species restricted to Sierra Nevada showed a stepwise increase from the lowest to the highest summit. In contrast, the proportion of endemic species restricted to Crete was not significantly different between the four summits in Lefka Ori. In both regions the observed trends were largely consistent with the altitudinal distribution of the endemic species obtained from standard floras. Main conclusions: The geographic positions of the two regions, i.e. island versus mainland and the higher elevation of Sierra Nevada are suggested to be the primary causes of the observed differences. The high degree of endemism in the cold environments of Mediterranean mountains’ upper bioclimatic zones indicates a pronounced vulnerability to the impacts of climate change. A continued and intensified species monitoring in the mountains around the Mediterranean basin, therefore, should be considered as a priority research task.Objetivo: Las zonas de alta montaña en la región mediterránea europea son particularmente ricas en plantas vasculares end

  2. Propuesta para la construcción del concepto de interculturalldad caso la sierra nevada

    Directory of Open Access Journals (Sweden)

    Julio Marino Barragán

    2014-02-01

    Full Text Available La imponente Sierra Nevada de Santa Marta controla buena parte del clima de toda la  región, gracias a la montaña sagrada los huracanes no son tan devastadores como sí la son por otras latitudes. Así como la Sierra, el  departamento del Magdalena es una de las regiones culturales más ricas del país y de la cuenca del Caribe. En el Magdalena encontramos poblados típicos de la múltiple mezcla, del mestizaje de los sinnúmeros de vertientes culturales que se arriesgan a venir por estas tierras, desde el cercano oriente, la esteparia Rusia.

  3. Pesticides Are Involved With Population Declines of Amphibians in the California Sierra Nevadas

    Directory of Open Access Journals (Sweden)

    Donald W. Sparling

    2001-01-01

    Full Text Available Several species of frogs and toads are in serious decline in the Sierra Nevada Mountains of California. These species include the threatened red-legged frog (Rana aurora, foothill yellow-legged frog (R. boylii, mountain yellow-legged frog (R. muscosa, Cascades frog (Rana cascadae, western toad (Bufo boreas and Yosemite toad (B. canorus. For many of these species current distributions are down to 10% of historical ranges [1,2]. Several factors including introduced predators [3,4,5], habitat loss [2], and ultraviolet radiation [6] have been suggested as causes of these declines. Another probable cause is air-borne pesticides from the Central Valley of California. The Central Valley, especially the San Joaquin Valley, is a major agricultural region where millions of pounds of active ingredient pesticides are applied each year (http://www.cdpr.ca.gov/dprdatabase.htm. Prevailing westerly winds from the Pacific Coast transport these pesticides into the Sierras [7,8].

  4. The Influence of Antecedent Soil Moisture on Springtime Runoff in the Sierra Nevada Mountains

    Science.gov (United States)

    Flint, A. L.; Flint, L. E.; Dettinger, M. D.

    2009-12-01

    As the changing climate influences precipitation, air temperature, and snowmelt, measurements in the Sierra Nevada are illustrating the contribution of antecedent soil moisture on the timing and volume of springtime runoff. Delays in runoff correspond to low antecedent soil moisture from the preceding fall when snow fell on dry soil. In the Tuolumne River streamgage at the Little Grand Canyon just above Hetch Hetchy reservoir, no delay occurred between runoff and snowmelt in 2007 when the soil was wetter due to a cooler summer and fall rains. However, a 26-day delay in runoff was observed after the onset of snowmelt in 2008 when the soil was drier than the preceding fall at the time of the first snowfall due to a hotter and drier summer. If soils are dry prior to snowfall then the soil moisture is first replenished by springtime snowmelt, which not only delays runoff, but also reduces runoff volume to less than that estimated from snow pack. Typical runoff forecasts rely heavily on snow survey data and snowpack conditions, and the exclusion of soil moisture data could lead to an overestimate of the amount of runoff and compromise reservoir operations. In an average snowfall year, for example, the Kaweah Basin in the southern Sierra Nevada could lose as much as 20 percent of its snow water equivalent and the Merced Basin could lose 12 percent of its snow water equivalent simply to recharge soil moisture. Analyses of measured soil moisture in the Sierra Nevada, corresponding high elevation streamflow records, regional hydrologic modeling, and analysis of future climate projections to define the nature of summer and fall temperature and precipitation, will be used to illustrate the important role antecedent soil moisture plays in the timing and volume of springtime runoff in a changing climate.

  5. The Sierra Nevada-San Joaquin Hydrologic Observatory (SNSJHO): A WATERS Network Test Bed

    Science.gov (United States)

    Fisher, J.; Meng, X.; Rice, R.; Butler, C.; Molotch, N.; Harmon, T. C.; Bales, R.

    2007-12-01

    A mountain-to-valley virtual hydrologic observatory in Central California provides a focus for data and information in support of hydrologic research, a testbed for prototype measurement systems, and guidance for development of measurement and cyber infrastructure in an actual observatory. The multiple rivers and watersheds making up the 60,000 km2 greater San Joaquin drainage are physically disconnected by mountain-front dams that provide flood control, hydropower, seasonal water delivery and recreation. However, the mountain and valley portions are institutionally connected in multiple ways. For example, each year the winter snowpack and watershed conditions determine the magnitude of annual runoff. Errors in snowpack measurements and runoff forecasts have huge economic implications for valley water users. Second, valley flood control, water quality, irrigation demand and hydropower operations have a very strong interest in influencing mountain watershed management. The broader aim of the Sierra Nevada-San Joaquin Hydrologic Observatory is to build research infrastructure and promote research for improving the knowledge base for sound hydrologic management in the Sierra Nevada, San Joaquin Valley and across the Western U.S. In the Sierra Nevada the current focus is on developing spatially distributed instrument clusters that, when blended with remotely sensed data, will improve water balance closure from hillslope to watershed scales. Five instrument clusters at or just above the rain-snow transition are in place and under development. In the San Joaquin Valley, the focus is on sensor systems for observing fertilizer application rates in agriculture, groundwater-surface water exchanges in rivers, and flow and mixing in the confluence zones between the main stem San Joaquin and tributary Merced Rivers. A common digital library and analysis framework further links the mountain and valley portions of the virtual observatory (see https://eng.ucmerced.edu/dev00/snsjno).

  6. Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.

    2017-09-27

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies. 

  7. Thermal alteration of water extractable organic matter in climosequence soils from the Sierra Nevada, California

    Science.gov (United States)

    Santos, Fernanda; Russell, David; Berhe, Asmeret Asefaw

    2016-11-01

    In the next decades, the influence of wildfires in controlling the cycling and composition of soil organic matter (SOM) globally and in the western U.S. is expected to grow. While the impact of fires on bulk SOM has been extensively studied, the extent at which heating of soil affects the soluble component of SOM remains unclear. Here we investigated the thermal transformations of water-extractable organic matter (WEOM) by examining the changes in the distribution of carbon (C) functional groups in WEOM from soils heated at low and intermediate temperatures. WEOM (exported from soils to rivers in the Sierra Nevada and beyond.

  8. Geographic Patterns and Stand Variables Influencing Growth and Vigor of Populus tremuloides in the Sierra Nevada (USA)

    OpenAIRE

    2012-01-01

    Awareness of geographic patterns and stand variables that influence tree growth will help forest managers plan appropriate management and monitoring strategies. We quantified influences of stand location, species composition, stand density, and tree size on aspen tree growth and vigor around the Lake Tahoe Basin in the Sierra Nevada Mountains of California and Nevada, USA. Radial growth data were taken from increment cores. Aspen trees on the south and west sides of the lake grew 20–25% faste...

  9. Ecología de la fauna silvestre de la sierra nevada y la Sierra del Ajusco

    Directory of Open Access Journals (Sweden)

    D. Granados Sánchez

    2004-01-01

    Full Text Available Se presenta un estudio sobre la fauna silvestre de la Sierra del Ajusco y la Sierra Nevada, localizadas dentro de la Faja Volcánica Transmexicana (FVT, en la porción oriental del límite meridional de la Cuenca de México. La enorme riqueza biológica de esta zona que rodea la zona metropolitana de la ciudad de México, uno de los mayores complejos urbanos del mundo, ha sobrevivido durante décadas al impacto de la urbanización de las áreas forestales, explotación de recursos naturales, contaminación, cacería, incendios y pastoreo. A pesar de esto, se desconocen muchos de los factores que regulan la dinámica de los ecosistemas en esta región. Con relación a la fauna silvestre la carencia de información es mucho más evidente, aspectos elementales como la diversidad de especies, las interacciones ecológicas, la función de los organismos en el ecosistema, las condiciones de estrés a que están sometidos, han sido poco explorados. En esta investigación se recurrió a observaciones de campo y a la consulta de diferentes fuentes bibliográficas para estimar la riqueza de especies de mamíferos, aves, reptiles y anfibios; las relaciones ecológicas entre los mismos y las consecuencias de la modificación de su hábitat producto de las actividades humanas.

  10. Radiometric Observations of Supercooled Liquid Water within a Split Front over the Sierra Nevada.

    Science.gov (United States)

    Heggli, Mark F.; Reynolds, David W.

    1985-11-01

    A storm bearing close structural resemblance to a katafront was observed from the ground with microwave radiometry and a vertically pointing Ka-band radar over the Sierra Nevada of California. The onset and duration of supercooled liquid water was determined and matched to a split front model used to describe the synoptic features of a katafront. Results indicate that prior to the passage of the upper front no supercooled liquid water was observed. This portion of the storm provided the deepest cloud and coldest cloud tops. Supercooled liquid water was most prevalent after the upper front passage, and persisted until the suspected surface front passage. The duration of measured supercooled water was 16 hours.This information broadens the knowledge regarding the presence of supercooled liquid water, and thus possible seeding potential, within winter storms so that treatment can be confined to the period of storms amenable to cloud seeding. Future studies may well confirm the ease with which these periods can be predicted on an operational basis in the Sierra Nevada.

  11. Dataset of Phenology of Mediterranean high-mountain meadows flora (Sierra Nevada, Spain)

    Science.gov (United States)

    Pérez-Luque, Antonio Jesús; Sánchez-Rojas, Cristina Patricia; Zamora, Regino; Pérez-Pérez, Ramón; Bonet, Francisco Javier

    2015-01-01

    Abstract Sierra Nevada mountain range (southern Spain) hosts a high number of endemic plant species, being one of the most important biodiversity hotspots in the Mediterranean basin. The high-mountain meadow ecosystems (borreguiles) harbour a large number of endemic and threatened plant species. In this data paper, we describe a dataset of the flora inhabiting this threatened ecosystem in this Mediterranean mountain. The dataset includes occurrence data for flora collected in those ecosystems in two periods: 1988–1990 and 2009–2013. A total of 11002 records of occurrences belonging to 19 orders, 28 families 52 genera were collected. 73 taxa were recorded with 29 threatened taxa. We also included data of cover-abundance and phenology attributes for the records. The dataset is included in the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area. PMID:25878552

  12. NUEVOS HALLAZGOS DE FLEBOTOMÍNEOS (DIPTERA: PSYCHODIDAE EN LA SIERRA NEVADA DE SANTA MARTA, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Eduar Elías BEJARANO

    2015-01-01

    Full Text Available Los insectos relacionados con la transmisión de los patógenos causantes de las leishmaniasis han sido poco estudiados en la Sierra Nevada de Santa Marta, Colombia, incluido el departamento de Magdalena, donde a la fecha están registradas trece especies del género Lutzomyia . En la presente nota se informa el hallazgo de tres especies y un subgénero adicionales en la región. Se recolectaron 885 flebotomíneos en Seywiaka y las veredas Las Tinajas y Calabazo, estribaciones de la Sierra Nevada de Santa Marta ( 117-130 m s.n.m.. El 84 % de los ejemplares se obtuvieron con trampa CDC, el 11 % con trampa Shannon y el 5 % fueron capturados, en reposo, con un dispositivo eléctrico de succión. Se identificaron nueve especies, Lu. gomezi , Lu. panamensis , Lu. trinidadensis , Lu. carpenteri , Lu. evansi , Lu. dysponeta, Lu. dubitans , Lu. shannoni , y Lu. micropyga , la más abundante fue Lu. gomezi (69 %, seguida por Lu. panamensis (14 %. También se recolectaron ejemplares de la serie Lu. osornoi del subgénero Helcocyrtomyia . Entre el material hallado sobresalen Lu. carpenteri , Lu. dubitans y Lu. dysponeta como primeros registros para el departamento del Magdalena, además de Lu. (Helcocyrtomyia sp., que representa el primer informe del subgénero en el Caribe colombiano.

  13. Fumio Matsumura--accomplishments at the University of California, Davis, and in the Sierra Nevada Mountains.

    Science.gov (United States)

    Seiber, James N

    2015-05-01

    Fumio Matsumura joined the University of California, Davis, faculty in 1987 where he served as founding director of the Center for Environmental Health Sciences, associate director of the U.C. Toxic Substances Research and Teaching Program, and chair of the Department of Environmental Toxicology. He was an active affiliate with the NIEHS-funded Superfund Basic Research Program and the NIH Comprehensive Cancer Center. He was in many instances a primary driver or otherwise involved in most activities related to environmental toxicology at Davis, including the education of students in environmental biochemistry and ecotoxicology. A significant part of his broad research program was focused on the long range transport of chemicals such as toxaphene, PCBs and related contaminants used or released in California to the Sierra Nevada mountains, downwind of the urban and agricultural regions of the state. He hypothesized that these chemical residues adversely affected fish and wildlife, and particularly the declining populations of amphibians in Sierra Nevada streams and lakes. Fumio and his students and colleagues found residues of toxaphene and PCBs at higher elevations, an apparent result of atmospheric drift and deposition in the mountains. Fumio and his wife Teruko had personal interests in, and a love of the mountains, as avid skiers, hikers, and outdoor enthusiasts.

  14. Increasing elevation of fire in the Sierra Nevada and implications for forest change

    Science.gov (United States)

    Schwartz, Mark W.; Butt, Nathalie; Dolanc, Christopher R.; Holguin, Andrew; Moritz, Max A.; North, Malcolm P.; Safford, Hugh D.; Stephenson, Nathan L.; Thorne, James H.; van Mantgem, Phillip J.

    2015-01-01

    Fire in high-elevation forest ecosystems can have severe impacts on forest structure, function and biodiversity. Using a 105-year data set, we found increasing elevation extent of fires in the Sierra Nevada, and pose five hypotheses to explain this pattern. Beyond the recognized pattern of increasing fire frequency in the Sierra Nevada since the late 20th century, we find that the upper elevation extent of those fires has also been increasing. Factors such as fire season climate and fuel build up are recognized potential drivers of changes in fire regimes. Patterns of warming climate and increasing stand density are consistent with both the direction and magnitude of increasing elevation of wildfire. Reduction in high elevation wildfire suppression and increasing ignition frequencies may also contribute to the observed pattern. Historical biases in fire reporting are recognized, but not likely to explain the observed patterns. The four plausible mechanistic hypotheses (changes in fire management, climate, fuels, ignitions) are not mutually exclusive, and likely have synergistic interactions that may explain the observed changes. Irrespective of mechanism, the observed pattern of increasing occurrence of fire in these subalpine forests may have significant impacts on their resilience to changing climatic conditions.

  15. Associations of stream health to altered flow and water temperature in the Sierra Nevada, California

    Science.gov (United States)

    Carlisle, Daren M.; S. Mark Nelson,; May, Jason

    2016-01-01

    Alteration of streamflow and thermal conditions may adversely affect lotic invertebrate communities, but few studies have assessed these phenomena using indicators that control for the potentially confounding influence of natural variability. We designed a study to assess how flow and thermal alteration influence stream health – as indicated by the condition of invertebrate communities. We studied thirty streams in the Sierra Nevada, California, that span a wide range of hydrologic modification due to storage reservoirs and hydroelectric diversions. Daily water temperature and streamflows were monitored, and basic chemistry and habitat conditions were characterized when invertebrate communities were sampled. Streamflow alteration, thermal alteration, and invertebrate condition were quantified by predicting site-specific natural expectations using statistical models developed using data from regional reference sites. Monthly flows were typically depleted (relative to natural expectations) during fall, winter, and spring. Most hydrologically altered sites experienced cooled thermal conditions in summer, with mean daily temperatures as much 12 °C below natural expectations. The most influential predictor of invertebrate community condition was the degree of alteration of March flows, which suggests that there are key interactions between hydrological and biological processes during this month in Sierra Nevada streams. Thermal alteration was also an important predictor – particularly at sites with the most severe hydrological alteration.

  16. Confronting the implications of wicked problems: changes needed in Sierra Nevada National Forest planning and problem solving

    Science.gov (United States)

    Hal Salwasser

    2004-01-01

    Thirty years ago, the fate of migratory deer in the Sierra Nevada was thought to be the major forest wildlife issue. Ten years later, agencies were building the California Wildlife Habitat Relationships System to allow managers to integrate all terrestrial vertebrates with timber management in comprehensive National Forest planning. Another ten years after that, Tom...

  17. Modeling the influence of precipitation and nitrogen deposition on forest understory fuel connectivity in Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    M. Hurteau; M. North; T. Foines

    2009-01-01

    Climate change models for California’s Sierra Nevada predict greater inter-annual variability in precipitation over the next 50 years. These increases in precipitation variability coupled with increases in nitrogen deposition fromfossil fuel consumption are likely to result in increased productivity levels and significant increases in...

  18. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    Science.gov (United States)

    Haiganoush K. Preisler; Shiyuan (Sharon) Zhong; Annie Esperanza; Timothy J. Brown; Andrzej Bytnerowicz; Leland Tarnay

    2010-01-01

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an...

  19. Thirty Years of Change in Subalpine Forest Cover from Landsat Image Analysis in the Sierra Nevada Mountains of California

    Science.gov (United States)

    Potter, Christopher

    2015-01-01

    Landsat imagery was analyzed to understand changes in subalpine forest stands since the mid-1980s in the Sierra-Nevada region of California. At locations where long-term plot measurements have shown that stands are becoming denser in the number of small tree stems (compared to the early 1930s), the 30-year analysis of Landsat greenness index (NDVI) indicated that no consistent increases in canopy leaf cover have occurred at these same locations since the mid-1980s. Interannual variations in stand NDVI closely followed snow accumulation amounts recorded at nearby stations. In contrast, at eastern Sierra whitebark pine stand locations where it has been observed that widespread tree mortality has occurred, decreasing NDVI trends over the past 5-10 years were consistent with rapid loss of forest canopy cover. Landsat imagery was further analyzed to understand patterns of post-wildfire vegetation recovery, focusing on high burn severity (HBS) patches within burned areas dating from the late 1940s. Analysis of landscape metrics showed that the percentage of total HBS area comprised by the largest patch of recovered woody cover was relatively small in all fires that occurred since 1995, but increased rapidly with time since fire. Patch complexity of recovered woody cover decreased notably after more than 50 years of regrowth, but was not readily associated with time for fires that occurred since the mid 1990s. The aggregation level of patches with recovery of woody cover increased steadily with time since fire. The study approach using satellite remote sensing can be expanded to assess the consequences of stand-replacing wildfires in all forests of the region.

  20. Clustering of velocities in a GPS network spanning the Sierra Nevada Block, the northern Walker Lane Belt, and the Central Nevada Seismic Belt, California-Nevada

    Science.gov (United States)

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    The deformation across the Sierra Nevada Block, the Walker Lane Belt, and the Central Nevada Seismic Belt (CNSB) between 38.5°N and 40.5°N has been analyzed by clustering GPS velocities to identify coherent blocks. Cluster analysis determines the number of clusters required and assigns the GPS stations to the proper clusters. The clusters are shown on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. Four significant clusters are identified. Those clusters are strips separated by (from west to east) the Mohawk Valley-Genoa fault system, the Pyramid Lake-Wassuk fault system, and the Central Nevada Seismic Belt. The strain rates within the westernmost three clusters approximate simple right-lateral shear (~13 nstrain/a) across vertical planes roughly parallel to the cluster boundaries. Clustering does not recognize the longitudinal segmentation of the Walker Lane Belt into domains dominated by either northwesterly trending, right-lateral faults or northeasterly trending, left-lateral faults.

  1. Interpretation of the Isabella High Wave-Speed Anomaly as the Partially Delaminated High-Density Root of the Southern Sierra Nevada Batholith, California

    Science.gov (United States)

    Saleeby, J.; Le Pourhiet, L.

    2012-12-01

    High resolution tomography of the Sierra Nevada Earthscope Project (Reeg, 2008 & Jones et al., 2012) shows that the core area of the Isabella anomaly (Vp+4-6%) resembles a prolate antiformal slab that plunges steeply SE into the upper mantle to ~200 km depth, extending down from a zone of lower crustal attachment that runs along the southwestern Sierra Nevada and adjacent eastern San Joaquin basin. Receiver function, refraction and tomography also show that areas to the east and south of lower crustal attachment consist of ascended asthenosphere lying directly beneath tectonized Moho. The lower-velocity envelope of the anomaly (Vp+1-4%) extends to 250-300 km depths and covers cross-sectional areas locally in excess of 2x of the higher Vp core. We have leveraged lithospheric structure and geologic history against thermal-mechanical modeling in pursuit of an integrated story for the physical and geologic processes that are governing the development of the anomaly. Initial structure is constrained by mantle xenoliths, differentially exhumed lower crustal exposures, and deep cores in the basin. The initial state further recognizes that: 1. the sub-Sierra Nevada batholith mantle lithosphere, including a substantial thickness (35-40 km) of eclogitic (arclogite) cumulates that were produced during high magma flux arc activity, was cooled to a conductive geotherm by flat slab subduction at the end of the Cretaceous; and 2. the gravitationally metastable mantle lithosphere was thermally mobilized from beneath in the Neogene by the opening of a slab window, which also imposed a state of modest regional extension. We have resolved a class of models that successfully predicts the structure of the anomaly, the timing and kinematics of related lithospheric separation and focused extensional tectonism, the timing and source characteristics of related volcanism, and the spatial/temporal patterns of observed subsidence and uplift transients. A general aspect of most of our model

  2. Sierra Nevada Winter Storms: a Study Using Microwave Radiometry, Ice Crystal and Isotopic Analysis Technique

    Science.gov (United States)

    Demoz, Belay Berhane

    An observational study has been made of ice-phase winter storm clouds over the Sierra Nevada mountains. In Part I, two microwave radiometers, one designed with a spinning reflector to shed precipitation particles while the other radiometer's reflector was fixed, are compared. The absence/presence of contaminated periods in the data was attributed to difference in design. These apparent contaminated periods led to lower correlation coefficients between the radiometers. Comparison of radiometer and rawinsonde resulted in a correlation coefficient of 0.97 for the spinning reflector as opposed to 0.8 for the fixed reflector radiometer. In Part II, stable water isotopes were used to study mesoscale and microscale storm modifications by the Sierra Nevada. Initially, a low level warm front lay across the region and its elevation lowered with time from 2.5 km to 1.7 km. This decrease of frontal surface height was accompanied by a steady increase in the delta ^{18}O values. In the pre-cold frontal period, the delta^{18 }O values at the upwind site signified warmer origin ice crystals than the downwind site. This is explained by orographic effects and the production of supercooled liquid water at low elevations on the upslope side. The delta^{18}O value peaked around -13perthous which translates to an "equivalent temperature" of -10.7^circC for ice phase water capture at the upwind site. At the downwind site, this was some 5 to 6 centigrade degrees colder. During surface cold front passage, the differences in delta^{18}O at the two sites are small probably because, during frontal passage, the orography plays a less significant role in the precipitation production process. In Part III, observations of precipitation rates, ice crystals, wind and supercooled liquid water (SLW) upwind and downwind of the Sierra Nevada are presented. Observations show that the stage of development of the storms was important in the liquid and vapor development. High SLW, and increased riming were

  3. Seasonal frost conditions and permafrost regime distribution in the high lands of Sierra Nevada (Spain)

    Science.gov (United States)

    Oliva, Marc; Gómez-Ortiz, Antonio; Salvador-Franch, Ferran; Salvà-Catarineu, Montserrat; Palacios, David; Tanarro, Luis Miguel; Ramos, Miguel

    2016-04-01

    Sierra Nevada, Southern Spain (37°S, 3°W), is the massif including the southernmost permafrost remnants in Europe. Over the last decades the distribution of permafrost in this massif has been examined through a combined approach including geomorphological, geophysical and monitoring studies. The purpose of this communication is to summarize all the studies relating to soil thermal regime in the high lands of Sierra Nevada. A 114.5 m deep borehole was drilled in 2000 in the Veleta summit (3380 m) in order to monitor soil temperatures in the summits of the massif. No permafrost regime was detected, with average temperatures stabilizing at 20 m depth at 2 °C. Seasonal frost conditions were also detected in periglacial landforms such as solifluction lobes and sorted-circles. In the Rio Seco cirque the mean annual temperatures in a solifluction lobe located in a southern glacial cirque of the massif (3005 m) were 3.9 °C at 1 m depth between 2006 and 2012; in the north-exposed San Juan valley, soil temperatures in another solifluction landform (2864 m) were 3.9 °C at 1 m depth between 2003 and 2012. In a sorted-circle located in the high plateau of Cerro de los Machos (3297 m) soil temperatures recorded an average of 1.7 °C at 50 cm depth between 2003 and 2011. The only place where temperatures were permanently negative was inside of the only active rock glacier distributed in the Veleta cirque, on the northern slope of the Veleta peak. Here, the remnants of a small glacier that existed during the Little Ice Age (LIA) are still present in the form of buried ice and permafrost buried under the boulders of this rock glacier. Temperatures averaged 0.2 °C at 1 m depth between 2006 and 2013, with permanently negative temperatures below this level until, at least, 10 m depth. Consequently, seasonal frost is widespread nowadays in most of the Sierra Nevada, with permafrost conditions strongly conditioned by the geomorphological setting and the recent environmental

  4. Sierra Nevada serpentinites. An important element in the architectonic heritage of Granada (Spain).

    Science.gov (United States)

    Navarro, Rafael; Pereira, Dolores; Rodríguez-Navarro, Carlos; Sebastián-Pardo, Eduardo

    2013-04-01

    Serpentinites are widely used in historic buildings in the whole world, from Ancient Greek or Egypt to more recent colonial buildings in the USA. Serpentinites from Sierra Nevada (S of Spain) have been traditionally used as ornamental elements in historic buildings of Granada city, both indoors and outdoors. The Cathedral, Carlos V Palace, Royal Chancery and some others are good examples of their use. Some other important cases can be found outside Granada, like El Escorial monastery, Las Salesas Reales convent, etc… all of them part of Madrid architectonic heritage. There are two quarries located in Sierra Nevada that supplied all the material to make the different elements in the cited buildings. In this work, a thorough characterization of the main serpentinites from Sierra Nevada, their uses, and their state of conservation in selected buildings from Granada has been performed. Samples from the main original quarry and from one historical building (Real Chancillería) have been analysed, determining the mineralogical and geochemical composition, texture, water parameters (absorption, porosity, density) and possible alteration by salt formation. It has been observed that the mineralogical and geochemical compositions are similar in both sets of samples, although the ones coming from the historical building show a highly advanced state of alteration. Regarding physical and mechanical parameters, samples from the quarry have very low water absorption values, while the porosity of serpentinites sampled from the Real Chancillería is comparatively much higher. We explain this difference as due to the weathering of the emplaced serpentinites by salt crystallization processes (mainly gypsum or epsomite), that generate strong internal pressures causing the disintegration of the whole natural stone. In addition, the increase of the porosity can be caused by dissolution processes related to the presence of acid solutions related to oxidation and hydrolysis of iron

  5. Mortality factors for dead trees from a subset of plots from the Sierra Nevada Forest Dynamics Plot Network from 1998 to 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was used to summarize and analyze the mortality factors recorderd on dead trees in the Sierra Nevada Forest Dynamics Plot Network, which is managed by...

  6. De los complejos naturales a los paisajes: el modelo de Sierra Nevada

    Directory of Open Access Journals (Sweden)

    Yolanda Jiménez

    2000-01-01

    Full Text Available En este artículo se parte de la idea de que para conseguir una identificación y tipificación de los paisajes es necesario conjugar el análisis de las bases ambientales del territorio con el del modelo de organización socioeconómica y cultural del mismo. En relación con ello se propone una secuencia metodológica, aplicada al macizo de Sierra Nevada, que parte de los complejos sistémicos o estructuras naturales, estudia después los distintos modelos de organización socioterritorial e identifica finalmente los diferentes tipos paisajísticos por asociación o disociación de sistemas en función del grado de homogeneidad o heterogeneidad que les imprime el manejo humano

  7. Lead and cadmium in wild boar (Sus scrofa) in the Sierra Nevada Natural Space (southern Spain).

    Science.gov (United States)

    Mulero, Rocío; Cano-Manuel, Javier; Ráez-Bravo, Arián; Pérez, Jesús M; Espinosa, José; Soriguer, Ramón; Fandos, Paulino; Granados, José E; Romero, Diego

    2016-08-01

    The aims of the present study were to investigate Pb and Cd levels in tissues of wild boar (Sus scrofa) from the Sierra Nevada Natural Space (SNNS) (southern Spain). Heavy metal concentrations in livers, kidneys and bones from 111 animals were determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Bones and kidneys were the most Pb- and Cd-contaminated tissues, respectively; Cd concentrations were 5.6 times higher in kidneys than in livers. This is the first biomonitoring study of these pollutants in wild boar tissues in the SNNS, and findings indicate that this population is chronically exposed to these heavy metals. The detected Pb and Cd concentrations were lower than those found in many studies performed in Europe on the same species.

  8. The mineral resources of the Sierra Nevada de Santa Marta, Columbia (Zone I)

    Science.gov (United States)

    Tschanz, Charles McFarland; Jimeno V., Andres; Cruz, Jaime B.

    1970-01-01

    The Sierra Nevada de Santa Maria on the north coast of Colombia is an isolated triangular mountain area that reaches altitudes of almost 19,000 feet. The exceedingly complex geology is shown on the 1:200,000 geologic map. Despite five major periods of granitic intrusion, three major periods of metamorphism, and extensive volcanic eruptions, metallic deposits are small and widely scattered. Sulfide deposits of significant economic value appear to be absent. Many small copper deposits, of chalcocite, cuprite, malachite, and azurite are found in epidotized rock in Mesozoic redbeds and intercalated volcanic rocks, but their economic potential is very small. Deposits of other common base metals appear to be absent. The most important metallic deposits may prove to be unusual bimineralic apatite-ilmenite deposits associated with gneissic anorthosite. The known magnetite deposits are too small to be exploited commercially. Primary gold deposits have not been identified and the placer deposits are uneconomic and very small. The largest and most important deposits are nonmetallic. Enormous reserves of limestone are suitable for cement manufacture and some high-purity limestone is suitable for the most exacting chemical uses. Small deposits of talc-tremolite could be exploited locally for ceramic use. The important noncoking bituminous coal deposits in the Cerrej6n area are excluded from this study. Other nonmetallic resources include igneous dimension stone in a variety of colors and textures, and agricultural dolomite. There probably are important undeveloped ground water resources on the slopes of the wide Rancheria and Cesar valleys, which separate the Sierra Nevada from the Serrania de Persia.

  9. Partitioning of water flux in a Sierra Nevada ponderosa pine plantation

    Science.gov (United States)

    Kurpius, M.R.; Panek, J.A.; Nikolov, N.T.; McKay, M.; Goldstein, Allen H.

    2003-01-01

    The weather patterns of the west side of the Sierra Nevada Mountains (cold, wet winters and hot, dry summers) strongly influence how water is partitioned between transpiration and evaporation and result in a specific strategy of water use by ponderosa pine trees (Pinus ponderosa) in this region. To investigate how year-round water fluxes were partitioned in a young ponderosa pine ecosystem in the Sierra Nevada Mountains, water fluxes were continually measured from June 2000 to May 2001 using a combination of sap flow and eddy covariance techniques (above- and below-canopy). Water fluxes were modeled at our study site using a biophysical model, FORFLUX. During summer and fall water fluxes were equally partitioned between transpiration and soil evaporation while transpiration dominated the water fluxes in winter and spring. The trees had high rates of canopy conductance and transpiration in the early morning and mid-late afternoon and a mid-day depression during the dry season. We used a diurnal centroid analysis to show that the timing of high canopy conductance and transpiration relative to high vapor pressure deficit (D) shifted with soil moisture: during periods of low soil moisture canopy conductance and transpiration peaked early in the day when D was low. Conversely, during periods of high soil moisture canopy conductance and transpiration peaked at the same time or later in the day than D. Our observations suggest a general strategy by the pine trees in which they maximize stomatal conductance, and therefore carbon fixation, throughout the day on warm sunny days with high soil moisture (i.e. warm periods in winter and late spring) and maximize stomatal conductance and carbon fixation in the morning through the dry periods. FORFLUX model estimates of evaporation and transpiration were close to measured/calculated values during the dry period, including the drought, but underestimated transpiration and overestimated evaporation during the wet period. ?? 2003

  10. A quantitative evaluation of the conservation umbrella of spotted owl management areas in the Sierra Nevada.

    Science.gov (United States)

    Burnett, Ryan D; Roberts, L Jay

    2015-01-01

    Whether by design or default, single species management often serves as an umbrella for species with similar habitat requirements. In recent decades the focus of National Forest management in the Sierra Nevada of California has shifted towards increasing closed canopy mature forest conditions through the protection of areas occupied by the California Spotted Owl (Strix occidentalis occidentalis). To evaluate the implications of these habitat changes and the potential umbrella resulting from a system of owl reserves on the broader avian community, we estimated occupancy of birds inside and outside of Spotted Owl Home Range Core Areas in northeastern California. We used point count data in a multi-species hierarchical Bayesian model incorporating the detection history of 81 species over a two-year time period (2005-2006). A small set of vegetation cover and topography covariates were included in the model to account for broad differences in habitat conditions, as well as a term identifying whether or not a site was within a Core Area. Seventeen species had a negative Core Area effect, seven had a positive effect, and the rest were not significant. Estimated species richness was significantly different with 23.1 species per 100 m radius circle outside Core Areas and 21.7 inside Core Areas. The majority of the species negatively associated with Core Areas are tied to early successional and other disturbance-dependent habitats. Conservation and climate vulnerability rankings were mixed. On average we found higher scores (greater risk) for the species positively associated with Core Areas, but a larger number of species with the highest scores were negatively associated with Core Areas. We discuss the implications for managing the Sierra Nevada ecosystem and illustrate the role of monitoring broader suites of species in guiding management of large complex ecosystems.

  11. Cattle grazing and conservation of a meadow-dependent amphibian species in the Sierra Nevada.

    Directory of Open Access Journals (Sweden)

    Leslie M Roche

    Full Text Available World-wide population declines have sharpened concern for amphibian conservation on working landscapes. Across the Sierra Nevada's national forest lands, where almost half of native amphibian species are considered at risk, permitted livestock grazing is a notably controversial agricultural activity. Cattle (Bos taurus grazing is thought to degrade the quality, and thus reduce occupancy, of meadow breeding habitat for amphibian species of concern such as the endemic Yosemite toad (Anaxyrus [ = Bufo] canorus. However, there is currently little quantitative information correlating cattle grazing intensity, meadow breeding habitat quality, and toad use of meadow habitat. We surveyed biotic and abiotic factors influencing cattle utilization and toad occupancy across 24 Sierra Nevada meadows to establish these correlations and inform conservation planning efforts. We utilized both traditional regression models and Bayesian structural equation modeling to investigate potential drivers of meadow habitat use by cattle and Yosemite toads. Cattle use was negatively related to meadow wetness, while toad occupancy was positively related. In mid and late season (mid July-mid September grazing periods, cattle selected for higher forage quality diets associated with vegetation in relatively drier meadows, whereas toads were more prevalent in wetter meadows. Because cattle and toads largely occupied divergent zones along the moisture gradient, the potential for indirect or direct negative effects is likely minimized via a partitioning of the meadow habitat. During the early season, when habitat use overlap was highest, overall low grazing levels resulted in no detectable impacts on toad occupancy. Bayesian structural equation analyses supported the hypothesis that meadow hydrology influenced toad meadow occupancy, while cattle grazing intensity did not. These findings suggest cattle production and amphibian conservation can be compatible goals within this

  12. What mediates tree mortality during drought in the southern Sierra Nevada?

    Science.gov (United States)

    Paz-Kagan, Tarin; Brodrick, Philip; Vaughn, Nicholas R; Das, Adrian; Stephenson, Nathan L.; Nydick, Koren R.; Asner, Gregory P.

    2017-01-01

    Severe drought has the potential to cause selective mortality within a forest, thereby inducing shifts in forest species composition. The southern Sierra Nevada foothills and mountains of California have experienced extensive forest dieback due to drought stress and insect outbreak. We used high-fidelity imaging spectroscopy (HiFIS) and light detection and ranging (LiDAR) from the Carnegie Airborne Observatory (CAO) to estimate the effect of forest dieback on species composition in response to drought stress in Sequoia National Park. Our aims were: (1) to quantify site-specific conditions that mediate tree mortality along an elevation gradient in the southern Sierra Nevada Mountains; (2) to assess where mortality events have a greater probability of occurring; and (3) to estimate which tree species have a greater likelihood of mortality along the elevation gradient. A series of statistical models were generated to classify species composition and identify tree mortality, and the influences of different environmental factors were spatially quantified and analyzed to assess where mortality events have a greater likelihood of occurring. A higher probability of mortality was observed in the lower portion of the elevation gradient, on southwest and west-facing slopes, in areas with shallow soils, on shallower slopes, and at greater distances from water. All of these factors are related to site water balance throughout the landscape. Our results also suggest that mortality is species-specific along the elevation gradient, mainly affecting Pinus ponderosa and Pinus lambertiana at lower elevations. Selective mortality within the forest may drive long-term shifts in community composition along the elevation gradient.

  13. Transient thermal regimes in the Sierra Nevada and Baja California extinct outer arcs following the cessation of Farallon subduction

    Science.gov (United States)

    Erkan, Kamil; Blackwell, David

    2009-02-01

    We examine the thermal relaxation of the Sierra Nevada and Baja California extinct outer arc blocks following the progressive cessation of Farallon subduction under western North America beginning at ˜30 Ma. Being parts of the same outer arc until the inland jump of the San Andreas transform fault at ˜5 Ma, these two regions show many similarities in their geology, geomorphology, rigid body behavior, and their relatively low seismicity. In the thermal model, we combine results of different geophysical and geophysical studies to constrain the thermal state and geometry of the outer arcs before the cessation of subduction and then model the postsubduction temperature responses in these regions using the results of the tectonic reconstructions. A well-constrained regional thermal model of these blocks using the results of many earlier studies in these regions confirms that the present low heat flow values in these regions are the remnants of the very cold outer arc thermal regime of the subduction zone even as long as 30 Ma after cessation of subduction. Thus the entire Pacific boundary of the North American plate is still in a transient thermal state. The calculated low lithospheric temperatures in the Sierra Nevada and Peninsular blocks correlate very well with their rigid body behavior obtained from geodetic studies, and seismogenic layer thicknesses obtained from seismological studies. This is in contrast with the fact that both regions are surrounded by intense deformation associated with the western North America intraplate and extraplate motions. These low-temperature islands play important roles in the present interaction of the North American and Pacific plates and contribute to the broad deformation of the transform boundary. The thermal relaxation of the extinct outer arcs includes both vertical heating from the underlying asthenosphere and the lateral heating from the extinct back arc (Basin and Range), which has remained as a high heat flow region after

  14. Effects of Climate and Fuels Management on Wildfire Occurrence, Size, Severity and Emissions in the Sierra Nevada

    Science.gov (United States)

    Westerling, A. L.; Fites, J. A.; Keyser, A.

    2015-12-01

    Annual wildfire burned area in federally managed Sierra Nevada forests has increased by more than 10,000 ha per decade since the early 1970s. At the same time, recent years have seen some extremely large fires compared to the historical record, with significant areas of moderate to high severity fire (e.g., McNally 2002, Rim 2013, King 2014 fires). Changes to fuels and fire regimes due to fire suppression and land use, as well as warming temperatures and the occurrence of drought, are thought to be significant factors contributing to increased risks of large, severe fires in Sierra Nevada forests. Over 70% of the vegetated area in federally managed forests in the Sierra Nevada is classified as having altered fuels and fire regimes, while average annual temperature in the Sierra Nevada has been above the long term mean for all but four years in the past two decades. As climate is expected to continue warming for decades to come, we explored fuels management scenarios as the primary tools available to modify risks of large, severe wildfires. We developed experimental statistical models of fire occurrence, fire size, and high severity burned area, to explore the interaction between climate and altered fuels conditions. These models were applied to historical climate conditions, a sample of future climate projections, and to both current fuels conditions and a range of scenarios for fuels treatments. Emissions from wildfires were estimated using the Fire Inventory from the National Center for Atmospheric Research. Our models project that average annual burned area in the Sierra Nevada will more than double by mid-century. Similarly, particulate and other pollution emissions from Sierra Nevada wildfires are projected to more than double, even if future fire severity does not change. Fuels treatment scenarios significantly reduced simulated future burned area and emissions below untreated projections. High severity burned area responded to both climate and fuels

  15. Sierra Nevada

    Directory of Open Access Journals (Sweden)

    Yolanda Jiménez Olivencia

    2006-01-01

    Full Text Available El paisaje, considerado desde la perspectiva sistémica, se concibe como un complejo territorial que puede ser sometido a análisis siguiendo distintas fórmulas de aproximación al mismo. A pesar de las diferencias que se observan entre estos modelos de acercamiento, todos ellos se fundamentan en el análisis integrado de los componentes del paisaje y de sus mutuas relaciones. Las técnicas de integración conducentes a la obtención de unidades sistémicas de paisaje y a la delimitación espacial de las mismas encuentran un aliado excepcional en los SIG. Tanto en el procedimiento de «superposición» como en el de «combinación cartográfica» el empleo de los Sistemas de Información Geográfica representa un avance sustantivo en la instrumentalización del método. En esta comunicación pretendemos concretar el uso de esta herramienta de análisis espacial para cada una de las fases que componen la secuencia metodológica de identificación y cartografía de geosistemas o geocomplejos y, para ello, presentaremos su aplicación a la cuenca vertiente del río Guadix.

  16. Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat

    Directory of Open Access Journals (Sweden)

    O. L. Hadley

    2010-04-01

    Full Text Available Modeling studies show that the darkening of snow and ice by black carbon (BC deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition on the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  17. Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat

    Directory of Open Access Journals (Sweden)

    O. L. Hadley

    2010-08-01

    Full Text Available Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  18. Increasing long-wavelength relief across the southeastern flank of the Sierra Nevada, California

    Science.gov (United States)

    Bennett, R. A.; Fay, N. P.; Hreinsdóttir, S.; Chase, C.; Zandt, G.

    2009-09-01

    A high degree of correlation between present-day relative rock uplift measured using continuous GPS geodesy and spatially averaged surface elevations suggests that long-wavelength topographic relief is presently increasing along the southeastern flank of the Sierra Nevada range and within an adjacent portion of the northern Basin and Range province. Current estimates for erosion rate are an order of magnitude smaller than the relative rates determined by geodesy. Thus, although the uplift serves to enhance long-wavelength relief, it cannot be explained entirely as an isostatic response to erosion. If uplift rates have been constant through time, the duration over which the uplift could have been active (Sierra are evolving with time. According to either hypothesis, vertical surface motions may have slowly accelerated since ~mid-Pliocene time. Several possible mechanisms for progressive reduction of EET may be attributable to thermo-mechanical disequilibrium that began with the removal of an ultramafic root from the Sierran batholith during late Miocene or early Pliocene time. Specific mechanisms for ongoing enhancement of loads are less obvious. Based on these results, we suggest that dense networks of long-running continuous GPS stations around the world currently represent an underutilized resource for studies of orogenesis and upper mantle processes.

  19. Debris-Covered Glaciers in the Sierra Nevada, California, and Their Implications for Snowline Reconstructions

    Science.gov (United States)

    Clark, D.H.; Clark, M.M.; Gillespie, A.R.

    1994-01-01

    Ice-walled melt ponds on the surfaces of active valley-floor rock glaciers and Matthes (Little Ice Age) moraines in the southern Sierra Nevada indicate that most of these landforms consist of glacier ice under thin (ca. 1 - 10 m) but continuous covers of rock-fall-generated debris. These debris blankets effectively insulate the underlying ice and greatly reduce rates of ablation relative to that of uncovered ice. Such insulation explains the observations that ice-cored rock glaciers in the Sierra, actually debris-covered glaciers, are apparently less sensitive to climatic warming and commonly advance to lower altitudes than do adjacent bare-ice glaciers. Accumulation-area ratios and toe-to-headwall-altitude ratios used to estimate equilibrium-line altitudes (ELAs) of former glaciers may therefore yield incorrect results for cirque glaciers subject to abundant rockfall. Inadvertent lumping of deposits from former debris-covered and bare-ice glaciers partially explains an apparently anomalous regional ELA gradient reported for the pre-Matthes Recess Peak Neoglacial advance. Distinguishing such deposits may be important to studies that rely on paleo-ELA estimates. Moreover, Matthes and Recess Peak ELA gradients along the crest evidently depend strongly on local orographic effects rather than latitudinal climatic trends, indicating that simple linear projections and regional climatic interpretations of ELA gradients of small glaciers may be unreliable.

  20. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.; Cliff, S.S.; Ramanathan, V.

    2010-01-12

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  1. Status and understanding of groundwater quality in the Sierra Nevada Regional study unit, 2008: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the Sierra Nevada Regional (SNR) study unit was investigated as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment Program Priority Basin Project. The study was designed to provide statistically unbiased assessments of the quality of untreated groundwater within the primary aquifer system of the Sierra Nevada. The primary aquifer system for the SNR study unit was delineated by the depth intervals over which wells in the State of California’s database of public drinking-water supply wells are open or screened. Two types of assessments were made: (1) a status assessment that described the current quality of the groundwater resource, and (2) an evaluation of relations between groundwater quality and potential explanatory factors that represent characteristics of the primary aquifer system. The assessments characterize untreated groundwater quality, rather than the quality of treated drinking water delivered to consumers by water distributors.

  2. Petrographic (thin section) notes on selected samples from hornblende-rich metamorphic terranes in the southernmost Sierra Nevada, California

    Science.gov (United States)

    Ross, Donald Clarence

    1983-01-01

    Medium- to high-grade metamorphic rocks that are commonly hornblende-rich, and probably largely of 'oceanic' affinity, are widespread in the southernmost Sierra Nevada, California. These metamorphic rocks are largely amphibolite, mafic and felsic gneiss, granofels, and hypersthene granulite The mineral assemblages suggest that these rocks are at least in part of granulite grade, represent relatively deep crustal levels, and may be exposed parts of the root zone of the Sierra Nevada batholith. Access to the largest area of these rocks is relatively limited and for this reason petrographic data (textures and mineral content based on thin section study) are summarized here. Directions to readily accessible localities are presented, however, where the major metamorphic rock types can be examined and sampled.

  3. Human-induced uplift of the Sierra Nevada Mountains and seismicity modulation on the San Andreas Fault

    Science.gov (United States)

    Amos, Colin; Audet, Pascal; Hammond, William C.; Burgmann, Roland; Johanson, Ingrid A.; Blewitt, Geoffrey

    2014-05-01

    We investigate the cause of geodetically observed mountain uplift in the Sierra Nevada, western US. In the process, we reveal a possible human-induced mechanism that may be driving Sierra Nevada uplift, and may also be pushing the San Andreas Fault closer to failure. An initial study of the Sierra Nevada [Hammond et al., Geology, 40, 2012] exploited the complementary strengths of point positions from GPS and blanket coverage measurements from InSAR, to show that contemporary vertical motion of the Sierra Nevada is between 1 - 2 mm/yr relative to the comparatively stable Great Basin to the east. One possible interpretation of this is that the most modern episode of tectonic uplift is still active in the Sierra Nevada. However, we now discover that GPS stations surrounding the southern San Joaquin Valley in California show a pattern of uplift concentrated not only in the Sierra Nevada to the east, but more broadly along the basin margins, including the adjacent central Coast Range to the west. Peak vertical velocities reach values up to 1 - 3 mm/yr. This suggests the San Joaquin Valley plays a key role in the uplift of the Sierra Nevada to the east, with possible implications for the San Andreas Fault to the west. Anthropogenic groundwater depletion in the southern San Joaquin Valley has been massive and sustained, therefore hydrological loading variation might explain contemporary uplift. To test this, we apply a simple elastic model that uses a line load centered along the valley axis, a range of elastic parameters, and published estimates of the integrated rate of mass loss due to groundwater removal over the last decade. Predicted uplift centered along the valley axis matches well with patterns of GPS motion, with the upward vertical rates decaying away from the valley margins. Observed seasonal variability in the vertical GPS positions lends support for this model, showing peak uplift for stations surrounding the valley during the dry summer and fall months. On

  4. Mapping Webs of Information, Conversation, and Social Connections: Evaluating the Mechanics of Collaborative Adaptive Management in the Sierra Nevada Forests

    OpenAIRE

    2014-01-01

    Managing within social-ecological systems at the landscape scale, such as in the national forests of the Sierra Nevada of California, is challenging to natural resource managers (e.g. the U.S. Forest Service) due to the uncertainties in natural processes and the complexities in social dynamics. Collaborative adaptive management (CAM) has been recently adopted as a viable strategy to diminish uncertainties in natural processes through iterative policy experimentations and adaptations, as well ...

  5. Photogrammetric Methodology for the Production of Geomorphologic Maps: Application to the Veleta Rock Glacier (Sierra Nevada, Granada, Spain)

    OpenAIRE

    José Jesús Guerrero; Javier de Matías; José Juan de Sanjosé; Gonzalo López-Nicolás; Carlos Sagüés

    2009-01-01

    In this paper we present a stereo feature-based method using SIFT (Scale-invariant feature transform) descriptors. We use automatic feature extractors, matching algorithms between images and techniques of robust estimation to produce a DTM (Digital Terrain Model) using convergent shots of a rock glacier.The geomorphologic structure observed in this study is the Veleta rock glacier (Sierra Nevada, Granada, Spain). This rock glacier is of high scientific interest because it is the southernmost ...

  6. Inferring ecological relationships from occupancy patterns for California Black Rails in the Sierra Nevada foothills

    Science.gov (United States)

    Richmond, Orien Manu Wright

    The secretive California Black Rail (Laterallus jamaicensis coturniculus ) has a disjunct and poorly understood distribution. After a new population was discovered in Yuba County in 1994, we conducted call playback surveys from 1994--2006 in the Sierra foothills and Sacramento Valley region to determine the distribution and residency of Black Rails, estimate densities, and obtain estimates of site occupancy and detection probability. We found Black Rails at 164 small, widely scattered marshes distributed along the lower western slopes of the Sierra Nevada foothills, from just northeast of Chico (Butte County) to Rocklin (Placer County). Marshes were surrounded by a matrix of unsuitable habitat, creating a patchy or metapopulation structure. We observed Black Rails nesting and present evidence that they are year-round residents. Assuming perfect detectability we estimated a lower-bound mean Black Rail density of 1.78 rails ha-1, and assuming a detection probability of 0.5 we estimated a mean density of 3.55 rails ha-1. We test if the presence of the larger Virginia Rail (Laterallus limicola) affects probabilities of detection or occupancy of the smaller California Black Rail in small freshwater marshes that range in size from 0.013-13.99 ha. We hypothesized that Black Rail occupancy should be lower in small marshes when Virginia Rails are present than when they are absent, because resources are presumably more limited and interference competition should increase. We found that Black Rail detection probability was unaffected by the detection of Virginia Rails, while, surprisingly, Black and Virginia Rail occupancy were positively associated even in small marshes. The average probability of Black Rail occupancy was higher when Virginia Rails were present (0.74 +/- 0.053) than when they were absent (0.36 +/- 0.069), and for both species occupancy increased with marsh size. We assessed the impact of winter (November-May) cattle grazing on occupancy of California Black

  7. "High-grade burial metamorphism of sedimentary mélange, Shoo Fly Complex, central Sierra Nevada, California"

    Science.gov (United States)

    Mendoza, Y.; Wakabayashi, J.

    2013-12-01

    The Shoo Fly Complex, California is a subduction complex metamorphosed at lower greenschist facies in much of the northern Sierra Nevada. Central Sierra Nevada exposures include higher grade assemblages. Previous studies have interpreted the higher grade rocks as gneissic granitoids representing the roots of a Paleozoic arc. Recent field work in the North Fork Mokelumne River drainage, shows that high-grade and low-grade metamorphic rocks were derived from similar subduction complex protoliths. The Shoo Fly in this region consists of mostly phyllite (metasiltstone, metasandstone, metachert), with some metabasite, and metaultramafic blocks. There is a metamorphic gradient from west to east in the field area, transitioning from sub to lower greenschist facies (white mica only) to middle and upper green schist facies (biotite) within the phyllites to amphibolite/upper amphibolite/granulite grade mica schists, gneisses, and amphibolites This gradient occurs across a zone about 1.5 km wide and this gradient is about 5 km west of the contact between the Shoo Fly Complex and plutons of the Sierra Nevada batholith. The higher-grade rocks do not have an apparent west-east metamorphic gradient. Accordingly the high-grade metamorphism does not appear to be a consequence of either contact metamorphism or raised regional geothermal gradients connected with the batholith. This conclusion is consistent with the fact that published metamorphic ages from probable correlative rocks within the central Sierra are much older than the Sierra Nevada batholith. Protoliths for the higher grade rocks appear identical to the lower grade rocks, for metaclastic rocks dominate with subordinate metacherts, metabasites, and metaultramafic rocks. The latter are represented by tremolite-talc schists. In the lower grade rocks some of the metabasite and metaultramafic blocks exhibit a higher grade of metamorphism than the surrounding metaclastic rocks and metacherts. Amphibolite and tremolite schist

  8. Timber harvest effect on soil moisture in the southern Sierra Nevada: Is there a measurable impact?

    Science.gov (United States)

    Meadows, M. W.; Bales, R. C.; Conklin, M. H.; Goulden, M.; Hartsough, P. C.; Hopmans, J. W.; Hunsaker, C. T.; Lucas, R. G.; Malazian, A. I.

    2013-12-01

    We monitored soil-moisture storage, evapotranspiration and streamflow in a Sierra Nevada mixed-conifer forest for three post-snowmelt spring/summer seasons during water years 2010-2013. We measured volumetric water content using a COsmic-ray Soil Moisture Observing Systems (COSMOS) to estimate shallow soil-moisture storage and an eddy-covariance flux tower to measure evapotranspiration, covering an area of about 20 ha. Soil-moisture sensors were also strategically placed at depths of 10, 30, 60 and 90 cm at 30 locations in and around the COSMOS and tower footprints. Timber harvest occurred during the summer of 2012, involving uneven-age thinning limited to trees less than 76.2 cm diameter at breast height (DBH). Timber harvest intensity varied by tree size class: approximately 39% of the trees 0 to 25.5 cm DBH, 21% of the trees 25.5 to 50.8 cm DBH, and 4% of trees 50.8-76.2 cm DBH. Merchantable timber removed from the site was about 81-100 cubic m per ha. Annual evapotranspiration was similar for all four years, averaging about 80 cm each year, despite large variability in annual precipitation amounts. Annual evapotranspiration was about 10% lower following harvest. However, 2012 and 2013 were both dry years. Water year 2011 was one of the wettest years on record - approximately 200 cm of precipitation - while 2012 was one of the driest with 70 cm of precipitation. Each year soil desiccation immediately followed snow-cover depletion, dropping from field capacity by about 20% volumetric water content over a 3-month period. The rate of soil-water loss was about the same for all years. In 2012 and 2013 the dates of snow disappearance were 2-3 months earlier than in 2011. About half of the annual total evapotranspiration for 2010-2012 occurred during the 3-month period following snowmelt. Each year, total summer precipitation was only 4-6 cm. Thus soil-water storage derived from snowmelt and rainfall provides much of the moisture for evapotranspiration in the mixed

  9. Exploration of long-term reanalysis of Sierra Nevada snowpack inferred from snow covered area information

    Science.gov (United States)

    Girotto, M.; Margulis, S. A.; Durand, M.

    2012-04-01

    The spatial heterogeneity of the mountain snowpack and a continuously changing climate affects a variety of processes including surface water discharge. An apparent shift in ablation time and loss of snow water equivalent (SWE) in the Sierra Nevada range in California (CA), U.S.A. has been reported from several past studies based on downstream flow and/or point scale in-situ observations records. Understanding the geophysical controls and interannual variability of the spatial patterns of snow accumulation and ablation are critical for predicting the effects of climate variability on the snowpack water storage. Therefore, a continuous space-time characterization of snow distribution that uses spatially and temporally extensive remotely sensed information is necessary to improve our ability to predict and monitor this vital resource in complex mountainous terrain. Toward this end, this research generates spatial and temporal SWE estimates over a snow-dominated watershed located in the Southern Sierra Nevada, CA. We use a reanalysis data assimilation approach that is capable of merging remotely sensed Snow Covered Area (SCA) data into snow prediction models, while at the same time accounting for the limitations of each. SCA information derived from the long-term record of Landsat-5 Thematic Mapper measurements are used. The assimilation of SCA into the land surface model, coupled together with a snow depletion model, predicts continuous (in space and time) SWE at a high spatial resolution. The resulting SWE dataset from the reanalysis framework, and its relation to physiographic properties, is studied to explore specific information related to how snow accumulation and snow melt has evolved and been effected by climate variability and change. In particular, the analysis focuses on highlighting how patterns related to different physiographic components respond to observed climate signals (e.g. Pacific Decadal Oscillation (PDO) and the Oceanic El Niño Index (ONI)) and

  10. Wireless sensor networks to assess the impacts of global change in Sierra Nevada (Spain) mountains

    Science.gov (United States)

    Sánchez-Cano, Francisco M.; Bonet-García, Francisco J.; Pérez-Luque, Antonio J.; Suárez-Muñoz, María

    2017-04-01

    Sierra Nevada Global Change Observatory (southern Spain) aims to improve the ability of ecosystems to address the impacts of global change. To this end, a monitoring program has been implemented based on the collection of long time series on a multitude of biophysical variables. This initiative is part of the Long Term Ecological Research network and is connected to similar ones at national and international level. One of the specific objectives of this LTER site is to improve understanding of the relationships between abiotic factors and ecosystem functioning / structure. Wireless sensor networks are a key instrument for achieving this aim. This contribution describes the design and management of a sensor network that is intended to monitor several biophysical variables with high temporal and spatial resolution in Quercus pyrenaica forests located in this mountain region. The following solution has been adopted in order to obtain the observational data (physical and biological variables). The biological variables will be monitored by PAR sensors (photosynthetically active radiation), and the physical variables will be acquired by a meteorological station and a sensor network composed of temperature and soil moisture sensors, as well as air temperature and humidity ones. To complete the monitoring of the biological variables, a NDVI (Normalized Difference Vegetation Index) camera will be deployed focusing to a Quercus pyrenaica forest from the opposite slope. It should be noted that all monitoring systems exposed will be powered by solar energy. The management of the sensor network covers the deployment of more than 100 sensors, guaranteeing both remote accessibility and reliability of the data. The chosen solution is provided by the company Adevice whose ONE-GO communication system ensures a consistent and efficient sending of those values read by the different sensors towards a central point, from where the information (RAW data) is accessible through WiFi/3G

  11. Observations of the diurnal and seasonal trends in nitrogen oxides in the western Sierra Nevada

    Directory of Open Access Journals (Sweden)

    J. G. Murphy

    2006-06-01

    Full Text Available Observations of speciated nitrogen oxides, namely NO2, total peroxy nitrates (ΣPNs, total alkyl nitrates (ΣANs, and HNO3 by thermal dissociation laser induced fluorescence (TD-LIF, and supporting chemical and meteorological measurements at Big Hill (1860 m, a high elevation site in California's Sierra Nevada Mountains, are described. From May through October, terrain-driven winds in the region routinely bring air from Sacramento, 100 km southwest of the site, upslope over oak and pine forests to Big Hill during the day, while at night, the site often samples clean, dry air characteristic of the free troposphere. Winter differs mainly in that the meteorology does not favour the buildup of Sacramento's pollution over the Sierra Nevada range, and the urban-influenced air that is seen has been less affected by biogenic VOC emissions, resulting in longer lifetime for NO2 and a predominance of the inorganic forms of nitrogen oxides.

    Summertime observations at Big Hill can be compared with those from Granite Bay, a Sacramento suburb, and from the University of California's Blodgett Forest Research Station to examine the evolution of nitrogen oxides and ozone within the urban plume. Nitrogen oxide radicals (NO and NO2, which dominate total nitrogen oxides (NOy at Granite Bay, are rapidly converted into HNO3, ΣPNs, and ΣANs, such that these compounds contribute 29, 30, and 21% respectively to the NOy budget in the plume at Big Hill. Nevertheless, the decreasing concentrations of NO2 as the plume is advected to Big Hill lead to decreases in the production rate of HNO3 and ozone. The data also demonstrate the role that temperature plays in sequestering NO2 into peroxy nitrates, effectively decreasing the rate of ozone production. The important contribution of ΣANs to NOy in the region suggests that they

  12. Observations of the diurnal and seasonal trends in nitrogen oxides in the western Sierra Nevada

    Directory of Open Access Journals (Sweden)

    J. G. Murphy

    2006-01-01

    Full Text Available Observations of speciated nitrogen oxides, namely NO2, total peroxy nitrates (ΣPNs, total alkyl nitrates (ΣANs, and HNO3 by thermal dissociation laser induced fluorescence (TD-LIF, and supporting chemical and meteorological measurements at Big Hill (1860 m, a high elevation site in California's Sierra Nevada Mountains, are described. From May through October, terrain-driven winds in the region routinely bring air from Sacramento, 100 km southwest of the site, upslope over oak and pine forests to Big Hill during the day, while at night, the site often samples clean, dry air characteristic of the free troposphere. Winter differs mainly in that the meteorology does not favour the buildup of Sacramento's pollution over the Sierra Nevada range, and the urban-influenced air that is seen has been less affected by biogenic VOC emissions, resulting in longer lifetime for NO2 and a predominance of the inorganic forms of nitrogen oxides. Summertime observations at Big Hill can be compared with those from Granite Bay, a Sacramento suburb, and from the University of California's Blodgett Forest Research Station to examine the evolution of nitrogen oxides and ozone within the urban plume. Nitrogen oxide radicals (NO and NO2, which dominate total nitrogen oxides (NOy at Granite Bay, are rapidly converted into HNO3, ΣPNs, and ΣANs, such that these compounds contribute 29, 30, and 21% respectively to the NOy budget in the plume at Big Hill. Nevertheless, the decreasing concentrations of NO2 as the plume is advected to Big Hill lead to decreases in the production rate of HNO3 and ozone. The data also demonstrate the role that temperature plays in sequestering NO2 into peroxy nitrates, effectively decreasing the rate of ozone production. The important contribution of ΣANs to NOy in the region suggests that they should be considered with regards to export of NOy from the boundary layer. Nocturnal observations of airmasses characteristic of the

  13. Igneous phenocrystic origin of K-feldspar megacrysts in granitic rocks from the Sierra Nevada batholith

    Science.gov (United States)

    Moore, J.G.; Sisson, T.W.

    2008-01-01

    Study of four K-feldspar megacrystic granitic plutons and related dikes in the Sierra Nevada composite batholith indicates that the megacrysts are phenocrysts that grew in contact with granitic melt. Growth to megacrystic sizes was due to repeated replenishment of the magma bodies by fresh granitic melt that maintained temperatures above the solidus for extended time periods and that provided components necessary for K-feldspar growth. These intrusions cooled 89-83 Ma, are the youngest in the range, and represent the culminating magmatic phase of the Sierra Nevada batholith. They are the granodiorite of Topaz Lake, the Cathedral Peak Granodiorite, the Mono Creek Granite, the Whitney Granodiorite, the Johnson Granite Porphyry, and the Golden Bear Dike. Megacrysts in these igneous bodies attain 4-10 cm in length. All have sawtooth oscillatory zoning marked by varying concentration of BaO ranging generally from 3.5 to 0.5 wt%. Some of the more pronounced zones begin with resorption and channeling of the underlying zone. Layers of mineral inclusions, principally plagioclase, but also biotite, quartz, hornblende, titanite, and accessory minerals, are parallel to the BaO-delineated zones, are sorted by size along the boundaries, and have their long axes preferentially aligned parallel to the boundaries. These features indicate that the K-feldspar megacrysts grew while surrounded by melt, allowing the inclusion minerals to periodically attach themselves to the faces of the growing crystals. The temperature of growth of titanite included within the K-feldspar megacrysts is estimated by use of a Zr-in-titanite geothermometer. Megacryst-hosted titanite grains all yield temperatures typical of felsic magmas, mainly 735-760 ??C. Titanite grains in the granodiorite hosts marginal to the megacrysts range to lower growth temperatures, in some instances into the subsolidus. The limited range and igneous values of growth temperatures for megacryst-hosted titanite grains support the

  14. Hornblende-rich, high grade metamorphic terranes in the southernmost Sierra Nevada, California, and implications for crustal depths and batholith roots

    Science.gov (United States)

    Ross, Donald Clarence

    1983-01-01

    The southernmost Sierra Nevaaa widely exposes hornblende-rich, gneissic to granoblastic, amphibolite- to granulite-grade, metamorphic rocks and associated magmatic rocks, all of mid-Cretaceous age. Locally, red garnet, in part in euhedral crystals as large as 10 cm, as well as strongly pleochroic hyperstnene, characterize these rocks. These hornblende-rich rocks dominate the north slopes of the southern tail of the Sierra Nevada, but are also present as inclusion masses of various sizes in the dominantly granitic terrane to She northeast. The mafic, hornblende-rich rocks reflect a deeper crustal level than the dominantly granitic terrane to the northeast based on: 1) 'index' minerals (presence of hypersthene, coarse garnet, and brown hornblende; 2) textures (considerable ambivalence of whether individual samples are metamorphic or magmatic, 3) metamorphic grade (at least local granulite facies); and 4) the presence of migmatite, and the eviaence of local melting and mobilization. These rocks may be exposures of the upper part of the root zone and metamorphic substrate of the Sierra Nevada batholith. Xenoliths of gneiss, amphibolite, and granulite from sub-batholithic levels, that have been transported upward and preserved in volcanic rocks in the central Sierra Nevada, are similar to some exposed rocks of the southernmost Sierra Nevada. Hypersthene-bearing granulite and tonalite, as well as distinctive granofels of mid-Cretaceous age, are exposed in the western part of the Santa Lucia Range (some 300 km to the northwest across the San Andreas fault). These rocks have much in common with some of the metamorphic and magmatic rocks in the southernmost Sierra Nevada, suggesting that the two areas record similar metamorphic conditions and crustal depth. Mid-Cretaceous hypersthene granulite is rare, which makes correlation of the Santa Lucia Range and the southernmost Sierra Nevada seem attractive. Nevertheless, possibly significant petrographic anm rock distribution

  15. Deformación cuaternaria asociada al frente de levantamiento oriental de las sierras de Velasco y Ambato, Sierras Pampeanas occidentales Quaternary deformation associated with the eastern uplift front of the Sierras de Velasco and Ambato, western Sierras Pampeanas

    Directory of Open Access Journals (Sweden)

    Analía L. Casa

    2010-12-01

    Full Text Available Sobre el frente oriental de la sierra de Velasco y extremo sur de la sierra de Ambato, Sierras Pampeanas Occidentales, se han hallado nuevas evidencias de actividad tectónica cuaternaria en cercanías de la ciudad de La Rioja. Los rasgos reconocidos corresponden a distintos tramos reactivados de las fallas que delimitan los frentes serranos y a estructuras que afectan los depósitos cuaternarios sobre el piedemonte. la sierra de Velasco Oriental se encuentra marginada por fallas de rumbo NNE e inclinación al ONO, mientras que la sierra de Ambato austral presenta estructuras de rumbo NE que inclinan al NO. En el bloque Carrizal estas direcciones se interfieren originando un sector de mayor complejidad estructural. La deformación observada evidencia la persistencia de un régimen compresivo durante el Cuaternario al que se asocian fallas inversas de vergencia oriental a sudoriental. Estas fallas continúan elevando los cordones serranos y constituyen potenciales fuentes sismogénicas.Along the eastern front of the Sierra de Velasco and at the southern end of the Sierra de Ambato, western Sierras Pampeanas, have been found new evidences of Quaternary tectonic activity near La Rioja city. Observed evidences correspond to different reactivated sections of the faults that bound the mountain fronts, as well as to structures affecting the Quaternary deposits on the piedmont. The bounding faults of the Sierra de Velasco Oriental-front exhibit a NNE trend and WNW dip, while structures at the southernmost Ambato range are characterized by NE trend and NW dip. The neotectonic faults of the El Carrizal block are the result of the interference of both structural trends, resulting in a sector with higher structural complexity. The here described deformation show the persistence of a compressive regime during the Quaternary, with eastern to southeastern verging reverse faults. It is considering that these faults are driving the current uplift of the mountain

  16. Ten Years of Forest Cover Change in the Sierra Nevada Detected Using Landsat Satellite Image Analysis

    Science.gov (United States)

    Potter, Christopher S.

    2014-01-01

    The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) methodology was applied to detected changes in forest vegetation cover for areas burned by wildfires in the Sierra Nevada Mountains of California between the periods of 1975- 79 and 1995-1999. Results for areas burned by wildfire between 1995 and 1999 confirmed the importance of regrowing forest vegetation over 17% of the combined burned areas. A notable fraction (12%) of the entire 5-km (unburned) buffer area outside the 1995-199 fires perimeters showed decline in forest cover, and not nearly as many regrowing forest areas, covering only 3% of all the 1995-1999 buffer areas combined. Areas burned by wildfire between 1975 and 1979 confirmed the importance of disturbed (or declining evergreen) vegetation covering 13% of the combined 1975- 1979 burned areas. Based on comparison of these results to ground-based survey data, the LEDAPS methodology should be capable of fulfilling much of the need for consistent, low-cost monitoring of changes due to climate and biological factors in western forest regrowth following stand-replacing disturbances.

  17. Can footwall unloading explain late Cenozoic uplift of the Sierra Nevada crest?

    Science.gov (United States)

    Thompson, G.A.; Parsons, T.

    2009-01-01

    Globally, normal-fault displacement bends and warps rift flanks upwards, as adjoining basins drop downwards. Perhaps the most evident manifestations are the flanks of the East African Rift, which cuts across the otherwise minimally deformed continent. Flank uplift was explained by Vening Meinesz (1950, Institut Royal Colonial Belge, Bulletin des Seances, v. 21, p. 539-552), who recognized that isostasy should cause uplift of a normal-faulted footwall and subsidence of its hanging wall. Uplift occurs because slip on a dipping normal fault creates a broader root of less-dense material beneath the footwall, and a narrowed one beneath the hanging wall. In this paper, we investigate the potential influence of this process on the latest stages of Sierra Nevada uplift. Through theoretical calculations and 3D finite element modelling, we find that cumulative slip of about 4km on range-front faults would have produced about 1.3km peak isostatic uplift at the ridge crest. Numerical models suggest that the zone of uplift is narrow, with the width controlled by bending resistance of the seismogenic crust. We conclude that footwall unloading cannot account for the entire elevation of the Sierran crest above sea level, but if range-front faulting initiated in an already elevated plateau like the adjacent Basin and Range Province, then a hybrid model of pre-existing regional uplift and localized footwall unloading can account for the older and newer uplift phases suggested by the geologic record.

  18. Origin of Meter-Size Granite Basins in the Southern Sierra Nevada, California

    Science.gov (United States)

    Moore, James G.; Gorden, Mary A.; Robinson, Joel E.; Moring, Barry C.

    2008-01-01

    Meter-size granite basins are found in a 180-km belt extending south from the South Fork of the Kings River to Lake Isabella on the west slope of the southern Sierra Nevada, California. Their origin has long been debated. A total of 1,033 basins have been inventoried at 221 sites. The basins occur on bedrock granitic outcrops at a median elevation of 1,950 m. Median basin diameter among 30 of the basin sites varies from 89 to 170 cm, median depth is 12 to 63 cm. Eighty percent of the basin sites also contain smaller bedrock mortars (~1-2 liters in capacity) of the type used by Native Americans (American Indians) to grind acorns. Features that suggest a manmade origin for the basins are: restricted size, shape, and elevation range; common association with Indian middens and grinding mortars; a south- and west-facing aspect; presence of differing shapes in distinct localities; and location in a food-rich belt with pleasant summer weather. Volcanic ash (erupted A.D. 1240+-60) in the bottom of several of the basins indicates that they were used shortly before ~760 years ago but not thereafter. Experiments suggest that campfires built on the granite will weaken the bedrock and expedite excavation of the basins. The primary use of the basins was apparently in preparing food, including acorns and pine nuts. The basins are among the largest and most permanent artifacts remaining from the California Indian civilization.

  19. [Dung beetles (Coleoptera: Scarabaeinae) of the northwestern slope of the Sierra Nevada of Santa Marta, Colombia].

    Science.gov (United States)

    Martínez, Neis J; García, Héctor; Pulido, Luz A; Ospino, Deibi; Harváez, Juan C

    2009-01-01

    The community structure of dung beetles in the middle and lower river basin of the Gaira river, Sierra Nevada de Santa Marta, Colombia, is described. Four sites were selected along an altitudinal gradient of 50-940 m for sampling from June to October, 2004. Dung beetles were captured using modified pitfall traps and manual recollections. We captured 7,872 individuals belonging to 29 species, distributed in 15 genera and five tribes of Scarabaeinae. Canthon and Onthophagus were the most diverse genera, each represented by six species. The sampled sites shared the following species: Onthophagus acuminatus Harold, O. clypeatus Blanchard, O. marginicollis Harold. Bocatoma was the most diverse site with 23 species; whereas Port Mosquito presented the highest abundance, with 3,262 individuals. Seven species represented 89% of all captures: Canthidium sp., Dichotomius sp., Uroxys sp. 1, Uroxys sp. 2, O. marginicollis, O. clypeatus and O. acuminatus. Of the 29 captured species, 17 belonged to the functional group of diggers and 10 were ball-rollers. We did not observe significant among-site differences in community structure. Abiotic factors such as altitude, temperature and humidity cannot explain observed variation in community structure across sites, indicating other variables such as vegetation cover, density of the vegetation and soil type may play a role in the community structure of these insects.

  20. Landscape genetics of alpine Sierra Nevada salamanders reveal extreme population subdivision in space and time.

    Science.gov (United States)

    Savage, Wesley K; Fremier, Alexander K; Shaffer, H Bradley

    2010-08-01

    Quantifying the influence of the landscape on the genetic structure of natural populations remains an important empirical challenge, particularly for poorly studied, ecologically cryptic species. We conducted an extensive microsatellite analysis to examine the population genetics of the southern long-toed salamander (Ambystoma macrodactylum sigillatum) in a naturally complex landscape. Using spatially explicit modelling, we investigated the influence of the Sierra Nevada topography on potential dispersal corridors between sampled populations. Our results indicate very high-genetic divergence among populations, high within-deme relatedness, and little evidence of recent migration or population admixture. We also discovered unexpectedly high between-year genetic differentiation (F(ST)) for breeding sites, suggesting that breeding groups vary over localized space and time. While environmental factors associated with high-elevation montane habitats apparently play an important role in shaping population differentiation, additional, species-specific biological processes must also be operating to account for observed deviations from temporal, among-year panmixia. Our study emphasizes the population-level insights that can be gained from high-density sampling in space and time, and the highly substructured population biology that may characterize amphibians in extreme montane habitats.

  1. Long Valley caldera and the UCERF depiction of Sierra Nevada range-front faults

    Science.gov (United States)

    Hill, David P.; Montgomery-Brown, Emily K.

    2015-01-01

    Long Valley caldera lies within a left-stepping offset in the north-northwest-striking Sierra Nevada range-front normal faults with the Hilton Creek fault to the south and Hartley Springs fault to the north. Both Uniform California Earthquake Rupture Forecast (UCERF) 2 and its update, UCERF3, depict slip on these major range-front normal faults as extending well into the caldera, with significant normal slip on overlapping, subparallel segments separated by ∼10  km. This depiction is countered by (1) geologic evidence that normal faulting within the caldera consists of a series of graben structures associated with postcaldera magmatism (intrusion and tumescence) and not systematic down-to-the-east displacements consistent with distributed range-front faulting and (2) the lack of kinematic evidence for an evolving, postcaldera relay ramp structure between overlapping strands of the two range-front normal faults. The modifications to the UCERF depiction described here reduce the predicted shaking intensity within the caldera, and they are in accord with the tectonic influence that underlapped offset range-front faults have on seismicity patterns within the caldera associated with ongoing volcanic unrest.

  2. Air Pollution and Watershed Research in the Central Sierra Nevada of California: Nitrogen and Ozone

    Directory of Open Access Journals (Sweden)

    Carolyn Hunsaker

    2007-01-01

    Full Text Available Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3 and nitrogenous (N air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their presence. Such information is essential for development of proper management strategies for maintaining clean air, clean water, and healthy ecosystems on land managed by the Forest Service. We report on two years of research in the central Sierra Nevada of California, a semi-arid forest at elevations of 1100–2700 m. Information on O3 and N air pollutants is obtained from a network of 18 passive samplers. We relate the atmospheric N concentration to N concentrations in streams, shallow soil water, and bulk deposition collectors within the Kings River Experimental Watershed. This watershed also contains an intensive site that is part of a recent Forest Service effort to calculate critical loads for N, sulfur, and acidity to forest ecosystems. The passive sampler design allows for extensive spatial measurements while the watershed experiment provides intensive spatial data for future analysis of ecosystem processes.

  3. Characterizing the Networks of Digital Information that Support Collaborative Adaptive Forest Management in Sierra Nevada Forests.

    Science.gov (United States)

    Lei, Shufei; Iles, Alastair; Kelly, Maggi

    2015-07-01

    Some of the factors that can contribute to the success of collaborative adaptive management--such as social learning, open communication, and trust--are built upon a foundation of the open exchange of information about science and management between participants and the public. Despite the importance of information transparency, the use and flow of information in collaborative adaptive management has not been characterized in detail in the literature, and currently there exist opportunities to develop strategies for increasing the exchange of information, as well as to track information flow in such contexts. As digital information channels and networks have been increased over the last decade, powerful new information monitoring tools have also been evolved allowing for the complete characterization of information products through their production, transport, use, and monitoring. This study uses these tools to investigate the use of various science and management information products in a case study--the Sierra Nevada Adaptive Management Project--using a mixed method (citation analysis, web analytics, and content analysis) research approach borrowed from the information processing and management field. The results from our case study show that information technologies greatly facilitate the flow and use of digital information, leading to multiparty collaborations such as knowledge transfer and public participation in science research. We conclude with recommendations for expanding information exchange in collaborative adaptive management by taking advantage of available information technologies and networks.

  4. Vegetation and climate history from Laguna de Río Seco, Sierra Nevada, southern Spain

    Science.gov (United States)

    Anderson, R. S.; Jimenez-Moreno, G.

    2010-12-01

    The largest mountain range in southern Spain - the Sierra Nevada - is an immense landscape with a rich biological and cultural heritage. Rising to 3,479 m at the summit of Mulhacén, the range was extensively glaciated during the late Pleistocene. Subsequent melting of cirque glaciers allowed formation of numerous small lakes and wetlands. One south-facing basin contains Laguna de Río Seco, a small lake at ca. 3020 m elevation, presently above potential treeline. Pollen analysis of sediment cores documents over 11,000 calendar years of vegetation change there. The early record, to ca. 5,700 cal yr BP, is dominated by pine pollen, with birch, deciduous oak, and grass, with an understory of shrubs types. Pine trees probably never grew at the elevation of the lake, but aquatic microfossils indicate lake levels were highest prior to ca. 7,800 cal yr BP, perhaps as a result of heavy winter precipitation, and early Holocene expansion of the ITCZ. Drier conditions commenced by 5,700 cal yr BP, shown by declines in wetland pollen, and increases in high elevation steppe shrubs more common today (juniper, sage, and others). The local and regional impact of humans increased substantially after ca. 2700 years ago, with the regional loss of pine forest or woodland, increases in pollen and spore types associated with pasturing, and olive cultivation at lower elevations.

  5. Conifer Growth Response to Snowpack across an Elevation Gradient in Northern Sierra Nevada Mountains, California

    Science.gov (United States)

    Lepley, K. S.; Touchan, R.; Meko, D. M.; Graham, R.; Shamir, E.

    2016-12-01

    The United States depends heavily on the agricultural resources of the state of California, and water is the key factor in sustaining these resources. Around a third of the state's water supply originates from snow in the Sierra Nevada Mountains. Managing this resource demands understanding of climatic variability on time-scales of decades to centuries to plan for drought conditions in the region. Tree-ring growth spanning several centuries can serve as proxy records and provide the knowledge upon which to base sound decisions for water-resource management. Here we will discuss the growth-response of six tree species to April 1st snow-water equivalent (SWE) across an elevation gradient of 1500 m to 2525 m. Higher elevation (ca. 1890 m to 2525 m) tree-ring chronologies exhibit significant correlation (r = 0.45 to r = 0.57, p Juniperus occidentalis chronologies show no significant correlation with SWE, however PIPO responds positively at a site 500 m higher in elevation. In contrast, ABMA chronologies from two sites with a 500 m elevation difference exhibit the same response to snowpack. The strong relationship between annual tree-ring growth and April 1st SWE in these tree species opens possibilities of exploring historic snowpack patterns and elucidating dendroclimatic relationships in the mountainous west.

  6. Evaluating potential overlap between pack stock and Sierra Nevada bighorn sheep (Ovis canadensis sierrae) in Sequoia and Kings Canyon National Parks, California

    Science.gov (United States)

    Klinger, Robert C.; Few, Alexandra P.; Knox, Kathleen A.; Hatfield, Brian E.; Clark, Jonathan; German, David W.; Stephenson, Thomas R.

    2015-01-01

    Pack stock (horses, mules, burros, llamas, and goats) are frequently assumed to have negative effects on public lands, but there is a general lack of data to be able to quantify the degree to which this is actually the case. Sequoia and Kings Canyon National Parks have received complaints that pack stock may affect Sierra Nevada bighorn sheep (Ovis canadensis sierrae; SNBS), a federally endangered subspecies that occurs in largely disjunct herds in the Sierra Nevada Range of California. The potential effects are thought to be displacement of SNBS from meadows on their summer range (altered habitat use) or, more indirectly, through changes in SNBS habitat or forage quality. Our goals were to conduct an association analysis to quantify the degree of potential spatial overlap in meadow use between SNBS and pack stock and to compare differences in vegetation community composition, structure, and diversity among meadows with different levels of use by bighorn sheep and pack stock. For the association analysis, we used two approaches: (1) we quantified the proportion of meadows that were within the herd home ranges of bighorn sheep and were potentially open to pack stock, and, (2) we used Monte Carlo simulations and use-availability analyses to compare the proportion of meadows used by bighorn sheep relative to the proportional occurrence or area of meadows available to bighorn sheep that were used by pack stock. To evaluate potential effects of pack stock on meadow plant communities and SNBS forage, we sampled vegetation in 2011 and 2012 at 100 plots to generate data that allowed us to compare:

  7. Simulating 3-D radiative transfer effects over the Sierra Nevada mountains using WRF

    Directory of Open Access Journals (Sweden)

    Y. Gu

    2012-08-01

    Full Text Available A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra Nevada in the Western United States as a testbed, we show that mountain effect could produce up to −50 to +50 W m−2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shade side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to −40 g m−2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between −12~12 W m−2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the

  8. Geochronologic, Isotopic, and Trace Element Constraints on Zircon Recycling in Sierra Crest Intrusive Suites, Sierra Nevada Batholith, USA

    Science.gov (United States)

    Miller, J. S.; Lackey, J.; Memeti, V.; Hirt, W. H.; Wooden, J. L.

    2011-12-01

    Owing to its ubiquity and chemical properties, zircon is the primary tool for obtaining age information from felsic igneous rocks. Numerous geochronologic studies in ancient and recent plutonic and volcanic rocks over the last decade have shown: (1) that assemblages of zircons from single hand samples rarely crystallized at the same time; (2) that zircons from single hand samples may have variable geochemistry and isotopic compositions requiring distinct growth environments. Nonetheless, the conditions under which diverse assemblages of magmatic zircons crystallize, are dispersed and then gathered within such magma systems are less well understood. We have initiated a systematic geochemical (trace element) and isotopic (δ18O, 176Hf/177Hf) investigation of zircons from dated plutons within several of the Cretaceous Sierran Crest zoned intrusive suites of the Sierra Nevada Batholith to better understand melt sources and zircon recycling within these large magma systems. Preliminary O and Hf isotopic results indicate that zircon assemblages between different intrusive suites have variable isotopic compositions with multiple crustal and mantle sources involved. Preliminary trace element analysis of some of the zircon suites also show appreciable variability but important trends have emerged from the data. In particular, there are pronounced differences between trace element patterns and ratios of the youngest, interior, K-feldspar megacryst-bearing granodiorites (e.g. Cathedral Peak, Mono Creek, Whitney) and the older outer units of the intrusive suites, which are generally more mafic granodiorites and tonalites. In contrast to the more mafic outer units, zircons from the inner megacryst-bearing intrusions are overwhelmingly characterized by low Ti-in-zircon (Tzrn,Ti) model temperatures (regardless of uncertainties in aTiO2), low concentrations of MREEs, high Yb/Gd, low Th/U, high Hf, and high Eu/Eu*. These characteristics, and generally low Zr contents of the

  9. Fauna del suelo en bosques y cafetales de la Sierra Nevada de Santa Marta, Colombia Soil fauna in forest and coffee plantations from the Sierra Nevada de Santa Marta, Colombia

    Directory of Open Access Journals (Sweden)

    Camero R. Edgar

    2002-11-01

    Full Text Available

    En la Sierra Nevada de Santa Marta se establecieron dos estaciones de muestreo en las localidades de Minca a 700 m de altitud y María Teresa a 790 m, para realizar comparaciones de la fauna asociada a los suelos de plantaciones de café y de bosques naturales. Las colecciones se realizaron tanto en la hojarasca como en los horizontes  subsuperficiales O, Ay B de las dos coberturas vegetales mediante el empleo de trampas Pitfall y Berlesse y se utilizaron índices de diversidad, abundancia relativa y frecuencia para comparar su composici6n biológica, la cual se determine a nivel de familia. Los resultados mostraron diferencias significativas, tanto en la composición como en la abundancia y frecuencia de los grupos colectados en los dos tipos de ecosistemas, así Como variaciones altitudinales significativas al comparar los resultados obtenidos en los bosques nativos con trabajos hechos en zonas de mayor altitud en este sistema montañoso.

    Two research stations (Minca, 700 m altitude and Marfa Teresa, 790 m altitude were established in the Sierra Nevada de Santa Marta in places to study the soil fauna associated with forest and coffee plantations. Soil fauna was collected using Pitfall and Berlesse traps. Samples were taken from litter as well as from horizons O, A and B. Individuals collected were identified to family level. Diversity, abundance and frequency indexes were used to compare fauna composition at both sites. Significant differences were found between the two research sites as well as with data from other high altitude forest in the Sierra Nevada de Santa Marta.

  10. Climate change and Saharan dust drive recent cladoceran and primary production changes in remote alpine lakes of Sierra Nevada, Spain.

    Science.gov (United States)

    Jiménez, Laura; Rühland, Kathleen M; Jeziorski, Adam; Smol, John P; Pérez-Martínez, Carmen

    2017-08-22

    Recent anthropogenic climate change and the exponential increase over the past few decades of Saharan dust deposition, containing ecologically important inputs of phosphorus (P) and calcium (Ca), are potentially affecting remote aquatic ecosystems. In this study, we examine changes in cladoceran assemblage composition and chlorophyll-a concentrations over the past ~150 years from high-resolution, well-dated sediment cores retrieved from six remote high mountain lakes in the Sierra Nevada Mountains of Southern Spain, a region affected by Saharan dust deposition. In each lake, marked shifts in cladoceran assemblages and chlorophyll-a concentrations in recent decades indicate a regional-scale response to climate and Saharan dust deposition. Chlorophyll-a concentrations have increased since the 1970s, consistent with a response to rising air temperatures and the intensification of atmospheric deposition of Saharan P. Similar shifts in cladoceran taxa across lakes began over a century ago, but have intensified over the past ~50 years, concurrent with trends in regional air temperature, precipitation, and increased Saharan dust deposition. An abrupt increase in the relative abundance of the benthic cladoceran Alona quadrangularis at the expense of Chydorus sphaericus, and a significant increase in Daphnia pulex gr. was a common trend in these softwater lakes. Differences in the magnitude and timing of these changes are likely due to catchment and lake-specific differences. In contrast with other alpine lakes that are often affected by acid deposition, atmospheric Ca deposition appears to be a significant explanatory factor, amongst others, for the changes in the lake biota of Sierra Nevada that has not been previously considered. The effects observed in Sierra Nevada are likely occurring in other Mediterranean lake districts, especially in soft water, oligotrophic lakes. The predicted increases in global temperature and Saharan dust deposition in the future will further

  11. Do High-elevation Lakes Record Variations in Snowfall and Atmospheric Rivers in the Sierra Nevada of California?

    Science.gov (United States)

    Ashford, J.; Sickman, J. O.; Lucero, D. M.

    2014-12-01

    Understanding the underlying causes of interannual variation in snowfall and extreme hydrologic events in the Sierra Nevada is hampered by short instrumental records and the difficulties in reconstructing climate using a traditional paleo-record such as tree-rings. New paleo proxies are needed to provide a record of snowpack water content and extreme precipitation events over millennial timescales which can be used to test hypotheses regarding teleconnections between Pacific climate variability and water supply and flood risk in California. In October 2013 we collected sediment cores from Pear Lake (z = 27 m), an alpine lake in Sequoia National Park. The cores were split and characterized by P-wave velocity, magnetic susceptibility and density scanning. Radiocarbon dates indicate that the Pear Lake cores contain a 13.5K yr record of lake sediment. In contrast to other Sierra Nevada lakes previously cored by our group, high-resolution scanning revealed alternating light-dark bands (~1 mm to 5 mm thick) for most of the Pear Lake core length. This pattern was interrupted at intervals by homogenous clasts (up to 75 mm thick) ranging in grain size from sand to gravel up to 1 cm diameter. We hypothesize that the light-dark banding results from the breakdown of persistent hypolimnetic anoxia during spring snowmelt and autumn overturn. We speculate that the thicknesses of the dark bands are controlled by the duration of anoxia which in turn is controlled by the volume and duration of snowmelt. The sand to gravel sized clasts are most likely associated with extreme precipitation events resulting from atmospheric rivers intersecting the southern Sierra Nevada. We hypothesize that centimeter-sized clasts are deposited in large avalanches and that the sands are deposited in large rain events outside of the snow-cover period.

  12. Research design for hydrologic response to watershed treatments in the mixed conifer zone of California's Sierra Nevada

    Science.gov (United States)

    Battles, J.; Bales, R.; Conklin, M.; Saksa, P.; Martin, S.

    2008-12-01

    Water quantity response to forest management is of great interest in California's Sierra Nevada, owing to shifts in the rain-snow transition elevation associated with climate change, increasing value of hydropower from high-elevation dams, and the re-examination of adaptive management strategies for wildfire mitigation. In 2006 we initiated a multi-disciplinary research program to inform adaptive management for Forest Service lands in the Sierra Nevada. The forest treatment approach is based on disconnected, overlapping fuel treatment patches (forest thinning) to reduce the rate and intensity of fire. As little as 30% of the area in a given catchment will be treated. Controlling for confounding influences is particularly challenging when the experimental unit is a whole landscape and the inferential reference is an entire region. To isolate water and ecosystem impacts related to forest thinning, we are using a Before After Control Impact (BACI) design in conjunction with mechanistic modeling. BACI compensates for the sparse replication (2 sites) and the non- random assignment of the treatments by providing robust longitudinal controls. BACI design defines two treatments, a control and an impact. For modeling fire and wildlife response we chose subdivided the region into two 40-km2 sub-firesheds; within each is a 1-km2 hydrologic study catchment. The control site in this a measure of natural variation rather than a true control. Meta-replication using parallel studies in the Sierra Nevada with different approaches is also an important component and involves a creative combination of data from multiple sources. Rather than statistical comparisons or traditional hypothesis testing, we will measure the support in the data for our a priori expectations using mechanistic models. We are currently evaluating how to extend this research design to private forest lands with a wider range of management options.

  13. Prevalencia de patologías tropicales y factores de riesgo en la comunidad indígena de bunkwimake, sierra nevada de Santa Marta

    OpenAIRE

    Dib, Juan C.; Luz Adriana Agudelo; Iván Darío Vélez

    2013-01-01

    Las enfermedades tropicales son endémicas en la Sierra Nevada de Santa Marta, sin embargo se carece de información acerca de la distribución de estas enfermedades en las comunidades indígenas que la habitan. Mediante estudios entomológicos y seroepidemiológicos, se estudiaron los factores de riesgo y la prevalencia de enfermedad de Chagas, leishmaniosis, hepatitis B y parasitosis intestinales en la comunidad indígena de Bunkwimake, ubicada en la vertiente norte de la Sierra Nevada. Los result...

  14. Challenges to Sierra Nevada forests and their local communities: An observational and modeling perspective

    Science.gov (United States)

    Schmidt, Cynthia L.

    Global forests are experiencing dramatic changes due to changes in climate as well as anthropogenic activities. Increased warming is causing the advancement of some species upslope and northward, while it is also causing widespread mortality due to increased drought conditions. In addition, increasing human population in mountain regions is resulting in elevated risk of human life and property loss due to larger and more severe wildfires. My research focuses on assessing the current vulnerability of forests and their communities in the Sierra Nevada, and how forests are projected to change in the future based on different climate change scenarios. In the first chapter I use Landsat satellite imagery to identify and attribute cause of forest disturbance between 1985 and 2011, primarily focusing on disturbances due to insect, diseases and drought. The change-detection algorithm, Landtrendr, was successfully used to identify forest disturbance, but identifying cause of disturbance was challenging due to the spectral similarities between disturbance types. Landtrendr was most successful in identifying disturbance due to insect, disease and drought in the San Bernardino National Forest, where there is little forest management activity. In the second chapter, I assess whether state or local land use policies in high-fire prone regions exist to reduce the vulnerability of residential developments to wildfire. Three specific land-use tools associated with reducing wildfire vulnerability are identified: (1) buffers around developments; (2) clustered developments; (3) restricting construction on slopes greater than 25%. The study also determines whether demographic and physical characteristics of selected California counties were related to implementing land use policies related to reducing wildfire vulnerability. Results indicate that land use policies related to preventing wildfire-related losses focus on building materials, road access, water availability and vegetation

  15. Underwater Dendrochronology of the Sierra Nevada: Testing the Medieval Mega-Drought Hypothesis

    Science.gov (United States)

    Biondi, F.; Kleppe, J. A.; Brothers, D.; Kent, G.

    2006-12-01

    As stated in the NAS STR Report, "regional and large-scale reconstructions of changes in other climatic variables, such as precipitation, over the last 2,000 years would provide a valuable complement to those made for temperature." In this context, we focus on the 'Medieval Mega-drought Hypothesis', which is based on radiocarbon dating of dead trees and stumps found underwater in Sierra Nevada lakes and streambeds, and states that century-long dry periods caused lakes to retreat and streams to dry up, with the most recent mega-droughts happening during medieval times. While several paleoclimatic records support this hypothesis, some do not, and the possibility exists that geomorphic processes, such as landslides caused by seismic events, were responsible for the presence of trees and stumps under current bodies of water. Given the relevance of this hypothesis, not only for sustainable water management but also for social stability and security, it is necessary to test it beyond reasonable doubt. One way to do so is by measuring the location, orientation, and time of origin of underwater trees, to determine if they were transported or grew in situ. For example, during 2005 wood samples were retrieved from submerged trees at Fallen Leaf Lake, California. The trees had been previously located and documented using an ROV that can obtain high resolution color video, and collect small surface samples using a gripper, down to a water depth of about 150 m. For tree-ring dating, a reference chronology from AD 543 to 2003 was developed using live and dead western juniper trees located near the lake. One underwater sample, i.e. a branch cross section that included 69 rings, was then dated to AD 1085-1153. This shows that it is feasible to obtain calendar dates and continuous ring-width series from underwater trees in the Sierra Nevada. Submerged trees in Fallen Leaf Lake were mapped in summer 2006 using an EdgeTech 4200 side-scan system capable of decimeter resolution. The 5

  16. Evaposublimation from the snow in the Mediterranean mountains of Sierra Nevada (Spain)

    Science.gov (United States)

    Herrero, Javier; José Polo, María

    2016-12-01

    In this study we quantify the evaposublimation and the energy balance of the seasonal snowpack in the Mediterranean semiarid region of Sierra Nevada, Spain (37° N). In these kinds of regions, the incidence of this return of water to the atmosphere is particularly important to the hydrology and water availability. The analysis of the evaposublimation from snow allows us to deduct the losses of water expected in the short and medium term and is critical for the efficient planning of this basic and scarce resource. To achieve this, we performed 10 field campaigns from 2009 to 2015, during which detailed measurements of mass fluxes of a controlled volume of snow were recorded using a modified version of an evaporation pan with lysimeter. Meteorological data at the site of the snow control volume were extensively monitored during the tests. With these data, a point energy balance snowmelt model was validated for the area. This model, fed with the complete meteorological data set available at the Refugio Poqueira Station (2500 m a.s.l.), let us estimate that evaposublimation losses for this site can range from 24 to 33 % of total annual ablation. This ratio is very variable throughout the year and between years, depending on the particular occurrence of snowfall and mild weather events, which is generally quite erratic in this semiarid region. Evaposublimation proceeds at maximum rates of up to 0.49 mm h-1, an order of magnitude less than maximum melt rates. However, evaposublimation occurs during 60 % of the time that snow lies, while snowmelt only takes up 10 % of this time. Hence, both processes remain close in magnitude on the annual scale.

  17. Effects of copper on species composition of periphyton in a Sierra Nevada, California, stream

    Energy Technology Data Exchange (ETDEWEB)

    Leland, H.V.; Carter, J.L.

    1984-06-01

    Changes in species composition of the periphyton of an oliotrophic, Sierra Nevada stream continuously dosed for 1 year at three concentrations of copper (2.5, 5 and 10..mu..g 1/sup -1/ Cu/sub T/; approximately 12, 25 and 50 ng 1/sup -1/ Cu/sup 2 +/) were determined. The numerically most abundant taxa were Bacillariophyceae (Achnanthes minutissima, Cocconeis placentula, Cymbella microcephala, C. sinuata, Fragilaria construens, F. crotonensis, Navicula spp., Synedra acus and S. rumpens), and the Cyanophyta Lynbya spp., a co-dominant during spring and summer. Population densities of Lyngbya spp. were markedly reduced at all test concentrations of copper. Population densities of the principal Chlorophyta (Spirogyra spp. and Cladophora spp.) and the diatom Amphipleura pellucida were reduced at 5 ..mu..g 1/sup -1/ Cu/sub T/. Of the twenty-two most abundant taxa, sixteen were reduced in abundance by continuous exposure to 10 ..mu..g 1/sup -1/ Cu/sub T/. There was no commensurate reduction in standing crop (total number of individuals of all taxa). Achnanthes minutissima, a co-dominant in the control, was the primary replacement species. Other taxa that were more abundant at 5 ..mu..g 1/sup -1/ Cu/sub T/ than in the control were Ceratoneis arcus, Cocconeis placentula, Navicula spp. and Synedra rumpens. Only A. minutissima and Calothrix spp. were more abundant at l10 ..mu..g 1/sup -1/ than in the control. Three resemblance measures (Canberra metric, Bray-Curtis and Dice) and diversity (Brillouin's) were evaluated for detecting differences in species composition among experimental stream sections. The Canberra metric, an index sensitive to proportional rather than absolute differences, was the most informative of these indices.

  18. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada.

    Science.gov (United States)

    Tang, Jianwu; Qi, Ye; Xu, Ming; Misson, Laurent; Goldstein, Allen H

    2005-01-01

    Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.

  19. Extent, timing, and climatic significance of latest Pleistocene and Holocene glaciation in the Sierra Nevada, California

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Douglas Howe [Univ. of Washington, Seattle, WA (United States)

    1995-01-01

    Despite more than a century of study, scant attention has been paid to the glacial record in the northern end of the Sierra Nevada, and to the smaller moraines deposited after the retreat of the Tioga (last glacial maximum) glaciers. Equilibrium-line altitude (ELA) estimates of the ice fields indicate that the Tioga ELA gradients there are consistent with similar estimates for the southern half of the range, and with an intensification of the modern temperature/precipitation pattern in the region. The Recess Peak advance has traditionally been considered to be mid-Neoglacial age, about 2--3,000 yr B.P., on the basis of relative weathering estimates. Sediment cores of lakes dammed behind moraines correlative with Recess Peak in four widely spaced sites yields a series of high-resolution AMS radiocarbon dates which demonstrate that Recess Peak glaciers retreated before ~13,100 cal yr B.P.. This minimum limiting age indicates that the advance predates the North Atlantic Younger Dryas cooling. It also implies that there have been no advances larger than the Matthes in the roughly 12,000 year interval between it and the Recess Peak advance. This finding casts doubt on several recent studies that claim Younger Dryas glacier advances in western North America. The 13,100 cal yr B.P. date is also a minimum age for deglaciation of the sample sites used to calibrate the in situ production rates of cosmogenic 10Be and 26Al. The discrepancy between this age and the 11,000 cal yr B.P. exposure age assumed in the original calibration introduces a large (> 19%) potential error in late-Pleistocene exposure ages calculated using these production rates.

  20. Hillslope Erosion and Water Quality from the Rim Fire, Sierra Nevada, CA

    Science.gov (United States)

    Kuhn, T. J.; Austin, L. J.; Forrester, H.; DeLong, S. B.; Lever, R.; Roche, J. W.

    2014-12-01

    The Rim Fire in 2013 burned approximately 1036 km2 in the Sierra Nevada (including 312 km2 within Yosemite National Park), generating considerable public concern regarding potential impacts to the Tuolumne River watershed, in terms of water quality and water supply infrastructure serving the City of San Francisco. Land management responses included a multi-million dollar watershed treatment project on USFS lands near Cherry Creek, with similar actions suggested for areas in the Hetch Hetchy and Lake Eleanor watersheds. In response to the concern that the post-burn landscape will negatively impact water quality, we are investigating hydrologic effects and hillslope erosion in two small burned basins (2.2 and 5.2 km2) within the Tuolumne River basin in Yosemite National Park. Within a month after fire containment, sites were equipped with instrumentation to record stream stage, turbidity, and total suspended sediment. We also installed 21 sediment fences that trap all sediment silt sized and larger on moderate (20%) to steep (50%) hillslopes from 100 m2 plots within moderate and high severity burn areas. Accumulated sediment is collected, weighed, and sub-sampled after each storm event, and, analyzed for dry weight, particle size, gravimetric water content, bulk density, pH, color, carbon and nitrogen content from % fine organics, and % coarse organics. As of July 31, 2014, four discrete storm events had been sampled. Data are used to calculate annual sediment yield, and to investigate organic carbon storage, deposition, and transport. We are also collecting repeat terrestrial laser scans to assess topographic change and identify the hillslope processes that contribute to erosion and deposition at plot- and hillslope-scale. These findings provide analogs for possible changes in adjacent burned areas and to inform management decisions in response to future fires and potential impacts to water quality in areas valued by the park, the City of San Francisco and other

  1. Bulk arc strain, crustal thickening, magma emplacement, and mass balances in the Mesozoic Sierra Nevada arc

    Science.gov (United States)

    Cao, Wenrong; Paterson, Scott; Saleeby, Jason; Zalunardo, Sean

    2016-03-01

    Quantifying crustal deformation is important for evaluating mass balance, material transfer, and the interplay between tectonism and magmatism in continental arcs. We present a dataset of >650 finite strain analyses compiled from published works and our own studies with associated structural, geochronologic, and geobarometric information in central and southern Sierra Nevada, California, to quantify the arc crust deformation. Our results show that Mesozoic tectonism results in 65% arc-perpendicular bulk crust shortening under a more or less plane strain condition. Mesozoic arc magmatism replaced ∼80% of this actively deforming arc crust with plutons requiring significantly greater crustal thickening. We suggest that by ∼85 Ma, the arc crust thickness was ∼80 km with a 30-km-thick arc root, resulting in a ∼5 km elevation. Most tectonic shortening and magma emplacement must be accommodated by downward displacements of crustal materials into growing crustal roots at the estimated downward transfer rate of 2-13 km/Myr. The downward transfer of crustal materials must occur in active magma channels, or in "escape channels" in between solidified plutons that decrease in size with time and depth resulting in an increase in the intensity of constrictional strain with depth. We argue that both tectonism and magmatism control the thickness of the crust and surface elevation with slight modification by surface erosion. The downward transported crustal materials initially fertilize the MASH zone thus enhancing to the generation of additional magmas. As the crustal root grows it may potentially pinch out and cool the mantle wedge and thus cause reduction of arc magmatism.

  2. The accuracy of matrix population model projections for coniferous trees in the Sierra Nevada, California

    Science.gov (United States)

    van Mantgem, P.J.; Stephenson, N.L.

    2005-01-01

    1 We assess the use of simple, size-based matrix population models for projecting population trends for six coniferous tree species in the Sierra Nevada, California. We used demographic data from 16 673 trees in 15 permanent plots to create 17 separate time-invariant, density-independent population projection models, and determined differences between trends projected from initial surveys with a 5-year interval and observed data during two subsequent 5-year time steps. 2 We detected departures from the assumptions of the matrix modelling approach in terms of strong growth autocorrelations. We also found evidence of observation errors for measurements of tree growth and, to a more limited degree, recruitment. Loglinear analysis provided evidence of significant temporal variation in demographic rates for only two of the 17 populations. 3 Total population sizes were strongly predicted by model projections, although population dynamics were dominated by carryover from the previous 5-year time step (i.e. there were few cases of recruitment or death). Fractional changes to overall population sizes were less well predicted. Compared with a null model and a simple demographic model lacking size structure, matrix model projections were better able to predict total population sizes, although the differences were not statistically significant. Matrix model projections were also able to predict short-term rates of survival, growth and recruitment. Mortality frequencies were not well predicted. 4 Our results suggest that simple size-structured models can accurately project future short-term changes for some tree populations. However, not all populations were well predicted and these simple models would probably become more inaccurate over longer projection intervals. The predictive ability of these models would also be limited by disturbance or other events that destabilize demographic rates. ?? 2005 British Ecological Society.

  3. Interannual Variations in Aerosol Sources and Their Impact on Orographic Precipitation Over California's Central Sierra Nevada

    Science.gov (United States)

    Creamean, J. M.; Ault, A. P.; White, A. B.; Neiman, P. J.; Ralph, F. M.; Minnis, Patrick; Prather, K. A.

    2014-01-01

    Aerosols that serve as cloud condensation nuclei (CCN) and ice nuclei (IN) have the potential to profoundly influence precipitation processes. Furthermore, changes in orographic precipitation have broad implications for reservoir storage and flood risks. As part of the CalWater I field campaign (2009-2011), the impacts of aerosol sources on precipitation were investigated in the California Sierra Nevada. In 2009, the precipitation collected on the ground was influenced by both local biomass burning (up to 79% of the insoluble residues found in precipitation) and long-range transported dust and biological particles (up to 80% combined), while in 2010, by mostly local sources of biomass burning and pollution (30-79% combined), and in 2011 by mostly long-range transport from distant sources (up to 100% dust and biological). Although vast differences in the source of residues was observed from year-to-year, dust and biological residues were omnipresent (on average, 55% of the total residues combined) and were associated with storms consisting of deep convective cloud systems and larger quantities of precipitation initiated in the ice phase. Further, biological residues were dominant during storms with relatively warm cloud temperatures (up to -15 C), suggesting these particles were more efficient IN compared to mineral dust. On the other hand, lower percentages of residues from local biomass burning and pollution were observed (on average 31% and 9%, respectively), yet these residues potentially served as CCN at the base of shallow cloud systems when precipitation quantities were low. The direct connection of the source of aerosols within clouds and precipitation type and quantity can be used in models to better assess how local emissions versus long-range transported dust and biological aerosols play a role in impacting regional weather and climate, ultimately with the goal of more accurate predictive weather forecast models and water resource management.

  4. Dissolved Organic Matter Composition and Microbial Diversity In The Lake Tahoe Basin, Sierra Nevada, California.

    Science.gov (United States)

    Aluwihare, L.; Goldberg, S. J.; Ball, G. I.; Mendoza, W. G.; Simpson, A.; Kharbush, J.; Nelson, C. E.

    2014-12-01

    Dissolved organic matter (DOM) inputs into high elevation lakes of the Sierra Nevada, California are seasonally segregated, and this enables an examination of the dominant compositional features and microbial responses associated with allochthonous versus autochthonous DOM inputs. Furthermore, because lakes within this watershed have very different hydraulic residence times, extending from days (e.g., Upper Angora Lake) to centuries (Lake Tahoe), the Tahoe Basin represents an ideal experimental system in which to characterize long-lived DOM. We used a variety of analytical tools, including elemental, stable isotope and radiocarbon measurements, nuclear magnetic resonance (NMR) spectroscopy, comprehensive 2D gas chromatography coupled to time of flight (TOF) mass spectrometry and fluorescence measurements, to characterize solid phase extracted (SPE) DOM, and in some cases, whole DOM. Our data show that DOM with typical terrestrial characteristics is quickly removed in lakes with >annual water residence time, leaving behind SPE DOM that is extremely N-rich, with a functional group distribution that is consistent with protein. Furthermore, our radiocarbon measurements estimate a 100-200 year residence time for the N-rich DOM accumulating in Lake Tahoe. All of the analytical techniques distinguish samples based on lake water residence time, which indicates that the lacustrine reactor plays an important role in determining the composition of DOM that accumulates on long timescales. We also examined temporal variations in the microbial community of Lake Tahoe to identify taxa that may be involved in processing DOM from distinct sources. Our results confirm the importance of DOM as a currency for carbon and nitrogen exchange between different compartments of the terrestrial ecosystem and argue for its inclusion in models that examine the response of lake ecosystems to global change.

  5. Characterizing Runoff and Water Yield from Headwater Catchments in the Southern Sierra Nevada

    Science.gov (United States)

    Safeeq, M.; Hunsaker, C. T.

    2015-12-01

    In a mediterranean climate where much of the annual precipitation falls during winter, the snow-capped Sierra Nevada serves as the primary source of dry season runoff that supports agriculture, industries, urban, and other ecosystems. Increased warming has led to significant reductions in mountain snowpack accumulation and earlier snowmelt throughout the western United States where most of the snow accumulates at temperatures near the freezing point. As a result, declines in dry season runoff magnitude, earlier runoff timing, and altered flood risk have been reported across the region. An important question in this context is, how to best manage forested catchments for water and other ecosystem services? We depict the differences in hydrologic response of ten catchments in the Kings River Experimental Watersheds (KREW) research project using continuous precipitation, snow, and runoff data during 2004-2014. The size of these catchments ranges from 50 to 475 ha, and they span a 600-m elevation range in the rain snow transitional zone. In terms of soil, Shaver and Gerle-Cagwin dominate the lower elevation Providence catchments, and Cagwin soils dominate the higher elevation Bull catchments. The majority of these catchments have southwest aspect, moderate average slope (i.e. annual runoff ranges between 281 to 408 mm in Providence and 436 to 656 mm in Bull catchments despite no significant difference in precipitation among KREW's four meteorological stations. However, high elevation Bull catchments receive significantly more precipitation as snow than the low elevation Providence catchments. The average runoff ratio ranges from 18% to as high as 43% among different catchments, indicating that the catchment evapotranspiration exceeds the catchment runoff. Inter-catchment variability in runoff, runoff ratio, characteristics of runoff ratio-precipitation relationship (i.e. slope and intercept), and precipitation elasticity of runoff can be primarily explained by

  6. Conservation of avian diversity in the Sierra Nevada: moving beyond a single-species management focus.

    Directory of Open Access Journals (Sweden)

    Angela M White

    Full Text Available BACKGROUND: As a result of past practices, many of the dry coniferous forests of the western United States contain dense, even-aged stands with uncharacteristically high levels of litter and downed woody debris. These changes to the forest have received considerable attention as they elevate concerns regarding the outcome of wildland fire. However, attempts to reduce biomass through fuel reduction (i.e., thinning of trees are often opposed by public interest groups whose objectives include maintaining habitat for species of concern such as the spotted owl, Strix occidentalis, the northern goshawk, Accipiter gentilis, and the Pacific fisher, Martes pennanti. Whether protection of these upper-trophic level species confers adequate conservation of avian forest diversity is unknown. METHODOLOGY AND PRINCIPAL FINDINGS: We use a multi-species occurrence model to estimate the habitat associations of 47 avian species detected at 742 sampling locations within an 880-km(2 area in the Sierra Nevada. Our approach, which accounts for variations in detectability of species, estimates occurrence probabilities of all species in a community by linking species occurrence models into one hierarchical community model, thus improving inferences on all species, especially those that are rare or observed infrequently. We address how the avian community is influenced by covariates related to canopy cover, tree size and shrub cover while accounting for the impacts of abiotic variables known to affect species distributions. CONCLUSIONS AND SIGNIFICANCE: Environmental parameters estimated through our approach emphasize the importance of within and between stand-level heterogeneity in meeting biodiversity objectives and suggests that many avian species would increase under more open canopy habitat conditions than those favored by umbrella species of high conservation concern. Our results suggest that a more integrated approach that emphasizes maintaining a diversity of

  7. Potential effects of tree-to-shrub type conversion on streamflow in California's Sierra Nevada

    Science.gov (United States)

    Baguskas, S. A.; Bart, R.; Molinari, N.; Tague, C.; Moritz, M.

    2014-12-01

    There is widespread concern that changes in climate and fire regime may lead to vegetation change across California, which in turn may influence watershed hydrology. Although plant cover is known to affect numerous hydrological processes, sensitivities to vegetation type and spatial arrangement of species within watersheds are not well understood. The primary objective of our research was to generate mechanistically-based projections of how potential type conversion from forested to shrub dominated systems may affect streamflow. During the 2014 growing season, we measured ecophysiological responses (plant water status and leaf gas exchange rates) of two dominant tree and shrub species to changes in seasonal water availability at two sites within the southern Sierra Nevada Critical Zone Observatory. Plant physiological observations were used to parameterize a process-based eco-hydrological model, RHESSys. This model was used to evaluate the impact of changes in seasonal water availability and vegetation type-conversion on streamflow. Based on our field observations, shrubs and trees had similar access to water through the early part of the growing season (April-early June); however, by late July, available water to shrubs was twice that of trees (shrubs, -0.55 ± 0.08 MPa; trees, -1.07 ± 0.08 MPa, pchanges in streamflow following simulated vegetation conversion were found to affect both the timing and amount of discharge. Controls on pre vs. post-conversion streamflow included changes in interception, rooting depth, energy balance, and plant response to changes in seasonal water availability. Our research demonstrates how linking strategic field data collection and mechanistic ecohydrologic models can be used as a robust tool for assessing the potential impact of vegetation change on the water balance of an ecosystem. This is an increasingly valuable approach to inform management decisions focused on adapting strategies based on projected changes in climate.

  8. Fungal role in post-fire ecosystem recovery in Sierra Nevada National Park (Spain)

    Science.gov (United States)

    Bárcenas-Moreno, Gema; Jiménez-Morillo, Nicasio T.; Mataix-Beneyto, Jorge; Martín Sánchez, Ines

    2016-04-01

    Fire effect on soil microorganisms has been studies for decades in several ecosystems and different microbial response can be found in the bibliography depending on numerous intrinsic and extrinsic soil factors. These factors will determine preliminary soil microbial community composition, subsequent pos-fire initial colonizers and even post-fire growth media characteristics that microbial community will find to start recolonisation. Fire-induced soil bacterial proliferation is a common pattern found after fire, usually related to pH and C availability increased. But when original soil pH is not altered by fire in acid soils, microbial response can be different and fungal response can be crucial to ecosystem recovery. In this study we have compile data related to high mountain soil from Sierra Nevada National park which was affected by a wildfire in 2006 and data obtained by laboratory heating experiment, trying to elucidate the ecological role of fungi in this fragile ecosystem. On the one hand we can observe fire-induced fungal abundance proliferation estimated by plate count method 8 and 32 months after wildfire and even in a short-term (21 d) after laboratory heating at 300 °C. Six years after fire, fungal abundance was similar between samples collected in burnt and unburnt-control area but we found higher proportion of species capable to degrade PAHs (lacase activity) in burnt soil than I the unburnt one. This finding evidences the crucial role of fungal enzymatic capacities to detoxify burnt soils when fire-induced recalcitrant and even toxic carbon compounds could be partially limiting total ecosystem recovery.

  9. Flows, droughts, and aliens: factors affecting the fish assemblage in a Sierra Nevada, California, stream.

    Science.gov (United States)

    Kiernan, Joseph D; Moyle, Peter B

    2012-06-01

    The fishes of Martis Creek, in the Sierra Nevada of California (USA), were sampled at four sites annually over 30 years, 1979-2008. This long-term data set was used to examine (1) the persistence and stability of the Martis Creek fish assemblage in the face of environmental stochasticity; (2) whether native and alien fishes responded differently to a natural hydrologic regime (e.g., timing and magnitude of high and low flows); and (3) the importance of various hydrologic and physical habitat variables in explaining the abundances of native and alien fish species through time. Our results showed that fish assemblages were persistent at all sample sites, but individual species exhibited marked interannual variability in density, biomass, and relative abundance. The density and biomass of native fishes generally declined over the period of study, whereas most alien species showed no significant long-term trends. Only alien rainbow trout increased in both density and biomass at all sites over time. Redundancy analysis identified three hydrologic variables (annual 7-day minimum discharge, maximum winter discharge, and number of distinct winter floods) and two habitat variables (percentage of pool habitat and percentage of gravel substrate) that each explained a significant portion of the annual variation in fish assemblage structure. For alien taxa, their proportional contribution to the total fish assemblage was inversely related to mean annual streamflow, one-day maximum discharge in both winter and spring, and the frequency of springtime floods. Results of this study highlight the need for continuous annual monitoring of streams with highly variable flow regimes to evaluate shifts in fish community structure. Apparent successes or failures in stream management may appear differently depending on the time series of available data.

  10. Management Impacts on Carbon Dynamics in a Sierra Nevada Mixed Conifer Forest

    Science.gov (United States)

    Dore, Sabina; Fry, Danny L.; Collins, Brandon M.; Vargas, Rodrigo; York, Robert A.; Stephens, Scott L.

    2016-01-01

    Forest ecosystems can act as sinks of carbon and thus mitigate anthropogenic carbon emissions. When forests are actively managed, treatments can alter forests carbon dynamics, reducing their sink strength and switching them from sinks to sources of carbon. These effects are generally characterized by fast temporal dynamics. Hence this study monitored for over a decade the impacts of management practices commonly used to reduce fire hazards on the carbon dynamics of mixed-conifer forests in the Sierra Nevada, California, USA. Soil CO2 efflux, carbon pools (i.e. soil carbon, litter, fine roots, tree biomass), and radial tree growth were compared among un-manipulated controls, prescribed fire, thinning, thinning followed by fire, and two clear-cut harvested sites. Soil CO2 efflux was reduced by both fire and harvesting (ca. 15%). Soil carbon content (upper 15 cm) was not significantly changed by harvest or fire treatments. Fine root biomass was reduced by clear-cut harvest (60–70%) but not by fire, and the litter layer was reduced 80% by clear-cut harvest and 40% by fire. Thinning effects on tree growth and biomass were concentrated in the first year after treatments, whereas fire effects persisted over the seven-year post-treatment period. Over this period, tree radial growth was increased (25%) by thinning and reduced (12%) by fire. After seven years, tree biomass returned to pre-treatment levels in both fire and thinning treatments; however, biomass and productivity decreased 30%-40% compared to controls when thinning was combined with fire. The clear-cut treatment had the strongest impact, reducing ecosystem carbon stocks and delaying the capacity for carbon uptake. We conclude that post-treatment carbon dynamics and ecosystem recovery time varied with intensity and type of treatments. Consequently, management practices can be selected to minimize ecosystem carbon losses while increasing future carbon uptake, resilience to high severity fire, and climate related

  11. Groundwater-surface water interactions in montane meadows of the Sierra Nevada, California

    Science.gov (United States)

    Lucas, R. G.; Conklin, M. H.

    2012-12-01

    Meadows often lie in low gradient, groundwater fed terrain of the Sierra Nevada. These settings result in near saturated conditions for much of the year, shallow groundwater tables, and groundwater discharge to surface flow. Our hypothesis is that groundwater fluctuations integrate watershed processes rather than meadow specific processes. Meadow characteristics are in contrast to the adjacent forested landscapes, where soils go dry in the summer, groundwater tables are much deeper, and some fraction of soil water is lost to deeper percolation. We utilize a series water column data from monitoring wells and piezometers in two meadows, soil moisture and snow depth data from nodes in the associated catchment, located within the Southern Sierra Critical Zone Observatory, from water years 2008-2012. Water samples from wells and associated streams were analyzed for major ions and stable water isotopes. Results from the monitoring wells and piezometers show groundwater tables and pressure heads that are highest during snowmelt and decrease over the summer growing season; inter-annual variation is correlated to total accumulated precipitation for the given water year. Groundwater elevations exhibit diurnal fluctuations influenced by snowmelt and evapotranspiration (ET) processes in the spring, transitioning to an ET dominated signal during the summer growing season. These fluctuations are of greatest magnitude near the meadow-forest boundary and least near the center of the meadow. ET signals continue after the meadow vegetation senesces, suggesting influences from the adjacent forested landscape. Deep piezometers (>2.5 m depth) do not exhibit fluctuation at the daily time scale while shallower piezometers (edge and meadow center, groundwater discharge is strongest during snow melt with a decrease as the summer growing season progresses. The near edge pressure head data show that the direction of groundwater flux changes to indicate groundwater recharge by fall. The near

  12. Thermal evolution and exhumation of deep-level batholithic exposures, southernmost Sierra Nevada, California

    Science.gov (United States)

    Saleeby, J.; Farley, K.A.; Kistler, R.W.; Fleck, R.J.

    2007-01-01

    The Tehachapi complex lies at the southern end of the Sierra Nevada batholith adjacent to the Neogene-Quaternary Garlock fault. The complex is composed principally of high-pressure (8-10 kbar) Cretaceous batholithic rocks, and it represents the deepest exposed levels of a continuous oblique crustal section through the southern Sierra Nevada batholith. Over the southern ???100 km of this section, structural/petrologic continuity and geochronological data indicate that ???35 km of felsic to intermediate-composition crust was generated by copious arc magmatism primarily between 105 and 99 Ma. In the Tehachapi complex, these batholithic rocks intrude and are bounded to the west by similar-composition gneissic-textured high-pressure batholithic rocks emplaced at ca. 115-110 Ma. This lower crustal complex is bounded below by a regional thrust system, which in Late Cretaceous time tectonically eroded the underlying mantle lithosphere, and in series displaced and underplated the Rand Schist subduction assemblage by low-angle slip from the outboard Franciscan trench. Geophysical and mantle xenolith studies indicate that the remnants of this shallow subduction thrust descend northward through the crust and into the mantle, leaving the mantle lithosphere intact beneath the greater Sierra Nevada batholith. This north-dipping regional structure records an inflection in the Farallon plate, which was segmented into a shallow subduc-tion trajectory to the south and a normal steeper trajectory to the north. We combine new and published data from a broad spectrum of thermochronom-eters that together form a coherent data array constraining the thermal evolution of the complex. Integration of these data with published thermobarometric and petro-genetic data also constrains the tectonically driven decompression and exhumation history of the complex. The timing of arc magmatic construction of the complex, as denoted above, is resolved by a large body of U/Pb zircon ages. High

  13. La fauna edafica en bosques y plantaciones de coniferas de la estacion San Lorenzo-Sierra Nevada de Santa Marta Soil fauna in forest and pine plantations from San Lorenzo station-Sierra Nevada de Santa Marta

    Directory of Open Access Journals (Sweden)

    Chamorro Bello Clara

    1999-06-01

    Full Text Available En la estacion de San Lorenzo-Sierra Nevada de Santa Marta-(2280 m. se seleccionaron suelos (Tropaquepts, bajo usos de bosque nativo y plantacion de pinos. La coleccion de las comunidades edafofaunisticas se realizo con base en la aplicacion de tecnicas de Barber y Berlesse, para su posterior determinacion hasta el nivel de familia. Se determino la biodiversidad medida en el Indice de Brillouin, las densidades poblacionales, su distribucion en el perfil del suelo, y los Indices de Riqueza y Constancia, para cada uno de los horizontes edaficos.Soils in San Lorenzo Station-Sierra Nevada de Santa Marta-(2280m were selected in two different uses: forest and pine plantations. Fauna was coleected out from the soils by Pitfall and Berlesse methods to be determinated up to family levels. Biodiversity, populations, fauna distribution into soil profile, and richness and constancy indexes, were determinated in soil horizons. Biodiversity, richness and Constancy Indexes are affected when natural condition are disturbed, generally by man action. This perturbation speed up the natural population growth when another population controllers have disappea.

  14. Origin and age of the Volcanic Rocks of Tláloc Volcano, Sierra Nevada, Central Mexico

    Science.gov (United States)

    Meier, M.; Grobéty, B.; Arce, J. L.; Rueda, H.

    2007-05-01

    The Tláloc volcano (TV) is a 4125 m high stratovolcano of the Trans Mexican Volcanic Belt (TMVB) and is located in the northern end of the N-S trending Sierra Nevada, 30 km NE of Mexico City. Few data on the petrological and temporal evolution of TV have been published to date. Recently dated deposits gave ages between 32'000 and 34'500±500 years BP (Huddart and Gonzalez, 2004). Mapping and sampling of extrusive rocks in the summit region of TV revealed a dome structure with radiating lava flows consisting of dacitic rocks containing plagioclase and hornblende phenocrysts. Some flows, however, seem to be associated with a collapse structure E of the main summit. Crossing relationships indicate that this structure is older (“Paleo Tláloc”). A stratigraphy of the pyroclastic deposits was established along the northern slope of TV. From the numerous pyroclastic flows, separated by paleosoils and fluviatile deposits, only two pumice and one block and ash flow (BAF) have regional extent. Their thickness - distance relationship and their granulometry point to major explosive events. A carbonized wood sample from the BAF deposit gave ages similar to the previous ages (33'180±550 yr BP and 23'170±270 yr BP), a sample from a pyroclastic flow gave even a younger age (16'620±110 yr BP), suggesting that TV remained active also after the volcanoes Iztaccíhuatl and Popocatépetl further to the South started their activity. Based on these preliminary data it may be necessary to reconsider the accepted scenario of the temporal evolution of the central section of the TMVB, which assumes that the activity migrates from North to South with time. Huddart, D. and Gonzalez, S., 2004. Pyroclastic flows and associated sediments, Tláloc-Telapón, piedmont fringe of the eastern basin of Mexico. In: G.J. Aguirre-Diaz, Macías, J.L., and Siebe, C., (Editor), Penrose Conference. UNAM, Metepec, Puebla, Mexico, pp. 35.

  15. Post subduction thermal regime of the western North America and effects on the Great Valley, Sierra Nevada and northern Baja California provinces

    Science.gov (United States)

    Erkan, Kamil

    the region shows that there is a significant lateral component of the heat flow in to the Sierra Nevada due to Basin and Range province and due to basal heating. The model further suggests that the lateral heating results in considerable thermal uplift at the eastern edge of the Sierra Nevada region. The model is also applicable in the Northern Baja California since this region was part of the same tectonic setting as the Sierra Nevada arc before the inland jump of the San Andreas Fault. The Coast Ranges are interesting with having spots of magmatic and volcanic arc activity likely associated with the cessation of subduction. The third paper is a study related to one of these spots 90 km north of San Francisco, characterized by elevated heat flow in an area of 2500 km2 (The Geysers anomaly). The geothermal system is associated with a very young (˜2 My) bimodal volcanism and magma intrusion at crustal levels. Taking advantage of a sealed, vapor dominated geothermal system due to rocks of very low permeability, forward and inverse models of the deeper magmatic source were constructed. We used extensive heat flow data that were collected over more than 20 years time period. The models revealed that the magmatic source in the Geysers must be as shallow as 7-8 km in order to satisfy the thermal data. Furthermore, the magma system must cover most of the thermally anomalous region. Another type of geothermal system is characterized by rising of hot waters by buoyancy forces without the necessity of a magmatic source at depth. We studied one of these systems in interior Alaska, called Chena Hot Springs, in the fourth paper. The explored system is 1 km long and temperatures are only 74°C. Although the system is moderate in temperature, the low-temperature surface conditions enable the system to be exploited for production of electricity. The geochemical analyses show that the source temperatures are around 121°C. We analyzed the temperature data from 17 exploration wells in

  16. Development of a Statistical Model for Estimating Spatial and Temporal Ambient Ozone Patterns in the Sierra Nevada, California

    Directory of Open Access Journals (Sweden)

    Haiganoush K. Preisler

    2002-01-01

    Full Text Available Statistical approaches for modeling spatially and temporally explicit data are discussed for 79 passive sampler sites and 9 active monitors distributed across the Sierra Nevada, California. A generalized additive regression model was used to estimate spatial patterns and relationships between predicted ozone exposure and explanatory variables, and to predict exposure at nonmonitored sites. The fitted model was also used to estimate probability maps for season average ozone levels exceeding critical (or subcritical levels in the Sierra Nevada region. The explanatory variables — elevation, maximum daily temperature, and precipitation and ozone level at closest active monitor — were significant in the model. There was also a significant mostly east-west spatial trend. The between-site variability had the same magnitude as the error variability. This seems to indicate that there still exist important site features not captured by the variables used in the analysis and that may improve the accuracy of the predictive model in future studies. The fitted model using robust techniques had an overall R2 value of 0.58. The mean standard deviation for a predicted value was 6.68 ppb.

  17. Petrología, evolución geodinámica y georrecursos del Espacio Natural de Sierra Nevada

    Directory of Open Access Journals (Sweden)

    Díaz Puga, M. A.

    2007-12-01

    Full Text Available We show the spatial distribution of the various geological formations that make up the Veleta and Mulhacén Complexes into the Sierra Nevada Park and illustrate, with macro- and microscopic photographs, their most characteristic types of rock. The Veleta and Mulhacén Complexes were previously considered together as the Nevado-Filábride Complex. They constitute the deepest units of the Betic Cordilleras and crop out in Sierra Nevada forming the highest pics of the Iberian Peninsula. The Veleta Complex (VC is formed of several thousand metres of graphite-bearing micaschists and crops out as a series of tectonic windows below the Mulhacén Complex (MC. This latter complex comprises two thrust nappes of crustal origin, composed of a Palaeozoic basement and Mesozoic cover series, between which a Jurassic-Cretaceous ophiolitic nappe is tectonically intercalated. Within the MC nappes of crustal origin, there appear meta-granitic rocks, generated in a late-Hercynian syn-collisional magmatism and a Permian to Triassic, post-collisional intraplate, acidic-to-intermediate volcanism. The ophiolitic nappe is composed of basic, ultramafic and sedimentary rocks affected by ocean-floor and orogenic metamorphism. The basic rocks mainly retain their original MORB character. The ultramafic rocks are serpentinites and secondary harzburgites containing partly rodingitized meta-basaltic dykes. The Alpine metamorphism developed eclogite facies followed by Ab-Ep amphibolite facies in the MC and Ab-Ep amphibolite facies followed by greenschist facies in the VC. The different tectonic units forming the Veleta and Mulhacén Complexes, so as the Soportujar Formation, which was deposited over the MC units during an alpine intraorogenic stage, were defined from outcrops very well represented into the Natural Space of Sierra Nevada. These outcrops constitute a series of petrological georesources, which are essential to reconstruct the origin and petrogenetic evolution of

  18. Valuing year-to-go hydrologic forecast improvements for a peaking hydropower system in the Sierra Nevada

    Science.gov (United States)

    Rheinheimer, David E.; Bales, Roger C.; Oroza, Carlos A.; Lund, Jay R.; Viers, Joshua H.

    2016-05-01

    We assessed the potential value of hydrologic forecasting improvements for a snow-dominated high-elevation hydropower system in the Sierra Nevada of California, using a hydropower optimization model. To mimic different forecasting skill levels for inflow time series, rest-of-year inflows from regression-based forecasts were blended in different proportions with representative inflows from a spatially distributed hydrologic model. The statistical approach mimics the simpler, historical forecasting approach that is still widely used. Revenue was calculated using historical electricity prices, with perfect price foresight assumed. With current infrastructure and operations, perfect hydrologic forecasts increased annual hydropower revenue by 0.14 to 1.6 million, with lower values in dry years and higher values in wet years, or about $0.8 million (1.2%) on average, representing overall willingness-to-pay for perfect information. A second sensitivity analysis found a wider range of annual revenue gain or loss using different skill levels in snow measurement in the regression-based forecast, mimicking expected declines in skill as the climate warms and historical snow measurements no longer represent current conditions. The value of perfect forecasts was insensitive to storage capacity for small and large reservoirs, relative to average inflow, and modestly sensitive to storage capacity with medium (current) reservoir storage. The value of forecasts was highly sensitive to powerhouse capacity, particularly for the range of capacities in the northern Sierra Nevada. The approach can be extended to multireservoir, multipurpose systems to help guide investments in forecasting.

  19. The relationships between insoluble precipitation residues, clouds, and precipitation over California's southern Sierra Nevada during winter storms

    Science.gov (United States)

    Creamean, Jessie M.; White, Allen B.; Minnis, Patrick; Palikonda, Rabindra; Spangenberg, Douglas A.; Prather, Kimberly A.

    2016-09-01

    Ice formation in orographic mixed-phase clouds can enhance precipitation and depends on the type of aerosols that serve as ice nucleating particles (INPs). The resulting precipitation from these clouds is a viable source of water, especially for regions such as the California Sierra Nevada. Thus, a better understanding of the sources of INPs that impact orographic clouds is important for assessing water availability in California. This study presents a multi-site, multi-year analysis of single-particle insoluble residues in precipitation samples that likely influenced cloud ice and precipitation formation above Yosemite National Park. Dust and biological particles represented the dominant fraction of the residues (64% on average). Cloud glaciation, determined using satellite observations, not only depended on high cloud tops (>5.9 km) and low temperatures (prevalence of ice-phase clouds occurred in conjunction with biologically-rich residues and mineral dust rich in calcium, followed by iron and aluminosilicates. Dust and biological particles are known to be efficient INPs, thus these residues likely influenced ice formation in clouds above the sites and subsequent precipitation quantities reaching the surface during events with similar meteorology. The goal of this study is to use precipitation chemistry information to gain a better understanding of the potential sources of INPs in the south-central Sierra Nevada, where cloud-aerosol-precipitation interactions are poorly understood and where mixed-phase orographic clouds represent a key element in the generation of precipitation and thus the water supply in California.

  20. Vegetation Cover Change in the Upper Kings River Basin of the Sierra Nevada Detected Using Landsat Satellite Image Analysis

    Science.gov (United States)

    Potter, Christopher S.

    2015-01-01

    The Sierra Nevada of California is a region where large wildfires have been suppressed for over a century. A detailed geographic record of recent changes in vegetation cover across the Sierra Nevada remains a gap that can be filled with satellite remote sensing data. Results from Landsat image analysis over the past 25 years in the Upper Kings River basin showed that consistent, significant increases in the normalized difference vegetation index (NDVI) have not extended above 2000 m elevation, where cold temperatures presumably limit the growing season. Moreover, mean increases in NDVI since 1986 at elevations below 2000 m (which cover about half of the total basin area) have not exceeded 9%, even in the most extreme precipitation yearly comparisons. NDVI has decreased significantly at elevations above 2000 m throughout the basin in relatively wet year comparisons since the mid-1980s. These findings conflict with any assumptions that ET fluxes and river flows downstream could have been markedly altered by vegetation change over most of the Upper Kings River basin in recent decades.

  1. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    Energy Technology Data Exchange (ETDEWEB)

    Preisler, Haiganoush K., E-mail: hpreisler@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 800 Buchanan St, Albany, CA 94710 (United States); Zhong Shiyuan, E-mail: zhongs@msu.ed [Department of Geography, Michigan State University, 116 Geography Building, East Lansing, MI 48824-1117 (United States); Esperanza, Annie, E-mail: annie_esperanza@nps.go [Sequoia and Kings Canyon National Parks, 47050 Generals Highway Three Rivers, CA 93271 (United States); Brown, Timothy J., E-mail: tim.brown@dri.ed [Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89521-10095 (United States); Bytnerowicz, Andrzej, E-mail: abytnerowicz@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States); Tarnay, Leland, E-mail: Leland_Tarnay@nps.go [Yosemite National Park, El Portal, CA 95318 (United States)

    2010-03-15

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  2. Ozone, nitric acid, and ammonia air pollution is unhealthy for people and ecosystems in southern Sierra Nevada, California

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros, Ricardo, E-mail: rcisneros@fs.fed.u [USDA Forest Service, Pacific Southwest Region, 1600 Tollhouse Road, Clovis, CA 93611 (United States); Bytnerowicz, Andrzej, E-mail: abytnerowicz@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Dr., Riverside, CA 92507 (United States); Schweizer, Donald, E-mail: dschweizer@fs.fed.u [USDA Forest Service, Pacific Southwest Region, 1600 Tollhouse Road, Clovis, CA 93611 (United States); Zhong, Sharon, E-mail: zhongs@msu.ed [Department of Geography, Michigan State University, 116 Geography Building East, Lansing, MI 48824-1117 (United States); Traina, Samuel, E-mail: straina@ucmerced.ed [Environmental Systems Graduate Group, University of California Merced, 5200 North Lake Road, Merced, CA 95343 (United States); Bennett, Deborah H., E-mail: dhbennett@ucdavis.ed [Department of Public Health Sciences, University of California Davis, One Shields Avenue, TB 169 Davis, CA 95616 (United States)

    2010-10-15

    Two-week average concentrations of ozone (O{sub 3}), nitric acid vapor (HNO{sub 3}) and ammonia (NH{sub 3}) were measured with passive samplers during the 2002 summer season across the central Sierra Nevada Mountains, California, along the San Joaquin River drainage. Elevated concentrations of the pollutants were determined with seasonal means for individual sites ranging between 62 and 88 ppb for O{sub 3}, 1.0-3.8 {mu}g m{sup -3} for HNO{sub 3}, and 2.6-5.2 {mu}g m{sup -3} for NH{sub 3}. Calculated O{sub 3} exposure indices were very high, reaching SUM00-191 ppm h, SUM60-151 ppm h, and W126-124 ppm h. Calculated nitrogen (N) dry deposition ranged from 1.4 to 15 kg N ha{sup -1} for maximum values, and 0.4-8 kg N ha{sup -1} for minimum values; potentially exceeding Critical Loads (CL) for nutritional N. The U.S., California, and European 8 h O{sub 3} human health standards were exceeded during 104, 108, and 114 days respectively, indicating high risk to humans from ambient O{sub 3}. - Ozone concentrations remained unchanged while those of nitric acid vapor and ammonia decreased along the river drainage crossing the Sierra Nevada Mountains.

  3. A centennial tribute to G.K. Gilbert's Hydraulic Mining Débris in the Sierra Nevada

    Science.gov (United States)

    James, L. A.; Phillips, J. D.; Lecce, S. A.

    2017-10-01

    G.K. Gilbert's (1917) classic monograph, Hydraulic-Mining Débris in the Sierra Nevada, is described and put into the context of modern geomorphic knowledge. The emphasis here is on large-scale applied fluvial geomorphology, but other key elements-e.g., coastal geomorphology-are also briefly covered. A brief synopsis outlines key elements of the monograph, followed by discussions of highly influential aspects including the integrated watershed perspective, the extreme example of anthropogenic sedimentation, computation of a quantitative, semidistributed sediment budget, and advent of sediment-wave theory. Although Gilbert did not address concepts of equilibrium and grade in much detail, the rivers of the northwestern Sierra Nevada were highly disrupted and thrown into a condition of nonequilibrium. Therefore, concepts of equilibrium and grade-for which Gilbert's early work is often cited-are discussed. Gilbert's work is put into the context of complex nonlinear dynamics in geomorphic systems and how these concepts can be used to interpret the nonequilibrium systems described by Gilbert. Broad, basin-scale studies were common in the period, but few were as quantitative and empirically rigorous or employed such a range of methodologies as PP105. None demonstrated such an extreme case of anthropogeomorphic change.

  4. Groundwater-quality data for the Sierra Nevada study unit, 2008: Results from the California GAMA program

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Munday, Cathy M.; Belitz, Kenneth

    2010-01-01

    Groundwater quality in the approximately 25,500-square-mile Sierra Nevada study unit was investigated in June through October 2008, as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Sierra Nevada study was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems in the study unit, and to facilitate statistically consistent comparisons of groundwater quality throughout California. The primary aquifer systems (hereinafter, primary aquifers) are defined by the depth of the screened or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for public and community drinking-water supplies. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. In the Sierra Nevada study unit, groundwater samples were collected from 84 wells (and springs) in Lassen, Plumas, Butte, Sierra, Yuba, Nevada, Placer, El Dorado, Amador, Alpine, Calaveras, Tuolumne, Madera, Mariposa, Fresno, Inyo, Tulare, and Kern Counties. The wells were selected on two overlapping networks by using a spatially-distributed, randomized, grid-based approach. The primary grid-well network consisted of 30 wells, one well per grid cell in the study unit, and was designed to provide statistical representation of groundwater quality throughout the entire study unit. The lithologic grid-well network is a secondary grid that consisted of the wells in the primary grid-well network plus 53 additional wells and was designed to provide statistical representation of groundwater quality in each of the four major lithologic units in the Sierra

  5. Multiyear Evidence from Ground-based Observations and Modeling of the Impact of Dust on Snowfall in the Sierra Nevada

    Science.gov (United States)

    Creamean, J.; Ault, A. P.; Collins, D. B.; Cahill, J. F.; Fitzgerald, E.; White, A. B.; Neiman, P. J.; Wick, G. A.; Fan, J.; Leung, L.; Ralph, F. M.; Prather, K. A.

    2011-12-01

    Aerosols that have the ability to act as ice nuclei (IN) can impact cloud formation and alter the type, amount, and location of precipitation. IN such as dust and biological aerosols can lead to early initiation of the ice phase that enhances riming and thus precipitation. Depending on temperature conditions, this can lead to increased snowfall at the surface. Potential snowfall enhancement in mountainous regions such as California's Sierra Nevada has large implications on regional water supply, which in turn can affect agricultural and ecosystem productivity, the amount of renewable energy from hydropower, and many other water uses. However, the magnitude of the effect of IN on precipitation intensity, form, and patterns during intense winter storms in the Sierra Nevada is poorly understood. During three consecutive winters (2009-2011) of the CalWater field campaign, the chemical composition of precipitation residues were measured at Sugar Pine Dam, a remote rural site in the Sierra Nevada. Some precipitation events occurred during storms that were characterized by atmospheric river (AR) conditions, which are ideal for generating copious amounts of orographic precipitation. Large fractions of dust and biological aerosols were measured as residues in precipitation samples collected during storms with increased snowfall and lower surface temperatures. In most cases, higher fractions of dust were measured in samples during stronger ARs, while higher fractions of biological or water-insoluble organic residues were measured during weaker ARs throughout all three winters. During the winter storms of CalWater, we observed an increase over time in the fraction of dust and biological residues combined, from 20% in 2009 to 82% in 2011 of the total residues in all precipitation samples, in addition to a decrease in average surface temperature (from 4.8 to 2.3 °C), an increase in the total amount of precipitation (from 253 to 374 mm), and an increase in the frequency of

  6. EFFECTS OF CLIMATE VARIABILITY ON THE CARBON DIOXIDE, WATER, AND SENSIBLE HEAT FLUXES ABOVE A PONDEROSA PINE PLANTATION IN THE SIERRA NEVADA, CA. (R826601)

    Science.gov (United States)

    AbstractFluxes of CO2, water vapor, and sensible heat were measured by the eddy covariance method above a young ponderosa pine plantation in the Sierra Nevada Mountains (CA) over two growing seasons (1 June¯10 September 1997 and 1 May&#...

  7. Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR

    Science.gov (United States)

    L. Liu; C.I. Millar; R.D. Westfall; H.A. Zebker

    2013-01-01

    Despite the abundance of rock glaciers in the Sierra Nevada of California, USA, few efforts have been made to measure their surface flow. Here we use the interferometric synthetic aperture radar (InSAR) technique to compile a~benchmark inventory describing the kinematic state of 59 active rock glaciers in this region. Statistically, these rock glaciers moved at...

  8. Studies on Colombian cryptogams XX. A transect analysis of the bryophyte vegetation along an altitudinal gradient on the Sierra Nevada de Santa Marta, Colombia

    NARCIS (Netherlands)

    Reenen, van G.B.A.; Gradstein, S.R.

    1983-01-01

    Along an altitudinal transect on the northern slope of the Sierra Nevada de Santa Marta, Colombia, 500-4100 m, five altitudinal bryophyte zones are distinguished – four forest zones and one páramo zone – based on ecosystem relevé analysis concerning species presence, substrate preference and percent

  9. Prácticas Funerarias Desde La Arqueología: El Caso De Las Momias De La Sierra Nevada Del Cocuy.

    Directory of Open Access Journals (Sweden)

    Alejandra Valverde.

    2007-12-01

    Full Text Available This article is abou tof archaeological theory around funerary practices. This is not only an exclusive debate about theory; but also the article shows the interpretations about funerary practices and, then, applies these theories to understand the lache mummies found in la Sierra Nevada del Cocuy, Colombia.

  10. Lateral migration of a foundering high-density root: Insights from numerical modeling applied to the southern Sierra Nevada

    Science.gov (United States)

    Valera, J. L.; Negredo, A. M.; Billen, M. I.; Jiménez-Munt, I.

    2014-02-01

    The southern Sierra Nevada is a geodynamically complex region where several models have been proposed to explain the rapid removal of lithospheric mantle occurring sometime between 8.0 and 3.5 Ma. Tomographic studies show the presence of an east-dipping slab-shaped fast seismic anomaly reaching to about 300 km depth below the western Sierras and Great Valley, and receiver function studies indicate a broad region of lithosphere removal. This work presents thermo-mechanical modeling of asymmetric foundering of a high-density batholithic root with lateral intrusion of asthenospheric material. The predicted evolution is controlled by: a) the upwelling of buoyant asthenosphere facilitated by the presence of a weakened lithospheric mantle adjacent to a dense batholitic root, b) the westward inflow enabled by a low viscosity lower crust, and c) negative buoyancy of a batholithic dense root. The dynamics of these models can be characterized as a slowly migrating lithosphere foundering process driven by the density anomaly of the ultramafic root, but controlled by the magnitude of the lower crustal viscosity, which determines the rate at which asthenospheric material can flow into the opening lower crustal gap. Final model-predicted upper-mantle structure is compatible with existing tomographic images and the observed V-shape geometry of the Moho below the western margin of the southern Sierra Nevada. Model-predicted topography is also generally consistent with observations, and shows a monotonous uplift of the high region since 7 Ma and presently ongoing, and an area of maximum subsidence west of the area of the V-shaped Moho, due to the pull exerted by the sinking of the high-density root.

  11. Early Neogene unroofing of the Sierra Nevada de Santa Marta along the Bucaramanga -Santa Marta Fault

    Science.gov (United States)

    Piraquive Bermúdez, Alejandro; Pinzón, Edna; Bernet, Matthias; Kammer, Andreas; Von Quadt, Albrecht; Sarmiento, Gustavo

    2016-04-01

    Plate interaction between Caribbean and Nazca plates with Southamerica gave rise to an intricate pattern of tectonic blocks in the Northandean realm. Among these microblocks the Sierra Nevada de Santa Marta (SNSM) represents a fault-bounded triangular massif composed of a representative crustal section of the Northandean margin, in which a Precambrian to Late Paleozoic metamorphic belt is overlain by a Triassic to Jurassic magmatic arc and collateral volcanic suites. Its western border fault belongs to the composite Bucaramanga - Santa Marta fault with a combined left lateral-normal displacement. SE of Santa Marta it exposes remnants of an Oligocene marginal basin, which attests to a first Cenoizoic activation of this crustal-scale lineament. The basin fill consists of a sequence of coarse-grained cobble-pebble conglomerates > 1000 m thick that unconformably overlay the Triassic-Jurassic magmatic arc. Its lower sequence is composed of interbedded siltstones; topwards the sequence becomes dominated by coarser fractions. These sedimentary sequences yields valuable information about exhumation and coeval sedimentation processes that affected the massif's western border since the Upper Eocene. In order to analyse uplifting processes associated with tectonics during early Neogene we performed detrital zircon U-Pb geochronology, detrital thermochronology of zircon and apatites coupled with the description of a stratigraphic section and its facies composition. We compared samples from the Aracataca basin with analog sequences found at an equivalent basin at the Oca Fault at the northern margin of the SNSM. Our results show that sediments of both basins were sourced from Precambrian gneisses, along with Mesozoic acid to intermediate plutons; sedimentation started in the Upper Eocene-Oligocene according to palynomorphs, subsequently in the Upper Oligocene a completion of Jurassic to Cretaceous sources was followed by an increase of Precambrian input that became the dominant

  12. Inexistence of permafrost at the top of the Veleta peak (Sierra Nevada)

    Science.gov (United States)

    Gómez-Ortiz, Antonio; Salvador-Franch, Ferran; Salvà-Catarineu, Montserrat; Oliva, Marc; Palacios, David; Tanarro, Luis Miguel; Schulte, Lothar

    2014-05-01

    Several deep drillings wew carried out along a latitudinal transect from Svalbard (78°N) to Sierra Nevada (37°N, Spain) within the project Permafrost and Climate Change in Europe (PACE). In this abstract we discuss the data corresponding to the drilling existing at the top of the Veleta peak, at an altitude of 3380 m. This drilling reach a depth of 114.5 m depth, although we analyze here the data of the first 60 m depth. UTL-1 loggers were installed at depths of 0.2, 0.6, 1.2, 2.6, 4, 7, 10, 13, 15, 20 and 60 m. The observation period spans from 2002 to 2013 with data being taken every 2 h. The most surficial loggersrecorded the largest annual temperature oscillations, reaching 22.6°C at 20 cm. Down to 10 m depth the annual temperature amplitude is still remarkable and seasonal temperature changes are even observed at depths of 15 to 20 m. Below this level the temperature remains constant. The logger installed at 60 m depth recorded small temperature changes between 2006 and 2009, oscillating between 2.38 and 2.61ºC. Since January 2010 the temperatures stabilized at 2.61°C. However, this slight temperature increase must be framed within the margin of instrumentation error of the devices. Data shows evidence of the inexistence ofpermanent negative temperatures at depth. In contrast to what happens in the nearby Veleta cirque floor (3100 m), where marginal permafrost conditions have been recorded, in the Veleta peak (3380 m) data points to the absence of a permafrost regime. This may be due to several factors: a) The existence of permafrost in the Veletacirque is directly related to the presence of fossil glacier ice corresponding to a glacier that existed there during the Little Ice Age. b ) The early melting of snow cover in the Veleta peak due to wind effect and incidence of solar radiation condition the absence of permafrost conditions at the summitin contrast to the Veleta cirquefloor, where the longer persistence of snow favours the presence of continuous

  13. Unprecedented remote sensing data over King and Rim megafires in the Sierra Nevada Mountains of California.

    Science.gov (United States)

    Stavros, E Natasha; Tane, Zachary; Kane, Van R; Veraverbeke, Sander; McGaughey, Robert J; Lutz, James A; Ramirez, Carlos; Schimel, David

    2016-11-01

    Megafires have lasting social, ecological, and economic impacts and are increasing in the western contiguous United States. Because of their infrequent nature, there is a limited sample of megafires to investigate their unique behavior, drivers, and relationship to forest management practices. One approach is to characterize critical information pre-, during, and post-fire using remote sensing. In August 2013, the Rim Fire burned 104,131 ha and in September 2014, the King Fire burned 39,545 ha. Both fires occurred in California's Sierra Nevada. The areas burned by these fires were fortuitously surveyed by airborne campaigns, which provided the most recent remote sensing technologies not currently available from satellite. Technologies include an imaging spectrometer spanning the visible to shortwave infrared (0.38-2.5 μm), a multispectral, high-spatial resolution thermal infrared (3.5-13 μm) spectroradiometer, and Light Detection and Ranging that provide spatial resolutions of pixels from 1 × 1 m to 35 × 35 m. Because of the unique information inherently derived from these technologies before the fires, the areas were subsequently surveyed after the fires. We processed and provide free dissemination of these airborne datasets as products of surface reflectance, spectral metrics and forest structural metrics ( http://dx.doi.org/10.3334/ORNLDAAC/1288). These data products provide a unique opportunity to study relationships among and between remote sensing observations and fuel and fire characteristics (e.g., fuel type, condition, structure, and fire severity). The novelty of these data is not only in the unprecedented types of information available from them before, during, and after two megafires, but also in the synergistic use of multiple state of the art technologies for characterizing the environment. The synergy of these data can provide novel information that can improve maps of fuel type, structure, abundance, and condition that may improve

  14. Montane meadows and hydrologic connections between forests and streams in the Sierra Nevada, California

    Science.gov (United States)

    Lucas, R. G.; Conklin, M. H.

    2013-12-01

    Montane meadows of the Sierra Nevada often serve as the interface between up-gradient forested area and down-gradient streamflow. We investigated the roles that meadow groundwater and evapotranspiration play in the greater catchment water cycle using a water-column data from monitoring wells and piezometers in two meadows for water years 2008-2012. Analyses include mass balance and modeling using 1-D HYDRUS. Though spatially heterogeneous, groundwater fluxes contribute to evapotranspiration (ETg) across the meadows, and are constrained by surface-water discharge. Near the meadow center groundwater discharges occur for the duration of the snow-free season, ET¬g is relatively low. At the meadow edge the groundwater flux changes from discharge to recharge when the growing season begins; also ETg increases, and major-ion concentrations in groundwater are more dilute than those near the meadow center. When groundwater is discharged throughout the meadow during snowmelt, the stream-water ion content more closely resembles water sampled from wells at the meadow edge. These trends change as the summer season progresses--groundwater is no longer discharged at the meadow edge and the stream water ion concentration matches the groundwater sampled from the center of the meadow. Slug tests performed in the monitoring wells indicate a saturated hydraulic conductivity (Kh) of meadow substrates between 10-5 and 10-6 m s-1. The upper end of this range reflects substrate with large sand fractions, while lower values reflect finer-grained or higher-organic-content substrate. Applying the higher Kh values to groundwater gradients during snowmelt results in groundwater discharge rates greater than streamflow measured at the meadow outlet. This suggests that the peat layer at the meadow surface, with significantly lower Kh values, retards groundwater discharge from the meadow during snowmelt. ETg signals in wells at the meadow edge and in wells installed just outside of the meadow

  15. Hillslope and stream connections to water tables in montane meadows of the southern Sierra Nevada, California

    Science.gov (United States)

    Conklin, M. H.; Lucas, R. G.

    2011-12-01

    Montane meadows are often areas of groundwater discharge. In this study we characterized the groundwater - surface water interactions of two meadow systems and their connectivity to the surrounding catchment . We analyzed groundwater elevation data in 24 wells in two meadows located in the southern Sierra Nevada. Well transects extended from the meadow centers near the stream, to the meadow edged, and into the adjacent forest-where wells were drilled into the weathered granite saprock layer. Water samples were collected from the monitoring wells and from streams associated with the meadow systems and analyzed for major ions and stable water isotopes. Ground water elevations in the monitoring wells were used to calculate daily evapotranspiration (ET) values. These values show that locations on the meadow slopes and near the meadow edges are losing water to the atmosphere at near potential evapotranspiration rates during the height of the growing season. ET signals from wells near the meadow streams are muted, likely due to the vegetation utilizing the available surface water at these locations. Wells installed in the saprock layer, outside of the meadow boundaries, show diurnal fluctuations in sync with fluctuations observed at the meadow edge. This trend persists after the meadow vegetation senesces, indicating that groundwater elevations in the meadow, especially near the meadow edge, are significantly influenced by the adjacent hillslope saprock layer and forest ET. Geochemical sampling results indicate that the meadow streams are predominantly fed by snowmelt in the spring and early summer, moving toward more influence from base flow in the late summer and early fall. Results from the geochemical analysis established the connections of the hillslope to the meadow water tables and of the meadow subsurface waters to the down-gradient streams. Our results indicate that the these meadows are directly connected to the shallow sub-surface processes in the up gradient

  16. Impact of interannual variations in aerosol particle sources on orographic precipitation over California's Central Sierra Nevada

    Science.gov (United States)

    Creamean, J. M.; Ault, A. P.; White, A. B.; Neiman, P. J.; Ralph, F. M.; Minnis, P.; Prather, K. A.

    2015-01-01

    Aerosols that serve as cloud condensation nuclei (CCN) and ice nuclei (IN) have the potential to profoundly influence precipitation processes. Furthermore, changes in orographic precipitation have broad implications for reservoir storage and flood risks. As part of the CalWater field campaign (2009-2011), the variability and associated impacts of different aerosol sources on precipitation were investigated in the California Sierra Nevada using an aerosol time-of-flight mass spectrometer for precipitation chemistry, S-band profiling radar for precipitation classification, remote sensing measurements of cloud properties, and surface meteorological measurements. The composition of insoluble residues in precipitation samples collected at a surface site contained mostly local biomass burning and long-range transported dust and biological particles (2009), local sources of biomass burning and pollution (2010), and long-range transport from distant sources (2011). Although differences in the sources were observed from year-to-year, the most consistent source of dust and biological residues were associated with storms consisting of deep convective cloud systems with significant quantities of precipitation initiated in the ice phase. Further, biological residues were dominant (up to 40%) during storms with relatively warm cloud temperatures (up to -15 °C), supporting the important role bioparticles can play as ice nucleating particles. On the other hand, lower percentages of residues from local biomass burning and pollution were observed over the three winter seasons (on average 31 and 9%, respectively). When precipitation quantities were relatively low, these residues most likely served as CCN, forming smaller more numerous cloud droplets at the base of shallow cloud systems, and resulting in less efficient riming processes. The correlation between the source of aerosols within clouds and precipitation type and quantity will be further probed in models to understand the

  17. Nutrient and mercury deposition and storage in an alpine snowpack of the Sierra Nevada, USA

    Directory of Open Access Journals (Sweden)

    C. Pearson

    2015-01-01

    Full Text Available Bi-weekly snowpack core samples were collected at seven sites along two elevation gradients in the Tahoe Basin during two consecutive snow years to evaluate total wintertime snowpack accumulation of nutrients and pollutants in a high elevation watershed of the Sierra Nevada. Additional sampling of wet deposition and detailed snow pit profiles was conducted the following year to compare wet deposition to snowpack storage and assess the vertical dynamics of snowpack chemicals. Results show that on average organic N comprised 48% of all snowpack N, while nitrate (NO3--N and TAN (total ammonia nitrogen made up 25 and 27%, respectively. Snowpack NO3--N concentrations were relatively uniform across sampling sites over the sampling seasons and showed little difference between seasonal wet deposition and integrated snow pit concentrations in agreement with previous studies that identify wet deposition as the dominant source of wintertime NO3--N deposition. However, vertical snow pit profiles showed highly variable concentrations of NO3--N within the snowpack indicative of additional deposition and in snowpack dynamics. Unlike NO3--N, snowpack TAN doubled towards the end of winter and in addition to wet deposition, had a strong dry deposition component. Organic N concentrations in snowpack were highly variable (from 35 to 70% and showed no clear temporal or spatial dependence throughout the season. Integrated snowpack organic N concentrations were up to 2.5 times higher than seasonal wet deposition, likely due to microbial immobilization of inorganic N as evident by coinciding increases of organic N and decreases of inorganic N, in deeper, aged snowpack. Spatial and temporal deposition patterns of snowpack P were consistent with particulate-bound dry deposition inputs and strong impacts from in-basin sources causing up to 6 times enrichment at urban locations compared to remote sites. Snowpack Hg showed little temporal variability and was dominated by

  18. Vertical tectonics at a continental crust-oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia

    Science.gov (United States)

    Villagómez, Diego; Spikings, Richard; Mora, AndréS.; GuzmáN, Georgina; Ojeda, GermáN.; CortéS, Elizabeth; van der Lelij, Roelant

    2011-08-01

    The topographically prominent Sierra Nevada de Santa Marta forms part of a faulted block of continental crust located along the northern boundary of the South American Plate, hosts the highest elevation in the world (˜5.75 km) whose local base is at sea level, and juxtaposes oceanic plateau rocks of the Caribbean Plate. Quantification of the amount and timing of exhumation constrains interpretations of the history of the plate boundary, and the driving forces of rock uplift along the active margin. The Sierra Nevada Province of the southernmost Sierra Nevada de Santa Marta exhumed at elevated rates (≥0.2 Km/My) during 65-58 Ma in response to the collision of the Caribbean Plateau with northwestern South America. A second pulse of exhumation (≥0.32 Km/My) during 50-40 Ma was driven by underthrusting of the Caribbean Plate beneath northern South America. Subsequent exhumation at 40-25 Ma (≥0.15 Km/My) is recorded proximal to the Santa Marta-Bucaramanga Fault. More northerly regions of the Sierra Nevada Province exhumed rapidly during 26-29 Ma (˜0.7 Km/My). Further northward, the Santa Marta Province exhumed at elevated rates during 30-25 Ma and 25-16 Ma. The highest exhumation rates within the Sierra Nevada de Santa Marta progressed toward the northwest via the propagation of NW verging thrusts. Exhumation is not recorded after ˜16 Ma, which is unexpected given the high elevation and high erosive power of the climate, implying that rock and surface uplift that gave rise to the current topography was very recent (i.e., ≤1 Ma?), and there has been insufficient time to expose the fossil apatite partial annealing zone.

  19. Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen

    Directory of Open Access Journals (Sweden)

    D. Obrist

    2009-05-01

    Full Text Available This study presents data on mercury (Hg concentrations, stochiometric relations to carbon (C and nitrogen (N, and Hg pool sizes in four Sierra Nevada forest sites of similar exposure and precipitation regimes, and hence similar atmospheric deposition, to evaluate how ecosystem parameters control Hg retention in ecosystems. In all four sites, the largest amounts of Hg reside in soils which account for 94–98% of ecosystem pools. Hg concentrations and Hg/C ratios increase in the following order: Green Needles/Leavesr2=0.58 and N and C (r2=0.64 in decomposing litter, but a positive correlation between litter Hg and N (r2=0.70. These inverse relations may reflect preferential retention of N and Hg over C during decomposition, or may be due to older age of decomposed litter layers which are exposed to longer-term atmospheric Hg deposition in the field. The results indicate that litter Hg levels depend on decomposition stage and may not follow generally observed positive relationships between Hg and organic C.

    Mineral soil layers show strong positive correlations of Hg to C across all sites and soil horizons (r2=0.83, but Hg concentrations are even more closely related to N with a similar slope to that observed in litter (r2=0.92. Soil N levels alone explain over 90% of Hg pool sizes across the four Sierra Nevada forest sites. This suggests that soil organic N and C groups provide sorption sites for Hg to retain atmospheric deposition. However, the patterns could be due to indirect relationships where high soil N and C levels reflect high ecosystem productivity which leads to corresponding high atmospheric Hg deposition inputs via leaf litterfall and plant senescence. Our results also show that two of the sites previously affected by

  20. Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen

    Directory of Open Access Journals (Sweden)

    D. Obrist

    2009-02-01

    Full Text Available This study presents data on Hg concentrations, stochiometric relations to carbon (C and nitrogen (N, and Hg pool sizes in four Sierra Nevada forest sites of similar exposure and precipitation regimes, and hence similar atmospheric deposition, to evaluate how ecosystem parameters control Hg retention in ecosystems. In all four sites, the largest amounts of Hg reside in soils which account for 94–98% of ecosystem pools. Hg concentrations and Hg/C ratios increase in the following order: Green Needles/Leaves < Dry Needles/Leaves < Oi litter < Oe litter < Oa litter. Stochiometric relations show negative correlations between Hg and C (r2=0.58 and N and C (r2=0.64 in decomposing litter, but a positive correlation between litter Hg and N (r2=0.70. These inverse relations may reflect preferential retention of N and Hg over C during decomposition, or may be due to older age of decomposed litter layers which are exposed to longer-term atmospheric Hg deposition in the field. The results indicate that litter Hg levels depend on decomposition stage and may not follow generally observed positive relationships between Hg and organic C.

    Mineral soil layers show strong positive correlations of Hg to C across all sites and soil horizons (r2=0.83, but Hg concentrations are even more closely related to N with a similar slope to that observed in litter (r2=92%. Soil N levels alone explain over 90% of Hg pool sizes across the four Sierra Nevada forest sites. This suggest that soil organic N and C groups provide sorption sites for Hg to retain atmospheric deposition. However, the patterns could be due indirect relationships where high soil N and C levels reflect high ecosystem productivity which leads to corresponding high atmospheric Hg deposition inputs via leaf litterfall and plant senescence. Our results also show that two of the sites previously affected by

  1. Dedradation of buried ice and permafrost in the Veleta Cirque (Sierra Nevada, Spain from 2006–2013

    Directory of Open Access Journals (Sweden)

    A. Gómez-Ortiz

    2014-04-01

    Full Text Available The Veleta cirque is located at the foot of the Veleta peak, one of the highest summits of the Sierra Nevada National Park (Southern Spain. This cirque was the source of a glacier valley during the Quaternary cold periods. During the Little Ice Age it sheltered a small glacier, the most southerly in Europe, about which we have possessed written records since the XVII century. This glacier still had ice residues until the mid-XX century. This ice is no longer visible, but a residue persists along with discontinuous permafrost trapped under strata of rock blocks that make up an incipient rock glacier. From 2006 to 2013, this rock glacier was monitored by measurement of the temperature of the active layer, the degree of snow cover on the ground, movements of the body of the rock glacier and geophysical prospection inside it. The results show that the relict ice and trapped permafrost have been steadily declining. The processes that explain this degradation occur in chain, starting from the external radiation that affects the ground in summer, which is when the temperatures are higher. In effect, when this radiation steadily melts the snow on the ground, the thermal expansive wave advances into the heart of the active layer, reaching the ceiling of the frozen mass, which it then degrades and melts. In this entire linked process, the circulation of melt waters fulfil a highly significant function, as they act as heat transmitters. The complementary nature of these processes explains the subsidence and continuous changes in the entire clastic pack and the melting of the frozen ceiling on which it rests. This happens in summer in just a few weeks. All these events, in particular the geomorphological ones, take place on the Sierra Nevada peaks within certain climate conditions that are at present unfavourable to the maintenance of snow on the ground in summer. These conditions could be related to recent variations in the climate, starting in the mid

  2. Dedradation of buried ice and permafrost in the Veleta Cirque (Sierra Nevada, Spain) from 2006-2013

    Science.gov (United States)

    Gómez-Ortiz, A.; Oliva, M.; Salvador-Franch, F.; Salvà-Catarineu, M.; Palacios, D.; de Sanjosé-Blasco, J. J.; Tanarro-García, L. M.

    2014-04-01

    The Veleta cirque is located at the foot of the Veleta peak, one of the highest summits of the Sierra Nevada National Park (Southern Spain). This cirque was the source of a glacier valley during the Quaternary cold periods. During the Little Ice Age it sheltered a small glacier, the most southerly in Europe, about which we have possessed written records since the XVII century. This glacier still had ice residues until the mid-XX century. This ice is no longer visible, but a residue persists along with discontinuous permafrost trapped under strata of rock blocks that make up an incipient rock glacier. From 2006 to 2013, this rock glacier was monitored by measurement of the temperature of the active layer, the degree of snow cover on the ground, movements of the body of the rock glacier and geophysical prospection inside it. The results show that the relict ice and trapped permafrost have been steadily declining. The processes that explain this degradation occur in chain, starting from the external radiation that affects the ground in summer, which is when the temperatures are higher. In effect, when this radiation steadily melts the snow on the ground, the thermal expansive wave advances into the heart of the active layer, reaching the ceiling of the frozen mass, which it then degrades and melts. In this entire linked process, the circulation of melt waters fulfil a highly significant function, as they act as heat transmitters. The complementary nature of these processes explains the subsidence and continuous changes in the entire clastic pack and the melting of the frozen ceiling on which it rests. This happens in summer in just a few weeks. All these events, in particular the geomorphological ones, take place on the Sierra Nevada peaks within certain climate conditions that are at present unfavourable to the maintenance of snow on the ground in summer. These conditions could be related to recent variations in the climate, starting in the mid-XIX century and most

  3. Quantitative estimation of granitoid composition from thermal infrared multispectral scanner (TIMS) data, Desolation Wilderness, northern Sierra Nevada, California

    Science.gov (United States)

    Sabine, Charles; Realmuto, Vincent J.; Taranik, James V.

    1994-01-01

    We have produced images that quantitatively depict modal and chemical parameters of granitoids using an image processing algorithm called MINMAP that fits Gaussian curves to normalized emittance spectra recovered from thermal infrared multispectral scanner (TIMS) radiance data. We applied the algorithm to TIMS data from the Desolation Wilderness, an extensively glaciated area near the northern end of the Sierra Nevada batholith that is underlain by Jurassic and Cretaceous plutons that range from diorite and anorthosite to leucogranite. The wavelength corresponding to the calculated emittance minimum lambda(sub min) varies linearly with quartz content, SiO2, and other modal and chemical parameters. Thematic maps of quartz and silica content derived from lambda(sub min) values distinguish bodies of diorite from surrounding granite, identify outcrops of anorthosite, and separate felsic, intermediate, and mafic rocks.

  4. Projected changes in seasonal drought and flood conditions in the Sierra Nevada and Colorado River basins (USA)

    Science.gov (United States)

    Stewart-Frey, Iris; Ficklin, Darren; Carrillo, Carlos; McIntosh, Russell

    2014-05-01

    The Sierra Nevada and Colorado River mountain ranges are the principal source of water for large urban and agricultural demands in the North American Southwest. In this region, GCM ensemble output suggests varying and modest precipitation changes, while air surface temperatures are expected to increase by several degrees by the end of the century. This study used the downscaled output of an ensemble of 16 GCMs and 2 emission scenarios to drive the SWAT watershed model, and to assess the impact of projected climatic changes on water availability and water quality through 2100. We then assess the changes in likelihood of occurrence of high (> 125%, > 150%) and low (< 75%, 150% of historic averages in high elevation regions and in main channels. The occurrence of extreme low flows are likely to significantly increase for the spring and summer seasons, with low flows of

  5. Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery

    Science.gov (United States)

    Margulis, Steven A.; Cortés, Gonzalo; Girotto, Manuela; Huning, Laurie S.; Li, Dongyue; Durand, Michael

    2016-06-01

    Analysis of the Sierra Nevada (USA) snowpack using a new spatially distributed snow reanalysis data set, in combination with longer term in situ data, indicates that water year 2015 was a truly extreme (dry) year. The range-wide peak snow volume was characterized by a return period of over 600 years (95% confidence interval between 100 and 4400 years) having a strong elevational gradient with a return period at lower elevations over an order of magnitude larger than those at higher elevations. The 2015 conditions, occurring on top of three previous drought years, led to an accumulated (multiyear) snowpack deficit of ~ -22 km3, the highest over the 65 years analyzed. Early estimates based on 1 April snow course data indicate that the snowpack drought deficit will not be overcome in 2016, despite historically strong El Niño conditions. Results based on a probabilistic Monte Carlo simulation show that recovery from the snowpack drought will likely take about 4 years.

  6. Photogrammetric Methodology for the Production of Geomorphologic Maps: Application to the Veleta Rock Glacier (Sierra Nevada, Granada, Spain

    Directory of Open Access Journals (Sweden)

    José Jesús Guerrero

    2009-10-01

    Full Text Available In this paper we present a stereo feature-based method using SIFT (Scale-invariant feature transform descriptors. We use automatic feature extractors, matching algorithms between images and techniques of robust estimation to produce a DTM (Digital Terrain Model using convergent shots of a rock glacier.The geomorphologic structure observed in this study is the Veleta rock glacier (Sierra Nevada, Granada, Spain. This rock glacier is of high scientific interest because it is the southernmost active rock glacier in Europe and it has been analyzed every year since 2001. The research on the Veleta rock glacier is devoted to the study of its displacement and cartography through geodetic and photogrammetric techniques.

  7. The ancestral cascades arc: Cenozoic evolution of the central Sierra Nevada (California) and the birth of the new plate boundary

    Science.gov (United States)

    Busby, C.J.; Hagan, J.C.; Putirka, K.; Pluhar, C.J.; Gans, P.B.; Wagner, D.L.; Rood, D.; DeOreo, S.B.; Skilling, I.

    2008-01-01

    We integrate new stratigraphic, structural, geochemical, geochronological, and magnetostratigraphic data on Cenozoic volcanic rocks in the central Sierra Nevada to arrive at closely inter-related new models for: (1) the paleogeography of the ancestral Cascades arc, (2) the stratigraphic record of uplift events in the Sierra Nevada, (3) the tectonic controls on volcanic styles and compositions in the arc, and (4) the birth of a new plate margin. Previous workers have assumed that the ancestral Cascades arc consisted of stratovolcanoes, similar to the modern Cascades arc, but we suggest that the arc was composed largely of numerous, very small centers, where magmas frequently leaked up strands of the Sierran frontal fault zone. These small centers erupted to produce andesite lava domes that collapsed to produce block-and-ash flows, which were reworked into paleocanyons as volcanic debris flows and streamflow deposits. Where intrusions rose up through water-saturated paleocanyon fill, they formed peperite complexes that were commonly destabilized to form debris flows. Paleocanyons that were cut into Cretaceous bedrock and filled with Oligocene to late Miocene strata not only provide a stratigraphic record of the ancestral Cascades arc volcanism, but also deep unconformities within them record tectonic events. Preliminary correlation of newly mapped unconformities and new geochronological, magnetostratigraphic, and structural data allow us to propose three episodes of Cenozoic uplift that may correspond to (1) early Miocene onset of arc magmatism (ca. 15 Ma), (2) middle Miocene onset of Basin and Range faulting (ca. 10 Ma), and (3) late Miocene arrival of the triple junction (ca. 6 Ma), perhaps coinciding with a second episode of rapid extension on the range front. Oligocene ignimbrites, which erupted from calderas in central Nevada and filled Sierran paleocanyons, were deeply eroded during the early Miocene uplift event. The middle Miocene event is recorded by growth

  8. An ecologic study comparing distribution of Pasteurella trehalosi and Mannheimia haemolytica between Sierra Nevada bighorn sheep, White Mountain bighorn sheep, and domestic sheep.

    Science.gov (United States)

    Tomassini, Letizia; Gonzales, Ben; Weiser, Glen C; Sischo, William

    2009-10-01

    The prevalence and phenotypic variability of Pasteurella and Mannheimia isolates from Sierra Nevada bighorn sheep (Ovis canadensis sierrae), White Mountain bighorn sheep (Ovis canadensis nelsoni), and domestic sheep (Ovis aries) from California, USA, were compared. The White Mountain bighorn sheep population had a recent history of pneumonia-associated mortality, whereas the Sierra Nevada bighorn sheep population had no recent history of pneumonia-associated mortality. The domestic sheep flocks were pastured in areas geographically near both populations but were not known to have direct contact with either bighorn sheep population. Oropharyngeal swab samples were collected from healthy domestic and bighorn sheep and cultured to characterize bacterial species, hemolysis, biogroups, and biovariants. Pasteurella trehalosi and Mannheimia haemolytica were detected in all of the study populations, but the relative proportion of each bacterial species differed among sheep populations. Pasteurella trehalosi was more common than M. haemolytica in the bighorn sheep populations, whereas the opposite was true in domestic sheep. Mannheimia haemolytica was separated into 11 biogroups, and P. trehalosi was characterized into two biogroups. Biogroup distributions for M. haemolytica and P. trehalosi differed among the three populations; however, no difference was detected for the distribution of P. trehalosi biogroups between the Sierra Nevada bighorn sheep and domestic sheep. The prevalence odds ratios (pOR) for the distribution of M. haemolytica biogroups suggested little difference between White Mountain bighorn sheep and domestic sheep compared with Sierra Nevada bighorn sheep and domestic sheep, although these comparisons had relatively large confidence intervals for the point estimates. Hemolytic activity of the isolates was not different among the sheep populations for M. haemolytica but was different for P. trehalosi. No clear evidence of association was found in the

  9. Dispersal limitation does not control high elevational distribution of alien plant species in the southern Sierra Nevada, California

    Science.gov (United States)

    Rundel, Philip W.; Keeley, Jon E.

    2016-01-01

    Patterns of elevational distribution of alien plant species in the southern Sierra Nevada of California were used to test the hypothesis that alien plant species invading high elevations around the world are typically climate generalists capable of growing across a wide elevational range. The Sierra Nevada has been heavily impacted for more than a century and a half, first by heavy grazing up into high elevation meadows, followed by major logging, and finally, by impacts associated with recreational use. The comparative elevational patterns of distribution and growth form were compared for native and alien plant species in the four families (Asteraceae, Brassicaceae, Fabaceae, and Poaceae) that contribute the majority of naturalized aliens in the study area. The distribution of realized climatic niche breadth, as measured by elevational range of occurrence, was virtually identical for alien and native species, with both groups showing a roughly Gaussian distribution peaking with species whose range covers a span of 1500–1999 m. In contrast to alien species, which only rarely occurred at higher elevations, native species showed a distribution of upper elevation limits peaking at 3000–3499 m, an elevation that corresponds to the zone of upper montane and subalpine forests. Consistent with a hypothesis of abiotic limitations, only a few alien species have been ecologically successful invaders at subalpine and alpine elevations above 2500 m. The low diversity of aliens able to become established in these habitats is unlikely due to dispersal limitations, given the long history of heavy grazing pressure at high elevations across this region. Instead, this low diversity is hypothesized to be a function of life history traits and multiple abiotic stresses that include extremes of cold air and soil temperature, heavy snowfall, short growing seasons, and low resource availability. These findings have significant implications for resource managers.

  10. Isoscapes of the Sierra Nevada, California: Inferences from Landscape Patterns of Carbon, Nitrogen and Hydrogen in Lakes and Their Watersheds

    Science.gov (United States)

    Sickman, J. O.; Sadro, S.; Lucero, D. M.

    2016-12-01

    Montane aquatic ecosystems integrate conditions within their catchments and act as sentinels for environmental change. Variations in elevation, atmospheric deposition, and bedrock chemistry produce complex environmental gradients that influence the flow of materials and energy between lakes and their watersheds. We investigated the landscape-level variations in stable isotopes (Isoscapes) of C, N and H in foodwebs of 12 Sierra Nevada lakes and watersheds spanning an elevation range of 1500 to 3500 m a.s.l. Collections included terrestrial plants, soils and insects and the entire aquatic food chain from dissolved organic matter (DOM) through plankton, benthic invertebrates and fish. Our major objective was to understand how environmental gradients such as temperature and precipitation (distance-for-time proxies for climate change) effect foodweb structure and reciprocal subsidies of C and energy between lakes and their watersheds. Possibly related to its role as a limiting nutrient for aquatic and terrestrial ecosystems, we observed no consistent pattern for δ15N across any environmental gradient. In contrast, there was a strong pattern of enrichment in 13C with increasing elevation (slope = +3.4 permil per km). Similarly, δ2H of snowfall and foodweb components showed a depletion of 2H with elevation (slope = -17 permil per km for foodwebs and -20 permil per km for water) suggesting strong influence of snowmelt on aquatic ecosystem function. We will further explore these isotope patterns and draw inferences on how changes in montane climate, including trends toward earlier snowmelt and lower snowfall, will impact aquatic ecosystems of the Sierra Nevada.

  11. The Relationships Between Insoluble Precipitation Residues, Clouds, and Precipitation Over California's Southern Sierra Nevada During Winter Storms

    Science.gov (United States)

    Creamean, Jessie M.; White, Allen B.; Minnis, Patrick; Palikonda, Rabindra; Spangenberg, Douglas A.; Prather, Kimberly A.

    2016-01-01

    Ice formation in orographic mixed-phase clouds can enhance precipitation and depends on the type of aerosols that serve as ice nucleating particles (INP). The resulting precipitation from these clouds is a viable source of water, especially for regions such as the California Sierra Nevada. Thus, a better understanding of the sources of INP that impact orographic clouds is important for assessing water availability in California. This study presents a multi-site, multi-year analysis of single particle insoluble residues in precipitation samples that likely influenced cloud ice and precipitation formation above Yosemite National Park. Dust and biological particles represented the dominant fraction of the residues (64% on average). Cloud glaciation, determined using GOES satellite observations, not only depended on high cloud tops (greater than 6.2 km) and low temperatures (less than -26 C), but also on the composition of the dust and biological residues. The greatest prevalence of ice-phase clouds occurred in conjunction with biologically-rich residues and mineral dust rich in calcium, followed by iron and aluminosilicates. Dust and biological particles are known to be efficient INP, thus these residues are what likely influenced ice formation in clouds above the sites and subsequent precipitation quantities reaching the surface during events with similar meteorology. The goal of this study is to use precipitation chemistry information to gain a better understanding of the potential sources of INP in the south-central Sierra Nevada, where cloud-aerosol-precipitation interactions are under-studied and where mixed-phase orographic clouds represent a key element in the generation of precipitation and thus the water supply in California.

  12. A multi-scale evaluation of pack stock effects on subalpine meadow plant communities in the Sierra Nevada

    Science.gov (United States)

    Lee, Steven R.; Berlow, Eric L.; Ostoja, Steven M.; Brooks, Matthew L.; Génin, Alexandre; Matchett, John R.; Hart, Stephen C.

    2017-01-01

    We evaluated the influence of pack stock (i.e., horse and mule) use on meadow plant communities in Sequoia and Yosemite National Parks in the Sierra Nevada of California. Meadows were sampled to account for inherent variability across multiple scales by: 1) controlling for among-meadow variability by using remotely sensed hydro-climatic and geospatial data to pair stock use meadows with similar non-stock (reference) sites, 2) accounting for within-meadow variation in the local hydrology using in-situ soil moisture readings, and 3) incorporating variation in stock use intensity by sampling across the entire available gradient of pack stock use. Increased cover of bare ground was detected only within “dry” meadow areas at the two most heavily used pack stock meadows (maximum animals per night per hectare). There was no difference in plant community composition for any level of soil moisture or pack stock use. Increased local-scale spatial variability in plant community composition (species dispersion) was detected in “wet” meadow areas at the two most heavily used meadows. These results suggest that at the meadow scale, plant communities are generally resistant to the contemporary levels of recreational pack stock use. However, finer-scale within-meadow responses such as increased bare ground or spatial variability in the plant community can be a function of local-scale hydrological conditions. Wilderness managers can improve monitoring of disturbance in Sierra Nevada meadows by adopting multiple plant community indices while simultaneously considering local moisture regimes.

  13. Hydroclimatic alteration increases vulnerability of montane meadows in the Sierra Nevada, California

    Science.gov (United States)

    Viers, J. H.; Peek, R.; Purdy, S. E.; Emmons, J. D.; Yarnell, S. M.

    2012-12-01

    Meadow ecosystems of the Sierra Nevada (California, USA) have been maintained by the interplay of biotic and abiotic forces, where hydrological functions bridge aquatic and terrestrial realms. Meadows are not only key habitat for fishes, amphibians, birds, and mammals alike, but also provide enumerable ecosystem services to humans, not limited to regulating services (eg, water filtration), provisioning services (eg, grazing), and aesthetics. Using hydroclimatic models and spatial distribution models of indicator species, a range wide assessment was conducted to assess and synthesize the vulnerability of meadow ecosystems to hydroclimatic alteration, a result of regional climate change. Atmospheric warming is expected to result in a greater fraction of total precipitation falling as winter rain (rather than snow) and earlier snowmelt. These predicted changes will likely cause more precipitation-driven runoff in winter and reduced snowmelt runoff in spring, leading to reduced annual runoff and a general shift in runoff timing to earlier in the year. These profound effects have consequences for hydrological cycling and meadow functioning, though such changes will not occur steadily through time or uniformly across the range, and each individual meadow will respond as a function of its composition and land use history. Most vulnerable is groundwater recharge, a fundamental component of meadow hydrology. As a result of shortened snow melt period and absence of diel snowmelt fluxes that would otherwise gradually refill meadow aquifers, recharge is expected to decline due to less infiltration. Diminished water tables will likely stress hydric and mesic vegetation, promoting more xeric conditions. Coupled with greater magnitude stream flows, these conditions promote channel incision and ultimate state shift to non-meadow conditions. The biological effects of hydroclimatic alteration, such as lower mean annual flow and earlier timing, will result in an overall decrease in

  14. Review of Seismic Hazard Issues Associated with Auburn Dam Project, Sierra Nevada Foothills, California

    Science.gov (United States)

    Schwartz, D.P.; Joyner, W.B.; Stein, R.S.; Brown, R.D.; McGarr, A.F.; Hickman, S.H.; Bakun, W.H.

    1996-01-01

    Summary -- The U.S. Geological Survey was requested by the U.S. Department of the Interior to review the design values and the issue of reservoir-induced seismicity for a concrete gravity dam near the site of the previously-proposed Auburn Dam in the western foothills of the Sierra Nevada, central California. The dam is being planned as a flood-control-only dam with the possibility of conversion to a permanent water-storage facility. As a basis for planning studies the U.S. Army Corps of Engineers is using the same design values approved by the Secretary of the Interior in 1979 for the original Auburn Dam. These values were a maximum displacement of 9 inches on a fault intersecting the dam foundation, a maximum earthquake at the site of magnitude 6.5, a peak horizontal acceleration of 0.64 g, and a peak vertical acceleration of 0.39 g. In light of geological and seismological investigations conducted in the western Sierran foothills since 1979 and advances in the understanding of how earthquakes are caused and how faults behave, we have developed the following conclusions and recommendations: Maximum Displacement. Neither the pre-1979 nor the recent observations of faults in the Sierran foothills precisely define the maximum displacement per event on a fault intersecting the dam foundation. Available field data and our current understanding of surface faulting indicate a range of values for the maximum displacement. This may require the consideration of a design value larger than 9 inches. We recommend reevaluation of the design displacement using current seismic hazard methods that incorporate uncertainty into the estimate of this design value. Maximum Earthquake Magnitude. There are no data to indicate that a significant change is necessary in the use of an M 6.5 maximum earthquake to estimate design ground motions at the dam site. However, there is a basis for estimating a range of maximum magnitudes using recent field information and new statistical fault

  15. Deciphering the environmental and landscape evolution of Sierra Nevada (S Iberia) from bog archives

    Science.gov (United States)

    Garcia Alix, Antonio; Toney, Jaime L.; Jiménez-Moreno, Gonzalo; Ramos-Román, Maria J.; Anderson, R. Scott; Jiménez-Espejo, Francisco; Delgado Huertas, Antonio; Ruano, Patricia

    2016-04-01

    Sierra Nevada is the southernmost mountain range in the Iberian Peninsula and one of the highest in Europe. Its geomorphology was the result of Pleistocene glaciations that carved out depressions, valleys and cirques at high elevations in the metamorphic basement. Depressions gave rise to lakes and wetlands during the Holocene. Geophysical and organic geochemical analyses of biomarkers (n-alkanes) and bulk sediment (C and N ratio and isotopes) from two high elevation bogs (locally called "Borreguiles"): Borreguiles de la Virgen (BdlV) and Borreguiles de la Caldera (BdlC), have allowed us to track the hydrological evolution of the area and its relationship to climatic fluctuations of the western Mediterranean during the Holocene. Most of the bogs of this area resulted from the natural evolution of former small lakes. The records are 56 cm and 169 cm long, respectively. Geophysical data suggest that we recovered the whole sedimentary record from BdlC; however, there are some post-glacial sediments remaining below the BdlV core that we could not recover due to hard-ground conditions. During the early and middle Holocene, aquatic conditions predominated in BdlV compared to the most recent part of the record (low C/N values and high proportion of aquatic plants (Paq) deduced from the n-alkanes) suggesting a lake environment whose water level gradually decreased until ˜5.5 cal ky BP. This aridity trend is also observed in nearby records such as at Laguna de Río Seco (LdRS), a result of the African Humid Period demise. Carbon and nitrogen isotopes were higher during this interval, which might suggest more algae activity, in agreement with the highest concentrations of the algae Pediastrum in the area. There is an important development of terrestrial plants, a real bog stage (C/N higher than 20, high TOC, lower Paq) in both records from ˜5.5 to 3.5-3.0 cal ky BP. Those hydrological changes in the landscape might be related to a possible change in the source of

  16. In-situ monitoring of California's drought: Impacts on key hydrologic variables in the Southern Sierra Nevada

    Science.gov (United States)

    Oroza, C.; Zheng, Z.; Zhang, Z.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2015-12-01

    Like many semi-arid regions, California relies on seasonal snowmelt from the Sierra Nevada mountain range to provide freshwater allocations for multiple stakeholders throughout the year. The magnitude and timing of runoff from these regions is being altered by consecutive years of drought, affecting downstream ecosystems, hydropower operations, and deliveries to agriculture and urban water users. Understanding the long-term effect of drought on the montane water balance requires temporally continuous, in-situ measurements of key hydrologic variables across large spatial domains. We discuss a seven-year dataset from the Southern Sierra Critical Zone Observatory, which includes co-located measurements of snowpack, soil moisture, and soil temperature in the Kings River watershed. We investigate how these key hydrologic variables are affected as the region transitions from winters that have nearly continuous snow cover (2008-2011) to winters with extended snow-on, snow-off periods (2012-2014). For water year 2014, we observe a 93% decline in average snowpack, a 35% decline in average soil moisture, and a 25% increase in average soil temperature compared to a wet-year index of each variable. We discuss the effect of physiographic features, including slope, aspect, elevation, and canopy coverage on the changes observed in each variable. Finally, we use sparse inverse covariance estimation to investigate the changing conditional relationships throughout the observatory in wet and dry years.

  17. Simulated Climate Change Effects of Snowpack Manipulations on Soil Temperature and Moisture in the Sierra Nevada Mountains

    Science.gov (United States)

    Johnson, B. G.; Jasoni, R. L.; Arnone, J.

    2012-12-01

    Future changes in climate are predicted to significantly affect the type and amount of precipitation in the Sierra Nevada Mountains of California and Nevada. Because most of the yearly precipitation in this region falls as snow, changes in snowfall amount, snowfall timing, and duration of the snowpack may dramatically affect the timing and persistence of soil temperature and moisture, and biological processes dependent on these soil factors. The objective of our study was to quantify the effects of manipulating snowpack amounts on soil temperature and moisture over a two year period, including both the addition and removal of snow in a Pinus jeffreii (Jeffrey Pine) forest located northeast of Lake Tahoe, Nevada. Soil temperatures measured during the first winter (above average snow year) remained higher in control plots when snow was present, and in snow-addition plots, than in snow-removal plots. However, these effects did not persist in the second year when total snowfall amounted to only 20% of that occurring in the first year. Surprisingly, the effects on soil moisture persisted through the summer of year two with soil VWC in snow removal plots averaging approximately 50% drier than the snow addition plots (6.5% average VWC in snow removal and 13.2% in snow addition plots) and 13% drier on average than the control plots (7.5% average VWC in control plots).These results suggest the possibility of prolonged reductions in soil moisture, soil microbial activity, plant growth, and even increased danger of wildfires if anthropogenic climate change reduces snowfall amount and snowpack duration.

  18. Present importance of coffe production in some coffe grower communities and indian comunities in the Sierra Nevada de Santa Marta Importancia actual de la caficultora en algunas comunidades campesinas e indígenas de la Sierra Nevada de Santa Marta

    Directory of Open Access Journals (Sweden)

    Herrera Rojas Gilberto

    1993-12-01

    Full Text Available Coffe production followed by coffe growers and indian groups in the Sierra Nevada de Santa Marta, shows several differences regarding economical rationalityandtechnology. Coffe plays avery important role inthe economy and life quality ofthegrowers and indians. Traditional technology is generalized and has slowed down the deterioration of the Sierra, although life quality is very low.
    La caficultura que practican los campesinos y los grupos indlgenas de la Sierra Nevada de Santa Marta, tiene notables diferencias, tanto en la racionalidad económica, como en la lógica con la cual son atendidos los cultivos. El café juega un
    papel predominante en el sostenimiento de la economla
    y en la calidad de la vida de campecinos e indlgenas. La tecnologla tradicional, cuyo uso es generalizado, ha demorado el deterioro de ese inmenso maciso, aunuqe la calidad de la vida es bastante baja.

  19. Structure of the Alpujarrides on the southern and eastern border of the Sierra de Lújar

    Directory of Open Access Journals (Sweden)

    Tubía, J. M.

    1990-08-01

    Full Text Available The Alpujarride complex located to the South of the Sierra Nevada and extending between Motril and Adra is formed of five nappes, which in ascending order are: Lújar, Cástaras, Alcázar, Murtas and Adra. These five nappes display a structure that is the result of several overlapping events. Firstly, they reflect a process of ductile shearing associated with a mylonitic foliation and a mylonitic lineation with a N4üo E average orientation. Following this, an episode of translation towards the North has been recorded; this occurred under more superficial conditions and developed gouges and fault breccias. Associated with this episode are locally developed folds, which did not give rise to a mineral blastesis. Afterwards, the late deformations occurred, affecting the whole ofthe ensemble. Of these, the most important are those that originated folds with a N-S axis, verging towards the West and the normal faults. The extensional faults towards the South would be encompassed in this sectionEl Complejo Alpujárride situado al Sur de Sierra Nevada y comprendido entre Motril y Adra, está formado por cinco mantos que son, en orden ascendente: Lújar, Cástaras, Alcázar, Murtas y Adra. Estos cinco mantos presentan una estructuración que es el resultado de varios acontecimientos superpuestos. En primer lugar, reflejan un proceso de cizallamiento dúctil hacia el NE, que lleva asociado una foliación milonítica, de orientación media N4üo E. A continuación se ha registrado un episodio de traslaciones hacia el Norte, en condiciones más superficiales, que desarrolla brechas y harinas de falla. Asociado a este episodio se desarrollan localmente pliegues, que no dan lugar a una blastesis mineral. Con posterioridad se producen las deformaciones tardías, que afectan a todo el conjunto. De ellas, las más sobresalientes son las que originan pliegues de eje N-S, vergentes al Oeste y las fallas normales. Las fallas extensionales hacia el Sur quedar

  20. Composition and stabilization mechanisms of organic matter in soils and sediments eroded from granitic, low-order catchments in the Sierra Nevada, California

    OpenAIRE

    Stacy, Erin Michele

    2012-01-01

    Soil erosion can alter the mechanisms of organic matter (OM) storage and persistence in soil, including aggregation, burial, and organo-mineral associations. I studied how extended transport of topsoil and associated OM alters OM stabilization mechanisms by comparing soil from different landform positions with sediment exported from eight, low-order watersheds in the Sierra Nevada, California. To assess the relative importance of different stabilization mechanisms, I separated free, unprotect...

  1. Application of the ESRI Geostatistical Analyst for Determining the Adequacy and Sample Size Requirements of Ozone Distribution Models in the Carpathian and Sierra Nevada Mountains

    Directory of Open Access Journals (Sweden)

    Witold Fraczek

    2001-01-01

    Full Text Available Models of O3 distribution in two mountain ranges, the Carpathians in Central Europe and the Sierra Nevada in California were constructed using ArcGIS Geostatistical Analyst extension (ESRI, Redlands, CA using kriging and cokriging methods. The adequacy of the spatially interpolated ozone (O3 concentrations and sample size requirements for ozone passive samplers was also examined. In case of the Carpathian Mountains, only a general surface of O3 distribution could be obtained, partially due to a weak correlation between O3 concentration and elevation, and partially due to small numbers of unevenly distributed sample sites. In the Sierra Nevada Mountains, the O3 monitoring network was much denser and more evenly distributed, and additional climatologic information was available. As a result the estimated surfaces were more precise and reliable than those created for the Carpathians. The final maps of O3 concentrations for Sierra Nevada were derived from cokriging algorithm based on two secondary variables — elevation and maximum temperature as well as the determined geographic trend. Evenly distributed and sufficient numbers of sample points are a key factor for model accuracy and reliability.

  2. Application of the ESRI Geostatistical Analyst for determining the adequacy and sample size requirements of ozone distribution models in the Carpathian and Sierra Nevada Mountains.

    Science.gov (United States)

    Fraczek, W; Bytnerowicz, A; Arbaugh, M J

    2001-12-07

    Models of O3 distribution in two mountain ranges, the Carpathians in Central Europe and the Sierra Nevada in California were constructed using ArcGIS Geostatistical Analyst extension (ESRI, Redlands, CA) using kriging and cokriging methods. The adequacy of the spatially interpolated ozone (O3) concentrations and sample size requirements for ozone passive samplers was also examined. In case of the Carpathian Mountains, only a general surface of O3 distribution could be obtained, partially due to a weak correlation between O3 concentration and elevation, and partially due to small numbers of unevenly distributed sample sites. In the Sierra Nevada Mountains, the O3 monitoring network was much denser and more evenly distributed, and additional climatologic information was available. As a result the estimated surfaces were more precise and reliable than those created for the Carpathians. The final maps of O3 concentrations for Sierra Nevada were derived from cokriging algorithm based on two secondary variables--elevation and maximum temperature as well as the determined geographic trend. Evenly distributed and sufficient numbers of sample points are a key factor for model accuracy and reliability.

  3. Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR

    Directory of Open Access Journals (Sweden)

    L. Liu

    2013-07-01

    Full Text Available Despite the abundance of rock glaciers in the Sierra Nevada of California, USA, few efforts have been made to measure their surface flow. Here we use the interferometric synthetic aperture radar (InSAR technique to compile a benchmark inventory describing the kinematic state of 59 active rock glaciers in this region. In the late summer of 2007, these rock glaciers moved at speeds that range from 14 cm yr−1 to 87 cm yr−1, with a regional mean value of 53 cm yr−1. Our inventory reveals a spatial difference: rock glaciers in the southern Sierra Nevada moved faster than the ones in the central Sierra Nevada. In addition to the regional mapping, we also conduct a case study to measure the surface flow of the Mount Gibbs rock glacier in fine spatial and temporal detail. The InSAR measurements over this target reveal (1 that the spatial pattern of flow is correlated with surface geomorphic features and (2 a significant seasonal variation of flow speed whose peak value was 48 cm yr−1in the fall of 2007, more than twice the minimum value observed in the spring of 2008. The seasonal variation lagged air temperatures by three months. Our finding on the seasonal variation of surface speed reinforces the importance of a long time series with high temporal sampling rates to detect possible long-term changes of rock glacier kinematics in a warming climate.

  4. Human settlement and land use at Trévelez (Sierra Nevada. A historical-geographical approach

    Directory of Open Access Journals (Sweden)

    May, T.

    1991-12-01

    Full Text Available Based on written documents of the 16th, 18th and 19th century and on information from a publication of the early 19 70s, as well as on our own field observations, we attempt to describe the evolution of settlement and land use in the territory of Trévelez (Sierra Nevada, Provincia de Granada, Spain, from the end of the morisco period until the present. After the Christian colonization in 1572, a process of extensification took place, which resulted in a type of land use which gave great importance to rainfed cereal agriculture and husbandry of small ungulates. From the end of the 18th century/beginning of the 19th century onward, there are indications of another process of agricultural intensification and diversification, with great importance given to irrigated cultivation. During the past two decades, an abandonment of agricultural areas can be observed, as well as an increase in activities linked to tourism and a certain recuperation of sheep and goat husbandry. It must be pointed out that land use has been submitted to important changes during the past, and that the "traditional" agricultural landscape is of relatively recent origin.

    [es] En base a documentos escritos del siglo XVI, XVIII, XIX y apoyándonos en una publicación de la primera mitad de los años 1970, así como en observaciones propias de campo se intenta describir la evolución del poblamiento y de los usos del suelo en el término de Trévelez (Sierra Nevada, Prov. de Granada, desde el final de los tiempos moriscos hasta la actualidad. Después de la colonización cristiana de 1572 tuvo lugar un proceso de extensificación, dando paso a un tipo de uso del suelo en que el cultivo en secano de cereales y la ganadería menor tenían gran importancia. A partir de finales del siglo XVIII principios del siglo XIX hay indicios de un segundo proceso de intensificación y diversificación de la agricultura, con gran importancia del regadío. Durante los últimos dos decenios

  5. Delineation of the High Enthalpy Reservoirs of the Sierra Nevada Volcanic Geothermal System, South-Central Chile

    Science.gov (United States)

    Alam, M.; Muñoz, M.; Parada, M.

    2011-12-01

    Geothermal system associated with the Pleistocene-Holocene Sierra Nevada volcano (SNVGS) in the Araucanía Region of Chile has surface manifestations from the north-western flank of the volcano, up to Manzanar and Malalcahuello. Baños del Toro, located on the northwestern flank of the volcano, has numerous fumaroles and acid pools (acid sulfate waters, T=~90°C, pH=2.1, TDS=3080 mg/L); while Aguas de la Vaca, near the base of the volcano, has a bubbling spring (chloride-sulfate waters, T=~60°C, pH=7.0, TDS=950 mg/L). Five shallow (low TDS (130-210mg/L). The main heat source of the geothermal system is apparently the magmatic system of the Sierra Nevada volcano. Liquiñe-Ofqui Fault Zone (LOFZ) that transects the area forms excellent conduits for the flow of the geothermal waters. The geothermal reservoirs are hosted in the volcanic rocks interceded with glacial deposits over the North Patagonian Batholith that forms an impermeable barrier, and thus constitutes the lower boundary of the geothermal system and also controls the lateral flow of the fluids. An equilibrium temperature of ~210°C is derived from gas geothermometry (CO2/Ar-H2/Ar) of the discharges at Baños del Toro. Geothermal fluids from the upflow area on the northwestern flank of the volcano migrate northwards to the Cautín River Valley. The geothermal system has a high enthalpy reservoir(s) on the northwestern flank of the Sierra Nevada volcano and low-enthalpy reservoirs in the Cautín River Valley that have been tapped to form spas at Manzanar and Malalcahuello. While sub-vertical fractures of LOFZ facilitate the recharge of the system, lateral flow of the geothermal fluids is apparently controlled by lithology; Melipueclo Pluton in particular prevents the westward flow from the upflow zone, causing the flow only northwards to Malalcahuello and subsequently westward on meeting poorly permeable Guapitrío Member of the Cura-Mallín Formation. This change in the flow direction from northwestward up

  6. 76 FR 9595 - Notice of Public Meetings: Sierra Front Northwestern Basin Resource Advisory Council, Nevada

    Science.gov (United States)

    2011-02-18

    ... habitat, BLM wildlands policy, geothermal program review, Salt Wells Energy Projects Draft Environmental Impact Statement, field tour of ENEL Geothermal Power Plant at Salt Wells (Churchill County), Nevada ] Historic Marker Dedication for Pony Express Trail at ENEL Plant, LiDAR (Optical Remote-Sensing Technology...

  7. Impact of Summer Cattle Grazing on the Sierra Nevada Watershed: Aquatic Algae and Bacteria

    OpenAIRE

    2012-01-01

    Introduction. We evaluated periphytic algal and microbial communities to assess the influence of human and cattle impact on Sierra water quality. Methods. 64 sites (lakes and streams from Lake Tahoe to Sequoia National Park, California) were sampled for suspended indicator bacteria and algae following standardized procedures. The potential for nonpoint pollution was divided into three categories: cattle-grazing areas (C), recreation use areas (R), or remote wildlife areas (W). Results. Periph...

  8. Calibrating Long-chain Diols for Quantitative Temperature Reconstructions in the High Elevation, Lacustrine Environments of the Sierra Nevada, Spain

    Science.gov (United States)

    Toney, J. L.; García-Alix, A.; Jimenez-Moreno, G.; Anderson, R. S.; Perez-Martinez, C.; Jimenez, L.

    2016-12-01

    High-alpine, oligotrophic lakes in the Sierra Nevada are sensitive archives of paleoclimate and paleoecology. In this study we present the first quantitative calibration of lacustrine long-chain diols to instrumental temperature anamoly data. The data suggest that the long-chain diol index (LDI) is linearly correlated with the regional temperature anomaly data (TA = 8.8997 x LDI - 2.1113, r2 = 0.65) over the past 165-years and that this correlation can accurately be applied downcore to reconstructure temperature change over the course of the Holocene. This study compares the newly generated diol-inferred temperature dataset with existing multiproxy records to show that the mid-Holocene transition that shows a step change in vegetation and humidity toward aridification was likely driven by an increased and sustained temperature anomaly of +1.5°C from 6.4 to 5.8ka. Major changes occurred with respect to biogeography and vegetation communities in the Sierra Nevada at this time, but until now, the drivers of change have been unclear. In addition to the diol-inferred temperature anomaly data, compound-specific stable H-isotopes of terrestrial and aquatic plant waxes indicate that this warm event was directly preceded by a brief cold excursion at Laguna de Rio Seco that likely reduced terrestrial plant development and enhanced input of meltwater - suggested by low lake-water H-isotope values. The diol-inferred temperatures suggest that meltwater lowered the lake water temperature with a -1.2°C anomaly from 6.6 to 6.4ka. This suggests that the subsequent warming over the next 600-years likely caused a local, extreme shift to higher temperatures due to the lack of buffering by meltwater once the year-on-year snowpack was depleted. Briefer warm anomalies occur at 5.5, 3.2, and 1.5ka, which correspond to know periods of reduced precipitation in the Mediterranean region (e.g., see discussion in Martin-Puertas et al. 2010, doi:10.5194/cpd-6-1655-2010). A similar, but more

  9. A tree-ring based reconstruction of North Pacific Jet variability and its influence on Sierra Nevada fire regimes

    Science.gov (United States)

    Trouet, V.; Babst, F.; Betancourt, J. L.

    2013-12-01

    Over the last decade, the northern hemisphere polar jet stream - the fast-flowing, high-altitude westerly air current that flows over mid and northern latitudes - has experienced a more meridional (north-south) and slower wave progression. This anomalous behavior contributed to extreme mid-latitude weather events across the globe, including drought and forest fires in the American Southwest (2012), summer heatwaves in Russia (2010), and floods in central and western Europe (2007). The position of the North Pacific Jet (NPJ) strongly modulates winter hydroclimatology in the Sierra Nevada and the Central Rocky Mountains; moreover, a persistent southerly (northerly) trajectory can offset (reinforce) losses in regional snowpack predicted with greenhouse warming . Snowpack variability has a fundamental impact on water resources and ecosystem disturbances. An increase in wildfire activity in the American West since the mid-1980s, for instance, has been related to decreasing snowpacks and earlier and faster snowmelt. Recent anomalous, high-amplitude, jet stream fluctuations are consistent with model projections forced by greenhouse gases. By weakening the pole-equator temperature gradient, enhanced Arctic warming in particular may cause the jet to slow and extreme weather patterns (e.g., blocking high pressure cells) to persist. Questions exist about the ability of climate models to simulate jet stream dynamics, however, and the instrumental record is still too short to fully evaluate the natural range of jet stream variability. We developed a reconstruction of winter NPJ variability from tree-ring data at two locations where climate is strongly influenced by the latitudinal NPJ position. We combined Blue Oak (Quercus douglasii) data from central California with climate-sensitive tree-ring series from multiple species in the northern Rockies in a nested PCA model that explained up to 41% of the variance in the instrumental NPJ target. The resulting reconstruction (1409

  10. Different fire-climate relationships on forested and non-forested landscapes in the Sierra Nevada ecoregion

    Science.gov (United States)

    Keeley, Jon E.; Syphard, Alexandra D.

    2015-01-01

    In the California Sierra Nevada region, increased fire activity over the last 50 years has only occurred in the higher-elevation forests on US Forest Service (USFS) lands, and is not characteristic of the lower-elevation grasslands, woodlands and shrublands on state responsibility lands (Cal Fire). Increased fire activity on USFS lands was correlated with warmer and drier springs. Although this is consistent with recent global warming, we found an equally strong relationship between fire activity and climate in the first half of the 20th century. At lower elevations, warmer and drier conditions were not strongly tied to fire activity over the last 90 years, although prior-year precipitation was significant. It is hypothesised that the fire–climate relationship in forests is determined by climatic effects on spring and summer fuel moisture, with hotter and drier springs leading to a longer fire season and more extensive burning. In contrast, future fire activity in the foothills may be more dependent on rainfall patterns and their effect on the herbaceous fuel load. We predict spring and summer warming will have a significant impact on future fire regimes, primarily in higher-elevation forests. Lower elevation ecosystems are likely to be affected as much by global changes that directly involve land-use patterns as by climate change.

  11. Magnetic susceptibility and relation to initial 87Sr/86Sr for granitoids of the central Sierra Nevada, California

    Science.gov (United States)

    Bateman, P.C.; Dodge, F.C.W.; Kistler, R.W.

    1991-01-01

    Measurement of the magnetic susceptibility of more than 6000 samples of granitic rock from the Mariposa 1?? by 2?? quadrangle, which crosses the central part of the Sierra Nevada batholith between 37?? and 38??N latitude, shows that magnetic susceptibility values are above 10-2 SI units in the east and central parts of the batholith and drop abruptly to less than 10-3 SI units in the western foothills. In a narrow transitional zone, intermediate values (10-3 to 10-2) prevail. Magnetic susceptibility appears to decrease slightly westward within the zones of both high and low values. Magnetic susceptibility in plutonic rocks is chiefly a function of the abundance of magnetite, which depends, in turn, on the total iron content of the rocks and their oxidation ratio. Correlations of magnetic susceptibility with initial 87Sr/86Sr suggest that oxidation ratios have been inherited from the source regions for the magmas from which the rocks crystallized. Reduction of Fe3+ to Fe2+ by organic carbon or other reducing substances may also have affected magnetic susceptibility. -from Authors

  12. Effects of copper on production of periphyton, nitrogen fixation and processing of leaf litter in a Sierra Nevada, California, stream

    Energy Technology Data Exchange (ETDEWEB)

    Leland, H.V.; Carter, J.L.

    1985-04-01

    The production of periphyton, nitrogen fixation and processing of leaf litter were examined in an oligotrophic Sierra Nevada stream and the responses of these processes to copper (2.5, 5 and 10..mu..g l/sup -1/ Cu/sub T/ (total filterable copper); approximately 12, 25 and 50 ng l/sup -1/ Cu/sup 2 +/) were determined. The specific rate of photosynthesis (mg C mg chlorophyll a/sup -1/ h/sup -1/) of mature periphyton communities declined at all test concentrations of copper, but the rate for periphyton on newly-colonized surfaces did not change. The species composition of benthic algae shifted during exposure to an assemblage more tolerant of copper. Achnanthes minutissima and Fragilaria crotonensis were the primary replacement species on newly-colonized surfaces. The nitrogenase activity of blue-green algae was low, with controls ranging from 2.4 to 12 mnol C/sub 2/H/sub 2/ m/sup -2/ h/sup -1/. Nitrogenase activity was inhibited during the initial weeks of exposure by 5 and 10 ..mu..g l/sup -1/ Cu/sub T/. However, after 9 months of exposure, control and copper-treated sections did not differ. The rate of processing of leaf litter, estimated by microbial respiration and nutrient quality of litter of resident riparian woodland taxa, was inhibited at all test concentrations of copper.

  13. Elevation and vegetation determine Cryptosporidium oocyst shedding by yellow-bellied marmots (Marmota flaviventris in the Sierra Nevada Mountains

    Directory of Open Access Journals (Sweden)

    Diego Montecino-Latorre

    2015-08-01

    Full Text Available Wildlife are increasingly recognized as important biological reservoirs of zoonotic species of Cryptosporidium that might contaminate water and cause human exposure to this protozoal parasite. The habitat range of the yellow-bellied marmot (Marmota flaviventris overlaps extensively with the watershed boundaries of municipal water supplies for California communities along the foothills of the Sierra Nevada. We conducted a cross-sectional epidemiological study to estimate the fecal shedding of Cryptosporidium oocysts by yellow-bellied marmots and to quantify the environmental loading rate and determine risk factors for Cryptosporidium fecal shedding in this montane wildlife species. The observed proportion of Cryptosporidium positive fecal samples was 14.7% (33/224, positive number relative to total number samples and the environmental loading rate was estimated to be 10,693 oocysts animal-1 day-1. Fecal shedding was associated with the elevation and vegetation status of their habitat. Based on a portion of the 18s rRNA gene sequence of 2 isolates, the Cryptosporidium found in Marmota flaviventris were 99.88%–100% match to multiple isolates of C. parvum in the GenBank.

  14. Application of Wildfire Risk Assessment Results to Wildfire Response Planning in the Southern Sierra Nevada, California, USA

    Directory of Open Access Journals (Sweden)

    Matthew P. Thompson

    2016-03-01

    Full Text Available How wildfires are managed is a key determinant of long-term socioecological resiliency and the ability to live with fire. Safe and effective response to fire requires effective pre-fire planning, which is the main focus of this paper. We review general principles of effective federal fire management planning in the U.S., and introduce a framework for incident response planning consistent with these principles. We contextualize this framework in relation to a wildland fire management continuum based on federal fire management policy in the U.S. The framework leverages recent advancements in spatial wildfire risk assessment—notably the joint concepts of in situ risk and source risk—and integrates assessment results with additional geospatial information to develop and map strategic response zones. We operationalize this framework in a geographic information system (GIS environment based on landscape attributes relevant to fire operations, and define Potential wildland fire Operational Delineations (PODs as the spatial unit of analysis for strategic response. Using results from a recent risk assessment performed on several National Forests in the Southern Sierra Nevada area of California, USA, we illustrate how POD-level summaries of risk metrics can reduce uncertainty surrounding potential losses and benefits given large fire occurrence, and lend themselves naturally to design of fire and fuel management strategies. To conclude we identify gaps, limitations, and uncertainties, and prioritize future work to support safe and effective incident response.

  15. Pre-eruptive conditions of the ~31 ka rhyolitic magma of Tlaloc volcano, Sierra Nevada Volcanic Range, Central Mexico

    Science.gov (United States)

    Macias, J.; Arce, J.; Rueda, H.; Gardner, J.

    2008-12-01

    Tlaloc volcano is located at the northern tip of the Sierra Nevada Volcanic Range in Central Mexico. This Pleistocene to Recent volcanic range consists from north to south of Tlaloc-Telapón-Teyotl-Iztaccíhuatl-and- Popocatépetl volcanoes. While andesitic to barely dacitic volcanism dominates the southern part of the range (i.e. Popocatépetl and Iztaccíhuatl); dacitic and rare rhyolithic volcanism (i.e. Telapón, Tlaloc) dominates the northern end. The known locus of rhyolitic magmatism took place at Tlaloc volcano with a Plinian-Subplinian eruption that occurred 31 ka ago. The eruption emplaced the so-called multilayered fallout and pumiceous pyroclastic flows (~2 km3 DRE). The deposit consists of 95% vol. of juvenile particles (pumice + crystals) and minor altered lithics 5% vol. The mineral association of the pumice fragments (74-76 % wt. SiO2) consists of quartz + plagioclase + sanidine + biotite and rare oxides set in a glassy groundmass with voids. Melt inclusions in quartz phenocrysts suggest that prior to the eruption the rhyolitic contain ~7% of H2O and Toluca volcano (~6 km) some 50 km to the southwest.

  16. Constraints from Field Geology for Numerical Modeling of the Crustal Overturn Processes During the Cretaceous High-Magma-Flux Episode in the Central and Southern Sierra Nevada, USA

    Science.gov (United States)

    Cao, W.; Paterson, S. R.; Kaus, B. J.; Anderson, J. L.; Memeti, V.

    2010-12-01

    Building on prior studies, recent fieldwork combined with geochronology, thermobarometry and geochemistry studies in the Cretaceous Sierra Nevada arc reveal the following arc-scale features: 1) The Middle to Late Cretaceous Sierra Nevada arc has a 30-35 km thick granodioritic to tonalitic upper-middle crust and may have had up to 30-35 km of mafic to ultramafic lower crust, including dehydrated amphibolitic residues. 2) Plutons emplaced during the ~20 myr long High-Magma-Flux Episode (HMFE, 105-85 Ma) include large batholiths (~1000 km2 at exposure level) with growth histories occurring over millions of years (e.g. ~9 myr for Tuolumne Batholith). Magma pulses creating such large intrusions could vary from up to 103 km3 in dimension depending on different growth models. 3) In the central Sierra Nevada, emplacement depths of the granitoid plutons during the HMFE are 7-15 km with shallow emplaced plutons’ solidi at usually ~700 -760 °C. 4) Plutons intruding only slightly older volcanic host rocks in the central and southern Sierra Nevada indicate that host rocks’ downward displacement of ~7-25 km depths occurred within 1-3 myr. This process is accompanied with the long-lived arc exhumation since at least middle Jurassic. 5) Steep syn-emplacement subsolidus lineations, rim monoclines, and plastic shear strain in pluton aureoles suggest ductile deformations of host rock materials. 6) Partial melting occurred along the margins of plutons and in the middle-lower crust, as represented in the more deeply exposed southern Sierra (30-45 km). 7) Magmatic to subsolidus foliations in plutons and ductile shear zones in host rocks indicate NW-trending transpressional tectonics during the HMFE. 8) Isotopic oxygen data and mass balance calculation indicate that crustal components provides more than 50% of the entire arc’s mass. Intra-crustal magma sources of the HMFE are sustained possibly by thickened crust due to contractional tectonics. These observations in the central

  17. Oblique map showing maximum extent of 20,000-year-old (Tioga) glaciers, Yosemite National Park, central Sierra Nevada, California

    Science.gov (United States)

    Alpha, T.R.; Wahrhaftig, Clyde; Huber, N.K.

    1987-01-01

    This map shows the alpine ice field and associated valley glaciers at their maximum extent during the Tioga glaciation. The Tioga glaciation, which peaked about 15,000-20,OOO years ago, was the last major glaciation in the Sierra Nevada. The Tuolumne ice field fed not only the trunk glacier that moved down the Tuolumne River canyon through the present-day Hetch Hetchy Reservoir, but it also overflowed major ridge crests into many adjoining drainage systems. Some of the ice flowed over low passes to augment the flows moving from the Merced basin down through little Yosemite Valley. Tuolumne ice flowed southwest down the Tuolumne River into the Tenaya Lake basin and then down Tenaya Canyon to join the Merced glacier in Yosemite Valley. During the Tioga glaciation, the glacier in Yosemite Valley reached only as far as Bridalveil Meadow, although during a much earlier glaciation, a glacier extended about 10 miles farther down the Merced River to the vicinity of El Portal. Ice of the Tioga glaciation also flowed eastward from the summit region to cascade down the canyons that cut into the eastern escarpment of the Sierra Nevada [see errata, below]. Southeast of the present-day Yosemite Park, glaciers formed in the Mount Lyell region flowed east onto the Mono lowland and southeast and south down the Middle and North Forks of the San Joaquin River. In the southern part of the park, glaciers nearly reached to the present-day site of Wawona along the South Fork of the Merced River. At the time of the maximum extent of the Tioga glaciation, Lake Russell (Pleistocene Mono Lake) had a surface elevation of 6,800 feet, 425 feet higher than the 1980 elevation and 400 feet lower than its maximum level at the end of the Tioga glaciation. Only a few volcanic domes of the Mono Craters existed at the time of the Tioga glaciation. The distribution of vegetation, as suggested by the green overprint, is based on our interpretation. Forests were restricted to lower elevations than present

  18. Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

    1985-01-01

    The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

  19. Anisotropy and Mantle Flow in the Eastern Sierras Pampeanas from Shear Wave Splitting

    Science.gov (United States)

    Wood, F. D.; Anderson, M. L.; Gilbert, H. J.; Alvarado, P. M.; Martino, R.

    2009-12-01

    The South American subduction zone has extreme examples of active flat-slab subduction and is believed to be an analog for subduction that occurred during the Cretaceous-Eocene age ("Laramide") mountain building events in the Western U.S. This region is therefore ideal for gaining a better understanding of shallow slab subduction and its influences on deformation of the surrounding mantle and overriding crust. Shear wave splitting analysis is used to test a model for the direction of mantle flow beneath the Eastern Sierras Pampeanas (ESP) in the Sierras de Córdoba region of Argentina to better understand the dynamics of flat-slab subduction. This study may also contribute to our understanding of the role the slab plays in deforming the overriding crust. The results of Anderson et al. (2004) indicate that the seismic fast directions underlying Chile and western Argentina are oriented N-S, or trench parallel. To the east, under the Sierras Pampeanas and coincident with a segment of flat subduction, the seismic fast direction is E-W, or trench perpendicular. Anderson et al. formulated several hypotheses to explain this apparent heterogeneity in the anisotropy. One explanation is that the retrograde motion of the subducting slab, caused by the westward movement of the overriding slab, prohibits E-W mantle flow, thus causing an overall N-S flow direction and the observed N-S oriented fast directions. The E-W oriented fast directions would then result from anisotropy due to mantle material being drawn into the area vacated by the slab as it is flattened. If this is the case, E-W fast directions should only be measured at stations directly above the flat slab. As alternative interpretations, the detected heterogeneous anisotropy may be due to strong lithospheric anisotropy or differences in the hydration state in the mantle. In the case of hydration state, E-W fast directions would be expected in the backarc south of the flat slab segment, where normal subduction occurs

  20. Using ecological forecasting of future vegetation transition and fire frequency change in the Sierra Nevada to assess fire management strategies

    Science.gov (United States)

    Thorne, J. H.; Schwartz, M. W.; Holguin, A. J.; Moritz, M.; Batllori, E.; Folger, K.; Nydick, K.

    2013-12-01

    Ecological systems may respond in complex manners as climate change progresses. Among the responses, site-level climate conditions may cause a shift in vegetation due to the physiological tolerances of plant species, and the fire return interval may change. Natural resource managers challenged with maintaining ecosystem health need a way to forecast how these processes may affect every location, in order to determine appropriate management actions and prioritize locations for interventions. We integrated climate change-driven vegetation type transitions with projected change in fire frequency for 45,203 km2 of the southern Sierra Nevada, California, containing over 10 land management agencies as well as private lands. This Magnitude of Change (MOC) approach involves classing vegetation types in current time according to their climate envelopes, and identifying which sites will in the future have climates beyond what that vegetation currently occurs in. Independently, fire models are used to determine the change in fire frequency for each site. We examined 82 vegetation types with >50 grid cell occurrences. We found iconic resources such as the giant sequoia, lower slope oak woodlands, and high elevation conifer forests are projected as highly vulnerable by models that project a warmer drier future, but not as much by models that project a warmer future that is not drier than current conditions. Further, there were strongly divergent vulnerabilities of these forest types across land ownership (National Parks versus US Forest Service lands), and by GCM. For example, of 50 giant sequoia (Sequoiadendron giganteum) groves and complexes, all but 3 (on Sierra National Forest) were in the 2 highest levels of risk of climate and fire under the GFDL A2 projection, while 15 groves with low-to-moderate risk were found on both the National Parks and National Forests 18 in the 2 under PCM A2. Landscape projections of potential MOC suggest that the region is likely to experience

  1. Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2013-01-01

    Full Text Available Despite the abundance of rock glaciers in the Sierra Nevada of California, USA, few efforts have been made to measure their surface flow. Here we use the interferometric synthetic aperture radar (InSAR technique to compile a~benchmark inventory describing the kinematic state of 59 active rock glaciers in this region. Statistically, these rock glaciers moved at speeds range from 15 cm yr−1 to 88 cm yr−1 with a mean value of 55 cm yr−1 in the late summer of 2007. We also find a spatial gradient: rock glaciers in the southern Sierra Nevada moved faster than the ones in the central Sierra Nevada. In addition to the inventory mapping, we also conduct a case study to measure the surface flow of the Mount Gibbs rock glacier in fine spatial and temporal detail. The InSAR measurements over this target reveal (1 that the spatial pattern of surface flow is influenced by surface geomorphological features and (2 a significant seasonal variation of flow speed whose peak value was 48 cm yr−1 in the fall, more than twice the minimum value observed in the spring. The seasonal variation lagged air temperatures by three months and likely results from temporal changes in mechanical strength of mixing debris and ice, internal melting of ice, and surface snow cover. Our finding on the seasonal variation of surface speed reinforces the importance of a long time series with high temporal sampling rates to detect possible long-term changes of rock glaciers in a warming climate.

  2. Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR

    Science.gov (United States)

    Liu, Lin; Millar, C. I.; Westfall, R. D.; Zebker, H. A.

    2013-01-01

    Despite the abundance of rock glaciers in the Sierra Nevada of California, USA, few efforts have been made to measure their surface flow. Here we use the interferometric synthetic aperture radar (InSAR) technique to compile a~benchmark inventory describing the kinematic state of 59 active rock glaciers in this region. Statistically, these rock glaciers moved at speeds range from 15 cm yr-1 to 88 cm yr-1 with a mean value of 55 cm yr-1 in the late summer of 2007. We also find a spatial gradient: rock glaciers in the southern Sierra Nevada moved faster than the ones in the central Sierra Nevada. In addition to the inventory mapping, we also conduct a case study to measure the surface flow of the Mount Gibbs rock glacier in fine spatial and temporal detail. The InSAR measurements over this target reveal (1) that the spatial pattern of surface flow is influenced by surface geomorphological features and (2) a significant seasonal variation of flow speed whose peak value was 48 cm yr-1 in the fall, more than twice the minimum value observed in the spring. The seasonal variation lagged air temperatures by three months and likely results from temporal changes in mechanical strength of mixing debris and ice, internal melting of ice, and surface snow cover. Our finding on the seasonal variation of surface speed reinforces the importance of a long time series with high temporal sampling rates to detect possible long-term changes of rock glaciers in a warming climate.

  3. The genus Milnesium (Eutardigrada: Milnesiidae) in the Sierra Nevada de Santa Marta (Colombia), with the description of Milnesium kogui sp. nov.

    Science.gov (United States)

    Londoño, Rosana; Daza, Anisbeth; Caicedo, Martín; Quiroga, Sigmer; Kaczmarek, Łukasz

    2015-05-06

    A new species, Milnesium kogui sp. nov. is described from the Sierra Nevada de Santa Marta, Colombia. The new species belongs to the tardigradum group and is most similar, by the claw configuration [2-2]-[2-2], to Milnesium dujiangensis and Milnesium katarzynae. Milnesium kogui sp. nov. differs from M. dujiangensis mainly by the presence of primary branches on all legs and from M. katarzynae by the absence of dorsal sculpture. Additionally, in this paper we present a list of all Milnesium species recorded in Colombia including Milnesium cf. barbadosense Meyer & Hinton, 2012 and M. brachyungue Binda & Pilato, 1990, new additions to the recorded fauna of Colombia.

  4. Preface to anthropogenic fluvial sedimentation: Centennial celebration of G.K. Gilbert's Hydraulic-Mining Débris in the Sierra Nevada

    Science.gov (United States)

    James, L. Allan; Phillips, Jonathan D.; Lecce, Scott A.

    2017-10-01

    This special issue celebrates the centennial of the publication of G.K. Gilbert's (1917) monograph, Hydraulic-Mining Débris in the Sierra Nevada, U.S. Geological Survey Professional Paper 105 (PP105). Reasons to celebrate PP105 are manifold. It was the last of four classic monographs that Gilbert wrote in a career that spanned five decades. The monograph, PP105, introduced several important concepts and provided an integrated view of watersheds that was uncommon in its day. It also provided an extreme, lucid example of anthropogenic changes and legacy sediment and how to approach such large-scale phenomena from an objective, quantitative basis.

  5. Evolution of the persistence of snow over Sierra Nevada Mountain (southern, Spain) in the last 55 years

    Science.gov (United States)

    Pimentel, Rafael; José Pérez-Palazón, María; Herrero, Javier; José Polo, María

    2016-04-01

    Snow plays a crucial role in mountainous areas, not only as water resources for human supply, irrigation and energy production, but also for the ecosystem, flora and fauna, over these areas. Sierra Nevada Mountains, southern Spain, constitutes a rich reservoir of endemic wildlife species, and it is considered the most important center of biodiversity in the wester Mediterranean region. The highest regions of the range were declared UNESCO Biosphere Reserve, Natural and National Parks. Climate trends over the last decades put a lot of pressure on both snowfall occurrence and snow persistence; this poses a risk for biodiversity and has led to its inclusion in the Global Change Observatory Network. This work quantifies the evolution of the persistence of snow over the Sierra Nevada area during the last fifty-five years (1960-2015) as a basis to assess the vulnerability of its ecosystem services. For this, the spatial distribution of the annual number of days with snow, SDS, was analyzed over a study area of 4583 km2 (140-3479 m.a.s.l.), which comprises the head of the five basins in these mountains. The following indicator variables were studied over the whole area and each one of the five head regions identified: 1) the trend of SDS; 2) the annual area where SDS exceeded selected percentiles in its distribution; and 3) the annual minimum altitude where SDS exceeded those percentiles. SDS was obtained during the study period by means of the snow module in WiMMed (Watershed Integrated Model in Mediterranean Environment), a physically-based hydrological model developed, calibrated and validated in the area; the model is based on an energy-mass balance over the snowpack that is spatially distributed through the use of depletion curves, and is operational at hourly and daily scales. A general decreasing trend of SDS (0.25 days year-1) was found over the whole study area for the study period. This value is higher in the more humid basins (0.45 and 0.41 days year-1) than in

  6. Evidence for Moho-lower crustal transition depth diking and rifting of the Sierra Nevada microplate

    Science.gov (United States)

    Smith, Kenneth D.; Kent, Graham M.; Seggern, David P.; Driscoll, Neal W.; Eisses, Amy

    2016-10-01

    Lithospheric rifting most often initiates in continental extensional settings where "breaking of a plate" may or may not progress to sea floor spreading. Generally, the strength of the lithosphere is greater than the tectonic forces required for rupture (i.e., the "tectonic force paradox"), and it has been proposed that rifting requires basaltic magmatism (e.g., dike emplacement) to reduce the strength and cause failure, except for the case of a thin lithosphere (structure, each striking N45°W and dipping 50°NE. A single event at 30 km depth that locates on the implied dipping feature between the two swarms is further evidence for a single Moho-transition depth structure. We propose that basaltic or fluid emplacement at or near Moho depths weakens the upper mantle lid, facilitating lithospheric rupture of the Sierra Microplate. Similar to the LT sequence, the SV event is also associated with increased upper crustal seismicity. An 27 October 2011, Mw 4.7 earthquake occurred directly above the deep SV sequence at the base of the upper crustal seismogenic zone ( 15 km depth).

  7. Impact of Summer Cattle Grazing on the Sierra Nevada Watershed: Aquatic Algae and Bacteria

    Directory of Open Access Journals (Sweden)

    Robert W. Derlet

    2012-01-01

    Full Text Available Introduction. We evaluated periphytic algal and microbial communities to assess the influence of human and cattle impact on Sierra water quality. Methods. 64 sites (lakes and streams from Lake Tahoe to Sequoia National Park, California were sampled for suspended indicator bacteria and algae following standardized procedures. The potential for nonpoint pollution was divided into three categories: cattle-grazing areas (C, recreation use areas (R, or remote wildlife areas (W. Results. Periphyton was found at 100% of C sites, 89% of R sites, but only 25% of W sites. Eleven species of periphytic algae were identified, including Zygnema, Ulothrix, Chlorella, Spirogyra, mixed Diatoms, and Cladophoria. Mean benthic algae coverage was 66% at C sites compared to 2% at W sites (100 CFU/100 mL: C = 91%, R = 8%, W = 0 (<0.05. Conclusion. Higher periphytic algal biomass and uniform presence of periphyton-attached E. coli corresponded to watersheds exposed to summer cattle grazing. These differences suggest cattle grazing compromises water quality.

  8. The role of snow cover in ground thermal conditions in three sites with contrasted topography in Sierra Nevada (Spain)

    Science.gov (United States)

    Oliva, Marc; Salvador, Ferran; Gómez Ortiz, Antonio; Salvà, Montserrat

    2014-05-01

    Snow cover has a high capacity to insulate the soil from the external thermal influences. In regions of high snowfall, such as the summit areas of the highest Iberian mountain ranges, the presence of a thick snow cover may condition the existence or inexistence of permafrost conditions. In order to analyze the impact of the thickness, duration and interannual variability of snow cover on the ground thermal regime in the massif of Sierra Nevada, we have analyzed soil temperatures at a depth of 2 cm for the period 2006-2012 in three sites of contrasting topography as well as air temperatures for the same period: (a) Corral del Veleta (3100 m) in a rock glacier located in the northern Veleta cirque, with high and persistent snow cover. (b) Collado de los Machos (3300 m), in a summit area with relict stone circles, with little snow accumulation due to wind effect. (c) Río Seco (3000 m), in a solifluction lobe located in this southern glacial cirque with moderate snowfall. Considering the air and 2 cm depth soil temperature records, the freezing degree-days were calculated for each year from November to May in order to characterize the role of snow as a thermal insulator of the ground during the cold season (Frauenfeld et al., 2007). In all cases, the highest values of freezing degree-days correspond to years with little snowfall (2006-2007, 2007-2008, 2011-2012), while in years with a thicker snow cover (2008-2009, 2009-2010, 2010-2011) the total freezing degree-days were significantly lower. The accumulation of freezing degree-days is maximum at the wind-exposed site of Collado de los Machos, where the wind redistributes snow and favours the penetration of cold into the ground. The opposite pattern occurs in the Veleta cirque, where most persistent snow cover conditions determine lower accumulated freezing degree-days than in Collado de los Machos and Rio Seco.

  9. Incorporating Problem-Based Learning Into A Petrology Course Through A Research Project In The Local Northern Sierra Nevada

    Science.gov (United States)

    Aird, H. M.

    2016-12-01

    A research project into the local petrology was integrated into the Spring 2016 Petrology and Optical Mineralogy course at California State University, Chico. This is a required majors course, typically taken during spring of the junior year, with an enrollment of 10-20 students. Since the labs for this course have a strong focus on petrography, a research project was introduced to give students experience in using a multi-faceted approach to investigate a problem. In many cases, this is their first taste of research. During the first week of the Spring 2016 class, students were introduced to the research question: In the broader context of Californian tectonic history, are the Bucks Lake and Grizzly plutons of the northern Sierra Nevada petrogenetically related? With faculty guidance over the course of the semester, students carried out fieldwork and sampling, lithologic description, selection of the best samples for further analysis, thin section production, petrographic description, and analysis and interpretation of published geochemical data. Research activities were strategically scheduled within the course framework such that students were academically prepared to carry out each task. Each student was responsible for generating all the data for one sample, and data were then collated as a class, so students wrote their individual final reports using all the data collected by the class. Careful scaffolding of writing assignments throughout the semester guided students through the preparation of an academic-style scientific report, while allowing for repeated feedback on their writing style and content. In mid-May, the class presented a group poster at the College of Natural Sciences annual poster symposium, and were awarded `Best Student Class Project' by the judges. Anecdotal student feedback indicated they highly valued the research experience and some were inspired to pursue individual undergraduate research projects under faculty supervision.

  10. Long-term monitoring of 10 selected pathogens in wild boar (Sus scrofa) in Sierra Nevada National Park, southern Spain.

    Science.gov (United States)

    Cano-Manuel, Francisco J; López-Olvera, Jorge; Fandos, Paulino; Soriguer, Ramón C; Pérez, Jesús M; Granados, José E

    2014-11-07

    Wild boar (Sus scrofa) populations are increasing in the Iberian Peninsula, and population management must include disease management and control. In this study, the epidemiology of 10 selected pathogens (Aujeszky's disease virus - ADV, porcine reproductive and respiratory syndrome virus - PRRSV, porcine influenza virus, porcine circovirus, porcine parvovirus, Erysipelotrix rhusiopathiae, Leptospira pomona, Chlamydia/Chlamydiaceae sp., Salmonella sp. and Mycobacterium bovis) in the wild boar population in Sierra Nevada National Park (SNNP), an open unfenced area, is reported, taking into account wild boar population abundance variation in space and time in an open unfenced environment. A total of 1103 wild boar were sampled in 141 hunting events randomly carried out for sampling in seven hunting seasons (October to February from 2002-2003 to 2009-2010 (except 2007-2008). Prevalence was overall lower than those previously reported for fenced wild boar populations in Spain, but all the pathogens analyzed except PRRSV were considered endemic in the SNNP. ADV, E. rhusiopathiae and total pathogen prevalence were positively correlated to wild boar density. Prevalence in the positive areas was significantly higher in females for ADV, E. rhusiopathiae, L. pomona, Chlamydia/Chlamydiaceae sp. and Salmonella sp., and in males for M. bovis. This longitudinal study provides the first data on the health status of the relatively unmanaged and low density wild boar population of SNNP. It is concluded that non-intensively managed wild boar populations are able to maintain the circulation of several pathogens, even in low prevalences and in open unfenced areas with natural density variation both in time and space.

  11. Does prescribed fire promote resistance to drought in low elevation forests of the Sierra Nevada, California, USA?

    Science.gov (United States)

    van Mantgem, Phillip J.; Caprio, Anthony C.; Stephenson, Nathan L.; Das, Adrian J.

    2016-01-01

    Prescribed fire is a primary tool used to restore western forests following more than a century of fire exclusion, reducing fire hazard by removing dead and live fuels (small trees and shrubs).  It is commonly assumed that the reduced forest density following prescribed fire also reduces competition for resources among the remaining trees, so that the remaining trees are more resistant (more likely to survive) in the face of additional stressors, such as drought.  Yet this proposition remains largely untested, so that managers do not have the basic information to evaluate whether prescribed fire may help forests adapt to a future of more frequent and severe drought.During the third year of drought, in 2014, we surveyed 9950 trees in 38 burned and 18 unburned mixed conifer forest plots at low elevation (California, USA.  Fire had occurred in the burned plots from 6 yr to 28 yr before our survey.  After accounting for differences in individual tree diameter, common conifer species found in the burned plots had significantly reduced probability of mortality compared to unburned plots during the drought.  Stand density (stems ha-1) was significantly lower in burned versus unburned sites, supporting the idea that reduced competition may be responsible for the differential drought mortality response.  At the time of writing, we are not sure if burned stands will maintain lower tree mortality probabilities in the face of the continued, severe drought of 2015.  Future work should aim to better identify drought response mechanisms and how these may vary across other forest types and regions, particularly in other areas experiencing severe drought in the Sierra Nevada and on the Colorado Plateau.

  12. Interannual variability of snowmelt in the Sierra Nevada and Rocky Mountains, United States: Examples from two alpine watersheds

    Science.gov (United States)

    Jepsen, Steven M.; Molotch, Noah P.; Williams, Mark W.; Rittger, Karl E.; Sickman, James O.

    2012-02-01

    The distribution of snow and the energy flux components of snowmelt are intrinsic characteristics of the alpine water cycle controlling the location of source waters and the effect of climate on streamflow. Interannual variability of these characteristics is relevant to the effect of climate change on alpine hydrology. Our objective is to characterize the interannual variability in the spatial distribution of snow and energy fluxes of snowmelt in watersheds of a maritime setting, Tokopah Basin (TOK) in California's southern Sierra Nevada, and a continental setting, Green Lake 4 Valley (GLV4) in Colorado's Front Range, using a 12 year database (1996-2007) of hydrometeorological observations and satellite-derived snow cover. Snowpacks observed in GLV4 exhibit substantially greater spatial variability than in TOK (0.75 versus 0.28 spatial coefficient of variation). In addition, modeling results indicate that the net turbulent energy flux contribution to snowmelt in GLV4 is, on average, 3 times greater in magnitude (mean 29% versus 10%) and interannual variability (standard deviation 17% versus 6%) than in TOK. These energy flux values exhibit strong seasonality, increasing as the melt season progresses to times later in the year (R2 = 0.54-0.77). This seasonality of energy flux appears to be associated with snowmelt rates that generally increase with onset date of melt (0.02 cm d-2). This seasonality in snowmelt rate, coupled to differences in hydrogeology, may account for the observed differences in correspondence between the timing of snowmelt and timing of streamflow in these watersheds.

  13. Interannual variability of snowmelt in the Sierra Nevada and Rocky Mountains, United States: examples from two alpine watersheds

    Science.gov (United States)

    Jepsen, Steven M.; Molotch, Noah P.; Williams, Mark W.; Rittger, Karl E.; Sickman, James O.

    2012-01-01

    The distribution of snow and the energy flux components of snowmelt are intrinsic characteristics of the alpine water cycle controlling the location of source waters and the effect of climate on streamflow. Interannual variability of these characteristics is relevant to the effect of climate change on alpine hydrology. Our objective is to characterize the interannual variability in the spatial distribution of snow and energy fluxes of snowmelt in watersheds of a maritime setting, Tokopah Basin (TOK) in California's southern Sierra Nevada, and a continental setting, Green Lake 4 Valley (GLV4) in Colorado's Front Range, using a 12 year database (1996–2007) of hydrometeorological observations and satellite-derived snow cover. Snowpacks observed in GLV4 exhibit substantially greater spatial variability than in TOK (0.75 versus 0.28 spatial coefficient of variation). In addition, modeling results indicate that the net turbulent energy flux contribution to snowmelt in GLV4 is, on average, 3 times greater in magnitude (mean 29% versus 10%) and interannual variability (standard deviation 17% versus 6%) than in TOK. These energy flux values exhibit strong seasonality, increasing as the melt season progresses to times later in the year (R2 = 0.54–0.77). This seasonality of energy flux appears to be associated with snowmelt rates that generally increase with onset date of melt (0.02 cm d-2). This seasonality in snowmelt rate, coupled to differences in hydrogeology, may account for the observed differences in correspondence between the timing of snowmelt and timing of streamflow in these watersheds.

  14. Isotope variations in a Sierra Nevada snowpack and their relation to meltwater

    Science.gov (United States)

    Unnikrishna, P.V.; McDonnell, Jeffery J.; Kendall, C.

    2002-01-01

    Isotopic variations in melting snow are poorly understood. We made weekly measurements at the Central Sierra Snow Laboratory, California, of snow temperature, density, water equivalent and liquid water volume to examine how physical changes within the snowpack govern meltwater ??18O. Snowpack samples were extracted at 0.1 m intervals from ground level to the top of the snowpack profile between December 1991 and April 1992. Approximately 800 mm of precipitation fell during the study period with ??18O values between -21.35 and -4.25???. Corresponding snowpack ??18O ranged from -22.25 to -6.25???. The coefficient of variation of ??18O in snowpack levels decreased from -0.37 to -0.07 from winter to spring, indicating isotopic snowpack homogenization. Meltwater ??18O ranged from -15.30 to -8.05???, with variations of up to 2.95??? observed within a single snowmelt episode, highlighting the need for frequent sampling. Early snowmelt originated in the lower snowpack with higher ??18O through ground heat flux and rainfall. After the snowpack became isothermal, infiltrating snowmelt displaced the higher ??18O liquid in the lower snowpack through a piston flow process. Fractionation analysis using a two-component mixing model on the isothermal snowpack indicated that ??18O in the initial and final half of major snowmelt was 1.30??? lower and 1.45??? higher, respectively, than the value from simple mixing. Mean snowpack ??18O on individual profiling days showed a steady increase from -15.15 to -12.05??? due to removal of lower ??18O snowmelt and addition of higher ??18O rainfall. Results suggest that direct sampling of snowmelt and snow cores should be undertaken to quantify tracer input compositions adequately. The snowmelt sequence also suggests that regimes of early lower ??18O and later higher ??18O melt may be modeled and used in catchment tracing studies. ?? 2002 Elsevier Science B.V. All rights reserved.

  15. Provenance of the late Proterozoic to early Cambrian metaclastic sediments of the Sierra de San Luis (Eastern Sierras Pampeanas) and Cordillera Oriental, Argentina

    Science.gov (United States)

    Drobe, Malte; López de Luchi, Mónica G.; Steenken, André; Frei, Robert; Naumann, Rudolf; Siegesmund, Siegfried; Wemmer, Klaus

    2009-10-01

    show one peak of detrital zircons around 550 Ma, and only a few grains are older than 700 Ma. The detrital zircon ages for the San Luis Formation show age ranges between 590 and 550 Ma. A common basin can be assumed for the Conlara Metamorphic Complex and the Puncoviscana Formation, but the available data support different sources for the rest of the Complexes of the Sierra de San Luis. These share the diminished importance or the lack of the Grenvillian detrital peak, a common feature for the late Cambrian-early Ordovician basins of the Eastern Sierras Pampeanas, in contrast to the Sierras de Córdoba, the PVF and the Conlara Metamorphic Complex.

  16. Major Ion Geochemistry of Groundwaters from Southern Nevada and Eastern California,USA

    Institute of Scientific and Technical Information of China (English)

    周小平; KEVINH.JOHANNESSON; 等

    2000-01-01

    The dissolved ionic constitutents of groundwaters are,in part,a recored of the minerals and rocks in aquifers through which the water has flowed.The chemical composition and association of these major ions in groundwaters have been used to trace groundwater flow paths and sources,In general,the chemical compostion of water in carbonate-rock aquifers in dominated by calcium,magnesium,and bicarbonate,whereas sodium,chloride,and sulfate can be dominant ions in the water that comes from volcanic aquifers or clay minerals.Since the 1990's,we have dealt with the geochemistry of groundwaters from more than 100 springs and wells in southern Nevada and eastrn california ,USA for major solutes and trace elements.This paper compiles the hydrochemical data of major ions of these groundwaters.Based on major ion geochemistry,groundwaters from southern Nevada and eastern California can be classified as carbonate aquifer water,volcanic aquifer water,and mixing water (either mixing of cabonate and volcanic aquifer waters or mixing with local recharges),Piper and stiff diagrams of major ions have graphically shown the general chemical characteristics,classification,and mixing relationships of groundwaters from southern Nevada and eastern California.

  17. The Tulare Lake Project: A 35,000-year record of lake level constraining precipitation and stream discharge from the southern Sierra Nevada of California, USA

    Science.gov (United States)

    Negrini, R. M.

    2015-12-01

    Building upon earlier works by Harding (1949), Atwater et al. (1986) and Davis (1999), research centered at CSU Bakersfield over the past 15 years has generated a high resolution paleoclimate history with water resource implications for one of the world's great agricultural centers, the San Joaquin Valley of California. Lake level is based upon aerial mapping of geomorphological features (e.g., sand spits and shorelines), lithologic features exposed in trenches from opposite sides of the lake basin (e.g., marsh deposits), and proxy data from core (e.g., clay %). Age control was provided by radiocarbon dating of charcoal, mussel shells, and bulk organic matter and by paleomagnetic secular variation dating. From oldest to youngest, highlights include: 1. millennial-scale variations at the base of the record, 2. evidence for avulsion of the Kings River into Tulare Lake at or near the time of maximum glaciation in the Sierra Nevada as predicted by Weissman et al. (2005), 3. lake-level changes during the early and middle Holocene that vary in tune with eastern Pacific sea-surface temperatures from marine core records. This includes an unusually wet period starting at 12,500 cal B.P. followed by a dramatic, rapid drop in lake level at 7,500 cal B.P. Evidence for the former feature includes geochemical (leaf wax n-alkane markers for grass) and petrographic (grass phytolith) data. The latter feature represents an abrupt decrease in Sierran Stream discharge equal to several millions of acre-ft/yr. 4. A centuries-long increase in lake level commencing in the 13th or 14th century based on both lake-level reconstructions from the LBDA of Cook et al. (2010) and dated fine-grained sediments exposed in high-elevation trenches (Negrini et al., 2006), 5. A flood deposit identified in the uppermost sediments exposed in the southeastern edge of the lake that has a radiocarbon age consistent with that of an early 17th century flood found in the sediments of the Santa Barbara Channel

  18. Genomic scanning using AFLP to detect loci under selection in the moss Funaria hygrometrica along a climate gradient in the Sierra Nevada Mountains, Spain.

    Science.gov (United States)

    Magdy, M; Werner, O; McDaniel, S F; Goffinet, B; Ros, R M

    2016-03-01

    The common cord moss Funaria hygrometrica has a worldwide distribution and thrives in a wide variety of environments. Here, we studied the genetic diversity in F. hygrometrica along an abiotic gradient in the Mediterranean high mountain of Sierra Nevada (Spain) using a genome scan method. Eighty-four samples from 17 locations from 24 to 2700 m were fingerprinted based on their amplified fragment length polymorphism (AFLP) banding pattern. Using PCA and Bayesian inference we found that the genetic diversity was structured in three or four clusters, respectively. Using a genome scan method we identified 13 outlier loci, which showed a signature of positive selection. Partial Mantel tests were performed between the Euclidean distance matrices of geographic and climatic variables, versus the pair-wise genetic distance of the AFLP dataset and AFLP-positive outliers dataset. AFLP-positive outlier data were significantly correlated with the gradient of the climatic variables, suggesting adaptive variation among populations of F. hygrometrica along the Sierra Nevada Mountains. We highlight the additional analyses necessary to identify the nature of these loci, and their biological role in the adaptation process.

  19. Regional polyphase deformation of the Eastern Sierras Pampeanas (Argentina Andean foreland): strengths and weaknesses of paleostress inversion

    Science.gov (United States)

    Traforti, Anna; Zampieri, Dario; Massironi, Matteo; Viola, Giulio; Alvarado, Patricia; Di Toro, Giulio

    2016-04-01

    The Eastern Sierras Pampeanas of central Argentina are composed of a series of basement-cored ranges, located in the Andean foreland c. 600 km east of the Andean Cordillera. Although uplift of the ranges is partly attributed to the regional Neogene evolution (Ramos et al. 2002), many questions remain as to the timing and style of deformation. In fact, the Eastern Sierras Pampeanas show compelling evidence of a long lasting brittle history (spanning the Early Carboniferous to Present time), characterised by several deformation events reflecting different tectonic regimes. Each deformation phase resulted in further strain increments accommodated by reactivation of inherited structures and rheological anisotropies (Martino 2003). In the framework of such a polyphase brittle tectonic evolution affecting highly anisotropic basement rocks, the application of paleostress inversion methods, though powerful, suffers from some shortcomings, such as the likely heterogeneous character of fault slip datasets and the possible reactivation of even highly misoriented structures, and thus requires careful analysis. The challenge is to gather sufficient fault-slip data, to develop a proper understanding of the regional evolution. This is done by the identification of internally consistent fault and fracture subsets (associated to distinct stress states on the basis of their geometric and kinematic compatibility) in order to generate a chronologically-constrained evolutionary conceptual model. Based on large fault-slip datasets collected in the Sierras de Cordoba (Eastern Sierras Pampeanas), reduced stress tensors have been generated and interpreted as part of an evolutionary model by considering the obtained results against: (i) existing K-Ar illite ages of fault gouges in the study area (Bense et al. 2013), (ii) the nature and orientation of pre-existing anisotropies and (iii) the present-day stress field due to the convergence of the Nazca and South America plates (main shortening

  20. Mutli-temporal Imaging Spectroscopy Analysis for the Identification of Coniferous Forest Mortality Related to Drought Stress in the Central Sierra Nevada, California

    Science.gov (United States)

    Tane, Z.; Roberts, D. A.; Koltunov, A.; Ramirez, C.; Ustin, S.; Roth, K. L.

    2015-12-01

    The ongoing drought in California has had a significant impact on the vegetation communities of California. As a result of the drought, there has been a notable increase in forest mortality throughout the state. In this presentation Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) imagery acquired for the HyspIRI Preparatory Mission over the western Sierra Nevada Range in 2013 and 2014 was used to quantify the mortality of conifers in 2014. Data products provided by NASA's Jet Propulsion Lab (NASA-JPL) were re-sampled to a common 15meter pixel resolution, co-registered, and geo-referenced. Ecological cover type was first assessed using the random forest machine learning technique with training data produced from AVIRIS summer 2013 imagery and comparison with high-spatial resolution World View-2 imagery. Then, in areas identified as being primarily composed of needle-leaf tree cover, the change in fractional change in green vegetation cover was assessed using Multiple Endmember Spectral Mixture Analysis (MESMA) in fall 2013 and fall 2014 AVIRIS images. The source spectral library for the MESMA endmembers was created from AVIRIS-Next Generation (AVIRIS-NG) images taken over Sierra National Forest in 2014. False positives were further reduced using a spatio-temporal filtering approach. Final accuracy of the modeled areas of conifer mortality were assessed by comparison with 2015 WorldView-2 and WorldView-3 imagery over the study area, as well as with recently acquired field data within the southern Sierra Nevada. Early results support the need for increased fidelity data for providing timely information on ecosystem dynamics to land management agencies.

  1. Postglacial history of alpine vegetation, fire, and climate from Laguna de Río Seco, Sierra Nevada, southern Spain

    Science.gov (United States)

    Anderson, R. S.; Jiménez-Moreno, G.; Carrión, J. S.; Pérez-Martínez, C.

    2011-06-01

    The Sierra Nevada of southern Spain is a landscape with a rich biological and cultural heritage. The range was extensively glaciated during the late Pleistocene. However, the postglacial paleoecologic history of the highest range in southern Europe is nearly completely unknown. Here we use sediments from a small lake above present treeline - Laguna de Río Seco at 3020 m elevation - in a paleoecological study documenting over 11,500 calendar years of vegetation, fire and climate change, addressing ecological and paleoclimatic issues unique to this area through comparison with regional paleoecological sequences. The early record is dominated by Pinus pollen, with Betula, deciduous Quercus, and grasses, with an understory of shrubs. It is unlikely that pine trees grew around the lake, and fire was relatively unimportant at this site during this period. Aquatic microfossils indicate that the wettest conditions and highest lake levels at Laguna de Río Seco occurred before 7800 cal yr BP. This is in contrast to lower elevation sites, where wettest conditions occurred after ca 7800. Greater differences in early Holocene seasonal insolation may have translated to greater snowpack and subsequently higher lake levels at higher elevations, but not necessarily at lower elevations, where higher evaporation rates prevailed. With declining seasonality after ca 8000 cal yr BP, but continuing summer precipitation, lake levels at the highest elevation site remained high, but lake levels at lower elevation sites increased as evaporation rates declined. Drier conditions commenced regionally after ca 5700 cal yr BP, shown at Laguna de Río Seco by declines in wetland pollen, and increases in high elevation steppe shrubs common today ( Juniperus, Artemisia, and others). The disappearance or decline of mesophytes, such as Betula from ca 4000 cal yr BP is part of a regional depletion in Mediterranean Spain and elsewhere in Europe from the mid to late Holocene. On the other hand

  2. Eruption styles of Quaternary basalt in the southern Sierra Nevada Kern Plateau recorded in outcrop and mineral-scale stratigraphies

    Science.gov (United States)

    Browne, B. L.; Becerra, R. A.

    2015-12-01

    The Kern River Plateau in the southern Sierra Nevada contains Quaternary basalt (~0.1 km3) and rhyolite (~2 km3) that ascended through ~30 km of Mesozoic granitic crust. Basaltic vents include from oldest to youngest: Little Whitney Cone, Tunnel and South Fork Cones, and unglaciated Groundhog Cone. Little Whitney Cone is a 120-m-high pile of olivine-CPX-phyric scoria overlying two columnar jointed lava flows extending to the south and east. Tunnel Cone formed through a Hawaiian style eruption along a 400-m-long north-south trending fissure that excavated at least three 25-65-m-wide craters. Crater walls up to 12 meters high are composed of plagioclase-olivine-phyric spatter-fed flows that dip radially away from the crater center and crumble to form steep unconsolidated flanks. South Fork Cone is a 170-m-tall pile of plagioclase-olivine-phyric scoria that formed as a result of Strombolian to violent Strombolian eruptions. It overlies the South Fork Cone lava, the largest lava flow of the Kern Plateau (~0.05 km3), which flowed 7.5 km west into the Kern River Canyon. Scoria and ash fall deposits originating from South Fork Cone are found up to 2 km from the vent. Groundhog Cone is a 140-m-tall cinder and spatter cone breached on the north flank by a 0.03 km3 lava flow that partially buried the South Fork Cone lava and extends 5 km west to Kern River Canyon. Trends in mineral assemblage, texture, composition, and xenocryst abundance exist as a function of eruption style. Scoria and spatter deposits typically have (1) elevated olivine/plagioclase ratios, (2) oscillatory zoned (An63-An72) plagioclase phenocrysts surrounded by unzoned rims and (3) abundant xenocrysts, where up to 20% of plagioclase >200 micron diameter in some samples are granitoid xenocrysts with resorbed and/or reacted textures overprinted by abrupt compositional changes. In contrast, lava flow samples have (1) reduced olivine/plagioclase ratios and (2) plagioclase aggregates with oscillatory zoned

  3. On the motion and geometry of the Sierra Nevada Great Valley micro-plate: Implications for Walker Lane tectonics

    Science.gov (United States)

    Kreemer, C.; Hammond, W. C.; Blewitt, G.

    2006-12-01

    The Sierra Nevada Great Valley (SNGV) micro-plate, a.k.a. the Fresno block, has long been recognized as a tectonically stable entity within the Pacific North America plate boundary zone. Some early geodetic studies have confirmed and defined its rigid behavior. However, those studies were based on a very limited amount of geodetic station velocities, and were unable to assess the extent of rigidity towards the edges of the block. The San Andreas and Garlock fault systems define the western and southern edges of the block, but no such features are readily recognizable to the north and east, along the Walker Lane belt. A better assessment of the location of the boundary or transition between the stable SNGV block and the Walker Lane is important for three reasons. It will provide a better understanding of what controls Walker Lane development and evolution, it will provide important boundary conditions in understanding the present-day kinematics of the Walker Lane, and it is contributes to the assessment of seismic hazard levels for the Reno-Carson City area. We analyze data from all the available GPS sites in the greater SNGV region, including data from the SCIGN, BARD and BARGEN networks, semi-continuous data from our own MAGNET network, and campaign-style data (e.g., USGS, SCEC). Also we have started to analyze regional PBO sites, however time-series for most of those sites are at present too short to infer reliable velocity estimates. We use the GIPSY OASIS II software which employs precise point positioning using dual-frequency carrier phase and pseudorange data, and the precise orbit, clock, and reference frame transformation products publicly available from JPL. The analysis includes carrier phase ambiguity resolution and regional filtering. Using these velocities we perform a kinematic analysis of the station velocity solution, solving for an angular velocity that best describes the motion of the SNGV. We analyze the residuals to investigate where the SNGV

  4. A Multi-proxy Reconstruction of Hydrologic Variability over the Last Millennium from a Sierra Nevada Mountain Stalagmite

    Science.gov (United States)

    McCabe-Glynn, S. E.; Johnson, K. R.; Berkelhammer, M. B.; Sinha, A.; Cheng, H.; Edwards, R.

    2011-12-01

    Precipitation in the southwestern United States (SW US) is highly seasonal and exhibits inter-annual to inter-decadal variability which is linked to naturally recurring large scale atmospheric circulation patterns associated with sea surface temperature (SST) anomalies such as the Pacific Decadal Oscillation (PDO) and the El Nino-Southern Oscillation (ENSO). Proxy data from tree rings and lake sediments from the SW US indicate there were episodes of significantly decreased precipitation ~900-1250 (AD) that were of greater magnitude and longer duration than any episode seen in the 20th century. In order to determine the full range and understand the mechanisms controlling past precipitation variability in the SW US, we have developed an absolute dated, high resolution, millennial length (2008 to 852 AD) δ18O record from a stalagmite from Crystal Cave (CRC-3) in Sequoia National Park, California, on the south-western flank of the Sierra Nevada Mountains (36.58°N; 118.56°W; 1540 m). Results from an instrumental calibration study suggest that δ18O in the speleothem and precipitation at this site is not correlated to temperature or precipitation amount, but is strongly influenced by the moisture source and rainout history of landfalling storms. A comparison between the instrumental portion of the CRC-3 time series reveals a significant inverse relationship with the PDO index, indicating that speleothem δ18O at this site is highly sensitive to Pacific SST patterns. The CRC-3 time series exhibits a prominent decadal to multi-decadal scale variability which we infer to reflect the influence of changing SSTs on the precipitation patterns in the SW US. In order to provide insight into the mechanisms driving these variations and allow for a more confident interpretation of our longer-term δ18O record, we will present trace element results from the CRC-3 stalagmite. Variations in speleothem trace elemental composition likely reflect local hydrologic variability rather

  5. [Reproduction of Joturus pichardi and Agonostomus monticola (Mugiliformes: Mugilidae) in rivers of the Sierra Nevada de Santa Marta, Colombia].

    Science.gov (United States)

    Eslava Eljaiek, Pedro; Díaz Vesga, Roy

    2011-12-01

    The freshwater mugilids Joturus pichardi and Agonostomus monticola, have been documented on ecological and distribution aspects, mainly for Central American populations, nevertheless, little information is available on their reproductive aspects, specifically in Colombian freshwater environments. Reproductive biology of the mugilids J. pichardi and A. monticola from Sierra Nevada de Santa Marta (SNSM) rivers was studied between July 2005 and December 2006. A total of 14 specimens of J. pichardi and 320 of A. monticola were collected. The reproductive biology was analyzed by means of: sexual proportion, gonadosomatic index, and mean size at maturity, fecundity and oocyte diameter. Additionally, a bioassay was carried out to evaluate the effect of salinity on spermatic motility and its possible relationship with the species' spawning area. These mugilids share habitats with similar ecological characteristics, in which strong currents; clear water and stony areas stand out. Gonadal maturity indicators and indirect evidence are presented to support the relationship between reproductive maturity and higher rainfall levels in the area (September, October and November), as well as the catadromous migration of J. pichardi and A. monticola. This last species females outnumbered males with a sex ratio of 2.3:1. Females mean size at maturity was 172mm of their total length (TL) and 108mm TL for males. Fecundity (F) was 23 925 +/- 4 581 eggs per gram of gonad, and was related to size by the equation F = 395.1TL(1.281); besides, the mean oocyte diameter was 362 +/- 40 microm. Considering the salinity effect on sperm motility in both species, results suggested that J. pichardi spawned in estuarine environments but the species did not migrate to fully marine environments; however, A. monticola withstood a broad range of salinity, suggesting a spawning from intermediate to total saline environments. Both species have high culturing potentials, considering that their feeding is

  6. Comparative seismic and petrographic crustal study between the Western and Eastern Sierras Pampeanas region (31°S

    Directory of Open Access Journals (Sweden)

    P. Alvarado

    2005-12-01

    Full Text Available The ancient Sierras Pampeanas in the central west part of Argentina are a seismically active region in the back-arc of the Andes. Their crystalline basement cored uplifts extend up to 800 km east of the oceanic trench over the flat subduction segment of the Nazca plate. Approximately 40 felt crustal earthquakes, are reported per year for this region. Historic and modern seismicity indicates that the Western Sierras Pampeanas (WSP have more crustal earthquakes of greater-size than the Eastern Sierras Pampeanas (ESP. Remarkable changes in composition and structure also characterize the WSP and ESP basements. We have quantitatively compared both regions using seismological constrains. A recent regional study of moderate earthquakes shows reverse and thrust focal mechanisms occurring at depths down to 25 km in the WSP. In contrast, the ESP have reverse and strike-slip focal mechanisms of shallower depths (< 10 km. A seismic velocity structure of Vp 6.4 km/s, Vp/Vs ~1.80, and thickness 50 km, best represents the WSP crust. The ESP crust is characterized by Vp 6.0 km/s, Vp/Vs < 1.70, and thickness 30 km. These seismological determinations correlate with the interpretation of a different origin for the western and eastern terranes. The WSP show seismic properties indicative of a more mafic-ultramafic thick crust consistent with an oceanic island-arc and back-arc formation. The ESP show crustal seismic properties consistent with a higher silica content and with a formation by the collision of a continental terrane.

  7. Degradation of buried ice and permafrost in the Veleta cirque (Sierra Nevada, Spain) from 2006 to 2013 as a response to recent climate trends

    Science.gov (United States)

    Gómez-Ortiz, A.; Oliva, M.; Salvador-Franch, F.; Salvà-Catarineu, M.; Palacios, D.; de Sanjosé-Blasco, J. J.; Tanarro-García, L. M.; Galindo-Zaldívar, J.; Sanz de Galdeano, C.

    2014-09-01

    The Veleta cirque is located at the foot of the Veleta peak, one of the highest summits of the Sierra Nevada National Park (southern Spain). This cirque was the source of a glacier valley during the Quaternary cold periods. During the Little Ice Age it sheltered a small glacier, the most southerly in Europe, about which we have possessed written records since the 17th century. This glacier still had ice residues until the mid-20th century. This ice is no longer visible, but a residue persists along with discontinuous permafrost trapped under strata of rock blocks that make up an incipient rock glacier. From 2006 to 2013, this rock glacier was monitored by measurement of the temperature of the active layer, the degree of snow cover on the ground, movements of the body of the rock glacier and geophysical prospection inside it. The results show that the relict ice and trapped permafrost have been steadily declining. The processes that explain this degradation occur in chain, starting from the external radiation that affects the ground in summer, which is when the temperatures are higher. In effect, when this radiation steadily melts the snow on the ground, the thermal expansive wave advances into the heart of the active layer, reaching the ceiling of the frozen mass, which it then degrades and melts. In this entire linked process, the circulation of meltwaters fulfils a highly significant function, as they act as heat transmitters. The complementary nature of these processes explains the subsidence and continuous changes in the entire clastic pack and the melting of the frozen ceiling on which it rests. This happens in summer in just a few weeks. All these events, in particular the geomorphological ones, take place on the Sierra Nevada peaks within certain climate conditions that are at present unfavourable to the maintenance of snow on the ground in summer. These conditions could be related to recent variations in the climate, starting in the mid-19th century and

  8. Forest management for water: a hydro-ecological modeling exercise of headwater catchments in the mixed-conifer belt of the Sierra Nevada

    Science.gov (United States)

    Saksa, P. C.; Bales, R. C.; Ray, R. L.

    2011-12-01

    Hydro-ecological modeling provides a cost-effective method for evaluating the effects of vegetation change on water cycling within a catchment. In mountain watersheds, change in forest vegetation not only has direct effects on transpiration rates, but also energy exchanges that influence patterns of snow ablation. In this study, treatment scenarios were implemented using the Regional Hydro-Ecological Simulation System (RHESSys) to estimate impacts on key elements of the hydrologic cycle affected by forest harvesting - snowpack accumulation, ablation, transpiration, and streamflow. Twelve headwater catchments (0.5 - 2.6 km2, 1460 - 2450m) in the mixed-conifer zone of the central Sierra Nevada, within the Sierra and Tahoe National Forests, were included for analysis. These research sites are part of the Sierra Nevada Adaptive Management Project (SNAMP), located in the headwaters of the American and Merced Rivers, and the Southern Sierra Critical Zone Observatory (CZO) in the Kings River basin. Two methods of forest harvesting were simulated in the study watersheds: 1) uniform canopy thinning, through reduction of Leaf Area Index (LAI) values and 2) strip-cut treatments, suggested as the best method for retaining snowpack. Results from this study compare the influence of vegetation on water cycle dynamics through the two harvesting treatments, initial vegetation densities, and individual catchment size. Model simulations for pre-treatment snow depth, soil moisture, and streamflow were validated with SNAMP and CZO in-situ measurements. Preliminary results show that a linear reduction of forest canopy reduces transpiration accordingly, but produces a non-linear increase in streamflow. Peak discharges also increased, occurring earlier in the spring and having more pronounced effects in the smaller catchments. Based on these results, harvesting thresholds required for obtaining increases in water yield are evaluated. Investigating the impact of forest management on these

  9. Temporal trend of the snow-related variables in Sierra Nevada in the last years: An analysis combining Earth Observation and hydrological modelling

    Science.gov (United States)

    Pérez-Luque, Antonio J.; Herrero, Javier; Bonet, Francisco J.; Pérez-Pérez, Ramón

    2016-04-01

    Climate change is causing declines in snow-cover extent and duration in European mountain ranges. This is especially important in Mediterranean mountain ranges where the observed trends towards precipitation and higher temperatures can provoke problems of water scarcity. In this work, we analyzed temporal trends (2000 to 2014) of snow-related variables obtained from satellite and modelling data in Sierra Nevada, a Mediterranean high-mountain range located in Southern Spain, at 37°N. Snow cover indicators (snow-cover duration, snow-cover onset dates and snow-cover melting dates) were obtained by processing images of MOD10A2 MODIS product using an automated workflow. Precipitation data were obtained using WiMMed, a complete and fully distributed hydrological model that is used to map the annual rainfall and snowfall with a resolution of 30x30 m over the whole study area. It uses expert algorithms to interpolate precipitation and temperature at an hourly scale, and simulates partition of precipitation into snowfall with several methods. For each snow-related indicator (snow-covers and snowfall), a trend analysis was applied at the MODIS pixel scale during the study period (2000-2014). We applied Mann-Kendall test and Theil-Sen slope estimation in each of the pixels comprising Sierra Nevada. The trend analysis assesses the intensity, magnitude and degree of statistical significance during the period analysed. The spatial pattern of these trends was explored according to elevation ranges. Finally, we explored the relationship between trends of snow-cover related indicators and precipitation trends. Our results show that snow-cover has undergone significant changes in the last 14 years. 80 % of the pixels covering Sierra Nevada showed a negative trend in the duration of snow-cover. We also observed a delay in the snow-cover onset date (68.03 % pixels showing a positive trend in the snow-cover onset date) and an advance in the melt date (80.72 % of pixels followed a

  10. EL DISEÑO DE ITINERARIOS TURÍSTICOS PARA LA PUESTA EN VALOR DEL PATRIMONIO TERRITORIAL. LAS ACEQUIAS DE CAREO EN EL PARQUE NACIONAL DE SIERRA NEVADA

    Directory of Open Access Journals (Sweden)

    María José Prados Velasco

    2011-01-01

    Full Text Available Este artículo propone el diseño de itinerarios turísticos apoyados en el sistema de acequias de careo en la cuenca del Guadalfeo, en la vertiente sur del Parque Nacional de Sierra Nevada. Las acequias de careo son elementos claves empleados en la Antigüedad para la funcionalidad de los espacios agrarios de alta montaña en zonas semiáridas. En la actualidad constituyen elementos patrimoniales de primer orden que contribuyen al mantenimiento de los paisajes culturales. El objetivo central es el de vincular la sostenibilidad en la práctica del turismo, con la puesta en valor de elementos patrimoniales y paisajísticos.

  11. The application of Heat Capacity Mapping Mission (HCMM) thermal data to snow hydrology. [Salt Verde Watershed and the southern Sierra Nevada

    Science.gov (United States)

    Barnes, J. C. (Principal Investigator); Bowley, C. J.; Smallwood, M. D.; Willand, J. H.

    1981-01-01

    The application of HCMM thermal infrared data to snow hydrology and the prediction of snowmelt runoff was evaluated. Data for the Salt Verde watershed in central Arizona and the southern Sierra Nevada in California were analyzed and compared to LANDSAT and NOAA satellite data, U-2 thermal data, and other correlative data. It was determined that HCMM thermal imagery provides data as accurate for snow mapping as does visible imagery, and that in comparison with the reslution of other satellite imagery, it may be the most useful. Data from the HCMM thermal channel, with careful calibration, provides useful snow surface temperature data for hydrological purposes. An approach to an automated method of analysis is presented.

  12. Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires

    Science.gov (United States)

    Araya, Samuel N.; Meding, Mercer; Asefaw Berhe, Asmeret

    2016-07-01

    Fire is a common ecosystem perturbation that affects many soil properties. As global fire regimes continue to change with climate change, we investigated thermal alteration of soils' physical and chemical properties after they are exposed to a range of temperatures that are expected during prescribed and wildland fires. For this study, we used topsoils collected from a climosequence transect along the western slope of the Sierra Nevada that spans from 210 to 2865 m a.s.l. All the soils we studied were formed on a granitic parent material and had significant differences in soil organic matter (SOM) concentration and mineralogy owing to the effects of climate on soil development. Topsoils (0-5 cm depth) from the Sierra Nevada climosequence were heated in a muffle furnace at six set temperatures that cover the range of major fire intensity classes (150, 250, 350, 450, 550 and 650 °C). We determined the effects of heating temperature on soil aggregate strength, aggregate size distribution, specific surface area (SSA), mineralogy, pH, cation exchange capacity (CEC), and carbon (C) and nitrogen (N) concentrations. With increasing temperature, we found significant reduction of total C, N and CEC. Aggregate strength also decreased with further implications for loss of C protected inside aggregates. Soil pH and SSA increased with temperature. Most of the statistically significant changes (p < 0.05) occurred between 350 and 450 °C. We observed relatively smaller changes at temperature ranges below 250 °C. This study identifies critical temperature thresholds for significant physico-chemical changes in soils that developed under different climate regimes. Our findings will be of interest to studies of inferences for how soils are likely to respond to different fire intensities under anticipated climate change scenarios.

  13. Case study of spatial and temporal variability of snow cover, grain size, albedo and radiative forcing in the Sierra Nevada and Rocky Mountain snowpack derived from imaging spectroscopy

    Science.gov (United States)

    Seidel, Felix C.; Rittger, Karl; McKenzie Skiles, S.; Molotch, Noah P.; Painter, Thomas H.

    2016-06-01

    Quantifying the spatial distribution and temporal change in mountain snow cover, microphysical and optical properties is important to improve our understanding of the local energy balance and the related snowmelt and hydrological processes. In this paper, we analyze changes of snow cover, optical-equivalent snow grain size (radius), snow albedo and radiative forcing by light-absorbing impurities in snow and ice (LAISI) with respect to terrain elevation and aspect at multiple dates during the snowmelt period. These snow properties are derived from the NASA/JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data from 2009 in California's Sierra Nevada and from 2011 in Colorado's Rocky Mountains, USA. Our results show a linearly decreasing snow cover during the ablation period in May and June in the Rocky Mountains and a snowfall-driven change in snow cover in the Sierra Nevada between February and May. At the same time, the snow grain size is increasing primarily at higher elevations and north-facing slopes from 200 microns to 800 microns on average. We find that intense snowmelt renders the mean grain size almost invariant with respect to elevation and aspect. Our results confirm the inverse relationship between snow albedo and grain size, as well as between snow albedo and radiative forcing by LAISI. At both study sites, the mean snow albedo value decreases from approximately 0.7 to 0.5 during the ablation period. The mean snow grain size increased from approximately 150 to 650 microns. The mean radiative forcing increases from 20 W m-2 up to 200 W m-2 during the ablation period. The variability of snow albedo and grain size decreases in general with the progression of the ablation period. The spatial variability of the snow albedo and grain size decreases through the melt season while the spatial variability of radiative forcing remains constant.

  14. Fuel buildup and potential fire behavior after stand-replacing fires, logging fire-killed trees and herbicide shrub removal in Sierra Nevada forests

    Science.gov (United States)

    McGinnis, Thomas W.; Keeley, Jon E.; Stephens, Scott L.; Roller, Gary B.

    2010-01-01

    Typically, after large stand-replacing fires in mid-elevation Sierra Nevada forests, dense shrub fields occupy sites formerly occupied by mature conifers, until eventually conifers overtop and shade out shrubs. Attempting to reduce fuel loads and expedite forest regeneration in these areas, the USDA Forest Service often disrupts this cycle by the logging of fire-killed trees, replanting of conifers and killing of shrubs. We measured the effects of these treatments on live and dead fuel loads and alien species and modeled potential fire behavior and fire effects on regenerating forests. Sampling occurred in untreated, logged and herbicide-treated stands throughout the Sierra Nevada in four large fire areas 4–21 years after stand-replacing fires. Logging fire-killed trees significantly increased total available dead fuel loads in the short term but did not affect shrub cover, grass and forb cover, alien species cover or alien species richness. Despite the greater available dead fuel loads, fire behavior was not modeled to be different between logged and untreated stands, due to abundant shrub fuels in both logged and untreated stands. In contrast, the herbicide treatment directed at shrubs resulted in extremely low shrub cover, significantly greater alien species richness and significantly greater alien grass and forb cover. Grass and forb cover was strongly correlated with solar radiation on the ground, which may be the primary reason that grass and forb cover was higher in herbicide treated stands with low shrub and tree cover. Repeat burning exacerbated the alien grass problem in some stands. Although modeled surface fire flame lengths and rates of spread were found to be greater in stands dominated by shrubs, compared to low shrub cover conifer plantations, surface fire would still be intense enough to kill most trees, given their small size and low crown heights in the first two decades after planting.

  15. Socioecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, USA, 1600-2015 CE.

    Science.gov (United States)

    Taylor, Alan H; Trouet, Valerie; Skinner, Carl N; Stephens, Scott

    2016-11-29

    Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire-climate relationships in the Sierra Nevada. We developed a 415-y record (1600-2015 CE) of fire activity by merging a tree-ring-based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation-following mission establishment (ca. 1775 CE)-reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire-climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire-climate models for addressing the increasing fire risk in California.

  16. Using sensitive montane amphibian species as indicators of hydroclimatic change in meadow ecosystems of the Sierra Nevada, California

    Science.gov (United States)

    Peek, R.; Viers, J.; Yarnell, S. M.

    2012-12-01

    Climate change can affect sensitive species and ecosystems in many ways, yet sparse data and the inability to apply various climate models at functional spatial scales often prevents relevant research from being utilized in conservation management plans. Climate change has been linked to declines and disturbances in a multitude of species and habitats, and in California, one of the greatest climatic concerns is the predicted reduction in mountain snowpack and associated snowmelt. These decreases in natural storage of water as snow in mountain regions can affect the timing and variability of critical snowmelt runoff periods—important seasonal signals that species in montane ecosystems have evolved life history strategies around—leading to greater intra-annual variability and diminished summer and fall stream flows. Although many species distribution models exist, few provide ways to integrate continually updated and revised Global Climate Models (GCMs), hydrologic data unique to a watershed, and ecological responses that can be incorporated into conservation strategies. This study documents a novel and applicable method of combining boosted regression tree (BRT) modeling and species distributions with hydroclimatic data as a potential management tool for conservation. Boosted regression trees are suitable for ecological distribution modeling because they can reduce both bias and variance, as well as handle sharp discontinuities common in sparsely sampled species or large study areas. This approach was used to quantify the effects of hydroclimatic changes on the distribution of key riparian-associated amphibian species in montane meadow habitats in the Sierra Nevada at the sub-watershed level. Based on modeling using current species range maps in conjunction with three climate scenarios (near, mid, and far), extreme range contractions were observed for all sensitive species (southern long-toed salamander, mountain yellow-legged frog, Yosemite toad) by the year

  17. Time constraints on the tectonic evolution of the eastern Sierras Pampeanas (Central Argentina)

    DEFF Research Database (Denmark)

    Siegesmund, Siegfried; Steenken, A; Martino, R D

    2010-01-01

    cycle in the neighbouring Sierra de San Luis and has not affected the titanite ages. The PTt evolution can be correlated with the plate tectonic processes responsible for the formation of the Pampean orogene, i.e., the accretion of the Pampean basement to the Río de La Plata craton (M2) and the later...

  18. The geodynamic evolution of the eastern Sierras Pampeanas based on geochemical, Sm-Nd, Pb-Pb and SHRIMP data

    DEFF Research Database (Denmark)

    Drobe, M; Lopez de Luchi, M; Steenken, A;

    2011-01-01

    Whole-rock geochemical analyses using major and trace elements in combination with the Sm–Nd and Pb–Pb isotope systems, together with SHRIMP age dating on metasedimentary rocks from the Sierras de Chepes, the Sierras de Co´rdoba, the Sierra Norte and the San Luis Formation in the Sierra de San Luis...

  19. Continuous lake-sediment records of glaciation in the Sierra Nevada between 52,600 and 12,500 14C yr B.P.

    Science.gov (United States)

    Benson, L.V.; May, Howard M.; Antweiler, R.C.; Brinton, T.I.; Kashgarian, Michaele; Smoot, J.P.; Lund, S.P.

    1998-01-01

    The chemistry of the carbonate-free clay-size fraction of Owens Lake sediments supports the use of total organic carbon and magnetic susceptibility as indicators of stadial-interstadial oscillations. Owens Lake records of total organic carbon, magnetic susceptibility, and chemical composition of the carbonate-free, clay-size fraction indicate that Tioga glaciation began ~24,500 and ended by ~13,600 14C yr B.P. Many of the components of glacial rock flour (e.g., TiO2, MnO, BaO) found in Owens Lake sediments achieved maximum values during the Tioga glaciation when valley glaciers reached their greatest extent. Total organic carbon and SiO2 (amorphous) concentrations reached minimum values during Tioga glaciation, resulting from decreases in productivity that accompanied the introduction of rock flour into the surface waters of Owens Lake. At least 20 stadial-interstadial oscillations occurred in the Sierra Nevada between 52,600 and 14,000 14C yr B.P. Total organic carbon data from a Pyramid Lake sediment core also indicate oscillations in glacier activity between >39,500 and ~13,600 14C yr B.P. Alpine glacier oscillations occurred on a frequency of ???1900 yr in both basins, suggesting that millennial-scale oscillations occurred in California and Nevada during most of the past 52,600 yr.

  20. Controls of Walker Lane Belt Pull-aparts on the Plumbing System in the Ancestral Cascades Arc, Central Sierra Nevada, California

    Science.gov (United States)

    Busby, C.; Putirka, K. D.; Renne, P. R.

    2016-12-01

    Extinct volcanic fields exposed by erosion or tectonism provide the opportunity to study structural controls on volcano-tectonic basins, vents, and plumbing systems, on a timescale of millions of years. The Miocene-Pliocene Ancestral Cascades arc in the central Sierra Nevada is spectacularly well-exposed in three dimensions over rugged topography with high structural relief. The Miocene ( 12 to 5 Ma) Sierra Crest-Little Walker volcanic center and the Miocene-Pliocene ( 6 to 4.6 Ma) Ebbetts Pass volcanic center formed in pull-apart basins in the Walker Lane belt (WLB), a NNW zone of dextral strike-slip and oblique normal faults at the western edge of the Basin and Range. The Sierra Crest-Little Walker volcanic field is as large as the active Long Valley volcanic field and the Ebbetts Pass volcanic center is as large as the active Lassen volcanic field (which also lie within the WLB). Petrographic, geochemical and geochronological data are used to understand these volcanic centers, but detailed mapping of volcanic/subvolcanic lithofacies and faults forms the core of these studies. We present a time-slice series of block diagrams that illustrate the structural controls on the Ancestral Cascades arc plumbing system in the early stages of WLB transtension. Extreme transtension in the very large Sierra Crest-Little Walker pull-apart triggered rapid ascent of low-degree partial melts, causing outpouring of high-K2O lava "flood andesites" along fissure vents that resemble flood basalt vents. These fissure vents were plumbed up NNW dextral-oblique normal faults that bound the largest graben; growth faulting relations demonstrate that the focus of subsidence shifted over the field with time synchronous with eruption from the fissure vents. Smaller, point-source vents were plumbed through faults bounding smaller NNW half grabens, as well as a series of NE-SW sinistral-oblique normal faults that define a major transfer zone. The area of maximum transtension ultimately

  1. Post-orogenic evolution of the Sierras Septentrionales and the Sierras Australes and links to the evolution of the eastern Argentina South Atlantic passive continental margin constrained by low temperature thermochronometry and 2D thermokinematic modeling

    Science.gov (United States)

    Kollenz, Sebastian; Glasmacher, Ulrich Anton; Rossello, Eduardo A.

    2013-04-01

    The eastern Argentina South Atlantic passive continental margin is distinguished by a very flat topography. Out of the so called Pampean flat two mountain ranges are arising. These mountain ranges, the Sierras Australes and the Sierras Septentrionales, are located in the State of Buenos Aires south of the capital Buenos Aires. North of the Sierras Septentrionales the Salado basin is located. The Sierras Septentrionales and the Sierras Australes are also divided by a smaller intracratonic basin. Further in the South the Colorado basin is located. The Sierras Australes is a variscian fold belt originated by strong phases of metamorphosis, but till now it is unclear by how many tectonic phases the area was influenced (Tomezzoli & Vilas, 1999). It consists of Proterozoic to Paleozoic rocks. The Sierras Septentrionales consists mainly of Precambrian crystalline rocks. The Precambrian sequences are overlain by younger Sediments (Cingolani, 2010). The aim is to understand the long-term landscape evolution of the area by quantifiying erosion- and exhumation-rates and by dating ancient rock-uplift-events. Another goal is to find out how the opening of the south atlantic took effect on this region. To fulfill this goal, thermochronological techniques, such as fission-track dating and (U-Th-Sm)/He dating has been applied to samples from the region. Because there was no low-temperature thermochronology done in this area, both techniques were applied on apatites and zircons. Furthermore, numerical modeling of the cooling history has provided the data base for the quantification of the exhumation rates. The first data-set shows clusters of different ages which can be linked to tectonic activities during late Paleozoic times. Also the thermokinematic modeling is leading to new insights of the evolution of both mountain ranges. References: Renata Nela Tomezzoli and Juan Francisco Vilas (1999): Palaeomagnetic constraints on the age of deformation of the Sierras Australes thrust and

  2. Gravity and magnetic studies of the eastern Mojave Desert, California and Nevada

    Science.gov (United States)

    Denton, Kevin M.; Ponce, David A.

    2016-06-17

    IntroductionFrom May 2011 to August 2014, the U.S. Geological Survey (USGS) collected gravity data at more than 2,300 stations and physical property measurements on more than 640 rock samples from outcrops in the eastern Mojave Desert, California and Nevada. Gravity, magnetic, and physical-property data are used to study and locate regional crustal structures as an aid to understanding the geologic framework related to mineral resources of the eastern Mojave Desert.The eastern Mojave Desert is host to a world-class rare earth element carbonatite deposit located at Mountain Pass, California. Carbonatites are typically defined as magmatic rocks with high modal abundances of primary carbonate minerals >50 weight percent and elevated abundances of rare earth elements (REEs) (Nelson and others, 1988; Woolley and Kempe, 1989). The “Sulphide Queen” carbonatite ore deposit is a composite, tabular body made up of sills and dikes of REE-bearing sovites and beforsites that occurs just south of the Clark Mountain Range along a north-northwest trending fault-bounded block that extends along the northeast edge of the Mescal Range and northwestern extent of Ivanpah Mountains. This early to middle Proterozoic block is composed of a 1.7 Ga metamorphic complex of gneiss and schist that underwent widespread metamorphism and associated plutonism during the Ivanpah orogeny (Miller and others, 2007). Subsequently, these rocks were intruded by a series of granitoids, which included the 1.4 Ga (DeWitt and others, 1987) ultrapotassic alkaline suite of intrusions that are spatially and temporally associated with hundreds of dikes, outcrops, and a carbonatite ore body. The relative age sequence of this intrusive suite of alkaline rocks from oldest to youngest includes shonkinite, mesosyenite, syenite, quartz syenite, potassic granite, carbonatite, and late shonkinite dikes (Olson and others, 1954; Wooden and Miller, 1990; Haxel, 2005; Miller and others, 2007).

  3. Prevalencia de patologías tropicales y factores de riesgo en la comunidad indígena de bunkwimake, sierra nevada de Santa Marta

    Directory of Open Access Journals (Sweden)

    Juan C. Dib

    2013-10-01

    Full Text Available Las enfermedades tropicales son endémicas en la Sierra Nevada de Santa Marta, sin embargo se carece de información acerca de la distribución de estas enfermedades en las comunidades indígenas que la habitan. Mediante estudios entomológicos y seroepidemiológicos, se estudiaron los factores de riesgo y la prevalencia de enfermedad de Chagas, leishmaniosis, hepatitis B y parasitosis intestinales en la comunidad indígena de Bunkwimake, ubicada en la vertiente norte de la Sierra Nevada. Los resultados de los estudios serológicos en 94 individuos reportaron una positividad de 18 (19%, 52(55% y 19(20% para infección por Tripanosoma cruzi, leishmania y el virus de la hepatitis B respectivamente. Adicionalmente, en 41(74% de 56 niños indígenas se encontró la presencia de parasitosis intestinales al examen coprológico. En los estudios entomológicos se captu-raron 37 triatominos en 16 viviendas distribuidos de la siguiente manera: 13 Triatoma dimidiata, 12 Rhodnius prolixus y 12 Pastrongylus geniculatus. Las tres especies se encontraron colonizando las viviendas indígenas y presentaron infeccilón para Trypanosoma cruzi. Dos especies de flebotominos fueron capturados en las vivien-das: 5 lutzomyia Gomezi y 7 Lutzomyia hirsute hirsute. El presente estudio demostró una importante prevalencia de infección por T. Cruzi y Leishmania en la población infantil, indicando transmisión reciente de ambas infec-ciones. Adicionalmente, los estudios entomológicos indican que existe un riesgo de transmisión doméstica de T. Cruzi y Leishmania por especies selváticas de triatominos y flebotominos. Se necesitan estudios adicionales que determinen la ecoepidemiología y dinámicas de trasnmisión de la Leishmanisosis y la enfermedad de Chagas en esta población para diseñar estrategias de control más adecuadas. Debido a que los programas verticales de fumigación y mejoramiento de vivienda en las comunidades indígenas no son viables, nuevas

  4. Application of the Ecosystem Disturbance and Recovery Tracker in Detection of Forest Health Departure from Desired Conditions in Sierra Nevada National Forests

    Science.gov (United States)

    Slaton, M.; Koltunov, A.; Ramirez, C.

    2016-12-01

    Three Sierra Nevada national forests have recently released draft revised land management plans to the public for comment. These plans include components guiding land management projects (e.g. timber harvest) over the next decades. Desired conditions for land cover types were identified, and are based on the concept of the natural range of variability (NRV); the agency aims to achieve vegetation structure and composition that is within the range that has occurred in that system during the Holocene, prior to Euro-American settlement. Such systems are identified as having ecological integrity, with the ability to withstand and recover from disturbance. Comparisons between current conditions and the NRV period are often made qualitatively, with quantitative comparisons possible through the reconstruction of forest parameters using paleoecological evidence such as pollen or tree rings. Where such information is lacking, comparisons can be made using more recent data for locations or time periods believed to closely represent NRV. Such evaluations are necessary to develop projects that will be within the agency's desired conditions. As an example, the most recent estimate of the extent of tree mortality in CA continues to rise and expand at an aggressive rate, creating the need to track progress as compared to baseline conditions. The Ecosystem Disturbance and Recovery Tracker (eDaRT) is a system developed by the US Forest Service Region 5 Remote Sensing Lab and UC Davis CSTARS center that uses all available Landsat imagery to detect anomalies in vegetation indices, and has been adapted to detect current tree mortality as compared to modern pre-drought baseline conditions. We present initial results for the southern Sierra Nevada (5,260,913 hectares; 13 million acres) that have been validated using WorldView imagery and field data. The high spatial resolution and large extent of the dataset as compared to other mortality maps enabled identification of factors correlated

  5. Decadal trend of precipitation and temperature patterns and impacts on snow-related variables in a semiarid region, Sierra Nevada, Spain.

    Science.gov (United States)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2016-04-01

    In the current context of global change, mountainous areas constitute singular locations in which these changes can be traced. Early detection of significant shifts of snow state variables in semiarid regions can help assess climate variability impacts and future snow dynamics in northern latitudes. The Sierra Nevada mountain range, in southern Spain, is a representative example of snow areas in Mediterranean-climate regions and both monitoring and modelling efforts have been performed to assess this variability and its significant scales. This work presents a decadal trend analysis throughout the 50-yr period 1960-2010 performed on some snow-related variables over Sierra Nevada, in Spain, which is included in the global climate change observatories network around the world. The study area comprises 4583 km2 distributed throughout the five head basins influenced by these mountains, with altitude values ranging from 140 to 3479 m.a.s.l., just 40 km from the Mediterranean coastline. Meteorological variables obtained from 44 weather stations from the National Meteorological Agency were studied and further used as input to the distributed hydrological model WiMMed (Polo et al., 2010), operational at the study area, to obtain selected snow variables. Decadal trends were obtained, together with their statistical significance, over the following variables, averaged over the whole study area: (1) annual precipitation; (2) annual snowfall; annual (3) mean, (4) maximum and (5) minimum daily temperature; annual (6) mean and (7) maximum daily fraction of snow covered areas; (8) annual number of days with snow cover; (9) mean and (10) maximum daily snow water equivalent; (11) annual number of extreme precipitation events; and (12) mean intensity of the annual extreme precipitation events. These variables were also studied over each of the five regions associated to each basin in the range. Globally decreasing decadal trends were obtained for all the meteorological variables

  6. Organosulfates and Carboxylic Acids in Secondary Organic Aerosols in Coniferous Forests in Rocky Mountains (USA), Sierra Nevada Mountains (USA) and Northern Europe (Finland and Denmark)

    Science.gov (United States)

    Glasius, M.; Hansen, A. M. K.; Kristensen, K.; Kristensen, T. B.; Mccubbin, I. B.; Hallar, A. G.; Petäjä, T.; Surratt, J. D.; Worton, D. R.; Bilde, M.; Kulmala, M. T.; Goldstein, A. H.

    2014-12-01

    Levels and chemical composition of secondary organic aerosols affect their climate effects and properties. Organosulfates (OS) are formed through heterogeneous reactions involving oxidized sulfur compounds, primarily originating from anthropogenic sources. Availability of authentic standards have until now been an obstacle to quantitative investigations of OS in atmospheric aerosols. We have developed a new, facile method for synthesis and purification of OS standards. Here we have used 7 standards to quantify OS and nitrooxy organosulfates (NOS) observed in aerosols collected at four sites in coniferous forests in USA and Europe during spring or summer. The two American sites were Storm Peak Laboratory, Colorado (Rocky Mountains, elevation 3220 m a.s.l) and Sierra Nevada Mountains, California (as part of BEARPEX 2007 and 2009). The European sites were Hyytiälä Forest Station, Finland (in the boreal zone) and Silkeborg, Denmark (temperate forest). Aerosol filter samples were extracted and analyzed using a high performance liquid chromatograph coupled through an electrospray inlet to a quadrupole time-of-flight mass spectrometer (HPLC-QTOF-MS). We identified 11 carboxylic acids using authentic standards, while 16 different OS and 8 NOS were identified based on their molecular mass and MS fragmentation patterns, as well as comparison with available standards. OS were ubiquitous in the atmospheric aerosol samples, even at the high elevation mountain station. Levels of carboxylic acids from oxidation of monoterpenes were 8-25 ng m-3 at Silkeborg and Storm Peak Laboratory, while concentrations at the sites with strong regional monoterpene emissions (Sierra Nevada Mountains and Hyytiälä) were much higher (10-200 ng m-3). At all sites, the dominant group of OS were derived from isoprene (IEPOX) and related compounds, while OS of monoterpenes showed lower concentrations, except at Hyytiälä during periods of north-westerly winds when monoterpene OS were at similar or

  7. Application of an extreme winter storm scenario to identify vulnerabilities, mitigation options, and science needs in the Sierra Nevada mountains, USA

    Science.gov (United States)

    Albano, Christine M.; Dettinger, Michael; McCarthy, Maureen; Schaller, Kevin D.; Wellborn, Toby; Cox, Dale A.

    2016-01-01

    In the Sierra Nevada mountains (USA), and geographically similar areas across the globe where human development is expanding, extreme winter storm and flood risks are expected to increase with changing climate, heightening the need for communities to assess risks and better prepare for such events. In this case study, we demonstrate a novel approach to examining extreme winter storm and flood risks. We incorporated high-resolution atmospheric–hydrologic modeling of the ARkStorm extreme winter storm scenario with multiple modes of engagement with practitioners, including a series of facilitated discussions and a tabletop emergency management exercise, to develop a regional assessment of extreme storm vulnerabilities, mitigation options, and science needs in the greater Lake Tahoe region of Northern Nevada and California, USA. Through this process, practitioners discussed issues of concern across all phases of the emergency management life cycle, including preparation, response, recovery, and mitigation. Interruption of transportation, communications, and interagency coordination were among the most pressing concerns, and specific approaches for addressing these issues were identified, including prepositioning resources, diversifying communications systems, and improving coordination among state, tribal, and public utility practitioners. Science needs included expanding real-time monitoring capabilities to improve the precision of meteorological models and enhance situational awareness, assessing vulnerabilities of critical infrastructure, and conducting cost–benefit analyses to assess opportunities to improve both natural and human-made infrastructure to better withstand extreme storms. Our approach and results can be used to support both land use and emergency planning activities aimed toward increasing community resilience to extreme winter storm hazards in mountainous regions.

  8. Arsenic associated with historical gold mining in the Sierra Nevada foothills: Case study and field trip guide for Empire Mine State Historic Park, California

    Science.gov (United States)

    Alpers, Charles N.; Myers, Perry A; Millsap, Daniel; Regnier, Tamsen B; Bowell, Robert J.; Alpers, Charles N.; Jamieson, Heather E.; Nordstrom, Kirk; Majzlan, Juraj

    2014-01-01

    The Empire Mine, together with other mines in the Grass Valley mining district, produced at least 21.3 million troy ounces (663 tonnes) of gold (Au) during the 1850s through the 1950s, making it the most productive hardrock Au mining district in California history (Clark 1970). The Empire Mine State Historic Park (Empire Mine SHP or EMSHP), established in 1975, provides the public with an opportunity to see many well-preserved features of the historic mining and mineral processing operations (CDPR 2014a).A legacy of Au mining at Empire Mine and elsewhere is contamination of mine wastes and associated soils, surface waters, and groundwaters with arsenic (As), mercury (Hg), lead (Pb), and other metals. At EMSHP, As has been the principal contaminant of concern and the focus of extensive remediation efforts over the past several years by the State of California, Department of Parks and Recreation (DPR) and Newmont USA, Ltd. In addition, the site is the main focus of a multidisciplinary research project on As bioavailability and bioaccessibility led by the California Department of Toxic Substances Control (DTSC) and funded by the U.S. Environmental Protection Agency’s (USEPA’s) Brownfields Program.This chapter was prepared as a guide for a field trip to EMSHP held on June 14, 2014, in conjunction with a short course on “Environmental Geochemistry, Mineralogy, and Microbiology of Arsenic” held in Nevada City, California on June 15–16, 2014. This guide contains background information on geological setting, mining history, and environmental history at EMSHP and other historical Au mining districts in the Sierra Nevada, followed by descriptions of the field trip stops.

  9. Mineral growth in melt conduits as a mechanism for igneous layering in shallow arc plutons: mineral chemistry of Fisher Lake orbicules and comb layers (Sierra Nevada, USA)

    Science.gov (United States)

    McCarthy, Anders; Müntener, Othmar

    2017-07-01

    Different processes have been proposed to explain the variety of igneous layering in plutonic rocks. To constrain the mechanisms of emplacement and crystallization of ascending magma batches in shallow plutons, we have studied comb layers and orbicules from the Fisher Lake Pluton, Northern Sierra Nevada. Through a detailed study of the mineralogy and bulk chemistry of 70 individual layers, we show that comb layers and orbicule rims show no evidence of forming through a self-organizing, oscillatory crystallization process, but represent crystallization fronts resulting from in situ crystallization and extraction of evolved melt fractions during decompression-driven crystallization, forming a plagioclase-dominated cres-cumulate at the mm- to m-scale. We propose that the crystal content of the melt and the dynamics of the magmatic system control the mechanisms responsible for vertical igneous layering in shallow reservoirs. As comb layers crystallize on wall rocks, the higher thermal gradients will increase the diversity of comb layering, expressed by inefficient melt extraction, thereby forming amphibole comb layers and trapped apatite + quartz saturated evolved melt fractions. High-An plagioclase (An90-An97.5) is a widespread phase in Fisher lake comb layers and orbicule rims. We show that a combination of cooling rate, latent heat of crystallization and pressure variations may account for high-An plagioclase in shallow melt extraction zones.

  10. A mass balance and isostasy model: Exploring the interplay between magmatism, deformation and surface erosion in continental arcs using central Sierra Nevada as a case study

    Science.gov (United States)

    Cao, Wenrong; Paterson, Scott

    2016-06-01

    A one-dimensional mass balance and isostasy model is used to explore the feedbacks between magmatism, deformation and surface erosion and how they together affect crustal thickness, elevation, and exhumation in a continental arc. The model is applied to central Sierra Nevada in California by parameterizing magma volume and deformational strain. The simulations capture the first-order Mesozoic-Cenozoic histories of crustal thickness, elevation and erosion including moderate Triassic crustal thickening and Jurassic crustal thinning followed by a strong Cretaceous crustal thickening, the latter resulting in a 60-70 km-thick crust plus a 20 km-thick arc eclogitic root, and a ˜5 km elevation in the Late Cretaceous. The contribution of contractional deformation to the crustal thickening is twice that of the magmatism. The contribution to elevation from magmatism is dampened by the formation of an eclogitic root. Erosion rate increases with the magnitude of crustal thickening (by magmatism and deformation) but its peak rate always lags behind the peak rate of thickening. We propose that thickened crust initially promotes magma generation by downward transport of materials to the magma source region, which may eventually jam the mantle wedge affecting the retro-arc underthrusting process and reducing arc magmatism.

  11. High abundances of potentially active ammonia-oxidizing bacteria and archaea in oligotrophic, high-altitude lakes of the Sierra Nevada, California, USA.

    Directory of Open Access Journals (Sweden)

    Curtis J Hayden

    Full Text Available Nitrification plays a central role in the nitrogen cycle by determining the oxidation state of nitrogen and its subsequent bioavailability and cycling. However, relatively little is known about the underlying ecology of the microbial communities that carry out nitrification in freshwater ecosystems--and particularly within high-altitude oligotrophic lakes, where nitrogen is frequently a limiting nutrient. We quantified ammonia-oxidizing archaea (AOA and bacteria (AOB in 9 high-altitude lakes (2289-3160 m in the Sierra Nevada, California, USA, in relation to spatial and biogeochemical data. Based on their ammonia monooxygenase (amoA genes, AOB and AOA were frequently detected. AOB were present in 88% of samples and were more abundant than AOA in all samples. Both groups showed >100 fold variation in abundance between different lakes, and were also variable through time within individual lakes. Nutrient concentrations (ammonium, nitrite, nitrate, and phosphate were generally low but also varied across and within lakes, suggestive of active internal nutrient cycling; AOB abundance was significantly correlated with phosphate (r(2 = 0.32, p<0.1, whereas AOA abundance was inversely correlated with lake elevation (r(2 = 0.43, p<0.05. We also measured low rates of ammonia oxidation--indicating that AOB, AOA, or both, may be biogeochemically active in these oligotrophic ecosystems. Our data indicate that dynamic populations of AOB and AOA are found in oligotrophic, high-altitude, freshwater lakes.

  12. Solar storm effects during Saint Patrick's Days in 2013 and 2015 on the Schumann resonances measured by the ELF station at Sierra Nevada (Spain)

    Science.gov (United States)

    Salinas, A.; Toledo-Redondo, S.; Navarro, E. A.; Fornieles-Callejón, J.; Portí, J. A.

    2016-12-01

    The effects of solar storms occurring during the days 17 to 19 March 2013 and 2015, St. Patrick's Day intervals, on Schumann resonances (SRs) have been studied. To do this, the experimental data recorded by the Juan Antonio Morente extremely low frequency station located at Sierra Nevada, Spain, have been processed in order to obtain hourly averaged information on the first three resonance modes. Results are compared with monthly averages of the SR data for each hour to detect deviations from the regular behavior. Evidence of significant changes in the peak amplitudes and frequencies of the SRs have been identified in the station's measurements and related to the coronal mass ejection impact in the magnetosphere, detected by in situ plasma measurements onboard spacecraft in the solar wind. However, the complicated nature of the Schumann resonances, dependent on multiple variables and subject to multiple unavoidable interferences (e.g., lightning or human radio sources), in conjunction with the complex magnetosphere-ionosphere-atmosphere coupling processes, makes it difficult to conclude that the observed deviations are exclusively due to the solar events mentioned. Results extracted from only two solar events cannot be considered as conclusive, and therefore, independent comparison with results reported by other research would seem advisable in future works on this subject.

  13. Tardigrada from a sub-Andean forest in the Sierra Nevada de Santa Marta (Colombia) with the description of Itaquascon pilatoi sp. nov.

    Science.gov (United States)

    Lisi, Oscar; Londoño, Rosana; Quiroga, Sigmer

    2014-07-29

    Currently only 32 species of limno-terrestrial tardigrades have been reported in the literature for Colombia. Our study focused on both heterotardigrades and eutardigrades, which were extracted from eight samples of bryophytes and lichens collected in a sub-Andean forest transect in the Sierra Nevada de Santa Marta, Colombia. Fourteen species were found, six of which are new records for Colombia: Echiniscus madonnae Michalczyk & Kaczmarek, 2006, Echiniscus virginicus Riggin, 1962, Milnesium krzysztofi Kaczmarek & Michalczyk, 2007, Doryphoribius amazzonicus Lisi, 2011, Isohypsibius sattleri (Richters, 1902) and Diphascon higginsi Binda, 1971; and one new to science. Itaquascon pilatoi sp. nov., is characterized by having smooth cuticle, no eyes, buccal tube almost as long as the pharyngeal tube, well developed, obvious stylet furcae with long branches, slender claws, no lunules and no cuticular bars on the legs. The new species differs from I. umbellinae Barros, 1939, the most similar species, in having the stylet supports inserted precisely at the border between buccal and pharyngeal tube, more slender claws and more pronounced length differential between the external and internal claws of each leg. The total number of Colombian limno-terrestrial tardigrade species is raised to 37. 

  14. Using MODIS snow cover and precipitation data to model water runoff for the Mokelumne River Basin in the Sierra Nevada, California (2000-2009)

    Science.gov (United States)

    Powell, Cynthia; Blesius, Leonhard; Davis, Jerry; Schuetzenmeister, Falk

    2011-05-01

    Climate change will affect snowpack and water supply systems in California, and methods for predicting daily stream flow help prepare for these changes. This research provides a daily model to predict stream flow based on snow cover and precipitation in the Mokelumne River Basin in the Sierra Nevada in California. The snow cover of the Mokelumne River Basin is monitored using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images. Using data from these images as well as precipitation data from 2000 to 2009, we produced a predictive statistical model. The final results show that with an R2 of 0.71, the true natural flow (TNF) of the Mokelumne River is based on the daily area of snow cover in each of seven equal area elevation zones according to the time lag of that zone as well as the accumulated precipitation functioning as a proxy for snow depth. The capability of this model to predict water supply suggests the potential for developing new spatial hydrologic informational products based on MODIS and the probability of improving the accuracy of the prediction of hydrologic processes for water resource managers.

  15. The remarkable occurrence of large rainfall-induced debris flows at two different locations on July 12, 2008, Southern Sierra Nevada, CA, USA

    Science.gov (United States)

    DeGraff, J.V.; Wagner, D.L.; Gallegos, A.J.; DeRose, M.; Shannon, C.; Ellsworth, T.

    2011-01-01

    On July 12, 2008, two convective cells about 155 km apart produced a brief period of intense rainfall triggering large debris flows in the southern Sierra Nevada. The northernmost cell was centered over Oak Creek Canyon, an east-flowing drainage, and its tributaries near Independence, CA, USA. About 5:00 P.M., debris flows passed down the South Fork and North Fork of Oak Creek to merge into a large single feature whose passage affected the historic Mt. Whitney Fish hatchery and blocked California State Highway 395. At about the same time, the southernmost cell was largely centered over Erskine Creek, a main tributary of the west-flowing Kern River. Debris flows issued from several branches to coalesce into a large debris flow that passed along Erskine Creek, through the town of Lake Isabella, CA, USA and into the Kern River. It was observed reaching Lake Isabella about 6:30 P.M. Both debris flows caused significant disruption and damage to local communities. ?? 2011 Springer-Verlag.

  16. Ground temperature regime and periglacial dynamics in three different sites from the summit area in Sierra Nevada (southern Spain) from 2006 to 2012

    Science.gov (United States)

    Salvador-Franch, Ferran; Oliva, Marc; Salva-Catarineu, Montserrat; Gómez-Ortiz, Antonio

    2013-04-01

    Ground temperatures and its control on snow cover are crucial factors conditioning the activity of current periglacial processes in the highest lands of Sierra Nevada (Betique Range, Iberian Peninsula). We present summary results of the monitoring period from September 2006 to August 2012 in three sites with contrasting topography, aspect and snow cover. Temperatures loggers have recorded data at 2 hours time lapse at: a) Veleta glacial cirque, an environment with marginal permafrost and a small active rock glacier in it (3107 m asl), b) the flat summit plateau of Collado de los Machos (3297 m) characterized by the existence of inactive sorted circles with scarce snow cover, and c) the southern cirque of Rio Seco, an area with moderate snow cover and widespread solifluction lobes (3105 m). We discuss the periglacial activity in the three study sites in relation with ground temperatures. Results show evidence of the decisive control played by snow cover (duration and thickness) in the thermal regime of the ground (rhythm, depth and intensity of freezing). Only the site in the Veleta cirque has revealed the existence of permafrost, which is inexistent at the summit plateaus and southern cirques. The freezing and thawing of the ground depends substantially on the geographical characteristics of the sites, although a common pattern is detected: the thawing occurs more rapidly than the freezing and the number of freeze-thaw cycles in air temperatures is substantially higher than in ground temperatures.

  17. Representaciones sociales de la cultura adaptativa en un pueblo indígena de la sierra nevada de santa marta (colombia

    Directory of Open Access Journals (Sweden)

    Oscar Eduardo Navarro Carrascal

    2002-01-01

    Full Text Available La Sierra Nevada de Santa Marta es uno de los ecosistemas más protegidos de Colombia. Dentro de su gran diversidad ecológica habitan los indígenas wiwa. Aunque han tenido que sortear históricamente una seria de circunstancias violentas en la relación intercultural, su cultura se ha mantenido adaptada al medio ambiente natural. Las representaciones sociales que subyacen a dicha cultura adaptativa son construidas y reguladas por la organización social, fundamentalmente en la interlocución con las figuras tutelares que son la personificación de los demás seres del mundo y en los cuales encuentran las normas naturales y sociales. Las implicaciones sociales que se desprenden de la manera como se representan el mundo (cosmogonía wiwa constituyen los argumentos de discusión de su autonomía política y autoridad en el uso del territorio, dentro del contexto de los planes de desarrollo para la región.

  18. Vegetation history along the eastern, desert escarpment of the Sierra San Pedro Mártir, Baja California, Mexico

    Science.gov (United States)

    Holmgren, Camille A.; Betancourt, Julio L.; Rylander, Kate A.

    2011-05-01

    Plant macrofossils from 38 packrat middens spanning the last ~ 33,000 cal yr BP record vegetation between ~ 650 and 900 m elevation along the eastern escarpment of the Sierra San Pedro Mártir, northern Baja California. The middens span most of the Holocene, with a gap between ~ 4600 and 1800 cal yr BP, but coverage in the Pleistocene is uneven with a larger hiatus between 23,100 and 14,400 cal yr BP. The midden flora is relatively stable from the Pleistocene to Holocene. Exceptions include Pinus californiarum, Juniperus californica and other chaparral elements that were most abundant > 23,100 cal yr BP and declined after 14,400 cal yr BP. Despite being near the chaparral/woodland-desertscrub ecotone during glacial times, the midden assemblages reflect none of the climatic reversals evident in the glacial or marine record, and this is corroborated by a nearby semi-continuous pollen stratigraphy from lake sediments. Regular appearance of C 4 grasses and summer-flowering annuals since 13,600 cal yr BP indicates occurrence of summer rainfall equivalent to modern (JAS average of ~ 80-90 mm). This casts doubt on the claim, based on temperature proxies from marine sediments in the Guaymas Basin, that monsoonal development in the northern Gulf and Arizona was delayed until after 6200 cal yr BP.

  19. Los diques comendíticos de Papachacra (Catamarca: magmatismo peralcalino en sierras Pampeanas orientales The comenditic dikes from Papachacra (Catamarca: peralkaline magmatism in Eastern Sierras Pampeanas

    Directory of Open Access Journals (Sweden)

    Fernando Colombo

    2010-03-01

    genetically unrelated El Portezuelo granite. They have porphyritic texture and are composed of K feldspar (Or97-98 Ab2-3 and aegirine (Ac94-98 phenocrysts in an aphanitic groundmass of quartz, K feldspar, albite, aegirine and Li-bearing amphibole chemically related to fluor-ferro-leakeite. Minor accessory phases include ilmenite, magnetite, pyrochlore-group minerals, REE-rich epidote, zircon (interstitial, monazite-(Ce and an unidentified Nb-Y-Fe oxide. Their SiO2 content ranges between 68.28 and 69.33%, with very low Mg, Ca, Ba, Sr and Eu, and high concentrations of Nb (399-409 ppm, Ta (16-34 ppm, Th (46-84 ppm, Y (101-192 ppm, Zn (280-320 ppm, Ga (42-47 ppm and especially Zr (2324-3000 ppm. The comendites were intruded during a distensive magmatic event. A reconnaissance Rb-Sr isotopic study performed on related rocks indicates an age of 295 + 8 Ma, with an initial 87Sr/86Sr ratio of ca. 0.7041, pointing to a source from the sublithospheric mantle or the base of the lower crust. These rocks belong to the A1 class of A-type granites, suggesting an origin related to rifting or hot spots, and their trace element ratios show affinities with melts related to oceanic island basalts. In this respect, they are different from all the post-Devonian A-type granites described in Eastern Sierras Pampeanas.

  20. Preliminary results of paleoseismic investigations of Quaternary faults on eastern Yucca Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Menges, C.M.; Oswald, J.A.; Coe, J.A. [and others

    1995-12-31

    Site characterization of the potential nuclear waste repository at Yucca Mountain, Nevada, requires detailed knowledge of the displacement histories of nearby Quaternary faults. Ongoing paleoseismic studies provide data on the amount and rates of Quaternary activity on the Paintbrush Canyon, Bow Ridge, and Stagecoach Road faults along the eastern margin of the mountain over varying time spans of 0-700 ka to perhaps 0-30 ka, depending on the site. Preliminary stratigraphic interpretations of deposits and deformation at many logged trenches and natural exposures indicate that each of these faults have experienced from 3 to 8 surface-rupturing earthquakes associated with variable dip-slip displacements per event ranging from 5 to 115 cm, and commonly in the range of 20 to 85 cm. Cumulative dip-slip offsets of units with broadly assigned ages of 100-200 ka are typically less than 200 cm, although accounting for the effects of possible left normal-oblique slip could increase these displacements by factors of 1.1 to 1.7. Current age constraints indicate recurrence intervals of 10{sup 4} to 10{sup 5} years (commonly between 30 and 80 k.y.) and slip rates of 0.001 to 0.08 mm/yr (typically 0.01-0.02 mm/yr). Based on available timing data, the ages of the most recent ruptures varies among the faults; they appear younger on the Stagecoach Road Fault ({approximately}5-20 ka) relative to the southern Paintbrush Canyon and Bow Ridge faults ({approximately}30-100 ka).

  1. Preliminary results of paleoseismic investigations of Quaternary faults on eastern Yucca Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Menges, C.M.; Oswald, J.A.; Coe, J.A.; Whitney, J.W. [Geological Survey, Denver, CO (United States); Swan, F.H.; Wesling, J.R.; Thomas, A.P. [Geomatrix Consultants, San Francisco, CA (United States)

    1994-12-31

    Site characterization of the potential nuclear waste repository at Yucca Mountain, Nevada, requires detailed knowledge of the displacement histories of nearby Quaternary faults. Ongoing paleoseismic studies provide data on the amount and rates of Quaternary activity on the Paintbrush Canyon, Bow Ridge, and Stagecoach Road faults along the eastern margin of the mountain over varying time spans of 0-700 ka to perhaps 0-30 ka, depending on the site. Preliminary stratigraphic interpretations of deposits and deformation at many logged trenches and natural exposures indicate that each of these faults have experienced from 3 to 8 surface-rupturing earthquakes associated with variable dip-slip displacements per event ranging from 5 to 115 cm, and commonly in the range of 20 to 85 cm. Cumulative dip-slip offsets of units with broadly assigned ages of 100-200 ka are typically less than 200 cm, although accounting for the effects of possible left normal-oblique slip could increase these displacements by factors of 1.1 to 1.7. Current age constraints indicate recurrence intervals of 10{sup 4} to 10{sup 5} years (commonly between 30 and 80 k.y.) and slip rates of 0.001 to 0.08 mm/yr (typically 0.01-0.02 mm/yr). Based on available timing data, the ages of the most recent ruptures among the faults; they appear younger on the Stagecoach Road Fault ({approximately} 5.20 ka) relative to the southern Paintbrush Canyon and Bow Ridge faults ({approximately} 30-100 ka).

  2. Especies vegetales de uso antiofídico en las estribaciones de la Sierra Nevada de Santa Marta: inventario etnobotánica y evaluación biológica

    OpenAIRE

    Barranco Pérez, Willinton Andrés

    2010-01-01

    Con el fin de contribuir en la búsqueda de soluciones a la problemática generada por el accidente ofídico, los grupos de investigación de Biodiversidad, Uso y Conservación de la Universidad Nacional de Colombia, sede Medellín, y el de Ofidismo y Escorpionismo de la Universidad de Antioquia, formularon el proyectó (Especies vegetales de uso antiofídico en las estribaciones de la Sierra Nevada de Santa Marta: inventario etnobotánico y evaluación biológica). Los resultados del estudio se present...

  3. TRANSPORTE DE MATERIA ORGÁNICA A LO LARGO DE UN RÍO TROPICAL DE MONTAÑA EN LA SIERRA NEVADA DE SANTA MARTA (COLOMBIA

    Directory of Open Access Journals (Sweden)

    Cesar Enrique TAMARIS TURIZO

    2015-07-01

    Full Text Available En los ríos tropicales, la materia orgánica es la principal fuente de energía para las comunidades que allí habitan. Las principales proporciones de materia orgánica se encuentra la materia orgánica particulada gruesa (MOPG y  la materia orgánica particulada fina (MOPF. Por lo anterior, en este trabajo se evaluó el transporte de la MOPG,  la MOPF y su relación con algunas variables físicas y químicas en tres tramos de un gradiente altitudinal de los 50 msnm hasta los 1700 msnm durante un ciclo diario en el río Gaira (Sierra Nevada de Santa Marta. Para lo cual se realizaron muestreos mensuales entre los meses de marzo a junio del 2008. Se detectaron diferencias significativas en la deriva de MOPG entre las estaciones, siendo la estación 2 (parte media durante el primer muestreo, la que registró los valores más altos reportados para todo el estudio (474 kg m-3 y la estación 3 mostró la menor biomasa derivante (0,26 kg m-3. La MOPF registró valores similares durante todos los muestreos (0,58 – 6,34 g m-3. Sin embargo, se detectaron diferencias significativas en los muestreos tres y cuatro. Con el aumento de las lluvias, descendió el transporte de  MOPG. Una relación inversa entre la velocidad del agua y el transporte de MOPG (rs = -0,70; n = 12; p < 0,05 se registró, mientras que la MOPF, presentó valores constantes. Los resultados de este trabajo coinciden parcialmente con lo registrado en la literatura, lo cual indica que las dinámicas de transporte de MO están relacionadas con las variaciones ambientales locales.Transport of Organic Matter Across a Tropical Mountain Stream of Sierra Nevada De Santa Marta (ColombiaIn tropical streams organic matter is the principal source of energy for the communities in the river. Main components of organic matter are coarseparticulate organic matter (CPOM and fine particulate organic matter (FPOM. Therefore, transport of CPOM and FPOM and its relationship with some physical and

  4. The 16 May 2005 Flood in Yosemite National Park--A Glimpse into High-Country Flood Generation in the Sierra Nevada

    Science.gov (United States)

    Dettinger, M.; Lundquist, J.; Cayan, D.; Meyer, J.

    2006-12-01

    On 16 May 2005, a Pacific storm drew warm, wet subtropical air into the Sierra Nevada, causing moderate rains and major flooding. The flood raised Hetch Hetchy and Tenaya Lake levels markedly and inundated large parts of Yosemite Valley, requiring evacuations and raising public-safety concerns in Yosemite National Park. This was the first major flood to be recorded by the high-country hydroclimatic network in the Park. Since 2001, scientists from US Geological Survey, Scripps Institution of Oceanography, California Department of Water Resources, National Park Service, and other institutions have developed the network of over 30 streamflow and 50 air-temperature loggers at altitudes ranging from 3000 m above sea level, and 8 snow-instrumentation sites measuring snow-water contents, snow depths, radiation, soil moisture, and temperatures in air, snow, and soil. The network documented flooding that derived its runoff mostly from high-altitude rainfall on soils already wet due to the onset of snowmelt a few days earlier. Air temperatures during the storm were above freezing up to altitudes of nearly 3000 m, so that rain fell to as high as 3000 m, compared with normal winter snowlines nearer 1500 m. Streams flooded below 3000 m, and above that altitude did not flood or contribute much to the flooding below. Meanwhile, no significant snow-water content changes were measured. Thus this flood resulted from rain-through-snow runoff rather than rain-on-snow melting. In the Park as a whole, about five times more catchment area received rain, rather than snow, during this storm than during typical cool winter storms. Because the flood was more a result of the large area that received rainfall than of melting snow, snowpack reductions that are expected if recent warming trends continue would not have reduced the flood. Instead, the opportunity for warm storms may increase if warming continues, in which case the potential for this kind of flooding will increase.

  5. TEJIENDO ENTRE REDES DIVERSAS: REFLEXIONES A PARTIR DE UNA ETNOGRAFÍA MULTISITUADA CON LOS PUEBLOS INDÍGENAS DE LA SIERRA NEVADA DE SANTA MARTA, CARIBE COLOMBIANO

    Directory of Open Access Journals (Sweden)

    Ana Milena Horta Prieto

    2014-06-01

    Full Text Available La Sierra Nevada de Santa Marta, Colombia, es territorio de 4 pueblos indígenas: Kogui, Wiwa, Arhuaco y Kankuamo. Estos comparten la Ley de Sé, orden natural del universo, que en este trabajo se aborda como cosmopolitica (Stengers, a partir de la cual se gestiona la alteridad y se define la función de todos los seres existentes, desde una ontología animista (Descola. Los trabajos espirituales, entre los cuales se cuentan los pagamentos, son rituales en los que se realiza el tejido vital entre entidades, a partir del cual pueden circular los flujos energéticos y de pensamiento, que relacionan mamos (autoridades tradicionales, dueños de los existentes (Jaba y jate, y materiales sagrados, en una relación de intercambio que permite que las partes se reconfiguren y se apropien del sewá (conocimiento que cada uno posee. Algunos de estos materiales han sido removidos del territorio, frente a lo cual las organizaciones indígenas han comenzado un proceso de patrimonialización como estrategia de protección, interactuando con entidades del estado que tienen influencia en la configuración del mismo desde su dominio. En este marco, a partir de la categoría de cosmopolitica y del entendimiento del conocimiento indígena como epistemología, este trabajo reflexiona sobre el posicionamiento del antropóloga/o en ese ordenamiento desde donde se puede tejer entre redes de ontologías diferentes.

  6. Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires

    Science.gov (United States)

    Araya, Samuel N.; Fogel, Marilyn L.; Asefaw Berhe, Asmeret

    2017-02-01

    Fire is a major driver of soil organic matter (SOM) dynamics, and contemporary global climate change is changing global fire regimes. We conducted laboratory heating experiments on soils from five locations across the western Sierra Nevada climosequence to investigate thermal alteration of SOM properties and determine temperature thresholds for major shifts in SOM properties. Topsoils (0 to 5 cm depth) were exposed to a range of temperatures that are expected during prescribed and wild fires (150, 250, 350, 450, 550, and 650 °C). With increase in temperature, we found that the concentrations of carbon (C) and nitrogen (N) decreased in a similar pattern among all five soils that varied considerably in their original SOM concentrations and mineralogies. Soils were separated into discrete size classes by dry sieving. The C and N concentrations in the larger aggregate size fractions (2-0.25 mm) decreased with an increase in temperature, so that at 450 °C the remaining C and N were almost entirely associated with the smaller aggregate size fractions ( physical, chemical, elemental, and isotopic changes occurred at the mid-intensity fire temperatures, i.e., 350 and 450 °C. The magnitude of the observed changes in SOM composition and distribution in three aggregate size classes, as well as the temperature thresholds for critical changes in physical and chemical properties of soils (such as specific surface area, pH, cation exchange capacity), suggest that transformation and loss of SOM are the principal responses in heated soils. Findings from this systematic investigation of soil and SOM response to heating are critical for predicting how soils are likely to be affected by future climate and fire regimes.

  7. Hydrogeologic influence on changes in snowmelt runoff with climate warming: Numerical experiments on a mid-elevation catchment in the Sierra Nevada, USA

    Science.gov (United States)

    Jepsen, S. M.; Harmon, T. C.; Meadows, M. W.; Hunsaker, C. T.

    2016-02-01

    The role of hydrogeology in mediating long-term changes in mountain streamflow, resulting from reduced snowfall in a potentially warmer climate, is currently not well understood. We explore this by simulating changes in stream discharge and evapotranspiration from a mid-elevation, 1-km2 catchment in the southern Sierra Nevada of California (USA) in response to reduced snowfall under warmer conditions, for a plausible range in subsurface hydrologic properties. Simulations are performed using a numerical watershed model, the Penn State Integrated Hydrologic Model (PIHM), constrained by observations from a meteorological station, stream gauge, and eddy covariance tower. We predict that the fraction of precipitation occurring as snowfall would decrease from approximately 47% at current conditions to 25%, 12%, and 5% for air temperature changes of +2, +4, and +6 °C. For each of these warming scenarios, changes in mean annual discharge and evapotranspiration simulated by the different plausible soil models show large ranges relative to averages, with coefficients of variation ranging from -3 to 3 depending on warming scenario. With warming and reduced snowfall, substrates with greater storage capacity show less soil moisture limitation on evapotranspiration during the late spring and summer, resulting in greater reductions in annual stream discharge. These findings indicate that the hydrologic response of mountain catchments to atmospheric warming and reduced snowfall may substantially vary across elevations with differing soil and regolith properties, a relationship not typically accounted for in approaches relying on space-for-time substitution. An additional implication of our results is that model simulations of annual stream discharge in response to snowfall-to-rainfall transitions may be relatively uncertain for study areas where subsurface properties are not well constrained.

  8. TRANSPORTE DE MATERIA ORGÁNICA A LO LARGO DE UN RÍO TROPICAL DE MONTAÑA EN LA SIERRA NEVADA DE SANTA MARTA (COLOMBIA

    Directory of Open Access Journals (Sweden)

    Cesar Enrique TAMARIS TURIZO

    2015-01-01

    Full Text Available En los ríos tropicales, la materia orgánica es la principal fuente de energía para las comunidades que allí habitan. Las principales proporciones de materia orgánica se encuentra la materia orgánica particulada gruesa (MOPG y la materia orgánica particulada fina (MOPF. Por lo anterior, en este trabajo se evaluó el transporte de la MOPG, la MOPF y su relación con algunas variables físicas y químicas en tres tramos de un gradiente altitudinal de los 50 msnm hasta los 1700 msnm durante un ciclo diario en el río Gaira (Sierra Nevada de Santa Marta. Para lo cual se realizaron muestreos mensuales entre los meses de marzo a junio del 2008. Se detectaron diferencias significativas en la deriva de MOPG entre las estaciones, siendo la estación 2 (parte media durante el primer muestreo, la que registró los valores más altos reportados para todo el estudio (474 kg m -3 y la estación 3 mostró la menor biomasa derivante (0.26 kg m -3 . La MOPF registró valores similares durante todos los muestreos (0.58 – 6.34 g m -3 . Sin embargo, se detectaron diferencias significativas en los muestreos tres y cuatro. Con el aumento de las lluvias, descendió el transporte de MOPG. Una relación inversa entre la velocidad del agua y el transporte de MOPG (rs = -0,70; n = 12; p < 0,05 se registró, mientras que la MOPF, presentó valores constantes. Los resultados de este trabajo coinciden parcialmente con lo registrado en la literatura, lo cual indica que las dinámicas de transporte de MO están relacionadas con las variaciones ambientales locales.

  9. Responses of Tree Growths to Tree Size, Competition, and Topographic Conditions in Sierra Nevada Forests Using Bi-temporal Airborne LiDAR Data

    Science.gov (United States)

    Ma, Q.; Su, Y.; Tao, S.; Guo, Q.

    2016-12-01

    Trees in the Sierra Nevada (SN) forests are experiencing rapid changes due to human disturbances and climatic changes. An improved monitoring of tree growth and understanding of how tree growth responses to different impact factors, such as tree competition, forest density, topographic and hydrologic conditions, are urgently needed in tree growth modeling. Traditional tree growth modeling mainly relied on field survey, which was highly time-consuming and labor-intensive. Airborne Light detection and ranging System (ALS) is increasingly used in forest survey, due to its high efficiency and accuracy in three-dimensional tree structure delineation and terrain characterization. This study successfully detected individual tree growth in height (∆H), crown area (∆A), and crown volume (∆V) over a five-year period (2007-2012) using bi-temporal ALS data in two conifer forest areas in SN. We further analyzed their responses to original tree size, competition indices, forest structure indices, and topographic environmental parameters at individual tree and forest stand scales. Our results indicated ∆H was strongly sensitive to topographic wetness index; whereas ∆A and ∆V were highly responsive to forest density and original tree sizes. These ALS based findings in ∆H were consistent with field measurements. Our study demonstrated the promising potential of using bi-temporal ALS data in forest growth measurements and analysis. A more comprehensive study over a longer temporal period and a wider range of forest stands would give better insights into tree growth in the SN, and provide useful guides for forest growth monitoring, modeling, and management.

  10. Comparing Two Photo-Reconstruction Methods to Produce High Density Point Clouds and DEMs in the Corral del Veleta Rock Glacier (Sierra Nevada, Spain

    Directory of Open Access Journals (Sweden)

    Álvaro Gómez-Gutiérrez

    2014-06-01

    Full Text Available In this paper, two methods based on computer vision are presented in order to produce dense point clouds and high resolution DEMs (digital elevation models of the Corral del Veleta rock glacier in Sierra Nevada (Spain. The first one is a semi-automatic 3D photo-reconstruction method (SA-3D-PR based on the Scale-Invariant Feature Transform algorithm and the epipolar geometry theory that uses oblique photographs and camera calibration parameters as input. The second method is fully automatic (FA-3D-PR and is based on the recently released software 123D-Catch that uses the Structure from Motion and MultiView Stereo algorithms and needs as input oblique photographs and some measurements in order to scale and geo-reference the resulting model. The accuracy of the models was tested using as benchmark a 3D model registered by means of a Terrestrial Laser Scanner (TLS. The results indicate that both methods can be applied to micro-scale study of rock glacier morphologies and processes with average distances to the TLS point cloud of 0.28 m and 0.21 m, for the SA-3D-PR and the FA-3D-PR methods, respectively. The performance of the models was also tested by means of the dimensionless relative precision ratio parameter resulting in figures of 1:1071 and 1:1429 for the SA-3D-PR and the FA-3D-PR methods, respectively. Finally, Digital Elevation Models (DEMs of the study area were produced and compared with the TLS-derived DEM. The results showed average absolute differences with the TLS-derived DEM of 0.52 m and 0.51 m for the SA-3D-PR and the FA-3D-PR methods, respectively.

  11. Reproducción de Joturus pichardi y Agonostomus monticola(Mugiliformes: Mugilidae en ríos de la Sierra Nevada de Santa Marta, Colombia

    Directory of Open Access Journals (Sweden)

    Pedro Eslava Eljaiek

    2011-12-01

    Full Text Available Para los mugílidos de agua dulce Joturus pichardi y Agonostomus monticola se han documentado aspectos ecológicos y de distribución, principalmente para las poblaciones de América Central, sin embargo, hay poca información disponible de sus aspectos reproductivos, especialmente en ambientes de agua dulce de Colombia. Por lo tanto para ambas especies se estudió la biología reproductiva en ríos de la Sierra Nevada de Santa Marta durante julio de 2005 y diciembre de 2006. En total, 14 especímenes de J. pichardi y 320 A. monticola fueron capturados. Proporción sexual, índice gonadosomático, talla media de madurez, fecundidad y diámetros de los ovocitos fueron evaluados. Se realizó un bioensayo para observar el efecto de la salinidad sobre la movilidad espermática y su posible relación con el área de desove de las especies. Estos mugílidos comparten un hábitat con características ecológicas similares, de corrientes fuertes y claras y zonas pedregosas. Indicadores de madurez gonadal y evidencias indirectas son presentados y con los cuales se comprueba que el periodo reproductivo se encuentra relacionado con los mayores valores de precipitación de la zona (septiembre a noviembre, así como, la migración catádroma de J. pichardi y A. monticola. Estas especies representan un potencial de cultivo, dado su alimentación basada en vegetales y macroinvertebrados, la calidad de su carne y las tallas que pueden alcanzar, por lo cual, se deben efectuar estudios más profundos que revelen mayor información sobre su comportamiento y reproducción en cautividad.Reproduction of Joturus pichardi and Agonostomus monticola (Mugiliformes: Mugilidae in rivers of the Sierra Nevada de Santa Marta, Colombia. The freshwater mugilids Joturus pichardi and Agonostomus monticola, have been documented on ecological and distribution aspects, mainly for Central American populations, nevertheless, little information is available on their reproductive aspects

  12. Sediment and Mercury Loads to Humbug Creek: A Sierra Nevada Tributary Impacted by the Malakoff Diggins Hydraulic Mine

    Science.gov (United States)

    Monohan, C.; Brown, D. L.; Nepal, H.

    2016-12-01

    Mercury contaminated sediment from legacy gold mines in the Sierra continues to be a source of inorganic mercury (Hg) to the environment. The discharge from Malakoff Diggins, once one of the largest hydraulic mines in California, is a source of Hg and sediment to Humbug Creek. The purpose of this study was to estimate the load of particulate bound Hg and suspended sediment in Humbug Creek for Water Years 2012 and 2013. Grab samples were taken from baseflow conditions and from multiple storm events and analyzed for nonfiltered Hg, filtered Hg and total suspended sediment (TSS) (EPA 1669, EPA 1631, EPA 160.2). A stage discharge relationship was developed for the Humbug Creek gage station over a range of flow conditions. Samples were collected from Humbug Creek upstream of the Malakoff Diggins discharge point, from the discharge point and downstream of the discharge and Humbug Creek confluence at a stream gage. The annual load in Humbug Creek for suspended sediment and particulate bound Hg was calculated at the gage using relationships established with continuously monitored turbidity (15 min data) and grab samples of total suspended sediment (n = 25, R2 = 0.82) and particulate bound Hg (n = 15, R2 = 0.80). The annual load was 100-120 grams of particulate bound Hg and 475,000-575,000 kg of suspended sediment. For both water years, as much as half of the annual sediment load was from a single storm event during which 3-4g of particulate bound mercury was released per day. The contribution of mercury loads from legacy hydraulic gold mines should be quantified as it is a critical source control strategy for California Total Maximum Daily Load programs.

  13. Airborne LiDAR analysis and geochronology of faulted glacial moraines in the Tahoe-Sierra frontal fault zone reveal substantial seismic hazards in the Lake Tahoe region, California-Nevada USA

    Science.gov (United States)

    Howle, James F.; Bawden, Gerald W.; Schweickert, Richard A.; Finkel, Robert C.; Hunter, Lewis E.; Rose, Ronn S.; von Twistern, Brent

    2012-01-01

    We integrated high-resolution bare-earth airborne light detection and ranging (LiDAR) imagery with field observations and modern geochronology to characterize the Tahoe-Sierra frontal fault zone, which forms the neotectonic boundary between the Sierra Nevada and the Basin and Range Province west of Lake Tahoe. The LiDAR imagery clearly delineates active normal faults that have displaced late Pleistocene glacial moraines and Holocene alluvium along 30 km of linear, right-stepping range front of the Tahoe-Sierra frontal fault zone. Herein, we illustrate and describe the tectonic geomorphology of faulted lateral moraines. We have developed new, three-dimensional modeling techniques that utilize the high-resolution LiDAR data to determine tectonic displacements of moraine crests and alluvium. The statistically robust displacement models combined with new ages of the displaced Tioga (20.8 ± 1.4 ka) and Tahoe (69.2 ± 4.8 ka; 73.2 ± 8.7 ka) moraines are used to estimate the minimum vertical separation rate at 17 sites along the Tahoe-Sierra frontal fault zone. Near the northern end of the study area, the minimum vertical separation rate is 1.5 ± 0.4 mm/yr, which represents a two- to threefold increase in estimates of seismic moment for the Lake Tahoe basin. From this study, we conclude that potential earthquake moment magnitudes (Mw) range from 6.3 ± 0.25 to 6.9 ± 0.25. A close spatial association of landslides and active faults suggests that landslides have been seismically triggered. Our study underscores that the Tahoe-Sierra frontal fault zone poses substantial seismic and landslide hazards.

  14. Forest Fuel Reduction and Wildfire Effects on Runoff and Evapotranspiration in Sierra Nevada Mixed-Conifer Forest

    Science.gov (United States)

    Saksa, P. C.; Bales, R. C.; Conklin, M. H.

    2015-12-01

    Large, high-intensity wildfire risk in the western United States is growing, fueled by increasing vegetation density from a century of fire suppression and climatic shifts resulting in extended dry seasons. Strategically Placed Landscape Treatments (SPLATs) are a fuel reduction method designed to reduce fire risk on the entire landscape by treating only a fraction of the area. During 2011 and 2012, SPLATs were implemented in the mixed-conifer zone of the Tahoe (Last Chance study area, American River Basin) and Sierra (Sugar Pine study area, Merced River Basin) National Forests. Wildfire events were then simulated for both treated and untreated conditions. We integrated the vegetation changes with the Regional Hydro-Ecological Simulation System (RHESSys) to project impacts of fuel treatments and wildfire on runoff and evapotranspiration for the period of observed data, water years 2010-2013. Results from the model simulations show that vegetation treatments in the Last Chance study area, which removed 8.0% of the total biomass by treating 25% of the area, increased mean annual runoff by 12.0% and decreased mean annual evapotranspiration by 4.1%. Vegetation treatments in the Sugar Pine study area, which removed 7.5% of the total biomass by treating 33% of the area, increased runoff by 2.7% and decreased ET by 0.5%. Compared to pre-treatment conditions, wildfire simulations in Last Chance reduced total biomass by 38-50% when fuel treatments were not applied, resulting in a 55-67% runoff increase and a 19-23% evapotranspiration decrease. In Sugar Pine, fire simulation reduced biomass 39-43%, increasing runoff and decreasing ET by 13-15% and 1.8-2.7% respectively. Applying the same magnitude of biomass reductions equally over the entire watershed, in contrast to the localized areas of vegetation reductions due to treatment or fire, resulted in smaller impacts on runoff and evapotranspiration rates. Vegetation effects on hydrologic fluxes are greater in Last Chance than

  15. Radionuclides in ground water of the Carson River Basin, western Nevada and eastern California, U.S.A.

    Science.gov (United States)

    Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.

    1993-01-01

    Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are oxide coatings on fracture surfaces and fine-grained sediment, by adsorption on organic matter, and by coprecipitation with Fe and Mn oxides. These coated sediments are transported throughout the basin by fluvial processes. Thus, U is transported as dissolved and adsorbed species. A rise in the water table in the Carson Desert because of irrigation has resulted in the oxidation of U-rich organic matter and dissolution of U-bearing coatings on sediments, producing unusually high U concentration in the ground water. Alpha activity in the ground water is almost entirely from the decay of U dissolved in the water. Beta activity in ground water samples is primarily from the decay of 40K dissolved in the water and ingrowth of 238U progeny in the sample before analysis. Approximately one-half of the measured beta activity may not be present

  16. SADIE como herramienta de cuantificación de la heterogeneidad espacial: casos prácticos en el Parque Nacional de Sierra Nevada (Granada, España

    Directory of Open Access Journals (Sweden)

    J.L. Quero

    2006-01-01

    Full Text Available SADIE como herramienta de cuantificación de la heterogeneidad espacial: casos prácticos en el Parque Nacional de Sierra Nevada (Granada, España. SADIE es una herramienta de análisis espacial basado en índices de distancia. Su sencilla metodología, cuantifica el patrón espacial de una variable objeto de estudio, detecta los agregados locales de la variable y cuantifica el grado de asociación o disociación espacial entre pares de variables. SADIE genera estadísticos continuos para cada punto de muestro con lo que las diferentes facetas del patrón espacial que SADIE detecta, puede ser representadas mediante mapas. Otra de las ventajas de SADIE es su baja exigencia con datos de diferente naturaleza aunque también se describen diferentes limitaciones de la metodología. El creador de SADIE también ha diseñado un sencillo programa informático, bajo entorno Windows, que facilita la utilización de esta herramienta. A modo de ejemplo, se presentan resultados de un estudio sobre la variación espacial a pequeña escala de factores abióticos en la heterogénea Sierra Nevada (Granada. La versatilidad y sencillez de uso, han hecho que esta herramienta de análisis espacial se haya extendido considerablemente en los últimos tiempos.

  17. EFICIENCIA EN EL RETORNO POTENCIAL DE NUTRIENTES VÍA HOJARASCA DE UN BOSQUE TROPICAL DE RIBERA. SIERRA NEVADA DE SANTA MARTA COLOMBIA Efficient Way Back Litter Nutrient Potential of a Tropical Forest Ofbank. Sierra Nevada of Santa Marta Colombia

    Directory of Open Access Journals (Sweden)

    NATALIA FUENTES MOLINA

    2012-04-01

    Full Text Available En tres formaciones vegetales representativos de la ribera del río Gaira, (bosque muy húmedo subtropical (bmh-ST, bosque húmedo subtropical (bh-ST y monte espinoso tropical (me-T, fueron medidos durante un período de seis meses (lluvioso y seco los flujos de los nutrientes nitrógeno (N y fósforo (P a través de la hojarasca. Las concentraciones de estos nutrientes fueron semejantes en las tres formaciones vegetales (1,71% N y 0,12% P para el bh-ST; seguidos por el me-T con 1,50% N y 0,10% P y el bmh-ST con 1,39% N y 0,08% P, presentándose las diferencias más notorias para N, siendo el bh-ST establecidos en el tramo medio de la cuenca el que presentó las concentraciones más elevadas. Los mayores retornos de biomasa y nutrientes se presentaron en el bh-ST y el me-T establecidos en el tramo medio y bajo de la cuenca. La hojarasca mostró alta concentración de N y consecuentemente, dados los altos valores de producción de las diferentes fracciones, un retorno potencial alto de N ( 78,6 kg ha-1 año-1. P presentó una concentración foliar con un retorno potencial de 4,9 kgha1año-1y altos valores en los índices de eficiencia de uso (IEV: 2888,5 y la reabsorción foliar (ERN: 98,2, fue el nutriente más limitante.In three representative forests along the river Gaira, (subtropical wet forest, subtropical moist forest and tropical thorn mount, were measured over six months (wet and dry seasons fluxes of nitrogen and phosphorus through the litter. Concentrations of nutrients (nitrogen and phosphorus in the litter were relatively similar in the three Nevada de Santa Marta Colombia. Fuentes, Rodríguez. vegetation types (1.71% N and 0.12% P for the subtropical moist forest, followed by the tropical thorn mount with 1.50% N and 0.10% P and the subtropical wet forest with 1.39% N and 0.08% P, with the most significant differences found for nitrogen, which is the major nutrient with the absolute maximum in the subtropical rain forest set in the

  18. Upper crustal structure from the Santa Monica Mountains to the Sierra Nevada, Southern California: Tomographic results from the Los Angeles Regional Seismic Experiment, Phase II (LARSE II)

    Science.gov (United States)

    Lutter, W.J.; Fuis, G.S.; Ryberg, T.; Okaya, D.A.; Clayton, R.W.; Davis, P.M.; Prodehl, C.; Murphy, J.M.; Langenheim, V.E.; Benthien, M.L.; Godfrey, N.J.; Christensen, N.I.; Thygesen, K.; Thurber, C.H.; Simila, G.; Keller, Gordon R.

    2004-01-01

    In 1999, the U.S. Geological Survey and the Southern California Earthquake Center (SCEC) collected refraction and low-fold reflection data along a 150-km-long corridor extending from the Santa Monica Mountains northward to the Sierra Nevada. This profile was part of the second phase of the Los Angeles Region Seismic Experiment (LARSE II). Chief imaging targets included sedimentary basins beneath the San Fernando and Santa Clarita Valleys and the deep structure of major faults along the transect, including causative faults for the 1971 M 6.7 San Fernando and 1994 M 6.7 Northridge earthquakes, the San Gabriel Fault, and the San Andreas Fault. Tomographic modeling of first arrivals using the methods of Hole (1992) and Lutter et al. (1999) produces velocity models that are similar to each other and are well resolved to depths of 5-7.5 km. These models, together with oil-test well data and independent forward modeling of LARSE II refraction data, suggest that regions of relatively low velocity and high velocity gradient in the San Fernando Valley and the northern Santa Clarita Valley (north of the San Gabriel Fault) correspond to Cenozoic sedimentary basin fill and reach maximum depths along the profile of ???4.3 km and >3 km , respectively. The Antelope Valley, within the western Mojave Desert, is also underlain by low-velocity, high-gradient sedimentary fill to an interpreted maximum depth of ???2.4 km. Below depths of ???2 km, velocities of basement rocks in the Santa Monica Mountains and the central Transverse Ranges vary between 5.5 and 6.0 km/sec, but in the Mojave Desert, basement rocks vary in velocity between 5.25 and 6.25 km/sec. The San Andreas Fault separates differing velocity structures of the central Transverse Ranges and Mojave Desert. A weak low-velocity zone is centered approximately on the north-dipping aftershock zone of the 1971 San Fernando earthquake and possibly along the deep projection of the San Gabriel Fault. Modeling of gravity data, using

  19. Distribución espacial y temporal de larvas de Trichoptera (Insecta en el río Manzanares, Sierra Nevada de Santa Marta (Colombia

    Directory of Open Access Journals (Sweden)

    Daniel José Serna M

    2015-06-01

    Full Text Available Los insectos acuáticos son importantes como indicadores de calidad de aguas en ríos y arroyos. Uno de los grupos más abundantes son los Thichoptera, ellos juegan un papel importante por su papel funcional en los sistemas acuáticos. Por eso conocer su diversidad es prioritario. El objetivo de este estudio es conocer la estructura de la comunidad del orden Trichoptera y su dinámica espacio-temporal en relación con los microhábitats y algunas variables físicas y químicas, en la parte media y baja de la cuenca del río Manzanares (Sierra Nevada de Santa Marta, Colombia. Se muestrearon mensualmente ocho microhábitats entre agosto 2002 y febrero 2003, durante los periodos de lluvias y sequía. Se recolectaron 3 316 larvas, repartidas en tres subórdenes pertenecientes a 10 familias y 14 géneros; seis de estos géneros y una familia son los primeros registros para el departamento del Magdalena (Colombia. Los tricópteros presentaron la mayor abundancia y riqueza genérica en los microhábitats Hojarasca Corriente Lenta, Hojarasca Corriente Rápida y Piedra Corriente Rápida, donde Nectopsyche (28%, Leptonema (17% y Smicridea (15% fueron los géneros más predominantes. La estructura, y composición de los géneros del orden Trichoptera variaron en cada estación en función del régimen pluviométrico y las variables físicas y químicas presentadas en la localidad de estudio, evidenciando las menores abundancias y riqueza en los periodos de altas precipitaciones (octubre y noviembre y las mayores en épocas de precipitaciones bajas (diciembre, enero y febrero. De igual forma las estaciones con mayores valores de oxígeno disuelto y menores valores en temperatura y conductividad reportaron las mayores abundancias de tricópteros. Los tricópteros evidenciaron preferencias por microhábitats específicos, variación en su composición de acuerdo con los periodos climáticos y respuesta a los niveles de polución del río. Se recomienda

  20. Spatial and temporal variability of snow water equivalent in relations to the physiographic characteristics of the Kern watershed in the Sierra Nevada, CA

    Science.gov (United States)

    Girotto, M.; Cortes, G.; Margulis, S. A.; Durand, M. T.

    2012-12-01

    The spatial heterogeneity of the mountainous snowpack and a continuously changing climate affects a variety of processes including surface water discharge. An apparent shifting in ablation time and loss of SWE in the Sierra Nevada Mountains has been reported from several past studies based on downstream flow and/or point scale in-situ observations records. Understanding the geophysical controls and interannual variability of the spatial patterns of snow accumulation and ablation are critical for predicting the effects of climate variability on the snowpack water storage. Therefore, a continuous space-time characterization of snow distribution that uses spatially and temporally extensive remotely sensed information is necessary to improve our ability to predict and monitor this vital resource over complex mountainous terrain. Toward this end, this research estimates continuous spatial and temporal Snow Water Equivalent (SWE) estimates over the Kern watershed, a ~5300 km2 watershed characterized by a wide variety of physiographic characteristics, such as elevation, vegetation cover, and vegetation type. Kern extends 142 km north to south and 59 km east to west and it discharges its runoff to Lake Isabella (~0.57 million acre-feet), which is the largest open water reservoir of Southern California. We use a Bayesian reanalysis data assimilation approach, similar to an Ensemble Kalman Smoother, capable of merging remotely sensed Fractional Snow Covered Area (FSCA) data into snow prediction models, and at the same time accounting for the limitations of each. FSCA derived from the approximately three decade record of Landsat-5 thematic mapper are assimilated. The assimilation of FSCA into the land surface-snow depletion model, predicts seasonal, continuous (in space and time) SWE and FSCA at a nominal 90 m spatial resolution. The resulting SWE dataset from the assimilation framework, and its relation to different physiographic properties, is studied to explore specific

  1. Mercury Concentrations in Fish and Sediment within Streams are Influenced by Watershed and Landscape Variables including Historical Gold Mining in the Sierra Nevada, California

    Science.gov (United States)

    Alpers, C. N.; Yee, J. L.; Ackerman, J. T.; Orlando, J. L.; Slotton, D. G.; Marvin-DiPasquale, M. C.

    2015-12-01

    We compiled available data on total mercury (THg) and methylmercury (MeHg) concentrations in fish tissue and streambed sediment from stream sites in the Sierra Nevada, California, to assess whether spatial data, including information on historical mining, can be used to make robust predictions of fish fillet tissue THg concentrations. A total of 1,271 fish from five species collected at 103 sites during 1980-2012 were used for the modeling effort: 210 brown trout, 710 rainbow trout, 79 Sacramento pikeminnow, 93 Sacramento sucker, and 179 smallmouth bass. Sediment data were used from 73 sites, including 106 analyses of THg and 77 analyses of MeHg. The dataset included 391 fish (mostly rainbow trout) and 28 sediment samples collected explicitly for this study during 2011-12. Spatial data on historical mining included the USGS Mineral Resources Data System and publicly available maps and satellite photos showing the areas of hydraulic mine pits and other placer mines. Modeling was done using multivariate linear regression and multi-model inference using Akaike Information Criteria. Results indicate that fish THg, accounting for species and length, can be predicted using geospatial data on mining history together with other landscape characteristics including land use/land cover. A model requiring only geospatial data, with an R2 value of 0.61, predicted fish THg correctly with respect to over-or-under 0.2 μg/g wet weight (a California regulatory threshold) for 108 of 121 (89 %) size-species combinations tested. Data for THg in streambed sediment did not improve the geospatial-only model. However, data for sediment MeHg, loss on ignition (organic content), and percent of sediment less than 0.063 mm resulted in a slightly improved model, with an R2 value of 0.63. It is anticipated that these models will be useful to the State of California and others to predict areas where mercury concentrations in fish are likely to exceed regulatory criteria.

  2. The pulse of a montane ecosystem: coupled diurnal cycles in solar flux, snowmelt, evapotranspiration, groundwater, and streamflow at Sagehen Creek (Sierra Nevada, California)

    Science.gov (United States)

    Kirchner, James

    2016-04-01

    Forested catchments in the subalpine snow zone provide interesting opportunities to study the interplay between energy and water fluxes under seasonally variable degrees of forcing by transpiration and snowmelt. In such catchments, diurnal cycles in solar flux drive snowmelt and evapotranspiration, which in turn lead to diurnal cycles (with opposing phases) in groundwater levels. These in turn are linked to diurnal cycles in stream stage and discharge, which potentially provide a spatially integrated measure of snowmelt and evapotranspiration rates in the surrounding landscape. Here I analyze ecohydrological controls on diurnal stream and groundwater fluctuations induced by snowmelt and evapotranspiration (ET) at Sagehen Creek, in the Sierra Nevada mountains of California. There is a clear 6-hour lag between radiation forcing and the stream or groundwater response. This is not a travel-time delay, but instead a 90-degree dynamical phase lag arising from the integro-differential relationship between groundwater storage and recharge, ET, and streamflow. The time derivative of groundwater levels is strongly positively correlated with solar flux during snowmelt periods, reflecting snowmelt recharge to the riparian aquifer during daytime. Conversely, this derivative is strongly negatively correlated with solar flux during snow-free summer months, reflecting transpiration withdrawals from the riparian aquifer. As the snow cover disappears, the correlation between the solar flux and the time derivative of groundwater levels abruptly shifts from positive (snowmelt dominance) to negative (ET dominance). During this transition, the groundwater cycles briefly vanish when the opposing forcings (snowmelt and ET) are of equal magnitude, and thus cancel each other out. Stream stage fluctuations integrate these relationships over the altitude range of the catchment. Rates of rise and fall in stream stage are positively correlated with solar flux when the whole catchment is snow

  3. Hepatitis fulminante en la Sierra Nevada: Una forma de superinfección del virus delta con el virus de la hepatitis B.

    Directory of Open Access Journals (Sweden)

    Alvaro Villanueva

    1992-06-01

    Full Text Available Durante septiembre de 1980 a octubre de 1983, se realizó un estudio seroepidemiológico para hepatitis A y B, en 258 personas en una ciudad (Santa Marta población de 250.000 y tres pequeños municipios (Santa Rosalía, Julio Zawady y Aracataca, poblaciones de 768, 800 y 5.000 habitantes respectivamente. La presencia de hepatitis A se encontró en un 77 a 93% (IgG Hepatitis A. Hbs Ag o Anti-Hbs Ag en 30.5% de la población en dos municipios (Santa Rosalía y Julio Zawady, en 2.5% en el municipio de Aracataca y 48.5% en la ciudad de Santa Marta. La presencia del Agente Delta (Anti-delta en el suero se determinó también en estas mismas poblaciones, encontrándose ausente en la ciudad y uno de los municipios (Aracataca, en contraste con una prevalencia de 13.7% y 22% en Julio Zawady y Santa Rosalía (P: 0.0001. Se excluyeron por historia clínica, antecedentes de drogadicción, transfusiones, o prácticas homosexuales, como mecanismos de transmisión de los virus B y delta. En veinte pacientes con diagnóstico histopalógico de hepatitis fulminante y en quienes se descartaron otras etiologías se demostró la presencia serológica de los virus de la hepatitis By Delta. De estos veinte, diez provenían de Julio Zawady y los otros diez de Santa Rosalía. La evolución clínica de esta enfermedad fue indistinguible de otras causas de falla hepática aguda. La mortalidad de estas formas fulminantes de hepatitis alcanzaron hasta un 65%. Los corticoides no modificaron el curso de esta enfermedad. La población joven mostró mayor compromiso y peor diagnóstico (P:0.033. La hepatitis fulminante de la Sierra Nevada de Santa Marta es el resultado de la superinfección con el virus Delta sobre la infección virus B. La aparición simultánea de casos intrafamiliares sugiere una relación importante entre los grupos comprometidos, aunque la forma exacta de transmisión permanece aún desconocida.

  4. The Mammoth Peak sheeted complex, Tuolumne batholith, Sierra Nevada, California: a record of initial growth or late thermal contraction in a magma chamber?

    Science.gov (United States)

    Žák, Jiří; Paterson, Scott R.; Janoušek, Vojtěch; Kabele, Petr

    2009-10-01

    The Mammoth Peak sheeted intrusive complex formed in the interior of a ~7-10 km deep magma chamber, specifically in the Half Dome granodiorite of the Tuolumne batholith, central Sierra Nevada, CA (USA). The sheets consist of fractionated melts with accumulated hornblende, biotite, magnetite, titanite, apatite, and zircon. The accumulation, especially of titanite, had a profound effect on minor and trace elements (Nb, Ta, Ti, REE, U, Th, P, Zr, Hf, etc.), increasing their contents up to five to six times. Our thermal-mechanical modeling using the finite element method shows that cooling-generated tensile stresses resulted in the inward propagation of two perpendicular sets of dilational cracks in the host granodiorite. We interpret the sheeted complex to have formed by a crack-seal mechanism in a high strength, crystal-rich mush, whereby outward younging pulses of fractionated magma were injected into these syn-magmatic cracks at the margin of an active magma chamber. Thermal-mechanical instabilities developed after the assembly of the sheeted complex, which was then overprinted by late ~NW-SE magmatic foliation. This case example provides a cautionary note regarding the interpretation that sheeted zones in large granitoid plutons imply a diking mechanism of growth because the sheeted/dike complexes in plutons (1) may display inverse growth directions from the growth of the overall intrusive sequence; (2) need not record initial chamber construction and instead may reflect late pulsing of magma within an already constructed magma chamber; (3) have an overprinting magmatic fabric indicating the continued presence of melt after construction of sheeted complexes and thus a prolonged thermal history as compared to dikes; and (4) because the scale of the observed sheeted complexes may be small (<1%) in comparison to large homogenous parts of plutons, in which there is no evidence for sheeting or diking. Thus, where extensive dike complexes in plutons are absent, such as

  5. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada

    Science.gov (United States)

    Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.

    2013-12-01

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60 W m-2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18% at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower

  6. Complexity in Climatic Controls on Plant Species Distribution: Satellite Data Reveal Unique Climate for Giant Sequoia in the California Sierra Nevada

    Science.gov (United States)

    Waller, Eric Kindseth

    better mapping of spatial and temporal patterns in cloud cover. Chapter 2 of this dissertation describes the generation of custom daily cloud cover maps from Advanced Very High Resolution Radiometer (AVHRR) satellite data from 1981-1999 at ~5 km resolution and Moderate Resolution Imagine Spectroradiomter (MODIS) satellite reflectance data at ~500 meter resolution for much of the western U.S., from 2000 to 2012. Intensive comparisons of reflectance spectra from a variety of cloud and snow-covered scenes from the southwestern United States allowed the generation of new rules for the classification of clouds and snow in both the AVHRR and MODIS data. The resulting products avoid many of the problems that plague other cloud mapping efforts, such as the tendency for snow cover and bright desert soils to be mapped as cloud. This consistency in classification across cover types is critically important for any distribution modeling of a plant species that might be dependent on cloud cover. In Chapter 3, monthly cloud frequencies derived from the daily classifications were used directly in species distribution models for giant sequoia and were found to be the strongest predictors of giant sequoia distribution. A high frequency of cloud cover, especially in the spring, differentiated the climate of the west slope of the southern Sierra Nevada, where giant sequoia are prolific, from central and northern parts of the range, where the tree is rare and generally absent. Other mapped cloud products, contaminated by confusion with high elevation snow, would likely not have found this important result. The result illustrates the importance of accuracy in mapping as well as the importance of previously overlooked aspects of climate for species distribution modeling. But it also raises new questions about why the clouds form where they do and whether they might be associated with other aspects of climate important to giant sequoia distribution. What are the exact climatic mechanisms

  7. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Henry, Christopher D.; Vikre, Peter

    2015-01-01

    Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase

  8. Secondary Magnetization of ZEBRA Dolomites in the Basin and Range Province of Eastern Nevada

    Science.gov (United States)

    Elmore, R. D.; Dulin, S. A.

    2013-12-01

    Zebra dolomites within the Devonian Guilmette Formation of the southern Basin and Range Province, Nevada, are the focus of a paleomagnetic study to determine if a characteristic magnetization exists that will yield insight into the timing of zebra dolomite formation. Zebra dolomites consist of alternating bands of light and dark dolomite, and are found throughout Nevada, often associated with mineralized ore deposits. Although a variety of mechanisms have been suggested for formation, the zebra dolomite throughout Nevada is likely associated with hydrothermal fluid migration. The current study focuses on zebra dolomites that have formed in close stratigraphic proximity and within the Alamo Breccia in the Delamar Range in southeastern Nevada. The Alamo Breccia is an impact generated mega-breccia zone within the Devonian Guilmette Formation. The zebra dolomites, including those in the Alamo Breccia, and host Guilmette in the Delamar Range have a characteristic remanent magnetization (ChRM) with maximum laboratory unblocking temperatures of 480°C that is interpreted to reside in magnetite. The rocks were structurally rotated to remove Cenozoic extension, and the stratigraphic mean direction of the ChRM has a declination of 164.4°, with an inclination of -3°. The calculated pole is at 51.6°N, 90.7°E (dp = 2.2, dm = 4.3) which lies near the late Triassic portion of the apparent polar wander path (APWP) for North America. Based on low burial temperatures, this ChRM is interpreted as a chemical remanent magnetization (CRM) that was acquired due to the mobilization of brines possibly associated with the Triassic Sonoma orogeny. Geochemical data are consistent with alteration by externally derived fluids. The presence of a late Triassic magnetization indicates that the zebra dolomite can be no younger than Late Triassic. Preliminary results from zebra dolomites in other areas in southeastern Nevada indicate a more complex magnetization; some locations contain both

  9. Using global Climate Impact Indicators to assess water resource availability in a Mediterranean mountain catchment: the Sierra Nevada study case (Spain) in the SWICCA platform

    Science.gov (United States)

    José Pérez-Palazón, María; Pimentel, Rafael; Sáenz de Rodrigáñez, Marta; Gulliver, Zacarias; José Polo, María

    2017-04-01

    Climate services provide water resource managements and users with science-based information on the likely impacts associated to the future climate scenarios. Mountainous areas are especially vulnerable to climate variations due to the expected changes in the snow regime, among others; in Mediterranean regions, this shift involves significant effects on the river flow regime and water resource availability and management. The Guadalfeo River Basin is a 1345 km2 mountainous, coastal catchment in southern Spain, ranging from the Mediterranean Sea coastline to the Sierra Nevada mountains to the north (up to 3450 m a.s.l.) within a 40-km distance. The climate variability adds complexity to this abrupt topography and heterogeneous area. The uncertainty associated to snow occurrence and persistence for the next decades poses a challenge for the current and future water resource uses in the area. The development of easy-to-use local climate indicators and derived decision-making variables is key to assess and face the economic impact of the potential changes. The SWICCA (Service for Water Indicators in Climate Change Adaptation) Platform (http://swicca.climate.copernicus.eu/) has been developed under the Copernicus Climate Change Service (C3S) and provides global climate and hydrology indicators on a Pan-European scale. Different case studies are included to assess the platform development and contents, and analyse the indicators' performance from a proof-of-concept approach that includes end-users feedbacks. The Guadalfeo River Basin is one of these case studies. This work presents the work developed so far to analyse and use the SWICCA Climate Impact Indicators (CIIs) related to river flow in this mountainous area, and the first set of local indicators specifically designed to assess selected end-users on the potential impact associated to different climate scenarios. Different CIIs were extracted from the SWICCA interface and tested against the local information

  10. Geochemistry and age relationships of metamorphosed mafic sills from Sierra de Enmedio and Sierra de Carrascoy (Eastern Betic zone, Southeastern Spain

    Directory of Open Access Journals (Sweden)

    Torres-Roldán, R. L.

    1989-12-01

    Full Text Available The presence of fairly abundant shallow-intrusive mafic bodies is a common feature of the almagride units, a recently defined group of tectonic elements of the Eastern Betic Zone whose paleogeographic and tectonic interpretation is particuIarly controversial. In this paper we focuse on the bulk geochemistry (including K/Ar data and possible age relationships of tbese rocks, and discuss them in view of their significance regarding possible tectonic framework of emplacement and subsequent crustal evolution. The analyses (49-55% SiO2 point to a derivation from tholeiitic magmas that interacted with continental crust, as indicated by enrichment in the less compatible elements, such as Ba, Rb, Th and K, whose amounts are similar to those of well known continental tholeiitic provinces. Thus, the magmatic event is inferred to have been generated in a tectonic environment comparable to that of continental rifts. Emplacement may have taken place in Upper Triassic to Middle Jurassic times, as bracketed by their intrusion within Triassic beds and one whole-rock KIAr date of 178±4 Ma from a less altered sample. Much younger analytical K/Ar ages, scattering between 41±5 and 57±2 Ma, are obtained from common samples, however, reflecting an Eocene or younger metamorphic event that caused partial recrystallisation under low-grade greenchist, to actinolite-pumpelIyite facies conditions. As compared to other mafic complexes in the Betics, the observed chemical evidence for crustal contamination makes the almagride metabasites more similar to those in the external zona (e.g. the so-calIed «opbites» than in tbe Nevado-Filábride Ensemble, thus being consistent with proposals that correlate these units with the Subbetic in the Murcia area.La frecuente presencia de cuerpos de metabasitas es una característica común de las unidades almágrides, un grupo de unidades tectónicas de la Zona Bética Oriental, de reciente definición, cuya interpretaci

  11. Global optimization of a deuterium calibrated, discrete-state compartment model (DSCM): Application to the eastern Nevada Test Site

    Science.gov (United States)

    Carroll, Rosemary W. H.; Pohll, Greg M.; Earman, Sam; Hershey, Ronald L.

    2007-10-01

    SummaryAs part of a larger study to estimate groundwater recharge volumes in the area of the eastern Nevada Test Site (NTS), [Campana, M.E., 1975. Finite-state models of transport phenomena in hydrologic systems, PhD Dissertation: University of Arizona, Tucson] Discrete-state compartment model (DSCM) was re-coded to simulate steady-state groundwater concentrations of a conservative tracer. It was then dynamically linked with the shuffled complex evolution (SCE) optimization algorithm [Duan, Q., Soroosh, S., Gupta, V., 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research 28(4), 1015-1031] in which both flow direction and magnitude were adjusted to minimize errors in predicted tracer concentrations. Code validation on a simple four-celled model showed the algorithm consistent in model predictions and capable of reproducing expected cell outflows with relatively little error. The DSCM-SCE code was then applied to a 15-basin (cell) eastern NTS model developed for the DSCM. Auto-calibration of the NTS model was run given two modeling scenarios, (a) assuming known groundwater flow directions and solving only for magnitudes and, (b) solving for groundwater flow directions and magnitudes. The SCE is a fairly robust algorithm, unlike simulated annealing or modified Gauss-Newton approaches. The DSCM-SCE improves upon its original counterpart by being more user-friendly and by auto-calibrating complex models in minutes to hours. While the DSCM-SCE can provide numerical support to a working hypothesis, it can not definitively define a flow system based solely on δD values given few hydrogeologic constraints on boundary conditions and cell-to-cell interactions.

  12. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2005

    Science.gov (United States)

    Locke, Glenn L.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Office of Civilian Radioactive Waste Management, collected, compiled, and summarized hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data were collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data collected from January through December 2005 are provided for ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert. Ground-water level, discharge, and withdrawal data collected by other agencies, or as part of other programs, are provided. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for 1992-2005 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements; maximum, minimum, and median water-level altitudes; and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At seven boreholes in Jackass Flats, median water levels for 2005 were slightly higher (0.4-2.7 feet) than the median water levels for 1992-93.

  13. Evaluación biológica preliminar de extractos vegetales utilizados en la medicina tradicional de la Sierra Nevada deSanta Marta contra el veneno de la Bothrops asper

    Directory of Open Access Journals (Sweden)

    Willinton Barranco Pérez

    2013-10-01

    Full Text Available Title: Preliminary biological evaluation of plants extracts used in the Sierra Nevada de Santa Marta against the snake Bothrops asper venom.ResumenLa mordedura de serpientes constituye un problema de salubridad importante en muchos países tropicales y subtropicales, con un estimado de 2,5 millones de personas envenenadas cada año. En Colombia las especies Bothropsasper y Bothropsatrox son las causantes del 70 al 90 % de los accidentes registrados. Se estima que el 60% de estos accidentes son inicialmente tratados por curanderos tradicionales utilizando plantas medicinales en diferentes preparaciones. Este estudio evaluó la capacidad inhibitoria de cinco especies contra el efecto proteolítico y hemolítico indirecto inducido por el veneno de B. asper en ensayos in vitro.Las especies, que fueron seleccionadas de acuerdo a su uso en la medicina tradicional por parte de las comunidades campesinas de la Sierra Nevada de Santa Marta, fueron, Aristolochia máxima, Cissampelospareira, Equisetumbogotense, Mucunacfpruriens y una especie de la familia Asteraceae. La planta E. bogotense mostró los mayores porcentaje de inhibición contra la actividad de las fosfolipasas A2(42,29 %, así como la mayor precipitación de las proteínas en un rango de masas moleculares de 28,2 y 94,43 KDa. Al fraccionar el extracto de E. bogotense se obtuvieron cinco fracciones, las cuales presentaron un porcentaje de inhibición de 36,6 ± 1,07 a 46,1 ± 13,6. Adicionalmente se detectaron por métodos cualitativos núcleos como, alcaloides, esteroides y/o triterpenos, taninos, cumarinas y leucoantocianidinas. En estudio se reporta la actividad antiofídica en ensayos in vitro de la especie E. bogotense contra el veneno de la especie B.asper. (DUAZARY 2012 No. 2, 140 - 150AbstractIn Colombia the species Bothrops asper and Bothrops atrox are responsible for 70 to 90% of the snakebite accidents. Around 60% of these injuries are initially treated by traditional healers; they

  14. Complexity in Climatic Controls on Plant Species Distribution: Satellite Data Reveal Unique Climate for Giant Sequoia in the California Sierra Nevada

    OpenAIRE

    Waller, Eric Kindseth

    2014-01-01

    ABSTRACTComplexity in Climatic Controls on Plant Species Distribution: Satellite Data Reveal Unique Climate for Giant Sequoia in the California Sierra NevadabyEric Kindseth WallerDoctor of Philosophy in Environmental Science, Policy, and ManagementUniversity of California, BerkeleyProfessor Dennis D. Baldocchi, ChairA better understanding of the environmental controls on current plant species distribution is essential if the impacts of such diverse challenges as invasive species, changing fir...

  15. Assessing the Effect of Climate Change in Two Snow-Dominated Mountainous Basins in the California Sierra Nevada Using CMIP5 data and the Soil and Water Assessment Tool (SWAT)

    Science.gov (United States)

    Choi, M.; Sultana, R.

    2014-12-01

    American River and Upper Merced basins are located on the snow-dominated area in the California's Sierra Nevada mountain range. American River basin, located north of the Sierra Nevada, is 4,781.2 km2 and snowmelt runoff from the basin feeds the Folsom Lake reservoir which is primarily used to generate hydroelectric power as part of the Central-Valley project. To the south of the mountain range, 5,252.8 km2 Upper Merced basin is located and streamflow from the watershed is mainly used for irrigation. Because of the importance of the two basins to the state water resources, we have studied the future projected change in streamflow of the basins. The Soil and Water Assessment Tool (SWAT) model was calibrated (R2 and NSE values of 0.93 and 0.91 at American River basin and 0.86 and 0.85 at Upper Merced River basin, respectively) to simulate the hydrologic response of the basins. Monthly precipitation and temperature data from the Centre National de RecherchésMeteorologiques (CNRM) and NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) outputs were collected from World Climate Research Programme's (WCRP) downscaled and bias corrected CMIP5 dataset. The watersheds were studied using RCPs 4.5 and 8.5 future projections for 50 year period (2015-2065). Compared to the baseline (1965-1999), peak discharge in Upper Merced basin is projected to increase by 7% to 57% at the USGS stream gauge site located upstream in the basin. At the basin outlet, peak discharge in July decreases by 15% for RCP 4.5 scenariobut increases by 30% for RCP 8.5 scenarios. Winter streamflow increases for both RCPs 4.5 and 8.5 scenarios by 50-125%. At the American River basin,there is no change in projected summer streamflow but 30-68% increase is projected in winter streamflow at the basin outlet. Overall, the high elevated mountain zones are projected to have small change compared to the lower elevated downstream zones of the basins. Based on the selected GCM outputs from the CMIP5 dataset, winter

  16. La fracturación tardía al SW de Sierra Nevada (terminación occidental del corredor de las Alpujarras, zona bética

    Directory of Open Access Journals (Sweden)

    Sanz de Galdeano, C.

    1984-08-01

    Full Text Available Fracturing is the most conspicuous type of tectonics developed in the SW of Sierra Nevada after the alpine building of the Betic Cordilleras. Fractures have been inspected on satellite images as well as on ordinary photograms and surveyed through field studies, including microtectonic measurements in several favorable sectors, There are three main sets of fractures. N 70-100 E, N 120-150E and N 10-30E. Although they were likely strike-slip faults in origin, they show numerous movements, both horizontal and vertical, ranging possibly up to the present time more, effectively controlling the sedimentation during the Neogene and Quaternary and being largely responsible for the present relief. The horizontal movements took place under a compressional stress trending essentially N 120 E and approximately N-S, acording to the results of microtectonic studies.

    La fracturación es en este área del SW de Sierra Nevada el hecho más notable producido después de la estructuración alpina de las Cordilleras Béticas. Esta fracturación se ha estudiado tanto sobre imágenes de satélite como con foto aérea normal y sobre el terreno, además de hacerla microtectónica de algunos sectores propicios . Son tres los juegos principales de fracturas: N 70-100 E, N 120-150E Y N 10-30 E. Fueron verosímilmente desgarres en origen. pero presentan numerosos movimientos tanto horizontales como verticales, los cuales se prolongan posiblemente a la actualidad. Los saltos verticales dan valores de 500-1.000 y más metros y controlaron el depósito del Neógeno y del Cuaternario y buena parte de la formación del relieve actual. Las direcciones de compresión obtenidas mediante estudios de microtectónica son fundamentalmente N 120 E Y aproximadamente N-S.

  17. Barium-rich fluids and melts in a subduction environment (La Corea and Sierra del Convento mélanges, eastern Cuba)

    Science.gov (United States)

    Blanco-Quintero, Idael Francisco; Lázaro, C.; García-Casco, A.; Proenza, J. A.; Rojas-Agramonte, Y.

    2011-08-01

    Whole-rock compositions of muscovite-bearing amphibolite, trondhjemite, pegmatite and quartz-muscovite rocks from Sierra del Convento and La Corea mélanges (eastern Cuba), as well as mineralogy, record complex circulation of Ba-rich fluids and melts in the subduction environment. Partial melting of fluid-fluxed, MORB-derived amphibolite produced trondhjemite magmas that crystallized at depth, in some cases evolving into pegmatites. Qtz-Ms rocks probably crystallized from primary fluids derived from subducted sediments. All these rocks have elevated concentrations of large-ion lithophile elements, especially Ba (up to 11,810 ppm), presumably released from slab sediments by fluids and/or melts. Fluid-rock interaction produced crystallization of phengite in parental amphibolites. The phengite crystallized in all types of rocks is rich in Ba, with concentric zoning, characterized by Ba-rich cores and Ba-poor rims, indicating a compatible behaviour of Ba in the studied systems. Zoning in phengite is governed primarily by the celadonite (tschermak) exchange vector ((Mg,Fe)Si-(Al)-2), with more moderate contributions of the celsian (BaAl-(KSi)-1) and paragonite (NaK-1) exchange vectors. Late remobilization of Ba at relatively low temperature formed retrograde celsian. The compatible behaviour of Ba in the studied rocks strengthens the importance of the stability of phengite for the transfer of LIL elements from the subduction to the volcanic arc environments.

  18. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2004

    Science.gov (United States)

    La Camera, Richard J.; Locke, Glenn L.; Habte, Aron M.; Darnell, Jon G.

    2006-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Office of Repository Development, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, both ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January through December 2004. Also tabulated are ground-water levels, discharges, and withdrawals collected by other agencies (or collected as part of other programs) and data revised from those previously published at monitoring sites. Historical data on water levels, discharges, and withdrawals are presented graphically to indicate variations through time. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for the period 1992-2004 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At six boreholes in Jackass Flats, median water levels for 2004 were slightly higher (0.3-2.7 feet) than their median water levels for 1992-93. At one borehole in Jackass Flats, median water level for 2004 equaled the median water level for 1992-93.

  19. Plague studies in California: a review of long-term disease activity, flea-host relationships and plague ecology in the coniferous forests of the Southern Cascades and northern Sierra Nevada mountains.

    Science.gov (United States)

    Smith, Charles R; Tucker, James R; Wilson, Barbara A; Clover, James R

    2010-06-01

    We review 28 years of long-term surveillance (1970-1997) for plague activity among wild rodents from ten locations within three coniferous forest habitat types in the northern Sierra Nevada and the Southern Cascade mountains of northeastern California. We identify rodent hosts and their fleas and document long-term plague activity in each habitat type. The highest seroprevalence for Yersinia pestis occurred in the chipmunks, Tamias senex and T. quadrimaculatus, and the pine squirrel, Tamiasciurus douglasii. The most commonly infected fleas were Ceratophyllus ciliatus and Eumolpianus eumolpi from chipmunks and Oropsylla montana and O. idahoensis from ground squirrels. Serological surveillance demonstrated that populations of T. senex, T. quadrimaculatus and T. douglasii are moderately resistant to plague, survive infection, and are, therefore, good sentinels for plague activity. Recaptured T. senex and T. quadrimaculatus showed persistence of plague antibodies and evidence of re-infection over a two year period. These rodent species, their fleas, and the ecological factors common to the coniferous forest habitats likely promote the maintenance of plague foci in northeastern California.

  20. Comparative seismic and petrographic crustal study between the Western and Eastern Sierras Pampeanas region (31°S Estudio sísmico y petrográfico cortical comparativo entre las Sierras Pampeanas Occidentales y Orientales (31°S

    Directory of Open Access Journals (Sweden)

    P. Alvarado

    2005-12-01

    Full Text Available The ancient Sierras Pampeanas in the central west part of Argentina are a seismically active region in the back-arc of the Andes. Their crystalline basement cored uplifts extend up to 800 km east of the oceanic trench over the flat subduction segment of the Nazca plate. Approximately 40 felt crustal earthquakes, are reported per year for this region. Historic and modern seismicity indicates that the Western Sierras Pampeanas (WSP have more crustal earthquakes of greater-size than the Eastern Sierras Pampeanas (ESP. Remarkable changes in composition and structure also characterize the WSP and ESP basements. We have quantitatively compared both regions using seismological constrains. A recent regional study of moderate earthquakes shows reverse and thrust focal mechanisms occurring at depths down to 25 km in the WSP. In contrast, the ESP have reverse and strike-slip focal mechanisms of shallower depths (Los antiguos bloques montañosos de las Sierras Pampeanas del centro-oeste argentino constituyen una región sísmicamente activa en la zona andina de trasarco. Estos bloques de basamento cristalino afloran hasta 800 km al este de la trinchera oceánica sobre el segmento de subducción horizontal. Más de 40 sismos «sentidos», son reportados por año para esta región. La distribución de la sismicidad moderna e histórica, muestra que las Sierras Pampeanas Occidentales experimentan más sismos de mayor magnitud que las Sierras Pampeanas Orientales. Geológicamente, existen marcados contrastes en la composición litológica y estructura del basamento en ambas regiones. Un estudio sismológico reciente indica que las Sierras Pampeanas occidentales son más activas sísmicamente que las orientales, con mecanismos focales inversos que alcanzan profundidades de hasta 25 km. Las Sierras Pampeanas orientales presentan mecanismos focales inversos y de desplazamiento de rumbo con profundidades focales < 10 km. Diferentes estructuras corticales de

  1. Magnitude and spatial patterns of erosional exhumation in the Nevadaplano, eastern Nevada and western Utah: insights from a Paleogene paleogeologic map

    Science.gov (United States)

    Long, S. P.

    2011-12-01

    The hinterland of the Sevier orogenic belt in Nevada and westernmost Utah has been interpreted as an ancient, high-elevation orogenic plateau, or 'Nevadaplano' that extensionally collapsed during Tertiary time. The cumulative effects of this extension have obscured evidence for a relict, low-relief region. To illustrate both the pre-extensional structural geometry and structural relief, a paleogeologic (or 'subcrop') map showing the distribution of Neoproterozoic, Paleozoic, and Triassic rocks exposed beneath a regional Eocene to Oligocene unconformity has been compiled for the Nevadaplano region. The map area extends from the trace of the westernmost major Sevier thrust system in western Utah to the Roberts Mountains thrust in central Nevada. Using published thicknesses of sedimentary rocks deposited in Nevada and Utah between the Neoproterozoic and the Triassic, the paleogeologic map becomes a map of exhumation, which contours the magnitude of sedimentary rock removed prior to the Paleocene. The exhumation map highlights a ~150 km wide region of low structural relief and minimal (Bolivia. Regional domains defined on the subcrop map include: 1) Cambrian subcrop levels in the hanging wall of the DeLamar-Wah-Wah-Canyon Range (DWC) thrust system and Sevier culmination, which young westward to Mississippian and higher levels; 2) a broad region of eastern Nevada and westernmost Utah that is devoid of regional-scale, surface-breaching thrust faults, and has subcrop levels between Mississippian and Triassic, indicating relatively low structural relief; and 3) subcrop levels varying between Neoproterozoic and Permian in the Central Nevada thrust belt (CNTB), indicating significant structural relief. Isolated segments of CNTB structures can be correlated by their subcrop patterns, and can be traced southward to connect with thrust faults in southern Nevada. The exhumation map can be divided into three zones that exhibit significant across-strike magnitude changes: 1) high

  2. The impact of land abandonment on soil erosion in the eastern Spain. The El Teularet - Sierra de Enguera experimental station contribution

    Science.gov (United States)

    Cerdà, A.; Bolí, M. B.; Novara, A.

    2009-04-01

    Land abandonment took place during the 50's and 60's in Spain. The mountainous areas were abandoned and a vegetation recovery processes developed a cover of shrubs on the fields. Most of those abandoned fields were affected by forest fire, which encouraged the recovery of Cistus albidus and Ulex parviflorus. At the Sierra de Enguera, in Eastern Spain, the vegetation cover on 30 year old abandoned fields is dense (90-100 % cover) and the soils doubled the organic matter content at 0-1 cm depth to the tillage ones. Tillage and herbicide management's results in crust covered soils. The objective of this research is to quantify the soil erosion losses on croplands (herbicide treatments) and on rangeland (30-yr after the abandonment), where the main vegetation covers was Ulex parviflorus. The study area show a 500 mm y-1 mean annual rainfall and vegetation establishment was very efficient. Runoff and sediment yield were collected form 1, 2, 4, and 16 m2 plots on Abandoned and Crop land management's plots A tipping-bucket raingauge (0,2 mm) was installed in 2003 and sediments and runoff collected after every rainfall event. The results show that water losses were one order of magnitude greater on the herbicide treated soils, meanwhile the soil erosion were 6.5 Mg ha-1 year-1 on the cropland and 0.05 Mg ha-1 year-1 on the abandoned soils. The results of 5 year measurements demonstrated that Mediterranean scrubland control the soil erosion processes after land abandonment.

  3. Multistage late Cenozoic evolution of the Amargosa River drainage, southwestern Nevada and eastern California Society of America. All rights reserved

    Science.gov (United States)

    Menges, C.M.

    2008-01-01

    Stratigraphic and geomorphic analyses reveal that the regional drainage basin of the modern Amargosa River formed via multistage linkage of formerly isolated basins in a diachronous series of integration events between late Miocene and latest Pleistocene-Holocene time. The 275-km-long Amargosa River system drains generally southward across a large (15,540 km 2) watershed in southwestern Nevada and eastern California to its terminus in central Death Valley. This drainage basin is divided into four major subbasins along the main channel and several minor subbasins on tributaries; these subbasins contain features, including central valley lowlands surrounded by highlands that form external divides or internal paleodivides, which suggest relict individual physiographic-hydrologic basins. From north to south, the main subbasins along the main channel are: (1) an upper headwaters subbasin, which is deeply incised into mostly Tertiary sediments and volcanic rocks; (2) an unincised low-gradient section within the Amargosa Desert; (3) a mostly incised section centered on Tecopa Valley and tributary drainages; and (4) a west- to northwest-oriented mostly aggrading lower section along the axis of southern Death Valley. Adjoining subbasins are hydro-logically linked by interconnecting narrows or canyon reaches that are variably incised into formerly continuous paleodivides. The most important linkages along the main channel include: (1) the Beatty narrows, which developed across a Tertiary bedrock paleodivide between the upper and Amargosa Desert subbasins during a latest Miocene-early Pliocene to middle Pleistocene interval (ca. 4-0.5 Ma); (2) the Eagle Mountain narrows, which cut into a mostly alluvial paleodivide between the Amar-gosa Desert and Tecopa subbasins in middle to late Pleistocene (ca. 150-100 ka) time; and (3) the Amargosa Canyon, which formed in late middle Pleistocene (ca. 200140 ka) time through a breached, actively uplifting paleodivide between the Tecopa

  4. Geometry and kinematics of the eastern Lake Mead fault system in the Virgin Mountains, Nevada and Arizona

    Science.gov (United States)

    Beard, Sue; Campagna, David J.; Anderson, R. Ernest

    2010-01-01

    The Lake Mead fault system is a northeast-striking, 130-km-long zone of left-slip in the southeast Great Basin, active from before 16 Ma to Quaternary time. The northeast end of the Lake Mead fault system in the Virgin Mountains of southeast Nevada and northwest Arizona forms a partitioned strain field comprising kinematically linked northeast-striking left-lateral faults, north-striking normal faults, and northwest-striking right-lateral faults. Major faults bound large structural blocks whose internal strain reflects their position within a left step-over of the left-lateral faults. Two north-striking large-displacement normal faults, the Lakeside Mine segment of the South Virgin–White Hills detachment fault and the Piedmont fault, intersect the left step-over from the southwest and northeast, respectively. The left step-over in the Lake Mead fault system therefore corresponds to a right-step in the regional normal fault system.Within the left step-over, displacement transfer between the left-lateral faults and linked normal faults occurs near their junctions, where the left-lateral faults become oblique and normal fault displacement decreases away from the junction. Southward from the center of the step-over in the Virgin Mountains, down-to-the-west normal faults splay northward from left-lateral faults, whereas north and east of the center, down-to-the-east normal faults splay southward from left-lateral faults. Minimum slip is thus in the central part of the left step-over, between east-directed slip to the north and west-directed slip to the south. Attenuation faults parallel or subparallel to bedding cut Lower Paleozoic rocks and are inferred to be early structures that accommodated footwall uplift during the initial stages of extension.Fault-slip data indicate oblique extensional strain within the left step-over in the South Virgin Mountains, manifested as east-west extension; shortening is partitioned between vertical for extension-dominated structural

  5. Metabolitos secundarios de líquenes de la zona nival de la Sierra Nevada de Mérida-Venezuela y su papel en la absorción de la radiación ultravioleta

    Directory of Open Access Journals (Sweden)

    Balza-Quintero, Alirio

    2008-06-01

    Full Text Available Photochemical analyses of secondary compounds in lichens from the venezuelan andean snow zone were carried out in order to know the absorbance capacity of UV radiation at the UVA, UVB and UVC ranges and to determine its probable UV protective function. Spectrophotometric (UV and fine layer chromatographic techniques (TLC were utilized to separate and identify the compounds. UV radiation values were obtained from the Red Bioclimática del Parque Nacional Sierra Nevada de Mérida which constitutes a program supported by the University of Los Andes, Venezuela. Results indicated the existence of 22 species of lichens at the snow zone; 55% of these species showed a strong resistance to UVC radiation, 95% to UVB radiation, whereas the 100% revealed a strong resistance to UVA radiation. The substances that have the highest resistance to UVA and UVB radiation are characterized by having ester bonds among phenolic units depsids and constitute the most abundant products in lichens, whereas the substances having both ester and ether bonds among the two phenolic units depsidones revealed a higher capacity to absorb UVC radiation that could indicate a primitive origin.Se hicieron análisis fotoquímicos de compuestos secundarios presentes en líquenes de la zona nival andina venezolana con la finalidad de conocer su capacidad de absorber las radiaciones ultravioletas UVA, UVB y UVC e inferir en la probable función protectora de estos compuestos ante estas radiaciones. Para la separación e identificación de sustancias se utilizaron técnicas espectrofotométricas (UV y técnicas de cromatografía de capa fina (TLC. Para el estudio climático de la zona nival se utilizaron registros de la Red Bioclimática del Parque Nacional Sierra Nevada de Mérida, Programa de la Universidad de Los Andes, Venezuela. Los resultados revelaron que, de las 22 especies encontradas, el 55% presentó una resistencia potencial a la radiación UVC, el 95% a la radiación UVB y el

  6. Abundancia relativa y uso de microhábitat de la rana Geobatrachus walkeri (Anura: Strabomantidae en dos hábitats en Sierra Nevada de Santa Marta, Colombia

    Directory of Open Access Journals (Sweden)

    Vera Martínez Baños

    2011-06-01

    Full Text Available La rana Geobatrachus walkeri pertenece a un género monotípico y endémico del área de San Lorenzo, Sierra Nevada de Santa Marta, Colombia. La especie habita en el bosque secundario natural y en una plantación de pino (dominada por Pinus patula. Para comparar la abundancia relativa y el uso del microhábitat en estos dos hábitat y durante los períodos de máxima y mínima precipitación, se distribuyeron aleatoriamente 30 cuadrantes en cada bosque sobre los que se registraron el número de individuos y los microhábitats ocupados. Además se reconocieron otros aspectos de la historia natural mediante muestreo por encuentros casuales (VES, se incluye en los dos hábitats áreas no muestreadas por los cuadrantes. La mayor abundancia de ranas se obtuvo en la plantación de pino y durante la época de lluvias. El microhábitat más usado fue la hojarasca de pino. Geobatrachus walkeri es una especie exitosa en las plantaciones de pino, asociada permanentemente a su hojarasca en donde parece desarrollar todo su ciclo de vida. Las claras modificaciones derivadas de la introducción de las plantaciones de pino en el suelo y el agua, parecen no haber afectado la supervivencia y mantenimiento exitoso de esta especie categorizada como en peligro de extinción.

  7. An integrated approach to modeling changes in land use, land cover, and disturbance and their impact on ecosystem carbon dynamics: a case study in the Sierra Nevada Mountains of California

    Directory of Open Access Journals (Sweden)

    Benjamin M. Sleeter

    2015-06-01

    Full Text Available Increased land-use intensity (e.g. clearing of forests for cultivation, urbanization, often results in the loss of ecosystem carbon storage, while changes in productivity resulting from climate change may either help offset or exacerbate losses. However, there are large uncertainties in how land and climate systems will evolve and interact to shape future ecosystem carbon dynamics. To address this we developed the Land Use and Carbon Scenario Simulator (LUCAS to track changes in land use, land cover, land management, and disturbance, and their impact on ecosystem carbon storage and flux within a scenario-based framework. We have combined a state-and-transition simulation model (STSM of land change with a stock and flow model of carbon dynamics. Land-change projections downscaled from the Intergovernmental Panel on Climate Change’s (IPCC Special Report on Emission Scenarios (SRES were used to drive changes within the STSM, while the Integrated Biosphere Simulator (IBIS ecosystem model was used to derive input parameters for the carbon stock and flow model. The model was applied to the Sierra Nevada Mountains ecoregion in California, USA, a region prone to large wildfires and a forestry sector projected to intensify over the next century. Three scenario simulations were conducted, including a calibration scenario, a climate-change scenario, and an integrated climate- and land-change scenario. Based on results from the calibration scenario, the LUCAS age-structured carbon accounting model was able to accurately reproduce results obtained from the process-based biogeochemical model. Under the climate-only scenario, the ecoregion was projected to be a reliable net sink of carbon, however, when land use and disturbance were introduced, the ecoregion switched to become a net source. This research demonstrates how an integrated approach to carbon accounting can be used to evaluate various drivers of ecosystem carbon change in a robust, yet transparent

  8. The influence of fault geometry and frictional contact properties on slip surface behavior and off-fault damage: insights from quasi-static modeling of small strike-slip faults from the Sierra Nevada, CA

    Science.gov (United States)

    Ritz, E.; Pollard, D. D.

    2011-12-01

    Geological and geophysical investigations demonstrate that faults are geometrically complex structures, and that the nature and intensity of off-fault damage is spatially correlated with geometric irregularities of the slip surfaces. Geologic observations of exhumed meter-scale strike-slip faults in the Bear Creek drainage, central Sierra Nevada, CA, provide insight into the relationship between non-planar fault geometry and frictional slip at depth. We investigate natural fault geometries in an otherwise homogeneous and isotropic elastic material with a two-dimensional displacement discontinuity method (DDM). Although the DDM is a powerful tool, frictional contact problems are beyond the scope of the elementary implementation because it allows interpenetration of the crack surfaces. By incorporating a complementarity algorithm, we are able to enforce appropriate contact boundary conditions along the model faults and include variable friction and frictional strength. This tool allows us to model quasi-static slip on non-planar faults and the resulting deformation of the surrounding rock. Both field observations and numerical investigations indicate that sliding along geometrically discontinuous or irregular faults may lead to opening of the fault and the formation of new fractures, affecting permeability in the nearby rock mass and consequently impacting pore fluid pressure. Numerical simulations of natural fault geometries provide local stress fields that are correlated to the style and spatial distribution of off-fault damage. We also show how varying the friction and frictional strength along the model faults affects slip surface behavior and consequently influences the stress distributions in the adjacent material.

  9. A ground-based magnetic survey of Frenchman Flat, Nevada National Security Site and Nevada Test and Training Range, Nevada: data release and preliminary interpretation

    Science.gov (United States)

    Phillips, Jeffrey D.; Burton, Bethany L.; Curry-Elrod, Erika; Drellack, Sigmund

    2014-01-01

    The Nevada National Security Site (NNSS, formerly the Nevada Test Site) is located in southern Nevada approximately 105 kilometers (km) (65 miles) northwest of Las Vegas. Frenchman Flat is a sedimentary basin located on the eastern edge of NNSS and extending eastward into the adjacent Nevada Test and Training Range (NTTR).

  10. Active shallow extension in central and eastern Betic Cordillera from CGPS data

    Science.gov (United States)

    Galindo-Zaldivar, J.; Gil, A. J.; Sanz de Galdeano, C.; Lacy, M. C.; García-Armenteros, J. A.; Ruano, P.; Ruiz, A. M.; Martínez-Martos, M.; Alfaro, P.

    2015-11-01

    The Betic Cordillera is an Alpine belt formed in the western Mediterranean by the westward displacement of the Alboran Domain in between the Eurasian and African convergent plates. New CGPS data from the central and eastern Betic Cordillera and its foreland-obtained mainly from the Topo-Iberia project-allowed us to precisely determine the rate of tectonic deformation. Most of the displacements of the central and eastern Betics are westward, with a variable southwestward component, in relation to the Eurasian stable plate. While in the Iberian foreland the displacements are extremely low, some deformation related to low compressional deformation occurs in the easternmost foreland basin and eastern Betic Cordillera. The displacement increases substantially southwards and westwards in relation to present-day extensional deformation. Major active discontinuities correspond to the NW-SE normal fault zones, which dip westwards; they are located in Almeria-Tabernas; Balanegra, and western Sierra de Gador; whereas the Padul fault zone located west of Sierra Nevada extends northwards to the Granada Basin. NW-SE extensional faults are also observed to the north, in the Baza Basin. Moreover, the activity of dextral faults along the Sorbas-Tabernas-Alpujarras-Guajares band, generally considered as a transfer fault zone, is evidenced by the displacement data. These results come to demonstrate the low activity or inactivity of the large northern E-W oriented folds of the central and eastern Internal Zone, such as the Sierra de Los Filabres antiform. They also point to the possible residual activity of the northern part of the NE-SW Sierra Nevada antiform, where the maximum relief of the Cordillera is found. Altogether, our data support a heterogeneous present-day westward extension that affects the upper crust of the Betic Cordillera and increases towards the thinned continental crust of the Alboran Sea and towards the west, which is compatible with roll-back subduction along

  11. Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: Tectonic setting and implications within Pangea paleogeography

    Science.gov (United States)

    Cardona, A.; Valencia, V.; Garzón, A.; Montes, C.; Ojeda, G.; Ruiz, J.; Weber, M.

    2010-10-01

    The Late Paleozoic to Triassic tectonics of northwestern South America have major implications for the understanding of Laurentia-Gondwana interactions that formed Pangea, and the origin of several tectonostratigraphic terranes dispersed by the break-up of this supercontinent during the formation of the Caribbean. Two mylonitic and orthogneissic granitoid suites have been recognized in the northeastern segment of the Sierra Nevada de Santa Marta, the lower Magdalena basin and the Guajira Serranias, within the Caribbean region of Colombia. For the Santa Marta region U/Pb LAM-ICP-MS analysis yielded zircon crystallization ages of 288.1 ± 4.5 Ma, 276.5 ± 5,1 Ma and 264.9 ± 4.0 Ma, related to the magmatic intrusion. Geochemical and modal variations show a compositional spectrum between diorite and granite, whereas LREE enrichment, Ti and Nb anomalies and geochemical discrimination suggest that this granitoid suite was formed within a magmatic arc setting. Inherited zircons suggest that this Early Permian plutonism was formed with the participation of Neoproterozoic and Grenvillian basement proximal to the South American continent. Evidence of a superimposed Early Triassic (ca. 250 Ma) deformational event in Santa Marta, together with a well defined S-type magmatism in the basement rocks from the adjacent lower Magdalena Valley and Guajira Peninsula regions are related to a major shift in the regional tectonic evolution. It's envisioned that this event records either terrane accretion or strong plate coupling during the final stages of Pangea agglutination. Connections with the main Alleghanian-Ouachitan Pangean orogen are precluded due to their timing differences. The plutons temporally and compositionally correlate with an arc found in the northern Andes and Mexican Gondwana terranes, and represent a broader magmatic event formed at the proto-Pacific margin, outside the nucleus of the Laurentia-Gondwana Alleghanian-Oachitan orogens. Evidence of lower temperature

  12. Wildland fire management and air quality in the southern Sierra Nevada: using the Lion Fire as a case study with a multi-year perspective on PM(2.5) impacts and fire policy.

    Science.gov (United States)

    Schweizer, Don; Cisneros, Ricardo

    2014-11-01

    allow additional burning in an area with severe anthropogenic air pollution and where frequent widespread fire is both beneficial and inevitable. The more extensive air quality impacts documented with large high intensity fire may be averted by embracing the use of fire to prevent unwanted high intensity burns. A widespread increase in the use of fire for ecological benefit may provide the resiliency needed in Sierra Nevada forests as well as be the most beneficial to public health through the reduction of single dose exposure to smoke and limiting impacts spatially. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Una propuesta para el monitoreo de la movilidad cortical actual en la sierra Chica de Zonda (Precordillera oriental de San Juan: mediciones de gravedad en red A proposal for monitoring the present crustal mobility in Sierra Chica de Zonda (Eastern Precordillera of San Juan: Gravity measurements in a network

    Directory of Open Access Journals (Sweden)

    S. Miranda

    2006-09-01

    Full Text Available Se detallan los requerimientos para el procedimiento de medición de redes precisas de gravedad que permitan obtener una interpretación de los cambios temporales de gravedad observados con relación a movimientos verticales en la corteza. Para Argentina, esta es la primera medición de gravedad en red realizada con fines de monitoreo cortical a escala local. Los vértices de la red prácticamente rodean a la sierra Chica de Zonda (Precordillera Oriental de San Juan caracterizada como una región de fallamiento activo. El objetivo científico del experimento es el ensayo de esta herramienta geofísica para cuantificar probables deformaciones verticales y/o cambios de masas subsuperficiales vinculados con actividad sísmica.In an attempt to obtain an interpretation of the observed temporal gravity changes related to crustal vertical motions, we describe a methodology using accurate gravity measurements within a fixed network. In Argentina, this is the first gravity survey measured in a network configuration for crustal monitoring studies at a local scale. The network contains the Sierra Chica de Zonda (San Juan Eastern Precordillera, a region of active tectonics. The main goal is to test a geophysical tool useful to quantify probable vertical ground deformations and/or subsurface mass changes associated with seismic activity.

  14. Geomorphic analysis of the Sierra Cabrera, an active pop-up in the constrictional domain of conjugate strike-slip faults: The Palomares and Polopos fault zones (eastern Betics, SE Spain)

    Science.gov (United States)

    Giaconia, Flavio; Booth-Rea, G.; Martínez-Martínez, J. M.; Azañón, J. M.; Pérez-Peña, J. V.

    2012-12-01

    The NNE-SSW sinistral Palomares and the conjugate dextral WNW-ESE striking Polopos fault zones terminate in the Sierra Cabrera antiform. In order to test the Quaternary activity and topographic relief control in the termination of these fault zones, here we present new qualitative and quantitative geomorphic analyses supported by a new structural map of the region. The main mountain fronts of the Cabrera antiform are formed by the North and South Cabrera reverse faults that merge laterally into the Palomares and Polopos faults, respectively. These faults produce knickpoints, stream deflections, complex basin hypsometric curves, high SLk anomalies and highly eroded basins in their proximity. Furthermore, the drainage network shows an S-shaped pattern reflecting progressive anticlockwise rotation related to the sinistral Palomares fault zone. The estimated uplift rates determined by the integration between mountain front sinuosity index and valley floor width to height ratio are larger than those obtained for strike-slip faults in the eastern Betics. These larger uplift rates with our geomorphic and structural dataset indicate that the topographic relief of the Sierra Cabrera antiform is controlled by reverse faults that form a pop-up structure in the constrictional domain between the larger Palomares-Polopos conjugate strike-slip faults. Existing GPS geodetic data suggest that the North and South Cabrera reverse faults probably accommodate a large part of Africa-Iberia convergence in the region.

  15. Efectos de la gestión selvícola pasada y presente sobre la diversidad genética actual y futura de Quercus pyrenaica Willd. en Sierra Nevada

    Directory of Open Access Journals (Sweden)

    M. Valbuena Carabaña

    2014-01-01

    Full Text Available Quercus pyrenaica Willd. es un roble mediterráneo-occidental, ampliamente distribuido en la península ibérica que presenta una extraordinaria capacidad de rebrote, especialmente de raíz. Tradicionalmente ha sido aprovechado para leñas en monte bajo y, menos frecuentemente, adehesado para el uso ganadero. El abandono de la gestión tradicional mayoritaria ha puesto de manifiesto el estado de degradación de sus masas (falta decrecimiento, puntisecado, ausencia de fructificación, que de forma teórica se había atribuido al agotamiento de las cepas y a la falta de diversidadgenética. Sin embargo, el análisis reciente mediante marcadores moleculares microsatélites de numerosos rebollares, incluidos los que aquí se presentan, permite descartar la supuesta falta de variabilidad genética. No obstante, la falta de concordancia entre la estructuras forestales de montes bajos y adehesados y el origen asexual o sexual de sus pies, junto a la heterogeneidad en el tamaño y composición de las cepas dificulta la interpretación de la estructura clonal actual en cada monte. Este trabajo, en el que se evalúa el estado de conservación de los recursos genéticos de Q.pyrenaica en uno de los territorios más intensamente aprovechados por el hombre a lo largo de la historia, ilustra la importante resiliencia que presenta la especie frente al manejo tradicional en monte bajo. Mediante el estudio de tres rodales localizados en el mismo robledal en el Parque Nacional de Sierra Nevada, se analiza el efecto de la gestión pasada (en monte bajo y adehesado y presente (en un rodal de monte bajo resalveado sobre la diversidad genética y la estructura clonal de la especie. Además, se evalúa la evolución futura de la diversidad genética a través del análisis del regenerado en los tres rodales en función del manejo selvícola que han experimentado. A pesar de que los montes bajos presentan mayores niveles de diversidad genética para la cohorte adulta

  16. Riparian Habitats - Sierra Nevada Foothill [ds304

    Data.gov (United States)

    California Department of Resources — These data are habitat polygons within a 200-m radius around point locations where wildlife surveys were conducted along 19 randomly selected watercourses in the...

  17. Riparian Birds - Sierra Nevada Foothill [ds303

    Data.gov (United States)

    California Department of Resources — These data are summary statistics of abundances of birds counted within 100-m radius circles with 10-minute point counts at multiple sample points along 36 randomly...

  18. La invencion de la Sierra Nevada

    National Research Council Canada - National Science Library

    Serje, Margarita

    2008-01-01

    Este articulo se propone ilustrar y discutir, a traves de la experiencia del equipo de investigadores del proyecto de Ciudad Perdida entre 1979 y 1983, la produccion de conocimiento antropologico como...

  19. Geomorphic analysis of the Sierra Cabrera, an active pop-up in the constriction domain of conjugate strike-slip faults: the Palomares and Polopos fault zones (eastern Betics, SE Spain)

    Science.gov (United States)

    Giaconia, F.; Booth-Rea, G.; Martínez-Martínez, J. M.; Pérez-Peña, V.; Azañón, J. M.

    2012-04-01

    Segments of the Quaternary sinistral Carboneras and Palomares fault zones, striking NE-SW and NNE-SSW, respectively, terminate in the Sierra Cabrera antiform together with the conjugate dextral WNW-ESE striking Polopos fault zone. In the constriction domain between these fault zones a pop-up structure occurs formed by the North and the South Cabrera reverse faults that bound the northern and the southern hillslopes, respectively. In order to test the Quaternary activity and relief control of these fault zones, here we present new qualitative and quantitative geomorphic analyses for the Sierra Cabrera using the following indices: mountain-front sinuosity, valley floor width-to-height ratio, drainage basin asymmetry factor, basin hypsometric curve and integral, and the SLk index. These analyses were performed with the aid of several maps such as the SLk and the minimum bulk erosion map. Qualitative observations carried out on the drainage network highlight the existence of a Late Miocene fold-related drainage network and a following late Miocene to Plio-Quaternary fault-related one. Integrating the mountain-front sinuosity and the valley floor width-to-height ratio for each mountain front we estimated the uplift rates associated to each of them. Fault-related mountain-fronts with a N50-60°E strike have reverse kinematics and uplift rates larger than 0.5 m ky-1 (e.g. North and South Cabrera reverse faults), whereas those with N20-30°E and N90-100°E strikes show oblique strike-slip kinematics and show lower uplift rates, between 0.05 and 0.5 m ky-1 (e.g. the Palomares and the Polopos fault segments). Furthermore, these faults produce knickpoints, complex basin hypsometric curves, high SLk anomalies and highly eroded basins above the fault traces. The estimated uplift rates are larger than those obtained from other authors for strike-slip faults in the eastern Betics that range between 0.1 and 0.05 m ky-1 (e.g. Palomares and southern Carboneras strike-slip fault

  20. A distinctive new subspecies of Scytalopus griseicollis (Aves, Passeriformes, Rhinocryptidae) from the northern Eastern Cordillera of Colombia and Venezuela

    Science.gov (United States)

    Avendaño, Jorge Enrique; Donegan, Thomas M.

    2015-01-01

    Abstract We describe a new subspecies of Pale-bellied Tapaculo Scytalopus griseicollis from the northern Eastern Cordillera of Colombia and Venezuela. This form differs diagnosably in plumage from described subspecies Scytalopus griseicollis griseicollis and Scytalopus griseicollis gilesi and from the latter in tail length. It is also differentiated non-diagnosably in voice from both these populations. Ecological niche modelling analysis suggests that the new subspecies is restricted to the Andean montane forest and páramo north of both the arid Chicamocha valley and the Sierra Nevada del Cocuy. PMID:26085800

  1. 76 FR 35208 - Pacific Gas and Electric Company; Nevada Irrigation District; Notice of Environmental Site Review

    Science.gov (United States)

    2011-06-16

    ... Yuba River, Canyon Creek, Rucker Creek and Bear River watersheds in Nevada, Placer and Sierra Counties... some brief walking over dirt trails might be needed. Cell phone coverage in the upper and mid...

  2. Volcanismo postorogénico en el extremo norte de las Sierras Pampeanas Orientales: Nuevos datos geocronológicos y sus implicancias tectónicas Postorogenic Volcanism in the Northern Boundary of the Eastern Sierras Pampeanas: Chronological Constraints and Their Tectonic Implications

    Directory of Open Access Journals (Sweden)

    PR Leal

    2003-12-01

    y 2600 Ma son más comunes. La edad modelo de 1350 Ma de la Dacita Los Burros, sugiere una corteza con más afinidades con el basamento occidental, que con el cratón del Río de La Plata. Sobre la base de estos datos una hipótesis tectónica es presentada para explicar los datos existentes.This paper presents new geochronological data on the northern sector of the eastern Sierras Pampeanas, in the province of Santiago del Estero. The regional geology of this area is mainly composed by a series of granitoids of Late Proterozoic - Early Cambrian age that are intruded by supracrustal volcanic rocks. A rhyodacitic body, unconformably emplaced in deformed granitoids, known as Los Burros Dacite is densely emplaced by small rhyolitic dykes, known as the Oncan Rhyolite and are widely exposed in the Sierra de Ambargasta. These volcanic rocks were emplaced after important deformation and exhumation of the batholith, that occurred as a result of the Pampean orogeny. Geochronological data, obtained from zircons of Los Burros Dacite by SHRIMP II, allow to determine that this body has finished its cristallization around 512 ± 3.5Ma, with a superimposed hydrothermal event of 481 ± 1.5 Ma. This last hydrothermal effect is interpreted as associated with the emplacement of the Oncán Rhyolites. Based on previous structural data, geochemical and petrological analyses, and the new dates, it is possible to interpret the existence of a magmatic arc in the eastern Sierras Pampeanas developed during Late Precambrian to Early Cambrian times, as a result of east subduction of the Pampia terrane. The collision of this terrane controlled the main deformation and metamorphism of the region at about 530 Ma, exhumation of the batholith and the emplacement in Early Cambrian times of the acidic volcanic suites here described. On the other hand, the Sm-Nd model-ages compiled for central Argentina and adjacent areas, and the new analysis here presented, show two different basements: model

  3. High strain-rate deformation fabrics characterize a kilometers-thick Paleozoic fault zone in the Eastern Sierras Pampeanas, central Argentina

    Science.gov (United States)

    Whitmeyer, Steven J.; Simpson, Carol

    2003-06-01

    High strain rate fabrics that transgress a crustal depth range of ca. 8-22 km occur within a major Paleozoic fault zone along the western margin of the Sierras de Córdoba, central Argentina. The NNW-striking, east-dipping 'Tres Arboles' fault zone extends for at least 250 km and separates two metamorphic terranes that reached peak temperatures in the middle Cambrian and Ordovician, respectively. Exposed fault zone rocks vary from a 16-km-thickness of ultramylonite and mylonite in the southern, deepest exposures to 520 °C. Reaction-enhanced grain size reduction and grain boundary sliding were the predominant deformation mechanisms in these high strain rate rocks. Ultramylonites in the intermediate depth section also contain evidence for grain boundary sliding and diffusional mass transfer, although overprinted by late stage chlorite. In the shallowest exposed section, rocks were deformed at or near to the brittle-ductile transition to produce mylonite, cataclasite, shear bands and pseudotachylyte. The overall structure of the Tres Arboles zone is consistent with existing fault zone models and suggests that below the brittle-ductile transition, strain compatibility may be accommodated through very thick zones of high temperature ultramylonite.

  4. Actualización en el límite entre sierras Pampeanas occidentales y Precordillera Oriental, en la provincia de San Juan Updating the boundary between the western Pampean ranges and the eastern Precordillera, province of San Juan

    Directory of Open Access Journals (Sweden)

    Juvenal J. Zambrano

    2008-03-01

    Full Text Available En este trabajo se analiza el sistema de fallamiento existente en la depresión tectónica de Tulum, ubicada en la parte este y sur de la provincia de San Juan, en el oeste árido de Argentina. El límite entre los dos sistemas morfoestructurales, uno la Precordillera Oriental y el otro el Sistema Pampeano Occidental ha sido establecido en trabajos anteriores, a lo largo del sistema de fallamiento de Tulum, que cruza a la depresión diagonalmente en dirección NNE. No obstante la disponibilidad de nueva información de sondeos eléctricos verticales y de algunas perforaciones para búsqueda de agua subterránea, efectuados al sur y al oeste del cerro Valdivia, permite señalar que hacia el suroeste de este núcleo de basamento metamórfico limitado en ambos flancos por fallas, el límite Sistema Pampeano y Precordillera se aproxima al cordón montañoso de sierra Chica de Zonda, continuando al sur en el cerro Salinas. De allí al SSO existen, en superficie, indicaciones de que el sistema de fallamiento continúa hasta el Montecito, donde el sistema pampeano de fallas queda interrumpido por la gran falla con actividad cuaternaria que sirve de límite oriental a la sierra de Las Peñas. El contacto entre ambos sistemas forma el extremo sur de la Precordillera Oriental en subsuelo. Este conocimiento estructural permite no solo ser aplicado a la prospección de agua sino también a la de hidrocarburos en la región.An analysis is made of the fault system in the Tulum tectonic depression, situated in the southeastern part of the province of San Juan, which is in the arid western part of Argentina. The boundary of two morphostructural systems occurs in this valley: the eastern Andean Precordillera and the western Pampean ranges. In former studies it was found that this boundary runs along a fault system that crosses the Tulum depression with a NNE trends. The availability of new information from electric resistivity tests and wells drilled for ground

  5. La participación como base del turismo comunitario y el manejo de los recursos de uso común. Sendero de Ritakuwas, Sierra Nevada de El Cocuy, Güicán y / o Chita. Boyacá, Colombia

    Directory of Open Access Journals (Sweden)

    Daniel Calderón Ramírez

    2014-11-01

    Full Text Available El objetivo principal de este estudio fue analizar el sendero que conduce al Ritakuwa Blanco, montaña de 5.330 m. s. n. m. ubicada en la Sierra Nevada de El Cocuy, Güicán y / o Chita, como un recurso de uso común (ruc. A través de este ruc se han establecido servicios turísticos y se han dado diferentes formas de participación por parte de las comunidades locales rurales, quienes lo usan y aprovechan. Por tanto, es necesaria una acción colectiva de los usuarios capaz de formular acuerdos o crear instituciones para el autogobierno y el uso sostenible del ruc, con el fin de evitar la tragedia de los bienes comunes2. Los prestadores de servicios turísticos decidieron participar en la planificación del ecoturismo debido a los estímulos y beneficios que pudieran llegar a recibir, como el fortalecimiento de la acción colectiva, la mayor autonomía y autogobierno para la sostenibilidad del sendero, la formalidad en la cadena de valor del turismo y la diversificación de los atractivos turísticos.

  6. Structural Evolution of the East Sierra Valley System (Owens Valley and Vicinity, California: A Geologic and Geophysical Synthesis

    Directory of Open Access Journals (Sweden)

    Richard J. Blakely

    2013-04-01

    Full Text Available The tectonically active East Sierra Valley System (ESVS, which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm, which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3–3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.

  7. Ground Water Atlas of the United States: Segment 1, California, Nevada

    Science.gov (United States)

    Planert, Michael; Williams, John S.

    1995-01-01

    California and Nevada compose Segment 1 of the Ground Water Atlas of the United States. Segment 1 is a region of pronounced physiographic and climatic contrasts. From the Cascade Mountains and the Sierra Nevada of northern California, where precipitation is abundant, to the Great Basin in Nevada and the deserts of southern California, which have the most arid environments in the United States, few regions exhibit such a diversity of topography or environment. Since the discovery of gold in the mid-1800's, California has experienced a population, industrial, and agricultural boom unrivaled by that of any other State. Water needs in California are very large, and the State leads the United States in agricultural and municipal water use. The demand for water exceeds the natural water supply in many agricultural and nearly all urban areas. As a result, water is impounded by reservoirs in areas of surplus and transported to areas of scarcity by an extensive network of aqueducts. Unlike California, which has a relative abundance of water, development in Nevada has been limited by a scarcity of recoverable freshwater. The Truckee, the Carson, the Walker, the Humboldt, and the Colorado Rivers are the only perennial streams of significance in the State. The individual basin-fill aquifers, which together compose the largest known ground-water reserves, receive little annual recharge and are easily depleted. Nevada is sparsely populated, except for the Las Vegas, the Reno-Sparks, and the Carson City areas, which rely heavily on imported water for public supplies. Although important to the economy of Nevada, agriculture has not been developed to the same degree as in California due, in large part, to a scarcity of water. Some additional ground-water development might be possible in Nevada through prudent management of the basin-fill aquifers and increased utilization of ground water in the little-developed carbonate-rock aquifers that underlie the eastern one-half of the State

  8. Primera edad U-Pb en circón usando LA-ICP-MS de un dique traquiandesítico emplazado en el granito tipo-A Los Árboles, Sierras Pampeanas Orientales First age U-Pb zircon LA-ICP-MS from trachyandesitic dyke emplaced in the A-type Los Árboles pluton, Eastern Sierras Pampeanas

    Directory of Open Access Journals (Sweden)

    Juan A Dahlquist

    2012-06-01

    Full Text Available La edad de cristalización de diques subvolcánicos emplazados en plutones graníticos carboníferos, Sierras Pampeanas Orientales, permanece incierta. La primera edad U-Pb en circón usando LA-ICP-MS obtenida en un dique que intruye al plutón Los Árboles (sierra de Fiambalá, revela una edad de cristalización de 311 ± 3 Ma.The crystallization age of subvolcanic dykes emplaced in Carboniferous granitic plutons of the Sierras Pampeanas Orientales remains uncertain. The first age precise U-Pb zircon LA-ICP-MS obtained from a dyke emplaced in the Los Árboles pluton (Sierra de Fiambalá yield a crystallization age of 311 ± 3 Ma.

  9. Guide to Using Sierra

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Ryan Phillip; Agelastos, Anthony Michael; Miller, Joel D.

    2017-04-01

    Sierra is an engineering mechanics simulation code suite supporting the Nation's Nuclear Weapons mission as well as other customers. It has explicit ties to Sandia National Labs' workfow, including geometry and meshing, design and optimization, and visualization. Dis- tinguishing strengths include "application aware" development, scalability, SQA and V&V, multiple scales, and multi-physics coupling. This document is intended to help new and existing users of Sierra as a user manual and troubleshooting guide.

  10. Guide to Using Sierra

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Ryan Phillip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Agelastos, Anthony Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Joel D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Sierra is an engineering mechanics simulation code suite supporting the Nation's Nuclear Weapons mission as well as other customers. It has explicit ties to Sandia National Labs' workfow, including geometry and meshing, design and optimization, and visualization. Dis- tinguishing strengths include "application aware" development, scalability, SQA and V&V, multiple scales, and multi-physics coupling. This document is intended to help new and existing users of Sierra as a user manual and troubleshooting guide.

  11. Geologic map of the Duncan Peak and southern part of the Cisco Grove 7 1/2' quadrangles, Placer and Nevada Counties, California

    Science.gov (United States)

    Harwood, David S.; Fisher, G. Reid; Waugh, Barbara J.

    1995-01-01

    This map covers an area of 123 km2 on the west slope of the Sierra Nevada, an uplifted and west-tilted range in eastern California (fig. 1). The area is located 20 km west of Donner Pass, which lies on the east escarpment of the range, and about 80 km east of the Great Valley Province. Interstate Highway 80 is the major route over the range at this latitude and secondary roads, which spur off from this highway, provide access to the northern part of the area. None of the secondary roads crosses the deep canyon cut by the North Fork of the American River, however, and access to the southern part of the area is provided by logging roads that spur off from the Foresthill Divide Road that extends east from Auburn to the Donner Pass area (fig. 1).

  12. The El Abra stadlal in the Eastern Cordillera of Colombia (South America)

    Science.gov (United States)

    Kuhry, P.; Hooghiemstra, H.; van Geel, B.; van der Hammen, T.

    The El Abra stadial is a climatic cooling event defined in the Eastern Cordillera of Colombia, which corresponds both in timing and intensity to the Younger Dryas climatic oscillation of the northern North Atlantic region. The stadial was preceded by the relatively warm Guantiva interstadial and followed by the warm Holocene. Colder climatic conditions during the El Abra stadial caused a 400 m lowering of the upper Andean forest limit below its altitudinal location during the preceding Guantiva interstadial. Translated in temperature change, this represents a drop in mean annual temperature of approximately 2 to 3°C. The lowering of the upper forest limit and inferred temperature change for the El Abra stadial, compared to Late Holocene conditions, are in the order of 600 m and 4°C, respectively. The transition of the Guantiva interstadial to the El Abra stadial has been radiocarbon dated at 11,210 ± 90 BP and 10,820 ± 60 BP. Climatic warming may have started shortly after 10,380 ± 90 BP, and near present-day temperatures were reached at least as early as 8920 ± 100 BP. Maximum cooling was probably attained between 10,800 BP and 10,300 BP. Further (AMS) radiocarbon dating is planned to establish more exactly the timing of the El Abra stadial. A glacial advance of El Abra age, the Bocatoma stade, has been recognized in the highest part of the Colombian Eastern Cordillera, the Sierra Nevada del Cocuy. During this advance, glaciers extended some 700 m lower than at present. A climatic cooling event of El Abra age, associated with shifts of the upper Andean forest limit and glacial advances, has also been recognized in other parts of Andean Colombia, including the Central Cordillera and the Sierra Nevada de Santa Marta.

  13. Returnees in Sierra Leone

    Directory of Open Access Journals (Sweden)

    Claudena Skran

    2008-12-01

    Full Text Available Over ten years of brutal civil war displaced approximately4.5 million people, about half Sierra Leone’s population.After the conflict ended in 2001, UNHCR facilitated theparticipation of both returnee refugees and returnee IDPsin community-level reconstruction projects.

  14. The diffuse seismicity of the Sierra Nevada of Santa Marta, the Perijá Range, and south of the La Guajira peninsula, Colombia and Venezuela: Result of the convergence between Caribbean plate and the South American margin during the Late Neogene?

    Science.gov (United States)

    Chicangana, G.; Pedraza, P.; Mora-paez, H.; Ordonez Aristizabal, C. O.; Vargas-Jimenez, C. A.; Kammer, A.

    2012-12-01

    A diffuse low deep microseismicity located overall between the Guajira peninsula and the Sierra Nevada de Santa Marta (SNSM) was registered with the recent installation (2008 to Present) of three seismological stations in northeastern Colombia by the Colombian Seismological Network (RSNC), but mainly with the Uribia station in (the) central region of La Guajira peninsula, The microseismicity is characterized by a great population of events with 1.2 Colombia impedes to locate the origin of the local seismicity; however, this seismic activity is associated to the tectonic activity of the Oca fault because with the GPS displacement analysis, neotectonics evidence found in faults traces associated to the Oca fault and the historical earthquake that affected the Colombian city of Santa Marta in 1834, lead us to conclude this. This is a big cortical fault that sets the limit between La Guajira peninsula and the SNSM. Its cortical characteristics were verified from geological data together with gravimetric and seismic exploration. The SNSM limits toward the southeast with the Cesar - Ranchería basin, and this basin in turn limits with the Perijá Range that is localized in the Colombia - Venezuela border. The SNSM, Cesar - Ranchería basin and Perijá Range limit toward the southwest with the Bucaramanga - Santa Marta fault (BSMF), the Oca fault toward the north, and Perijá - El Tigre fault toward the southeast defining a pyramidal orogenic complex. Using remote sensing images data with geological and regional geophysical information, we proposed that this orogenic complex was originated as a result of the Panama arc with the northwestern South America accretion. The final adjustment of the Caribbean plate (CP) between North America and South America during the Late Neogene produced the big cortical faults systems activation like Oca - Moron - El Pilar in Colombia and Venezuela toward the south of the Caribbean Plate (CP), and Motegua - Walton - Enriquillo - Plantain

  15. Reproduction, abundance, and population growth for a fisher (Pekania pennanti) population in the Sierra National Forest, California

    Science.gov (United States)

    Rick A. Sweitzer; Viorel D. Popescu; Reginald H. Barrett; Kathryn L. Purcell; Craig M. Thompson

    2015-01-01

    In the west coast region of the United States, fishers (Pekania pennanti) exist in 2 remnant populations—1 in northern California and 1 in the southern Sierra Nevada, California—and 3 reintroduced populations (western Washington, southern Oregon, and northeastern California). The West Coast Distinct Population Segment of fishers encompassing all of...

  16. Sierra Structural Dynamics Theory Manual

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Garth M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.

  17. Effect of water quality on survival of Lahontan cutthroat trout eggs in the Truckee River, west-central Nevada and eastern California

    Science.gov (United States)

    Hoffman, Ray J.; Scoppettone, Gary G.

    1988-01-01

    The U.S. Fish and Wildlife Service has an ongoing program to assess the feasibility of reestablishing naturally spawning populations of Lahontan cutthroat trout in the Truckee River-Pyramid Lake system in Nevada. Previous in situ egg-survival studies have documented a 100 percent mortality of cutthroat trout eggs artificially planted in potential spawning gravels in the Truckee River downstream from Reno. The relation between ambient river-quality conditions and the observed mortality of eggs, however, has not been adequately documented. This study was designed to monitor the quality of surface and intragravel water during a trout-egg incubation period that began March 10, 1980. Five sites were monitored: two upstream from Reno (background sites), one near Reno, and two downstream from Wadsworth. After an incubation period of about 30 days, poor egg survival was recorded at all sites, including an unexpected high mortality at the upstream background sites. Analyses of the data indicated that the principal cause of egg mortality at the two downstream sites was low concentrations (less than 5 milligrams per liter) of intragravel dissolved oxygen. Low water temperatures, rather than degraded water-quality conditions, largely contributed to the poor survival at the upstream sites. Based on the results of this study, the following were considered unlikely to be mortality factors during the incubation period: (1) high water temperatures; (2) toxicity due to ammonia, nitrite, nitrate, arsenic, cadmium, copper, iron, lead, manganese, mercury, and zinc; and (3) decreasing intragravel dissolved oxygen caused by inflow of oxygen-poor ground water.

  18. Dike orientations in the late jurassic independence dike swarm and implications for vertical-axis tectonic rotations in eastern California

    Science.gov (United States)

    Hopson, R.F.; Hillhouse, J.W.; Howard, K.A.

    2008-01-01

    Analysis of the strikes of 3841 dikes in 47 domains in the 500-km-long Late Jurassic Independence dike swarm indicates a distribution that is skewed clockwise from the dominant northwest strike. Independence dike swarm azimuths tend to cluster near 325?? ?? 30??, consistent with initial subparallel intrusion along much of the swarm. Dike azimuths in a quarter of the domains vary widely from the dominant trend. In domains in the essentially unrotated Sierra Nevada block, mean dike azimuths range mostly between 300?? and 320??, with the exception of Mount Goddard (247??). Mean dike azimuths in domains in the Basin and Range Province in the Argus, Inyo, and White Mountains areas range from 291?? to 354?? the mean is 004?? in the El Paso Mountains. In the Mojave Desert, mean dike azimuths range from 318?? to 023??, and in the eastern Transverse Ranges, they range from 316?? to 051??. Restoration for late Cenozoic vertical-axis rotations, suggested by paleodeclinations determined from published studies from nearby Miocene and younger rocks, shifts dike azimuths into better agreement with azimuths measured in the tectonically stable Sierra Nevada. This confirms that vertical-axis tectonic rotations explain some of the dispersion in orientation, especially in the Mojave Desert and eastern Transverse Ranges, and that the dike orientations can be a useful if imperfect guide to tectonic rotations where paleomagnetic data do not exist. Large deviations from the main trend of the swarm may reflect (1) clockwise rotations for which there is no paleomagnetic evidence available, (2) dike intrusions of other ages, (3) crack filling at angles oblique or perpendicular to the main swarm, (4) pre-Miocene rotations, or (5) unrecognized domain boundaries between dike localities and sites with paleomagnetic determinations. ?? 2008 The Geological Society of America.

  19. Shallow crustal structure of eastern-central Trans-Mexican Volcanic Belt.

    Science.gov (United States)

    Campos-Enriquez, J. O.; Ramón, V. M.; Lermo-Samaniego, J.

    2015-12-01

    Central-eastern Trans-Mexican Volcanic Belt (TMVB) is featured by large basins (i.e., Toluca, Mexico, Puebla-Tlaxcala, Libres-Oriental). It has been supposed that major crustal faults limit these basins. Sierra de Las Cruces range separates the Toluca and Mexico basins. The Sierra Nevada range separates Mexico basin from the Puebla-Tlaxcala basin. Based in gravity and seismic data we inferred the Toluca basin is constituted by the Ixtlahuaca sub-basin, to the north, and the Toluca sub-basin to the south, which are separated by a relative structural high. The Toluca depression is more symmetric and bounded by sub-vertical faults. In particular its eastern master fault controlled the emplacement of Sierra de Las Cruces range. Easternmost Acambay graben constitutes the northern and deepest part of the Ixtlahuaca depression. The Toluca-Ixtlahuaca basin is inside the Taxco-San Miguel de Allende fault system, and limited to the west by the Guerrero terrane which continues beneath the TMVB up to the Acambay graben. Mexico basin basement occupies an intermediate position and featured by a relative structural high to the north-east, as established by previous studies. This relative structural high is limited to the west by the north-south Mixhuca trough, while to the south it is bounded by the east-west Copilco-Xochimilco-Chalco sub-basin. The Puebla-Tlaxcala basin basement is the shallowest of these 3 tectonic depressions. In general, features (i.e., depth) and relationship between these basins, from west to east, are controlled by the regional behavior of the Sierra Madre Oriental fold and thrust belt basement (i.e., Oaxaca Complex?). This study indicates that an active east-west regional fault system limits to the south the TMVB (from the Nevado de Toluca volcano through the Popocatepetl volcano and eastward along southern Puebla-Tlaxcala basin). The Tenango and La Pera fault systems constituting the western part of this regional fault system coincide with northern

  20. Area Handbook for Sierra Leone,

    Science.gov (United States)

    1976-01-01

    During its fifteen years of independence since 1961, Sierra Leone has had some difficulty in maintaining political stability and in generating...performance has been comparatively weak. By the mid-1970s, however, there were indications that it might improve. The Area Handbook for Sierra Leone

  1. The impact of agriculture terraces on soil organic matter, aggregate stability, water repellency and bulk density. A study in abandoned and active farms in the Sierra de Enguera, Eastern Spain.

    Science.gov (United States)

    Cerdà, Artemi; Burguet, Maria; Keesstra, Saskia; Prosdocimi, Massimo; Di Prima, Simone; Brevik, Erik; Novara, Agata; Jordan, Antonio; Tarolli, Paolo

    2016-04-01

    Soil erosion, land degradation, lack of organic matter, erodible soils, rock outcrops… are a consequence of the human abuse and misuse of the soil resources. And this is a worldwide environmental issue (Novara et al., 2011; Vanlauwe et al., 2015; Musinguzi et al., 2015; Pereira et al., 2015; Mwagno et al., 2016). Agriculture terraces are a strategy to reduce the soil erosion, improve the soil fertility and allow the ploughing (Cerdà et al., 2010; Li et al., 2014). Although this idea is well accepted there are few scientific evidences that demonstrate that soils in the terraced areas are more stable, fertile and sustainable that the soil in non terraced areas. In fact, the ploughing in comparison to the abandoned or not ploughed land results in the soil degradation (Lieskovský and Kenderessy, 2014; Gao et al., 2015; Parras-Alcántara et al., 2014). This is mainly due to the lack of vegetation that increase the surface runoff (Cerdà et al., 1998; Keesstra et al., 2007). And why is necessary to develop also in terraced landscapes soil erosion control strategies (Mekonnen et al., 2015a; Mekonnen et al., 2015b; Prosdocimi et al., 2016). Our objective was to assess the soil organic matter content (Walkley and Black, 1934), the soil bulk density (ring method), the aggregate stabilility (drop impact) and the water repellency (Water Drop Penetration Time test) in four study sites in the Sierra de Enguera. Two sites were terraced: one abandoned 40 years before the measurements and the other still active with olive crops. And two control sites non-terraced. We used the paired plot strategy to compare the impact of terracing and abandonment. At each site we collected randomly 50 soil samples at 0-2 cm, 4-6 and 8-10 cm depth. At each sampling point 100 WDPT measurements where carried out, and one sample for the bulk density, and one for the organic matter, and one for the soil aggregate stability were collected. The soil surface samples shown the largest differences. The

  2. P- and S-body wave tomography of the state of Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Preston, Leiph

    2010-04-01

    P- and S-body wave travel times collected from stations in and near the state of Nevada were inverted for P-wave velocity and the Vp/Vs ratio. These waves consist of Pn, Pg, Sn and Sg, but only the first arriving P and S waves were used in the inversion. Travel times were picked by University of Nevada Reno colleagues and were culled for inclusion in the tomographic inversion. The resulting tomographic model covers the entire state of Nevada to a depth of {approx}90 km; however, only the upper 40 km indicate relatively good resolution. Several features of interest are imaged including the Sierra Nevada, basin structures, and low velocities at depth below Yucca Mountain. These velocity structure images provide valuable information to aide in the interpretation of geothermal resource areas throughout the state on Nevada.

  3. Eocene activity on the Western Sierra Fault System and its role incising Kings Canyon, California

    Science.gov (United States)

    Sousa, Francis J.; Farley, Kenneth A.; Saleeby, Jason; Clark, Marin

    2016-04-01

    Combining new and published apatite (U-Th)/He and apatite 4He/3He data from along the Kings River canyon, California we rediscover a west-down normal fault on the western slope of the southern Sierra Nevada, one of a series of scarps initially described by Hake (1928) which we call the Western Sierra Fault System. Integrating field observations with apatite (U-Th)/He data, we infer a single fault trace 30 km long, and constrain the vertical offset across this fault to be roughly a kilometer. Thermal modeling of apatite 4He/3He data documents a pulse of footwall cooling near the fault and upstream in the footwall at circa 45-40 Ma, which we infer to be the timing of a kilometer-scale incision pulse resulting from the fault activity. In the context of published data from the subsurface of the Sacramento and San Joaquin Valleys, our data from the Western Sierra Fault System suggests an Eocene tectonic regime dominated by low-to-moderate magnitude extension, surface uplift, and internal structural deformation of the southern Sierra Nevada and proximal Great Valley forearc.

  4. Lower crustal xenoliths, Chinese Peak lava flow, central Sierra Nevada.

    Science.gov (United States)

    Dodge, F.C.W.; Calk, L.C.; Kistler, R.W.

    1986-01-01

    This assemblage of pyroxenite, peridotite and mafic granulite xenoliths in the toe of a 10 m.y. trachybasalt flow remnant overlying late Cretaceous granitic rocks, indicates the presence of a mafic-ultramafic complex beneath this part of central California; orthopyroxenites, websterites and clinopyroxenites are dominant. A few of the xenoliths contain ovoid opaque patches that are apparently pseudomorphs after garnet and have pyralspite garnet compositions; using a garnet-orthopyroxene geobarometer, they indicate a lower crustal depth of approx 40 km. Abundant mafic granulites can be subdivided into those with Al2O3 = or 15% and showing considerable scatter on oxide variation diagrams. The high-alumina granulite xenoliths have relatively low 87Rb/86Sr but high 87Sr/86Sr, whereas the low-alumina and ultramafic xenoliths have a wide range of 87Rb/86Sr, but lower 87Sr/86Sr; the isotopic data indicate roughly the same age as that of overlying granitic plutons (approx 100 m.y.). However, the granitic rocks have initial 87Sr/86Sr ratios intermediate between those of the high-alumina and ultramafic xenoliths, suggesting that they result from the mixing of basaltic magma (represented by the ultramafic rocks) and crustal materials, with subsequent crystal fractionation.-R.A.H.

  5. Sierra Nevada Yellow-legged Frog Range - CWHR [ds592

    Data.gov (United States)

    California Department of Resources — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  6. Fuel treatment longevity in a Sierra Nevada mixed conifer forest

    Science.gov (United States)

    Scott. L. Stephens; Brandon M. Collins; Gary. Roller

    2012-01-01

    Understanding the longevity of fuel treatments in terms of their ability to maintain fire behavior and effects within a desired range is an important question. The objective of this study was to determine how fuels, forest structure, and predicted fire behavior changed 7-years after initial treatments. Three different treatments: mechanical only, mechanical plus fire,...

  7. California wildlife and their habitats: western Sierra Nevada

    Science.gov (United States)

    Jared Verner; Allan S. Boss

    1980-01-01

    The relationships between 355 wildlife species and their habitats are examined in a series of matrices, life history notes, and distribution maps covering 26 amphibians, 27 reptiles, 208 birds, and 94 mammals. The information is useful in identifying and evaluating the consequences of proposed land management activities-particularly those that manipulate vegetation....

  8. Nitrogen Contents and Fluxes in Sierra Nevada Forests of California

    Science.gov (United States)

    Hunsaker, C. T.; Johnson, D.

    2011-12-01

    Forest health and water quality depend on understanding water and nutrient budgets; this understanding is critical to inform forest restoration in California. The Kings River Experimental Watersheds (KREW) were established to characterize nitrogen (N) budgets before, during, and after tree thinning and prescribed fire to restore forests. The KREW watershed complex receives moderately high atmospheric inputs of N. Quantitative soil pit sampling shows that there are some differences in soil properties between the high elevation Bull site and the lower elevation Providence site. Soils are relatively high in inorganic N; however, N appears to be efficiently mobilized within the ecosystem, allowing very little loss via soil leaching or streamflow. We are measuring N deposition amounts using different techniques in an effort to compare methods and accurately quantify deposition in this area of steep terrain and dense forests. Five years of using passive samplers during the summer months show that the concentration of N components in air is moderate to moderately high. The Providence site experiences higher levels of both HNO3 and NH3 (summer averages 2.4 and 4.3 μg m-3) than the Bull site (1.2 and 4.2 μg m-3). Background levels of HNO3 in summer should not exceed 0.4 μg m-3, while those for NH3 in remote mountain locations in North America should be less than 1 μg m-3. Above-ground ion-exchange resin columns (2006-2009) show that total inorganic N deposition under the forest canopy ranged from 5.6 to 11.3 kg ha-1 in two forested areas of the Providence site with slightly more NO3- than NH4+. A smaller type of resin collector placed on the ground at 470 locations measured inorganic N deposition ranging from 5 to 11 kg ha-1 yr-1 during the 2004-2008 sampling period in the Bull watersheds and from 3 to 10 kg ha-1yr-1 in the Providence watersheds. Fluxes of inorganic N in the shallow mineral soil varied considerably by year, ranging from 2-3 kg ha-1 yr-1 in both Bull and Providence watersheds in 2004 to 6-16 and 6-20 kg ha-1 yr-1 in the Providence and Bull watersheds, respectively, in 2008. Reasons for the large inter-annual variation are still under investigation, but point to the need for good controls and background data in order to properly assess treatment effects. Water quality of the streams is quite good as one would expect from mountain headwaters where no new land disturbance has occurred for years. Nitrogen is seldom above the detection level (0.05 mg L-1) in the Bull site, and the Providence site has streams with a small spring nitrate pulse. Pathways of streamflow were determined for KREW using geochemical tracers (Ca2+, Mg2+, K+, and Cl-) and endmember mixing analysis. Three endmembers were determined: near-surface runoff from snowpack and spring rainstorms, fall rainstorm runoff, and baseflow. Near-surface runoff contributed more than 50% of streamflow on average at six catchments, whereas baseflow made up greater than 60% of streamflow at the other two catchments. Fall rainstorm runoff contributed less than 6% on average. This information about hydrologic processes should assist in understanding both water yield and nutrient processing after land treatments.

  9. Fire history of coniferous riparian forests in the Sierra Nevada

    Science.gov (United States)

    K. Van de Water; M. North

    2010-01-01

    Fire is an important ecological process in many western U.S. coniferous forests, yet high fuel loads, rural home construction and other factors have encouraged the suppression of most wildfires. Using mechanical thinning and prescribed burning, land managers often try to reduce fuels in strategic areas with the highest fuel loads. Riparian forests, however, are often...

  10. Potential areas of ground-water discharge in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent parts of Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent potential areas of ground-water discharge for selected hydrographic areas in eastern Nevada and western Utah. The data are based on phreatophyte...

  11. Texturas, inclusiones fluidas e isótopos estables envetas tensionales cuarzo-auríferas de cizallas paleozoicas, Sierras Pampeanas Orientales Textures,fluid inclusions and stable isotopes in quartz-auriferous tensional veins ofPaleozoic shear zones, Eastern Sierras Pampeanas

    Directory of Open Access Journals (Sweden)

    Diana Mutti

    2009-06-01

    Full Text Available En las Sierras Pampeanasafloran prominentes zonas de cizalla famatinianas con deformación dúctil adúctil frágil y edad ordovícica tardía - silúrica. Estas cizallas fueronreactivadas durante el Devónico - Carbonífero inferior por la sobreimposiciónde la orogenia achaliana, en un ambiente reológico dúctil - frágil, que en suetapa final evolucionó al campo frágil. Sincrónicamente, y con posterioridad almagmatismo devónico achaliano, se desarrollaron en las cizallas sistemas devetas tensionales, rellenas con cuarzo blanco1, blanco a gristraslúcido2, gris3 y calcedónico4, conmineralización de oro, óxidos de W - Fe - Bi y sulfuros de metales base. En lossistemas de vetas, la depositación de oro predominó en el estadio3, enel cual precipitaron también los sulfuros de metales base (In Sierras Pampeanas, conspicuous FamatinianOrdovician - Silurian shear zones crop out, with brittle to brittle - ductiledeformations. In the Devonian - lower Carboniferous, these shears werereactivated by the superimposing achalian orogeny in a brittle - ductile tobrittle regimen, transitional to brittle in the last evolution stage. Tensionalveins synchronically developed in the shear systems, after the achalianDevonian magmatism, were filled with white1, white to transparent grey2,grey3 and chalcedonic4 quartz, bearing gold, W - Fe - Bi oxidesand base metal sulphides. The deposition of gold in the quartz vein systems andthe precipitation of base metal sulphides (< 15 % per volume was the mostimportant process in stage3; these metals arranged in chains anddisseminations in the microcrystalline grey quartz. The stage3quartz appears in veinlets and bands, related to strain sites in the whitemilky and transparent grey quartz's, and determines mainly laminated, ribbonand stockwork textures. We emphasise in the grey3 quartz, throughmacro and microstructurals, termobarometric, fluid inclusions and δ18O isotopesstudies, with complementary information about

  12. African Journals Online: Sierra Leone

    African Journals Online (AJOL)

    The Sierra Leone Journal of Biomedical Research publishes papers in all fields of ... and Allied Health Sciences including Basic Medical Sciences, Clinical Sciences, Dental Sciences, Behavioural Sciences, Biomedical Engineering, Molecular ...

  13. Geotermobarometría de la paragénesis cuarzo-plagioclasa-biotita- granate-sillimanita en gneises del sector centro-oriental de la sierra de Comechingones, Córdoba Geothermobarometry of Qtz + Pl + Bt + Grt + Sil paragenesis in high-grade gneisses from central-eastern portion of Sierra de Comechingones

    Directory of Open Access Journals (Sweden)

    A. B. Guereschi

    2002-12-01

    Full Text Available El basamento metamórfico del sector centro oriental de la Sierra de Comechingones (Córdoba está compuesto principalmente por gneises biotíticos granatíferos, migmatitas estromatíticas y diatexitas. Durante el pico metamórfico regional M2-D2 se habrían alcanzado condiciones de alto grado, que produjeron fusión parcial en metapelitas y desarrollaron la foliación metamórfica S2. Para determinar las condiciones de presión y temperatura imperantes en la región durante el pico metamórfico M2, se seleccionaron muestras de gneises biotíticos granatíferos, en las que se analizaron por microsonda las fases minerales principales. El geotermómetro granate-biotita y el geobarómetro granate-plagioclasa-silicato de aluminio-cuarzo (GASP, complementado con el barómetro granate-rutilo-silicato de aluminio-ilmenita-cuarzo (GRAIL, fueron aplicados a la paragénesis Qtz + Pl + Bt + Grt + Sil. Los granates exhiben grados variables de resorción, con bordes engolfados y contornos cristalinos irregulares. La resorción retrógrada parcial es corroborada por los perfiles de granate, los que muestran fuerte enriquecimiento en Fe y menor en Mn hacia los bordes. Para termobarometría fueron elegidos puntos de granate hacia adentro del borde modificado para evitar los efectos retrógrados, ya que se considera que esa es la mejor aproximación posible a las condiciones durante el pico metamórfico. Esas composiciones fueron complementadas con biotita y/o plagioclasa de la matriz para los cálculos de P-T. Los resultados termobarométricos obtenidos, 776°C de temperatura y 7,9 kb de presión, son compatibles con los equilibrios de fases minerales observados y la naturaleza migmática de gran parte del área. Estos resultados para el evento M2-D2 indican condiciones metamórficas típicamente barrovianas durante el climax de la colisión del terrane Pampia con el margen occidental de Gondwana.The metamorphic basement on the central portion of Sierra de

  14. Private Schools, Nevada, 2009, Nevada Department of Education

    Data.gov (United States)

    U.S. Environmental Protection Agency — Nevada private schools locations. Nevada Department of Education Nevada private schools list for school year 2008-2009. Locations furnishe by the US EPA Region 9.

  15. The Sierra de Mil Cumbres, Michoacán, México: Transitional volcanism between the Sierra Madre Occidental and the Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Gómez-Vasconcelos, Martha Gabriela; Garduño-Monroy, Víctor Hugo; Macías, José Luis; Layer, Paul W.; Benowitz, Jeff A.

    2015-08-01

    The Sierra de Mil Cumbres is a Miocene volcanic range located in central México, in the north-eastern part of the State of Michoacán, near the city of Morelia. Structurally it is a ENE-trending horst that covers an area of 1022 km2 (approximately 20 km wide × 60 km long) and contains exposures of chemically-bimodal volcanism in the form of ignimbrites, lava domes, lava flows, cinder cones, and related deposits. The main volcanic manifestations of this range are the La Escalera Caldera (16.3-23 Ma), the Garnica Volcanic Complex (18.3-17.9 Ma), the Atécuaro Caldera (16.3-19.4 Ma), and the Indaparapeo Volcanic Complex (14.1-17.5 Ma). The Sierra de Mil Cumbres stands in space and time at the intersection between the Miocene-Recent Trans-Mexican Volcanic Belt and the Late Cretaceous-Early Miocene Sierra Madre Occidental, and so provides new insights into the geological evolution of central México. Arc volcanism in the Sierra de Mil Cumbres was initiated by a massive NNW-SSE extension, probably during the counterclockwise rotation of the Sierra Madre Occidental. New geological mapping, stratigraphic analysis, detailed geochemistry and 40Ar/39Ar geochronology demonstrates that this intra-plate volcanism was emplaced between 14 and 23 Ma.

  16. Dominant Factors Controlling the Hydrometeorology of Northern California: Landfalling Atmospheric Rivers and Sierra Barrier Jets

    Science.gov (United States)

    Neiman, P. J.; Ralph, F. M.; Hughes, M.; Sukovich, E.; Kingsmill, D. E.; Zamora, R. J.; Moore, B. J.

    2014-12-01

    Northern California's Sierra Nevada and Shasta-Trinity mountains are key to the state's water supply and can contribute to major floods in the Central Valley (CV). NOAA's Hydrometeorology Testbed (HMT) program and the CalWater experiment have discovered much about how landfalling atmospheric rivers (AR) and Sierra Barrier Jets (SBJ) modulate orographic precipitation in that region. This presentation provides a review of recent findings, both from case-study and compositing perspectives. Wind-profiler and global-positioning-system (GPS) observations are used with soil moisture probes, stream gauges, and a regional reanalysis dataset. Key results include: Inland-directed ARs override a ~1-km-deep, Sierra-parallel SBJ located above the CV and the western slope of the Sierra. Above the developing SBJ, strengthening southwesterly flow marks the AR. The moistening SBJ reaches maximum intensity during the strongest AR flow aloft, at which time the core of the AR-parallel vapor transport slopes over the SBJ and intersects the Sierra. The SBJ then weakens with the initial cold-frontal passage aloft. A statistical analysis of orographic forcing reveals that both the AR and SBJ are crucial in determining the distribution of precipitation in the northern Sierra and Shasta-Trinity regions due to orographic precipitation enhancement. An open question remains regarding the transport of water vapor near the northern end of the CV. Namely, a portion of the AR-modulated SBJ flow may be transported through a prominent gap in the terrain between Mt. Lassen and Mt. Shasta, near the town of Burney. Recent analyses indicate that this gap allows AR water vapor to penetrate into the western interior (e.g., to Idaho) and thus contribute to heavy precipitation events far inland. The CalWater-2 program of field campaigns has identified diagnosis of the transport through this gap and its impact on northern California precipitation as a priority for future data collection and analysis.

  17. Modeling interfacial fracture in Sierra.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.

    2013-09-01

    This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.

  18. Environmental Assessment for Leasing Nellis Air Force Base Land for Construction and Operation of a Solar Photovoltaic System, Clark County, Nevada

    Science.gov (United States)

    2006-08-01

    would be power consumption. Nevada Power, a division of Sierra Pacific Corporation, supplies the Las Vegas Valley with the majority of its power...from Mr. John Mendoza , Clark County Department of Air Quality and Environmental Management, follows. Mr. Rob Mrowka, Clark County Department of

  19. East-west thrusting and anomalous magnetic declinations in the Sierra Gorda, Betic Cordillera, southern Spain

    Science.gov (United States)

    Platzman, E. S.

    1994-01-01

    Structural and palaeomagnetic studies in the Sierra Gorda (Sierra de Loja), located in the External zone of the Betic Cordillera, indicate that westward-directed thrusting is not associated with significant rotations about a vertical axis. Detailed mapping and slip vector analysis show that the Sierra Gorda is a thrust complex composed of three thrust sheets. The uppermost thrust places Early Jurassic pelagic carbonates on top of Jurassic to Oligocene sediments that form a large doubly-plunging footwall syncline. The eastern limb of this syncline has been overturned and is tectonically thinned as a result of the overthrusting. Palaeomagnetic results from Mesozoic and Tertiary sediments both within and around the perimeter of the Sierra Gorda indicate that: (1) the average remanence vector of the seven Late Jurassic localities sampled within the Sierra Gorda has a direction (D = 328° and I = 38°) that is not significantly different from the expected declination for the Upper Jurassic of stable Iberia; and (2) there is no significant difference between the remanences in the two upper thrust sheets indicating that differential rotation did not occur during the initiation and displacement on the thrusts. In contrast, the one Late Jurassic site that was sampled to the west of the Sierra Gorda is rotated, like the rest of the Subbetics, 60° clockwise of the reference direction. The unrotated directions obtained in the Sierra suggest, either that it has rotated in a clockwise sense concordant with the rest of the Subbetic zone and has then been backrotated, or that it has never rotated relative to stable Iberia. In the latter, simpler hypothesis the unrotated declinations may be explained in terms of orthogonal convergence along an irregular continental margin.

  20. CPAFFC Delegation Visits Sierra Leone and Cameroon

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>At the invitation of the Sierra Leone-China Friendship Association (SLCFA) and the Ministry of Territorial Administration and Decentralization of Cameroon, a 14-member CPAFFC delegation headed by Wang Daoyu, vice chairman of the Standing Committee of the Shandong Provincial People’s Congress, paid a goodwill visit to Sierra Leone and Cameroon in early December 2005. In Sierra Leone Vice President Solomon Ekuma Berewa, President of the Parliament Edmond Cowan, and Vice Foreign Minister Mohamed Kamara, and in

  1. Aspen Characteristics - Sierra State Parks [ds379

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected within aspen stands on lands administrated by the Sierra District, California...

  2. Wetlands Inventory Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Nevada wetlands inventory is a unit of a nationwide survey undertaken by the Fish and Wildlife Service to locate and tabulate by habitat types the important...

  3. Hydrogeology of Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of hydrogeology for the State of Nevada. Consolidated rocks and unconsolidated sediments are the two major hydrogeologic units. Consolidated...

  4. Special Nevada report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-09-23

    This report is submitted to Congress by the Secretary of the Air Force, the Secretary of the Navy, and the Secretary of the Interior pursuant to Section 6 of the Military Lands Withdrawal Act of 1986. It contains an analysis and evaluation of the effects on public health and safety resulting from DOD and Department of Energy (DOE) military and defense-related uses on withdrawn public lands in the State of Nevada and in airspace overlying the State. This report describes the cumulative impacts of those activities on public and private property in Nevada and on plants, fish and wildlife, cultural, historic, scientific, recreational, wilderness and other resources of the public lands of Nevada. An analysis and evaluation of possible measures to mitigate the cumulative effects of the withdrawal of lands and the use of airspace in Nevada for defense-related purposes was conducted, and those considered practical are listed.

  5. EMPHASIS(TM)/Nevada Unstructured FEM Implementation Version 2.1.1.

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C. David; Pointon, Timothy D.; Cartwright, Keith

    2014-08-01

    EMPHASIS TM /NEVADA is the SIERRA/NEVADA toolkit implementation of portions of the EMP HASIS TM code suite. The purpose of the toolkit i m- plementation is to facilitate coupling to other physics drivers such as radi a- tion transport as well as to better manage code design, implementation, co m- plexity, and important verification and validation processes. This document describes the theory and implementation of the unstructured finite - element method solver , associated algorithms, and selected verification and valid a- tion . Acknowledgement The author would like to recognize all of the ALEGRA team members for their gracious and willing support through this initial Nevada toolkit - implementation process. Although much of the knowledge needed was gleaned from document a- tion and code context, they were always willing to consult personally on some of the less obvious issues and enhancements necessary.

  6. My Great Migration from Sierra Leone

    Science.gov (United States)

    Harvard Educational Review, 2011

    2011-01-01

    This article presents the author's personal narrative as an immigrant from Sierra Leone who has undergone so many challenges in life and ended up turning all these obstacles into opportunities. In this article, the author describes his life growing up in Sierra Leone, his first experience of the horrors of war, his life as a student, and his dream…

  7. Reading Comprehension Instruction Practices in Sierra Leone

    NARCIS (Netherlands)

    Hersbach, S.; Denessen, E.J.P.G.; Droop, W.

    2014-01-01

    Aim: In this study an attempt was made to give insight in the way reading comprehension is taught in Sierra Leone. Attention was paid to the didactical strategies and the materials used during reading comprehension instruction. Methodology: Primary school teachers in Sierra Leone (N=43) were observe

  8. Reading Comprehension Instruction Practices in Sierra Leone

    NARCIS (Netherlands)

    Hersbach, S.; Denessen, E.J.P.G.; Droop, W.

    2014-01-01

    Aim: In this study an attempt was made to give insight in the way reading comprehension is taught in Sierra Leone. Attention was paid to the didactical strategies and the materials used during reading comprehension instruction. Methodology: Primary school teachers in Sierra Leone (N=43) were

  9. Paleozoic subduction complex and Paleozoic-Mesozoic island-arc volcano-plutonic assemblages in the northern Sierra terrane

    Science.gov (United States)

    Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.

    2000-01-01

    This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.

  10. Late Quaternary MIS 6-8 shoreline features of pluvial Owens Lake, Owens Valley, eastern California

    Science.gov (United States)

    Jayko, A.S.; Bacon, S.N.

    2008-01-01

    The chronologic history of pluvial Owens Lake along the eastern Sierra Nevada in Owens Valley, California, has previously been reported for the interval of time from ca. 25 calibrated ka to the present. However, the age, distribution, and paleoclimatic context of higher-elevation shoreline features have not been formally documented. We describe the location and characteristics of wave-formed erosional and depositional features, as well as fluvial strath terraces that grade into an older shoreline of pluvial Owens Lake. These pluvial-lacustrine features are described between the Olancha area to the south and Poverty Hills area to the north, and they appear to be vertically deformed -20 ?? 4 m across the active oblique-dextral Owens Valley fault zone. They occur at elevations from 1176 to 1182 m along the lower flanks of the Inyo Mountains and Coso Range east of the fault zone to as high as -1204 m west of the fault zone. This relict shoreline, referred to as the 1180 m shoreline, lies -20-40 m higher than the previously documented Last Glacial Maximum shoreline at -1160 m, which occupied the valley during marine isotope stage 2 (MIS 2). Crosscutting relations of wave-formed platforms, notches, and sandy beach deposits, as well as strath terraces on lava flows of the Big Pine volcanic field, bracket the age of the 1180 m shoreline to the time interval between ca. 340 ?? 60 ka and ca. 130 ?? 50 ka. This interval includes marine oxygen isotope stages 8-6 (MIS 8-6), corresponding to 260-240 ka and 185-130 ka, respectively. An additional age estimate for this shoreline is provided by a cosmogenic 36Cl model age of ca. 160 ?? 32 ka on reefal tufa at ???1170 m elevation from the southeastern margin of the valley. This 36Cl model age corroborates the constraining ages based on dated lava flows and refines the lake age to the MIS 6 interval. Documentation of this larger pluvial Owens Lake offers insight to the hydrologic balance along the east side of the southern Sierra

  11. Cretin Memory Flow on Sierra

    Energy Technology Data Exchange (ETDEWEB)

    Langer, S. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scott, H. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-05

    The Cretin iCOE project has a goal of enabling the efficient generation of Non-LTE opacities for use in radiation-hydrodynamic simulation codes using the Nvidia boards on LLNL’s upcoming Sierra system. Achieving the desired level of accuracy for some simulations require the use of a vary large number of atomic configurations (a configuration includes the atomic level for all electrons and how they are coupled together). The NLTE rate matrix needs to be solved separately in each zone. Calculating NLTE opacities can consume more time than all other physics packages used in a simulation.

  12. Sierra/SM theory manual.

    Energy Technology Data Exchange (ETDEWEB)

    Crane, Nathan Karl

    2013-07-01

    Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilites come closer to production level.

  13. Status and understanding of groundwater quality in the Tahoe-Martis, Central Sierra, and Southern Sierra study units, 2006-2007--California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the Tahoe-Martis, Central Sierra, and Southern Sierra study units was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The three study units are located in the Sierra Nevada region of California in parts of Nevada, Placer, El Dorado, Madera, Tulare, and Kern Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board, in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The project was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems used for drinking water. The primary aquifer systems (hereinafter, primary aquifers) for each study unit are defined by the depth of the screened or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for municipal and community drinking-water supply. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to contamination from the surface. The assessments for the Tahoe-Martis, Central Sierra, and Southern Sierra study units were based on water-quality and ancillary data collected by the USGS from 132 wells in the three study units during 2006 and 2007 and water-quality data reported in the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of the natural and human factors affecting groundwater quality. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those

  14. Study of Reservoir Heterogencities and Structural Features Affecting Production in the Shallow Oil Zone, Eastern Elk Hills Area, California

    Energy Technology Data Exchange (ETDEWEB)

    Janice Gillespie

    2004-11-01

    Late Neogene (Plio-Pleistocene) shallow marine strata of the western Bakersfield Arch and Elk Hills produce hydrocarbons from several different reservoirs. This project focuses on the shallow marine deposits of the Gusher and Calitroleum reservoirs in the Lower Shallow Oil Zone (LSOZ). In the eastern part of the study area on the Bakersfield Arch at North and South Coles Levee field and in two wells in easternmost Elk Hills, the LSOZ reservoirs produce dry (predominantly methane) gas. In structurally higher locations in western Elk Hills, the LSOZ produces oil and associated gas. Gas analyses show that gas from the eastern LSOZ is bacterial and formed in place in the reservoirs, whereas gas associated with oil in the western part of the study area is thermogenic and migrated into the sands from deeper in the basin. Regional mapping shows that the gas-bearing LSOZ sands in the Coles Levee and easternmost Elk Hills area are sourced from the Sierra Nevada to the east whereas the oil-bearing sands in western Elk Hills appear to be sourced from the west. The eastern Elk Hills area occupied the basin depocenter, farthest from either source area. As a result, it collected mainly low-permeability offshore shale deposits. This sand-poor depocenter provides an effective barrier to the updip migration of gases from east to west. The role of small, listric normal faults as migration barriers is more ambiguous. Because our gas analyses show that the gas in the eastern LSOZ reservoirs is bacterial, it likely formed in-place near the reservoirs and did not have to migrate far. Therefore, the gas could have been generated after faulting and accumulated within the fault blocks as localized pools. However, bacterial gas is present in both the eastern AND western parts of Elk Hills in the Dry Gas Zone (DGZ) near the top of the stratigraphic section even though the measured fault displacement is greatest in this zone. Bacterial gas is not present in the west in the deeper LSOZ which

  15. SIERRA framework version 4 : solver services.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alan B.

    2005-02-01

    Several SIERRA applications make use of third-party libraries to solve systems of linear and nonlinear equations, and to solve eigenproblems. The classes and interfaces in the SIERRA framework that provide linear system assembly services and access to solver libraries are collectively referred to as solver services. This paper provides an overview of SIERRA's solver services including the design goals that drove the development, and relationships and interactions among the various classes. The process of assembling and manipulating linear systems will be described, as well as access to solution methods and other operations.

  16. Geothermal energy in Nevada

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

  17. Sierra Leone Journal of Biomedical Research

    African Journals Online (AJOL)

    MHRL

    (A publication of the College of Medicine and Allied Health Sciences, University of Sierra Leone). Original Article ... aspects and advocated better training of ..... 2000). Their career choice ... care and its determinants in north-central Nigeria.

  18. Sierra Leone Journal of Biomedical Research

    African Journals Online (AJOL)

    The Sierra Leone Journal of Biomedical Research publishes papers in all fields of ... and Allied Health Sciences including Basic Medical Sciences, Clinical Sciences, Dental Sciences, Behavioural Sciences, Biomedical Engineering, Molecular ...

  19. Aspen Delineation - Sierra State Parks [ds380

    Data.gov (United States)

    California Department of Resources — The database represents delineations of aspen stands associated with stand assessment data (SIERRA_SP_PTS) collected in aspen stands on lands administered by the...

  20. Running Parallel Discrete Event Simulators on Sierra

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jefferson, D. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-03

    In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.

  1. Cholera epidemic threatens Sierra Leone.

    Science.gov (United States)

    Dyer, O

    1995-07-08

    Sierra Leone faces the threat of a major epidemic of cholera with the onset of the rainy season, according to the World Health Organization (WHO). The situation is particularly grave for the two million people displaced by the country's civil war. Already 1709 cases of cholera have been registered in Freetown, with 57 deaths. Freetown's population has doubled since the start of the war in 1991 with 750,000 refugees camping out in the town. The insurgent Revolutionary United Front is now within 32 km of the capital. Provinces are cut off from the capital, medical supplies are scarce. Doctors and aid workers are forced to rely on a private helicopter service for personal transport. As many as 10,000 people were affected by the disease last year. WHO experts predict that pneumonia is likely to claim the lives of many children, and a highly drug resistant strain of Plasmodium falciparum malaria is also looming. The greatest problems are the lack of safe drinking water and the attendant risks of cholera and dysentery. At one site in Freetown the 6000 refugees have to fetch water from a well and have no latrines. As a result there have been 277 cases of cholera and 2 deaths already among that group. The health department has set up five centers to treat cholera in Freetown and is organizing mobile clinics. WHO's Sierra Leone office is assisting the government mobile health teams, which provide free primary care to displaced people. Medicines and vaccines, however, are lacking. Many of the staff of the 13 district health authorities have been displaced to Freetown. Aid agencies such as Medecins Sans Frontieres and Oxfam have stepped into the role in many districts. Ironically, one of the Revolutionary United Front's main demands is for a free national health service.

  2. Crustal structure from San Francisco, California, to Eureka, Nevada, from seismic-refraction measurements

    Science.gov (United States)

    Eaton, Jerry P.

    1963-01-01

    Seismic-refraction measurements from chemical explosions near San Francisco, California, and Fallon and Eureka, Nevada, were made along a line extending nearly 700 km inland from San Francisco across the Coast Ranges, Great Valley, Sierra Nevada, and Basin and Range Province. The velocity of Pg in the Basin and Range Province was found to be 6.0 km/sec. Between Fallon and Eureka the velocity of Pn is 7.8 km/sec, and just east of the Sierra Nevada it is about 7.9 km/sec. Two prominent phases closely following the first arrival between 50 and 250 km from the source in the Basin and Range Province were interpreted as reflections from an intermediate layer and from the Mohorovicic discontinuity. The velocity of P in the possible intermediate layer, deduced from the reflected phases be cause the refracted wave expected from this layer is nowhere a first arrival, seems to be 6.6 km/sec at the top of the layer and probably increases with depth.

  3. Stabilization Lessons Learned from Sierra Leone

    Science.gov (United States)

    2013-12-01

    Reduction Project (0704–0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE December 2013 3. REPORT TYPE AND DATES...Ibid. 48 Accord Sierra Leone Project , Paying the Price: the Sierra Leone Peace Process, (Accord issue 9, 2000), London, 2000. http://www.c-r.org...continued to grow as ECOMOG was replaced by UNAMSIL at Mange and Kambia and UNAMSIL pushed out to Kabala in the North, Joru near the Liberian border

  4. Late Miocene extension partitioning in the eastern Betics: from W- to E-directed extension between the Sorbas and Vera basins (SE Spain).

    Science.gov (United States)

    Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, Jose Miguel; Azañon, Jose Miguel

    2014-05-01

    Late Miocene westward-directed extension in the Betics produced elongated core-complexes like Sierra Nevada and the Sierra de Filabres, tilted-block domains and associated basins. This extension represents the superficial manifestation of the rupture of the Tethyan slab and associated edge delamination along a lithospheric transform fault beneath the northern branch of the Gibraltar Arc orogenic system. However, crustal thinning at the eastern Betics occurs progressively towards the east suggesting an eastward-directed extension, probably related to the late Miocene opening of the Algero-Balearic basin. In order to define the kinematics and timing of such a heterogeneous extension at the eastern Betics we have carefully mapped a key area at the transition between the Sorbas and Vera basins. Field data indicate that extension in the area started at the southern margin of the Vera basin during the Serravallian (13.8 Ma) and continued until the Tortonian (approximately 8 Ma). This extension was characterized by a set of NE- to E-directed normal faults to the east, in the Vera basin, and a set of SW-directed normal faults to the west, towards the Sorbas basin. This opposite-directed extension is segmented by E-W to WNW-ESE strike-slip faults like the North Cabrera dextral transfer fault that accommodates NE- to E-directed extension to the north and SW-directed extension to the south. This structure resulted in westward tilted blocks that lead to Serravallian-Tortonian depocenters deepening towards the east at the Vera basin along the northern side of Sierra Cabrera. Meanwhile, at the western termination of Sierra Cabrera, westward-directed extension migrated SW-ward forming the Sorbas basin during the Tortonian (approximately 9-7.24 Ma). This extension was characterized by a listric fan of SW-directed normal faults highly segmented by E-W to NE-SW transfer. This extensional system produced tiled-blocks defining a Tortonian depocenter at the eastern margin of the Sorbas

  5. Evaluation of lineament analysis as an exploration technique for geothermal energy, western and central Nevada. Final report, June 1976--October 1978

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, D.T.; Bell, E.J.; Roquemore, G.R.

    1978-10-01

    Lineament analysis as an exploration technique for geothermal energy using multi-scale, multi-format imagery and geophysical data is investigated and evaluated. Two areas in Nevada, each having distinct differences in structural style were studied. One area, which encompasses a portion of the Battle Mountain Heat Flow High, was studied to determine the relationship between regional and local structural controls and geothermal activity. Four geothermal sites within this area (Winnemucca AMS) were selected and studied in detail. These sites include: 1) Leach Hot Springs, 2) Kyle Hot Springs, 3) Beowawe geothermal area and Buffalo Valley Hot Springs. A second area encompassed by the Reno AMS Sheet was selected for further study in a region dominated by three diverse tectonic styles; these are: 1) the Sierra Nevada Front, 2) the Walker Lane, and 3) basin-and-range structures. Geothermal sites analyzed at site specific scales within the Reno AMS Sheet included Steamboat Hot Springs in the Sierra Nevada Front subprovince, Dixie Valley Hot Springs located in typical basin-and-range terrain and the Brady's-Desert Peak area which is marginal to the Walker Lane. Data products employed included LANDSAT imagery, SKYLAB photography, gravity, and aeromagnetic maps. Results of this investigation indicate that in north-central Nevada the major sites of geothermal activity are associated with northeast trending structures related to the Midas Trench lineament and that the most viable geothermal area (Beowawe is located at the intersection of the northeast trend of the Oregon-Nevada Lineament.

  6. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, Daniel F. [Univ. of Texas, Austin, TX (United States)

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportable template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.

  7. Nevada Underserved Science Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Nicole Rourke; Jason Marcks

    2004-07-06

    Nevada Underserved Science Education Program (NUSEP) is a project to examine the effect of implementing new and innovative Earth and space science education curriculum in Nevada schools. The project provided professional development opportunities and educational materials for teachers participating in the program.

  8. Geology and mineral deposits of Churchill County, Nevada

    Science.gov (United States)

    Willden, Ronald; Speed, Robert C.

    1974-01-01

    Churchill County, in west-central Nevada, is an area of varied topography and geology that has had a rather small total mineral production. The western part of the county is dominated by the broad low valley of the Carson Sink, which is underlain by deposits of Lake Lahontan. The bordering mountain ranges to the west and south are of low relief and underlain largely by Tertiary volcanic and sedimentary units. Pre-Tertiary rocks are extensively exposed east of the Carson Sink in the Stillwater Range, Clan Alpine Mountains, Augusta Mountains, and New Pass Mountains. The eastern valleys are underlain by Quaternary alluvial and lacustrine deposits contemporaneous with the western deposits of Lake Lahontan. The eastern mountain ranges are more rugged than the western ranges and have higher relief; the eastern valleys are generally narrower.

  9. Miracle Boy of Sierra Vista

    Institute of Scientific and Technical Information of China (English)

    Deborah; Morris; 郗莱仁

    1998-01-01

    Sierra Vista是美国亚利桑那州的一个偏僻的小镇。1990年11月12日,这里发生了一桩震惊全美的故事。 笔者的一位友人读罢此文,认为这是让人心跳的一场“劫后余生”。 文章的开头,展示了一幅温馨的家庭生活图: 11月12日这一天,正值美国的Veterans Day(退伍军人节),学校放假。Amanda,两个小孩的母亲,决定陪同她的朋友Lyne Jackson去Tucson,而她的两个小孩,Nicole,12岁,Justin,8岁,暂时由Lyne的父母照看。Nicole,Justin和Lyne的9岁的小孩Keith等一起在外面戏耍。 “劫难”的到来总是那么猝不及防: Suddenly, Keith burst inside. "Grandma, Justin’s hurt!" Keith spoke in a frightened, breathless voice,"Hurry!" 当祖母和Keith赶到出事现场时,见到的是一场惨祸; Justin was sprawled (四肢摊开躺着) on his back on the ground, his handsclutching(抓住) at a 5/8-inch-thick threaded steel rod(螺纹钢棒) buried deep in his stomach! 惨祸是如何发生的呢?原来: Justin and Keith had scaled(攀上) the magnolia (木兰树) ’s branches, then triedto leap onto the roof of the house. But Justin slipped on the shingles (屋顶板)and slidoff feet-first, plummeting (骤然跌下) 12 feet onto the

  10. The Special Court for Sierra Leone

    DEFF Research Database (Denmark)

    Damgaard, Ciara Therése

    2004-01-01

    The focus of this article is the Special Court for Sierra Leone and the extent to which it can be said that the Special Court has already challenged, or will, in the future, challenge the tradition of impunity for gender-based crimes. In this regard, an analysis is undertaken of the Special Court......'s Statute, Rules of Procedure and Evidence and practice to date, in order to determine its treatment of gender-based crimes and whether it can be said that the Special Court for Sierra Leone challenges the tradition of impunity for gender-based crimes. Udgivelsesdato: december 2004...

  11. Nevada GPW Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-10-01

    Nevada holds the largest amount of untapped geothermal resources in the U.S., with apotential of 2,500 to 3,700 megawatts of electricity (MWe). (1 MWe powers approximately 1,000 homes.) Wells and springs exist over the entire state, offering extensive opportunities for development of low- and high-temperature resources for direct use or power generation. As U.S. Senator Harry Reid said at the inauguration of GeoPowering the West (see reverse), "This modest investment by the Federal government...

  12. A new Lower Triassic ichthyopterygian assemblage from Fossil Hill, Nevada

    Directory of Open Access Journals (Sweden)

    Neil P. Kelley

    2016-01-01

    Full Text Available We report a new ichthyopterygian assemblage from Lower Triassic horizons of the Prida Formation at Fossil Hill in central Nevada. Although fragmentary, the specimens collected so far document a diverse fauna. One partial jaw exhibits isodont dentition with blunt tipped, mesiodistally compressed crowns and striated enamel. These features are shared with the Early Triassic genus Utatsusaurus known from coeval deposits in Japan and British Columbia. An additional specimen exhibits a different dentition characterized by relatively small, rounded posterior teeth resembling other Early Triassic ichthyopterygians, particularly Grippia. This Nevada assemblage marks a southward latitudinal extension for Early Triassic ichthyopterygians along the eastern margin of Panthalassa and indicates repeated trans-hemispheric dispersal events in Early Triassic ichthyopterygians.

  13. NATURAL RESOURCE MANAGEMENT IN THE SIERRA OF SONORA UNDER THE SCHEME UMAFOR. CASE STUDY: SIERRA ALTA AND SIERRA LA MADERA

    Directory of Open Access Journals (Sweden)

    Hugo Silva-Kurumiya

    2011-05-01

    Full Text Available This paper shows the use and value of natural resources from a social, sustainable and legal perspective, under the scheme of Sustainable Forest Management Units (UMAFOR by its Spanish acronym. Two participatory workshops were carried out in March 2010, one in UMAFOR Sierra La Madera and another in UMAFOR Sierra Alta, belonging to the Sierra de Sonora. An adaptation of “Problems, Causes and Consequences” of Ramírez-García (2004 methodology was used to discuss issues such as conservation, productive activities, society, laws, research and support programs. The objective was to analyze challenges and opportunities in the Sierra de Sonora under this management scheme. The ratting of natural resource for inhabitant and producers was documented based in ecosystems type and its value for use. Economic value was the most important for productive and non productive use; however, there are opportunities to transit from traditional to sustainable activities. Local producers are interested in linking whit research centers and consultants to get support for diversification of productive activities. It is possible to have changes according to sustainable development; UMAFOR is an alternative to achieve those changes.

  14. Diurnal raptors in the fragmented rain forest of the Sierra Imataca, Venezuela

    Science.gov (United States)

    Alvarez, E.; Ellis, D.H.; Smith, D.G.; LaRue, C.T.; Bird, David M.; Varland, Daniel E.; Negro, Juan Jose

    1996-01-01

    The rain forest of the Sierra Imataca in eastern Venezuela has been subjected to extensive deforestation for pastures and agricultural settlements. In the last decade the opening of access roads combined with intensified logging and mining activities have fragmented a significant portion of the remaining forest. We noted local distribution and habitat use for 42 species of diurnal raptors observed in affected areas in this region. We observed some raptors considered as forest interior species and other open country species foraging and roosting in man-made openings inside the forest.

  15. Nevada Transportatoion Options Study

    Energy Technology Data Exchange (ETDEWEB)

    P. GEHNER; E.M. WEAVER; L. FOSSUM

    2006-05-25

    This study performs a cost and schedule analysis of three Nevada Transportation options that support waste receipt at the repository. Based on the U.S. Department of Energy preference for rail transportation in Nevada (given in the Final Environmental Impact Statement), it has been assumed that a branch rail line would be constructed to support waste receipt at the repository. However, due to potential funding constraints, it is uncertain when rail will be available. The three Nevada Transportation options have been developed to meet a varying degree of requirements for transportation and to provide cost variations used in meeting the funding constraints given in the Technical Direction Letter guidelines for this study. The options include combinations of legal-weight truck, heavy-haul truck, and rail. Option 1 uses a branch rail line that would support initial waste receipt at the repository in 2010. Rail transportation would be the primary mode, supplemented by legal weight trucks. This option provides the highest level of confidence in cost and schedule, lowest public visibility, greatest public acceptability, lowest public dose, and is the recommended option for support of waste receipt. The completion of rail by 2010 will require spending approximately $800 million prior to 2010. Option 2 uses a phased rail approach to address a constrained funding scenario. To meet funding constraints, Option 2 uses a phased approach to delay high cost activities (final design and construction) until after initial waste receipt in 2010. By doing this, approximately 95 percent of the cost associated with completion of a branch rail line is deferred until after 2010. To support waste receipt until a branch rail line is constructed in Nevada, additional legal-weight truck shipments and heavy-haul truck shipments (on a limited basis for naval spent nuclear fuel) would be used to meet the same initial waste receipt rates as in Option 1. Use of heavy-haul shipments in the absence

  16. Particularizing Universal Education in Postcolonial Sierra Leone

    Science.gov (United States)

    Pai, Grace

    2013-01-01

    This paper presents a vertical case study of the history of universalizing education in postcolonial Sierra Leone from the early 1950s to 1990 to highlight how there has never been a universal conception of universal education. In order to unite a nation behind a universal ideal of schooling, education needed to be adapted to different…

  17. The Cora: People of the Sierra Madre.

    Science.gov (United States)

    Lane, Sarah; And Others

    This text explores an isolated and indigenous people who live in the Sierra Madre Occidental in Mexico. Isolation has allowed the Cora Indians to maintain their traditional customs to a much greater extent than many other groups of Native Americans. The historical and geographical contexts of the Cora are presented in this curriculum resource.…

  18. Nevada`s role in the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Vaeth, T. [Dept. of Energy, Las Vegas, NV (United States)

    1997-12-31

    The paper discusses the promise of hydrogen and its possible applications, barriers to its development, the role that the Nevada Test Site could play if it were made more available to public and private institutions for research, and the ``clean city`` concept being developed jointly with California, Utah, and Nevada. This concept would create a ``clean corridor`` along the route from Salt Lake City through Reno to Sacramento, Los Angeles, Las Vegas, and back to Salt Lake City.

  19. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static.

  20. Nevada Thickness of Cenozoic Deposits

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study of gravity data from Nevada is part of a statewide analysis of mineral resources. The main objective of the gravity study were: 1) to infer the structure...

  1. Redhead production areas : Northwestern Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a survey of redhead production areas in northwestern Nevada. Breeding pair summaries are also provided for a number waterfowl species.

  2. Sierran affinity (?) metasedimentary rocks beneath the Coast Range Ophiolite of the Sierra Azul block east of the San Andreas fault, Santa Clara County, CA

    Science.gov (United States)

    McLaughlin, R. J.; Dumitru, T. A.; Ernst, W. G.

    2011-12-01

    The Loma Prieta slate (LPS) is a 200 Ma are generally similar in the LPS and MFS, with minor age groupings at roughly 950-1450 and 1750-2100 Ma. As with the MFS, the LPS data suggest a major influence from sources in the Sierra Nevada arc, with minimal influences from sources in the Klamath Mountains and Nevada miogeocline. Available detrital zircon data require Cretaceous or younger maximum depositional ages for metaclastic terranes of the Franciscan Complex. The LPS detrital zircon data thus, are in reasonable agreement with the MFS data and permit interpretation of the LPS as displaced northward by the San Andreas and Hayward-Calaveras faults from the southwestern Great Valley margin.

  3. Libraries in Nevada: MedlinePlus

    Science.gov (United States)

    ... this page: https://medlineplus.gov/libraries/nevada.html Libraries in Nevada To use the sharing features on ... page, please enable JavaScript. Elko Great Basin College Library 1500 College Parkway Elko, NV 89801 775-753- ...

  4. Transverse fold evolution in the External Sierra, southern Pyrenees, Spain

    Science.gov (United States)

    Anastasio, David J.; Holl, James E.

    2001-02-01

    Fault-slip data are used to reconstruct varying tectonic regimes associated with transverse fold development along the eastern and southern margins of the Jaca basin, southern Pyrenees, Spain. The Spanish Pyrenean foreland consists of thrust sheets and leading-edge décollement folds which developed within piggyback basins. Guara Formation limestones on the margins of the Jaca basin were deposited synchronously with deformation and are exposed in the External Sierra. Within the transverse folds, principal shortening axes determined from P and T dihedra plots of fault-slip data show a shift from steep shortening in stratigraphically older beds to NNE-SSW horizontal shortening in younger beds. Older strata are characterized by extensional faults interpreted to result from halotectonic (salt tectonics) deformation, whereas younger strata are characterized by contraction and strike-slip faults interpreted to result from thrust sheet emplacement. The interpretation of the timing for the shortening axes in the younger strata is supported by the observation that these axes are parallel to shortening axes determined from finite strain analysis, calcite twins, and regional thrusting directions determined from fault-related folds and slickenlines. This study shows that fault population analysis in syntectonic strata provides an opportunity to constrain kinematic evolution during orogeny.

  5. Archaeological obsidian from La Sierra Gorda Mexico, by PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Juarez-Cossio, D.; Terreros, E.; Quiroz-Moreno, J.; Romero-Sanchez, S. [Instituto Nacional de Antropologia e Historia, Mexico. Seminario 8, Col. Centro. 06060 Mexico, DF (Mexico); Calligaro, T.F. [Centre de Recherche et de Restauration des Musees de France, UMR 171, Palais du Louvre-Porte des Lions, 14, Quai Francois Mitterrand, 75001 Paris (France); Tenorio, D. [Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, 11801 Mexico, DF (Mexico)], E-mail: dolores.tenorio@inin.gob.mx; Jimenez-Reyes, M. [Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, 11801 Mexico, DF (Mexico); Los Rios, M. de [Instituto Nacional de Antropologia e Historia, Mexico. Seminario 8, Col. Centro. 06060 Mexico, DF (Mexico)

    2009-04-15

    The chemical compositions of 42 obsidian pre-Hispanic artifacts from Tancama and Purisima, both archaeological sites of La Sierra Gorda Valleys, Mexico, were analyzed by PIXE technique. These obsidians came from four sources: Sierra de Pachuca Hidalgo, Paraiso Queretaro, Ucareo Michoacan and mainly from Zacualtipan/Metzquititlan Hidalgo. According to archaeological evidences, La Sierra Gorda valleys participated in commercial exchange with other regional sites, from Classic to Post-classic periods (A.D. 300-1500)

  6. SIERRA Toolkit v. 2.0

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-14

    The SIERRA Toolkit is a collection of libraries to facilitate the development of parallel engineering analysis applications. These libraries supply basic core services that an engineering application may need such as a parallel distributed and dynamic mesh database (for unstructured meshes), mechanics algorithm support (parallel infrastructure only), interfaces to parallel solvers, parallel mesh and data I/O, and various utilities (timers, diagnostic tools, etc.)

  7. Environmental overview of geothermal development: northern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Slemmons, D.B.; Stroh, J.M.; Whitney, R.A. (eds.)

    1980-08-01

    Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

  8. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  9. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  10. EASTERN UGANDA

    African Journals Online (AJOL)

    EVALUATION OF SELECTED ELITE POTATO GENOTYPES IN. EASTERN ... Significant

  11. La estructura ándica de las Sierras Pampeanas basada en los mecanismos focales de terremotos en su región noroeste The Andean structure of the Sierras Pampeanas based on earthquake focal mechanisms in their northwestern region

    Directory of Open Access Journals (Sweden)

    Patricia Alvarado

    2010-12-01

    their focal mechanisms, depths and seismotectonic features. The magnitude Mw 5.8 earthquake on 28 May 2002, located in the eastern flank of the sierra de Velasco and the Mw 6.2 earthquake on 7 September 2004, with epicenter in the southwestern part of the sierra de Ambato, have shallow focal depths of 10 and 8 km, respectively. These results combined with the historical seismicity of the region allow us to estimate the deep structure of the Sierras Pampeanas in the study region. The seismic analyses together with interpretations of the surface structure and previous neotectonic studies ruled out extensional or strike slip deformation as the main responsible mechanism of the Present structure of this sector of the sierras de Ambato and Velasco in the northwestern Sierras Pampeanas. The comparison between the Nazca-South America plate convergence orientation as well as GPS velocities in the upper plate with the summation of the seismic moment tensor for the largest seismic energy released by crustal earthquakes of this region in the last 30 years, shows a clockwise rotation of 50º of the average P-axis orientation from the convergence orientation to the northeast suggesting important strain partition. This partition is controlled by the Eopaleozoic basement fabric, which has guided the orientation and vergence of the Andean faults.

  12. Structure of Sierra Blanca (Alpujarride Complex, west of the Betic Cordillera

    Directory of Open Access Journals (Sweden)

    Andreo, B.

    1995-04-01

    Full Text Available Sierra Blanca, situated in the SW of Málaga, forms part of the Blanca unit, belonging to the Alpujarride Complex of the Betic Cordillera. Its lithologic sequences are made up of a group of migmatites, gneisses and schists and an upper formation of marbles (white dolomitic and the bottom and blue calcareous towards the top, linked with a transitional contact. The structure of Sierra Blanca is comprised of folds, generally isoclinal, with reversed limbs and with important tectonic transpositions, the direction of which is approximately E-W in the eastern area and N-S and E-W in the West. In both areas the folds present opposing vergences, consistently towards the interior of the sierra. The origin of these structures is explained with a model of westerly movements of the Blanca unit, in relation to the Los Reales unit, with the formation of frontal and lateral folds. In its advancement, the western part of Sierra Blanca underwent an important anti-clockwise rotation responsible for the co-existence of folds in N-S and E-W directions. These structures occurred under ductile conditions, owing to the presence of important overthrusting peridotitic masses of the Los Reales unit. This model of westerly displacement is inserted in the process undergone by the Betic-Rif Internal Zones (with Blanca and Los Reales units included which occurred at the end of the Oligocene-Early Miocene when the Gibraltar arch began to be formed.Sierra Blanca, situada al SW de Málaga, forma parte de la unidad de Blanca que pertenece al complejo Alpujárride de la Cordillera Bética. Su secuencia litológica está compuesta por un conjunto inferior de migmatitas, gneises y esquistos, y por una formación superior de mármoles, blancos dolomíticos en la base y mármoles calizos azules hacia la parte superior, entre los que existe un tránsito gradual. La estructura de Sierra Blanca está formada por pliegues, generalmente isoclinales, con flancos invertidos que muestran

  13. Experimental Repatriation of Mountain Yellow-legged Frogs (Rana muscosa) in the Sierra Nevada of California

    Science.gov (United States)

    Fellers, Gary M.; Bradford, David F.; Pratt, David; Wood, Leslie

    2008-01-01

    In the late 1970s, Rana muscosa (mountain yellow-legged frog) was common in the Tableland area of Sequoia National Park, California where it was possible to find hundreds of tadpoles and adults around many of the ponds and lakes. Surveys in 1993-1995 demonstrated that R. muscosa was absent from more than half of all suitable habitat within the park, including the Tableland area. At that same time, R. muscosa was still common at Sixty Lake Basin, Kings Canyon National Park, 30 km to the northeast. To evaluate the potential causes for the extirpation, we repatriated R. muscosa eggs, tadpoles, subadults, and adult frogs from Sixty Lake Basin to four sites in the Tableland area in 1994 and 1995. We subsequently surveyed each release site and the surrounding area 2 - 3 times per week in 1994-1995, and intermittently in 1996-1997, to monitor the survival of all life history stages, and to detect dispersal of adults and subadults. We also monitored predation, water quality, weather, and water temperature. Our techniques for capturing, holding, transporting, and releasing R. muscosa were refined during the study, and during 1995 resulted in high initial survival rates of all life history stages. Adult frogs were anaesthetized, weighed, measured, tagged, and held in plastic boxes with wet paper towels. Tadpoles were collected and held in fiberglass screen cages set in the water at the edge of a pond. This resulted in relatively natural conditions with less crowding and good water circulation. Frogs, tadpoles, and eggs were placed in Ziploc bags for transport to the Tableland by helicopter. Short-term survival of tadpoles, subadults, and adults was high at all four release sites, tadpoles reached metamorphosis, and adult frogs were still present. However, we detected no evidence of reproduction at three sites (e.g., no new eggs or small tadpoles) and nearly all life history stages disappeared within 12 months. At the fourth site, there was limited reproduction, but it was insufficient to maintain a population. It appears that the causal factors for the demise of R. muscosa in the Tableland during the 1970s were still operating in the 1990s or that a new limiting factor has developed. Dispersal, weather, water quality, and predation do not appear to be causative agents; since fish have never been present in the portions of the watershed where we were working, they were not a factor. Observations and data are consistent with the hypotheses that chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis, and/or exposure to airborne pesticides caused both declines. However, at the time of our study, chytridiomycosis had not been described and the potentially significant role of contaminants was largely undocumented.

  14. Effects of copper on composition species of periphyton in a Sierra Nevada, California, stream.

    Science.gov (United States)

    Leland, H.V.; Carter, J.L.

    1984-01-01

    An oligotrophic stream was continuously dosed for 1 yr at 2.5, 5 and 10 mu g l-1 CuT; c12, 25 and 50 ng l-1 Cu2+. The numerically most abundant taxa were Bacillariophyceae (Achnanthes minutissima, Cocconeis placentula, Cymbella microcephala, C. sinuata, Fragilaria construens, F. crotonensis, Navicula spp., Synedra acus and S. rumpens), and the Cyanophyta Lyngbya spp., a co-dominant during spring and summer. Population densities of Lyngbya spp. were markedly reduced at all Cu concentrations. Population densities of the principal Chlorophyta (Spirogyra spp., Cladophora spp.) and the diatom Amphipleura pellucida were reduced at 5 mu g l-1 CuT. Of the 22 most abundant taxa, 16 were reduced in abundance by continuous exposure to 10 mu g l-1 CuT. There was no commensurate reduction in standing crop. Achnanthes minutissima was the primary replacement species. Other taxa more abundant at 5 mu g l-1 CuT than in the control were Ceratoneis arcus, Cocconeis placentula, Navicula spp. and Synedra rumpens. Only A. minutissima and Calothrix spp. were more abundant at 10 mu g l-1 than in the control. Three resemblance measures (Canberra metric, Bray-Curtis and Dice) and diversity (Brillouin's) were evaluated for detecting differences in species composition among stream sections. The Canberra metric, an index sensitive to proportional rather than absolute differences, was the most informative. -from Authors

  15. ANNUAL OZONE DEPOSITION TO A PONDEROSA PINE PLANTATION IN THE SIERRA NEVADA MOUNTAINS. (R826601)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Accumulation of pesticides in pacific chorus frogs (Pseudacris regilla) from California's Sierra Nevada Mountains, USA

    Science.gov (United States)

    Smalling, Kelly L.; Fellers, Gary M.; Kleeman, Patrick M.; Kuivila, Kathryn

    2013-01-01

    Pesticides are receiving increasing attention as potential causes of amphibian declines, acting singly or in combination with other stressors, but limited information is available on the accumulation of current-use pesticides in tissue. The authors examined potential exposure and accumulation of currently used pesticides in pond-breeding frogs (Pseudacris regilla) collected from 7 high elevations sites in northern California. All sites sampled are located downwind of California's highly agricultural Central Valley and receive inputs of pesticides through precipitation and/or dry deposition. Whole frog tissue, water, and sediment were analyzed for more than 90 current-use pesticides and pesticide degradates using gas chromatography–mass spectrometry. Two fungicides, pyraclostrobin and tebuconazole, and one herbicide, simazine, were the most frequently detected pesticides in tissue samples. Median pesticide concentration ranged from 13 µg/kg to 235 µg/kg wet weight. Tebuconazole and pyraclostrobin were the only 2 compounds observed frequently in frog tissue and sediment. Significant spatial differences in tissue concentration were observed, which corresponded to pesticide use in the upwind counties. Data generated indicated that amphibians residing in remote locations are exposed to and capable of accumulating current-use pest