WorldWideScience

Sample records for east river pipe

  1. 77 FR 10960 - Security Zone, East River and Bronx Kill; Randalls and Wards Islands, NY

    Science.gov (United States)

    2012-02-24

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA87 Security Zone, East River and Bronx Kill; Randalls and... establishing a temporary security zone on the waters of the East River and Bronx Kill, in the vicinity of... is intended to restrict vessels from a portion of the East River and Bronx Kill when public officials...

  2. Foraging ecology of least terns and piping plovers nesting on Central Platte River sandpits and sandbars

    Science.gov (United States)

    Sherfy, Mark H.; Anteau, Michael J.; Shaffer, Terry L.; Sovada, Marsha A.; Stucker, Jennifer H.

    2012-01-01

    Federally listed least terns (Sternula antillarum) and piping plovers (Charadrius melodus) nest on riverine sandbars on many major midcontinent river systems. On the Central Platte River, availability of sandbar habitat is limited, and both species nest on excavated sandpits in the river's floodplain. However, the extent to which sandpit-nesting birds use riverine habitats for foraging is unknown. We evaluated use of foraging habitats by least terns and piping plovers by collecting data on movements, behavior, foraging habitat, and productivity. We radiomarked 16 piping plovers and 23 least terns in 2009-2010 and monitored their movements using a network of fixed telemetry dataloggers. Piping plovers were detected primarily by the datalogger located in their nesting sandpit, whereas least terns were more frequently detected on dataloggers outside of the nesting sandpit. Telemetry data and behavioral observations showed that least terns tended to concentrate at the Kearney Canal Diversion Gates, where forage fish were apparently readily available. Fish sampling data suggested that forage fish were more abundant in riverine than in sandpit habitats, and behavioral observations showed that least terns foraged more frequently in riverine than in sandpit habitats. Piping plovers tended to forage in wet substrates along sandpit shorelines, but also used dry substrates and sandpit interior habitats. The greater mobility of least terns makes a wider range of potential foraging habitats available during brood rearing, making them able to exploit concentrations of fish outside the nesting colony. Thus, our data suggest that different spatial scales should be considered in managing nesting and foraging habitat complexes for piping plovers and least terns.

  3. Bacterial community radial-spatial distribution in biofilms along pipe wall in chlorinated drinking water distribution system of East China.

    Science.gov (United States)

    Liu, Jingqing; Ren, Hongxing; Ye, Xianbei; Wang, Wei; Liu, Yan; Lou, Liping; Cheng, Dongqing; He, Xiaofang; Zhou, Xiaoyan; Qiu, Shangde; Fu, Liusong; Hu, Baolan

    2017-01-01

    Biofilms in the pipe wall may lead to water quality deterioration and biological instability in drinking water distribution systems (DWDSs). In this study, bacterial community radial-spatial distribution in biofilms along the pipe wall in a chlorinated DWDS of East China was investigated. Three pipes of large diameter (300, 600, and 600 mm) were sampled in this DWDS, including a ductile cast iron pipe (DCIP) with pipe age of 11 years and two gray cast iron pipes (GCIP) with pipe ages of 17 and 19 years, and biofilms in the upper, middle, and lower parts of each pipe wall were collected. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the biofilm density and total solid (TS) and volatile solid (VS) contents increased gradually from the top to the bottom along the pipe wall. Microorganisms were concentrated in the upper and lower parts of the pipe wall, together accounting for more than 80 % of the total biomass in the biofilms. The bacterial communities in biofilms were significantly different in different areas of the pipe wall and had no strong interaction. Compared with the upper and lower parts of the pipe wall, the bacterial community in the middle of the pipe wall was distributed evenly and had the highest diversity. The 16S rRNA genes of various possible pathogens, including Escherichia coli, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Salmonella enterica, were detected in the biofilms, and the abundances of these possible pathogens were highest in the middle of the pipe wall among three areas. The detachment of the biofilms is the main reason for the deterioration of the water quality in DWDSs. The results of this study suggest that the biofilms in the middle of the pipe wall have highly potential risk for drinking water safety, which provides new ideas for the study of the microbial ecology in

  4. Magnetic properties of Surabaya river sediments, East Java, Indonesia

    Science.gov (United States)

    Mariyanto, Bijaksana, Satria

    2017-07-01

    Surabaya river is one of urban rivers in East Java Province, Indonesia that is a part of Brantas river that flows in four urban and industrial cities of Mojokerto, Gresik, Sidoarjo, and Surabaya. The urban populations and industries along the river pose serious threat to the river mainly for their anthropogenic pollutants. This study aims to characterize the magnetic properties of sediments in various locations along Surabaya river and correlate these magnetic properties to the level of pollution along the river. Samples are taken and measured through a series of magnetic measurements. The mass-specific magnetic susceptibility of sediments ranges from 259.4 to 1134.8 × 10-8 m3kg-1. The magnetic minerals are predominantly PSD to MD magnetite with the grain size range from 6 to 14 μm. The mass-specific magnetic susceptibility tends to decreases downstream as accumulation of magnetic minerals in sediments is affected not only by the amount of household and industrial wastes but also by sediment dredging, construction of embankments, and extensive erosion arround the river. Sediments located in the industrial zone on the upstream area tend to have higher mass-specific magnetic susceptibility than in the non-industrial zones on the downstream area.

  5. Concentrations of elements in eggs of least terns and piping plovers from the Missouri River, North Dakota

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Selenium concentrations were slightly elevated in unsuccessful eggs of interior least terns and piping plovers from nesting areas along the Missouri River in North...

  6. Accuracy of the Missouri River Least Tern and Piping Plover Monitoring Program: considerations for the future

    Science.gov (United States)

    Shaffer, Terry L.; Sherfy, Mark H.; Anteau, Michael J.; Stucker, Jennifer H.; Sovada, Marsha A.; Roche, Erin A.; Wiltermuth, Mark T.; Buhl, Thomas K.; Dovichin, Colin M.

    2013-01-01

    The upper Missouri River system provides nesting and foraging habitat for federally endangered least terns (Sternula antillarum; hereafter “terns”) and threatened piping plovers (Charadrius melodus; hereafter “plovers”). These species are the subject of substantial management interest on the Missouri River for several reasons. First, ecosystem recovery is a goal for management agencies that seek to maintain or restore natural functions and native biological communities for the Missouri River system. Terns and plovers are recognized as important ecosystem components that are linked with the river’s ecological functions. Second, although both species breed beyond the Missouri River system, the Missouri River is one of the principal breeding areas in the Northern Great Plains; thus, the river system is a focal area for recovery actions targeted at regional population goals. Third, a Biological Opinion for Missouri River operations established annual productivity goals for terns and plovers, and the recovery plan for each species established annual population goals. Meeting these goals is a key motivation in management decision making and implementation with regard to both species. A myriad of conservation and management interests necessitate understanding numbers, distribution, and productivity of terns and plovers on the Missouri River system. To this end, a Tern and Plover Monitoring Program (TPMP) was implemented by the U.S. Army Corps of Engineers (hereafter “Corps”) in 1986, and has since provided annual estimates of tern and plover numbers and productivity for five Missouri River reservoirs and four river reaches (U.S. Army Corps of Engineers, 1993). The TPMP has served as the primary source of information about the status of terns and plovers on the Missouri River, and TPMP data have been used for a wide variety of purposes. In 2005, the U.S. Geological Survey (USGS) Northern Prairie Wildlife Research Center (NPWRC) was tasked by the Corps to

  7. Palaeoflood evidence on the River Nore, South East Ireland

    Science.gov (United States)

    Fleming, Ciara; Turner, Jonathan; Bourke, Mary

    2017-04-01

    Past geomorphic changes can be detected in sediment sinks, through the investigation of natural sediment archives. Since the advent of palaeoflood hydrology in the 1980s, numerous authors have demonstrated that such sediment deposits record valuable evidence of past flooding events. Many of these studies have focussed on fluvial systems in arid environments, with bedrock channels proving to be particularly successful field sites. In some districts, the collected datasets are now routinely employed to augment analyses of flood frequency and magnitude, which have traditionally relied on extrapolation of short hydrometric datasets. This study targets river reaches in a temperate humid environment, with a predominantly alluvial channel. The River Nore is one of the largest catchments draining South East Ireland. It is situated in a valley with an inherited glacial legacy and is principally a lowland river catchment. Specific morphological zones have been targeted which are optimal for flood deposit preservation, including palaeochannels, tributary junctions and floodplain overbank settings.There are a variety of anthropogenic pressures evident in this landscape. Among them are channelisation of select tributaries, a legacy of coal mining in the upland Carboniferous limestones, and the installation of man-made obstacles or modifications along the length of the river channel such as sluices and weirs. Regarding land-use, the majority of the catchment is dominated by agriculture, mainly pasture with some tillage. This study investigates palaeoflood evidence in the River Nore catchment and examines the development of the river floodplain using a variety of complementary field and desk-based methods. The sub-surface and micro-topography of river reaches are investigated using Ground Penetrating Radar (GPR) and Unmanned Aerial Vehicle (UAV) technology. Flood deposits have been characterised by examination of bank exposures and sediment cores. Installation of sediment traps

  8. 77 FR 43167 - Safety Zone; Electric Zoo Fireworks, East River, Randall's Island, NY

    Science.gov (United States)

    2012-07-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Electric Zoo Fireworks, East River, Randall... Zone; Electronic Zoo Fireworks, East River, Randall's Island, NY. (a) Regulated Area. The following...

  9. 33 CFR 165.166 - Safety Zone: Macy's July 4th Fireworks, East River, NY.

    Science.gov (United States)

    2010-07-01

    ... Fireworks, East River, NY. 165.166 Section 165.166 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.166 Safety Zone: Macy's July 4th Fireworks, East River, NY. (a) Regulated area. The following area...) in length, carrying persons for the purpose of viewing the fireworks, may take position in an area...

  10. Status of the Piping Plover on the East Coast of North America

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Piping Plover (Charadrius melodus) is widely recognized to be uncommon and decreasing in recent years and hence has been "Blue-listed" as a bird in potential...

  11. Ecological Continuum from the Changjiang (Yangtze River) Watersheds to the East China Sea Continental Margin

    National Research Council Canada - National Science Library

    Zhang, Jing

    2015-01-01

    ...) and its adjacent marginal environment, the East China Sea. The studies in this volume bridges the watersheds of the river and the marginal sea through a combined approach of hydro-dynamics, geochemistry, sedimentary processes, ecology and fishery...

  12. Reproductive ecology of interior least tern and piping plover in relation to Platte River hydrology and sandbar dynamics.

    Science.gov (United States)

    Farnsworth, Jason M; Baasch, David M; Smith, Chadwin B; Werbylo, Kevin L

    2017-05-01

    Investigations of breeding ecology of interior least tern ( Sternula antillarum athalassos ) and piping plover ( Charadrius melodus ) in the Platte River basin in Nebraska, USA, have embraced the idea that these species are physiologically adapted to begin nesting concurrent with the cessation of spring floods. Low use and productivity on contemporary Platte River sandbars have been attributed to anthropomorphically driven changes in basin hydrology and channel morphology or to unusually late annual runoff events. We examined distributions of least tern and piping plover nest initiation dates in relation to the hydrology of the historical central Platte River (CPR) and contemporary CPR and lower Platte River (LPR). We also developed an emergent sandbar habitat model to evaluate the potential for reproductive success given observed hydrology, stage-discharge relationships, and sandbar height distributions. We found the timing of the late-spring rise to be spatially and temporally consistent, typically occurring in mid-June. However, piping plover nest initiation peaks in May and least tern nest initiation peaks in early June; both of which occur before the late spring rise. In neither case does there appear to be an adaptation to begin nesting concurrent with the cessation of spring floods. As a consequence, there are many years when no successful reproduction is possible because emergent sandbar habitat is inundated after most nests have been initiated, and there is little potential for successful renesting. The frequency of nest inundation, in turn, severely limits the potential for maintenance of stable species subpopulations on Platte River sandbars. Why then did these species expand into and persist in a basin where the hydrology is not ideally suited to their reproductive ecology? We hypothesize the availability and use of alternative off-channel nesting habitats, like sandpits, may allow for the maintenance of stable species subpopulations in the Platte River

  13. Modeling the effects of river flow on population dynamics of piping plovers (Charadrius melodus) and least terns (Sternula antillarum) nesting on the Missouri River

    Energy Technology Data Exchange (ETDEWEB)

    Buenau, Kate E.; Hiller, Tim L.; Tyre, Andrew J.

    2014-10-01

    Humans make extensive use of rivers and floodplains for economic benefits including agriculture, hydropower, commerce and recreation. Economic development of floodplains subsequently requires control of river levels to avoid flood damage. This process began in the Missouri River basin in the 1890s with the construction of a series of hydropower dams in Montana and escalated to new levels with the approval of the Pick-Sloan plan in the 1944 Flood Control Act. Maximizing these human uses of the river led to changes in and losses of hydrological and ecological processes, ultimately resulting in the federal listing of three fish and wildlife species under the Endangered Species Act: the pallid sturgeon (Scaphirhyncus albus; 1983), the piping plover (Charadrius melodus; 1984), and the interior population of least tern (Sternula antillarum; 1985). The listing of terns and plovers did not affect river management until the United States Army Corps of Engineers (USACE) proposed to modify the governing document of the Missouri River Mainstem System, the Master Manual, a process which was completed in 2003. Although there was little disagreement over the habitat conditions that terns and plovers used for nesting, there was substantial disagreement over the amount of habitat necessary for terns and plovers to meet population recovery goals. Answering this question requires forecasting species-specific population responses to dynamic habitat affected by both human actions (reservoir management and habitat restoration) and natural variability in precipitation. Piping plovers and least terns nest along the Missouri River from Fort Peck, Montana to just north of Sioux City, Iowa (Figure 1). Both species prefer to nest on sand and fine gravel substrates with no or sparse vegetation cover (Prindiville Gaines and Ryan, 1988; Sherfy et al., 2012), such as riverine sandbars (emergent sandbar habitat; ESH). Piping plovers also nest on reservoir shorelines that lack vegetation cover

  14. Modeling to Support the Development of Habitat Targets for Piping Plovers on the Missouri River

    Energy Technology Data Exchange (ETDEWEB)

    Buenau, Kate E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-05

    Report on modeling and analyses done in support of developing quantative sandbar habitat targets for piping plovers, including assessment of reference, historical, dams present but not operated, and habitat construction calibrated to meet population viability targets.

  15. Assessment of water quality of Obueyinomo River, Ovia North East ...

    African Journals Online (AJOL)

    This study was carried out to assess the water quality of Obueyinomo River using water quality index. Ambient and water temperatures were determined in-situ while total dissolved solids (TDS), total suspended solids (TSS), total solids (TS), turbidity, pH, conductivity, hardness, alkalinity, dissolved Oxygen (DO), ...

  16. Formation of Si-Al-Mg-Ca-rich zoned magnetite in an end-Permian phreatomagmatic pipe in the Tunguska Basin, East Siberia

    Science.gov (United States)

    Neumann, Else-Ragnhild; Svensen, Henrik H.; Polozov, Alexander G.; Hammer, Øyvind

    2017-03-01

    Magma-sediment interactions in the evaporite-rich Tunguska Basin resulted in the formation of numerous phreatomagmatic pipes during emplacement of the Siberian Traps. The pipes contain magnetite-apatite deposits with copper and celestine mineralization. We have performed a detailed petrographic and geochemical study of magnetite from long cores drilled through three pipe breccia structures near Bratsk, East Siberia. The magnetite samples are zoned and rich in Si (≤5.3 wt% SiO2), Ca, Al, and Mg. They exhibit four textural types: (1) massive ore in veins, (2) coating on breccia clasts, (3) replacement ore, and (4) reworked ore at the crater base. The textural types have different chemical characteristics. "Breccia coating" magnetite has relatively low Mg content relative to Si, as compared to the other groups, and appears to have formed at lower oxygen fugacity. Time series analyses of MgO variations in microprobe transects across Si-bearing magnetite in massive ore indicate that oscillatory zoning in the massive ore was controlled by an internal self-organized process. We suggest that hydrothermal Fe-rich brines were supplied from basalt-sediment interaction zones in the evaporite-rich sedimentary basin, leading to magnetite ore deposition in the pipes. Hydrothermal fluid composition appears to be controlled by proximity to dolerite fragments, temperature, and oxygen fugacity. Magnetite from the pipes has attributes of iron oxide-apatite deposits (e.g., textures, oscillatory zoning, association with apatite, and high Si content) but has higher Mg and Ca content and different mineral assemblages. These features are similar to magnetite found in skarn deposits. We conclude that the Siberian Traps-related pipe magnetite deposit gives insight into the metamorphic and hydrothermal effects following magma emplacement in a sedimentary basin.

  17. Flood-inundation maps for the East Fork White River at Columbus, Indiana

    Science.gov (United States)

    Lombard, Pamela J.

    2013-01-01

    Digital flood-inundation maps for a 5.4-mile reach of the East Fork White River at Columbus, Indiana, from where the Flatrock and Driftwood Rivers combine to make up East Fork White River to just upstream of the confluence of Clifty Creek with the East Fork White River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. Current conditions at the USGS streamgage may be obtained on the Internet from the USGS National Water Information System (http://waterdata.usgs.gov/in/nwis/uv/?site_no=03364000&agency_cd=USGS&). The National Weather Service (NWS) forecasts flood hydrographs for the East Fork White River at Columbus, Indiana at their Advanced Hydrologic Prediction Service (AHPS) flood warning system Website (http://water.weather.gov/ahps/), that may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. The calibrated hydraulic model was then used to determine 15 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data), having a 0.37-ft vertical accuracy and a 1.02 ft

  18. Objectives, priorities, reliable knowledge, and science-based management of Missouri River interior least terns and piping plovers

    Science.gov (United States)

    Sherfy, Mark; Anteau, Michael J.; Shaffer, Terry; Sovada, Marsha; Stucker, Jennifer

    2011-01-01

    Supporting recovery of federally listed interior least tern (Sternula antillarum athalassos; tern) and piping plover (Charadrius melodus; plover) populations is a desirable goal in management of the Missouri River ecosystem. Many tools are implemented in support of this goal, including habitat management, annual monitoring, directed research, and threat mitigation. Similarly, many types of data can be used to make management decisions, evaluate system responses, and prioritize research and monitoring. The ecological importance of Missouri River recovery and the conservation status of terns and plovers place a premium on efficient and effective resource use. Efficiency is improved when a single data source informs multiple high-priority decisions, whereas effectiveness is improved when decisions are informed by reliable knowledge. Seldom will a single study design be optimal for addressing all data needs, making prioritization of needs essential. Data collection motivated by well-articulated objectives and priorities has many advantages over studies in which questions and priorities are determined retrospectively. Research and monitoring for terns and plovers have generated a wealth of data that can be interpreted in a variety of ways. The validity and strength of conclusions from analyses of these data is dependent on compatibility between the study design and the question being asked. We consider issues related to collection and interpretation of biological data, and discuss their utility for enhancing the role of science in management of Missouri River terns and plovers. A team of USGS scientists at Northern Prairie Wildlife Research Center has been conducting tern and plover research on the Missouri River since 2005. The team has had many discussions about the importance of setting objectives, identifying priorities, and obtaining reliable information to answer pertinent questions about tern and plover management on this river system. The objectives of this

  19. The Geology of East Butte, a Rhyolitic Volcanic Dome on the Eastern Snake River Plain, Idaho

    Science.gov (United States)

    Bretches, J. E.; King, J. S.

    1985-01-01

    East Butte is a prominent volcanic dome located on the eastern Snake River Plain. It is situated 51 km west of Idaho Fallls in the southeast corner of the Idaho National Engineering facility. East Butte rises 350 meters above the Quaternary basalt flows which encircle its 2.4 kilometer diameter base. Its maximum elevation is 2003 meters above sea level. East Butte is composed dominantly of rhyolite. Armstrong and others (1975) determined a K-Ar age of 0.6 +/- m.y. for a rhyolite sample from East Butte. Detailed geologic mapping revealed East Butte to be a single, large cumulo-dome composed dominantly of rhyolite. Major element geochemical analyses indicate that the rhyolite of East Butte is mildly peralkaline (molecular excess of Na2O and K2O over Al2O3 and compositionally homogeneous. Color variations in the East Butte rhyolite result from varying amounts of chemical and physical weathering and to the degree of devitrification that the glass in the groundmass of the rhyolite underwent.

  20. A Comparative Study of Water Quality Characteristics at East Java River

    Directory of Open Access Journals (Sweden)

    Edijatno Edijatno

    2010-11-01

    Full Text Available Water is the natural resources have the function of very importance for human life and also as authorized capital in development. Water will influence by the other component. Exploiting of water to support all human life must done with wise action to management so that not result damage at water resource. As place relocation of water hence river have the selected capacities that able to change because natural activity and antropogenik. This research was conducted in nine major rivers in East Java. The objectives of this study were: 1 Identifying the characteristics and concestration range of water quality parameter, 2 Comparison the level of pollution in rivers in East Java. The results of this study indicated that the characteristic of water quality parameter of rivers in East Java were generally physical, chemical and biological. The comparison result of water quality parameter basically showed that in general the pH was still under threshold that had been determined, that was pH from 6 to 9. In general, DO concentration ranged from 0.5 mg/l to 7 mg/l, BOD concentration ranged from 3 mg/l to 11 mg/l and the COD concentration ranged between 0.5 mg/liter to 35 mg/l.

  1. River channel instability in East Anglia as a result of increasing water demand

    Science.gov (United States)

    Anstead, Lenka; Tovey, Keith

    2014-05-01

    Both climate change and population growth are having an increasing effect on the morphodynamics of lowland rivers in East Anglia, mainly due to the rising water demand and the increasing magnitude of climate extremes such as droughts or floods. The region has had the UK's highest percentage increase in population in recent years and it is projected to rise by a further 20% over the next 15 years. East Anglia is also already the driest region in the UK. It receives only half of the national average annual rainfall in a normal year and most catchments are over-abstracted. The naturally-available water supply is low and therefore water has to be transferred from neighbouring catchments via pipelines and existing rivers, adding a significant amount of extra water to the natural river flows. Inadequate research is available to explain the spatial and temporal relationships of these additional flows on the affected river channels. A four year field study has been recently undertaken to explore the rates and causes of river channel instability on the River Stour in East Anglia. A river bank retreat of up to 1.3 m/year was recorded, which is much higher than the maximum rate of 0.2 m/year interpreted from an analysis of historical maps since 1886. The field study employed a unique combination of four geomorphologic field methods including the use of innovative photo-electronic erosion pins system for detailed continuous bank research. The studied river channel is used to transport additional water to supply, which was found to create 40% of all effective flows in the upstream reaches during the study period. The impact of this transferred water decreased downstream. The frequency of effective flows due to the water transfer scheme was examined against the river bank erosion retreat data considering the complexity of the channel boundary processes. Clear morphological evidence has also been collected that proves the effect that the water transfer flows are having on the

  2. Flood-inundation maps for the East Fork White River at Shoals, Indiana

    Science.gov (United States)

    Boldt, Justin A.

    2016-05-06

    Digital flood-inundation maps for a 5.9-mile reach of the East Fork White River at Shoals, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the East Fork White River at Shoals, Ind. (USGS station number 03373500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS AHPS site SHLI3). NWS AHPS forecast peak stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.Flood profiles were computed for the East Fork White River reach by means of a one-dimensional, step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the current stage-discharge relation (USGS rating no. 43.0) at USGS streamgage 03373500, East Fork White River at Shoals, Ind. The calibrated hydraulic model was then used to compute 26 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from approximately bankfull (10 ft) to the highest stage of the current stage-discharge rating curve (35 ft). The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM), derived from light detection and ranging (lidar) data, to delineate the area flooded at each water level. The areal extent of the 24-ft flood-inundation map was

  3. Flood-inundation maps for the East Fork White River near Bedford, Indiana

    Science.gov (United States)

    Fowler, Kathleen K.

    2014-01-01

    Digital flood-inundation maps for an 1.8-mile reach of the East Fork White River near Bedford, Indiana (Ind.) were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selectedwater levels (stages) at USGS streamgage 03371500, East Fork White River near Bedford, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=03371500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the East Fork White River near Bedford, Ind. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the East Fork White River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 03371500, East Fork White River near Bedford, Ind., and documented high-water marks from the flood of June 2008. The calibrated hydraulic model was then used to determine 20 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from

  4. Modeling of soil erosion and sediment transport in the East River Basin in southern China

    Science.gov (United States)

    Wu, Yping; Chen, Ji

    2012-01-01

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide.

  5. The East River, Colorado Community Watershed: Hydrogeochemical Studies Spanning Scales and Disciplines

    Science.gov (United States)

    Williams, K. H.

    2016-12-01

    The Lawrence Berkeley National Laboratory and its collaborating institutions are establishing a so-called "Community Watershed" in the headwaters of the East River near Crested Butte, Colorado (USA) designed to quantify processes impacting the ability of mountainous systems to retain and release water, nutrients, carbon, and metals. The East River Community Watershed spans a wide range of scales from hillslope to catena to catchment, with surface water and groundwater linking these geomorphic compartments. Research is highly multi-disciplinary involving a diverse collection of hydrologists, plant ecologists, geochemists, geomorphologists, microbiologists, and climate scientists pursuing both mechanistic and synoptic studies. Studies are focused on assessing the impact of climate perturbations, such as early snowmelt, on coupled ecohydrological and biogeochemical processes as they relate to both water availability and water quality. Data collection activities and monitoring infrastructure are emplaced within the catchment in such a way as to assess the aggregate impact of fine scale processes on catchment scale behavior. Monitoring occurs over diversity of time scales from minutes to months to years, with observational data being used to populate and constrain reactive transport models describing water and nutrient flows across the aforementioned scales of enquiry. Strong infrastructural investments in both data and monitoring networks include dispersed stream gaging, spatially distributed stream water sampling, meteorological station networks, elevation dependent fluxes of carbon and water, and remote sensing datasets, designed to establish baseline data required to assess the impacts of both natural and simulated climate perturbations (e.g. snowmelt manipulation).

  6. Results of modeling of interactions of "water – oil" in sea and river systems of the Far East

    Directory of Open Access Journals (Sweden)

    Mazukhina S.I.

    2015-06-01

    Full Text Available Using physical-chemical modeling (Selector software package, Chudnenko, 2010 the investigations identified the features of interactions of oil with sea and fresh waters on objects of the Far East have been performed. The results of the modeling have confirmed the patterns found on objects of the Murmansk region but there have been some differences connected with conditions of the Far East waters chemical composition formation. The developed models can be used for the forecasting of consequences of oil spills in sea and river waters of the Far East

  7. Towards an understanding and application of environmental flow requirements for human welfare in East African Rivers

    Science.gov (United States)

    McClain, Michael

    2013-04-01

    In semi-arid regions of Africa, rivers are of vital importance to humans for the many direct ecosystem services they provide and, in some cases, for their potential to irrigate and power larger-scale development. More than in most regions of the world, Africans still rely individually on rivers for domestic water, nutrition, and other materials contributing to their daily welfare. This has led to a uniquely African adaptation of the environmental flow concept to incorporate the basic water needs of people as well as ecosystems. The combined flow is referred to as the 'Reserve'. East Africa has seen comparatively little development of its water resources to-date, but ambitious initiatives are underway to increase water use in new large-scale irrigation schemes and hydropower projects. Consequently, a number of comprehensive environmental flow assessments and ecohydrological research activities have recently been carried out in the region. This presentation briefly reviews the initiatives underway across the region but focuses mainly on combined research and flow-setting efforts in the transboundary Mara River Basin of Kenya and Tanzania, home to more than 800,000 people and the region's most popular conservation areas, Masai-Mara National Reserve and Serengeti National Park. Since 2006 a team of scientists, in cooperation with water authorities and the World Wide Fund for Nature (WWF), has investigated the hydrology, hydraulics, biology, and human uses of the Mara River in order to make initial environmental flow (reserve) recommendations. The flow regime of the still largely unregulated Mara River, based on analyses or 20+ years of data from three gauging stations, is highly variable and perennial flow in the middle reaches is dependent on inflows from two tributaries draining the heavily deforested Mau Escarpment, one of Kenya's five water towers. Downstream flows are also seasonally influenced by inflows from ephemeral tributaries that drain degraded grazing

  8. Green-blue water in the city: quantification of impact of source control versus end-of-pipe solutions on sewer and river floods.

    Science.gov (United States)

    De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P

    2014-01-01

    Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.

  9. In-Situ Measurements of Low Enrichment Uranium Holdup Process Gas Piping at K-25 - Paper for Waste Management Symposia 2010 East Tennessee Technology Park Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen B.

    2010-01-01

    This document is the final version of a paper submitted to the Waste Management Symposia, Phoenix, 2010, abstract BJC/OR-3280. The primary document from which this paper was condensed is In-Situ Measurement of Low Enrichment Uranium Holdup in Process Gas Piping at K-25 Using NaI/HMS4 Gamma Detection Systems, BJC/OR-3355. This work explores the sufficiency and limitations of the Holdup Measurement System 4 (HJVIS4) software algorithms applied to measurements of low enriched uranium holdup in gaseous diffusion process gas piping. HMS4 has been used extensively during the decommissioning and demolition project of the K-25 building for U-235 holdup quantification. The HMS4 software is an integral part of one of the primary nondestructive assay (NDA) systems which was successfully tested and qualified for holdup deposit quantification in the process gas piping of the K-25 building. The initial qualification focused on the measurement of highly enriched UO{sub 2}F{sub 2} deposits. The purpose of this work was to determine if that qualification could be extended to include the quantification of holdup in UO{sub 2}F{sub 2} deposits of lower enrichment. Sample field data are presented to provide evidence in support of the theoretical foundation. The HMS4 algorithms were investigated in detail and found to sufficiently compensate for UO{sub 2}F{sub 2} source self-attenuation effects, over the range of expected enrichment (4-40%), in the North and East Wings of the K-25 building. The limitations of the HMS4 algorithms were explored for a described set of conditions with respect to area source measurements of low enriched UO{sub 2}F{sub 2} deposits when used in conjunction with a 1 inch by 1/2 inch sodium iodide (NaI) scintillation detector. The theoretical limitations of HMS4, based on the expected conditions in the process gas system of the K-25 building, are related back to the required data quality objectives (DQO) for the NBA measurement system established for the K-25

  10. Sedimentary microbial community dynamics in a regulated stream: East Fork of the Little Miami River, Ohio.

    Science.gov (United States)

    Sutton, Susan D; Findlay, Robert H

    2003-04-01

    A field study was conducted in the Lower East Fork of the Little Miami River, a regulated stream in Clermont county, Ohio, to determine how changes in streamflow, water temperature and photo-period affect sediment microbial community structure. Surface sediment cores were collected from sampling stations spanning 60 river kilometers three to four times per year between October 1996 and October 1999. During the final year of the field study, water temperature, water depth, conductivity, total suspended solids, dissolved organic carbon, instantaneous streamflow velocity, sediment grain size and sediment organic matter were determined. Total microbial biomass was measured using the phospholipid phosphate technique (PLP) and ranged between 2 and 134 nmol PLP * g(-1) dry weight sediment with a mean of 25 nmol PLP * g(-1). Microbial community structure was determined using the phospholipid fatty acid analysis and indicated seasonal shifts in sedimentary microbial community composition. January to June sedimentary microbial biomass was predominately prokaryotic (60% +/- 2), whereas microeukaryotes dominated samples collected during the late summer (55% +/- 2.4) and fall (60% +/- 2). These changes were correlated with stream discharge and water temperature. Microbial community structure varied spatially about a reservoir with prokaryotic biomass dominant at upstream stations and eukaryotic biomass dominant at downstream stations. These findings reveal that sedimentary microbial communities in streams are dynamic responding to the seasonal variation of environmental factors.

  11. A Proposal for the Management of Piping Plovers and Least Terns at Parker River National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The piping plover (Charadrius melodus) and least tern (Sterna antillarum) are two native North American bird species that have traditionally used the beach of Parker...

  12. Trace metals in estuaries in the Russian Far East and China: case studies from the Amur River and the Changjiang.

    Science.gov (United States)

    Shulkin, Vladimir; Zhang, Jing

    2014-11-15

    This paper compares the distributions of dissolved and particulate forms of Mn, Fe, Ni, Cu, Zn, Cd, and Pb in the estuaries of the largest rivers in East Asia: the Amur River and the Changjiang (Yangtze River). High suspended solid concentrations, elevated pH, and relatively low dissolved trace metal concentrations are characteristics of the Changjiang. Elevated dissolved Fe and Mn concentrations, neutral pH, and relatively low suspended solid concentrations are characteristics of the Amur River. The transfer of dissolved Fe to suspended forms is typical in the Amur River estuary, though Cd and Mn tend to mobilize to solution, and Cu and Ni are diluted in the estuarine system. Metal concentrations in suspended matter in the Amur River estuary are controlled by the ratio of terrigenous riverine material, enriched in Al and Fe, and marine biogenic particles, enriched in Cu, Mn, Cd, and in some cases Ni. The increase in dissolved forms of Mn, Fe, Ni, Cu, Cd, and Pb compared with river end-member is unique to the Changjiang estuary. Particle-solution interactions are not reflected in bulk suspended-solid metal concentrations in the Changjiang estuary due to the dominance of particulate forms of these metals. Cd is an exception in the Changjiang estuary, where the increase in dissolved Cd is of comparable magnitude to the decrease in particulate Cd. Despite runoff in the Amur River being lower than that in the Changjiang, the fluxes of dissolved Mn, Zn and Fe in the Amur River exceed those in the Changjiang. Dissolved Ni, and Cd fluxes are near equal in both estuaries, but dissolved Cu is lower in the Amur River estuary. The hydrological and physico-chemical river characteristics are dominated at the assessment of river influence on the adjoining coastal sea areas despite differences in estuarine processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Pyrosequencing analysis of bacterial communities in biofilms from different pipe materials in a city drinking water distribution system of East China.

    Science.gov (United States)

    Ren, Hongxing; Wang, Wei; Liu, Yan; Liu, Shuai; Lou, Liping; Cheng, Dongqing; He, Xiaofang; Zhou, Xiaoyan; Qiu, Shangde; Fu, Liusong; Liu, Jingqing; Hu, Baolan

    2015-12-01

    Biofilms in drinking water distribution systems (DWDSs) could cause several types of problems, such as the deterioration of water quality, corrosion of pipe walls, and potential proliferation of opportunistic pathogens. In this study, ten biofilm samples from different pipe materials, including ductile cast iron pipe (DCIP), gray cast iron pipe (GCIP), galvanized steel pipe (GSP), stainless steel clad pipe (SSCP), and polyvinyl chloride (PVC), were collected from an actual DWDS to investigate the effect of pipe material on bacterial community. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the numbers of total bacteria and culturable heterotrophic bacteria from iron pipes were higher than that in PVC, while the numbers of Shigella and vibrios were low in biofilms from iron pipes. Bacterial community analysis showed that Hyphomicrobium or Desulfovibrio were the predominant microorganism in iron pipes, whereas Sphingomonas or Pseudomonas were dominant in other types of pipe. This study revealed differences in bacterial communities in biofilms among different pipe materials, and the results were useful for pipeline material selection in DWDSs.

  14. Distribution and Geochemistry of Rare-Earth Elements in Rivers of Southern and Eastern Primorye (Far East of Russia)

    Science.gov (United States)

    Chudaev, O. V.; Bragin, I. V.; A, Kharitonova N.; Chelnokov, G. A.

    2016-03-01

    The distribution and geochemistry of rare earth elements (REE) in anthropogenic, technogenic and natural surface waters of southern and eastern Primorye, Far East of Russia, are presented in this study. The obtained results indicated that most of REE (up to 70%) were transported as suspended matter, ratio between dissolved and suspended forms varing from the source to the mouth of rivers. It is shown that all REE (except Ce) in the source of the rivers are predominantly presented in dissolved form, however, the content of light and heavy REE is different. Short-term enrichment of light rare earth elements (LREE) caused by REE-rich runoff from waste dumps and mining is neutralized by the increase in river flow rate. Rivers in urban areas are characterized by high content of LREE in dissolved form and very low in suspended one.

  15. Impact of Climate Change on the Water Availability in the Near East and the Upper Jordan River Catchment

    OpenAIRE

    Heckl, Andreas

    2012-01-01

    The Near East is a region with long-lasting political conflicts. At the same time it is one of the regions with the lowest water availability per capita in the world. This gives the Jordan River as a transboundary water resource a political relevance. Global climate change could aggravate the situation considerably. To enable sustainable water management within the affected countries scientific sound information about expected future climate change in the Eastern Mediterranean and its effects...

  16. Phylogeography and genetic structure of the oriental river prawn Macrobrachium nipponense (Crustacea: Decapoda: Palaemonidae) in East Asia.

    Science.gov (United States)

    Chen, Po-Cheng; Shih, Chun-Han; Chu, Ta-Jen; Lee, Ying-Chou; Tzeng, Tzong-Der

    2017-01-01

    The oriental river prawn (Macrobrachium nipponense) is mainly distributed in East Asia. The phylogeography, population genetic structure and historical demography of this species in the East Asia were examined by using partial sequences of the cytochrome oxidase subunit I (COI) and 16S rRNA in mitochondrial DNA. Ten populations that included 239 individuals were collected from Taiwan (Shihmen Reservoir, SMR, Mingte Reservoir, MTR and Chengching Lake Reservoir, CLR), mainland China (Taihu Lake, TLC, Min River, MRC, Jiulong River, JRC and Shenzhen Reservoir, SRC), Japan (Biwa Lake, BLJ and Kasumigaura Lake, KLJ) and Korea (Han River, HRK). The nucleotide diversity (π) of all individuals was 0.01134, with values ranging from 0.0089 (BLJ, Japan) to 0.01425 (MTR, Taiwan). A total of 83 haplotypes were obtained, and the haplotypes were divided into 2 main lineages: lineage A included the specimens from BLJ, KLJ, CLR, MTR, TLC, MRC and JRC, and lineage B comprised the ones from HRK, SRC, SMR, MTR, TLC, MRC and JRC. Lineage A could be further divided two sub-lineages (A1 and A2). Individuals of lineage A2 were only from TLC. Demographic expansion was observed in each lineage, starting within the second-to-latest interglacial period for lineage A and within the last glacial period for lineage B. All FST values among the ten populations were significantly different, except for the values between MRC and JRC, and SMR and SRC. The phylogeography and genetic structure of M. nipponense in East Asia might be influenced by Pleistocene glacial cycles, lake isolation and human introduction. The possible dispersal routes of M. nipponense in the East Asia were also discussed.

  17. The impact of the Changjiang River plume extension on the nanoflagellate community in the East China Sea

    Science.gov (United States)

    Tsai, An-Yi; Gong, Gwo-Ching; Sanders, Robert W.; Wang, Ciou-Jyu; Chiang, Kuo-Ping

    2010-09-01

    Variation in the summer nanoflagellate community on the continental shelf ecosystem of East China Sea (ECS) is closely coupled with environmental variation due to extension of the Changjiang River plume. Spatial patterns of nanoflagellate abundance were studied in June and August 2003, June 2006 and July 2007 over the ECS shelf. The Changjiang River plume was smaller during the August 2003 and July 2007 cruises than during the rest other 2 cruises. Total nanoflagellates densities varied between 1 and 120 × 10 2 cells ml -1 with the highest abundances occurring within the Changjiang River plume during large plume periods. In the small plume periods, the range of nanoflagellates abundance was 3-33 × 10 2 cells ml -1 and the highest abundances were observed during these periods either within the Changjiang River plume or the Yellow Sea Coastal Water (YSCW). During large plume periods, nanoflagellate abundance closely related to changes in salinity and during the small period, abundance was most related to water temperature. The pigmented nanoflagellate community (PNF) within Changjiang River plume, especially in the PNF abundance pronounced increase caused the variation of nanoflagellate community of ECS in summer. We suggest that the discharge of fresh water from Changjiang River has significant ecological impacts on spatial variations in nanoflagellate community in the ECS.

  18. Study on the quality of ground, spring and river waters in south-east Serbia

    Directory of Open Access Journals (Sweden)

    Stojanović Zorica S.

    2015-01-01

    Full Text Available The study deals with mineral characterization of natural waters from South-East Serbia. The contents of aluminium, arsenic, calcium, cadmium, cobalt, chromium, cooper, iron, potassium, magnesium, manganese, sodium, nickel, lead and zinc were analysed in spring, ground and river waters by inductively coupled plasma-atomic emission spectrometry (ICP-AES technique. The study area was in the Southern Serbia, and included slopes of Rtanj, Ozren, Bukovik, Vrdenik and Čemernik mountains, and the valley of South Morava. Obtained contents were compared with Serbian regulations on the quality of water for human use, and directive of World Health Organization (WHO for maximum allowed concentrations of chemical substances. High contents of macro-elements, namely calcium, magnesium and potassium, were detected in several spring and ground water samples which are believed to be due to direct influence of rock minerals. Some water samples contained iron, manganese and copper in concentration up to 84.2 μg dm-3, 8.10 μg dm-3 and 14.9 μg dm-3, respectively, but within the permissible limits. Other heavy metals were not detected in analysed samples. Based on the derived results, tested ground and spring water samples have significant potential to be used as sources for the production of bottled water, but further investigations are necessary. Additional investigations have to be focused on complete physical, chemical and microbiological assessments of water resources. Systematic hydrogeological assessment also should be performed in all seasons. In the meantime, precautionary measures should be immediately taken to protect and preserve these water resources. [Projekat Ministarstva nauke Republike Srbije, br. TR 31014

  19. Acoustic wipeouts over the continental margins off Krishna, Godavari and Mahanadi river basins, East coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.; Rao, T.C.S.

    GEOLOGICAL SOClEn' OF iNDIA Vol. 35, June 1990, pp. 559 10 568 Acoustic wipeouts over the Continental Margins off Krishna, Godavari and Mahanadi River Basins, East Coast of India K. S. R. MURTHY AND T. C. S. RAO National Institute of Oceanography, Regional... Centre, Plot No. 52, Kirlampudi LayouI, Vishakapatnam 530023, India Abstract. Loss of seismic reflections, termed as acoustic wipeouts, are observed in lhe high resolution sparker seismic records over the continental shelf and slope of Krishna, Godavari...

  20. Digital geospatial presentation of geoelectrical and geotechnical data for the lower American River and flood plain, east Sacramento, California

    Science.gov (United States)

    Ball, Lyndsay B.; Burton, Bethany L.; Powers, Michael H.; Asch, Theodore H.

    2015-01-01

    To characterize the extent and thickness of lithologic units that may have differing scour potential, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, has performed several geoelectrical surveys of the lower American River channel and flood plain between Cal Expo and the Rio Americano High School in east Sacramento, California. Additional geotechnical data have been collected by the U.S. Army Corps of Engineers and its contractors. Data resulting from these surveys have been compiled into similar database formats and converted to uniform geospatial datums and projections. These data have been visualized in a digital three-dimensional framework project that can be viewed using freely available software. These data facilitate a comprehensive analysis of the resistivity structure underlying the lower American River corridor and assist in levee system management.

  1. Influence of the Changjiang River flood on Synechococcus ecology in the surface waters of the East China Sea.

    Science.gov (United States)

    Chung, Chih-Ching; Huang, Chin-Yi; Gong, Gwo-Ching; Lin, Yun-Chi

    2014-02-01

    Synechococcus spp. have been suggested as the primary component of picophytoplankton in the East China Sea (ECS). However, the influences of sudden environmental changes on Synechococcus assemblage composition have not yet been investigated. In the summer of 2010, a disastrous flood occurred in the Changjiang River basin. To improve our understanding of how this flood affected the Synechococcus ecology on the ECS surface, their assemblages and distributions have been described using two-laser flow cytometry and phylogenetic analysis of the phycocyanin operon. During the nonflooding summer of 2009, phycoerythrin-rich (PE-rich) Synechococcus thrived near the outer boundary of the Changjiang River diluted water (CDW) coverage, while phycocyanin-rich (PC-rich) Synechococcus predominated inside the turbid CDW with a transparency of ecology of Synechococcus after flooding.

  2. Influence of river discharge on abundance and dissemination of heterotrophic, indicator and pathogenic bacteria along the East Coast of India.

    Science.gov (United States)

    Prasad, V R; Srinivas, T N R; Sarma, V V S S

    2015-06-15

    In order to examine the influence of discharge from different rivers from peninsular India and urban sewage on intensity and dissemination of heterotrophic, indicator and pathogenic bacteria, a study was carried out during peak discharge period along coastal Bay of Bengal. The coastal Bay received freshwater inputs from the river Ganges while Godavari and Krishna contributed to the south. Contrasting difference in salinity, temperature, nutrients and organic matter was observed between north and south east coast of India. The highest heterotrophic, indicator and pathogenic bacterial abundance was observed in the central coastal Bay that received urban sewage from the major city. Intensity and dissemination of heterotrophic, indicator and pathogenic bacteria displayed linear relation with magnitude of discharge. The coliform load was observed up to 100km from the coast suggesting that marine waters were polluted during the monsoon season and its impact on the ecosystem needs further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. 77 FR 22525 - Safety Zone; Swim Events in the Captain of the Port New York Zone; Hudson River, East River...

    Science.gov (United States)

    2012-04-16

    ... Guard patrol crafts. The events and locations are as follows: (1) The Iron Man Open Water Swim Clinics... Swim Clinics: within the waters of the Lower Hudson River in the vicinity of West 100th Street and West... in the final rule. Regulatory Analyses We developed this proposed rule after considering numerous...

  4. Late Holocene (~ 2 ka) East Asian Monsoon variations inferred from river discharge and climate interrelationships in the Pearl River Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Nan, Q.; Li, T.; Chen, J.; Nigam, R.

    A sediment core from the Pearl River Estuary (PRE) was analyzed for grain size and organic geochemistry parameters (TOC and δ13Corg). The results showed that high mean grain-size value and increased sand content were correlated...

  5. 78 FR 20559 - Safety Zones; Swim Events in the Captain of the Port New York Zone; Hudson River, East River...

    Science.gov (United States)

    2013-04-05

    ... ``SEARCH'' box and click ``SEARCH.'' Click on Open Docket Folder on the line associated with this... Guard in complying with the National Environmental Policy Act of 1969 (NEPA) (42 U.S.C. 4321-4370f), and... the Hudson River in the vicinity of Ulster Landing, bound by the following points: 42 00'03.7'' N, 073...

  6. Population Aspects of Fishes in Geba and Sor Rivers, White Nile System in Ethiopia, East Africa

    National Research Council Canada - National Science Library

    Simagegnew Melaku; Abebe Getahun; Mulugeta Wakjira

    2017-01-01

    This study was carried out to assess the diversity, condition factor, length-weight relationship, and sex ratio of fishes in Geba and Sor Rivers located in Baro-Akobo Basin, White Nile system within Ethiopia...

  7. The 1980 Polallie Creek debris flow and subsequent dam-break flood, East Fork Hood River basin, Oregon

    Science.gov (United States)

    Gallino, Gary L.; Pierson, Thomas C.

    1984-01-01

    At approximately 9 p.m. on December 25, 1980, intense rainfall and extremely wet antecedent conditions combined to trigger a landslide of approximately 5,000 cubic yards at the head of Polallie Creek Canyon on the northeast flank of Mount Hood. The landslide was transformed rapidly into a debris flow, which surged down the channel at velocities between about 40 and 50 ft/s, eroding and incorporating large volumes of channel fill and uprooted vegetation. When it reached the debris fan at the confluence with the East Fork Hood River, the debris flow deposited approximately 100,000 cubic yards of saturated, poorly sorted debris to a maximum thickness of 35 ft, forming a 750-ft-long temporary dam across the channel. Within approximately 12 minutes, a lake of 85 acre-feet formed behind the blockage, breached the dam, and sent a flood wave down the East Fork Hood River. The combined debris flow and flood resulted in one fatality and over $13 million in damage to a highway, bridges, parks, and a water-supply pipeline. Application of simple momentum- and energy-balance equations, and uniform flow equations resulted in debris flow peak discharges ranging from 50,000 ft3/s to 300,000 ft3/s at different locations in the Polallie Creek Canyon. This wide range is attributed to temporary damming at the boulder- and log-rich flow front in narrow, curving reaches of the channel. When the volume of the solid debris was subtracted out, assuming a minimum peak debris-flow discharge of 100,000 ft3/s at the canyon mouth, a minimum peak-water discharge of 40,000 ft3/s was obtained. A computer dam-break model simulated peak flow for the outbreak flood on the East Fork Hood River in the range of 20,000 to 30,000 ft3/s using various breach shapes and durations of breach between 5 and 15 minutes. A slope conveyance computation 0.25 mi downstream from the dam gave a peak water discharge (solids subtracted out) for the debris-laden flood of 12,000 to 20,000 ft3/s, depending on the channel

  8. Spatiotemporal Variability and Trends of Extreme Precipitation in the Huaihe River Basin, a Climatic Transitional Zone in East China

    Directory of Open Access Journals (Sweden)

    Zhengwe Ye

    2017-01-01

    Full Text Available Precipitation data from 30 stations in the Huaihe River basin (HRB, a climatic transitional zone in east China, were used to investigate the spatiotemporal variability and trends of extreme precipitation on multitimescales for the period 1961–2010. Results indicated that (1 the spatial pattern of the annual precipitation, rainy days, extreme precipitation, and maximum daily precipitations shows a clear transitional change from the south (high to the north (low in the HR; it confirmed the conclusion that the HRB is located in the transitional zone of the 800 mm precipitation contour in China, where the 800 mm precipitation contour is considered as the geographical boundary of the south and the north. (2 Higher value of the extreme precipitation intensity mainly occurs in the middle of the east and the central part of the basin; it reveals a relatively distinct west-east spatial disparity, and this is not in line with the spatial pattern of the extreme precipitation total, the sum of the precipitation in 95th precipitation days. (3 Annual precipitation of 22 stations exhibits increasing trend, and these 22 stations are located from the central to the northern part. There is no significant trend detected for the seasonal precipitation. The summer precipitation exhibits a larger change range; this might cause the variation of the flood and drought in the HBR. However, the increasing trend in winter precipitation may be beneficial to the relief of winter agricultural drought. Rainy days in 12 stations, mostly located in and around the central northeastern part, experienced significant decreasing trend. Extreme precipitation days and precipitation intensity have increasing trends, but no station with significant change trend is detected for the maximum precipitation of the basin. (4 The spatiotemporal variability in the HRB is mainly caused by the geographic differences and is largely influenced by the interdecadal variations of East Asian

  9. Linkages between the spatial toxicity of sediments and sediment dynamics in the Yangtze River Estuary and neighboring East China Sea.

    Science.gov (United States)

    Gao, Jinjuan; Shi, Huahong; Dai, Zhijun; Mei, Xuefei; Zong, Haibo; Yang, Hongwei; Hu, Lingling; Li, Shushi

    2018-02-01

    Anthropogenic activities are driving an increase in sediment contamination in coastal areas. This poses significant challenges for the management of estuarine ecosystems and their adjacent seas worldwide. However, few studies have been conducted on how dynamic mechanisms affect the sediment toxicity in the estuarine environment. This study was designed to investigate the linkages between sediment toxicity and hydrodynamics in the Yangtze River Estuary (YRE) area. High sediment toxicity was found in the Yangtze River mouth (Region I), the depocenter of the Yangtze River Delta (Region II), and the southeastern area of the adjacent sea (Region III), while low sediment toxicity was found in the northeastern offshore region (Region IV). A spatial comparison analysis and regression model indicated that the distributed pattern of sediment toxicity was likely related to hydrodynamics and circumfluence in the East China Sea (ECS) shelf. Specifically, high sediment toxicity in Region I may be affected by the Yangtze River Pump (YRP) and the low hydrodynamics there, and high toxicity in Region II can be influenced by the low sediment dynamics and fine sediment in the depocenter. The high sediment toxicity in Region III might be related to the combination of the YRP and Taiwan Warm Current, while the low toxicity in Region IV may be influenced by the local coarse-grained relict sand with strong sediment dynamics there. The present research results further suggest that it is necessary to link hydrodynamics and the spatial behavior of sediment and sediment-derived pollutants when assessing the pollution status of estuarine environments, especially for those mega-estuaries and their neighboring ocean environments with complex waves, tides and ocean currents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  11. Clay mineralogy and source-to-sink transport processes of Changjiang River sediments in the estuarine and inner shelf areas of the East China Sea

    Science.gov (United States)

    Zhao, Yifei; Zou, Xinqing; Gao, Jianhua; Wang, Chenglong; Li, Yali; Yao, Yulong; Zhao, Wancang; Xu, Min

    2018-02-01

    We examined the source-to-sink sediment transport processes from the Changjiang River to the estuarine coastal shelf area by analyzing the clay mineral assemblages in suspended sediment samples from the Changjiang River catchment and surface samples from the estuarine coastal shelf area following the impoundment of the Three Gorges Dam (TGD) in 2003. The results indicate that the clay mineral compositions throughout the study area are dominated by illite, with less abundant kaolinite and chlorite and scarce smectite. The clay minerals display distinct differences in the tributaries and exhibit obvious changes in the trunk stream compared with the periods before 2003, and the source of sediment has largely shifted to the mid- to lower reaches of the river after 2003. Spatially, the clay mineral assemblages in the estuarine area define two compositionally distinct provinces. Province I covers the mud area of the Changjiang River estuary and the Zhe-Min coastal region, where sediment is primarily supplied by the Changjiang River. Province II includes part of the Changjiang River estuary and the southeastern portion of the study area, where the sediment is composed of terrestrial material from the Changjiang River and re-suspended material from the Huanghe River carried by the Jiangsu coastal current. Moreover, the other smaller rivers in China (including the Oujiang and Minjiang rivers of mainland China and the rivers of West Taiwan) also contribut sediments to the estuarine and inner shelf areas. In general, the clay mineral assemblages in the Changjiang River estuarine area are have mainly been controlled by sediment supplied from upstream of the Changjiang River tributaries. However, since the completion of the TGD in 2003, the mid- to downstream tributaries have become the main source of sediments from the Changjiang catchment into the East China Sea. These analyses further demonstrate that the coastal currents and the decrease in the sediment load of the river

  12. Effects of Insecurity on Community Development Projects in Ogba/Egbema/Ndoni and Ahoada East Local Government Areas of Rivers State, Nigeria

    Science.gov (United States)

    Adekola, G.; Enyiche, C. C.

    2017-01-01

    The study examined the effects of insecurity on community development projects in Ogba/Egbema/Ndoni and Ahoada East Local Government Areas of Rivers State, Nigeria. The study was guided by two research questions and one null hypothesis. The study adopted a descriptive survey design with a population of 3,211 members of various Community Based…

  13. Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013

    Science.gov (United States)

    Dai, Zhijun; Fagherazzi, Sergio; Mei, Xuefei; Gao, Jinjuan

    2016-09-01

    The temporal evolution of suspended sediment concentration (SSC) in a river debouching into the ocean provides vital insights into erosion processes in the watershed and dictates the evolution of the inner continental shelf. While the delivery of sediment from rivers to the ocean has received special attention in the recent past, few studies focused on the variability and dynamics of river SSC, especially in the Changjiang (Yangtze) river, China, the longest river in Asia. Here, variations in SSC delivered by the Changjiang River to the East China Sea and possible causes of its variability were detected based on a long-term time series of daily SSC and monthly water discharge measured at the Datong gauging station. The SSC data are further compared to a hydrological analysis of yearly precipitation covering the entire catchment. The results indicate the presence of a decline in SSC in the period 1956-2013, which can be divided into three phases: (i) high SSC (0.69 kg/m3) in the wet season and low SSC (0.2 kg/m3) in the dry season from 1956 to 1970; (ii) relative high SSC (0.58 kg/m3) in the wet season and low SSC (0.15 kg/m3) in the dry season from 1971 to 2002; and (iii) low SSC (0.19 kg/m3) in the wet season and very low SSC (0.09 kg/m3) in the dry season after 2002. These three periods have a mean yearly SSC values of 0.62, 0.42, and 0.18 kg/m3, respectively. Compared with 1956-1970, the slope of the rating curve between SSC and water discharge decreased, respectively, by 2% and 30% during the period 1971-2002 and 2002-2013. Soil erosion, dam construction, and banks reinforcement along the Changjiang River are the main causes of SSC variations. Fluctuations in water discharge are also controlling the SSC long-term variations. Specifically, from 1956 to 1970, the effect of soil erosion overrules that of dam impoundment, which is likely responsible for the high SSC; during the period 1970-2002, the influence of dam impoundment increases while that of soil erosion

  14. Tank Model Application for Runoff and Infiltration Analysis on Sub-Watersheds in Lalindu River in South East Sulawesi Indonesia

    Science.gov (United States)

    Wirdhana Ahmad, Sitti

    2017-05-01

    Improper land management often causes flood, this is due to uncontrolled runoff. Runoff is affected by the management of the land cover. The phenomena also occurred in South East Sulawesi, Indonesia. This study aims to analyze the flow rate of water in watershed of Lalindu River in North Konawe, South East Sulawesi by using a Tank Model. The model determined the magnitude of the hydrologic runoff, infiltration capacity and soil water content several land uses were evaluated in the study area. The experimental and calculation results show that the runoff in the forest is 2,639.21 mm/year, in the reed is 2,517.05 mm/year, in the oil palm with a slope more than 45% is 2,715.36 mm/year, and in the oil palm with slopes less than 45% is 2,709.59 mm/year. Infiltration in the forest is 30.70 mm/year, in the reed is 7.51 mm/year, in the palm oil with a slope more than 45% is 24.13 mm/year and in the palm oil with slopes less than 45% is 29.67 mm/year. Runoff contributes to stream flow for water availability.

  15. Population Aspects of Fishes in Geba and Sor Rivers, White Nile System in Ethiopia, East Africa

    Directory of Open Access Journals (Sweden)

    Simagegnew Melaku

    2017-01-01

    Full Text Available This study was carried out to assess the diversity, condition factor, length-weight relationship, and sex ratio of fishes in Geba and Sor Rivers located in Baro-Akobo Basin, White Nile system within Ethiopia. Fish samples were collected in one wet and one dry season. The length-weight relationships were fitted using power equation for the most abundant species. A total of 348 fish specimens were collected using gillnets and hooks. These were identified into eight species and one Garra sp. representing seven genera and four families. Family Cyprinidae was the most dominant with six species (66.7%. Labeobarbus intermedius, Labeobarbus nedgia, and Labeo cylindricus were the most abundant fish species, respectively, with 60.72%, 16.83%, and 14.66% index of relative importance (IRI. The diversity index was higher for Geba River (H′ = 1.50 than for Sor River (H′ = 1.10. All the three most abundant species had negative allometric growth. Seasonal variations in the mean Fulton condition factor (FCF were statistically significant for L. cylindricus (p<0.05. There was variation in the sex ratio with the females dominating in all the three most abundant species. Further investigation into the fish diversity, food, feeding, and reproductive behaviors of fish species especially in the tributaries of these rivers and their socioeconomic aspects is recommended.

  16. Survey of Fossil Vertebrates from East-Central Kansas, Kansas River Bank Stabilization Study

    Science.gov (United States)

    1979-01-01

    pages 15-19) Figure 1. Upper molar of adult mastodon, Mammut americanus (KUVP 5898), from Kansas River at Topeka, Shawnee County, Kansas. Figure 2...fact, one of the earliest specimens to be added to that collection was a mandible of an American mastodon, Mammut americanum. It was found by then...Pleistocene assemblage including forms indicative of spruce forest such as the American mastodon, Mammut americanum, the woodland musk ox, 5.mbos cavifrons

  17. STATIONARITY OF ANNUAL MAXIMUM DAILY STREAMFLOW TIME SERIES IN SOUTH-EAST BRAZILIAN RIVERS

    Directory of Open Access Journals (Sweden)

    Jorge Machado Damázio

    2015-08-01

    Full Text Available DOI: 10.12957/cadest.2014.18302The paper presents a statistical analysis of annual maxima daily streamflow between 1931 and 2013 in South-East Brazil focused in detecting and modelling non-stationarity aspects. Flood protection for the large valleys in South-East Brazil is provided by multiple purpose reservoir systems built during 20th century, which design and operation plans has been done assuming stationarity of historical flood time series. Land cover changes and rapidly-increasing level of atmosphere greenhouse gases of the last century may be affecting flood regimes in these valleys so that it can be that nonstationary modelling should be applied to re-asses dam safety and flood control operation rules at the existent reservoir system. Six annual maximum daily streamflow time series are analysed. The time series were plotted together with fitted smooth loess functions and non-parametric statistical tests are performed to check the significance of apparent trends shown by the plots. Non-stationarity is modelled by fitting univariate extreme value distribution functions which location varies linearly with time. Stationarity and non-stationarity modelling are compared with the likelihood ratio statistic. In four of the six analyzed time series non-stationarity modelling outperformed stationarity modelling.Keywords: Stationarity; Extreme Value Distributions; Flood Frequency Analysis; Maximum Likelihood Method.

  18. Assessment of water quality: a case study of the Seybouse River (North East of Algeria)

    Science.gov (United States)

    Guettaf, M.; Maoui, A.; Ihdene, Z.

    2017-03-01

    The assessment of water quality has been carried out to determine the concentrations of different ions present in the surface waters. The Seybouse River constitutes a dump of industrial and domestic rejections which contribute to the degradation of water quality. A total of 48 surface water samples were collected from different stations. The first objective of this study is the use of water quality index (WQI) to evaluate the state of the water in this river. The second aim is to calculate the parameters of the quality of water destined for irrigation such as sodium adsorption ratio , sodium percentage, and residual sodium carbonate. A high mineralization and high concentration of major chemical elements and nutrients indicate inevitably a high value of WQI index. The mean value of electrical conductivity is about 945.25 µs/cm in the station 2 (Bouhamdane) and exceeds 1,400 µs/cm in station 12 of Nador. The concentration of sulfates is above 250 mg/l in the stations 8 (Zimba) and 11 (Helia). A concentration of orthophosphate over 2 mg/l was observed in the station 11. The comparison of the obtained and the WHO standards indicates a before using it use in agricultural purposes.

  19. Sediment contamination in Lyons Creek East, a tributary of the Niagara River: part I. Assessment of benthic macroinvertebrates.

    Science.gov (United States)

    Milani, Danielle; Grapentine, Lee C; Fletcher, Rachael

    2013-01-01

    Sediments in Lyons Creek East (Welland, Ontario), a tributary of the Niagara River and part of the Niagara River Area of Concern, which exceed screening-level environmental-quality criteria for multiple contaminants, were assessed for biological impacts using information from multiple lines of evidence. An initial chemical survey indicated the primary contaminants of concern to be polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), zinc, and p,p'-DDE due to frequent exceedences of sediment guidelines. A subsequent study focused on the chemical composition of sediment, status of benthic invertebrate communities, contaminant bioaccumulation in resident benthos, and sediment toxicity to laboratory-exposed organisms. Chemical and biological conditions in the creek were compared with those in reference creeks using both multivariate (cluster analysis and ordination) and univariate (regression) techniques. Sediment PCBs (≤ 19 μg/g), PAHs (≤ 63 μg/g), and Zn (≤ 7969 μg/g) were increased above the sediment-quality guidelines along most of the creek; however, the upper 1.5 km portion of the creek was the most highly contaminated and therefore the main focus for biological study. Although severe toxicity was evident at several locations in the upper creek, resident benthic communities were minimally affected by sediment contamination. The cause of toxicity was likely related to a combination of stressors, including PCBs, PAHs, and metals. Due to its biomagnifiable nature, bioaccumulation focused on PCBs; concentrations in resident macroinvertebrates were ≤ 2 orders of magnitude greater than those found in reference creeks and were above tissue residue guidelines, indicating a potential risk for consumers of benthos. This risk was not limited to the upper 1.5 km where other effects were seen.

  20. [Responses of functional diversity of aquatic insect community to land use change in middle reach of Qiantang River, East China].

    Science.gov (United States)

    Zhang, Lian-Bo; Liu, Dong-Xiao; Liu, Shuo-Ru; Zhang, Yong; Tong, Xiao-Li; Wang, Bei-Xin

    2013-10-01

    Based on the biological traits such as life history, resistance ability against environmental disturbance, and physiological characteristics of aquatic insects, and by using the fourth-corner statistical method, this paper studied the responses of the functional diversity of aquatic insect community to land use change in the middle reach of Qiantang River, Zhejiang Province of East China. For the test aquatic insect community, some of its biological traits were sensitive to land use change, and altered along human disturbance gradients as expected. With the increasing intensity of human disturbance, the maximal insect body length decreased gradually, the dominant respiration pattern evolved from gill respiration to tegument respiration, and the abundance of burrowers increased significantly. At the same time, the functional diversity measured as Rao's quadratic entropy was significantly higher in reference sites than in disturbed sites (P functional diversity of the aquatic community were mainly induced by the land use change caused by human activities, which resulted in the decline of stream water quality and habitat quality and the variations of aquatic insect community composition and biological traits. The aquatic insect biological traits and functional diversity could be the potentially effective indicators in the stream health assessment in the future.

  1. Hydrocarbons in surface sediments from the Changjiang (Yangtze River) estuary, East China Sea

    Energy Technology Data Exchange (ETDEWEB)

    Bouloubassi, Ioanna; Fillaux, Joelle; Saliot, Alain [Universite Pierre et Marie Curie, Lab. de Biogeochimie et Chimie Marines, Paris, 75 (France)

    2001-07-01

    Sedimentary aliphatic (AH) and polycyclic aromatic hydrocarbons (PAHs) were studied in the Changjiang Estuary and the adjacent East China Sea. Total AH ranged from 2.20 to 11.82 {mu}g g {sup -1} and consisted of n-alkanes and a dominant petroleum-related unresolved complex mixture (UCM). Within the n-alkanes, terrestrial plant wax compounds prevailed at nearly all stations. Of the PAHs, biogenic perylene dominated at stations receiving riverine inputs. Anthropogenic PAHs originating from combustion/pyrolysis processes varied from 17 to 157 ng g {sup -1}, while fossil PAH concentrations ranged from 42 to 187 ng g {sup -1}. Both biogenic and anthropogenic hydrocarbons are primarily derived from riverine discharges and accumulate at shallow-water stations. Distinct phase associations lead, nevertheless, to different sedimentation patterns. Fossil PAHs are enhanced at offshore stations where they are introduced directly by shipping activities. Biomarker fingerprints ascribe their source to Chinese crude oils. The overall levels of anthropogenic hydrocarbons are low compared to relevant areas worldwide and reveal a low/moderate level of hydrocarbon pollution. (Author)

  2. Prevalence of water pipe smoking in the city of Mashhad (North East of Iran and its effect on respiratory symptoms and pulmonary function tests

    Directory of Open Access Journals (Sweden)

    Mohammad Hossain Boskabady

    2014-01-01

    Full Text Available Background: The prevalence of water pipe (WP smoking was studied using a standard questionnaire. Pulmonary function tests were also compared between WP smokers and non-smokers. Materials and Methods: The prevalence of WP smoking was studied using a standard questionnaire. Pulmonary function tests including forced vital capacity (FVC, forced expiratory volume in one second (FEV1, maximal mid-expiratory flow (MMEF, peak expiratory flow (PEF, maximal expiratory flow at 75%, 50%, and 25% of the FVC (MEF75,50,25 were compared between WP smokers and non-smokers. Results: A total of 673 individuals including 372 males and 301 females were interviewed. The number of WP smokers was 58 (8.6% including 24 males (6.5% and 34 females (11.3%. All pulmonary functional test (PFT values in WP smokers were lower as compared to the non-smokers (P < 0.05 to P < 0.001. The prevalence and severity of respiratory symptoms (RS in WP smokers were higher than non-smokers (P < 0.05 to P < 0.001. There were negative correlations between PFT values and positive correlation between RS and duration, rate, as well as total smoking (duration X rate (P < 0.05 to P < 0.001. Conclusion: In this study the prevalence of WP smoking in Mashhad city was evaluated for the first time. The results also showed a significant effect of WP smoking on PFT values and respiratory symptoms.

  3. Prevalence of water pipe smoking in the city of Mashhad (North East of Iran) and its effect on respiratory symptoms and pulmonary function tests.

    Science.gov (United States)

    Boskabady, Mohammad Hossain; Farhang, Lila; Mahmoodinia, Mahbobeh; Boskabady, Morteza; Heydari, Gholam Reza

    2014-07-01

    The prevalence of water pipe (WP) smoking was studied using a standard questionnaire. Pulmonary function tests were also compared between WP smokers and non-smokers. The prevalence of WP smoking was studied using a standard questionnaire. Pulmonary function tests including forced vital capacity (FVC), forced expiratory volume in one second (FEV1), maximal mid-expiratory flow (MMEF), peak expiratory flow (PEF), maximal expiratory flow at 75%, 50%, and 25% of the FVC (MEF75,50,25) were compared between WP smokers and non-smokers. A total of 673 individuals including 372 males and 301 females were interviewed. The number of WP smokers was 58 (8.6%) including 24 males (6.5%) and 34 females (11.3%). All pulmonary functional test (PFT) values in WP smokers were lower as compared to the non-smokers (P prevalence and severity of respiratory symptoms (RS) in WP smokers were higher than non-smokers (P prevalence of WP smoking in Mashhad city was evaluated for the first time. The results also showed a significant effect of WP smoking on PFT values and respiratory symptoms.

  4. 76 FR 49666 - Safety Zone; East Coast Drag Boat Bucksport Blowout Boat Race, Waccamaw River, Bucksport, SC

    Science.gov (United States)

    2011-08-11

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; East Coast Drag Boat Bucksport Blowout Boat... East Coast Drag Boat Bucksport Blowout in Bucksport, South Carolina. The East Coast Drag Boat Bucksport Blowout will consist of a series of high-speed boat races. The event is scheduled to take place on...

  5. Spatial and Temporal Variability of Soil Respiration Fluxes from Alpine and Subalpine Soils in the East River Watershed, Colorado

    Science.gov (United States)

    McCormick, M. E.; Winnick, M.; Rainaldi, G. R.; Lawrence, C. R.; Druhan, J. L.; Hsu, H. T.; Maher, K.

    2016-12-01

    Soil respiration of carbon to the atmosphere represents one of the largest fluxes of the terrestrial carbon cycle and is sensitive to changes in temperature, soil moisture, and processes affecting carbon stability. Despite the importance of these sensitivities, few studies have examined the spatial and temporal heterogeneity of soil CO2 fluxes and their controls on intermediate- to large-scale integrated soil fluxes. In this study, we examine spatial variability at scales of 10-5 -101 km2 and temporal variability at scales of hours to months of soil CO2 fluxes through the 2016 growing season in the East River Watershed, CO. We present analyses of (1) temporal variability of CO2 fluxes from four locations with depth-resolved temperature, moisture content, soil gas pCO2, and soil carbon content measurements; (2) spatial variability of CO2 fluxes and surface soil water content across a gridded hillslope with 74 points over an area of 2.5 x 10-3 km2 measured at multiple times throughout the growing season; and (3) variability of CO2 fluxes and surface soil water content from >20 point locations across the 85 km2 catchment targeting a range of vegetation, slope, and aspect characteristics. Comparing soil CO2 fluxes with depth-resolved temperature, moisture, pCO2 and carbon content, we calculate depth-resolved CO2 production rates and their correlations with soil conditions. Gridded hillslope flux measurements reveal strong and consistent variability across separation distances of 1 - 30 m with a slight dependence on slope position, likely representing the controls of lateral flow on soil moisture content. Finally, we analyze correlations of soil CO2 fluxes from point measurements representing broad-scale landscape units with vegetation and geomorphological characteristics. Combining these observations, we examine the implications of our results for interpolating point flux measurements to the catchment scale and for calculating integrated fluxes through the growing

  6. Soils and late-Quaternary landscape evolution in the Cottonwood River basin, east-central Kansas: Implications for archaeological research

    Science.gov (United States)

    Beeton, J.M.; Mandel, R.D.

    2011-01-01

    Temporal and spatial patterns of landscape evolution strongly influence the temporal and spatial patterns of the archaeological record in drainage systems. In this geoarchaeological investigation we took a basin-wide approach in assessing the soil stratigraphy, lithostratigraphy, and geochronology of alluvial deposits and associated buried soils in the Cottonwood River basin of east-central Kansas. Patterns of landscape evolution emerge when stratigraphic sequences and radiocarbon chronologies are compared by stream size and landform type. In the valleys of high-order streams (???4th order) the Younger Dryas Chronozone (ca. 11,000-10,000 14C yr B.P.) was characterized by slow aggradation accompanied by pedogenesis, resulting in the development of organic-rich cumulic soils. Between ca. 10,000 and 4900 14C yr B.P., aggradation punctuated by soil formation was the dominant process in those valleys. Alluvial fans formed on the margins of high-order stream valleys during the early and middle Holocene (ca. 9000-5000 14C yr B.P.) and continued to develop slowly until ca. 3000-2000 14C yr B.P. The late-Holocene record of high-order streams is characterized by episodes of entrenchment, rapid aggradation, and slow aggradation punctuated by soil development. By contrast, the early and middle Holocene (ca. 10,000-5000 14C yr B.P.) was a period of net erosion in the valleys of low-order streams. However, during the late Holocene small valleys became zones of net sediment storage. Consideration of the effects of these patterns of landscape evolution on the archaeological record is crucial for accurately interpreting that record and searching for buried archaeological deposits dating to specific cultural periods. ?? 2011 Wiley Periodicals, Inc. ?? 2011 Wiley Periodicals, Inc..

  7. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  8. Experimental use of Line-X coated steel pipe piles, Clay Hill Bridge (#2157) replacement project over the Mousam River, Route 9/Western Avenue, Kennebunk, Maine.

    Science.gov (United States)

    2013-02-01

    Steel pipe piles used by MaineDOT for bridge construction are typically coated with a fusion-bonded epoxy (FBE). FBE is a powder-based coating with properties similar to traditional : epoxies. Its name is derived from the process by which it adheres ...

  9. Contribution of Nutrient-enriched Groundwater to Excessive Algal Growth along a Select Reach of the East Fork Carson River, West-Central Nevada

    Science.gov (United States)

    Alvarez, N. L.; Pahl, R. A.; Rosen, M. R.

    2016-12-01

    A study during the summers of 2010 and 2012 was conducted to determine if nutrient-enriched groundwater discharge contributed to excessive algal growth observed along a 5,800-foot reach of the East Fork Carson River in Carson Valley, west-central Nevada. Groundwater discharge to the river was determined using flow-net analysis, chloride-mass balance, and differences in measured streamflow. Water samples were collected from the river and shallow groundwater wells located in the river and along the banks for determination of nutrient concentrations and sources; algae samples were collected from the 5,800-foot river reach. Groundwater was found to be discharging to the river from both banks along a 405-foot sub-reach in the middle of the 5,800-foot study reach. High nitrate concentrations (2-3 milligrams per liter as nitrogen) were found in the groundwater along the right bank of the sub-reach. Within this sub-reach, river nitrate loads ranged from 1.3 to 7.9 pounds of nitrogen (N) per day; groundwater nitrate loads were estimated to be 0.07 pounds of N per day. Dissolved orthophosphate river loads ranged from 0.12 to 0.20 pounds of phosphorus (P) per day; groundwater orthophosphate loads were estimated to be 0.005 pounds of P per day. This sub-reach had the highest average algal biomass within the study reach. The data suggest that nutrient rich groundwater discharging to the river may create a favorable microenvironment for periphyton that assimilate available nutrients before the groundwater mixes with overlying river water. The source of nitrate in groundwater is likely anthropogenic as groundwater nitrate concentrations above background concentrations were only found along the right bank of the river adjacent to a housing development. Organic-wastewater compounds detected in groundwater samples collected from wells along the right bank within this sub-reach offer independent support that the elevated nitrate concentrations were human-derived.

  10. Acidification mediated by a river plume and coastal upwelling on a fringing reef at the east coast of Hainan Island, Northern South China Sea

    Science.gov (United States)

    Dong, Xu; Huang, Haining; Zheng, Nan; Pan, Aijun; Wang, Sumin; Huo, Cheng; Zhou, Kaiwen; Lin, Hui; Ji, Weidong

    2017-09-01

    We investigated the dynamics of carbonate system which was greatly modulated by a river plume and coastal upwelling in July 2014 and July 2015 at the east coast of Hainan Island where a fringing reef distributes inshore. By using a three end-member mixing model, we semiquantitatively estimated the removal of dissolved inorganic carbon (DIC) mediated by biological production in the river plume and upwelled water to be 13 ± 17 and 15 ± 16 μmol kg-1, respectively. The enhanced organic production was mainly responsible for these DIC consumptions in both two regimes, however, nearly a half of DIC removal was attributed to biocalcification in the plume system while it was negligible in the upwelling system. Furthermore, the modeled results over reefs revealed that river plume and coastal upwelling were two major threats of acidification to coral communities at the east coast of Hainan Island during cruises. In comparison, the biological contribution to acidification was limited for balancing between organic production and biocalcification during July 2014 cruise, whereas the acidification was greatly intensified by organic degradation during July 2015 cruise. It was verified that naturally local acidification (physical and biological processes) played a major role in great pH decreases on a short-term scale, leading to coastal waters more vulnerable to anthropogenic "ocean acidification" (uptake of atmospheric CO2) by reducing buffering capacity of waters. Finally, effects of acidification associated with other local threats on a fringing reef were further depicted with a conceptual model.

  11. Concentration-Discharge Relationships, Nested Reaction Fronts, and the Balance of Oxidative and Acid-Base Weathering Fluxes in an Alpine Catchment, East River, Colorado

    Science.gov (United States)

    Winnick, M.; Carroll, R. W. H.; Williams, K. H.; Maxwell, R. M.; Maher, K.

    2016-12-01

    Although important for solute production and transport, the varied interactions between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the headwaters of the East River, CO, a high-elevation shale-dominated catchment system in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with well-defined clockwise hysteresis, indicating the mobilization and depletion of DOC in the upper soil horizons and highlighting the importance of shallow flowpaths through the snowmelt period. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both carbonic acid and sulfuric acid derived from oxidation of pyrite in the shale bedrock. Sulfuric acid weathering in the deep subsurface dominates during base flow conditions when waters have infiltrated below the hypothesized pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during the snowmelt period as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This increase in CO2(aq) at the expense of HCO3- results in outgassing of CO2 when waters equilibrate to surface conditions, and reduces the export of carbon and alkalinity from the East River by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering therefore have the capacity to substantially alter the cycling of carbon in the East River catchment. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.

  12. New or little-known species of Chaetocladius s. str. Kieffer, 1911 (Diptera: Chironomidae: Orthocladiinae) from the Amur River basin (Russian Far East).

    Science.gov (United States)

    Makarchenko, Eugenyi A; Makarchenko, Marina A; Semenchenko, Alexander A

    2017-03-27

    Chironomids of the subgenus Chaetocladius s. str. from the Amur River basin are revised using both morphological characters and molecular data. Three new species, C. egorych sp. nov., C. lopatinskiy sp. nov. and C. yavorskayae sp. nov., are described and figured. The pupa of C. fedotkin is described for the first time. Adult males of C. ligni and C. piger, little-known in the Far East, are redescribed and annotated, and key to males of the Chaetocladius s. str. from the Amur River basin is provided. A reference 658 bp barcode sequence from a fragment of the mitochondrial gene cytochrome oxidase I (COI) was used as a tool for species delimitation. Comparisons with corresponding regions of COI between 5 species in the subgenus produced K2P genetic distances of 8.3-12.6%, values well associated with interspecific variation. Molecular data were also used for the reconstruction of the phylogenetic relationships within the subgenus Chaetocladius s. str.

  13. Soft sediment deformation associated with the East Patna Fault south of the Ganga River, northern India: Influence of the Himalayan tectonics on the southern Ganga plain

    Science.gov (United States)

    Verma, Aditya K.; Pati, Pitambar; Sharma, Vijay

    2017-08-01

    The geomorphic, tectonic and seismic aspects of the Ganga plain have been studied by several workers in the recent decades. However, the northern part of this tectonically active plain has been the prime focus in most of the studies. The region to the south of the Ganga River requires necessary attention, especially, regarding the seismic activities. The region lying immediately south of the Outer Himalayas (i.e. the Ganga plain) responds to the stress regime of the Himalayan Frontal Thrust Zone by movement along the existing basement faults (extending from the Indian Peninsula) and creating new surface faults within the sediment cover as well. As a result, several earthquakes have been recorded along these basement faults, such as the great earthquakes of 1934 and 1988 associated with the East Patna Fault. Large zones of ground failure and liquefaction in north Bihar (close to the Himalayan front), have been recorded associated with these earthquakes. The present study reports the soft sediment deformation structures from the south Bihar associated with the prehistoric earthquakes near the East Patna Fault for the first time. The seismites have been observed in the riverine sand bed of the Dardha River close to the East Patna Fault. Several types of liquefaction-induced deformation structures such as pillar and pocket structure, thixotropic wedge, liquefaction cusps and other water escape structures have been identified. The location of the observed seismites within the deformed zone of the East Patna Fault clearly indicates their formation due to activities along this fault. However, the distance of the liquefaction site from the recorded epicenters suggests its dissociation with the recorded earthquakes so far and hence possibly relates to any prehistoric seismic event. The occurrence of the earthquakes of a magnitude capable of forming liquefaction structure in the southern Ganga plain indicates the transfer of stress regime far from the Himalayan front into

  14. Shield For Flexible Pipe

    Science.gov (United States)

    Ponton, Michael K.; Williford, Clifford B.; Lagen, Nicholas T.

    1995-01-01

    Cylindrical shield designed to fit around flexible pipe to protect nearby workers from injury and equipment from damage if pipe ruptures. Designed as pressure-relief device. Absorbs impact of debris ejected radially from broken flexible pipe. Also redirects flow of pressurized fluid escaping from broken pipe onto flow path allowing for relief of pressure while minimizing potential for harm.

  15. Fundamentals of piping design

    CERN Document Server

    Smith, Peter

    2013-01-01

    Written for the piping engineer and designer in the field, this two-part series helps to fill a void in piping literature,since the Rip Weaver books of the '90s were taken out of print at the advent of the Computer Aid Design(CAD) era. Technology may have changed, however the fundamentals of piping rules still apply in the digitalrepresentation of process piping systems. The Fundamentals of Piping Design is an introduction to the designof piping systems, various processes and the layout of pipe work connecting the major items of equipment forthe new hire, the engineering student and the vetera

  16. 75 FR 38411 - Drawbridge Operation Regulations; Chelsea River, Chelsea and East Boston, MA, Event-Road Race

    Science.gov (United States)

    2010-07-02

    ... Boston, MA, Event--Road Race AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from... Chelsea River Revel 5K Road Race. DATES: This deviation is effective from 8 a.m. through 5 p.m. on July 24... Boston, requested a temporary deviation to facilitate a public event, the Chelsea River Revel 5K Road...

  17. Flexible ocean upwelling pipe

    Science.gov (United States)

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  18. Water Storage Changes in the Tigris-Euphrates River Basin and the Middle East from GRACE with Implications for Transboundary Water Management

    Science.gov (United States)

    Voss, K.; Famiglietti, J. S.; Lo, M.; De Linage, C.

    2011-12-01

    In this work, we use observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to evaluate freshwater storage trends in the Tigris-Euphrates River Basin from January 2003 to December 2009. GRACE data show an alarming rate of decrease in total water storage of approximately -27.2 ± 0.6 mm/year equivalent water height, equal to a volume of 143.6 km3 during the course of the study period. We use additional remote-sensing information and output from land-surface models to identify that groundwater losses are the major source of this trend. The approach followed here provides an example of 'best current capabilities' in regions like the Middle East, where data access can be severely limited. Results indicate that the Tigris-Euphrates River Basin region lost 15.6 ± 2.9 mm/year of groundwater during the study period, or 82.3 ± 15.4 km3 in volume. Furthermore, results raise important issues regarding water use in transboundary river basins and aquifers, including the necessity of international water use treaties and resolving discrepancies in international water law, while amplifying the need for increased monitoring for core components of the water budget.

  19. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A; Parisher

    2000-01-01

    Pipe designers and drafters provide thousands of piping drawings used in the layout of industrial and other facilities. The layouts must comply with safety codes, government standards, client specifications, budget, and start-up date. Pipe Drafting and Design, Second Edition provides step-by-step instructions to walk pipe designers and drafters and students in Engineering Design Graphics and Engineering Technology through the creation of piping arrangement and isometric drawings using symbols for fittings, flanges, valves, and mechanical equipment. The book is appropriate primarily for pipe

  20. HPFRCC - Extruded Pipes

    DEFF Research Database (Denmark)

    Stang, Henrik; Pedersen, Carsten

    1996-01-01

    The present paper gives an overview of the research onHigh Performance Fiber Reinforced Cementitious Composite -- HPFRCC --pipes recently carried out at Department of Structural Engineering, Technical University of Denmark. The project combines material development, processing technique development......-w$ relationship is presented. Structural development involved definition of a new type of semi-flexiblecement based pipe, i.e. a cement based pipe characterized by the fact that the soil-pipe interaction related to pipe deformation is an importantcontribution to the in-situ load carrying capacity of the pipe...

  1. Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake Bay, East Coast, USA

    Science.gov (United States)

    Rice, Karen; Bo Hong,; Jian Shen,

    2012-01-01

    Global sea level is rising, and the relative rate in the Chesapeake Bay region of the East Coast of the United States is greater than the worldwide rate. Sea-level rise can cause saline water to migrate upstream in estuaries and rivers, threatening freshwater habitat and drinking-water supplies. The effects of future sea-level rise on two tributaries of Chesapeake Bay, the James and Chickahominy (CHK) Rivers, were evaluated in order to quantify the salinity change with respect to the magnitude of sea-level rise. Such changes are critical to: 1) local floral and faunal habitats that have limited tolerance ranges to salinity; and 2) a drinking-water supply for the City of Newport News, Virginia. By using the three-dimensional Hydrodynamic-Eutrophication Model (HEM-3D), sea-level rise scenarios of 30, 50, and 100 cm, based on the U.S. Climate Change Science Program for the mid-Atlantic region for the 21st century, were evaluated. The model results indicate that salinity increases in the entire river as sea level rises and that the salinity increase in a dry year is greater than that in a typical year. In the James River, the salinity increase in the middle-to-upper river (from 25 to 50 km upstream of the mouth) is larger than that in the lower and upper parts of the river. The maximum mean salinity increase would be 2 and 4 ppt for a sea-level rise of 50 and 100 cm, respectively. The upstream movement of the 10 ppt isohaline is much larger than the 5 and 20 ppt isohalines. The volume of water with salinity between 10 and 20 ppt would increase greatly if sea level rises 100 cm. In the CHK River, with a sea-level rise of 100 cm, the mean salinity at the drinking-water intake 34 km upstream of the mouth would be about 3 ppt in a typical year and greater than 5 ppt in a dry year, both far in excess of the U.S. Environmental Protection Agency's secondary standard for total dissolved solids for drinking water. At the drinking-water intake, the number of days of

  2. Influence of river discharge on abundance and dissemination of heterotrophic, indicator and pathogenic bacteria along the east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, V.R.; Srinivas, T.N.R.; Sarma, V.V.S.S.

    In order to examine the influence of discharge from different rivers from peninsular India and urban sewage on intensity and dissemination of heterotrophic, indicator and pathogenic bacteria, a study was carried out during peak discharge period...

  3. Spatio-temporal variation in bed-material load using dune topography collected during a severe flood on the coastal Trinity River, east TX, USA

    Science.gov (United States)

    Mason, J.; Mohrig, D. C.

    2015-12-01

    A series of six repeat surveys along 27 kilometers of the coastal Trinity River in east Texas, USA, reveal the temporal and spatial changes in bed material load during and following a historically large flood. The river event was above the National Weather Service flood stage for 55 days at the Liberty USGS station, and had a maximum discharge of about 80,000 cfs. As a community, we are beginning to understand how fluvial geomorphology is influenced by the backwater effect, but we still lack an understanding of how the bed-material transport adjusts to accommodate larger-scale changes in river bend pattern and kinematics. Survey data from this project includes sidescan sonar along the channel centerline, multibeam bathymetry, and channel bed sediment samples. In combination, this data set provides new insight into how and when bed material, primarily medium sand with some pebbles, moves through this region, and how this connects to previously observed changes in channel geometry (including downstream decreases in channel width to depth ratio, bar form volume and surface area, and lateral migration rates of river bends). Preliminary examination of sidescan sonar of two bends within the survey area, one upstream and one downstream, reveal a striking difference in bedform behavior in response to the changing hydrograph. Upstream, bedforms decrease 80% in height and 83% in length and increase in 3-dimensionality throughout the extended peak flow. During the falling limb of the flood these same bedforms increase in size as they become more laterally continuous and straight-crested. Downstream, 3-dimensional bedforms decrease 80% in height and 87% in length throughout the extended peak flow and then remain this size during the falling limb of the flood. This presentation will discuss these results with respect to backwater dynamics, sediment supply and transport, implications for coastal geomorphology as well as sediment delivery into deltaic systems.

  4. Geographic Information System (GIS) characterizations of the distribution of seagrasses along the East coast of Florida in the Indian River (Kennedy Space Center to Hobe Sound), 1992 (NODC Accession 0000601)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GIS file in this accession shows the distribution of sea grass beds in the Indian River on the east coast of Florida. Data files are written in the ArcInfo...

  5. Geographic Information System (GIS) characterizations of the distribution of seagrasses along the East coast of Florida in the Indian River (Kennedy Space Center to Hobe Sound), 1993 (NODC Accession 0000602)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GIS file in this accession shows the distribution of sea grass beds in the Indian River on the east coast of Florida. Data files are written in the ArcInfo...

  6. A STRUCTURAL INTEGRITY ASSESSMENT OF UNDERGROUND PIPING ASSOCIATED WITH THE TRANSFER OF RADIOACTIVE WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B

    2006-04-25

    Radioactive wastes are confined in 49 underground storage tanks at the Savannah River Site. The waste is transported between tanks via underground transfer piping. An assessment of the structural integrity of the transfer piping was performed to ensure that the present condition of the piping was sound and to provide life expectancy estimates for the piping based on anticipated service. The assessment reviewed the original design of the piping, the potential and observed degradation mechanisms, the results from past inspections of the piping, and a Fitness-For-Service evaluation for a section of piping that experienced pitting in a locally thinned area. The assessment concluded that the piping was structurally sound. Assuming that service conditions remain the same, the piping will remain functional for its intended service life.

  7. Snowmelt controls on concentration-discharge relationships and the balance of oxidative and acid-base weathering fluxes in an alpine catchment, East River, Colorado

    Science.gov (United States)

    Winnick, Matthew J.; Carroll, Rosemary W. H.; Williams, Kenneth H.; Maxwell, Reed M.; Dong, Wenming; Maher, Kate

    2017-03-01

    Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high-elevation shale-dominated catchment in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flow paths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyrite oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during base flow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flow paths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.

  8. Performance of the WRF model to simulate the seasonal and interannual variability of hydrometeorological variables in East Africa: a case study for the Tana River basin in Kenya

    Science.gov (United States)

    Kerandi, Noah Misati; Laux, Patrick; Arnault, Joel; Kunstmann, Harald

    2017-10-01

    This study investigates the ability of the regional climate model Weather Research and Forecasting (WRF) in simulating the seasonal and interannual variability of hydrometeorological variables in the Tana River basin (TRB) in Kenya, East Africa. The impact of two different land use classifications, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) and the US Geological Survey (USGS) at two horizontal resolutions (50 and 25 km) is investigated. Simulated precipitation and temperature for the period 2011-2014 are compared with Tropical Rainfall Measuring Mission (TRMM), Climate Research Unit (CRU), and station data. The ability of Tropical Rainfall Measuring Mission (TRMM) and Climate Research Unit (CRU) data in reproducing in situ observation in the TRB is analyzed. All considered WRF simulations capture well the annual as well as the interannual and spatial distribution of precipitation in the TRB according to station data and the TRMM estimates. Our results demonstrate that the increase of horizontal resolution from 50 to 25 km, together with the use of the MODIS land use classification, significantly improves the precipitation results. In the case of temperature, spatial patterns and seasonal cycle are well reproduced, although there is a systematic cold bias with respect to both station and CRU data. Our results contribute to the identification of suitable and regionally adapted regional climate models (RCMs) for East Africa.

  9. Distribution of meiobenthos and macrobenthos at the mouth of some rivers of the East coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Rodrigues, C.L.; Chatterji, A.; Parulekar, A.H.

    Distribution of meio- and macrobenthos of muddy bottom deposits at the mouth of Krishna, Godavari, Mahanadi and Hooghly rivers was studied from replicate sampling Total meiofauna ranged from 226 animals/4.5 cm super(2) to 967 animals/4.5 cm super(2...

  10. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    Understanding the physical processes of point source (PS) and nonpoint source (NPS) pollution is critical to evaluate river water quality and identify major pollutant sources in a watershed. In this study, we used the physically-based hydrological/water quality model, Soil and Water Assessment Tool, to investigate the influence of PS and NPS pollution on the water quality of the East River (Dongjiang in Chinese) in southern China. Our results indicate that NPS pollution was the dominant contribution (>94%) to nutrient loads except for mineral phosphorus (50%). A comprehensive Water Quality Index (WQI) computed using eight key water quality variables demonstrates that water quality is better upstream than downstream despite the higher level of ammonium nitrogen found in upstream waters. Also, the temporal (seasonal) and spatial distributions of nutrient loads clearly indicate the critical time period (from late dry season to early wet season) and pollution source areas within the basin (middle and downstream agricultural lands), which resource managers can use to accomplish substantial reduction of NPS pollutant loadings. Overall, this study helps our understanding of the relationship between human activities and pollutant loads and further contributes to decision support for local watershed managers to protect water quality in this region. In particular, the methods presented such as integrating WQI with watershed modeling and identifying the critical time period and pollutions source areas can be valuable for other researchers worldwide.

  11. Characterizing and modelling river channel migration rates at a regional scale: Case study of south-east France.

    Science.gov (United States)

    Alber, Adrien; Piégay, Hervé

    2017-11-01

    An increased awareness by river managers of the importance of river channel migration to sediment dynamics, habitat complexity and other ecosystem functions has led to an advance in the science and practice of identifying, protecting or restoring specific erodible corridors across which rivers are free to migrate. One current challenge is the application of these watershed-specific goals at the regional planning scales (e.g., the European Water Framework Directive). This study provides a GIS-based spatial analysis of the channel migration rates at the regional-scale. As a case study, 99 reaches were sampled in the French part of the Rhône Basin and nearby tributaries of the Mediterranean Sea (111,300 km2). We explored the spatial correlation between the channel migration rate and a set of simple variables (e.g., watershed area, channel slope, stream power, active channel width). We found that the spatial variability of the channel migration rates was primary explained by the gross stream power (R2 = 0.48) and more surprisingly by the active channel width scaled by the watershed area. The relationship between the absolute migration rate and the gross stream power is generally consistent with the published empirical models for freely meandering rivers, whereas it is less significant for the multi-thread reaches. The discussion focused on methodological constraints for a regional-scale modelling of the migration rates, and the interpretation of the empirical models. We hypothesize that the active channel width scaled by the watershed area is a surrogate for the sediment supply which may be a more critical factor than the bank resistance for explaining the regional-scale variability of the migration rates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Capacity of humic substances to complex with iron at different salinities in the Yangtze River estuary and East China Sea.

    Science.gov (United States)

    Yang, Rujun; Su, Han; Qu, Shenglu; Wang, Xuchen

    2017-05-03

    The iron binding capacities (IBC) of fulvic acid (FA) and humic acid (HA) were determined in the salinity range from 5 to 40. The results indicated that IBC decreased while salinity increased. In addition, dissolved iron (dFe), FA and HA were also determined along the Yangtze River estuary's increasing salinity gradient from 0.14 to 33. The loss rates of dFe, FA and HA in the Yangtze River estuary were up to 96%, 74%, and 67%, respectively. The decreases in dFe, FA and HA, as well as the change in IBC of humic substances (HS) along the salinity gradient in the Yangtze River estuary were all well described by a first-order exponential attenuation model: y(dFe/FA/HA, S) = a0 × exp(kS) + y0. These results indicate that flocculation of FA and HA along the salinity gradient resulted in removal of dFe. Furthermore, the exponential attenuation model described in this paper can be applied in the major estuaries of the world where most of the removal of dFe and HS occurs where freshwater and seawater mix.

  13. Finite elements analysis of an underground collector installed by pipe-jacking method

    Science.gov (United States)

    María Díaz-Díaz, Luis; Omer, Joshua; Arias, Daniel; Pando, Luis

    2016-04-01

    This study presents a useful analysis method for estimating simultaneously the stability, stress distribution and groundwater seepage as micro - tunnel is being advanced into the ground. The research is mainly concerned with the results of a case study conducted on a project to create a long industrial collector of effluent network in the east bank of the river Avilés (north coast of Spain). This coastal city has significant port and industrial installations in its environs. The geology of the location comprises Quaternary deposits on both flanks of the estuary and includes different highly variable geotechnical behavior. The industrial effluent network, constructed in the year 2010, has a length of 13.087 km and consists of 1.5 m diameter pipes, reaching a maximum depth of 5.8 m below the surface. Only the first 7.0 km of the collector (south area) were formed using pipe-jacking method whilst the rest were formed in open excavations or surface laid. Using the commercial software RS2, a 2D finite element program for soil and rock application, the ground response to pipe jacking in pipeline installation in Avilés was analyzed. Both axi-symmetric and plane strain analyses were carried out in RS2 to simulate in 3D the ground response to pipe advancement. The results demonstrate how much of deformation there is at ground surface in the immediate vicinity of the pipeline. The main objective is to show the possible patterns of ground subsidence and tunnel stresses to inform designers as to whether the tunnel will be stable and safe.

  14. Fluvial incision by the Qingyijiang River on the northern fringe of Mt. Huangshan, eastern China: Responses to weakening of the East Asian summer monsoon

    Science.gov (United States)

    Hu, Chunsheng; Liu, Shaochen; Hu, Chenqi; Xu, Guanglai; Zhou, Yingqiu

    2017-12-01

    This paper focuses on climatic and tectonic controls to determine their relative importance to the Quaternary fluvial incision by the Qingyijiang River, eastern China. The Qingyijiang, which is one of longest tributaries of the lower Yangtze River, drains the northern piedmont of Mt. Huangshan. A field survey focused on three natural sections of the Qingyijiang in the Jingxian basin, where a well-preserved sequence of one alluvial platform (P) and three fluvial terraces (T3, T2, and T1) is presented. The heights of the platform and the terraces above river level are 65, 40, 20, and 7 m respectively. In this study, electron spin resonance (ESR), optical stimulated luminescence (OSL), and palaeomagnetic dating were applied to reconstruct the fluvial incision history of the Qingyijiang and evaluate the possible influence of tectonic uplift and/or climate change on the fluvial incision. The main results show that (1) the ages of P, T3, T2, and T1 were determined to be ∼ 1300, ∼ 900, ∼ 600, and ∼ 1.5 ka respectively, corresponding to four incision events in the Qingyijiang; (2) the East Asian summer monsoon (EASM) experienced four significant weakening events at 1300, 900, 600, and ∼ 1.5 ka, according to previous research. Correspondingly, we propose that four significant increased periods of regional precipitation occurred at 1300, 900, 600, and ∼ 1.5 ka in the study area because of the negative correlation between the intensity of the EASM and regional precipitation from 1960 to 2012; and (3) fluvial incision by the Qingyijiang arose as a result of the weakening of the EASM in combination with tectonic uplift, determined by matching fluvial incision history of the Qingyijiang with tectonic movement and EASM change. In addition, the weakening of the EASM climatically triggered fluvial incision by the Qingyijiang. This study supports the conclusion that major fluvial incision has been climatically triggered; however, it also suggests that the mechanism of

  15. Pipe dream? Envisioning a grassroots Python ecosystem of open, common software tools and data access in support of river and coastal biogeochemical research (Invited)

    Science.gov (United States)

    Mayorga, E.

    2013-12-01

    Practical, problem oriented software developed by scientists and graduate students in domains lacking a strong software development tradition is often balkanized into the scripting environments provided by dominant, typically proprietary tools. In environmental fields, these tools include ArcGIS, Matlab, SAS, Excel and others, and are often constrained to specific operating systems. While this situation is the outcome of rational choices, it limits the dissemination of useful tools and their integration into loosely coupled frameworks that can meet wider needs and be developed organically by groups addressing their own needs. Open-source dynamic languages offer the advantages of an accessible programming syntax, a wealth of pre-existing libraries, multi-platform access, linkage to community libraries developed in lower level languages such as C or FORTRAN, and access to web service infrastructure. Python in particular has seen a large and increasing uptake in scientific communities, as evidenced by the continued growth of the annual SciPy conference. Ecosystems with distinctive physical structures and organization, and mechanistic processes that are well characterized, are both factors that have often led to the grass-roots development of useful code meeting the needs of a range of communities. In aquatic applications, examples include river and watershed analysis tools (River Tools, Taudem, etc), and geochemical modules such as CO2SYS, PHREEQ and LOADEST. I will review the state of affairs and explore the potential offered by a Python tool ecosystem in supporting aquatic biogeochemistry and water quality research. This potential is multi-faceted and broadly involves accessibility to lone grad students, access to a wide community of programmers and problem solvers via online resources such as StackExchange, and opportunities to leverage broader cyberinfrastructure efforts and tools, including those from widely different domains. Collaborative development of such

  16. Introduction to Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  17. River

    Directory of Open Access Journals (Sweden)

    Morel Mathieu

    2016-01-01

    Full Text Available The OECD report “Boosting Resilience through Innovative Risk Governance” examines the efforts of OECD countries to prevent or reduce future disaster impacts, and highlights several key areas where improvements can be made. International collaboration is insufficiently utilised to address shocks that have increasingly global consequences. Institutional design plays a significant role in facilitating or hampering the engagement and investments of governmental and non-governmental stakeholders in disaster risk prevention and mitigation. To inform the design of “better” institutions, the OECD proposes the application of a diagnostic framework that helps governments identify institutional shortcomings and take actions to improve them. The goal of the case study on the Rhone River is to conduct an analysis of the progress, achievements and existing challenges in designing and implementing disaster risk reduction strategies through the Rhone Plan from a comparative perspective across a set of selected countries of this study, like Austria and Switzerland, will inform how to improve institutional frameworks governing risk prevention and mitigation. The case study will be used to identify examples of successful practice taking into account their specific country contexts, and analyse their potential for policy transfer.

  18. Hyporheic Exchange Flows and Biogeochemical Patterns near a Meandering Stream: East Fork of the Jemez River, Valles Caldera National Preserve, New Mexico

    Science.gov (United States)

    Christensen, H.; Wooten, J. P.; Swanson, E.; Senison, J. J.; Myers, K. D.; Befus, K. M.; Warden, J.; Zamora, P. B.; Gomez, J. D.; Wilson, J. L.; Groffman, A.; Rearick, M. S.; Cardenas, M. B.

    2012-12-01

    A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed

  19. Model Watershed Plan; Lemhi, Pahsimeroi, and East Fork of the Salmon River Management Plan, 1995 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Ralph

    1995-11-01

    Idaho`s Model Watershed Project was established as part of the Northwest Power Planning Council`s plan for salmon recovery in the Columbia River Basin. The Council`s charge was simply stated and came without strings. The tasks were to identify actions within the watershed that are planned or needed for salmon habitat, and establish a procedure for implementing habitat-improvement measures. The Council gave the responsibility of developing this project to the Idaho Soil Conservation Commission. This Model Watershed Plan is intended to be a dynamic plan that helps address these two tasks. It is not intended to be the final say on either. It is also not meant to establish laws, policies, or regulations for the agencies, groups, or individuals who participated in the plan development.

  20. Relations between continuous real-time turbidity data and discrete suspended-sediment concentration samples in the Neosho and Cottonwood Rivers, east-central Kansas, 2009-2012

    Science.gov (United States)

    Foster, Guy M.

    2014-01-01

    The Neosho River and its primary tributary, the Cottonwood River, are the primary sources of inflow to the John Redmond Reservoir in east-central Kansas. Sedimentation rate in the John Redmond Reservoir was estimated as 743 acre-feet per year for 1964–2006. This estimated sedimentation rate is more than 80 percent larger than the projected design sedimentation rate of 404 acre-feet per year, and resulted in a loss of 40 percent of the conservation pool since its construction in 1964. To reduce sediment input into the reservoir, the Kansas Water Office implemented stream bank stabilization techniques along an 8.3 mile reach of the Neosho River during 2010 through 2011. The U.S. Geological Survey, in cooperation with the Kansas Water Office and funded in part through the Kansas State Water Plan Fund, operated continuous real-time water-quality monitors upstream and downstream from stream bank stabilization efforts before, during, and after construction. Continuously measured water-quality properties include streamflow, specific conductance, water temperature, and turbidity. Discrete sediment samples were collected from June 2009 through September 2012 and analyzed for suspended-sediment concentration (SSC), percentage of sediments less than 63 micrometers (sand-fine break), and loss of material on ignition (analogous to amount of organic matter). Regression models were developed to establish relations between discretely measured SSC samples, and turbidity or streamflow to estimate continuously SSC. Continuous water-quality monitors represented between 96 and 99 percent of the cross-sectional variability for turbidity, and had slopes between 0.91 and 0.98. Because consistent bias was not observed, values from continuous water-quality monitors were considered representative of stream conditions. On average, turbidity-based SSC models explained 96 percent of the variance in SSC. Streamflow-based regressions explained 53 to 60 percent of the variance. Mean squared

  1. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  2. The monster sound pipe

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2017-03-01

    Producing a deep bass tone by striking a large 3 m (10 ft) flexible corrugated drainage pipe immediately grabs student attention. The fundamental pitch of the corrugated tube is found to be a semitone lower than a non-corrugated smooth pipe of the same length. A video (https://youtu.be/FU7a9d7N60Y) of the demonstration is included, which illustrates how an Internet keyboard can be used to estimate the fundamental pitches of each pipe. Since both pipes have similar end corrections, the pitch discrepancy between the smooth pipe and drainage tube is due to the corrugations, which lower the speed of sound inside the flexible tube, dropping its pitch a semitone.

  3. Population subdivision of the surf clam Mactra chinensis in the East China Sea: Changjiang River outflow is not the sole driver.

    Science.gov (United States)

    Ni, Gang; Li, Qi; Ni, Lehai; Kong, Lingfeng; Yu, Hong

    2015-01-01

    The northwestern Pacific, characterized by unique tectonic and hydrological settings, has greatly intrigued marine phylogeographers. However, current studies mostly focus on the influence of Pleistocene isolation of sea basins in population structure of species in the region, leaving the contribution of other factors (such as freshwater outflow and environmental gradients) largely unexploited. Here we shed light on the question by investigating phylogeography of the surf clam Mactra chinensis in the East China Sea (ECS). Genetic information was acquired from 501 specimens collected from its main distribution in the region, represented by mitochondrial cytochrome oxidase I (COI) and nine polymorphic microsatellite loci. A shallow and star-like phylogeny was revealed for all COI haplotypes, indicating the origin of populations from a single refugium. Although no divergent lineages existed, population subdivision was detected in both data sets. The most striking pattern was the significant differentiation between populations north and south of a biogeographic boundary-the Changjiang Estuary, suggesting a barrier effect of the freshwater outflow to gene flow. For the northern group, substructure was revealed by COI result as one southernmost population was significant different from other ones. Clear latitude gradations in allele frequencies were revealed by microsatellite analyses, likely influenced by environmental gradient factors such as temperature. Our results demonstrate that genetic subdivision can arise for populations within the ECS despite they have a single origin, and multiple mechanisms including Changjiang River outflow, environmental gradient factors and life-history traits may act in combination in the process.

  4. Population subdivision of the surf clam Mactra chinensis in the East China Sea: Changjiang River outflow is not the sole driver

    Directory of Open Access Journals (Sweden)

    Gang Ni

    2015-09-01

    Full Text Available The northwestern Pacific, characterized by unique tectonic and hydrological settings, has greatly intrigued marine phylogeographers. However, current studies mostly focus on the influence of Pleistocene isolation of sea basins in population structure of species in the region, leaving the contribution of other factors (such as freshwater outflow and environmental gradients largely unexploited. Here we shed light on the question by investigating phylogeography of the surf clam Mactra chinensis in the East China Sea (ECS. Genetic information was acquired from 501 specimens collected from its main distribution in the region, represented by mitochondrial cytochrome oxidase I (COI and nine polymorphic microsatellite loci. A shallow and star-like phylogeny was revealed for all COI haplotypes, indicating the origin of populations from a single refugium. Although no divergent lineages existed, population subdivision was detected in both data sets. The most striking pattern was the significant differentiation between populations north and south of a biogeographic boundary—the Changjiang Estuary, suggesting a barrier effect of the freshwater outflow to gene flow. For the northern group, substructure was revealed by COI result as one southernmost population was significant different from other ones. Clear latitude gradations in allele frequencies were revealed by microsatellite analyses, likely influenced by environmental gradient factors such as temperature. Our results demonstrate that genetic subdivision can arise for populations within the ECS despite they have a single origin, and multiple mechanisms including Changjiang River outflow, environmental gradient factors and life-history traits may act in combination in the process.

  5. Isolation and identification of chitinolytic bacteria of pohara river of South East Sulawesi and the optimization production of chitinase enzyme

    Science.gov (United States)

    Halimahtussadiyah, R.; Natsir, Muh.; Kurniawati, Desy; Utamy, Sukma Puspita

    2017-03-01

    Isolation and identification of chitinolytic bacteria from pohara river and optimation of chitinase enzyme production has been conducted. The aims of the study were isolation, characterize and optimaze of chitinase enzyme production. This study was carried out in three stages; isolation and selection of chitinolytic bacteria, characterization and identification of selected bacteria; optimization of the production of the enzyme (substrate concentration, temperature, and pH), and the determination of growth curve of T3 isolate. The chitinase activity assay was carried out using Schales method. The results of the screening obtained 6 isolates of potential bacteria of chitinolytic. The T3 isolate then was selected for the enzyme production, because it had the highest chitinolytic index of 22.31 mm. The morphological and biochemical observation showed that T3 isolate as a group of bacteria Aerobacter with Gram-negative nature, and shaped bacillus. The optimum condition for chitinase enzyme production was in chitin substrat concentration 0.06%, temperature of 30°C, and pH of 6.

  6. Reeling of tight fit pipe

    NARCIS (Netherlands)

    Focke, E.S.

    2007-01-01

    If it would be possible to install Tight Fit Pipe by means of reeling, it would be an attractive new option for the exploitation of offshore oil and gas fields containing corrosive hydrocarbons. Tight Fit Pipe is a mechanically bonded double walled pipe where a corrosion resistant alloy liner pipe

  7. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A

    2011-01-01

    Pipe Drafting and Design, Third Edition provides step-by-step instructions to walk pipe designers, drafters, and students through the creation of piping arrangement and isometric drawings. It includes instructions for the proper drawing of symbols for fittings, flanges, valves, and mechanical equipment. More than 350 illustrations and photographs provide examples and visual instructions. A unique feature is the systematic arrangement of drawings that begins with the layout of the structural foundations of a facility and continues through to the development of a 3-D model. Advanced chapters

  8. Improved Thin, Flexible Heat Pipes

    Science.gov (United States)

    Rosenfeld, John H.; Gernert, Nelson J.; Sarraf, David B.; Wollen, Peter J.; Surina, Frank C.; Fale, John E.

    2004-01-01

    Flexible heat pipes of an improved type are fabricated as layers of different materials laminated together into vacuum- tight sheets or tapes. In comparison with prior flexible heat pipes, these flexible heat pipes are less susceptible to leakage. Other advantages of these flexible heat pipes, relative to prior flexible heat pipes, include high reliability and greater ease and lower cost of fabrication. Because these heat pipes are very thin, they are highly flexible. When coated on outside surfaces with adhesives, these flexible heat pipes can be applied, like common adhesive tapes, to the surfaces of heat sinks and objects to be cooled, even if those surfaces are curved.

  9. The pipes of pan.

    Science.gov (United States)

    Chalif, David J

    2004-12-01

    The pipes of pan is the crowning achievement of Pablo Picasso's neoclassical period of the 1920s. This monumental canvas depicts a mythological Mediterranean scene in which two sculpted classical giants stare out, seemingly across the centuries, toward a distant and lost Arcadia. Picasso was influenced by Greco-Roman art during his travels in Italy, and his neoclassical works typically portray massive, immobile, and pensive figures. Pan and his pipes are taken directly from Greek mythological lore by Picasso and placed directly into 20th century art. He frequently turned to various mythological figures throughout his metamorphosing periods. The Pipes of Pan was also influenced by the painter's infatuation with the beautiful American expatriate Sara Murphy, and the finished masterpiece represents a revision of a previously conceived neoclassical work. The Pipes of Pan now hangs in the Musee Picasso in Paris.

  10. The Monster Sound Pipe

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2017-01-01

    Producing a deep bass tone by striking a large 3 m (10 ft) flexible corrugated drainage pipe immediately grabs student attention. The fundamental pitch of the corrugated tube is found to be a semitone lower than a non-corrugated smooth pipe of the same length. A video (https://youtu.be/FU7a9d7N60Y) of the demonstration is included, which…

  11. Stuck pipe prediction

    KAUST Repository

    Alzahrani, Majed

    2016-03-10

    Disclosed are various embodiments for a prediction application to predict a stuck pipe. A linear regression model is generated from hook load readings at corresponding bit depths. A current hook load reading at a current bit depth is compared with a normal hook load reading from the linear regression model. A current hook load greater than a normal hook load for a given bit depth indicates the likelihood of a stuck pipe.

  12. Pump Assisted Heat Pipe

    OpenAIRE

    Miyazaki, Yoshiro; OSHIMA, Shigeto

    1987-01-01

    A labortory model of a pump assisted heat pipe has been fablicated and tested. An arterial heat pipe with axial grooves and a gear pump with a magnetic coupling have been developed for the model. The test has been carried out successfully. The reasonable thermal conductance has been obtained so far as the necessary working fluid flow rate is supplied. The necessary flow rate exceeds the theoretical one and the excess flow rate increases as the heat load increases.

  13. Nutrient characteristics in the Yangtze River Estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam.

    Science.gov (United States)

    Chai, Chao; Yu, Zhiming; Shen, Zhiliang; Song, Xiuxian; Cao, Xihua; Yao, Yun

    2009-08-01

    From November 2002 to 2006, five cruises were undertaken in the Yangtze River Estuary and the adjacent East China Sea to compare the nutrient concentrations, ratios and potential nutrient limitation of phytoplankton growth before and after impoundment (June 2003) of the Three Gorges Dam (TGD). Concentrations of dissolved inorganic nitrogen (DIN), soluble reactive phosphorus (SRP) and total nitrogen (TN) exhibited an increasing trend from 2002 to 2006. In contrast, total phosphorus (TP) concentration exhibited a decreasing trend. The mean concentrations of DIN, SRP, and TN in the total study area increased from 21.4 microM, 0.9 microM, and 41.8 microM in 2002 to 37.5 microM, 1.3 microM, and 82.2 microM in 2006, respectively, while TP decreased from 2.1 microM to 1.7 microM. The concentration of dissolved reactive silica (DRSi) had no major fluctuations and the differences were not significant. The mean concentration of DRSi in the total study area ranged from 52.5 to 92.3 microM. The Si:N ratio decreased significantly from 2.7 in 2002 to 1.3 in 2006, while TN:TP ratio increased from 22.1 to 80.3. The area of potential P limitation of phytoplankton growth expanded after 2003 and potential Si limitation appeared in 2005 and 2006. Potential P limitation mainly occurred in an area of salinity less than 30 after 2003, while potential Si limitation occurred where the salinity was greater than 30. By comparison with historical data, the concentrations of nitrate and SRP in this upper estuary during November 1980-2006 increased obviously after impoundment of TGD but DRSi decreased. Meanwhile, the ratios of N:P, Si:N and Si:P decreased obviously.

  14. Nest Movement by Piping Plovers in Response to Changing Habitat Conditions

    National Research Council Canada - National Science Library

    Mark T. Wiltermuth; Michael J. Anteau; Mark H. Sherfy; Terry L. Shaffer

    2009-01-01

    .... On Lake Sakakawea of the upper Missouri River, 37 and 70% of Piping Plover (Charadrius melodus) nests found in 2007 and 2008, respectively, were initiated at elevations inundated prior to projected hatch date...

  15. Heat Pipe Integrated Microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Gass, K.; Robertson, P.J.; Shul, R.; Tigges, C.

    1999-03-30

    The trend in commercial electronics packaging to deliver ever smaller component packaging has enabled the development of new highly integrated modules meeting the demands of the next generation nano satellites. At under ten kilograms, these nano satellites will require both a greater density electronics and a melding of satellite structure and function. Better techniques must be developed to remove the subsequent heat generated by the active components required to-meet future computing requirements. Integration of commercially available electronics must be achieved without the increased costs normally associated with current generation multi chip modules. In this paper we present a method of component integration that uses silicon heat pipe technology and advanced flexible laminate circuit board technology to achieve thermal control and satellite structure. The' electronics/heat pipe stack then becomes an integral component of the spacecraft structure. Thermal management on satellites has always been a problem. The shrinking size of electronics and voltage requirements and the accompanying reduction in power dissipation has helped the situation somewhat. Nevertheless, the demands for increased onboard processing power have resulted in an ever increasing power density within the satellite body. With the introduction of nano satellites, small satellites under ten kilograms and under 1000 cubic inches, the area available on which to place hot components for proper heat dissipation has dwindled dramatically. The resulting satellite has become nearly a solid mass of electronics with nowhere to dissipate heat to space. The silicon heat pipe is attached to an aluminum frame using a thermally conductive epoxy or solder preform. The frame serves three purposes. First, the aluminum frame provides a heat conduction path from the edge of the heat pipe to radiators on the surface of the satellite. Secondly, it serves as an attachment point for extended structures attached

  16. Heat Pipe Technology

    Science.gov (United States)

    1981-01-01

    The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.

  17. Piping systems physical benchmarks

    Energy Technology Data Exchange (ETDEWEB)

    Bezler, P.; Subudhi, M.

    1985-01-01

    Physical benchmark evaluations are used to assess the accuracy and adequacy of the analysis methods and assumptions used in typical piping qualification evaluations. To date physical benchmark evaluations have been completed for five systems involving both laboratory tested and in situ piping. In each evaluation elastic finite element methods are used to predict the time history response of a system for which physical test results are available. In the analytical simulations the measured support excitations and the measured damping properties are used as input and the acceleration and displacement response of piping interior points are predicted as output. Most evaluations were performed blind in that only the measured inputs are provided at the time of analysis. A summary of the overall results as well as predicted and measured time history traces for selected points are included.

  18. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  19. Performance of buried pipe installation.

    Science.gov (United States)

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters : characterizing the soil structure interaction developed in a buried pipe installation located under : roads/highways. The drainage pipes or culverts instal...

  20. Seasonality of CO2 in coastal oceans altered by increasing anthropogenic nutrient delivery from large rivers: evidence from the Changjiang–East China Sea system

    Directory of Open Access Journals (Sweden)

    W.-C. Chou

    2013-06-01

    Full Text Available Model studies suggested that human-induced increase in nutrient load may have stimulated primary production and thus enhanced the CO2 uptake capacity in the coastal ocean. In this study, we investigated the seasonal variations of the surface water's partial pressure of CO2 (pCO2sw in the highly human-impacted Changjiang–East China Sea system between 2008 and 2011. The seasonality of pCO2sw has large spatial variations, with the largest extreme of 170 ± 75 μatm on the inner shelf near the Changjiang Estuary (from 271 ± 55 μatm in summer to 441 ± 51 μatm in autumn and the weakest extreme of 53 ± 20 μatm on the outer shelf (from 328 ± 9 μatm in winter to 381 ± 18 μatm in summer. During the summer period, stronger stratification and biological production driven by the eutrophic Changjiang plume results in a very low dissolved inorganic carbon (DIC in surface waters and a very high DIC in bottom waters of the inner shelf, with the latter returning high DIC to the surface water during the mixed period. Interestingly, a comparison with historical data shows that the average pCO2sw on the inner shelf near the Changjiang Estuary has decreased notably during summer, but has increased during autumn and winter from the 1990s to the 2000s. We suggest that this decadal change is associated with recently increased eutrophication. This would increase both the photosynthetic removal of DIC in surface waters and the respiratory release of DIC in bottom waters during summertime, thereby returning more DIC to the surface during the subsequent mixing seasons and/or episodic extreme weather events (e.g., typhoons. Our finding demonstrates that increasing anthropogenic nutrient delivery from a large river may enhance the sequestration capacity of CO2 in summer but may reduce it in autumn and winter. Consequently, the coastal ocean may not necessarily take up more atmospheric CO2 in response to increasing eutrophication, and the net effect largely depends

  1. Involvement of old crustal materials during formation of the Sakhalin Island (Russian Far East) and its paleogeographic implication: Constraints from detrital zircon ages of modern river sand and Miocene sandstone

    Science.gov (United States)

    Zhao, Pan; Li, Jia-jin; Alexandrov, Igor; Ivin, Vitaly; Jahn, Bor-ming

    2017-09-01

    In order to decipher crustal nature of the Sakhalin Island in Russian Far East, we carried out detrital zircon U-Pb age analyses on Miocene sandstone and river sand from the longest river (Poronay River) of the Sakhalin Island. The detrital zircon data from two river sand samples display similar age distribution patterns with a dominant Mesozoic age group, subordinate age peaks at 1.8 Ga and 2.5 Ga, and a few Paleozoic and Neoproterozoic grains. The Miocene sandstone shows age peaks at 22, 84, 260 and 497 Ma, respectively, and a few Paleo-proterozoic grains. These age groups indicate that abundant old crustal materials have been involved in the crustal formation of the Sakhalin Island. Detrital zircon result reveals two episodes of post-accretion magmatism from the Sakhalin Island in ages of 37 Ma and 22-21 Ma. They can be correlated with coeval post-accretion magmatic events in the Hokkaido Island, supporting the geological correlation between the Sakhalin Island and the Hokkaido Island. Comparison of detrital zircon dating result from the Sakhalin Island with those from surrounding blocks and cratons in eastern Asia allows us to propose two possible sources in eastern Asia: the Bureya-Jiamusi-Khanka block with the Sikhote-Alin orogenic belt to its west and the South China Craton. The detrital zircon result indicates that the formation of the Sakhalin Island should be close to the East Asia continent, rather than as an independent intro-oceanic island arc within the Pacific Ocean. Similar to formation of the Japanese islands, the South China Craton may have played an important role during formation of the Sakhalin Island.

  2. PE 100 pipe systems

    CERN Document Server

    Brömstrup, Heiner

    2012-01-01

    English translation of the 3rd edition ""Rohrsysteme aus PE 100"". Because of the considerably increased performance, pipe and pipe systems made from 100 enlarge the range of applications in the sectors of gas and water supply, sewage disposal, industrial pipeline construction and in the reconstruction and redevelopment of defective pipelines (relining). This book applies in particular to engineers, technicians and foremen working in the fields of supply, disposal and industry. Subject matters of the book are all practice-relevant questions regarding the construction, operation and maintenance

  3. Haights Creek RPM Pipe Failures

    OpenAIRE

    United States Department of the Interior, Bureau of Reclamation

    1994-01-01

    In 1989, Haights Creek Irrigation Company replaced 730 linear feet of 24- and 27-inch-diameter RPM (reinforced plastic mortar) pipe because of several failures. Bureau of Reclamation personnel examined the pipe before and after exhumation, the surrounding soil conditions, and measured diametral deflections. Major longitudinal cracks in the pipe invert appear to be the result of hard spots in the pipe foundation. Some of these hard spots were caused from mounding, or using a mound of soil u...

  4. Optimization of Pipe Networks

    DEFF Research Database (Denmark)

    Hansen, C. T.; Madsen, Kaj; Nielsen, Hans Bruun

    1991-01-01

    algorithm using successive linear programming is presented. The performance of the algorithm is illustrated by optimizing a network with 201 pipes and 172 nodes. It is concluded that the new algorithm seems to be very efficient and stable, and that it always finds a solution with a cost near the best...

  5. Aeronautical tubes and pipes

    Science.gov (United States)

    Beauclair, N.

    1984-12-01

    The main and subcomponent French suppliers of aircraft tubes and pipes are discussed, and the state of the industry is analyzed. Quality control is essential for tubes with regard to their i.d. and metallurgical compositions. French regulations do not allow welded seam tubes in hydraulic circuits unless no other form is available, and then rustproofed steel must be installed. The actual low level of orders for any run of tubes dictates that the product is only one of several among the manufacturers' line. Automation, both in NDT and quality control, assures that the tubes meet specifications. A total of 10 French companies participate in the industry, serving both civil and military needs, with some companies specializing only in titanium, steel, or aluminum materials. Concerns wishing to enter the market must upgrade their equipment to meet the higher aeronautical specifications and be prepared to furnish tubes and pipes that serve both functional and structural purposes simultaneously. Additionally, pipe-bending machines must also perform to tight specifications. Pipes can range from 0.2 mm exterior diameter to 40 mm, with wall thicknesses from 0.02 mm to 3 mm. A chart containing a list of manufacturers and their respective specifications and characteristics is presented, and a downtrend in production with reduction of personnel is noted.

  6. Explosive Welding of Pipes

    Science.gov (United States)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  7. Flexible Heat Pipe

    Science.gov (United States)

    Bienert, W. B.; Wolf, D. A.

    1985-01-01

    Narrow Tube carries 10 watts or more to moving parts. Heat pipe 12 inches long and diameter of 0.312 inch (7.92mm). Bent to minimum radius of 2.5 blocks. Flexible section made of 321 stainless steel tubing (Cajon Flexible Tubing or equivalent). Evaporator and condenser made of oxygen free copper. Working fluid methanol.

  8. Heat-pipe planets

    Science.gov (United States)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2017-09-01

    Observations of the surfaces of all terrestrial bodies other than Earth reveal remarkable but unexplained similarities: endogenic resurfacing is dominated by plains-forming volcanism with few identifiable centers, magma compositions are highly magnesian (mafic to ultra-mafic), tectonic structures are dominantly contractional, and ancient topographic and gravity anomalies are preserved to the present. Here we show that cooling via volcanic heat pipes may explain these observations and provide a universal model of the way terrestrial bodies transition from a magma-ocean state into subsequent single-plate, stagnant-lid convection or plate tectonic phases. In the heat-pipe cooling mode, magma moves from a high melt-fraction asthenosphere through the lithosphere to erupt and cool at the surface via narrow channels. Despite high surface heat flow, the rapid volcanic resurfacing produces a thick, cold, and strong lithosphere which undergoes contractional strain forced by downward advection of the surface toward smaller radii. We hypothesize that heat-pipe cooling is the last significant endogenic resurfacing process experienced by most terrestrial bodies in the solar system, because subsequent stagnant-lid convection produces only weak tectonic deformation. Terrestrial exoplanets appreciably larger than Earth may remain in heat-pipe mode for much of the lifespan of a Sun-like star.

  9. Spatial Variation in Bed-material Load as Captured by Dune-form Analysis and its Connection to Geomorphology of the Backwater Zone on the Trinity River, East TX, USA

    Science.gov (United States)

    Mason, J.; Smith, V. B.; Mohrig, D. C.

    2014-12-01

    Recent observations made in the Trinity River of East Texas reveal that systematic spatial changes in bedform geometry, coverage, and inferred activity correlate with documented shifts in the larger-scale geomorphology of the river. Acoustic imaging data was collected through the transition into the backwater zone, or the reach of river where flow is affected by hydraulic readjustment between quasi-uniform flow further upstream and gradually varying flow towards the river mouth. Measurements collected immediately following a minor flood record spatial changes in bedforms with dune height systematically decreasing from roughly 0.4 m to 0.2 m and dune length decreasing from 13.4 m to 7.3 m, maintaining a constant value of 29 for the ripple index over a 6 km reach that covers 7 river bends. It appears that bedform height is depth-limited within the quasi-uniform flow, and gradually shifts to occupy a smaller fraction of the increasing flow depth within the backwater zone. Over the same reach after a period of extended low river discharge, dune height decreases from 0.3 m to 0, while dune length decreases from 9.0 m to 4.4 m before dunes are completely absent. Ripple index stays relatively constant until the last two bends, a streamwise distance of 2 km, where it rapidly increases from a value of 30 to 44 in the 6th bend and then to infinity in the 7th most downstream bend. Accompanying the disappearance of the dune forms is a systematic reduction in the slopes of their lee faces until the bed is completely flat. The location of these shifts in bed-material load coincides nicely with and likely accounts for documented geomorphic changes to the river, including a reduction in point bar surface area and volume and a decrease in channel-bend migration rates (Smith, 2012). Results have obvious implications for understanding coastal fluvial geomorphology and can help elucidate relationships between bedforms, bed-material load, point bars, and river bend kinematics.

  10. Characterization of hydrodynamic and sediment conditions in the lower Yampa River at Deerlodge Park, east entrance to Dinosaur National Monument, northwest Colorado, 2011

    Science.gov (United States)

    Williams, Cory A.

    2013-01-01

    The Yampa River in northwestern Colorado is the largest, relatively unregulated river system in the upper Colorado River Basin. Water from the Yampa River Basin continues to be sought for a number of municipal, industrial, and energy uses. It is anticipated that future water development within the Yampa River Basin above the amount of water development identified under the Upper Colorado River Endangered Fish Recovery Implementation Program and the Programmatic Biological Opinion may require additional analysis in order to understand the effects on habitat and river function. Water development in the Yampa River Basin could alter the streamflow regime and, consequently, could lead to changes in the transport and storage of sediment in the Yampa River at Deerlodge Park. These changes could affect the physical form of the reach and may impact aquatic and riparian habitat in and downstream from Deerlodge Park. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began a study in 2011 to characterize the current hydrodynamic and sediment-transport conditions for a 2-kilometer reach of the Yampa River in Deerlodge Park. Characterization of channel conditions in the Deerlodge Park reach was completed through topographic surveying, grain-size analysis of streambed sediment, and characterization of streamflow properties. This characterization provides (1) a basis for comparisons of current stream functions (channel geometry, sediment transport, and stream hydraulics) to future conditions and (2) a dataset that can be used to assess channel response to streamflow alteration scenarios indicated from computer modeling of streamflow and sediment-transport conditions.

  11. Antecedent Rivers

    Indian Academy of Sciences (India)

    far north of the high NandaDevi (7,817 m) - Api Nampa. (7,132 m) range of the Himadri. The Sindhu flows northwestwards, the Satluj goes west, the Karnali takes the southerly course and the Tsangpo flows east. These rivers flow through their pristine channels, carved out at the very outset about 50 to 55 m.y (million years) ...

  12. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  13. Metal and organic residues in addled eggs of least terns and piping plovers in the Platte Valley of Nebraska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The concentration of most residues detected in eggs of least terns and piping plovers nesting in the Platte River valley are not a cause for alarm. However, selenium...

  14. Pipe inspection using the pipe crawler. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.

  15. Hydrological Data Concerning Submarine Groundwater Discharge Along the Western Margin of Indian River Lagoon, East-Central Florida-December 2016 and January 2017

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Stretching along approximately 200 kilometers (km) of the Atlantic Coast of central Florida, Indian River Lagoon is one of the most biologically diverse estuarine...

  16. 46 CFR 154.520 - Piping calculations.

    Science.gov (United States)

    2010-10-01

    ...: (a) Pipe weight loads; (b) Acceleration loads; (c) Internal pressure loads; (d) Thermal loads; and (e... 46 Shipping 5 2010-10-01 2010-10-01 false Piping calculations. 154.520 Section 154.520 Shipping... Process Piping Systems § 154.520 Piping calculations. A piping system must be designed to meet the...

  17. Effects of land use, topography and socio-economic factors on river water quality in a mountainous watershed with intensive agricultural production in East china.

    Science.gov (United States)

    Chen, Jiabo; Lu, Jun

    2014-01-01

    Understanding the primary effects of anthropogenic activities and natural factors on river water quality is important in the study and efficient management of water resources. In this study, analysis of Variance (ANOVA), Principal component analysis (PCA), Pearson correlations, Multiple regression analysis (MRA) and Redundancy analysis (RDA) were applied as an integrated approach in a GIS environment to explore the temporal and spatial variations in river water quality and to estimate the influence of watershed land use, topography and socio-economic factors on river water quality based on 3 years of water quality monitoring data for the Cao-E River system. The statistical analysis revealed that TN, pH and temperature were generally higher in the rainy season, whereas BOD5, DO and turbidity were higher in the dry season. Spatial variations in river water quality were related to numerous anthropogenic and natural factors. Urban land use was found to be the most important explanatory variable for BOD5, CODMn, TN, DN, NH4+-N, NO3--N, DO, pH and TP. The animal husbandry output per capita was an important predictor of TP and turbidity, and the gross domestic product per capita largely determined spatial variations in EC. The remaining unexplained variance was related to other factors, such as topography. Our results suggested that pollution control of animal waste discharge in rural settlements, agricultural runoff in cropland, industrial production pollution and domestic pollution in urban and industrial areas were important within the Cao-E River basin. Moreover, the percentage of the total overall river water quality variance explained by an individual variable and/or all environmental variables (according to RDA) can assist in quantitatively identifying the primary factors that control pollution at the watershed scale.

  18. Effects of land use, topography and socio-economic factors on river water quality in a mountainous watershed with intensive agricultural production in East china.

    Directory of Open Access Journals (Sweden)

    Jiabo Chen

    Full Text Available Understanding the primary effects of anthropogenic activities and natural factors on river water quality is important in the study and efficient management of water resources. In this study, analysis of Variance (ANOVA, Principal component analysis (PCA, Pearson correlations, Multiple regression analysis (MRA and Redundancy analysis (RDA were applied as an integrated approach in a GIS environment to explore the temporal and spatial variations in river water quality and to estimate the influence of watershed land use, topography and socio-economic factors on river water quality based on 3 years of water quality monitoring data for the Cao-E River system. The statistical analysis revealed that TN, pH and temperature were generally higher in the rainy season, whereas BOD5, DO and turbidity were higher in the dry season. Spatial variations in river water quality were related to numerous anthropogenic and natural factors. Urban land use was found to be the most important explanatory variable for BOD5, CODMn, TN, DN, NH4+-N, NO3--N, DO, pH and TP. The animal husbandry output per capita was an important predictor of TP and turbidity, and the gross domestic product per capita largely determined spatial variations in EC. The remaining unexplained variance was related to other factors, such as topography. Our results suggested that pollution control of animal waste discharge in rural settlements, agricultural runoff in cropland, industrial production pollution and domestic pollution in urban and industrial areas were important within the Cao-E River basin. Moreover, the percentage of the total overall river water quality variance explained by an individual variable and/or all environmental variables (according to RDA can assist in quantitatively identifying the primary factors that control pollution at the watershed scale.

  19. Multileg Heat-Pipe Evaporator

    Science.gov (United States)

    Alario, J. P.; Haslett, R. A.

    1986-01-01

    Parallel pipes provide high heat flow from small heat exchanger. Six parallel heat pipes extract heat from overlying heat exchanger, forming evaporator. Vapor channel in pipe contains wick that extends into screen tube in liquid channel. Rods in each channel hold wick and screen tube in place. Evaporator compact rather than extended and more compatible with existing heat-exchanger geometries. Prototype six-pipe evaporator only 0.3 m wide and 0.71 m long. With ammonia as working fluid, transports heat to finned condenser at rate of 1,200 W.

  20. Hydrography, 2004, East Baton Rouge Parish, Louisiana

    Data.gov (United States)

    Louisiana Geographic Information Center — The Hydrography layer is an area geometry depicting the various water features that include the rivers, streams, creeks, lakes, etc of East Baton Rouge Parish.

  1. Large-bore pipe decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  2. Cured in Place Pipe Repair

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Insituform Technologies Inc. offers a pipe lining system called Paltem which uses a woven synthetic fiber covered with a polyester elastomer as the lining material. This system is used to rehabilitate pressure pipelines that have been damaged by corrosion or are experiencing leakage through joints, pinholes or other pipe defects.

  3. Vapor spill pipe monitor

    Science.gov (United States)

    Bianchini, G. M.; McRae, T. G.

    1983-06-01

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote IR gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote IR sensor which measures the gas composition.

  4. A heat pipe quick disconnect

    Science.gov (United States)

    Alario, J. P.; Otterstedt, P. J.

    1985-07-01

    This paper reports the proof of concept demonstration of a heat pipe quick disconnect being developed for the space constructible radiator system. The disconnect provides a maintainable coupling between the heat pipe evaporator, which is brazed to a mating heat exchanger, and the replaceable condenser section of a monogroove heat pipe radiator element. Test results, with pressurized nitrogen gas, confirm low leakage rates in both demated and mated configurations. Comparative thermal tests in a working 3 m (10 ft) test bed heat pipe using ammonia fluid revealed a 30 percent decrease in heat transport due to the additional minor pressure losses from the quick disconnect. The bulk of this loss is attributed to the transition section that joins the two adjacent heat pipe flow channels to the separated liquid and vapor passages within the disconnect coupling. It would be possible to decrease this overall loss in heat transport to under 10 percent with a redesigned transition section.

  5. Promethus Hot Leg Piping Concept

    Energy Technology Data Exchange (ETDEWEB)

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  6. Flexible ultrasonic pipe inspection apparatus

    Science.gov (United States)

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  7. 49 CFR 192.281 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint or...

  8. 49 CFR 192.59 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  9. 49 CFR 192.279 - Copper pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings or...

  10. 49 CFR 192.55 - Steel pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for use...

  11. Head Access Piping System Desing

    OpenAIRE

    中大路 道彦; 一宮 正和; 向坊 隆一; 前田 清彦; 永田 敬

    1994-01-01

    PNC made design studies on loop type FBR plants:a 600 MWe class in '91, and a 1300 MWe class in '93 both with the "head access" primary piping system. This paper focuses on the features of the smaller plant at first and afterwards on the extension to the larger one. The contents of the paper consist of R/V wall protection mechanism, primary piping circuit, secondary piping circuit, plant layout and then, discusses the extension of the applicability of the wall protection mechanism, primary pi...

  12. Intermediate Temperature Water Heat Pipe Tests

    Science.gov (United States)

    Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.

  13. Morphological redescription and DNA barcoding of Linevitshia prima Makarchenko, 1987 (Diptera: Chironomidae: Diamesinae) from Amur River basin (Russian Far East), with notes on systematics of the genus.

    Science.gov (United States)

    Makarchenko, Eugenyi A; Semenchenko, Alexander A

    2014-10-10

    Additions and corrections to the diagnosis of the genus Linevitshia for male adult, pupa and larva are given, and systematic position of the genus is discussed. Illustrated redescription of adult male and first description of 4th instar larva of L. prima Makarchenko from Amur River basin are provided. Comparison of data based on a new material with those of L. yezoensis Endo showed that the latter name is a junior synonym of L. prima. The species-specificity of L. prima COI sequences is analyzed and the sequences are presented as diagnostic characters-molecular markers of L. prima.

  14. Light pipes for LED measurements

    Science.gov (United States)

    Floyd, S. R.; Thomas, E. F., Jr.

    1976-01-01

    Light pipe directly couples LED optical output to single detector. Small area detector measures total optical output of diode. Technique eliminates thermal measurement problems and channels optical output to remote detector.

  15. Operations Plans for Anadromous Fish Production Facilities in the Columbia River Basin, Volume II of V; 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, Bill

    1993-05-01

    Clearwater Hatchery is located on the north bank of the North Fork of the Clearwater River, downstream from Dworshak Dam. It is approximately 72 miles from Lower Granite Dam, and 504 miles from the mouth of the Columbia River. Site elevation is approximately 994 feet above sea level. The hatchery is staffed with 7 FTE's. Clearwater Hatchery has two pipelines from Dworshak Reservoir. One is attached to a floating platform and is capable of providing various temperatures at varying depths. The other is a stationary intake about 245 feet below the top of the dam. All water is gravity fed to the hatchery. An l8 inch intake pipe provides an estimated 10 cfs with temperature remaining constant at approximately 40 F. The primary 42-inch intake pipe can draw water from 5 to 45 feet in depth with temperatures ranging from 55 to 60 F and 70 cfs of flow. The hatchery facility consists of 11 chinook raceways, 24 steelhead raceways, 2 adult holding ponds, a covered spawning area with 2 live wells and 60 concrete rearing vats. There are 40 double stacks of Heath-type incubators and each vat also has an incubation jar. All facility units are in excellent condition. Clearwater Hatchery also supports satellite facilities at Red River, Crooked River and Powell. The Red River satellite facility is located approximately 15 miles east of Elk City, Idaho. It is approximately 186 miles upstream from Lower Granite Dam and 618 miles from the mouth of the Columbia River. It was first built in 1974 by the Columbia River Project and then remodeled by the U.S. Army Corps of Engineers in 1986. Red River is supplied by gravity flow from an intake located at the bottom of the South Fork of Red River, 225 yards upstream from the facility. Water rights allow for 10 cfs and during low flows in the summer about 5 cfs is available. Temperatures range from 40 F in the spring to 71 F in early August. The facility consists of two adult holding ponds, a removable tripod and panel weir, and a rearing

  16. Animal Control Plan : Parker River National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A number of ground nesting bird species inhabit Parker River National Wildlife Refuge, including least and common terns, piping plovers, and black ducks. Predation...

  17. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  18. Hypoxia off the Changjiang (Yangtze River) estuary and in the adjacent East China Sea: Quantitative approaches to estimating the tidal impact and nutrient regeneration.

    Science.gov (United States)

    Zhu, Zhuo-Yi; Wu, Hui; Liu, Su-Mei; Wu, Ying; Huang, Da-Ji; Zhang, Jing; Zhang, Guo-Sen

    2017-12-15

    Large areas of hypoxia have been reported off The Changjiang Estuary and in the East China Sea. Five cruises, covering winter, spring, and summer, were carried out from 2007 to 2013 in this region, and in August 2013 (summer), an extensive hypoxic event (11,150km2) was observed, which was characterized by an estimated bulk oxygen depletion of 5.1 million tons. A strong tidal impact was observed associated with the bottom oxygen depletion, with the periodicity of diel variations in dissolved oxygen being 12h (i.e., similar to the tidal cycle). A conservative estimate of nutrient regeneration suggested that during the hypoxic event of August 2013, the amount of regenerated nitrogen (as nitrate) and phosphorus (as dissolved inorganic phosphorus) was 27,000-30,000 tons and 1300-41,000tons, respectively. Estimates of the absolute (bulk) regenerated nutrient fluxes were much greater than the conservative estimates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Leaks in pipe networks

    Science.gov (United States)

    Pudar, Ranko S.; Liggett, James A.

    1992-01-01

    Leak detection in water-distribution systems can be accomplished by solving an inverse problem using measurements of pressure and/or flow. The problem is formulated with equivalent orifice areas of possible leaks as the unknowns. Minimization of the difference between measured and calculated heads produces a solution for the areas. The quality of the result depends on number and location of the measurements. A sensitivity matrix is key to deciding where to make measurements. Both location and magnitude of leaks are sensitive to the quantity and quality of pressure measurements and to how well the pipe friction parameters are known. The overdetermined problem (more measurements than suspected leaks) gives the best results, but some information can be derived from the underdetermined problem. The variance of leak areas, based on the quality of system characteristics and pressure data, indicates the likely accuracy of the results. The method will not substitute for more traditional leak surveys but can serve as a guide and supplement.

  20. Piping inspection round robin

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, P.G.; Doctor, S.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths.

  1. [Study of interaction of wild soybean subpopulations (Glycine soja) in the valley of the Tsukanovka river in the south of Far East of Russia].

    Science.gov (United States)

    Tikhonov, A V; Martynov, V V; Dorokhov, D B

    2011-01-01

    A comparative study of the genetic structure of natural and anthropogenic populations of G. soja gives significant information about formation of different populations, and allows developing measures for preservation of unique natural gene bank of wild soybean, the species closely related to cultivated soybean. In this study, ISSR markers were used to carry out a comparative analysis of genetic structure of natural and anthropogenic subpopulations of G. soja for studying possible mutual influence of subpopulations of anthropogenic and natural phytocenosis on the formation of their genetic diversity and to study genetic structure of natural subpopulations of wild soybean in the contact places between the two types ofcenoses. As a result, the characteristics that describe the genetic diversity of studied populations have been identified and the important role of an interaction between subpopulations of different phytocenoses on formation of the spatial genetic structure of population in the valley of Tsukanovka river has been demonstrated.

  2. Evaluation of Bamboo Porous Pipe as Line Source Emitter in Trickle ...

    African Journals Online (AJOL)

    This paper attempts to evaluate the use of bamboo as porous pipe (line source) emitter in trickle irrigation at the Cross River University of Technology Teaching and Research Farm Obubra. Two sets of bamboo laterals: opened and plugged ends were used for the trial. The experiment was conducted using four different ...

  3. Flexible ultrasonic pipe inspection apparatus

    Science.gov (United States)

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  4. Centrally activated pipe snubbing system

    Science.gov (United States)

    Cawley, William E.

    1985-01-01

    An electromechanical pipe snubbing system and an electromechanical pipe snubber. In the system, each pipe snubber, in a set of pipe snubbers, has an electromechanical mechanism to lock and unlock the snubber. A sensor, such as a seismometer, measures a quantity related to making a snubber locking or unlocking decision. A control device makes an electrical connection between a power supply and each snubber's electromechanical mechanism to simultaneously lock each snubber when the sensor measurement indicates a snubber locking condition. The control device breaks the connection to simultaneously unlock each snubber when the sensor measurement indicates a snubber unlocking condition. In the snubber, one end of the shaft slides within a bore in one end of a housing. The other end of the shaft is rotatably attached to a pipe; the other end of the housing is rotatively attached to a wall. The snubber's electromechanical mechanism locks the slidable end of the shaft to the housing and unlocks that end from the housing. The electromechanical mechanism permits remote testing and lockup status indication for each snubber.

  5. Hydrological data concerning submarine groundwater discharge along the western margin of Indian River Lagoon, east-central Florida - December 2016 and January 2017

    Science.gov (United States)

    McCloskey, Terrence A.; Smith, Christopher G.; Zaremba, Nicholas; McBride, Elsie; Everhart, Cheyenne

    2017-01-01

    Indian River Lagoon, one of the most biologically diverse estuarine systems in the continental United States, is a shallow brackish lagoon stretching along approximately 200 kilometers (km) of the Atlantic coast of central Florida. Lagoon width varies from ~0.5 – 9.0 km, with substantial human infrastructure lining both shores. Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center investigated submarine groundwater discharge at Eau Gallie North, a site along the western shore in the central section of the lagoon, using continuous resistivity profiling (CRP). The CRP array was towed behind a boat along five shore-parallel transects located ~125, 200, 350, 500 and 750 meters offshore and traversing ~1.5 km along north-south transects. Each transect was given a track name (EB., EC., ED., EE., and EF.) and lines were run both north to south and south to north. Repetitive profiles will be conducted along these same tracks, at various times, in order to determine temporal variability. As resistivity is a function of both geology and salinity, temporal changes will reflect salinity changes, as the underlying geology will be presumed to remain constant. Resistivity data were assigned geographic coordinates and water depth values, in order to produce modeled resistivity, accounting for salinity and geologic parameters.  This data release provides the raw resistivity, geographical and water parameter data collected in December 2016 and January 2017.

  6. Reactor process water (PW) piping inspections, 1984--1990

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhart, W.S.; Elder, J.B.; Sprayberry, R.E.; Vande Kamp, R.W.

    1990-12-31

    In July 1983, the NRC ordered the shutdown of five boiling water reactors (BWR`s) because of concerns about reliability of ultrasonic examination for detecting intergranular stress corrosion cracking (IGSCC). These concerns arose because of leaking piping at Niagara Mohawk`s Nine Mile Point which was attributed to IGSCC. The leaks were detected shortly after completion of ultrasonic examinations of the piping. At that time, the Dupont plant manager at Savannah River (SR) directed that investigations be performed to determine if similar problems could exist in SR reactors. Investigation determined that all conditions believed necessary for the initiation and propagation of IGSCC in austenitic stainless steel exist in SR reactor process water (PW) systems. Sensitized, high carbon, austenitic stainless steel, a high purity water system with high levels of dissolved oxygen, and the residual stresses associated with welding during construction combine to provide the necessary conditions. A periodic UT inspection program is now in place to monitor the condition of the reactor PW piping systems. The program is patterned after NRC NUREG 0313, i.e., welds are placed in categories based on their history. Welds in upgraded or replacement piping are examined on a standard schedule (at least every five years) while welds with evidence of IGSCC, evaluated as acceptable for service, are inspected at every extended outage (15 to 18 months). This includes all welds in PW systems three inches in diameter and above. Welds are replaced when MSCC exceeds the replacement criteria of more than twenty percent of pipe circumference of fifty percent of through-wall depth. In the future, we intend to perform flow sizing with automated UT techniques in addition to manual sizing to provide more information for comparison with future examinations.

  7. Reactor process water (PW) piping inspections, 1984--1990

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhart, W.S.; Elder, J.B.; Sprayberry, R.E.; Vande Kamp, R.W.

    1990-01-01

    In July 1983, the NRC ordered the shutdown of five boiling water reactors (BWR's) because of concerns about reliability of ultrasonic examination for detecting intergranular stress corrosion cracking (IGSCC). These concerns arose because of leaking piping at Niagara Mohawk's Nine Mile Point which was attributed to IGSCC. The leaks were detected shortly after completion of ultrasonic examinations of the piping. At that time, the Dupont plant manager at Savannah River (SR) directed that investigations be performed to determine if similar problems could exist in SR reactors. Investigation determined that all conditions believed necessary for the initiation and propagation of IGSCC in austenitic stainless steel exist in SR reactor process water (PW) systems. Sensitized, high carbon, austenitic stainless steel, a high purity water system with high levels of dissolved oxygen, and the residual stresses associated with welding during construction combine to provide the necessary conditions. A periodic UT inspection program is now in place to monitor the condition of the reactor PW piping systems. The program is patterned after NRC NUREG 0313, i.e., welds are placed in categories based on their history. Welds in upgraded or replacement piping are examined on a standard schedule (at least every five years) while welds with evidence of IGSCC, evaluated as acceptable for service, are inspected at every extended outage (15 to 18 months). This includes all welds in PW systems three inches in diameter and above. Welds are replaced when MSCC exceeds the replacement criteria of more than twenty percent of pipe circumference of fifty percent of through-wall depth. In the future, we intend to perform flow sizing with automated UT techniques in addition to manual sizing to provide more information for comparison with future examinations.

  8. Distribution of phytoplankton along an environmental gradient off Kakinada, East Coast of India.

    Digital Repository Service at National Institute of Oceanography (India)

    Ayajuddin, M.; Pandiyarajan, R.S.; Ansari, Z.A

    In the present study phytoplankton distribution and species composition was examined on a salinity gradient from River (R), River Mouth (RM) and coastal water (RF) at surface and subsurface layers along the coast off Kakinada, East Coast of India...

  9. Corrosion of Spiral Rib Aluminized Pipe

    Science.gov (United States)

    2012-08-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  10. Corrosion of Spiral Rib Aluminized Pipe : [Summary

    Science.gov (United States)

    2012-01-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  11. Performance evaluation of buried pipe installation.

    Science.gov (United States)

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters characterizing the soil structure interaction developed in a buried pipe installation located under roads/highways. The drainage pipes or culverts installed ...

  12. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  13. High-Performance Heat Pipe

    Science.gov (United States)

    Alario, J. P.; Kosson, R.; Haslett, R.

    1985-01-01

    Single vapor channel and single liquid channel joined by axial slot. New design, permits high heat-transport capacity without excessively reducing heat-transfer efficiency. Contains two large axial channels, one for vapor and one for liquid, permitting axial transport and radial heat-transfer requirements met independently. Heat pipe has capacity of approximately 10 to sixth power watt-inches (2.5 X 10 to sixth power watt-cm) orders of magnitude greater than heat capacity of existing heat pipes. Design has high radial-heat-transfer efficiency, structurally simple, and has large liquid and vapor areas.

  14. Cryogenic thermal diode heat pipes

    Science.gov (United States)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  15. High performance flexible heat pipes

    Science.gov (United States)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  16. JPRS Report, East Europe.

    Science.gov (United States)

    1989-12-28

    proposal cannot be drafted just on the basis of information that we need, e.g., US$10 million to modernize a stockyard . From the Polish standpoint this...sold 146 km of black steel pipe, 54 km of galvanized pipe, 10.5 km of poly- vinyl pipe, more than 10,000 sections of cast-iron pipe, 5,500 items of

  17. Structure, distribution, and evolution history of the Early Holocene erosional mud ridge system on the inner East China Sea shelf near the Yangtze River estuary

    Science.gov (United States)

    Feng, Zhibing; Liu, Baohua; Zhao, Yuexia; Li, Xishuang; Dada, Olusegun A.; Jiang, Li; Si, Shaokun

    2017-04-01

    Utilizing the collected high-resolution seismic dataset and accompanying borehole and bathymetric data, we systematically evaluated the morphology, architecture, sedimentology, and evolution of erosional mud ridges within the inner East China Sea (ECS) shelf. We identified 20 mud ridges, i.e., seismic reflection profile crossings of exposed or buried mud ridges, which are 3.0-30.1 km in width and 2.5-17.3 m in height. The mud ridges are composed predominantly of gray clayey silt, and on seismic profiles contain parallel to subparallel reflectors. They formed around 10-12 ka BP within an estuarine environment. Scouring features of some mud ridges on the eastern part of the study area can be recognized. Consideration of the relative positions of mud ridges, together with the topographical features, enables us to map four linear mud ridges (LMRs). The SE-NW oriented LMRs are > 50 km in length, 3.0-9.5 km in width and running parallel to each other. They also display asymmetric shapes, with steeper slopes to the SW. The eastern segments of some LMRs are exposed on the present seafloor whereas other segments are mainly overlain by the mid- and late Holocene strata. Since the LMRs share similarities with the modern tidal sand ridges in shape and orientation, we hypothesize that they are formed under a uniform tidal current. Seismic data highlight that the internal reflectors of sand ridges consist of dipping clinoforms and are significantly different from LMRs, a feature which is largely due to the difference in grain-size composition of sediments between the inner and mid-outer ECS shelf. The mid- to outer ECS shelf is capped by coarser-grained sediments (i.e., medium to fine-grained), which were reworked and deposited at locations near the erosional areas under a polycyclic tidal current, thus forming multiphase sand ridges. However, fine-grained sediments (i.e., silty clay and clayey silt) overlain on the inner ECS shelf with light mass were carried far away from the

  18. Evaluation of abrasion resistance of pipe and pipe lining materials.

    Science.gov (United States)

    2007-09-01

    This project summarizes an evaluation of pipe material resistance to abrasion over a 5-year period (2001-2006) at a site known to be abrasive. : The key focus of the project was to gather more information to compare against existing guidance to desig...

  19. Heat-pipes-based first wall

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, V. [Research and Development Institute of Power Engineering, PO Box 788, Moscow 101000 (Russian Federation); Khripunov, V. [Russian Research Center `Kurchatov Institute`, Nuclear Fusion Institute, Kurchatov Square, Moscow 123182 (Russian Federation); Antipenkov, A. [Research and Development Institute of Power Engineering, PO Box 788, Moscow 101000 (Russian Federation); Ulianov, A. [State Enterprise `Krasnaya Zvezda`, Electrolytny pr-d., 1a, Moscow 115230 (Russian Federation)

    1995-03-01

    Feasibilities of heat pipes application for the heat transfer out of plasma facing components in test and power fusion reactors are discussed. Based on the space technology and practice the ``hot`` ITER first wall with liquid metal and water heat pipes are proposed in two options: heat-pipes and vapor-chamber options. Other high heat loading in-vessel elements such as divertor target and limiter can be provided by effective and reliable heat pipe cooling systems. (orig.).

  20. High-Capacity Heat-Pipe Evaporator

    Science.gov (United States)

    Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.

    1989-01-01

    Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.

  1. Nipigon River landslide, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishna, H.S.; Lau, K.C.

    1992-11-24

    On April 23, 1990, a landslide occurred on the east bank of the Nipigon River in Ontario, 8 km downstream from the Alexander Generating Station. A study was initiated to assess the impact of river level fluctuations caused by the hydropower plant operation on the downstream banks of the river. A detailed geotechnical investigation and field study of river drawdown effects on the riverbank slopes were performed. A final analysis of the failure is presented which shows that the high groundwater conditions and soft soils present in the area led to the massive landslide. The impact of the river level fluctuations on the slope stability was found to be minor compared to that of the high groundwater conditions that were produced by the rapid thaw of snow and infiltration in the recharge area. 15 refs., 16 figs., 6 tabs.

  2. 46 CFR 61.15-5 - Steam piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main boiler...

  3. Thermal Performance of High Temperature Titanium -- Water Heat Pipes by Multiple Heat Pipe Manufacturers

    Science.gov (United States)

    Sanzi, James L.

    2007-01-01

    Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  4. Thermal Performance of High Temperature Titanium-Water Heat Pipes by Multiple Heat Pipe Manufacturers

    Science.gov (United States)

    Sanzi, James L.

    2007-01-01

    Titanium-water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  5. 46 CFR 154.660 - Pipe welding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt welds...

  6. Modular heat-pipe-radiator panel

    Science.gov (United States)

    Alario, J.

    1979-01-01

    Heat-Pipe panel assembled by joining series of Heat-Pipe modules is presented. Each module is identical and includes own radiator Fin and Fluid-Header section. Arrangement gives high turn-down ratio permitting ammonia heat pipes to freeze under low conditions.

  7. 46 CFR 197.336 - Pressure piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that...

  8. 33 CFR 127.1101 - Piping systems.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Piping systems. 127.1101 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1101 Piping systems. Each piping system within the marine transfer area for LHG used for the transfer of LHG must meet the...

  9. Collapse of UOE manufactured steel pipes

    NARCIS (Netherlands)

    Gresnigt, A.M.; Foeken, R.J. van; Chen, S.

    2000-01-01

    The manufacturing method (seamless, UO, UOE) has a con-siderable influence on the collapse pressure of steel pipes. For UOE manufactured pipe, a significant reduction in collapse strength has been observed compared to not expanded pipe. A research program has been carried out to investigate the

  10. Smoking water pipe is injurious to lungs

    DEFF Research Database (Denmark)

    Sivapalan, Pradeesh; Ringbæk, Thomas; Lange, Peter

    2014-01-01

    This review describes the pulmonary consequences of water pipe smoking. Smoking water pipe affects the lung function negatively, is significantly associated with chronic obstructive pulmonary disease and increases the risk of lung infections. Case reports suggest that regular smokers of water pipe...

  11. Bending system using CNC pipe bender

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Kenji (Toshiba Engineering and Construction Co. Ltd., Tokyo (Japan))

    1994-03-01

    Generally the pipings in plants are constructed with welding type piping parts. However recently, the shortage of welding workers and piping workers advanced rapidly, accordingly, the omitting of welding has been investigated. In such background, attention has been paid to pipe bending, and in particular, cold bending method which is easy to handle and the equipment is cheap has been adopted. In order to increase the application of bending and improve its quality, the bending system utilizing an NC pipe bender for small bore pipes has been developed, and in the application to actual plants carried out so far, the results were obtained. The drive for pipe bending, pipe clamp, pipe cutter, pipe end positioning device, rear work support, spring back automatic measuring instrument and controller are the main components of the system, and their functions are explained. The integrated design-production system by utilizing CAD and 3D data, the system of assigning pipes to materials, the continuous manufacture of bent pipes by incorporating a cutting machine, the improvement of bending accuracy by spring back measurement and so on are the features of the system. (K.I.).

  12. Marine productivity leads organic matter preservation in sapropel S1: palynological evidence from a core east of the Nile River outflow

    Science.gov (United States)

    van Helmond, Niels A. G. M.; Hennekam, Rick; Donders, Timme H.; Bunnik, Frans P. M.; de Lange, Gert J.; Brinkhuis, Henk; Sangiorgi, Francesca

    2015-01-01

    The formation of Eastern Mediterranean organic matter rich deposits known as sapropels is the results of two mechanisms: (enhanced) marine productivity and preservation of organic material at depth. However, their relative contribution and their leads and lags with respect to each other remain elusive. Here, we address these questions by studying sediments deposited prior to, during, and after the most recent sapropel (S1, ˜10-6 calibrated ka before present, BP) with an integrated marine and terrestrial palynological approach, combined with existing and newly generated geochemical data. The studied core was retrieved from an area under strong influence of the Nile outflow and has high average sediment accumulation rates allowing a high temporal resolution (of several decades to centuries). Marine productivity, as reconstructed with total dinocyst accumulation rates (ARs) and biogenic CaCO3 content, starts to increase ˜1 ka prior to sapropel formation. A shift in the dinocyst taxa contributing to the productivity signal at sapropel onset indicates the rapid development of (seasonal) water column stratification. Pollen and spore ARs also increase prior to sapropel onset, but a few centuries after the increase in marine productivity. Hence, the first shift to a high marine productivity system before sapropel deposition may have been mostly favoured by the injection of nutrients via shoaling of the nutricline with a minor contribution of nutrients from land via river input and flooding of the shelves. Pollen assemblages indicate a gradual change across the sapropel onset from a savanna-like, through coastal marsh expansion, toward an open woodland assemblage, which is consistent with enhanced Nile influence and delta development. At sapropel onset a marked shift in pollen ARs could suggest increased preservation under anoxia. However, major shifts in pollen assemblages and signs of selective- or partial decomposition of terrestrial palynomorphs are absent. We

  13. PPOOLEX experiments with two parallel blowdown pipes

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-01-15

    This report summarizes the results of the experiments with two transparent blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through either one or two vertical transparent blowdown pipes to the condensation pool. Five experiments with one pipe and six with two parallel pipes were carried out. The main purpose of the experiments was to study loads caused by chugging (rapid condensation) while steam is discharged into the condensation pool filled with sub-cooled water. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. In the experiments the initial temperature of the condensation pool water varied from 12 deg. C to 55 deg. C, the steam flow rate from 40 g/s to 1 300 g/s and the temperature of incoming steam from 120 deg. C to 185 deg. C. In the experiments with only one transparent blowdown pipe chugging phenomenon didn't occur as intensified as in the preceding experiments carried out with a DN200 stainless steel pipe. With the steel blowdown pipe even 10 times higher pressure pulses were registered inside the pipe. Meanwhile, loads registered in the pool didn't indicate significant differences between the steel and polycarbonate pipe experiments. In the experiments with two transparent blowdown pipes, the steamwater interface moved almost synchronously up and down inside both pipes. Chugging was stronger than in the one pipe experiments and even two times higher loads were measured inside the pipes. The loads at the blowdown pipe outlet were approximately the same as in the one pipe cases. Other registered loads around the pool were about 50-100 % higher than with one pipe. The experiments with two parallel blowdown pipes gave contradictory results compared to the earlier studies dealing with chugging loads in case of multiple pipes. Contributing

  14. Spinning pipe gas lens revisited

    CSIR Research Space (South Africa)

    Mafusire, C

    2008-01-01

    Full Text Available The graded index (GRIN-like) medium generated by gas inside a heated steel pipe when rotated about its longitudinal axis has the ability to focus a laser beam. While the effective focal length of such a system has previously been studied...

  15. Transient thermohydraulic heat pipe modeling

    Science.gov (United States)

    Hall, Michael L.; Doster, Joseph M.

    Many space based reactor designs employ heat pipes as a means of conveying heat. In these designs, thermal radiation is the principle means for rejecting waste heat from the reactor system, making it desirable to operate at high temperatures. Lithium is generally the working fluid of choice as it undergoes a liquid-vapor transformation at the preferred operating temperature. The nature of remote startup, restart, and reaction to threats necessitates an accurate, detailed transient model of the heat pipe operation. A model is outlined of the vapor core region of the heat pipe which is part of a large model of the entire heat pipe thermal response. The vapor core is modeled using the area averaged Navier-Stokes equations in one dimension, which take into account the effects of mass, energy and momentum transfer. The core model is single phase (gaseous), but contains two components: lithium gas and a noncondensible vapor. The vapor core model consists of the continuity equations for the mixture and noncondensible, as well as mixture equations for internal energy and momentum.

  16. Efficient methods of piping cleaning

    Directory of Open Access Journals (Sweden)

    Orlov Vladimir Aleksandrovich

    2014-01-01

    Full Text Available The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of drainage pipes. The co-authors emphasize that the use of ice compared to other methods of pipe cleaning has a number of advantages due to the relative simplicity and cheapness of the process, economical efficiency and lack of environmental risk. The equipment for performing ice cleaning is presented, its technological options, terms of cleansing operations, as well as the volumes of disposed pollution per unit length of the water supply and drainage pipelines. It is noted that ice cleaning requires careful planning in the process of cooking ice and in the process of its supply in the pipe. There are specific requirements to its quality. In particular, when you clean drinking water system the ice applied should be hygienically clean and meet sanitary requirements.In pilot projects, in particular, quantitative and qualitative analysis of sediments adsorbed by ice is conducted, as well as temperature and the duration of the process. The degree of pollution of the pipeline was estimated by the volume of the remote sediment on 1 km of pipeline. Cleaning pipelines using ice can be considered one of the methods of trenchless technologies, being a significant alternative to traditional methods of cleaning the pipes. The method can be applied in urban pipeline systems of drinking water supply for the diameters of 100—600 mm, and also to diversion collectors. In the world today 450 km of pipelines are subject to ice cleaning method.Ice cleaning method is simple

  17. Heat pipes for industrial waste heat recovery

    Science.gov (United States)

    Merrigan, M. A.

    1981-01-01

    Development work on the high temperature ceramic recuperator at Los Alamos National Laboratory is described and involved material investigations, fabrication methods development, compatibility tests, heat pipe operation, and the modeling of application conditions based on current industrial usage. Solid ceramic heat pipes, ceramic coated refractory pipes, and high-temperature oxide protected metallic pipes are investigated. Economic studies of the use of heat pipe based recuperators in industrial furnaces are conducted and payback periods determined as a function of material, fabrication, and installation cost.

  18. East Africa

    Science.gov (United States)

    2002-01-01

    This image shows the East African nations of Ethiopia, Eritrea, and Somalia, as well as portions of Kenya, Sudan, Yemen, and Saudi Arabia. Dominating the scene are the green Ethiopian Highlands. With altitudes as high as 4,620 meters (15,157 feet), the highlands pull moisture from the arid air, resulting in relatively lush vegetation. In fact, coffee-one of the world's most prized crops-originated here. To the north (above) the highlands is Eritrea, which became independent in 1993. East (right) of Ethiopia is Somalia, jutting out into the Indian Ocean. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) captured this true-color image on November 29, 2000. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  19. Peach Bottom Atomic Power Station recirc pipe dose rates with zinc injection and condenser replacement

    Energy Technology Data Exchange (ETDEWEB)

    DiCello, D.C.; Odell, A.D.; Jackson, T.J. [PECO Energy Co., Delta, PA (United States)

    1995-03-01

    Peach Bottom Atomic Power Station (PBAPS) is located near the town of Delta, Pennsylvania, on the west bank of the Susquehanna River. It is situated approximately 20 miles south of Lancaster, Pennsylvania. The site contains two boiling water reactors of General Electric design and each rated at 3,293 megawatts thermal. The units are BWR 4s and went commercial in 1977. There is also a decommissioned high temperature gas-cooled reactor on site, Unit 1. PBAPS Unit 2 recirc pipe was replaced in 1985 and Unit 3 recirc pipes replaced in 1988 with 326 NGSS. The Unit 2 replacement pipe was electropolished, and the Unit 3 pipe was electropolished and passivated. The Unit 2 brass condenser was replaced with a Titanium condenser in the first quarter of 1991, and the Unit 3 condenser was replaced in the fourth quarter of 1991. The admiralty brass condensers were the source of natural zinc in both units. Zinc injection was initiated in Unit 2 in May 1991, and in Unit 3 in May 1992. Contact dose rate measurements were made in standard locations on the 28-inch recirc suction and discharge lines to determine the effectiveness of zinc injection and to monitor radiation build-up in the pipe. Additionally, HPGe gamma scans were performed to determine the isotopic composition of the oxide layer inside the pipe. In particular, the specific ({mu}Ci/cm{sup 2}) of Co-60 and Zn-65 were analyzed.

  20. Nest movement by piping plovers in response to changing habitat conditions

    Science.gov (United States)

    Wiltermuth, Mark T.; Anteau, Michael J.; Sherfy, Mark H.; Shaffer, Terry L.

    2009-01-01

    Birds that nest along reservoir or river shorelines may face fluctuating water levels that threaten nest survival. On Lake Sakakawea of the upper Missouri River, 37 and 70% of Piping Plover (Charadrius melodus) nests found in 2007 and 2008, respectively, were initiated at elevations inundated prior to projected hatch date. We describe eight events at seven nests in which adult Piping Plovers appeared to have moved active nests threatened by rising water or gathered eggs apparently displaced by rising water on Lake Sakakawea and the Garrison reach of the upper Missouri River. Additionally, we describe one nest that was moved after the habitat at the nest site had been disturbed by domestic cattle. Our observations and evidence indicate that adult Piping Plovers are capable of moving eggs and establishing nests at new sites during incubation. Furthermore, our results suggest that Piping Plovers evaluate their reproductive investment under potential threat of nest loss and may be capable of acting prospectively (moving nests prior to inundation) and reactively (regathering eggs after inundation) to avoid nest failure.

  1. Underground pipe inspection device and method

    Energy Technology Data Exchange (ETDEWEB)

    Germata, Daniel Thomas [Wadsworth, IL

    2009-02-24

    A method and apparatus for inspecting the walls of an underground pipe from inside the pipe in which an inspection apparatus having a circular planar platform having a plurality of lever arms having one end pivotably attached to one side of the platform, having a pipe inspection device connected to an opposite end, and having a system for pivoting the lever arms is inserted into the underground pipe, with the inspection apparatus oriented with the planar platform disposed perpendicular to the pipe axis. The plurality of lever arms are pivoted toward the inside wall of the pipe, contacting the inside wall with each inspection device as the apparatus is conveyed along a length of the underground pipe.

  2. Ice-load measurements on the Lake Erie-Niagara River ice boom: 1996-97

    Energy Technology Data Exchange (ETDEWEB)

    Cowper, B.; Abdelnour, R.; Gong, Y. [Fleet Technology Limited, Kanata, ON (Canada); Crissman, R. [New York Power Authority, Niagara Falls, NY (United States)

    1997-12-31

    The design and installation of a new ice boom at the entrance to the upper Niagara River at the north-east end of Lake Erie was described. Each year since 1964, the New York Power Authority and Ontario Hydro install a 2,700-meter long ice boom which spans the outlet of Lake Erie about three kilometres upstream of the Peace Bridge. The ice boom minimizes the impacts of ice on power generation in the Niagara River in the early freeze-up period of winter. A monitoring program has been developed in which water level gauges, water temperature probes and low-light-level television cameras are used to obtain real-time observations of certain ice and hydraulic characteristics. Visual observations of ice conditions in the vicinity of the New York Power Authority`s intakes were also recorded. As a result of the monitoring program, a new boom design was developed which called for replacing the boom`s Douglas Fir timbers with 0.76 m-diameter, 9.1 m-long steel pipe pontoons. In the 1996-97 season, the timbers in the boom were replaced with the steel pipe pontoons to evaluate the effectiveness of the new design through an ice load measurement program. The cable tensions and boom submergence at the three anchoring locations along the boom were measured. Several recommendations were made. In general, it was concluded that if the ice booms were composed entirely of steel pontoons, the release of ice into the river would be substantially reduced. 7 refs., 14 figs.

  3. System for Testing Thermal Insulation of Pipes

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stanislaw D.; Nagy, Zoltan F.

    2003-01-01

    An apparatus and method have been developed for measuring the rates of leakage of heat into pipes carrying liquids, the purpose of the measurements being to quantify the thermal performance of the insulation system. The apparatus is designed primarily for testing pipes used to carry cryogenic liquids, but can also be used for measuring the thermal performance of other insulated pipes or piping systems. The basic measurement principle is straightforward: The outer surface of the pipe insulation is maintained at a fixed warmer temperature. The interior of the pipe is maintained in a narrow fixed lower-temperature range by means of a regular liquid (e.g., water) that is pumped through the pipe at a known flow rate or a cryogenic liquid (e.g., nitrogen) that is saturated at atmospheric pressure and replenished until steady-state conditions are achieved. In the case of water or another liquid pumped through, the inlet and outlet temperatures are measured and heat-leak power is calculated as the mass flow rate of the liquid multiplied by the specific heat of the liquid multiplied by the inlet-to-outlet temperature rise of the liquid. In the case of liquid nitrogen or another low-temperature boiling liquid, the heat-leak power is calculated as the rate of boil-off multiplied by the latent heat of vaporization of the liquid. Then the thermal-insulation performance of the pipe system can be calculated as a function of the measured heat-leak power, the inner and outer boundary temperatures, and the dimensions of the pipe. The apparatus can test as many as three pipes simultaneously. The pipes can have inner diameters up to .15 cm and outer diameters up to .20 cm. The lengths of the pipes may vary; typical lengths are of the order of 18 m. Two thermal guard boxes . one for each end of the pipe(s) under test . are used to make the inlet and outlet fluid connections to the pipe(s) (see figure). The connections include bellows that accommodate thermal expansion and contraction

  4. Experiments in turbulent pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Torbergsen, Lars Even

    1998-12-31

    This thesis reports experimental results for the mean velocity and turbulence statistics in two straight pipe sections for bulk Reynolds numbers in the range 22000 to 75000. The flow was found consistent with a fully developed state. Detailed turbulence spectra were obtained for low and moderate turbulent Reynolds number. For the pipe centre line location at R{sub {lambda}} = 112, a narrow range in the streamwise power spectrum applied to the -5/3 inertial subrange. However this range was influenced both by turbulence production and viscous dissipation, and therefore did not reflect a true inertial range. The result indicates how the intermediate range between the production and dissipative scales can be misinterpreted as an inertial range for low and moderate R{sub {lambda}}. To examine the universal behaviour of the inertial range, the inertial scaling of the streamwise power spectrum is compared to the inertial scaling of the second order longitudinal velocity structure function, which relate directly by a Fourier transform. Increasing agreement between the Kolmogorov constant C{sub K} and the second order structure function scaling constant C{sub 2} was observed with increasing R{sub {lambda}}. The result indicates that a true inertial range requires several decades of separation between the energy containing and dissipative scales. A method for examining spectral anisotropy is reported and applied to turbulence spectra in fully developed pipe flow. It is found that the spectral redistribution from the streamwise to the two lateral spectra goes primarily to the circumferential component. Experimental results are reported for an axisymmetric contraction of a fully developed pipe flow. 67 refs., 75 figs., 9 tabs.

  5. Hot Leg Piping Materials Issues

    Energy Technology Data Exchange (ETDEWEB)

    V. Munne

    2006-07-19

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

  6. Dual axial channel heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Alario, J.P.; Haslett, R.A.; Kosson, R.L.

    1984-09-11

    A heat pipe comprising an elongated sealed metallic envelope having at least a pair of longitudinal channels extending along the length thereof. One of the channels is for the circulation of the vapor phase of the working medium in operation and the other for the liquid phase and capillary means are provided to furnish fluid communication therebetween. Dedicated vapor and liquid channels result in low viscous pressure drops, the capillary communication means and circumferential grooving in the vapor channel provide high capillary pressure differences, and circumferential grooving is provided to furnish the high evaporation and condensation film coefficients required. To support higher heat fluxes, wicking can be used to augment the capillary flow from the liquid channel. To support higher evaporator heat flux without the need for wicking means, the heat pipe can be provided with more than one liquid channel, each communicating with the vapor channel by capillary means. The heat pipe can be provided with an integral fin or equivalent means for rejection of heat by radiation to ambient or for attachment to a source of heat in the evaporator region thereof.

  7. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    Science.gov (United States)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  8. Lightweight Heat Pipes Made from Magnesium

    Science.gov (United States)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  9. Effects of piping irrigation laterals on selenium and salt loads, Montrose Arroyo Basin, western Colorado

    Science.gov (United States)

    Butler, D.L.

    2001-01-01

    Selenium and salinity are water-quality issues in the Upper Colorado River Basin. Certain water bodies in the lower Gunnison River Basin, including the lower Gunnison River and the Uncompahgre River, exceed the State standard for selenium of 5 micrograms per liter. Remediation methods to reduce selenium and salt loading in the lower Gunnison River Basin were examined. A demonstration project in Montrose Arroyo, located in the Uncompahgre River Basin near Montrose, was done during 1998-2000 to determine the effects on selenium and salt loads in Montrose Arroyo from replacing 8.5 miles of open-ditch irrigation laterals with 7.5 miles of pipe. The participants in the project were the National Irrigation Water Quality Program, the Colorado River Basin Salinity Control Program, the Uncompahgre Valley Water Users Association, and the U.S. Geological Survey. The placing of five laterals in pipe significantly decreased selenium loads in Montrose Arroyo. The selenium load at the outflow monitoring site was about 194 pounds per year less (28-percent decrease) in the period after the laterals were placed in pipe. More than 90 percent of the decrease in selenium load was attributed to a decrease in ground-water load. Salt loads also decreased because of the lateral project, but by a smaller percentage than the selenium loads. The salt load at the outflow site on Montrose Arroyo was about 1,980 tons per year less in the post-project period than in the pre-project period. All of the effects of the demonstration project on selenium and salt loads probably were not measured by this study because some of the lateral leakage that was eliminated had not necessarily discharged to Montrose Arroyo upstream from the monitoring sites. A greater decrease in selenium loads relative to salt loads may have been partially the result of decreases in selenium concentrations in ground water in some areas.

  10. Intermediate Temperature Fluids for Heat Pipes and Loop Heat Pipes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop heat pipe and loop heat pipe (LHP) working fluids for what is known as the intermediate...

  11. Orifice Blocks Heat Pipe in Reverse Mode

    Science.gov (United States)

    Alario, J. P.

    1982-01-01

    High forward-mode conductance is combined with rapid reverse-mode shutoff in a heat pipe originally developed to cool spacecraft payloads. A narrow orifice within the pipe "chokes off" the evaporator if heat sink becomes warmer than source. During normal operation, with source warmer than sink, orifice has little effect. Design is simpler and more compact than other thermal-diode heat pipes and requires no special materials, forgings, or unusual construction techniques.

  12. Bending loss of terahertz pipe waveguides.

    Science.gov (United States)

    Lu, Jen-Tang; Hsueh, Yu-Chun; Huang, Yu-Ru; Hwang, Yuh-Jing; Sun, Chi-Kuang

    2010-12-06

    We present an experimental study on the bending loss of terahertz (THz) pipe waveguide. Bending loss of pipe waveguides is investigated for various frequencies, polarizations, core diameters, cladding thicknesses, and cladding materials. Our results indicate that the pipe waveguides with lower guiding loss suffer lower bending loss due to stronger mode confinement. The unexpected low bending loss in the investigated simple leaky waveguide structure promises variety of flexible applications.

  13. A study of pipe-soil-climate interaction of buried water and gas pipes

    OpenAIRE

    Chan, Derek Chun Chuen

    2017-01-01

    In Australia, buried water and gas pipes are reported to have more frequent failures in hot and dry summers, which suggests that soil shrinkage and thermal effects are the main factors associated with pipe failure. Shrinkage and swelling are common behaviours of soils especially for reactive clays due to seasonal variation of soil moisture content. As a result, the differential soil movement beneath buried pipe can lead to flexural bending and circumferential fracture of the pipe. In addition...

  14. Heat Pipe Precools and Reheats Dehumidified Air

    Science.gov (United States)

    Koning, R. C.; Boggs, W. H.; Barnett, U. R.; Dinh, K.

    1986-01-01

    Precooling and reheating by heat pipe reduces operating costs of air-conditioning. Warm air returned from air-conditioned space and cooled air supplied are precooled and reheated, respectively, by each other through a heat pipe. Heat-pipe technology brought to bear on problem of conserving airconditioning energy in hot, humid environments. Any increase in the cost of equipment due to installation of heat-pipe heat exchangers expected to be recovered in energy savings during service period of 2 years or less.

  15. 33 CFR 117.781 - East River.

    Science.gov (United States)

    2010-07-01

    ... United States Government, state or local vessels used for public safety, and vessels in distress shall be... provisions of § 118.160 of this chapter. (c) The draw of the Roosevelt Island bridge shall open on signal if... not open for the passage of vessel traffic from October 1, 2009 through August 31, 2010. Effective...

  16. Literature review and experimental investigation of heat pipes

    Science.gov (United States)

    Barsch, W. O.; Schoenhals, R. J.; Viskanta, R.; Winter, E. R. F.

    1971-01-01

    Tests on heat pipes determine operational limits, external boundary conditions, noncondensable gas effects, startup behavior, and geometric configurations. Experiment consists of design, construction, and testing of an apparatus for measuring wick properties, conventional heat pipes and coplanar heat pipes.

  17. CONTECH(R) A-2000 polyvinyl chloride (PVC) plastic pipe.

    Science.gov (United States)

    2015-03-01

    Determine the effectiveness and long-term durability of the Contech A-2000 PVC pipe : in an irrigation application. This type of pipe may prove to be a viable alternative to : reinforced concrete pipe (RCP).

  18. Best practices for quality management of stormwater pipe construction.

    Science.gov (United States)

    2014-02-01

    Stormwater pipe systems are integral features of transportation construction projects. Pipe culverts : direct stormwater away from roadway structures and towards designated discharge areas. The improper : installation of a pipe culvert can result in ...

  19. Heat Pipe with Axial Wick

    Science.gov (United States)

    Ambrose, Jay H. (Inventor); Holmes, Rolland (Inventor)

    2016-01-01

    A heat pipe has an evaporator portion, a condenser portion, and at least one flexible portion that is sealingly coupled between the evaporator portion and the condenser portion. The flexible portion has a flexible tube and a flexible separator plate held in place within the flexible tube so as to divide the flexible tube into a gas-phase passage and a liquid-phase artery. The separator plate and flexible tube are configured such that the flexible portion is flexible in a plane that is perpendicular to the separator plate.

  20. Development of Pipe Holding Mechanism for Pipe Inspection Robot Using Flexible Pneumatic Cylinder

    Directory of Open Access Journals (Sweden)

    Choi Kyujun

    2016-01-01

    Full Text Available A pipe inspection robot is useful to reduce the inspection cost. In the previous study, a novel pipe inspection robot using a flexible pneumatic cylinder that can move forward along to the pipe by changing the robot’s body naturally was proposed and tested. In this paper, to improve its mobility for a corner of a pipe, the thin pipe holding mechanism using pneumatic bellows was proposed and tested. As a result of its driving test, the holding performance of the mechanism was confirmed.

  1. Residual lifetime assessment of UPVC gas pipes

    NARCIS (Netherlands)

    Visser, Roy

    2010-01-01

    The Dutch gas distribution network consists of about 20% (22,500 km) of unplasticised poly(vinyl chloride) (uPVC) pipes, most of which have been installed from the mid-sixties up to the mid-seventies of the previous century and have been in service ever since. Replacing the uPVC gas pipes exactly

  2. Backward erosion piping : Initiation and progression

    NARCIS (Netherlands)

    Van Beek, V.M.

    2015-01-01

    Backward erosion piping is an internal erosion mechanism during which shallow pipes are formed in the direction opposite to the flow underneath water-retaining structures as a result of the gradual removal of sandy material by the action of water. It is an important failure mechanism in both dikes

  3. 49 CFR 230.62 - Dry pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Dry pipe. 230.62 Section 230.62 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230...

  4. Vibrations of a pipe on elastic foundations

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    is investigated. Two cases of elastic foundations are considered: rotational and both linear and rotational. The major findings are the variations in frequency with flow velocity and displacements at different points and times. Keywords. Cantilevered pipe; vibrations of pipes; elastic foundations; exter- nal transverse force. 1.

  5. Detecting pipe bursts by monitoring water demand

    NARCIS (Netherlands)

    Bakker, M.; Vreeburg, J.H.G.; Van der Roer, M.; Sperber, V.

    2012-01-01

    An algorithm which compares measured and predicted water demands to detect pipe bursts was developed and tested on three data sets of water demand and reported pipe bursts of three years. The algorithm proved to be able to detect bursts where the water loss exceeds 30% of the average water demand in

  6. Water driven turbine/brush pipe cleaner

    Science.gov (United States)

    Werlink, Rudy J. (Inventor)

    1995-01-01

    Assemblies are disclosed for cleaning the inside walls of pipes and tubes. A first embodiment includes a small turbine with angled blades axially mounted on one end of a standoff support. An O-ring for stabilizing the assembly within the pipe is mounted in a groove within the outer ring. A replaceable circular brush is fixedly mounted on the opposite end of the standoff support and can be used for cleaning tubes and pipes of various diameters, lengths and configurations. The turbine, standoff support, and brush spin in unison relative to a hub bearing that is fixedly attached to a wire upstream of the assembly. The nonrotating wire is for retaining the assembly in tension and enabling return of the assembly to the pipe entrance. The assembly is initially placed in the pipe or tube to be cleaned. A pressurized water or solution source is provided at a required flow-rate to propel the assembly through the pipe or tube. The upstream water pressure propels and spins the turbine, standoff support and brush. The rotating brush combined with the solution cleans the inside of the pipe. The solution flows out of the other end of the pipe with the brush rotation controlled by the flow-rate. A second embodiment is similar to the first embodiment but instead includes a circular shaped brush with ring backing mounted in the groove of the exterior ring of the turbine, and also reduces the size of the standoff support or eliminates the standoff support.

  7. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  8. Geothermal drill pipe corrosion test plan

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, B.C.; Copass, K.S.

    1980-12-01

    Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

  9. Gas lensing in a heated spinning pipe

    CSIR Research Space (South Africa)

    Mafusire, C

    2006-07-01

    Full Text Available When a heated pipe is rotated, the dynamics of the gas inside exhibit properties reminiscent of a solid-state positive lens. The properties are a result of a parabolic distribution of refractive index in the pipe which is caused by mixing of hot...

  10. 75 FR 877 - Drill Pipe From China

    Science.gov (United States)

    2010-01-06

    ... COMMISSION Drill Pipe From China AGENCY: International Trade Commission. ACTION: Institution of antidumping... States is materially retarded, by reason of imports from China of drill pipe, provided for in subheadings..., 2009, by VAM Drilling USA Inc., Houston, TX; Rotary Drilling Tools, Beasley, TX; Texas Steel...

  11. Heat pipe nuclear reactor for space power

    Science.gov (United States)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  12. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  13. IPIRG programs - advances in pipe fracture technology

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  14. Basic measurements on a multiple heat pipe

    Science.gov (United States)

    Rohner, P.; Schippl, K.

    1982-04-01

    A multiple heat pipe which is a specially formed long heat pipe that fulfills the function of several single heat pipes was studied. The suitability of this arrangement for a heat exchanger was investigated. Several laboratory models were manufactured from corrugated tubes and their behavior was measured. Results show that the serpentine model exhibits the expected heat exchange properties. When subjected to severe operating conditions, the pipes remain operational, although somewhat limited in performance. The results are in function of the nature of the exchange media (air-air, air-water, water-water). This corrugated heat pipe design shows good promise for successful further development into an air-air heat exchanger.

  15. Glass heat pipe evacuated tube solar collector

    Science.gov (United States)

    McConnell, Robert D.; Vansant, James H.

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  16. Radiological assessment of petroleum pipe scale from pipe-rattling operations.

    Science.gov (United States)

    Hamilton, I S; Arno, M G; Rock, J C; Berry, R O; Poston, J W; Cezeaux, J R; Park, J-M

    2004-10-01

    Petroleum pipe scale, consisting of concentrated inorganic solids such as barium sulfate, can deposit on the inside of down-hole pipes during the normal course of oil field pumping operations. A portion of this scale has been shown to contain naturally occurring radioactive materials (NORM), predominantly compounds of radium. When these pipes are removed from the well, there is a potential for radiation doses to the oil field workers handling the pipes, especially as the pipes are cleaned for reuse. A thorough sampling and measurement protocol was applied under a variety of weather conditions in an outdoor laboratory to obtain an accurate indication of the radiological and aerodynamic characteristics of scale release and dust dispersion during petroleum pipe scale removal from out-of-service pipes with a restored, historically relevant outdoor pipe-cleaning machine. Exposure rate data were also obtained for both the pre-cleaned pipes, and the general area inhabited by workers during the descaling operation. Four radiation exposure pathways were investigated: inhalation of pipe scale dust generated during pipe rattling, incidental ingestion of the pipe scale dust, external exposure from uncleaned pipes, and external exposure from pipe scale dispersed on the ground. Pipes from three oil fields were rattled to collect as much industry-representative data as possible. The Ra specific activity of the pipe scale ranged from 33.6 +/- 0.4 to 65.5 +/- 0.7 Bq g, depending on the formation. A median atmospheric dust loading of 0.13 mg m was measured in the operator breathing zone. The respirable fraction was observed to be about 42% to 46%. Based on cleaning 20 pipes per day,250 d per year on average, annual committed effective doses for the operator and helper ranged from 0.11 mSv (11 mrem) to 0.45 mSv(45 mrem) for inhalation and from 19 microSv (1.9 mrem) to 97 microSv (9.7 mrem) for incidental ingestion. Worker annual external dose from the pipe racks ranged from 0 to 0

  17. Casing free district heating pipes; Mantelfria fjaerrvaermeroer

    Energy Technology Data Exchange (ETDEWEB)

    Saellberg, Sven-Erik; Nilsson, Stefan [Swedish National Testing and Research Inst., Goeteborg (Sweden)

    2005-07-01

    Previous studies have shown that polyurethane insulation (PUR foam) on district heating pipes acts as protection against water if it is of good quality, i.e. free from cracks, cavities and other defects. On the other hand water vapour easily diffuses through PUR foam. However this is not a problem as long as the steel pipe is warmer than the surface layer, since the high temperature will prevent the vapour from condensating. What will happen with the insulation of a casing free district heating pipe where the ground water level occasionally reaches above the pipe has not been studied in detail. The current project has studied to what extent moisture enters the PUR foam insulation of two approximately one meter long district heating pipes without casing which have been in the ground for four years. Occasionally, the ground-water has entirely covered the pipes. In addition, the foam has been studied with respect to damage from the surrounding backfill material. Test specimens were taken out of the casing free pipes and were analysed with respect to moisture content. Additional measurements were done with a moisture indicator, and the electric resistance between the steel pipes and the four surveillance wires in each pipe was measured. The results from the various measurement techniques were the compared. The results show that the PUR foam remains dry as long as the service pipe is hot if no defects, such as crack and cavities, are present. Close to the service pipe, the foam actually dries out over time. The moisture content of the middle layer remains more or less constant. Only the colder parts on the outside exhibit an increase in moisture content. It was also seen that defects may lead to water ingress with subsequent humidification of the foam. However, the damaged foam area is limited. This is not the case for a regular pipe with a vapour tight casing, where experience show that moisture tend to spread along the pipe. The pipes were buried in sand and no

  18. Modelling of fiberglass pipe destruction process

    Directory of Open Access Journals (Sweden)

    А. К. Николаев

    2017-03-01

    Full Text Available The article deals with important current issue of oil and gas industry of using tubes made of high-strength composite corrosion resistant materials. In order to improve operational safety of industrial pipes it is feasible to use composite fiberglass tubes. More than half of the accidents at oil and gas sites happen at oil gathering systems due to high corrosiveness of pumped fluid. To reduce number of accidents and improve environmental protection we need to solve the issue of industrial pipes durability. This problem could be solved by using composite materials from fiberglass, which have required physical and mechanical properties for oil pipes. The durability and strength can be monitored by a fiberglass winding method, number of layers in composite material and high corrosion-resistance properties of fiberglass. Usage of high-strength composite materials in oil production is economically feasible; fiberglass pipes production is cheaper than steel pipes. Fiberglass has small volume weight, which simplifies pipe transportation and installation. In order to identify the efficiency of using high-strength composite materials at oil production sites we conducted a research of their physical-mechanical properties and modelled fiber pipe destruction process.

  19. Research of Spined Heat-Exchanging Pipes

    Directory of Open Access Journals (Sweden)

    Akulov Kirill

    2016-01-01

    Full Text Available Work is devoted to a research of spined heat-exchanging pipes that are assumed to use in air-cooler exchangers (ACE. The proposed new geometry of finning allows intensifying heat exchange and improving the efficiency of air coolers. It is caused by the increased area of finned surface with a value of finning ratio (the ratio of the area of the smooth pipe to a finned one to 42.7, while in the commercially available ACE, the figure is 22. Besides, the geometrical arrangement of the pin fins turbulizes the airflow. It should be mentioned that an easier method of manufacturing of heat exchanging pipes is proposed to use, which will reduce their costs. The proposed heat exchange pipes are made by winding cut aluminum strip to the supporting pipe or stretching stamped blanks on it. To increase the efficiency of the heat exchange surface pin fins should be as thin and long as possible; however, their strength should be sufficient for deformation-free operation. Fins should be staggered to maximize the distance between them. Spined heat-exchange pipes are designed to operate in a commercially produced ACE and their service is carried out similarly to commercially produced transversely finned pipes.

  20. Pipes's distribution by helicopter in Amazonian forest

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Gilberto R.; Machado, Otto L.M.; Gomes, Antonio E. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    The innumerable logistical problems encountered during the implementation of the gas pipeline Urucu - Coari - Manaus, located in the Amazon forest, connecting the Base Operations Geologist Pedro de Moura in Urucu to the refinery Isaac Sabba - Reman, in the city of Manaus, contributed considerably for PETROBRAS to seek non conventional solutions in the construction and assembly of pipelines in our country. Among these solutions, there is the technique of distributing pipes through cargo helicopters. The need for the usage of this technique, innovative in Brazil, comes from the lack and/or insufficiency of land access from Solimoes River to the gas pipeline main route, and the large quantities of flooded areas and/or flood plain, and also the type of soil, that together with the high index of rainfall in the region, makes the soil fully inappropriate to the traffic of heavy equipment. (author)

  1. Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Exposed East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of short-term (~32 years) shoreline change rates for the north coast of Alaska between the U.S. Canadian Border and the Hulahula River. Rate...

  2. Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Sheltered East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of short-term (~32 years) shoreline change rates for the north coast of Alaska between the U.S. Canadian Border and the Hulahula River. Rate...

  3. Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Sheltered East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of long-term (~63 years) shoreline change rates for the north coast of Alaska between the U.S. Canadian Border and the Hulahula River. Rate...

  4. Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Exposed East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of long-term (~63 years) shoreline change rates for the north coast of Alaska between the U.S. Canadian Border and the Hulahula River. Rate...

  5. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the North Canadian River from Oklahoma City to Eufaula Lake in east-central Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital water-level elevation contours for the alluvial and terrace deposits along the North Canadian River from Oklahoma City to Eufaula...

  6. 49 CFR 192.121 - Design of plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of the...

  7. 49 CFR 192.321 - Installation of plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that is...

  8. Modelling and performance of heat pipes with long evaporator sections

    NARCIS (Netherlands)

    Wits, Wessel W.; te Riele, Gert Jan

    2017-01-01

    This paper presents a planar cooling strategy for advanced electronic applications using heat pipe technology. The principle idea is to use an array of relatively long heat pipes, whereby heat is disposed to a long section of the pipes. The proposed design uses 1 m long heat pipes and top cooling

  9. 49 CFR 192.105 - Design formula for steel pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe that...

  10. 46 CFR 153.280 - Piping system design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping system design. 153.280 Section 153.280 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.280 Piping system design. (a) Each cargo piping system must meet...

  11. 46 CFR 154.526 - Piping joints: Flange connection.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping joints: Flange connection. 154.526 Section 154... Equipment Cargo and Process Piping Systems § 154.526 Piping joints: Flange connection. Flange connections for pipe joints must meet § 56.30-10 and § 56.50-105 (a)(4) and (b)(4) of this chapter. ...

  12. 46 CFR 56.30-3 - Piping joints (reproduces 110).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Piping joints (reproduces 110). 56.30-3 Section 56.30-3... APPURTENANCES Selection and Limitations of Piping Joints § 56.30-3 Piping joints (reproduces 110). The type of piping joint used shall be suitable for the design conditions and shall be selected with consideration of...

  13. 46 CFR 154.514 - Piping: Electrical bonding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping: Electrical bonding. 154.514 Section 154.514... and Process Piping Systems § 154.514 Piping: Electrical bonding. (a) Cargo tanks or piping that are... side. (c) An electrical bond must be made by at least one of the following methods: (1) A metal bonding...

  14. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  15. Study Fatigue in Materials of Drill Pipes

    Directory of Open Access Journals (Sweden)

    J. Argirov

    2016-02-01

    Full Text Available Upon examination of a fracture burst, it was found out that the main reason for this is the fatigue of the material in the annular section of the pipes. Analysis was made of the stress state and its impact on the nature of the destruction. In a working conditions, especially in rotor drilling, a direct correlation between the loss of stability of the column in the compression zone and the destruction of drill piping due to fatigue failures in material is established. Object of study is the nature of the destruction of defective drill pipe

  16. Drill pipe threaded nipple connection design development

    Science.gov (United States)

    Saruev, A. L.; Saruev, L. A.; Vasenin, S. S.

    2015-11-01

    The paper presents the analysis of the behavior of the drill pipe nipple connection under the additional load generated by power pulses. The strain wave propagation through the nipple thread connection of drill pipes to the bottomhole is studied in this paper. The improved design of the nipple thread connection is suggested using the obtained experimental and theoretical data. The suggested connection design allows not only the efficient transmission of strain wave energy to a drill bit but also the automation of making-up and breaking-out drill pipes.

  17. Heat pipes theory, design and applications

    CERN Document Server

    Reay, David; Kew, Peter

    2013-01-01

    Heat Pipes, 6th Edition, takes a highly practical approach to the design and selection of heat pipes, making it an essential guide for practicing engineers and an ideal text for postgraduate students. This new edition has been revised to include new information on the underlying theory of heat pipes and heat transfer, and features fully updated applications, new data sections, and updated chapters on design and electronics cooling. The book is a useful reference for those with experience and an accessible introduction for those approaching the topic for the first time. Contains all informat

  18. Connecticut River Hydrologic Observatory

    Science.gov (United States)

    Ballestero, T. P.

    2004-12-01

    The Connecticut River basin possesses some characteristics that make it unique for studying hydrologic issues that transcend scale. The watershed was first dramatically altered through natural processes (glaciation) and then heavily impacted by human stresses (dams, deforestation, acid precipitation/deposition), only to exhibit recent decades of return to a more natural state (reforestation, land conservation, stream restoration, pollution abatement, and dam removal). The watershed is sufficiently north to be classified as a cold region. More specifically to hydrology, the watershed exhibits the spectrum of flooding problems: ice dams, convective storms, hurricanes, rain on melting snow, and low pressure systems. The 28,000 square kilometer Connecticut River Watershed covers one third of the states of New Hampshire, Vermont, Massachusetts, and Connecticut. The >640-km long rivers' headwaters start on the Canadian border at the Fourth Connecticut Lake, and flows southward to discharge in Long Island sound. The lower 100 km of river are tidally influenced. The Connecticut River is responsible for 70 % of the freshwater inflow to Long Island Sound. The Connecticut River is a sixth order stream that exhibits a dendritic pattern in an elongated scheme. This setting therefore affords many first and second order streams in almost parallel fashion, flowing west or east towards the central Connecticut River spine. There are 38 major tributaries to the mainstem Connecticut River, and 26 of these tributaries drain greater than 250 square kilometers. There is in excess of 30,000 km of perennially flowing stream length in the watershed. For more information, see: http://www.unh.edu/erg/connho/

  19. Characterization of radioactive contamination inside pipes with the Pipe Explorer{sup trademark} system

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, C.D.; Lowry, W.; Cramer, E. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)] [and others

    1995-10-01

    The U.S. Department of Energy`s nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Difficulty, or inability of measuring threshold surface contamination values, worker exposure, and physical access constraints have limited the effectiveness of this approach. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer{trademark} system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane.

  20. Reliability of piping system components. Volume 4: The pipe failure event database

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, R.; Erixon, S. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Tomic, B. [ENCONET Consulting GmbH, Vienna (Austria); Lydell, B. [RSA Technologies, Visat, CA (United States)

    1996-07-01

    Available public and proprietary databases on piping system failures were searched for relevant information. Using a relational database to identify groupings of piping failure modes and failure mechanisms, together with insights from published PSAs, the project team determined why, how and where piping systems fail. This report represents a compendium of technical issues important to the analysis of pipe failure events, and statistical estimation of failure rates. Inadequacies of traditional PSA methodology are addressed, with directions for PSA methodology enhancements. A `data driven and systems oriented` analysis approach is proposed to enable assignment of unique identities to risk-significant piping system component failure. Sufficient operating experience does exist to generate quality data on piping failures. Passive component failures should be addressed by today`s PSAs to allow for aging analysis and effective, on-line risk management. 42 refs, 25 figs.

  1. EFFORT OF STEEL PIPE JACKING IN TERMS OF IMPERFECTION PIPES AND HETEROGENEITY OF GROUND

    Directory of Open Access Journals (Sweden)

    K. Górski

    2016-06-01

    Full Text Available Purpose. The article presents problem of the influence of local inhomogeneities of ground on the internal forces in the steel pipe. Methodology. The authors presented the differences in the distributions of earth pressures for the pipes. One of the most common methods is the microtunneling technology. The examples of numerical analysis by finite element method (FEM have been calculated. Findings. The results of numerical analysis are presented for selected ground conditions and the distribution of internal forces in the flexible section of the steel pipe is also shown. Originality and Practical value. The obtained results clearly show the influence of flexural rigidity of the pipe on the internal forces, the influence of flexural rigidity and the soil stiffness on the size of the bending moments in the steel of pipe jacking. They depend on the interaction of soil – steel pipe.

  2. Comparative study of bend pipe for circular section and ovality induced bend pipes

    Science.gov (United States)

    Giresh Chaudhari, Akshay; Sharan Chandran, M.

    2017-11-01

    Pipes are used all over the world for the basic utility of transfer of small solids, gases, slurries and liquids. Sometimes the term pipes and tubes is interchangeably used, the difference remains. The cross-sectional variations of these flow components results in the variation of characteristics under pressurized conditions. In the manufacturing of bend pipes the control over the outer diameter is quiet easily possible, but the inner diameter variations can be expected. At the bend, the thinning of the exterior part of the bend and the thickening of the interior part is seen. In the subsequent study the comparative flow analysis of the bend pipe of a circular cross-section and the oval pipe is analyzed. The characteristics flow velocity change, turbulence induced, density and pressure variations, temperature change in its course are focused. ANSYS FLUENT is used for the analysis of a standalone pipe of specified dimensions.

  3. Alpha detection in pipes using an inverting membrane scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Kendrick, D.T.; Cremer, C.D.; Lowry, W. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)] [and others

    1995-10-01

    Characterization of surface alpha emitting contamination inside enclosed spaces such as piping systems presents an interesting radiological measurement challenge. Detection of these alpha particles from the exterior of the pipe is impossible since the alpha particles are completely absorbed by the pipe wall. Traditional survey techniques, using hand-held instruments, simply can not be used effectively inside pipes. Science and Engineering Associates, Inc. is currently developing an enhancement to its Pipe Explorer{trademark} system that will address this challenge. The Pipe Explorer{trademark} uses a unique sensor deployment method where an inverted tubular membrane is propagated through complex pipe runs via air pressure. The inversion process causes the membrane to fold out against the pipe wall, such that no part of the membrane drags along the pipe wall. This deployment methodology has been successfully demonstrated at several DOE sites to transport specially designed beta and gamma, scintillation detectors into pipes ranging in length up to 250 ft.

  4. Optimatization of loop heat pipe for cooling of electrotechnical box

    Science.gov (United States)

    Roman, Banovcan; Tomas, Puchor; Andrej, Kapjor; Milan, Malcho

    2017-09-01

    The paper deals with use of LOOP thermosyphon heat pipe to transfer heat from electrotechnical box and describe of construction individual types of LOOP heat pipes. The LOOP heat pipe is very good cooling device which requires no mechanical parts in their design. LOOP heat pipe use only phase change during heat transfer, without a compressor, fan or pump. LOOP heat pipe is more energy saving compared to conventional cooling systems with forced convection. The main advantage of cooling by heat pipe is that electrotechnical box can be hermetically closed (dust -free construction), because dust reduces the lifetime of electrotechnical elements in box. Lifetime of LOOP heat pipe equals to the lifetime of construction material. The paper describes mathematical model of LOOP thermosyphon heat pipe (condenser). Compares selected types of working fluids which are filled with a heat pipe and construction materials of heat pipe.

  5. A simple method for removing leakage of metal pipes, like district heating and NG pipes

    Energy Technology Data Exchange (ETDEWEB)

    Tabatabaeeghomi, Mohammad; Mahmoudi, Jafar (Maelardalen Univ., Vaesteraas (Sweden)). E-mail: Jafar.Mahmoudi@mdh.se; Liaghat, Gholamhossien (Tarbiat Modaress Univ., Tehran (Iran))

    2009-07-01

    Explosive welding occur under high velocity oblique impact, though it is possible to use explosive energy to form a usual cold pressure weld. One of the advantages of this method is welding kind of materials with different shapes together. The ability of explosive welding can be used to maintenance of pipes and vessels, preventing pipe leakage especially under water in oil and gas industries. This research suggests a simple explosive welding method for removing the leakage of metal pipes that is very economy and easy for repairing pipes and vessels full of water or liquid

  6. UOE Pipe Manufacturing Process Simulation: Equipment Designing and Construction

    Science.gov (United States)

    Delistoian, Dmitri; Chirchor, Mihael

    2017-12-01

    UOE pipe manufacturing process influence directly on pipeline resilience and operation capacity. At present most spreaded pipe manufacturing method is UOE. This method is based on cold forming. After each technological step appears a certain stress and strain level. For pipe stress strain study is designed and constructed special equipment that simulate entire technological process.UOE pipe equipment is dedicated for manufacturing of longitudinally submerged arc welded DN 400 (16 inch) steel pipe.

  7. North Dakota Piping Plover Survey : 1992

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Packet of information on conducting piping plover surveys in North Dakota for 1992. These surveys are part of a cooperative effort with other resource agencies and...

  8. Modular Heat Exchanger With Integral Heat Pipe

    Science.gov (United States)

    Schreiber, Jeffrey G.

    1992-01-01

    Modular heat exchanger with integral heat pipe transports heat from source to Stirling engine. Alternative to heat exchangers depending on integrities of thousands of brazed joints, contains only 40 brazed tubes.

  9. Reentrant-Groove Hydrogen Heat Pipe

    Science.gov (United States)

    Alario, J.; Kosson, R.

    1982-01-01

    Aluminum heat pipe extruded with reentrant axial grooves, which give better overall performance than conventional rectangular grooves. Reentrant grooves increase wicking height of cryogenic fluids and also lower amount of fluid charge required.

  10. Multi-leg heat pipe evaporator

    Science.gov (United States)

    Alario, J. P.; Haslett, R. A.

    1986-04-01

    A multileg heat pipe evaporator facilitates the use and application of a monogroove heat pipe by providing an evaporation section which is compact in area and structurally more compatible with certain heat exchangers or heat input apparatus. The evaporation section of a monogroove heat pipe is formed by a series of parallel legs having a liquid and a vapor channel and a communicating capillary slot therebetween. The liquid and vapor channels and interconnecting capillary slots of the evaporating section are connected to the condensing section of the heat pipe by a manifold connecting liquid and vapor channels of the parallel evaporation section legs with the corresponding liquid and vapor channels of the condensing section.

  11. Titanium Heat Pipe Thermal Plane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II program is to complete the development of the titanium heat pipe thermal plane and establish all necessary steps for production of this...

  12. Titanium Heat Pipe Thermal Plane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermacore Inc. proposes an innovative titanium heat pipe thermal plane for passive thermal control of individual cells within a fuel cell stack. The proposed...

  13. Rhode Island Piping Plover Restoration Project 2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The recovery plan for Piping Plover on Rhode Island discusses the current status of the species, habitat requirements and limiting factors, recovery objectives and...

  14. 46 CFR 64.95 - Piping.

    Science.gov (United States)

    2010-10-01

    ... operator at the cargo pump controls. (c) Each pipe and valve in the pumping system that has an open end... if a backflow condition may occur during pumping. (f) Any non-metallic flexible hose that is used in...

  15. Plastic Pipe Failure, Risk, and Threat Analysis

    Science.gov (United States)

    2009-04-29

    The three primary failure modes that may be exhibited by polyethylene (PE) gas pipe materials were described in detail. The modes are: ductile rupture, slow crack growth (SCG), and rapid crack propagation (RCP). Short term mechanical tests were evalu...

  16. Additive Manufacturing of Heat Pipe Wicks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Wick properties are often the limiting factor in a heat pipe design. Current technology uses conventional sintering of metal powders, screen wick, or grooves to...

  17. Reliability Estimation for Double Containment Piping

    Energy Technology Data Exchange (ETDEWEB)

    L. Cadwallader; T. Pinna

    2012-08-01

    Double walled or double containment piping is considered for use in the ITER international project and other next-generation fusion device designs to provide an extra barrier for tritium gas and other radioactive materials. The extra barrier improves confinement of these materials and enhances safety of the facility. This paper describes some of the design challenges in designing double containment piping systems. There is also a brief review of a few operating experiences of double walled piping used with hazardous chemicals in different industries. This paper recommends approaches for the reliability analyst to use to quantify leakage from a double containment piping system in conceptual and more advanced designs. The paper also cites quantitative data that can be used to support such reliability analyses.

  18. 75 FR 8113 - Drill Pipe From China

    Science.gov (United States)

    2010-02-23

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Drill Pipe From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject antidumping and countervailing duty investigations. DATES: Effective Date...

  19. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  20. The river and the rocks: The geologic story of Great Falls and the Potomac River Gorge

    Science.gov (United States)

    Reed, John Calvin; Sigafoos, Robert Sumner; Fisher, George Wescott

    1980-01-01

    The Great Falls of the Potomac River has figured prominently in the purposes of men since prehistoric time. Long before John Smith reached the falls in 1609, groups of Indians from East and West met at this great river barrier to trade and perform ceremonies in honor of the spirit of the "Roaring Waters". As early as 1754, George Washington visualized the Potomac River as an important avenue of trade and communication with the interior.

  1. Heat-Exchanger/Heat-Pipe Interface

    Science.gov (United States)

    Snyder, H. J.; Van Hagan, T. H.

    1987-01-01

    Monolithic assembly reliable and light in weight. Heat exchanger and evaporator ends of heat pipes integrated in monolithic halves welded together. Interface assembly connects heat exchanger of furnace, reactor, or other power source with heat pipes carrying heat to radiator or power-consuming system. One of several concepts proposed for nuclear power supplies aboard spacecraft, interface useful on Earth in solar thermal power systems, heat engines, and lightweight cooling systems.

  2. Experimental study of the naphtaline heat pipe

    Science.gov (United States)

    Honda, I.; Suzuki, A.; Abe, Y.; Sugihara, S.

    1984-03-01

    Industrial needs for heat pipes which are operable at medium and high temperature ranges over 200 C are increasing in order to recover waste heat from high temperature furnaces or to cool aluminum diecasting molds. Naphthaline is attractive working fluid due to its cost and easiness of handling for medium temperature range. In the heat transfer characteristics, the fabrication method and also the life test result of the heat pipes using naphtaline as the working fluid are reported.

  3. FEM analysis of soil-pipe interaction

    Science.gov (United States)

    Burkov, P.; Chun, Wu; Burkov, V.; Burkova, S.

    2017-07-01

    One of the most important factors of the pipeline buckling is soil distortion. The paper presents the model of the stress-strain state of the pipeline simulated with ANSYS software package and the finite element model of soil-pipe interaction. The analysis of soil distortions nearby the pipeline and its passive resistance is presented herein with due regard for the different pipe depths.

  4. Drag reduction in riblet-lined pipes

    Energy Technology Data Exchange (ETDEWEB)

    Enyutin, G.V.; Lashkov, Yu.A.; Samoilova, N.V.

    1995-07-01

    The possibilities of reducing the drag in pipes with a circular cross section by lining them with riblets have been investigated experimentally for developed turbulent air flow. The maximum drag reduction of 6-7% in the riblet-lined as compared with the smooth pipe was obtained for a dimensionless riblet pitch, expressed in law-of-the-wall parameters, s{sup +} = 14-18.

  5. Flexible heat pipes with integrated bioinspired design

    OpenAIRE

    Chao Yang; Chengyi Song; Wen Shang; Peng Tao; Tao Deng

    2015-01-01

    In this work we report the facile fabrication and performance evaluation of flexible heat pipes that have integrated bioinspired wick structures and flexible polyurethane polymer connector design between the copper condenser and evaporator. Inside the heat pipe, a bioinspired superhydrophilic strong-base-oxidized copper mesh with multi-scale micro/nano-structures was used as the wicking material and deionized water was selected as working fluid. Thermal resistances of the fabricated flexible ...

  6. Multilayer fabric stratification pipes for solar tanks

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Fan, Jianhua

    2007-01-01

    be achieved by use of inlet stratifiers combined with low flow operation in the solar collector loop. In this paper, investigations of a number of different fabric stratification pipes are presented and compared to a non flexible inlet stratifier. Additional, detailed investigations of the flow structure...... close to two fabric stratification pipes are presented for one set of operating conditions by means of the optical PIV (Particle Image Velocimetry) method....

  7. Heat Pipe Technology: A bibliography with abstracts

    Science.gov (United States)

    1974-01-01

    This bibliography lists 149 references with abstracts and 47 patents dealing with applications of heat pipe technology. Topics covered include: heat exchangers for heat recovery; electrical and electronic equipment cooling; temperature control of spacecraft; cryosurgery; cryogenic, cooling; nuclear reactor heat transfer; solar collectors; laser mirror cooling; laser vapor cavitites; cooling of permafrost; snow melting; thermal diodes variable conductance; artery gas venting; and venting; and gravity assisted pipes.

  8. Drill pipe threaded nipple connection design development

    OpenAIRE

    Saruev, Aleksey Lvovich; Saruev, Lev Alekseevich; Vasenin, S. S.

    2015-01-01

    The paper presents the analysis of the behavior of the drill pipe nipple connection under the additional load generated by power pulses. The strain wave propagation through the nipple thread connection of drill pipes to the bottomhole is studied in this paper. The improved design of the nipple thread connection is suggested using the obtained experimental and theoretical data. The suggested connection design allows not only the efficient transmission of strain wave energy to a drill bit but a...

  9. Analysis of Fracture Behaviour of Multilayer Pipes

    Czech Academy of Sciences Publication Activity Database

    Nezbedová, E.; Knésl, Zdeněk; Vlach, B.

    2007-01-01

    Roč. 36, č. 5 (2007), s. 207-212 ISSN 1465-8011. [Plastic Pipes /13./. Washington, D. C., 02.10.2006-05.10.2006] R&D Projects: GA ČR GA106/07/1284 Institutional research plan: CEZ:AV0Z20410507 Keywords : multi-layer pipes Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.431, year: 2007

  10. Drag reduction properties of superhydrophobic mesh pipes

    Science.gov (United States)

    Geraldi, Nicasio R.; Dodd, Linzi E.; Xu, Ben B.; Wells, Gary G.; Wood, David; Newton, Michael I.; McHale, Glen

    2017-09-01

    Even with the recent extensive study into superhydrophobic surfaces, the fabrication of such surfaces on the inside walls of a pipe remains challenging. In this work we report a convenient bi-layered pipe design using a thin superhydrophobic metallic mesh formed into a tube, supported inside another pipe. A flow system was constructed to test the fabricated bi-layer pipeline, which allowed for different constant flow rates of water to be passed through the pipe, whilst the differential pressure was measured, from which the drag coefficient (ƒ) and Reynolds numbers (Re) were calculated. Expected values of ƒ were found for smooth glass pipes for the Reynolds number (Re) range 750-10 000, in both the laminar and part of the turbulent regimes. Flow through plain meshes without the superhydrophobic coating were also measured over a similar range (750  pipe of the same diameter. This demonstrates that a superhydrophobic mesh can support a plastron and provide a drag reduction compared to a plain mesh, however, the plastron is progressively destroyed with use and in particular at higher flow rates.

  11. Flexible heat pipes with integrated bioinspired design

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2015-02-01

    Full Text Available In this work we report the facile fabrication and performance evaluation of flexible heat pipes that have integrated bioinspired wick structures and flexible polyurethane polymer connector design between the copper condenser and evaporator. Inside the heat pipe, a bioinspired superhydrophilic strong-base-oxidized copper mesh with multi-scale micro/nano-structures was used as the wicking material and deionized water was selected as working fluid. Thermal resistances of the fabricated flexible heat pipes charged with different filling ratios were measured under thermal power inputs ranging from 2 W to 12 W while the device was bent at different angles. The fabricated heat pipes with a 30% filling ratio demonstrated a low thermal resistance less than 0.01 K/W. Compared with the vertically oriented straight heat pipes, bending from 30° up to 120° has negligible influence on the heat-transfer performance. Furthermore, repeated heating tests indicated that the fabricated flexible heat pipes have consistent and reliable heat-transfer performance, thus would have important applications for advanced thermal management in three dimensional and flexible electronic devices.

  12. Moisture Accumulation and Its Impact on the Thermal Performance of Pipe Insulation for Chilled Water Pipes in High Performance Buildings

    OpenAIRE

    Cai, Shanshan; Cremaschi, Lorenzo; Ghajar, Afshin J.

    2012-01-01

    Mechanical pipe insulation systems are commonly applied to cold piping surfaces in most industrial and commercial buildings in order to limit the heat losses and prevent water vapor condensation on the pipe exterior surfaces. Due to the fact that the surface temperature of these pipelines is normally below the ambient dew point temperature, water vapor diffuses inside the pipe insulation systems and often condenses when it reaches the pipe exterior surfaces. The water droplets accumulated in ...

  13. Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Vaivoda, Alexis

    2004-02-01

    sources on Evans Creek. Through this project, BPA funded the Middle Fork Irrigation District (MFID) a total of $194,000 in FY 03 for the Glacier Ditch- Evans Creek project. BPA funds accounted for approximately 30% of the project while the remaining 70% was cost-shared by the MFID, the US Forest Service, and the Oregon Watershed Enhancement Board. The MFID operated irrigation diversions on Evans Creek (Hutson pond RM 4.0 and the Evans Creek diversion RM 5.5), a tributary to the East Fork Hood River. Both diversions had inadequate upstream fish passage, and utilized Evans Creek to transport Eliot Branch water to distribute irrigation water lower in the basin. This project consisted of: piping a portion of the Glacier ditch to create a pressurized irrigation pipeline system, piping the Hutson extension, removing the culvert on Evans Creek near the Glacier ditch, removing the culvert above the Hutson pond, revegetating the disturbed areas, and providing adequate and approved fish passage on Evans Creek. Prior to any work, Brian Connors with MFID completed a NEPA checklist. Some of the key regulatory points of this project included wetland delineations, a cultural resources survey, and consultations with NOAA Fisheries, U.S. Fish and Wildlife, Oregon Department of Fish and Wildlife (ODFW), and the U.S. Army Corps of Engineers. This project will eliminate the overflow of silty water into Evans Creek and West Fork Evans Creek. Upon completion of this project, access to 2.5 miles of winter steelhead, coho salmon, and resident trout habitat will be restored. Elimination of the interbasin transfer of water will discontinue the conveyance of silty Eliot Branch water into clear East Fork tributaries. Additionally, less water taken from Coe Branch, Eliot Branch, and Laurance Lake which will benefit listed steelhead and bull trout. The Glacier Ditch provided irrigation water from the Eliot Branch to upper valley orchards and agriculture for more than 100 years. The Glacier Ditch

  14. Methods for Analyzing Pipe Networks

    DEFF Research Database (Denmark)

    Nielsen, Hans Bruun

    1989-01-01

    The governing equations for a general network are first set up and then reformulated in terms of matrices. This is developed to show that the choice of model for the flow equations is essential for the behavior of the iterative method used to solve the problem. It is shown that it is better to fo...... demonstrated that this method offers good starting values for a Newton-Raphson iteration.......The governing equations for a general network are first set up and then reformulated in terms of matrices. This is developed to show that the choice of model for the flow equations is essential for the behavior of the iterative method used to solve the problem. It is shown that it is better...... to formulate the flow equations in terms of pipe discharges than in terms of energy heads. The behavior of some iterative methods is compared in the initial phase with large errors. It is explained why the linear theory method oscillates when the iteration gets close to the solution, and it is further...

  15. JPRS Report, East Europe

    Science.gov (United States)

    1990-05-22

    German Journalists Association (West), "of the conquests by the Spanish Conquista - [Text] Berliner Verlag in East Berlin, once upon a time the dors." This...subscribers should Union, East Asia, Near East & South Asia, Sub- expect a 30-day delay in receipt of the first issue. Saharan Africa, Latin America , and

  16. Cured-in-place pipe reconstruction of existing underground systems

    Energy Technology Data Exchange (ETDEWEB)

    Knasel, J. [Kenny Construction Co., Wheeling, IL (United States)

    1995-09-01

    This paper describes InLiner USA{reg_sign} which is a cost effective process that allows pipes to be rebuilt without digging and avoids disturbing the area surrounding the pipe. This cured-in-place pipe (CIPP) technology is a unique process for reconstructing deteriorated pipe line systems in municipal and industry applications, which includes powerplants. The process uses a resin that coats and rebuilds th interior of the pipe to improve its structural integrity and corrosion resistance. CIPP creates continuous, seamless construction which increases flow capacities, stops infiltration, improves structural strength, resists long term corrosion and forms its own pipe within a pipe. It can be installed in a matter of hours or days and can be utilized in gravity and pressure pipes for storm sewers, sanitary sewers, combined sewers, water mains, gas mains and process piping.

  17. Whistling of a pipe system with multiple side branches: comparison with corrugated pipes

    NARCIS (Netherlands)

    Tonon, D.; Landry, B.J.T.; Belfroid, S.P.C.; Willems, J.F.H.; Hofmans, G.C.J.; Hirschberg, A.

    2010-01-01

    Corrugated pipes are widely used because they combine local rigidity with global flexibility. Whistling induced by flow through such pipes can lead to serious environmental and structural problems. The whistling of a multiple side branch system is compared to the whistling behavior of corrugated

  18. Effect of Geopolymer filler in Glass Reinforced Epoxy (GRE) Pipe for Piping Application: Mechanical Properties

    Science.gov (United States)

    Firdaus Abu Hashim, Mohammad; Bakri Abdullah, Mohd Mustafa Al; Mohd Ruzaidi Ghazali, Che; Hussin, Kamarudin; Binhussain, Mohammed

    2016-06-01

    The present work is aimed to carry out the effect of geopolymer material which is fly ash as filler in the glass reinforced epoxy pipe on the micro structure of fly ash geopolymer, compression properties, and bulk density using the filament winding method. Conventional glass reinforced epoxy pipes has its own disadvantages such as high corrosion resistance at acidic environment and low strength which can be replaced by the composite pipes. Geopolymer is a type of amorphous alumino-silicate and can be synthesized by geopolymerization process. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentage geopolymer filler which is fly ash with 4 Molarity were prepared. Morphology of the raw material fly ash and fly ash based-geopolymer surface was characterized using scanning electron microscopy. It was found that the additions of fly ash at the beginning with 10 wt% are showing higher compressive strength than glass reinforced epoxy pipe without fly ash geopolymer filler. The compressive test of these series of samples was determined using Instron Universal Testing under compression mode. It was found that compressive strength for samples fly ash based-geopolymer filler are higher as compared to glass reinforced epoxy pipe without geopolymer filler. However, the compressive strength of glass reinforced epoxy pipe with fly ash geopolymer filler continues to decline when added to 20 wt% - 40 wt% of geopolymer filler loading. The results showed that the mixing of geopolymer materials in epoxy system can be obtained in this study.

  19. Effect of Glass Reinforced Epoxy (GRE pipe filled with Geopolymer Materials for Piping Application: Compression Properties

    Directory of Open Access Journals (Sweden)

    Abu Hashim Mohammad Firdaus

    2016-01-01

    Full Text Available The aim of this paper is to achieve the highest compressive strength of glass reinforced epoxy pipe with the geopolymer filler content of weight percentage that were used in glass reinforced epoxy pipe. The samples were prepared by using the filament winding method. The effect of weight percentage of geopolymer materials in epoxy hardener was studied under mechanical testing, which is using the compression test. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 – 40 weight percentage geopolymer filler which is white clay were prepared. The compression strength of the glass reinforced epoxy pipe filled geopolymer materials is determined using Instron Universal Testing under compression mode. It was found that compressive strength for samples with white clay geopolymer filler are much higher compare to glass reinforced epoxy pipe without geopolymer filler. Moreover, the compressive strength of glass reinforced epoxy pipe filled with white clay geopolymer filler was increased from 10 wt% to 30 wt% of geopolymer content. However, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler suddenly decreased when added to 40 wt%. The results indicated that the blending of geopolymer materials in epoxy system can be obtained in this study.

  20. Application of displacement monitoring system on high temperature steam pipe

    Science.gov (United States)

    Ghaffar, M. H. A.; Husin, S.; Baek, J. E.

    2017-10-01

    High-energy piping systems of power plants such as Main Steam (MS) pipe or Hot Reheat (HR) pipe are operating at high temperature and high pressure at base and cyclic loads. In the event of transient condition, a pipe can be deflected dramatically and caused high stress in the pipe, yielding to failure of the piping system. Periodic monitoring and walk down can identify abnormalities but limitations exist in the standard walk down practice. This paper provides a study of pipe displacement monitoring on MS pipe of coal-fired power plant to continuously capture the pipe movement behaviour at different load using 3-Dimensional Displacement Measuring System (3DDMS). The displacement trending at Location 5 and 6 (north and south) demonstrated pipes displace less than 25% to that of design movement. It was determined from synchronisation analysis that Location 7 (north) and Location 8 (south) pipe actual movement difference has exceeded the design movement difference. Visual survey at specified locations with significant displacement trending reveals issues of hydraulic snubber and piping interferences. The study demonstrated that the displacement monitoring is able to capture pipe movement at all time and allows engineer to monitor pipe movement behaviour, aids in identifying issue early for remedy action.

  1. Round dance in pipes; Runddans i roer

    Energy Technology Data Exchange (ETDEWEB)

    Steensen, Anders J.

    2004-07-01

    On the offshore production plants, oil, water, and gas are separated from the well streams. The oil is sold on the market while the gas is in part exported, in part reinjected into the wells in large quantities to sustain the pressure in the reservoirs. The water is cleaned, some is pumped to the sea and some returned to the reservoir. Although these processes may seem straightforward, they cause a great deal of worry since there are so many complex processing and pipe systems taking up space. Pipes vibrate and make noise, most often because of pressure fluctuations created by the flowing liquid and gas. Or vortices form inside the pipe that make the whole pipe drone. In the offshore activities, these phenomena can be very annoying; on the Statfjord B platform people baulked at entering the area where the produced water treatment system was standing. A new system had to be developed since existing equipment would take up too much space. In the new system, a pipe section is installed in the pipeline that makes the gas/liquid mixture spin rapidly as in a centrifuge. The gas collects along the centre of the pipe and is tapped off. The principle can also be used to separate liquid from gas. In many gas treatment systems, liquid accumulation, or carry over, is detrimental. But gas dehydrators are usually dimensioned for a minimal content of liquid in the gas. Important features of these new pipe-based separators are that they are small, remove bottlenecks in the production, and are straightforward to install. But operators who live with the problems every day are very sceptical about the new separators and should be given the opportunity to test them on land before they are installed in the field.

  2. Multiple blowdown pipe experiments with the PPOOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-03-15

    This report summarizes the results of the experiments with two steel blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the blowdown pipes to the condensation pool. The main purpose of the experiment series was to study chugging phenomena (rapid condensation) while steam is discharged through two parallel blowdown pipes into the condensation pool filled with sub-cooled water. Particularly, the aim was to study if the pipe material (polycarbonate) used in the earlier experiment series with two blowdown pipes has had an effect on the general chugging behaviour and measured loads. In the experiments the initial temperature of the pool water was 20 deg. C. The steam flow rate ranged from 220 g/s to 2 350 g/s and the temperature of incoming steam from 148 deg. C to 207 deg. C. The formation and collapse of steam bubbles and the movement of the steam/water interface inside the pipes was non-synchronous. There could be even a 70 ms time difference between the occurrences of steam bubble collapses at the outlets of the two pipes. There was no clear pattern in which pipe the steam bubble first starts to collapse. Several successive bubbles could collapse first in either pipe but then the order changed for a single or several cycles. High pressure loads were measured inside the blowdown pipes due to rapid condensation of the steam volumes in the pipes and resulting water hammer effects. The loads seemed to be higher in pipe 1 than in pipe 2. An explanation for this could be a possible unequal distribution of steam flow between the two pipes. The pipe material has an effect on the condensation phenomena inside the blowdown pipes. A huge difference in the measured pressure curves inside the pipes could be observed compared to the experiments with the polycarbonate pipes. With the same test conditions the amplitude of the

  3. Analysis of Sedimentation Rates in the Densu River Channel: The ...

    African Journals Online (AJOL)

    FIRST USER

    dams, pipes, canals, bridges, water treatment processes and in the evaluation of quality of water problems (Ayibotele & Tuffour-Darko, ... The degradation of the basin is attributed to the increase in the population of districts through which the river flows, particularly in the Greater Accra Region. For instance, the population of ...

  4. ESR Process Instabilities while Melting Pipe Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Melgaard, D.K.; Shelmidine, G.J.

    1999-01-06

    With the demonstration of the viability of using the electroslag remelting process for the decontamination of radionuclides, interest has increased in examining the unique aspects associated with melting steel pipe electrodes. These electrodes consist of several nested pipes, welded concentrically to atop plate. Since these electrodes can be half as dense as a solid electrode, they present unique challenges to the standard algorithms used in controlling the melting process. Naturally the electrode must be driven down at a dramatically increased speed. However, since the heat transfer is greatly influenced and enhanced with the increased area to volume ratio, considerable variation in the melting rate of the pipes has been found. Standard control methods can become unstable as a result of the variation at increased speeds, particularly at shallow immersion depths. The key to good control lies in the understanding of the melting process. Several experiments were conducted to observe the characteristics of the melting using two different control modes. By using a pressure transducer to monitor the pressure inside the pipes, the venting of the air trapped inside the electrode was observed. The measurements reveal that for a considerable amount of time. the pipes are not completely immersed in the slag, allowing the gas inside to escape without the formation of bubbles. This result has implications for the voltage swing as well as for the decontamination reactions.

  5. Seepage study of the Sevier River Basin above Sevier Bridge Reservoir, Utah, 1988

    Science.gov (United States)

    Sandberg, George W.; Smith, Cynthia J.

    1995-01-01

    A seepage study was done during 1988 on selected reaches of the Sevier River in Utah above Sevier Bridge Reservoir, the East Fork Sevier River in Black Canyon and Kingston Canyon, Long-East Bench and McEwen Canals in the upper Sevier River basin, and the San Pitch River in Sanpete Valley to determine gain or loss of flow from seepage. A net gain occurred in all of the reaches except Kingston Canyon on the East Fork Sevier River, which had a net loss. In the upper Sevier River basin, the Sevier River between Hatch and Circleville Canyon had a net gain of about 125 cubic feet per second; Long-East Bench Canal had a net gain of about 0.7 cubic foot per second; McEwen Canal had a net gain of about 0.9 cubic foot per second; the East Fork Sevier River in Black Canyon had a net gain of about 3.0 cubic feet per second; and the East Fork Sevier River in Kingston Canyon had a net loss of about 8.0 cubic feet per second. In central Sevier Valley, both the south and the north sections had large gains. The net gain for both sections, combined, was about 213 cubic feet per second for August 1988 and about 230 cubic feet per second for October 1988. The reach of the San Pitch River studied had a net gain of about 23.4 cubic feet per second.

  6. Corrugated Pipe as a Beam Dechirper

    Energy Technology Data Exchange (ETDEWEB)

    Bane, K.L.F.; Stupakov, G.; /SLAC

    2012-04-20

    We have studied the use of a metallic pipe with small corrugations for the purpose of passively dechirping, through its wakefield, a short, intense electron bunch. The corrugated pipe is attractive for this purpose because its wake: (i) has near maximal possible amplitude for a given aperture and (ii) has a relatively large oscillation wave length, even when the aperture is small. We showed how the corrugated structure can satisfy dechirping requirements encountered in the NGLS project at LBNL. We found that a linear chirp of -40 MeV/mm can be induced by an NGLS-like beam, by having it pass through a corrugated, metallic pipe of radius 3 mm, length 8.2 m, and corrugation parameters full depth 450 {mu}m and period 1000 {mu}m. This structure is about 15 times as effective in the role of dechirper as an S-band accelerator structure used passively.

  7. Performance testing of a hydrogen heat pipe

    Science.gov (United States)

    Alario, J.; Kosson, R.

    1980-01-01

    Test results are presented for a reentrant groove heat pipe with hydrogen working fluid. The heat pipe became operational between 20 and 30 K after a cooldown from 77 K without any difficulty. Steady-state performance data taken over a 19 to 23 K temperature range indicated the following: (1) maximum heat transport capacity = 5.4 W-m; (2) static wicking height = 1.42 cm; and (3) overall heat pipe conductance = 1.7 W/C. These data agreed remarkably well with extrapolations made from comparable ammonia test results. The maximum heat transport capacity is 9.5% larger than the extrapolated value, but the static wicking height is the same. The overall conductance is 29% of the ammonia value, which is close to the ratio of liquid thermal conductivities (24%). Also, recovery from a completely frozen condition was accomplished within 5 min by simply applying an evaporater heat load of 1.8 W.

  8. Piping in need of a facelift

    CERN Multimedia

    HSE Unit

    2013-01-01

    The LS1 offers a good opportunity to renovate/consolidate the CERN piping system. This is actually one of this year’s objectives set by CERN's Director-General as the state of several pressurised pipe networks has become a matter of significant concern. The ageing infrastructure makes it essential to perform in-depth inspections and repairs on several networks, which are easier to perform when most systems are down.   We are advising each Department/Group concerned to take a series of actions to ensure that their pipelines comply with personal, environmental and operational safety requirements: an inventory of ageing installations to allow a long-term replacement plan to be drawn up; immediate repair in the event of major signs of deterioration; investigation and repair/mitigation measures to prevent leaks; marking and, if necessary, mechanical protection of pipes located in thoroughfares and exposed to vehicles or people. Help needed, questions? Do not hesitate to contact us ...

  9. Analytical and numerical modeling for flexible pipes

    Science.gov (United States)

    Wang, Wei; Chen, Geng

    2011-12-01

    The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.

  10. Development of solutions to benchmark piping problems

    Energy Technology Data Exchange (ETDEWEB)

    Reich, M; Chang, T Y; Prachuktam, S; Hartzman, M

    1977-12-01

    Benchmark problems and their solutions are presented. The problems consist in calculating the static and dynamic response of selected piping structures subjected to a variety of loading conditions. The structures range from simple pipe geometries to a representative full scale primary nuclear piping system, which includes the various components and their supports. These structures are assumed to behave in a linear elastic fashion only, i.e., they experience small deformations and small displacements with no existing gaps, and remain elastic through their entire response. The solutions were obtained by using the program EPIPE, which is a modification of the widely available program SAP IV. A brief outline of the theoretical background of this program and its verification is also included.

  11. Double-ended break probability estimate for the 304 stainless steel main circulation piping of a production reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, H.S. [General Electric Co., San Jose, CA (United States); Daugherty, W.L.; Awadalla, N.G.; Sindelar, R.L. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1991-12-31

    The large break frequency resulting from intergranular stress corrosion cracking in the main circulation piping of the Savannah River Site (SRS) production reactors has been estimated. Four factors are developed to describe the likelihood that a crack exists that is not identified by ultrasonic inspection, and that grows to instability prior to growing through-wall and being detected by the ensuing leakage. The estimated large break frequency is 3.4 {times} 10{sup {minus}8} per reactor-year.

  12. Chinese water-pipe smoking and the risk of COPD

    National Research Council Canada - National Science Library

    She, Jun; Yang, Ping; Wang, Yuqi; Qin, Xinyu; Fan, Jia; Wang, Yi; Gao, Guangsuo; Luo, Guangxiong; Ma, Kaixiang; Li, Baoyan; Li, Caihua; Wang, Xiangdong; Song, Yuanlin; Bai, Chunxue

    2014-01-01

    .... Chinese water-pipe tobacco smoking (commonly referred to as water-pipe smoking), which is thought to be less harmful under the assumption that no charcoal is used and water filters tobacco smoke, is popular in China...

  13. 33 CFR 157.122 - Piping, valves, and fittings.

    Science.gov (United States)

    2010-07-01

    ... vessel's structure with pipe anchors. (l) When COW machines are used as pipe anchors, there must be other... location just outside the hatch coaming, may be flexible hose with flanged connections that is acceptable...

  14. Novel Wick Structures for Improved Heat Pipe Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Heat pipes are commonly used for transporting heat over relatively long distances with very low temperature drop. One of the limitations of heat pipes is the...

  15. Response of a landfill drainage pipe buried in a trench

    National Research Council Canada - National Science Library

    Brachman, R W; Krushelnitzky, R P

    2005-01-01

    The structural response of drainage pipes used in landfill leachate collection systems depends on the properties of both the pipe and the backfill soil, as well as the type of backfill configuration...

  16. Inertial Effects on Finite Length Pipe Seismic Response

    Directory of Open Access Journals (Sweden)

    Virginia Corrado

    2012-01-01

    Full Text Available A seismic analysis for soil-pipe interaction which accounts for length and constraining conditions at the ends of a continuous pipe is developed. The Winkler model is used to schematize the soil-structure interaction. The approach is focused on axial strains, since bending strains in a buried pipe due to the wave propagation are typically a second-order effect. Unlike many works, the inertial terms are considered in solving equations. Accurate numerical simulations are carried out to show the influence of pipe length and constraint conditions on the pipe seismic strain. The obtained results are compared with results inferred from other models present in the literature. For free-end pipelines, inertial effects have significant influence only for short length. On the contrary, their influence is always important for pinned pipes. Numerical simulations show that a simple rigid model can be used for free-end pipes, whereas pinned pipes need more accurate models.

  17. Wave Propagation in Pipe-like Structures

    DEFF Research Database (Denmark)

    Morsbøl, Jonas

    . In the curved beam regime the waveguide properties of the pipe can be approximated by classical curved beam theory while in the cylinder regime they can be approximated by cylindrical shell theory. In the torus regime none of the two other regimes apply, and a full-blown shell model is needed. For the straight...... pipe with changing radius, which is known as the shell of revolution, it is found that classical rod and beam theory, to some extent, can be used to approximate the fundamental modes of the torsional, axial, and breathing wave. However, by means of the shell model some remarkable effects are predicted...

  18. Reconfigurable manufacturing execution system for pipe cutting

    Science.gov (United States)

    Yin, Y. H.; Xie, J. Y.

    2011-08-01

    This article presents a reconfigurable manufacturing execution system (RMES) filling the gap between enterprise resource planning and resource layer for pipe-cutting production with mass customisation and rapid adaptation to dynamic market, which consists of planning and scheduling layer and executive control layer. Starting from customer's task and process requirements, the cutting trajectories are planned under generalised mathematical model able to reconfigure in accordance with various intersecting types' joint, and all tasks are scheduled by nesting algorithm to maximise the utilisation rate of rough material. This RMES for pipe cutting has been effectively implemented in more than 100 companies.

  19. ATLAS Beam Pipe and LUCID Detector

    CERN Multimedia

    2008-01-01

    The film will show you the descending and installation of the last element of the LHC beam pipe. Around the beam pipe is installed an ATLAS detector called LUCID. The same kind of element is on both sides of ATLAS. This detector measures the rate of the collisions in ATLAS. You can also get more information about LUCID detector by watching the part were Vincent Hedberg is interviewed (00:01:20). Almost at the end of the film there is the interview of the Raymond Veness. He tells about the delicate operations of finishing the vacuum system and the LHC (00:26:00).

  20. Salmon River Habitat Enhancement. 1990 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  1. NASTRAN analysis of an air storage piping system

    Science.gov (United States)

    Young, C. P., Jr.; Gerringer, A. H.; Faison, R. W.

    1973-01-01

    The application of NASTRAN to a complex piping design evaluation problem is summarized. Emphasis is placed on structural modeling aspects, problems encountered in modeling and analyzing curved pipe sections, principal results, and relative merits of using NASTRAN as a pipe analysis and design tool. In addition, the piping and manifolding system was analyzed with SNAP (Structural Network Analysis Program). The parallel SNAP study provides a basis for limited comparisons between NASTRAN and SNAP as to solution agreement and computer execution time and costs.

  2. Basic problems and new potentials in monitoring sediment transport using Japanese pipe type geophone

    Science.gov (United States)

    Sakajo, Saiichi

    2016-04-01

    The authors have conducted a lot of series of monitoring of sediment transport by pipe type geophone in a model hydrological channel with various gradients and water discharge, using the various size of particles from 2 to 21 mm in the diameter. In the case of casting soils particle by particle into the water channel, 1,000 test cases were conducted. In the case of casting all soils at a breath into the water channel, 100 test cases were conducted. The all test results were totally analyzed by the conventional method, with visible judgement by video pictures. Then several important basic problems were found in estimating the volume and particle distributions by the conventional method, which was not found in the past similar studies. It was because the past studies did not consider the types of collisions between sediment particle and pipe. Based on these experiments, the authors have firstly implemented this idea into the old formula to estimate the amount of sediment transport. In the formula, two factors of 1) the rate of sensing in a single collision and 2) the rate of collided particles to a cast all soil particles were concretely considered. The parameters of these factors could be determined from the experimental results and it was found that the obtained formula could estimate grain size distribution. In this paper, they explain the prototype formula to estimate a set of volume and distribution of sediment transport. Another finding in this study is to propose a single collision as a river index to recognize its characteristics of sediment transport. This result could characterize the risk ranking of sediment transport in the rivers and mudflow in the mountainous rivers. Furthermore, in this paper the authors explain how the preciseness of the pipe geophone to sense the smaller sediment particles shall be improved, which has never been able to be sensed.

  3. Developing Rivers

    Directory of Open Access Journals (Sweden)

    Abhik Chakraborty

    2013-10-01

    Full Text Available This article explores the reasons behind the continuation of contentious dam projects in Japanese river basins. Though the River Law of the country was reformed in 1997, and subsequent sociopolitical developments raised hopes that river governance would progress toward a more environment-oriented and bottom-up model, basin governance in Japan remains primarily based on a utilitarian vision that sees rivers as waterways. This article reviews the Achilles heel of the 1997 River Law by examining some most contentious river valley projects, and concludes that a myth of vulnerability to flooding, short-sightedness of river engineers, and bureaucratic inertia combine to place basin governance in a time warp: as projects planned during postwar reconstruction and economic growth continue to be top priorities in policymaking circles while concerns over environment remain largely unaddressed.

  4. Modelling of the viscoelastic behaviour of steel reinforced thermoplastic pipes

    NARCIS (Netherlands)

    Kruijer, M.P.; Warnet, Laurent; Akkerman, Remko

    2006-01-01

    This paper describes the analysis of the time dependent behaviour of a steel reinforced thermoplastic pipe. This new class of composite pipes is constructed of a HDPE (high-density polyethylene) liner pipe, which is over wrapped with two layers of thermoplastic tape. The thermoplastic tapes are

  5. 49 CFR 192.311 - Repair of plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Repair of plastic pipe. 192.311 Section 192.311... Lines and Mains § 192.311 Repair of plastic pipe. Each imperfection or damage that would impair the serviceability of plastic pipe must be repaired or removed. [Amdt. 192-93, 68 FR 53900, Sept. 15, 2003] ...

  6. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe: Qualifying joining procedures. 192... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the procedure...

  7. 49 CFR 192.193 - Valve installation in plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the valve...

  8. 49 CFR 192.123 - Design limitations for plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe used...

  9. Shielded Metal Arc Pipe Welding. Teacher Edition. Second Edition.

    Science.gov (United States)

    Fortney, Clarence; And Others

    This second edition of the shielded metal arc pipe welding curriculum guide presents both basic and advanced pipe welding skills. All specifications for procedure and welder qualification are presented according to national standards. The standards also include the test position for both groove and fillet pipe welding. The guide contains three…

  10. 46 CFR 154.355 - Bow and stern loading piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Bow and stern loading piping. 154.355 Section 154.355... Arrangements § 154.355 Bow and stern loading piping. (a) Bow and stern loading piping must: (1) Meet § 154.310... other openings to accommodation, service, or control spaces that face the bow or stern loading area must...

  11. Correlation between pipe bend geometry and allowable pressure in ...

    African Journals Online (AJOL)

    A set of numerical data of pipe bends with shape irregularities obtained from ANSYS analysis is used in ANN to obtain a mathematical relationship between various design parameters of pipe bends namely pipe diameter, wall thickness, bend radius, ovality, thinning/thickening and the internal pressure load. The ANN result ...

  12. Novel Robotic Tools for Piping Inspection and Repair, Phase 1

    Science.gov (United States)

    2014-02-13

    mock piping test track was erected consisting of segments of schedule 40 PVC piping (Figure 3). Figure 3- 3 in. Mock piping Grippers were...Lip seal reinforcement Alternate gripper bag material research During the robot’s lifecycle test the gripper bags were determined to be too

  13. Mashing up Multiple Web Feeds Using Yahoo! Pipes

    Science.gov (United States)

    Fagan, Jody Condit

    2007-01-01

    Pipes is an interactive data aggregator and manipulator that lets you mashup your favorite online data sources. Pipes could be used to "combine many feeds into one, then sort, filter and translate to create your ultimate custom feed. In this article, the author describes how to use Yahoo! Pipes. The author shares what she has learned in…

  14. Comparing the effect of various pipe materials on biofilm formation ...

    African Journals Online (AJOL)

    To compare the effect of various pipe materials on biofilm formation, surface water was used as the test water source; plastic-based pipe materials (polyvinyl chloride-PVC, unplasticised polyvinyl chloride-UPVC, medium density polyethylene-MDPE) and cement-based pipe materials (cement and asbestos cement) are ...

  15. 46 CFR 56.50-105 - Low-temperature piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Low-temperature piping. 56.50-105 Section 56.50-105... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-105 Low-temperature piping. (a) Class I-L. Piping systems designated to operate at temperatures below 0 °F. and pressures above 150 pounds...

  16. 49 CFR 192.309 - Repair of steel pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Repair of steel pipe. 192.309 Section 192.309... Lines and Mains § 192.309 Repair of steel pipe. (a) Each imperfection or damage that impairs the serviceability of a length of steel pipe must be repaired or removed. If a repair is made by grinding, the...

  17. Optical aberrations in a spinning pipe gas lens

    CSIR Research Space (South Africa)

    Mafusire, C

    2008-06-01

    Full Text Available If a heated pipe is rotated about its axis, a density gradient is formed which results in the pipe acting as a graded index lens. In this study the authors revisit the concept of a spinning pipe gas lens and for the first time analyse both the wave...

  18. On the whistling of corrugated pipes with narrow cavities

    NARCIS (Netherlands)

    Golliard, J.; Belfroid, S.P.C.; González Diez, N.; Bendiksen, E.; Frimodt, C.

    2013-01-01

    Pipes with a corrugated inner surface, as used inflexible pipes for gas production and transport, can be subject to Flow-Induced Pulsations when the flow velocities are higher than a certain onset velocity. The onset velocity for classical corrugated pipes can be predicted on basis of the geometry

  19. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... requirements of this section. (g) Where a flexible vent pipe section is necessary, suitable flexible tubing or... by clamps. The flexible section must be accessible and as near the upper end of the vent pipe as... 46 Shipping 7 2010-10-01 2010-10-01 false Vent pipes for fuel tanks. 182.450 Section 182.450...

  20. 46 CFR 119.450 - Vent pipes for fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... screens or arrester elements. (e) Where a flexible vent pipe section is necessary, suitable flexible... each end by clamps. The flexible section must be accessible and as near the upper end of the vent pipe... 46 Shipping 4 2010-10-01 2010-10-01 false Vent pipes for fuel tanks. 119.450 Section 119.450...

  1. 24 CFR 3280.705 - Gas piping systems.

    Science.gov (United States)

    2010-04-01

    ... separated. (4) The flexible connector, direct plumbing pipe, or “quick disconnect” device shall be provided.... (5) For gas line cross over connections made with either hard pipe or flexible connectors, the... § 3280.705(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI Standard B36.10-1979...

  2. 46 CFR 58.60-7 - Industrial systems: Piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7... MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-7 Industrial systems: Piping. The piping for industrial systems under this subpart must meet...

  3. 46 CFR 154.528 - Piping joints: Flange type.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping joints: Flange type. 154.528 Section 154.528 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... and Process Piping Systems § 154.528 Piping joints: Flange type. (a) A flange must be one of the...

  4. 76 FR 11812 - Drill Pipe and Drill Collars From China

    Science.gov (United States)

    2011-03-03

    ... COMMISSION Drill Pipe and Drill Collars From China Determinations On the basis of the record \\1\\ developed in... of imports of drill pipe and drill collars from China, provided for in subheadings 7304.22, 7304.23... drill pipe and drill collars from China were subsidized within the meaning of section 703(b) of the Act...

  5. 78 FR 59972 - Drill Pipe and Drill Collars from China

    Science.gov (United States)

    2013-09-30

    ... COMMISSION Drill Pipe and Drill Collars from China AGENCY: United States International Trade Commission... phase investigation of the antidumping and countervailing duty orders on drill pipe and drill collars... remanding certain aspects of the Commission's affirmative threat determination in Drill Pipe and Drill...

  6. 75 FR 10501 - Drill Pipe and Drill Collars from China

    Science.gov (United States)

    2010-03-08

    ... COMMISSION Drill Pipe and Drill Collars from China Determinations On the basis of the record \\1\\ developed in... injury by reason of imports from China of drill pipe and drill collars, provided for in subheadings 7304... by reason of LTFV and subsidized imports of drill pipe and drill collars from China. Accordingly...

  7. 46 CFR 58.25-20 - Piping for steering gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Piping for steering gear. 58.25-20 Section 58.25-20... MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-20 Piping for steering gear. (a) Pressure piping must... the hydraulic system can be readily recharged from within the steering-gear compartment and must be...

  8. Age and sex distribution of blindness in Ahoada East Local ...

    African Journals Online (AJOL)

    Background: Differences exist in the impact of blindness by age and sex; the overall risk of death being higher for blind males than females. Aim: To describe the age and sex differences among the blind in Ahoada-East Local Government Area (LGA) of Rivers State, Nigeria. Methods: Age and sex data were analyzed for 24 ...

  9. Heterogeneous photocatalysis for selected atypical antipsychotic removal from river waters

    OpenAIRE

    Regulska, El?bieta; Karpi?ska, Joanna

    2011-01-01

    Heterogeneous photocatalysis of selected atypical antipsychotic, namely olanzapine, was examined. Photocatalytic degradation of above mentioned pharmaceutic was investigated in deionized and river water solution in the presence of titanium dioxide as a photocatalyst. River water samples were collected from Narew and Marycha, which run in the east of Poland. Studied irradiation sources included ultraviolet radiation and simulated solar light. Photodegradation efficiency and the presen...

  10. local government headquarters and spatial interaction within rivers

    African Journals Online (AJOL)

    user

    Department of Geography and Environmental Studies,. Rivers State University Of Education, Port Harcourt. Email nalubagoddy@yahoo.com. ABSTRACT. This paper examines local the nature of the relationship between the local government headquarters and rural hinterland settlements in Rivers South East Senatorial ...

  11. Vactub, a new high performance insulation system for pipe in pipe in ultra-deep water

    Energy Technology Data Exchange (ETDEWEB)

    Chenin, L. [Bouygues Offshore, Montigny-le-Bretonneux, 78 - St-Quentin-Yvelines (France); Poirson, L. [Saibos, Montigny-le-Bretonneux, 78 - St-Quentin-Yvelines (France)

    2002-12-01

    Conventional pipe-in-pipe insulation considers various materials located in the annulus space to provide a thermal barrier between the inner pipe which conveys the fluid and the outer pipe which protect it from the hydrostatic load and environment. The thermal performance requirements in the deep and ultra-deep water developments tend to increase with the length of the flow-line. Therefore, the actual thermal performance of the PIP system needs to reach far better level than was typical ten years ago. The PIP design presented hereafter is a new and efficient way to consider the thermal barrier for oil field applications, especially in ultra deep water. The proposed insulation system is an application of an existing technology coming from the refrigeration industry where high vacuum level has been used since more than 10 years. Its technology is based on a Vacuum Insulated Tube set around the inner pipe with a minimum of thermal bridges, allowing very low OHTC (Overall Heat Transfer Coefficient) in many conditions. This thermal barrier so called VACTUB has been primarily developed for polyurethane foam, cylindrically encapsulated within a gas impermeable film barrier which is evacuated and sealed at a low vacuum level (10-1 mbar). The VACTUB conductivity under this type of vacuum level is as low as 0.007 W/m. deg. K. With such a drastic decrease in thermal conductivity, the prime interest of the VACTUB is to be an excellent candidate for the lowest U-value actually envisaged with value as low as 0.6 to 0.5 W/m{sup 2}/K. The other great impact of the VACTUB low conductivity is the reduction of the insulation thickness. A further innovative optimisation of the outer pipe to resist collapse loading gives a further weight decrease for ultra-deep-water pipe-in-pipe applications. Such a new design reduces the outer casing wall thickness up to 50 % and makes ultra-deep-water pipe-in-pipe installation accessible to existing pipe-laying equipment. The required technology to

  12. Underwater tunable organ-pipe sound source.

    Science.gov (United States)

    Morozov, Andrey K; Webb, Douglas C

    2007-08-01

    A highly efficient frequency-controlled sound source based on a tunable high-Q underwater acoustic resonator is described. The required spectrum width was achieved by transmitting a linear frequency-modulated signal and simultaneously tuning the resonance frequency, keeping the sound source in resonance at the instantaneous frequency of the signal transmitted. Such sound sources have applications in ocean-acoustic tomography and deep-penetration seismic tomography. Mathematical analysis and numerical simulation show the Helmholtz resonator's ability for instant resonant frequency switching and quick adjustment of its resonant frequency to the instantaneous frequency signal. The concept of a quick frequency adjustment filter is considered. The discussion includes the simplest lumped resonant source as well as the complicated distributed system of a tunable organ pipe. A numerical model of the tunable organ pipe is shown to have a form similar to a transmission line segment. This provides a general form for the principal results, which can be applied to tunable resonators of a different physical nature. The numerical simulation shows that the "state-switched" concept also works in the high-Q tunable organ pipe, and the speed of frequency sweeping in a high-Q tunable organ pipe is analyzed. The simulation results were applied to a projector design for ocean-acoustic tomography.

  13. Impedance of a slotted-pipe kicker

    Energy Technology Data Exchange (ETDEWEB)

    Feng Zhou [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics

    1996-08-01

    This paper introduces the principle of a new slotted kicker simply, which is made by using vacuum pipe itself with proper slits as current conductors, and then, presents a rough estimation of its longitudinal and transverse impedance, respectively. Calculation shows that its impedance is reduced significantly compared to our present air-coil kicker. (author)

  14. Vibrations of a pipe on elastic foundations

    Indian Academy of Sciences (India)

    A cantilevered pipe subjected to external transverse (or lateral) force is investigated. Two cases of elastic foundations are considered: rotational and both linear and rotational. The major findings are the variations in frequency with flow velocity and displacements at different points and times.

  15. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  16. Potshemu medved rõtshit / Richard Pipes

    Index Scriptorium Estoniae

    Pipes, Richard

    2006-01-01

    Harvardi ülikooli ajalooprofessor Richard Pipes arutleb, miks Venemaa viimase aja käitumises väljendub soovimatus koostööks, sageli ka vaenulikkus. Venemaa võimetus rahvusvahelises kontekstis oma kohta leida, selle ajaloolised juured

  17. LHCb celebrates completion of its beam pipe

    CERN Multimedia

    2007-01-01

    Members of the LHCb collaboration and of the AT and TS Departments are ready to pop open the champagne bottles and celebrate the complete installation and commissioning of the LHCb experiment’s beam pipe. Members of the LHCb collaboration and of the AT and TS Departments gather near the newly completed beam pipe in the foreground. All four sections of LHCb’s beam pipe have been installed, interconnected, pumped down and baked out.. Three of the conical tubes are made of beryllium in order to minimize the level of background in the experiment, while the fourth and largest section is composed of stainless steel. The first of the beryllium sections, an important connection to the Vertex Locator vacuum vessel (VELO) was installed in August 2006 (see Bulletin No. 37/2006). One of the more challenging tasks was the installation of the longest (6 m) piece of beryllium beam pipe through the 2.4 m long RICH2 detector in January 2006. Deli...

  18. Mesoproterozoic diamondiferous ultramafic pipes at Majhgawan ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 1. Mesoproterozoic diamondiferous ultramafic pipes at Majhgawan and Hinota, Panna area, central India: Key to the nature of sub-continental lithospheric mantle beneath the Vindhyan basin. N V Chalapathi Rao. Volume 115 Issue 1 February 2006 pp ...

  19. Flexible Cryogenic Heat Pipe Development Program

    Science.gov (United States)

    1976-01-01

    A heat pipe was designed for operation in the 100 - 200 K temperature range with maximum heat transport as a primary design goal; another designed for operation in the 15 - 100 K temperature range with maximum flexibility as a design goal. Optimum geometry and materials for the container and wicking systems were determined. The high power (100 - 200 K) heat pipe was tested with methane at 100 - 140 K, and test data indicated only partial priming with a performance limit of less than 50 percent of theoretical. A series of tests were conducted with ammonia at approximately 280 K to determine the performance under varying fluid charge and test conditions. The low temperature heat pipe was tested with oxygen at 85 - 95 K and with methanol at 295 - 315 K. Performance of the low temperature heat pipe was below theoretical predictions. Results of the completed testing are presented and possible performance limitation mechanisms are discussed. The lower-than-expected performance was felt to be due to small traces of non-condensible gases which prevented the composite wick from priming.

  20. Section of CMS Beam Pipe Removed

    CERN Multimedia

    2013-01-01

    Seven components of the beam pipe located at the heart of the CMS detector were removed in recent weeks. The delicate operations were performed in several stages as the detector was opened. Video of the extraction of one section: http://youtu.be/arGuFgWM7u0

  1. Intrusion of Soil Water through Pipe Cracks

    Science.gov (United States)

    This report describes a series of experiments conducted at U.S. EPA’s Test and Evaluation Facility in 2013-2014 to study the intrusion of contaminated soil water into a pipe crack during simulated backflow events. A test rig was used consisting of a 3’ x 3’ x 3’ acrylic soil bo...

  2. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90/sup 0/ sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions.

  3. Heat Pipes and Loop Heat Pipes Acceptance Tests for Satellites Applications

    Science.gov (United States)

    Riehl, Roger R.

    2009-03-01

    The use of heat pipes and loop heat pipes (LHPs) as thermal control devices in satellites and other spacecrafts have increased considerably during the last decades. Due to the need of a crescent demand on heat dissipation, more of these devices have been used in low orbit and geo-stationary satellites to promote the adequate thermal control for the instrumentation and equipments aboard. Even though each design is dedicated to a specific application, heat pipes and LHPs have to go through acceptance tests prior to be integrated in the satellite's honeycomb panels (in case of most heat pipes applications) and instrumentation (in case of LHPs thermal control). In order to give a guideline for the required acceptance tests that heat pipes and LHPs have to be submitted, this paper presents the constraints that need to be considered while performing those tests. In all cases, the acceptance tests for both heat pipes and LHPs are related to the most important conditions to verify their proper operation before integrating them on their designed application in a satellite. Such acceptance tests are important to correctly evaluate these thermal control devices and avoid malfunctions while qualifying the entire satellite.

  4. East African Medical journal

    African Journals Online (AJOL)

    312 EAST AFRICAN MEDICAL JOURNAL JulyZOO7. East African Medical journal Vol. 84 N0. 7 Iuly 2007. MANAGEMENT PATHWAY FOR CONGENITAL HEART DISEASE AT KENYATTA NATIONAL HOSPITAL,. NAIROBI. M.N. Awori, MBChB, MMed (Surg), Tutorial Fellow, S.W.O. Ogendo, MBChB, MMed (Surg), Associate.

  5. The Middle East.

    Science.gov (United States)

    Blouin, Virginia; And Others

    This sixth grade resource unit focuses on Middle East culture as seen through five areas of the social sciences: anthropology-sociology, geography, history, economics, and political science. Among objectives that the student is expected to achieve are the following: 1) given general information on the Middle East through the use of film, visuals,…

  6. Middle East Respiratory Syndrome

    Centers for Disease Control (CDC) Podcasts

    2014-07-07

    This podcast discusses Middle East Respiratory Syndrome, or MERS, a viral respiratory illness caused by Middle East Respiratory Syndrome Coronavirus—MERS-CoV.  Created: 7/7/2014 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 7/7/2014.

  7. Aspects of the Acoustic Lagging of Pipes.

    Science.gov (United States)

    Kanapathipillai, Sangarapillai

    Pipe laggings are used as a means of inhibiting the transmission of the sound radiated from vibrating pipes. They are usually formed of porous jackets such as fiberglass or rockwool blankets and impervious jackets such as metal cladding sheets. Sometimes air spaces are used to separate these jackets from the pipe and each other. A novel procedure for predicting the one third octave band insertion losses produced by a lagging formed of these jackets has been developed and is described in this thesis. The procedure is based on sets of formulae which describe how acoustic waves interact with these jackets. This procedure, which has been experimentally verified, constitutes the major contribution of the work described in this thesis to new knowledge. The models used to consider the interaction of acoustic waves with the jackets are based on the fundamental parameters which define the jackets. These fundamental parameters are the dimensions and flow resistivities for the case of porous jackets and the diameters, thicknesses, modulii of elasticity and densities for the impervious jackets. The insertion losses associated with the breathing, bending and ovalling modes in which the lagged pipe vibrates are considered. The validity of the model and procedure is demonstrated by comparing the predicted and measured results for a lagging formed of a simple porous jacket which has the skeletal structure of the porous jacket separated from the pipe by an air space. The results of an extensive parametric study are also presented for this case. Often an impervious jacket is wrapped around the porous jacket and so the model was extended to predict the insertion loss of such a structure.

  8. Optimization Design and Application of Underground Reinforced Concrete Bifurcation Pipe

    Directory of Open Access Journals (Sweden)

    Chao Su

    2015-01-01

    Full Text Available Underground reinforced concrete bifurcation pipe is an important part of conveyance structure. During construction, the workload of excavation and concrete pouring can be significantly decreased according to optimized pipe structure, and the engineering quality can be improved. This paper presents an optimization mathematical model of underground reinforced concrete bifurcation pipe structure according to real working status of several common pipe structures from real cases. Then, an optimization design system was developed based on Particle Swarm Optimization algorithm. Furthermore, take the bifurcation pipe of one hydropower station as an example: optimization analysis was conducted, and accuracy and stability of the optimization design system were verified successfully.

  9. PCBs in the Harlem River

    Science.gov (United States)

    Wang, J.

    2012-12-01

    Polychlorinated biphenyls (PCBs) are persistent, toxic and bioaccumulated contaminants of great environmental concern. PCB is a tracer of wastewater, stormwater and CSOs inputs; PCBs contamination of fish is a main environmental concern for the Harlem River. PCBs in the Harlem River are from combined sewer overflows (CSOs), stormwater runoff, wastewater, as well as upper Hudson GE (General Electric at Fort Edward)'s release. PCBs affect human health mostly from contaminated fish consumption. Many research focused on PCBs in the Hudson River and New York/New Jersey Harbor. However, PCBs source, transport and environmental impact in the Harlem River-a natural straight that connects the Hudson River and the East River, had not been well studied. In this research, water sample were collected from the Harlem River and analyzed PCBs by HR GC/MS (High resolution gas chromatography mass spectrophotometer). Preliminary results showed that certain PCBs congeners in the water column. Results also indicated that nutrients (phosphorus and ammonia) as well as bacteria levels exceeded EPA standards: Total phosphorus-10μg/L, total nitrogen-0.38mg/L; E.Coli-126 MPN/100ml, Enterococcus- 104MPN/100ml, Fecal Coliform-200 MPN/100ml. This research is under process, and more results could give further detail in near future. This research will help improve water quality of the Harlem River, improve environmental health and raise environmental awareness.SO tank Nutrient and bacterial levels of selected sites in the Harlem RiverCSO: Combined Sewer OverflowWWTP: Waste Water Treatment Plant

  10. Space shuttle orbiter heat pipe applications. Volume 1: Synopsis

    Science.gov (United States)

    Alario, J. P.; Prager, R. C.

    1972-01-01

    An investigation was made to formulate and evaluate heat pipe applications for the space shuttle orbiter. Of the twenty-seven specific applications which were identified, a joint evaluation resulted in the selection of five of the most promising ones for prototype development. The formulation process is described, along with the applications which evolved. The bulk of the discussion deals with the top five applications: (1) heat pipe augmented cold rail; (2) avionics heat pipe circuit; (3) heat pipe/phase change material modular sink; (4) air-to-heat-pipe heat exchanger; and (5) heat pipe radiator for compartment temperature control. The philosophy, physical design details, and performance data are presented for each concept along with a comparison to the baseline design where applicable. A sixth application, heat pipe space radiator for waste heat rejection, was also recommended for prototype development.

  11. Modeling and analysis of water-hammer in coaxial pipes

    CERN Document Server

    Cesana, Pierluigi

    2015-01-01

    The fluid-structure interaction is studied for a system composed of two coaxial pipes in an annular geometry, for both homogeneous isotropic metal pipes and fiber-reinforced (anisotropic) pipes. Multiple waves, traveling at different speeds and amplitudes, result when a projectile impacts on the water filling the annular space between the pipes. In the case of carbon fiber-reinforced plastic thin pipes we compute the wavespeeds, the fluid pressure and mechanical strains as functions of the fiber winding angle. This generalizes the single-pipe analysis of J. H. You, and K. Inaba, Fluid-structure interaction in water-filled pipes of anisotropic composite materials, J. Fl. Str. 36 (2013). Comparison with a set of experimental measurements seems to validate our models and predictions.

  12. River nomads

    DEFF Research Database (Denmark)

    2016-01-01

    River nomads is a movie about people on the move. The documentary film explores the lifestyle of a group of nomadic fishermen whose mobility has been the recipe of success and troubles. Engaged in trade and travel, twice a year the river nomads form impressive convoys of majestic pirogues and set...... and liberated lifestyle and the breath-taking landscapes and vistas offered by the Niger River. River Nomads is also a personal account of the Kebbawa’s way of life and their current struggles as nomadic folk living in a world divided by borders and ruled by bureaucrats....

  13. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  14. Corroded scale analysis from water distribution pipes

    Directory of Open Access Journals (Sweden)

    Rajaković-Ognjanović Vladana N.

    2011-01-01

    Full Text Available The subject of this study was the steel pipes that are part of Belgrade's drinking water supply network. In order to investigate the mutual effects of corrosion and water quality, the corrosion scales on the pipes were analyzed. The idea was to improve control of corrosion processes and prevent impact of corrosion on water quality degradation. The instrumental methods for corrosion scales characterization used were: scanning electron microscopy (SEM, for the investigation of corrosion scales of the analyzed samples surfaces, X-ray diffraction (XRD, for the analysis of the presence of solid forms inside scales, scanning electron microscopy (SEM, for the microstructural analysis of the corroded scales, and BET adsorption isotherm for the surface area determination. Depending on the composition of water next to the pipe surface, corrosion of iron results in the formation of different compounds and solid phases. The composition and structure of the iron scales in the drinking water distribution pipes depends on the type of the metal and the composition of the aqueous phase. Their formation is probably governed by several factors that include water quality parameters such as pH, alkalinity, buffer intensity, natural organic matter (NOM concentration, and dissolved oxygen (DO concentration. Factors such as water flow patterns, seasonal fluctuations in temperature, and microbiological activity as well as water treatment practices such as application of corrosion inhibitors can also influence corrosion scale formation and growth. Therefore, the corrosion scales found in iron and steel pipes are expected to have unique features for each site. Compounds that are found in iron corrosion scales often include goethite, lepidocrocite, magnetite, hematite, ferrous oxide, siderite, ferrous hydroxide, ferric hydroxide, ferrihydrite, calcium carbonate and green rusts. Iron scales have characteristic features that include: corroded floor, porous core that contains

  15. DETERMINATION OF LIQUID FILM THICKNESS FOLLOWING DRAINING OF CONTACTORS, VESSELS, AND PIPES IN THE MCU PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M; Fernando Fondeur, F; Samuel Fink, S

    2006-06-06

    The Department of Energy (DOE) identified the caustic side solvent extraction (CSSX) process as the preferred technology to remove cesium from radioactive waste solutions at the Savannah River Site (SRS). As a result, Washington Savannah River Company (WSRC) began designing and building a Modular CSSX Unit (MCU) in the SRS tank farm to process liquid waste for an interim period until the Salt Waste Processing Facility (SWPF) begins operations. Both the solvent and the strip effluent streams could contain high concentrations of cesium which must be removed from the contactors, process tanks, and piping prior to performing contactor maintenance. When these vessels are drained, thin films or drops will remain on the equipment walls. Following draining, the vessels will be flushed with water and drained to remove the flush water. The draining reduces the cesium concentration in the vessels by reducing the volume of cesium-containing material. The flushing, and subsequent draining, reduces the cesium in the vessels by diluting the cesium that remains in the film or drops on the vessel walls. MCU personnel requested that Savannah River National Laboratory (SRNL) researchers conduct a literature search to identify models to calculate the thickness of the liquid films remaining in the contactors, process tanks, and piping following draining of salt solution, solvent, and strip solution. The conclusions from this work are: (1) The predicted film thickness of the strip effluent is 0.010 mm on vertical walls, 0.57 mm on horizontal walls and 0.081 mm in horizontal pipes. (2) The predicted film thickness of the salt solution is 0.015 mm on vertical walls, 0.74 mm on horizontal walls, and 0.106 mm in horizontal pipes. (3) The predicted film thickness of the solvent is 0.022 mm on vertical walls, 0.91 mm on horizontal walls, and 0.13 mm in horizontal pipes. (4) The calculated film volume following draining is: (a) Salt solution receipt tank--1.6 gallons; (b) Salt solution feed

  16. Water resource conflicts in the Middle East.

    Science.gov (United States)

    Drake, C

    1997-01-01

    This article discusses the causes and sources of water resource conflict in the 3 major international river basins of the Middle East: the Tigris-Euphrates, the Nile, and the Jordan-Yarmuk. The physical geography of the Middle East is arid due to descending air, northeast trade winds, the southerly location, and high evaporation rates. Only Turkey, Iran, and Lebanon have adequate rainfall for population needs. Their mountainous geography and more northerly locations intercept rain and snow bearing westerly winds in winter. Parts of every other country are vulnerable to water shortages. Rainfall is irregular. Water resource conflicts are due to growing populations, economic development, rising standards of living, technological developments, political fragmentation, and poor water management. Immigration to the Jordan-Yarmuk watershed has added to population growth in this location. Over 50% of the population in the Middle East lives in urban areas where populations consume 10-12 times more water than those in rural areas. Water is wasted in irrigation schemes and huge dams with reservoirs where increased evaporation occurs. Technology results in greater water extraction of shallow groundwater and pollution of rivers and aquifers. British colonial government control led to reduced friction in most of the Nile basin. Now all ethnic groups have become more competitive and nationalistic. The Cold War restrained some of the conflict. Israel obtains 40% of its water from aquifers beneath the West Bank and Gaza. Geopolitical factors determine the mutual goodwill in managing international water. The 3 major water basins in the Middle East pose the greatest risk of water disputes. Possible solutions include conservation, better management, prioritizing uses, technological solutions, increased cooperation among co-riparians, developing better and enforceable international water laws, and reducing population growth rates.

  17. East Side Gallery - en analyze af betydningstilskrivning

    OpenAIRE

    Lyngsø Knudsen, Lene

    2013-01-01

    In March 2013, the city of Berlins local government gave permission to remove 23 meters of East Side Gallery - a 1.3 kilometer section of the Berlin Wall. This was to make room for apartment buildings, and to reconstruct an old bridge across the river Spree. This caused many people to riot for the preservation of the Wall. They argued that the Wall and it’s sorroundings is a part of the citys history - a part that must not be forgotten. This conflict is the main subject of this assignment....

  18. Elements for an integrated resource planning in the framework of river basins: a study for the Cuiaba River Basin; Elementos para um planejamento integrado de recursos no ambito de bacias hidrograficas: um estudo para a bacia do rio Cuiaba

    Energy Technology Data Exchange (ETDEWEB)

    Dorileo, Ivo Leandro; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico. Dept. de Energia], e-mail: ildorileo@sigmanet.com.br, e-mail: bajay@fem.unicamp.br

    2008-07-01

    A new approach in energy planning in Brazil, IRP - Integrated Resources Planning for River Basins, gathers three main determinants of development: water, electricity and piped gas. This paper argues, briefly, the need of this planning, of indicative character, integrated with the River Basin Plans, and it presents a retrospective analysis concerning water, electricity and LPG demands of the economy sectors from Cuiaba River Basin region, priority elements to aid the prospective studies and to carry out process related to the IRP. (author)

  19. River Piracy

    Indian Academy of Sciences (India)

    . Asiatic Soc. o/Bengal., 55:322-343.1886. C F Oldham. The Saraswati and the lost river of the Indian desertJ. R. Asiatic. Soc., 34:49-76. 1893. S C Sharma. The description of rivers in the Rigveda, The Geographical. Observer, 10:79-85. 1974.

  20. Development of high pressure pipe scanners

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Moon, Soon S.; Eom, Heung S.; Choi, Yu R

    1998-12-01

    This report describes an automatic ultrasonic scanning system for pressure pipe welds, which was developed in this project using recent advanced technologies on mobile robot and computer. The system consists of two modules: a robot scanner module which navigates and manipulates scanning devices, and a data acquisition module which generates ultrasonic signal and processes the data from the scanner. The robot has 4 magnetic wheels and 2 -axis manipulator on which ultrasonic transducer attached. The wheeled robot can navigate curved surface such as outer wall of circular pipes. Magnetic wheels were optimally designed through magnetic field analysis. Free surface sensing and line tracking control algorithm were developed and implemented, and the control devices and software can be used in practical inspection works. We expect our system can contribute to reduction of inspection time,performance enhancement, and effective management of inspection results.

  1. The LHC Beam Pipe Waveguide Mode Reflectometer

    CERN Document Server

    Kroyer, T; Caspers, Friedhelm; Sulek, Z; Williams, L R

    2007-01-01

    The waveguide-mode reflectometer for obstacle detection in the LHC beam pipe has been intensively used for more than 18 months. The â€ワAssembly” version is based on the synthetic pulse method using a modern vector network analyzer. It has mode selective excitation couplers for the first TE and TM mode and uses a specially developed waveguide mode dispersion compensation algorithm with external software. In addition there is a similar â€ワIn Situ” version of the reflectometer which uses permanently installed microwave couplers at the end of each of the nearly 3 km long LHC arcs. During installation a considerable number of unexpected objects have been found in the beam pipes and subsequently removed. Operational statistics and lessons learned are presented and the overall performance is discussed.

  2. Crude oil contamination of plastic and copper drinking water pipes.

    Science.gov (United States)

    Huang, Xiangning; Andry, Stephane; Yaputri, Jessica; Kelly, Devin; Ladner, David A; Whelton, Andrew J

    2017-10-05

    This study was conducted to determine the susceptibility of plastic (i.e., PEX, HDPE and CPVC) and copper pipes to short-term contamination by crude oil. Pipes were exposed to highly and slightly contaminated drinking water for the typical duration of Do Not Use drinking water orders. PEX pipes sorbed and desorbed the greatest amount of monoaromatic hydrocarbons (MAHs), whereas copper pipes were less susceptible to contamination. For benzene, toluene, ethylbenzene, and xylenes (BTEX) quantified in water, only benzene exceeded its health based maximum contaminant level (MCL). The MCL was exceeded for copper pipe on day 3, for CPVC pipe through day 9, and PEX and HDPE pipes through day 15. The BTEX compound concentration in water after the pipes were returned to service depended on the initial crude oil concentration, material type, and exposure duration. Total organic carbon (TOC) measurement was not helpful in detecting oil contaminated water. Except BTEX, trimethylbenzene isomers and a couple of polycyclic aromatic hydrocarbons (PAHs) with and without MCLs were also detected desorbing from PEX-A pipe. Oil contaminated water must be thoroughly characterized and pipe type will influence the ability of drinking water levels to return to safe limits. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Heat pipes with variable thermal conductance property for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Kravets, V.; Alekseik, Ye.; Alekseik, O.; Khairnasov, S. [National Technical University of Ukraine, Kyiv (Ukraine); Baturkin, V.; Ho, T. [Explorationssysteme RY-ES, Bremen (Germany); Celotti, L. [Active Space Technologies GmbH, Berlin (Germany)

    2017-06-15

    The activities presented in this paper demonstrate a new approach to provide passive thermal control using heat pipes, as demonstrated on the electronic unit of DLR’s MASCOT lander, which embarked on the NEA sample return mission Hayabusa 2 (JAXA). The focus is on the development and testing of heat pipes with variable thermal conductance in a predetermined temperature range. These heat pipes act as thermal switches. Unlike standard gasloaded heat pipes and thermal-diode heat pipes construction of presented heat pipes does not include any additional elements. Copper heat pipes with metal fibrous wicks were chosen as baseline design. We obtained positive results by choosing the heat carrier and structural parameters of the wick (i.e., pore diameter, porosity, and permeability). The increase in the thermal conductivity of the heat pipes from 0.04 W/K to 2.1 W/K was observed in the temperature range between −20 °C and +55 °C. Moreover, the heat pipes transferred the predetermined power of not less than 10 W within the same temperature range. The heat pipes have been in flight since December 2014, and the supporting telemetry data were obtained in September 2015. The data showed the nominal operation of the thermal control system.

  4. Investigations of hot water temperature changes at the pipe outflow

    Science.gov (United States)

    Wojtkowiak, Janusz; Oleśkowicz-Popiel, Czesław

    2017-11-01

    In this paper a process of cold water withdrawing from hot water supply pipe systems without recirculation is considered. System of partial differential equations was used to describe the pipe and water temperature changes. An exact solution of a simplified form of the equations was obtained and validated experimentally. The exact solution was applied to calculate the hot water temperature changes at the pipe outflow. Calculations were done for typical pipe materials (PP, PE, Cu), different pipe diameters and lengths as well as for various water flow rates. It was shown that in order to obtain the required hot water temperature in the tap, there is necessary to withdrawn much more (even two times) water from the pipe in comparison to the pipe volume. The reason of such significant water wastes is a heat exchange between hot water flowing inside the pipe and the colder pipe walls. The results can be useful for optimal selection of hot water supply pipes as well as for making decision about applying of hot water recirculating systems.

  5. Study on unstable fracture characteristics of light water reactor piping

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, Ryoichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-08-01

    Many testing studies have been conducted to validate the applicability of the leak before break (LBB) concept for the light water reactor piping in the world. It is especially important among them to clarify the condition that an inside surface crack of the piping wall does not cause an unstable fracture but ends in a stable fracture propagating only in the pipe thickness direction, even if the excessive loading works to the pipe. Pipe unstable fracture tests performed in Japan Atomic Energy Research Institute had been planned under such background, and clarified the condition for the cracked pipe to cause the unstable fracture under monotonous increase loading or cyclic loading by using test pipes with the inside circumferential surface crack. This paper examines the pipe unstable fracture by dividing it into two parts. One is the static unstable fracture that breaks the pipe with the inside circumferential surface crack by increasing load monotonously. Another is the dynamic unstable fracture that breaks the pipe by the cyclic loading. (author). 79 refs.

  6. Smart pipes--instrumented water pipes, can this be made a reality?

    Science.gov (United States)

    Metje, Nicole; Chapman, David N; Cheneler, David; Ward, Michael; Thomas, Andrew M

    2011-01-01

    Several millions of kilometres of pipes and cables are buried beneath our streets in the UK. As they are not visible and easily accessible, the monitoring of their integrity as well as the quality of their contents is a challenge. Any information of these properties aids the utility owners in their planning and management of their maintenance regime. Traditionally, expensive and very localised sensors are used to provide irregular measurements of these properties. In order to have a complete picture of the utility network, cheaper sensors need to be investigated which would allow large numbers of small sensors to be incorporated into (or near to) the pipe leading to so-called smart pipes. This paper focuses on a novel trial where a short section of a prototype smart pipe was buried using mainly off-the-shelf sensors and communication elements. The challenges of such a burial are presented together with the limitations of the sensor system. Results from the sensors were obtained during and after burial indicating that off-the-shelf sensors can be used in a smart pipes system although further refinements are necessary in order to miniaturise these sensors. The key challenges identified were the powering of these sensors and the communication of the data to the operator using a range of different methods.

  7. Reynolds and swirl number effects on turbulent pipe flow in a 90 degree pipe bend

    Science.gov (United States)

    Kalpakli, Athanasia; Oerlue, Ramis; Alfredsson, P. Henrik

    2011-11-01

    Flows in pipe bends have been studied extensively over the last decades due to their occurrence both in the human respiratory and blood systems as well as in many technical applications. The centrifugal effect of the bend may give rise to Dean vortices and the behaviour of these has been of particular interest. While their motion has nicely been illustrated in laminar flows, the picture of their motion in turbulent flows remains rather blurred. Within the framework of the present work, fully developed turbulent pipe flow from a 100 diameter (D) long pipe is fed to a 90° bend and the flow field at 0 . 5 D downstream the bend has been studied by means of Time-Resolved Stereoscopic Particle Image Velocimetry, covering a Reynolds number range from 7000 to 34000 based on bulk velocity (Ub) and D. Additionally, a well defined swirl profile could be introduced by rotating the 100 D long straight pipe along its axis, yielding a variation in swirl number (S), defined as the ratio between the azimuthal velocity of the pipe wall and Ub, from 0 (the non-rotating case) to 1.2. The three-dimensional time-averaged and instantaneous flow field illustrating the symmetrical Dean vortices for S = 0 and the influence by the swirling motion for S ≠ 0 , the so-called ``swirl-switching phenomenon,'' as well as the large-scale structures will be presented and discussed.

  8. Extension of pipe failure models to consider the absence of data from replaced pipes.

    Science.gov (United States)

    Scheidegger, Andreas; Scholten, Lisa; Maurer, Max; Reichert, Peter

    2013-07-01

    Predictions of the expected number of failures of water distribution network pipes are important to develop an optimal management strategy. A number of probabilistic pipe failure models have been proposed in the literature for this purpose. They have to be calibrated on failure records. However, common data management practices mean that replaced pipes are often absent from available data sets. This leads to a 'survival selection bias', as pipes with frequent failures are more likely to be absent from the data. To address this problem, we propose a formal statistical approach to extend the likelihood function of a pipe failure model by a replacement model. Frequentist maximum likelihood estimation or Bayesian inference can then be applied for parameter estimation. This approach is general and is not limited to a particular failure or replacement model. We implemented this approach with a Weibull-exponential failure model and a simple constant probability replacement model. Based on this distribution assumptions, we illustrated our concept with two examples. First, we used simulated data to show how replacement causes a 'survival selection bias' and how to successfully correct for it. A second example with real data illustrates how a model can be extended to consider covariables. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Inspection of Pipe Inner Surface using Advanced Pipe Crawler Robot with PVDF Sensor based Rotating Probe

    Directory of Open Access Journals (Sweden)

    Vimal AGARWAL

    2011-04-01

    Full Text Available Due to corrosive environment, pipes used for transportation of water and gas at the plants often get damaged. Defects caused by corrosion and cracking may cause serious accidents like leakage, fire and blasts. It also reduces the life of the transportation system substantially. In order to inspect such defects, a Polyvinyledene Fluoride (PVDF based cantilever smart probe is developed to scan the surface quality of the pipes. The smart probe, during rotation, touches the inner surface of the pipe and experience a broad-band excitation in the absence of surface features. On the other hand, whenever the probe comes across any surface projection, there is a change in vibration pattern of the probe, which causes a high voltage peak/pulse. Such peaks/pulses could give useful information about the location and nature of a defect. Experiments are carried out on different patterns, sizes and shapes of surface projections artificially constructed inside the pipe. The sensor system has reliably predicted the presence and distribution of projections in every case. It is envisaged that the new sensing system could be used effectively for pipe health monitoring.

  10. Application of LBB to a nozzle-pipe interface

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y.J.; Sohn, G.H.; Kim, Y.J. [and others

    1997-04-01

    Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to account for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.

  11. Corrosion of CANDU outlet feeder pipes

    Energy Technology Data Exchange (ETDEWEB)

    Burrill, K.A.; Cheluget, E.L

    1999-02-01

    Recent inspections have indicated that carbon steel outlet feeder pipes in some CANDU reactors are experiencing wall loss near the exit from the reactor core. This phenomenon is not observed in inlet feeder pipes. Examination of a sample of pipe removed from a CANDU 6 reactor has indicated that the mechanism causing the wall loss is flow-accelerated corrosion (FAC), at rates higher than expected, but two orders of magnitude lower than those typically observed in secondary circuits of nuclear and conventional power plants. Although the CANDU reactor outlet feeder operating temperatures and the use of LiOH at a high pH should have ensured low corrosion rates, use of SA 106 Grade B carbon steel with a low chromium content resulted in some susceptibility to FAC. The main parameter influencing the rate of wall loss is the coolant velocity, with the bend angle playing a secondary role. A solubility-based mathematical model describing the effects of water chemistry and coolant hydrodynamics on the rate of FAC has been developed and has been recently improved by the empirical incorporation of the effect of electrochemical potential on the solubility of magnetite. Experiment and theory have indicated that the corrosion rates are lower at lower pH values within the permissible operating range. Experiments are being conducted to obtain more information on the effects of water chemistry and material composition on FAC. Current results support the predicted effects of pH and carbon steel chromium content on the FAC rate. Remedial measures implemented include operation of existing reactors at the lower end of the specified pH range and the specification of a minimum of 0.20 wt% Cr in the carbon steel of feeder pipes of future CANDU reactors. (author)

  12. Optical measurements in evolving dispersed pipe flows

    Science.gov (United States)

    Voulgaropoulos, Victor; Angeli, Panagiota

    2017-12-01

    Optical laser-based techniques and an extensive data analysis methodology have been developed to acquire flow and separation characteristics of concentrated liquid-liquid dispersions. A helical static mixer was used at the inlet of an acrylic 4 m long horizontal pipe to actuate the dispersed flows at low mixture velocities. The organic (913 kg m^{-3}, 0.0046 Pa s) and aqueous phases (1146 kg m^{-3}, 0.0084 Pa s) were chosen to have matched refractive indices. Measurements were conducted at 15 and 135 equivalent pipe diameters downstream the inlet. Planar laser induced fluorescence (PLIF) measurements illustrated the flow structures and provided the local in-situ holdup profiles. It was found that along the pipe the drops segregate and in some cases coalesce either with other drops or with the corresponding continuous phase. A multi-level threshold algorithm was developed to measure the drop sizes from the PLIF images. The velocity profiles in the aqueous phase were measured with particle image velocimetry (PIV), while the settling velocities of the organic dispersed drops were acquired with particle tracking velocimetry (PTV). It was also possible to capture coalescence events of a drop with an interface over time and to acquire the instantaneous velocity and vorticity fields in the coalescing drop.

  13. Fluid structure interaction in piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Svingen, Bjoernar

    1996-12-31

    The Dr. ing. thesis relates to an analysis of fluid structure interaction in piping systems in the frequency domain. The governing equations are the water hammer equations for the liquid, and the beam-equations for the structure. The fluid and structural equations are coupled through axial stresses and fluid continuity relations controlled by the contraction factor (Poisson coupling), and continuity and force relations at the boundaries (junction coupling). A computer program has been developed using the finite element method as a discretization technique both for the fluid and for the structure. This is made for permitting analyses of large systems including branches and loops, as well as including hydraulic piping components, and experiments are executed. Excitations are made in a frequency range from zero Hz and up to at least one thousand Hz. Frequency dependent friction is modelled as stiffness proportional Rayleigh damping both for the fluid and for the structure. With respect to the water hammer equations, stiffness proportional damping is seen as an artificial (bulk) viscosity term. A physical interpretation of this term in relation to transient/oscillating hydraulic pipe-friction is given. 77 refs., 72 figs., 4 tabs.

  14. Pits, pipes, ponds--and me.

    Science.gov (United States)

    Mara, Duncan

    2013-05-01

    My life in low-cost sanitation and low-cost wastewater treatment and the use of treated wastewater in agriculture and aquaculture really has been 'pits, pipes and ponds' - 'pits' are low-cost sanitation technologies (LCST) such as VIP latrines and pour-flush toilets; 'pipes' are low-cost sewerage, principally condominial (simplified) sewerage; and 'ponds' are low-cost wastewater treatment systems, especially waste stabilization ponds, and the use of treated wastewater in agriculture and aquaculture. 'Pits' were mainly working on World Bank LCST research projects, with fieldwork principally in Zimbabwe, 'pipes' were working on condominial sewerage projects in Brazil and disseminating this LCST to a wider global audience, and 'ponds' were waste stabilization ponds, with fieldwork mainly in Brazil, Colombia, Portugal and the United Kingdom, the development of aerated rock filters to polish facultative-pond effluents, and the human-health aspects of treated wastewater use in agriculture and aquaculture, with fieldwork in Brazil and the UK, and the application of quantitative microbial risk analysis. The paper provides a professional perspective and lessons from historical developments and gives recommended future directions based on my career working on low-cost sanitation technologies and treated wastewater use in agriculture and aquaculture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Morbidity profile of steel pipe production workers.

    Science.gov (United States)

    Pandit, Kirti; Tiwari, Rajnarayan R

    2008-08-01

    To study the different morbid conditions among steel pipe producing workers. The present cross-sectional study has been carried out among the workers of one of the steel pipes and tubes manufacturing factory of Gujarat. Hundred workers from the four major departments of the steel pipe production plant, namely welding, pressing machine, X-ray welding and loading/transportation department were covered. The information regarding demographic, occupational, clinical characteristics and diagnosis were recorded on a pre-designed proforma. Statistical analysis included calculation of percentages and proportions and was carried out using the statistical software Epi Info Version 3.3.2. The mean age of the study subjects was found to be 38.7+/-7.1 years. The mean duration of exposure was found to be 9.0+/-3.4 years. Forty-four percent of the subjects had an upper respiratory tract infection, as evidenced by symptoms like dry cough, cough with rhinitis and cough with fever. Symptoms suggestive of allergic bronchitis were observed in 12% of the subjects while symptoms suggestive of heat stress such as prickly heat, dehydration, perspiration and pyrexia were observed in 13% of the subjects.

  16. Stuck pipe: Causes, detection and prevention

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, L.; Jomnes, T. (Schlumberger Cambridge Research (UK)); Belaskie, J.; Orban, J.; Sheppard, M (Anadrill, Sugarland, TX (USA)); Houwen, O.; Jardine, S.; McCann, D. (Sedco Forex, Montrouge (France))

    1991-10-01

    Stuck pipe remains a major headache that demands and is getting industry-wide attention. It costs the oil industry between $200 and $500 million each year, occurs in 15% of wells, and in many cases is preventable. Several operators are making determined efforts to codify the warning signs and to improve communication for all on-site drilling and service company personnel, for which the data gathering ability of a computerized information system is a necessity. Meanwhile, better rig sensors and information systems are providing rig-floor smart'' alarms to help the driller recognize trouble before it gets out of hand. The causes of stuck pipe can be divided broadly among differential sticking, formation-related sticking and mechanical sticking. One of the results of the industry's current attention is a better understanding of the events leading up to stuck pipe and their interpretationn in terms of the causes of sticking. Knowing the causes is essential for taking remedial action. 15 figs., 19 refs.

  17. Determination of leakage areas in nuclear piping

    Energy Technology Data Exchange (ETDEWEB)

    Keim, E. [Siemens/KWU, Erlangen (Germany)

    1997-04-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.

  18. A multifunctional heat pipe sandwich panel structure

    Energy Technology Data Exchange (ETDEWEB)

    Queheillalt, Douglas T.; Wadley, Haydn N.G. [University of Virginia, Department of Materials Science and Engineering, 140 Chemistry Way, P.O. Box 400745, Charlottesville, VA 22904 (United States); Carbajal, Gerardo [University of Turabo, School of Engineering, P.O. Box 3030, Gurabo 00778 (Puerto Rico); Peterson, G.P. [University of Colorado at Boulder, 914 Broadway, Boulder, CO 80309 (United States)

    2008-01-15

    A multifunctional sandwich panel combining efficient structural load support and thermal management characteristics has been designed and experimentally assessed. The concept is based upon a truncated, square honeycomb sandwich structure. In closed cell honeycomb structures, the transport of heat from one face to the other occurs by a combination of conduction through the webs and convection/radiation within the cells. Here, much more effective heat transport is achieved by multifunctionally utilizing the core as a heat pipe sandwich panel. Its interior consists of a 6061 aluminum truncated-square honeycomb core covered with a stochastic open-cell nickel foam wick. An electroless nickel plating barrier layer inhibited the chemical reaction between the deionized water working fluid and the aluminum structure, retarding the generation of non-condensable hydrogen gas. A thermodynamic model was used to guide the design of the heat pipe sandwich panel. We describe the results of a series of experiments that validate the operational principle of the multifunctional heat pipe sandwich panel and characterize its transient response to an intense localized heat source. The systems measured thermal response to a localized heat source agrees well with that predicted by a finite difference method model used to predict the thermal response. (author)

  19. Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Sutfin, Nicholas Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-20

    This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek; Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.

  20. MISR Views the Middle East

    Science.gov (United States)

    2000-01-01

    This image, generated using 16 orbits of MISR data collected between August 16 and August 30, 2000, takes us to the cradle of many civilizations. The data are from the 60-degree aftward-viewing camera. Because the individual orbit swaths are only 400 kilometers wide, they were 'mosaiced' together to form this composite picture, which covers about 2700 kilometers from west to east and 1750 kilometers from north to south. A few discontinuities are present in the mosaic, particularly near clouds, due to changes in the scene which occurred between dates when the individual orbit data were acquired.At the northern tip of the Red Sea, the Gulf of Suez and the Gulf of Aqaba frame the sandy deserts and spectacular mountains of the Sinai Peninsula. The highest peaks are Gebel Katherina (Mountain of St. Catherine, 2637 meters) and Gebel Musa (Mountain of Moses, also known as Mount Sinai, 2285 meters). To the northeast, Israel and Jordan flank the Dead Sea, one of the saltiest inland water bodies in the world. At its northern edge is Qumran, where the ancient Scrolls were discovered; the city of Jerusalem lies about 30 kilometers to the west.Several large rivers are prominent. Flowing southeastward through Iraq are the Tigris and Euphrates. The dark area between the two rivers, northwest of the Persian Gulf, is a very fertile region where fishing and farming are prevalent. Wending its way through eastern Egypt is the Nile. In the south is Lake Nasser and the Aswan Dam; continuing northward the Nile passes the Temple of Luxor as it sharply loops to the east. It then turns west and northward, eventually passing the capital city of Cairo, and finally spreading into a prominent delta as it empties into the Mediterranean Sea. The bright dot just west of the apex of the delta marks the location of the great Pyramids and Sphinx complexes on the Giza Plateau. On the coast, west of the delta, is the ancient city of Alexandria, Egypt's main seaport.'MISR', as it turns out, is the

  1. Piping design considerations in a solar-Rankine power plant. [pipe size

    Science.gov (United States)

    Lansing, F. L.

    1977-01-01

    Two of the main parameters in sizing the piping of a solar power plant are the working pressure of the vapor leaving the solar collectors, and the type of working fluid used. Numerical examples for each case are given using the graphical Moody friction charts and the analytical Darcy-Weisbach equation. Different working pressures of steam vapor in the solar collector-turbine pipe connection indicate their major role in the design. The size variation was found not to be in linear proportion to vapor density variations. On the other hand, high molecular weight organic fluids such as R-11 and R-113, when compared with water, show insignificant changes in piping sizes.

  2. What's in a Pipe?: NATO's Confrontation on the 1962 Large-Diameter Pipe Embargo.

    Science.gov (United States)

    Cantoni, Roberto

    By the late 1950s, the Soviet Union had acquired a strong position as a world oil exporter, thanks to major discoveries in the Ural-Volga area. In order to transport their oil to strategic areas within the Union and to Europe, the Soviets devised a project to build a colossal pipeline system. This plan caused anxiety at NATO since Russian oil could be wielded as a weapon to weaken the West both militarily and economically. In order to complete the system, however, the Soviets needed large-diameter steel pipes and equipment, which they had to import from the West. Thus in 1961 the U.S. delegation at NATO proposed a comprehensive embargo of large-diameter pipes in order to delay the system's construction. I argue that the definition of what oil pipes were as technological artifacts, as well as their final content, was ultimately shaped by the NATO debate on this U.S. proposition.

  3. In-Orbit Construction with a Helical Seam Pipe Mill

    Science.gov (United States)

    Gilhooley, N.

    The challenges of building large structures in space, and in particular a torus habitat, require novel processes. One potential method is to manufacture helical seam (also called spiral) pipe in orbit using a pipe mill. These machines turn rolls of steel or alloy into fully formed, welded and inspected pipe, pressure vessels and silos of various diameters. Pipe mills are highly automated and efficient in a factory environment and are increasingly being used for in-situ repair. By constructing in-orbit (on-orbit assembly) the launch vehicle can supply full payloads of compact, robust rolls of material; and the installation design is less restricted by fairing constraints and modular limitations. The use of a pipe mill is discussed as a possible construction method, for comparison an example design envelope is shown and further pipe mill products are considered.

  4. Analysis and Optimisation of Carcass Production for Flexible Pipes

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe

    Un-bonded flexible pipes are used in the offshore oil and gas industry worldwide transporting hydrocarbons from seafloor to floating production vessels topside. Flexible pipes are advantageous over rigid pipelines in dynamic applications and during installation as they are delivered in full length...... on reels. Flexible pipes are constructed in a layer structure in which each layer adds specific properties to the pipe such as; collapse strength, fluid integrity, bursting strength, tensile strength etc. The inner-most layer of a flexible pipe is the carcass; a flexible interlocking stainless steel...... structure that provides mechanical and collapse strength for the flexible pipe. The manufacturing process of carcass is a combination of roll forming stainless steel strips and helical winding the profiles around a mandrel interlocking the profiles with themselves. The focus of the present project...

  5. Internal surface roughness of plastic pipes for irrigation

    Directory of Open Access Journals (Sweden)

    Hermes S. da Rocha

    Full Text Available ABSTRACT Assuming that a roughness meter can be successfully employed to measure the roughness on the internal surface of irrigation pipes, this research had the purpose of defining parameters and procedures required to represent the internal surface roughness of plastic pipes used in irrigation. In 2013, the roughness parameter Ra, traditional for the representation of surface irregularities in most situations, and the parameters Rc, Rq, and Ry were estimated based on 350 samples of polyvinyl chloride (PVC and low-density polyethylene (LDPE pipes. Pressure losses were determined from experiments carried out in laboratory. Estimations of pressure loss varied significantly according to the roughness parameters (Ra, Rc, Rq, and Ry and the corresponding pipe diameter. Therefore, specific values of roughness for each pipe diameter improves accuracy in pressure losses estimation. The average values of internal surface roughness were 3.334 and 8.116 μm for PVC and LDPE pipes, respectively.

  6. Chronological trends in maximum and minimum water flows of the Teesta River, Bangladesh, and its implications

    OpenAIRE

    Md. Sanaul H. Mondal; Md Serajul Islam

    2017-01-01

    Bangladesh shares a common border with India in the west, north and east and with Myanmar in the southeast. These borders cut across 57 rivers that discharge through Bangladesh into the Bay of Bengal in the south. The upstream courses of these rivers traverse India, China, Nepal and Bhutan. Transboundary flows are the important sources of water resources in Bangladesh. Among the 57 transboundary rivers, the Teesta is the fourth major river in Bangladesh after the Ganges, the Brahmaputra and t...

  7. Dynamics of fluid-conveying pipes: effects of velocity profiles

    DEFF Research Database (Denmark)

    Enz, Stephanie; Thomsen, Jon Juel

    Varying velocity profiles and internal fluid loads on fluid-conveying pipes are investigated. Different geometric layouts of the fluid domain and inflow velocity profiles are considered. It is found that the variation of the velocity profiles along the bended pipe is considerable. A determination...... of the resulting fluid loads on the pipe walls is of interest e.g, for evaluating the dynamical behaviour of lightly damped structures like Coriolis flow meters....

  8. 49 CFR 192.287 - Plastic pipe: Inspection of joints.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe: Inspection of joints. 192.287... Than by Welding § 192.287 Plastic pipe: Inspection of joints. No person may carry out the inspection of joints in plastic pipes required by §§ 192.273(c) and 192.285(b) unless that person has been qualified by...

  9. Closing LHCb's calorimeter around the beam-pipe

    CERN Multimedia

    Kristic, R

    2008-01-01

    Photos 1 and 2 show the pre-shower, lead absorber and the scintillating pad detector layers moving in towards the beam-pipe. Photos 3,4 and 5 show the hadron calorimeter with both halves closed around the beam-pipe, to the left of the picture and, in the centre, half of the electromagnetic calorimeter closed in towards the beam-pipe.

  10. Robotic platform for traveling on vertical piping network

    Science.gov (United States)

    Nance, Thomas A; Vrettos, Nick J; Krementz, Daniel; Marzolf, Athneal D

    2015-02-03

    This invention relates generally to robotic systems and is specifically designed for a robotic system that can navigate vertical pipes within a waste tank or similar environment. The robotic system allows a process for sampling, cleaning, inspecting and removing waste around vertical pipes by supplying a robotic platform that uses the vertical pipes to support and navigate the platform above waste material contained in the tank.

  11. Modular heat pipe radiators for enhanced Shuttle mission capabilities

    Science.gov (United States)

    Alario, J.; Haslett, R.

    1979-01-01

    Current heat pipe radiator technology is reviewed and the results from three state-of-the-art hardware programs are summarized. Heat pipe radiators are shown to be an improvement over all-fluid loop panels for long duration space missions, when micrometeoroid survivability is important. Finally, several heat pipe radiator design concepts are presented which would enhance Shuttle mission capabilities by either extending mission life and/or augmenting heat rejection capability.

  12. Antipodal Vivaldi Antenna for Water Pipe Sensor and Telemetry

    OpenAIRE

    Giuseppe Ruvio; Domenico Gaetano; Ammann, Max J.; Patrick McEvoy

    2012-01-01

    An antipodal Vivaldi antenna operates simultaneously for telemetry and sensing when placed conformally onto PVC pipes. Good radiation efficiency is realised and the antenna impedance matching remains stable when the pipe is empty or contains water. The Fidelity Factor performance based on an input Ultra Wideband Gaussian pulse is a suitable figure of merit to detect water presence. Different water levels and pipe conditions correspond to Fidelity Factors between 90% and 96%, which are a suita...

  13. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks. (2...

  14. ADJUSTED F FACTOR FOR MULTIPLE-OUTLET PIPES.

    OpenAIRE

    Scaloppi, Edmar José [UNESP

    1988-01-01

    An adjusted F factor to compute pressure head loss in pipes having multiple, equally spaced outlets is derived for any given distance from the first outlet to the beginning of the pipe. The proposed factor is dependent on the number of outlets and is expressed as a function of the J. E. Christiansen's F factor. It may be useful to irrigation engineers to estimate friction in sprinkle and trickle irrigation laterals and manifolds, as well as gated pipes.

  15. Study on Monitoring Rock Burst through Drill Pipe Torque

    OpenAIRE

    Zhonghua Li; Liyuan Zhu; Wanlei Yin; Yanfang Song

    2015-01-01

    This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the a...

  16. Visualization of Flow Alternatives, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.; Heuser, Jeanne

    2002-01-01

    Background The U.S. Army Corps of Engineers (COE) 'Missouri River Master Water Control Manual' (Master Manual) review has resulted in consideration of many flow alternatives for managing the water in the river (COE, 2001; 1998a). The purpose of this report is to present flow-management alternative model results in a way that can be easily visualized and understood. This report was updated in October 2001 to focus on the specific flow-management alternatives presented by the COE in the 'Master Manual Revised Draft Environmental Impact Statement' (RDEIS; COE, 2001). The original version (February 2000) is available by clicking here. The COE, U.S. Fish and Wildlife Service (FWS), Missouri River states, and Missouri River basin tribes have been participating in discussions concerning water management of the Missouri River mainstem reservoir system (MRMRS), the Missouri River Bank Stabilization and Navigation Project, and the Kansas River reservoir system since 1986. These discussions include general input to the revision of the Master Manual as well as formal consultation under Section 7 of the Endangered Species Act. In 2000, the FWS issued a Biological Opinion that prescribed changes to reservoir management on the Missouri River that were believed to be necessary to preclude jeopardy to three endangered species, the pallid sturgeon, piping plover, and interior least tern (USFWS, 2000). The combined Missouri River system is large and complex, including many reservoirs, control structures, and free-flowing reaches extending over a broad region. The ability to assess future impacts of altered management scenarios necessarily involves complex, computational models that attempt to integrate physical, chemical, biological, and economic effects. Graphical visualization of the model output is intended to improve understanding of the differences among flow-management alternatives.

  17. Predictions for fatigue crack growth life of cracked pipes and pipe welds using RMS SIF approach and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Punit, E-mail: punit@barc.gov.in [Bhabha Atomic Research Centre, Department of Atomic Energy, Maharashtra, Mumbai 400 085 (India); Singh, P.K.; Bhasin, Vivek; Vaze, K.K.; Ghosh, A.K. [Bhabha Atomic Research Centre, Department of Atomic Energy, Maharashtra, Mumbai 400 085 (India); Pukazhendhi, D.M.; Gandhi, P.; Raghava, G. [Structural Engineering Research Centre, Chennai 600 113 (India)

    2011-10-15

    The objective of the present study is to understand the fatigue crack growth behavior in austenitic stainless steel pipes and pipe welds by carrying out analysis/predictions and experiments. The Paris law has been used for the prediction of fatigue crack growth life. To carry out the analysis, Paris constants have been determined for pipe (base) and pipe weld materials by using Compact Tension (CT) specimens machined from the actual pipe/pipe weld. Analyses have been carried out to predict the fatigue crack growth life of the austenitic stainless steel pipes/pipes welds having part through cracks on the outer surface. In the analyses, Stress Intensity Factors (K) have been evaluated through two different schemes. The first scheme considers the 'K' evaluations at two points of the crack front i.e. maximum crack depth and crack tip at the outer surface. The second scheme accounts for the area averaged root mean square stress intensity factor (K{sub RMS}) at deepest and surface points. Crack growth and the crack shape with loading cycles have been evaluated. In order to validate the analytical procedure/results, experiments have been carried out on full scale pipe and pipe welds with part through circumferential crack. Fatigue crack growth life evaluated using both schemes have been compared with experimental results. Use of stress intensity factor (K{sub RMS}) evaluated using second scheme gives better fatigue crack growth life prediction compared to that of first scheme. Fatigue crack growth in pipe weld (Gas Tungsten Arc Welding) can be predicted well using Paris constants of base material but prediction is non-conservative for pipe weld (Shielded Metal Arc Welding). Further, predictions using fatigue crack growth rate curve of ASME produces conservative results for pipe and GTAW pipe welds and comparable results for SMAW pipe welds. - Highlights: > Predicting fatigue crack growth of Austenitic Stainless Steel pipes and pipe welds. > Use of RMS-SIF and

  18. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon

    2007-01-01

    The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...... loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further...

  19. Pressure Controlled Heat Pipe for Precise Temperature Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research project will develop Pressure Controlled Heat Pipes (PCHPs) for precise temperature control (milli-Kelvin level). Several...

  20. International Piping Integrity Research Group (IPIRG) Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Schmidt, R.; Scott, P. [and others

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program.

  1. Small, Untethered, Mobile Robots for Inspecting Gas Pipes

    Science.gov (United States)

    Wilcox, Brian

    2003-01-01

    Small, untethered mobile robots denoted gas-pipe explorers (GPEXs) have been proposed for inspecting the interiors of pipes used in the local distribution natural gas. The United States has network of gas-distribution pipes with a total length of approximately 109 m. These pipes are often made of iron and steel and some are more than 100 years old. As this network ages, there is a need to locate weaknesses that necessitate repair and/or preventive maintenance. The most common weaknesses are leaks and reductions in thickness, which are caused mostly by chemical reactions between the iron in the pipes and various substances in soil and groundwater. At present, mobile robots called pigs are used to inspect and clean the interiors of gas-transmission pipelines. Some carry magnetic-flux-leakage (MFL) sensors for measuring average wall thicknesses, some capture images, and some measure sizes and physical conditions. The operating ranges of pigs are limited to fairly straight sections of wide transmission- type (as distinguished from distribution- type) pipes: pigs are too large to negotiate such obstacles as bends with radii comparable to or smaller than pipe diameters, intrusions of other pipes at branch connections, and reductions in diameter at valves and meters. The GPEXs would be smaller and would be able to negotiate sharp bends and other obstacles that typically occur in gas-distribution pipes.

  2. Electricity in east Asia

    Energy Technology Data Exchange (ETDEWEB)

    Breeze, Paul

    1997-06-01

    Electricity in east Asia highlights all the current regulations and policies and brings you up to data with the latest developments in the power markets in east Asia. In particular, the report assesses utility privatisation and the role and opportunities for independent power producers. It includes: the background to east Asia and its political and economic environment; an overview of the power markets in the region; the natural resources available locally within the region; the power generation technologies being used in the region and the potential for advanced technologies and renewable energy sources; the financial situation, including what opportunities and restraints affect each country; the regulatory structures and political problems associated with private power generation; detailed case studies of the Three Gorges hydropower project in China and the development of nuclear power in east Asia. Electricity in east Asia contains detailed country profiles of China, Hong Kong, Japan, Macao, Mongolia, North Korea, South Korea and Taiwan. It is an indispensable tool for anyone wishing to do business in this highly diverse and exciting region. (Author)

  3. Effect on mechanical properties of glass reinforced epoxy (GRE) pipe filled with different geopolymer filler molarity for piping application

    Science.gov (United States)

    Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.

    2017-04-01

    This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.

  4. Experimental Testing and Modeling Analysis of Solute Mixing at Water Distribution Pipe Junctions

    Science.gov (United States)

    Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. Here we have categorized pipe junctions into five hydraulic types, for which flow distribution factors and analytical equations for describing the solute mixing ...

  5. Electrically heated pipe in pipe combined with electrical submersible pumps for deepwater development

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sidnei Guerreiro da; Euphemio, Mauro Luiz Lopes [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The general trend of deep water and ultra deep water field development is the requirement of highly insulated flow lines, as flow assurance has become one of the major considerations in designing and operating the sub sea system. If not adequately considered in the design phase, it can have significant and unexpected effects to the operational costs, increasing production lost time, decreasing efficiency. In this scenario, the use of pipe in pipe flow lines, with high passive insulation and/ or active heating (called the Electrically Heated Pipe in Pipe - EHPIP), emerges as an attractive method to prevent deposition, especially of waxes and hydrates, by actively maintaining or leading the temperature of the flow line above a critical limit. Besides, the recent heavy oil discoveries in Brazil have encouraged PETROBRAS to move a step forward in the artificial lift design and operation, by the use of Electrical Submersible Pumps (ESP) installed in deep water wells. The combination of EHPIP and ESP are particularly suitable for deep water, high viscosity and long tie back systems, but also can improve oil recovery and production efficiency by allowing the operator to drop down production losses associated Flow Assurance problems. (author)

  6. Comparison of East Asian winter monsoon indices

    Directory of Open Access Journals (Sweden)

    Gao Hui

    2007-01-01

    Full Text Available Four East Asian winter monsoon (EAWM indices are compared in this paper. In the research periods, all the indices show similar interannual and decadal-interdecadal variations, with predominant periods centering in 3–4 years, 6.5 years and 9–15 years, respectively. Besides, all the indices show remarkable weakening trends since the 1980s. The correlation coefficient of each two indices is positive with a significance level of 99%. Both the correlation analyses and the composites indicate that in stronger EAWM years, the Siberian high and the higher-level subtropical westerly jet are stronger, and the Aleutian low and the East Asia trough are deeper. This circulation pattern is favorable for much stronger northwesterly wind and lower air temperature in the subtropical regions of East Asia, while it is on the opposite in weaker EAWM years. Besides, EAWM can also exert a remarkable leading effect on the summer monsoon. After stronger (weaker EAWM, less (more summer precipitation is seen over the regions from the Yangtze River valley of China to southern Japan, while more (less from South China Sea to the tropical western Pacific.

  7. The Freezing and Blocking of Water Pipes.

    Science.gov (United States)

    1982-05-01

    a4ve irig Laba ar aie at comnctn seta technical~~~~~’: inomto n odne omt researchers,~~ eniees tehiinpbi officials~~~~~~a an tesahy ovyu-o date... Mulligan (1969), and Stephan , .4 (1969) listed on page 11. The results of recent experimental work are described below. Freezing of R. Gilpin (1977a,b...N1 . . , ," I. . . % - % 6.. . . . . . .• • , .. , F 7-- .7. TMu Fmuune AND BLOCKING OF WATER PIPES 1 Oazslk, M.N. and J.C. Mulligan (1969

  8. The monogroove high performance heat pipe

    Science.gov (United States)

    Alario, J.; Haslett, R.; Kosson, R.

    1981-06-01

    The development of the monogroove heat pipe, a fundamentally new high-performance device suitable for multi-kilowatt space radiator heat-rejection systems, is reported. The design separates heat transport and transfer functions, so that each can be separately optimized to yield heat transport capacities on the order of 25 kW/m. Test versions of the device have proven the concept of heat transport capacity control by pore dimensions and the permeability of the circumferential wall wick structure, which together render it insensitive to tilt. All cases tested were for localized, top-side heat input and cooling and produced results close to theoretical predictions.

  9. Power source for wireless sensors in pipes

    Science.gov (United States)

    Keddis, Sherif; Schwesinger, Norbert

    2016-04-01

    In this paper, we present investigations on wireless sensors for fluid control inside a pipe. Autarkic sensors are in the technical trend. They are typically connected with a transceiver unit for data transmission. Sensors usually need a lower amount of energy than data transceivers. Therefore, they are commonly supplied via wires or batteries with electricity. With common technologies, this request leads to high requirements on tightness in liquids since poor sealing could easily lead to failures. Replacement of batteries inside pipes is complicated and almost accompanied by a flow interruption. The application of energy harvesters as power supply is therefore a good alternative. In our studies we used flexible piezoelectric energy harvesters of PVDF (Poly-Vinylidene-Di-Fluoride). All harvesting units consist of piezoelectric PVDF-foils as active layers and Aluminum-foils as electrodes. The layers were stacked alternating on each other and wound to a spool. A LDPE-film wraps the spool and prevents the inflow of liquids. The device has following parameters: No. of windings: 4 in air, 4, 5, 7 in water Dimensions: 15 mm Ø 22mm Materials: PDVF: 25μm Aluminimum: 6μm, LDPE: 25μm A ring shaped bluff body was placed inside the pipe to induce turbulence in the fluid stream. As the harvesters have been arranged downstream of the bluff body, they were forced to oscillate independent of the media. In each case, deformation of the active layers led to a polarization and a separation of electrical charges. Experiments were carried out in a wind channel as well as in a water pipe. In air, the spool oscillates with a frequency of about 30Hz, at a wind speed of about 7m/s. A -Voltage of about 4V (peak-peak) was measured. This delivers in case of power adjustment, power values of about 0.54μW. In water, the velocity of the fluid was limited to nearly one tenth. Oscillation starts only at a water speed above 0.6m/s. The average oscillation frequency is about 18Hz. At a velocity

  10. Volcanic Pipe of the Namuaiv Mountain

    Directory of Open Access Journals (Sweden)

    Vladimir K. Karzhavin

    2011-12-01

    Full Text Available This research was aimed at reconstructing thermodynamic conditions required for the studied mineral assemblages to be created and exist in nature. The results of the investigations confirm to the recent ideas about an important, even leading, role of temperature, pressure and dioxide carbon in diamond formation in volcanic pipers. The results of this theoretical research allows assuming that one of the reasons for the absence of diamonds in the Namuaiv Mountain volcanic pipe may lie in the increased content of water and oxidizing environmental conditions of their formation

  11. Research and Development on Heat Pipes and Related Thermal Engineering Technologies in Japan

    OpenAIRE

    OSHIMA, Koichi

    1989-01-01

    Five advanced heat pipe systems utilizing phase changing heat transfer concept are introduced, which are; a separate type heat pipe heat exchanger, a heat pipe turbine, micro heat pipes, a thermocapillary loop system and mass-produced tubes with inner fin. Inside of these heat pipes, contrary to the conventional heat transfer tubes, evaporation and condensation processes are heavily influenced by the surface tension effect. This effect is also dominant in the heat pipes operating under micro-...

  12. Development of a iron pipe corrosion simulation model for a water supply network

    OpenAIRE

    Bernats, M.; Osterhus, S. W.; Dzelzitis, K.; Juhna, T.

    2012-01-01

    Corrosion in water supply networks is unwanted process that causes pipe material loss and subsequent pipe failures. Nowadays pipe replacing strategy most often is based on pipe age, which is not always the most important factor in pipe burst rate. In this study a methodology for developing a mathematical model to predict the decrease of pipe thickness in a large cast iron networks is presented. The quality of water, the temperature and the water flow regime were the main factors taken into ac...

  13. Potential for Contaminant Exposure to Bald Eagles of the James River 1993

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The James River, Virginia has one of the largest concentrations of bald eagles on the east coast of the United States. Effects of environmental contaminants upon...

  14. Low Cost High Performance Generator Technology Program. Volume 5. Heat pipe topical, appendices

    Energy Technology Data Exchange (ETDEWEB)

    1975-07-01

    Work performed by Dynatherm Corporation for Teledyne Isotopes during a program entitled ''Heat Pipe Fabrication, Associated Technical Support and Reporting'' is reported. The program was initiated on November 29, 1972; the main objectives were accomplished with the delivery of the heat pipes for the HPG. Life testing of selected heat pipe specimens is continuing to and beyond the present date. The program consisted of the following tasks: Heat Pipe Development of Process Definition; Prototype Heat Pipes for Fin Segment Test; HPG Heat Pipe Fabrication and Testing; Controlled Heat Pipe Life Test; and Heat Pipe Film Coefficient Determination. (TFD)

  15. Fatal carbon monoxide intoxication after acetylene gas welding of pipes.

    Science.gov (United States)

    Antonsson, Ann-Beth; Christensson, Bengt; Berge, Johan; Sjögren, Bengt

    2013-06-01

    Acetylene gas welding of district heating pipes can result in exposure to high concentrations of carbon monoxide. A fatal case due to intoxication is described. Measurements of carbon monoxide revealed high levels when gas welding a pipe with closed ends. This fatality and these measurements highlight a new hazard, which must be promptly prevented.

  16. 46 CFR 56.50-30 - Boiler feed piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler feed piping. 56.50-30 Section 56.50-30 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... least two separate means of supplying feed water for the boilers. All feed pumps shall be fitted with...

  17. Welding vacuum jacketed piping at the Kennedy Space Center

    Science.gov (United States)

    Clautice, W. E.

    1975-01-01

    The present work describes fabrication, welding, and repair procedures and specifications for the vacuum jacketed piping used for conveying cryogenic fuels at space vehicle launch sites. The weld inspection procedures are described, and some examples of modifications of the piping are presented.

  18. Pipe Phantoms With Applications in Molecular Imaging and System Characterization.

    Science.gov (United States)

    Wang, Shiying; Herbst, Elizabeth B; Pye, Stephen D; Moran, Carmel M; Hossack, John A

    2017-01-01

    Pipe (vessel) phantoms mimicking human tissue and blood flow are widely used for cardiovascular related research in medical ultrasound. Pipe phantom studies require the development of materials and liquids that match the acoustic properties of soft tissue, blood vessel wall, and blood. Over recent years, pipe phantoms have been developed to mimic the molecular properties of the simulated blood vessels. In this paper, the design, construction, and functionalization of pipe phantoms are introduced and validated for applications in molecular imaging and ultrasound imaging system characterization. There are three major types of pipe phantoms introduced: 1) a gelatin-based pipe phantom; 2) a polydimethylsiloxane-based pipe phantom; and 3) the "Edinburgh pipe phantom." These phantoms may be used in the validation and assessment of the dynamics of microbubble-based contrast agents and, in the case of a small diameter tube phantom, for assessing imaging system spatial resolution/contrast performance. The materials and procedures required to address each of the phantoms are described.

  19. A Corrosion Risk Assessment Model for Underground Piping

    Science.gov (United States)

    Datta, Koushik; Fraser, Douglas R.

    2009-01-01

    The Pressure Systems Manager at NASA Ames Research Center (ARC) has embarked on a project to collect data and develop risk assessment models to support risk-informed decision making regarding future inspections of underground pipes at ARC. This paper shows progress in one area of this project - a corrosion risk assessment model for the underground high-pressure air distribution piping system at ARC. It consists of a Corrosion Model of pipe-segments, a Pipe Wrap Protection Model; and a Pipe Stress Model for a pipe segment. A Monte Carlo simulation of the combined models provides a distribution of the failure probabilities. Sensitivity study results show that the model uncertainty, or lack of knowledge, is the dominant contributor to the calculated unreliability of the underground piping system. As a result, the Pressure Systems Manager may consider investing resources specifically focused on reducing these uncertainties. Future work includes completing the data collection effort for the existing ground based pressure systems and applying the risk models to risk-based inspection strategies of the underground pipes at ARC.

  20. Pipe cutting tool is useful in limited space

    Science.gov (United States)

    Headley, C. A.; Jones, D. D.

    1966-01-01

    Portable pipe cutting tool is used in areas of limited space. The pipe is clamped in the tool and then cut by a rotating cutter assembly that is internally connected to a drive shaft engaged in the chuck of a portable electric drill. The tool is held in a fixed position during the cutting operation.

  1. 46 CFR 182.730 - Nonferrous metallic piping materials.

    Science.gov (United States)

    2010-10-01

    ... protect piping systems using aluminum alloys in high risk fire areas due to the low melting point of... to the cognizant OCMI, nonferrous metallic piping with a melting temperature above 927 °C (1,700 °F... used in conjunction with each other, steel, or other metals and their alloys; (3) A suitable thread...

  2. Computational fluid dynamics model of the spinning pipe gas lens

    CSIR Research Space (South Africa)

    Mafusire, C

    2010-08-01

    Full Text Available When a metal horizontal pipe is heated and spun along its axis, a graded refractive index distribution is generated which is can be used as a lens, thus its name, the spinning pipe gas lens (SPGL). Previous experimental results of its performance...

  3. Uncertainty quantification of aeroacoustic power sources in corrugated pipes

    NARCIS (Netherlands)

    Swamy, M.; Shoeibi Omrani, P.; González Díez, N.

    2015-01-01

    Gas transport in corrugated pipes often exhibit whistling behavior, due to periodic flow-induced pulsations generated in the pipe cavities. These aero-acoustic sources are strongly dependent on the geometrical dimensions and features of the cavities. As a result, uncertainties in the exact shape and

  4. Swirling flow states in diverging or contracting pipes

    Science.gov (United States)

    Rusak, Zvi; Zhang, Yuxin; Li, Harry; Wang, Shixiao

    2015-11-01

    We study the dynamics of inviscid and incompressible swirling flows in diverging or contracting long circular pipes. The inlet flow is described by the circumferential and axial velocity profiles together with a fixed azimuthal vorticity while the outlet flow is characterized by a zero radial velocity state. We first solve the Squire-Long PDE for steady-state flows in a pipe and determine the bifurcation diagram of the various possible flow states as a function of pipe geometry. These include states with a decelerated axial velocity along the pipe center line, an accelerated axial velocity along the pipe center line, vortex breakdown states with a stagnation zone around the pipe center line, and wall-separation states. Then, we establish a correlation between the outlet state of these solutions and solutions of the columnar (x-independent) Squire-Long ODE. Numerical simulations based on the unsteady stream function-circulation equations shed light on the stability of the various steady states and their domain of attraction in terms of initial conditions. The results show that pipe divergence promotes the appearance of vortex breakdown states while pipe contraction induces the formation of wall-separation states.

  5. Controlling vortex breakdown in swirling pipe flows: Experiments and simulations

    Science.gov (United States)

    Dennis, D. J. C.; Seraudie, C.; Poole, R. J.

    2014-05-01

    A laminar, incompressible, viscous pipe flow with a controllable swirl induced by wall rotation has been studied both numerically and experimentally up to an axial Reynolds number (Re) of 30. The pipe consists of two smoothly joined sections that can be rotated independently about the same axis. The circumstances of flow entering a stationary pipe from a rotating pipe (so-called decaying swirl) and flow entering a rotating pipe from a stationary pipe (growing swirl) have been investigated. Flow visualisations show that at a certain swirl ratio the flow undergoes a reversal and vortex breakdown occurs. The variation of this critical swirl ratio with Reynolds number is explored and good agreement is found between the experimental and numerical methods. At high Re the critical swirl ratio tends to a constant value, whereas at low Re the product of the Reynolds number and the square of the swirl ratio tends to a constant value in good agreement with an existing analytical solution. For decaying swirl the vortex breakdown manifests itself on the pipe axis, whereas for growing swirl a toroidal zone of recirculation occurs near the pipe wall. The recirculating flow zones formed at critical conditions are found to increase radially and axially in extent with increasing Reynolds number and swirl ratio.

  6. Carboxyhaemoglobin levels in water-pipe and cigarette smokers ...

    African Journals Online (AJOL)

    Water-pipe smoking is growing in popularity, especially among young people, because of the social nature of the smoking session and the assumption that the effects are less harmful than those of cigarette smoking. It has however been shown that a single water-pipe smoking session produces a 24-hour urinary cotinine ...

  7. Temperature stratification in a hot water tank with circulation pipe

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to investigate the change in temperature stratification due to the operation of a circulation pipe. Further, putting forward rules for design of pipe inlet in order not to disturb the temperature stratification in the hot water tank. A validated computer model based...

  8. Detecting Pipe Bursts Using Heuristic and CUSUM Methods

    NARCIS (Netherlands)

    Bakker, M.; Jung, D.; Vreeburg, J.; Van de Roer, M.; Lansey, K.; Rierveld, L.

    2014-01-01

    Pipe bursts in a drinking water distribution system lead to water losses, interruption of supply, and damage to streets and houses due to the uncontrolled water flow. To minimize the negative consequences of pipe bursts, an early detection is necessary. This paper describes a heuristic burst

  9. Twenty-Four Tuba Harmonics Using a Single Pipe Length

    Science.gov (United States)

    Holmes, Bud; Ruiz, Michael J.

    2017-01-01

    Harmonics arise naturally from the resonances in strings and pipes. A video demonstration (Ruiz 2016 "YouTube: Tuba Harmonics" (https://youtu.be/souhEzOP9c4)) is provided where a tubist (coauthor Holmes) produces a phenomenal 24 harmonics using a single tuba pipe length by controlling the buzz of his lips. The frequencies of the…

  10. Accounting For Compressibility In Viscous Flow In Pipes

    Science.gov (United States)

    Steinle, Frank W.; Gee, Ken; Murthy, Sreedhara V.

    1991-01-01

    Method developed to account for effects of compressibility in viscous flows through long, circular pipes of uniform diameter. Based on approximation of variations in density and velocity across pipe cross section by profile equations developed for boundary-layer flow between flat plates.

  11. accurate, explicit pipe sizing formula for turbulent flows

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    This paper develops an explicit formula for computing the diameter of pipes, which is applicable to all turbulent ... cifically tailored to water distribution pipes, in .... this study. Substituting Eqns. 4 and 5 in Eqn. 9a and rearranging, yields o f. fRD.

  12. Optimal Design of Piping Systems for District Heating,

    Science.gov (United States)

    1995-08-01

    First, a method for determining the optimal size for a single pipe segment in a district heating system is developed. The method is general enough to...excessive throttling losses in the consumer’s control valves. The method developed here should be feasible for designing the piping networks for district ... heating systems of moderate size, and its major advantage is its flexibility. (MM)

  13. Technical Note: Accurate, Explicit Pipe Sizing Formula For Turbulent ...

    African Journals Online (AJOL)

    This paper develops an explicit formula for computing the diameter of pipes, which is applicable to all turbulent flows. The formula not only avoids iteration but still estimates pipe diameters over the entire range of turbulent flows with an error of less than 4% in the worst cases. This is superior to (without requiring a higher ...

  14. Ductile fracture behaviour of primary heat transport piping material ...

    Indian Academy of Sciences (India)

    Design of primary heat transport (PHT) piping of pressurised heavy water reactors (PHWR) has to ensure implementation of leak-before-break concepts. In order to be able to do so, the ductile fracture characteristics of PHT piping material have to be quantified. In this paper, the fracture resistance of SA333, Grade 6 steel ...

  15. accurate, explicit pipe sizing formula for turbulent flows

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    ABSTRACT. This paper develops an explicit formula for computing the diameter of pipes, which is applicable to all turbulent flows. The formula not only avoids iteration but still estimates pipe diameters over the entire range of turbulent flows with an error of less than 4% in the worst cases. This is superior to (without ...

  16. Estimating head and frictional losses through pipe fittings in building ...

    African Journals Online (AJOL)

    By extending pipe length by equal increments, with corresponding increments in number of sanitary appliances and total water flow rates to a water distribution system of a building, fractions of the total frictional loss throu-gh pipe fittings for varying work complexities were obtained. The fractions varied from 0.342 to 0.377 as ...

  17. The Pipe Creek Sinkhole biota, a diverse late tertiary continental fossil assemblage from Grant County, Indiana

    Science.gov (United States)

    Farlow, J.O.; Sunderman, J.A.; Havens, J.J.; Swinehart, A.L.; Holman, J.A.; Richards, R.L.; Miller, N.G.; Martin, R.A.; Hunt, R.M.; Storrs, G.W.; Curry, B. Brandon; Fluegeman, R.H.; Dawson, M.; Flint, M.E.T.

    2001-01-01

    Quarrying in east-central Indiana has uncovered richly fossiliferous unconsolidated sediment buried beneath Pleistocene glacial till. The fossiliferous layer is part of a sedimentary deposit that accumulated in a sinkhole developed in the limestone flank beds of a Paleozoic reef. Plant and animal (mostly vertebrate) remains are abundant in the fossil assemblage. Plants are represented by a diversity of terrestrial and wetland forms, all of extant species. The vertebrate assemblage (here designated the Pipe Creek Sinkhole local fauna) is dominated by frogs and pond turtles, but fishes, birds; snakes and small and large mammals are also present; both extinct and extant taxa are represented. The mammalian assemblage indicates an early Pliocene age (latest Hemphillian or earliest Blancan North American Land Mammal Age). This is the first Tertiary continental biota discovered in the interior of the eastern half of North America.

  18. Computational model of miniature pulsating heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  19. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING

    Energy Technology Data Exchange (ETDEWEB)

    Rawls, G.

    2012-10-10

    The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

  20. Guided Wave Tomography of Pipe Bends.

    Science.gov (United States)

    Brath, Alex J; Simonetti, Francesco; Nagy, Peter B; Instanes, Geir

    2017-05-01

    Detection and monitoring of corrosion and erosion damage in pipe bends are open challenges due to the curvature of the elbow, the complex morphology of these defects, and their unpredictable location. Combining model-based inversion with guided ultrasonic waves propagating along the elbow and inside its walls offers the possibility of mapping wall-thickness losses over the entire bend and from a few permanently installed transducers under the realm of guided wave tomography (GWT). This paper provides the experimental demonstration of GWT of pipe bends based on a novel curved ray tomography algorithm and an optimal transducer configuration consisting of two ring arrays mounted at the ends of the elbow and a line of transducers fixed to the outer side of the elbow (extrados). Using realistic, localized corrosion defects, it is shown that detection of both the presence and progression of damage can be achieved with 100% sensitivity regardless of damage position around the bend. Importantly, this is possible for defects as shallow as 0.50% of wall thickness (WT) and for maximum depth increments of just 0.25% WT. However, due to the highly irregular profile of corrosion defects, GWT generally underestimates maximum depth relative to the values obtained from 3-D laser scans of the same defects, leading in many cases to errors between 3% WT and 8% WT.

  1. Ocean thermal energy conversion cold water pipe preliminary design project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-20

    As part of a DOE goal to develop one or more OTEC Modular Experiment Plants, TRW performed designs, analyses, and evaluations of cold water pipe (CWP) concepts for NOAA. After reviewing the results of the CWP concept selection phase NOAA/DOE selected three concepts for a baseline design: (1) a FRP CWP of sandwich wall construction suspended from the Applied Physics Laboratory/John Hopkins University (APL/JHU) barge at a site 200 miles east of the coast of Brazil using a horizontal deployment scheme (this is TRW's preferred approach); (2) an elastomer CWP suspended from the APL/JHU barge off the southeast coast of Puerto Rico using either a horizontal or vertical deployment scheme; and (3) a polyethylene CWP (single or multiple pipe) suspended from the Gibbs and Cox spar at the Puerto Rico site using a horizontal deployment scheme. TRW has developed a baseline design for each of these configurations. Detailed designs and analyses for the FRP, polyethylene, and elastomer concepts, respectively, are described. A discussion of fabrication plans and processes, schedules for mobilization of facilities and equipment, installation plans, and cost breakdown are given for each concept. (WHK)

  2. Simulation of Temperature Field in HDPE Pipe Thermal Welding

    Directory of Open Access Journals (Sweden)

    LIU Li-jun

    2017-04-01

    Full Text Available For high density polyethylene pipe connection,welding technology is the key of the high density engineering plastic pressure pipe safety. And the temperature distribution in the welding process has a very important influence on the welding quality. Polyethylene pipe weld joints of one dimensional unsteady overall heat transfer model is established by MARC software and simulates temperature field and stress field distribution of the welding process,and the thermocouple temperature automatic acquisition system of welding temperature field changes were detected,and compared by simulation and experiment .The results show that,at the end of the heating,the temperature of the pipe does not reach the maximum,but reached the maximum at 300 s,which indicates that the latent heat of phase change in the process of pressure welding. In the process of pressure welding, the axial stress of the pipe is gradually changed from tensile stress to compressive stress.

  3. An assessment of seismic margins in nuclear plant piping

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.P.; Jaquay, K.R. [Energy Technology Engineering Center, Canoga Park, CA (United States); Chokshi, N.C.; Terao, D. [Nuclear Regulatory Commission, Washington DC (United States)

    1996-03-01

    Interim results of an ongoing program to assist the U.S. Nuclear Regulatory Commission (NRC) in developing regulatory positions on the seismic analyses of piping and overall safety margins of piping systems are reported. Results of: (1) reviews of seismic testing of piping components performed as part of the Electric Power Research Institute (EPRI)/NRC Piping and Fitting Dynamic Reliability (PFDR) Program, and (2) assessments of safety margins inherent in the ASME Code, Section III, piping seismic design criteria as revised by the 1994 Addenda are reported. The reviews indicate that the margins inherent in the revised criteria may be less than acceptable and that modifications to these criteria may be required.

  4. Pipe-cleaner Model of Neuronal Network Dynamics

    CERN Document Server

    Armstrong, Eve

    2016-01-01

    We present a functional model of neuronal network connectivity in which the single architectural element is the object commonly known in handicraft circles as a pipe cleaner. We argue that the dual nature of a neuronal circuit - that it be at times highly robust to external manipulation and yet sufficiently flexible to allow for learning and adaptation - is embodied in the pipe cleaner, and thus that a pipe cleaner framework serves as an instructive scaffold in which to examine network dynamics. Regarding the dynamics themselves: as pipe cleaners possess no intrinsic dynamics, in our model we attribute the emergent circuit dynamics to magic. Magic is a strategy that has been largely neglected in the neuroscience community, and may serve as an illuminating comparison to the common physics-based approaches. This model makes predictions that it would be really awesome to test experimentally. Moreover, the relative simplicity of the pipe cleaner - setting aside the fact that it comes in an overwhelming variety of...

  5. Heat pipe radiator. [for spacecraft waste heat rejection

    Science.gov (United States)

    Swerdling, B.; Alario, J.

    1973-01-01

    A 15,000 watt spacecraft waste heat rejection system utilizing heat pipe radiator panels was investigated. Of the several concepts initially identified, a series system was selected for more in-depth analysis. As a demonstration of system feasibility, a nominal 500 watt radiator panel was designed, built and tested. The panel, which is a module of the 15,000 watt system, consists of a variable conductance heat pipe (VCHP) header, and six isothermalizer heat pipes attached to a radiating fin. The thermal load to the VCHP is supplied by a Freon-21 liquid loop via an integral heat exchanger. Descriptions of the results of the system studies and details of the radiator design are included along with the test results for both the heat pipe components and the assembled radiator panel. These results support the feasibility of using heat pipes in a spacecraft waste heat rejection system.

  6. Characterization and potential of nonmetallic piping systems for district heating

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, M.H.; Karnitz, M.A.; Naus, D.J.; Bryson, J.W. Jr.

    1987-07-01

    The objectives of this investigation were to characterize and evaluate the potential of nonmetallic piping systems for district heating applications. This investigation considered both currently available products and future products. Analyses of the cost components of district heating systems were performed for current steel heating piping technology. A comparison was then made with hypothetical nonmetallic piping technology, and opportunities where savings might occur were noted. As a result of these analyses, a conceptual design for a preinsulated, nonmetallic piping was developed to take advantage of likely areas of overall cost reduction. This design based on low-cost field fabrication and existing materials, used a postchlorinated polyvinylchloride carrier pipe supported structurally by high-density urethane foam and polyethylene jacketing. A structural analysis of this conceptual design was performed using two-dimensional, finite elements. The results are promising for practical operating temperatures.

  7. Condensation driven water hammer studies for feedwater distribution pipe

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, S.; Katajala, S.; Elsing, B.; Nurkkala, P.; Hoikkanen, J. [Imatran Voima Oy, Vantaa (Finland); Pullinen, J. [IVO Power Engineering Ltd., Vantaa (Finland); Logvinov, S.A.; Trunov, N.B.; Sitnik, J.K. [EDO Gidropress (Russian Federation)

    1997-12-31

    Imatran Voima Oy, IVO, operates two VVER 440 reactors. Unit 1 has been operating since 1977 and unit 2 since 1981. First damages of the feed water distribution (FWD) pipes were observed in 1989. In closer examinations FWD-pipe T-connection turned out to suffer from severe erosion corrosion damages. Similar damages have been found also in other VVER 440 type NPPs. In 1994 the first new FWD-pipe was replaced and in 1996 extensive water hammer experiments were carried out together with EDO Gidropress in Podolsk. After the first phase of the experiments some fundamental changes were made to the construction of the FWD-pipe. The object of this paper is to give short insight to the design of the new FWD-pipe concentrating on water hammer experiments. (orig.).

  8. Effect of piping systems on surge in centrifugal compressors

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, Hideaki [Products Development Center, Yokohama (Japan)

    2008-10-15

    There is a possibility that the exchange of the piping system may change the surge characteristic of a compressor. The piping system of a plant is not always the same as that of a test site. Then it is important to evaluate the effect of piping systems on surge characteristics in centrifugal compressors. Several turbochargers combined with different piping systems were tested. The lumped parameter model which was simplified to be solved easily was applied for the prediction of surge point. Surge lines were calculated with the linearlized lumped parameter model. The difference between the test and calculated results was within 10 %. Trajectory of surge cycle was also examined by solving the lumped parameter model. Mild surge and deep surge were successfully predicted. This study confirmed that the lumped parameter model was a very useful tool to predict the effect of piping systems on surge characteristics in centrifugal compressors, even though that was a simple model

  9. Uncertainty analysis for probabilistic pipe fracture evaluations in LBB applications

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, S.; Ghadiali, N.; Wilkowski, G.

    1997-04-01

    During the NRC`s Short Cracks in Piping and Piping Welds Program at Battelle, a probabilistic methodology was developed to conduct fracture evaluations of circumferentially cracked pipes for application to leak-rate detection. Later, in the IPIRG-2 program, several parameters that may affect leak-before-break and other pipe flaw evaluations were identified. This paper presents new results from several uncertainty analyses to evaluate the effects of normal operating stresses, normal plus safe-shutdown earthquake stresses, off-centered cracks, restraint of pressure-induced bending, and dynamic and cyclic loading rates on the conditional failure probability of pipes. systems in BWR and PWR. For each parameter, the sensitivity to conditional probability of failure and hence, its importance on probabilistic leak-before-break evaluations were determined.

  10. A nonlinear dynamic corotational finite element model for submerged pipes

    Science.gov (United States)

    de Vries, F. H.; Geijselaers, H. J. M.; van den Boogaard, A. H.; Huisman, A.

    2017-12-01

    A three dimensional finite element model is built to compute the motions of a pipe that is being laid on the seabed. This process is geometrically nonlinear, therefore co-rotational beam elements are used. The pipe is subject to static and dynamic forces. Static forces are due to gravity, current and buoyancy. The dynamic forces exerted by the water are incorporated using Morison’s equation. The dynamic motions are computed using implicit time integration. For this the Hilber-Hughes-Taylor method is selected. The Newton-Raphson iteration scheme is used to solve the equations in every time step. During laying, the pipe is connected to the pipe laying vessel, which is subject to wave motion. Response amplitude operators are used to determine the motions of the ship and thus the motions of the top end of the pipe.

  11. Middle East Respiratory Syndrome (MERS)

    Science.gov (United States)

    Middle East Respiratory Syndrome Coronavirus; MERS-CoV; Novel coronavirus; nCoV ... Centers for Disease Control and Prevention. Middle East Respiratory Syndrome (MERS): Frequently Asked Questions and Answers. Updated ...

  12. East African Medical Journal

    African Journals Online (AJOL)

    2007-05-05

    May 5, 2007 ... 242 EAST A FRICAN MEDICAL J O URNAL. This partially compromised blood supply and resulted in gangrene. After debridement, the patient lost the whole of the skin and subcutaneous layer' of the right forearm with the thumb, index and little fingers (Figure3). She had skin grafting subsequently and she ...

  13. REGION OF EAST AFRICA

    African Journals Online (AJOL)

    Banana (Musa spp.) cultivar diversity in the Great Lakes region of East Africa has been on the decline for the last several decades. A number of abiotic, biotic and socio-economic factors are thought to be responsible for this decline. In spite of low variation with respect to stress resistance, a number of farmers have ...

  14. EAST AFRICAN MEDICAL JOURNAL

    African Journals Online (AJOL)

    2002-01-01

    Jan 1, 2002 ... include hypothermia, reduced appetite, depressed overall sexual potency and clinical spermatorrhoea ..... EAST AFRICAN MEDICAL JOURNAL. 25. Table 4. Drug consumption and semen volume. (GMH, BMS, 1992-1995). No. Drag consumed. 0-2. No. %. No. Semen volume (ml). 2-6. % No. >6. %. No.

  15. East Europe Report

    Science.gov (United States)

    1987-02-18

    above total includes one to two events a month,79 upkeep of an old-age home, of the community library and a kosher 99 butcher shop. The old-age home...the kosher butcher shop, which is open Tuesday to Thursday from 1000 to 1800 hours, includes, in addition to the about 10 East Berlin regular

  16. EAST AFRICAN MEDICAL JOURNAL

    African Journals Online (AJOL)

    East African Medical Journal Vol. 79 No. 2 February 2002. HAEMATOLÖGICAL ALTERATIONS IN LEPROSY PATIENTS TREATED WITH DAPSONE. N.K.D. Halim, MBChB, FMCPath, Senior Lecturer and Head, Department of Haematology and Blood Transfusion, College of Medical Sciences,. University of Benin, Benin ...

  17. JPRS Report, East Europe.

    Science.gov (United States)

    1988-05-02

    10 Su-22/FITTER K and 15 L-29 " Delfin " (NATO desig- nation: MAYA) from CSSR production as photo-recon- naissance aircraft. The 2 transport aircraft...aircraft within the East Bloc as well: Its trainers, the older L-29 " Delfin " (NATO code name MAYA) and the modern L-39 "Albatros," are being used by the

  18. Contested Rivers

    DEFF Research Database (Denmark)

    Gorm Hansen, Louise Lyngfeldt

    explores translocal connections through ethnographic fieldwork at a global water conference and preliminary fieldwork at chosen locations on China's Nu River. The Nu River is one of the last undammed rivers in Asia and runs through China close to the Chinese-Burmese border, then flows into the Andaman Sea...... policy making, decision drivers and framing of large hydropower projects in China. Hydropower is a complex and interesting field to explore as the consequences go beyond the immediate locality and interacts with local as well as the global contexts. Inspired by Tsing (2003) and Zhan (2008) the paper...... and natural scientists and Chinese hydropower companies (to name a few). The paper maps different actors’ framing of the issue to gain a deeper understanding of the complexities of hydropower policymaking in China, as well as map the local consequences of global policymaking about large hydropower...

  19. Modelling and performance of heat pipes with long evaporator sections

    Science.gov (United States)

    Wits, Wessel W.; te Riele, Gert Jan

    2017-11-01

    This paper presents a planar cooling strategy for advanced electronic applications using heat pipe technology. The principle idea is to use an array of relatively long heat pipes, whereby heat is disposed to a long section of the pipes. The proposed design uses 1 m long heat pipes and top cooling through a fan-based heat sink. Successful heat pipe operation and experimental performances are determined for seven heating configurations, considering active bottom, middle and top sections, and four orientation angles (0°, 30°, 60° and 90°). For all heating sections active, the heat pipe oriented vertically in an evaporator-down mode and a power input of 150 W, the overall thermal resistance was 0.014 K/W at a thermal gradient of 2.1 K and an average operating temperature of 50.7 °C. Vertical operation showed best results, as can be expected; horizontally the heat pipe could not be tested up to the power limit and dry-out occurred between 20 and 80 W depending on the heating configuration. Heating configurations without the bottom section active demonstrated a dynamic start-up effect, caused by heat conduction towards the liquid pool and thereafter batch-wise introducing the working fluid into the two-phase cycle. By analysing the heat pipe limitations for the intended operating conditions, a suitable heat pipe geometry was chosen. To predict the thermal performance a thermal model using a resistance network was created. The model compares well with the measurement data, especially for higher input powers. Finally, the thermal model is used for the design of a 1 kW planar system-level electronics cooling infrastructure featuring six 1 m heat pipes in parallel having a long ( 75%) evaporator section.

  20. Assessment of water pipes durability under pressure surge

    Science.gov (United States)

    Pham Ha, Hai; Minh, Lanh Pham Thi; Tang Van, Lam; Bulgakov, Boris; Bazhenova, Soafia

    2017-10-01

    Surge phenomenon occurs on the pipeline by the closing valve or pump suddenly lost power. Due to the complexity of the water hammer simulation, previous researches have only considered water hammer on the single pipe or calculation of some positions on water pipe network, it have not been analysis for all of pipe on the water distribution systems. Simulation of water hammer due to closing valve on water distribution system and the influence level of pressure surge is evaluated at the defects on pipe. Water hammer on water supply pipe network are simulated by Water HAMMER software academic version and the capacity of defects are calculated by SINTAP. SINTAP developed from Brite-Euram projects in Brussels-Belgium with the aim to develop a process for assessing the integrity of the structure for the European industry. Based on the principle of mechanical fault, indicating the size of defects in materials affect the load capacity of the product in the course of work, the process has proposed setting up the diagram to fatigue assessment defect (FAD). The methods are applied for water pipe networks of Lien Chieu district, Da Nang city, Viet Nam, the results show the affected area of wave pressure by closing the valve and thereby assess the greatest pressure surge effect to corroded pipe. The SINTAP standard and finite element mesh analysis at the defect during the occurrence of pressure surge which will accurately assess the bearing capacity of the old pipes. This is one of the bases to predict the leakage locations on the water distribution systems. Amount of water hammer when identified on the water supply networks are decreasing due to local losses at the nodes as well as the friction with pipe wall, so this paper adequately simulate water hammer phenomena applying for actual water distribution systems. The research verified that pipe wall with defect is damaged under the pressure surge value.

  1. Research on measuring pipe tray processing man-hour quota based on genetic neural network

    Directory of Open Access Journals (Sweden)

    Yanhua Pan

    2017-11-01

    Full Text Available Tray is the unit of infield fabrication of the ship pipes. The number of pipes in each tray is different, and the structure of pipe itself is complex, resulting in more difficulty in determination of the entire pipe tray processing man-hour. In order to exactly measure the pipe tray man-hour quota, this paper analyzes main characteristic quantity of the pipe tray and selects the relevant information of 60characteristic quantities of the pipe tray for analysis based on the genetic neural algorithm, and uses MATLAB software simulated data curve to construct a model for measurement of tray pipe processing man-hour, and substitute into new tray pipe man-hour data for verification. The research results show that it is feasible to use this method to predict the pipe tray processing man-hour. The conclusion has some reference values for the prediction of the pipe tray processing man-hour.

  2. Coastal structural remains on the east coast of India: Evidence of maritime activities and their significance

    Digital Repository Service at National Institute of Oceanography (India)

    Tripati, S.

    in relation to the maritime history of the east coast of India. Keywords: Coastal structures, Ancient ports, Maritime activities, Structural remains, East coast of India. Introduction The Indian Peninsula has noticed a chain of development of seaports... number of ancient ports of India were located at the mouth of rivers and in case of lagoons at the outlets to the sea, where cargo can be handled easily and vessels can be anchored properly. Further, to corroborate the fact, the ancient Indian text...

  3. Numerical and Experimental Investigations of a Rotating Heat Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Todd A. [Univ. of New Mexico, Albuquerque, NM (United States)

    2007-05-01

    Rotating and revolving heat pipes have been used in a variety of applications including heat pipe heat exchangers, cooling of rotating electrical machines, and heat removal in high speed cutting operations. The use of heat pipes in rotating environments has prompted many analytical, numerical, and experimental investigations of the heat transfer characteristics of these devices. Past investigations, however, have been restricted to the study of straight heat pipes. In this work, a curved rotating heat pipe is studied numerically and experimentally. In certain types of rotating machines, heat generating components, which must be cooled during normal operation, are located at some radial distance from the axis of rotation. The bent heat pipe studied here is shown to have advantages when compared to the conventional straight heat pipes in these off-axis cooling scenarios. The heat pipe studied here is built so that both the condenser and evaporator sections are parallel to the axis of rotation. The condenser section is concentric with the axis of rotation while the evaporator section can be placed in contact with off-axis heat sources in the rotating machine. The geometry is achieved by incorporating an S-shaped curve between the on-axis rotating condenser section and the off-axis revolving evaporator section. Furthermore, the heat pipe uses an annular gap wick structure. Incorporating an annular gap wick structure into the heat pipe allows for operation in a non-rotating environment. A numerical model of this rotating heat pipe is developed. The analysis is based on a two-dimensional finite-difference model of the liquid flow coupled to a one-dimensional model of the vapor flow. Although the numerical model incorporates many significant aspects of the fluid flow, the flow in the actual heat pipe is expected to be threedimensional. The rotating heat pipe with the S-shaped curve is also studied experimentally to determine how well the numerical model captures the key

  4. Electrically heated pipe in pipe system for hydrate prevention on the Campos Basin

    Energy Technology Data Exchange (ETDEWEB)

    Euphemio, Mauro; Montesanti, Jose Ricardo; Braganca, Elton Jorge; Almeida, Murilo Mesquita de; Coelho, Eduardo; Maia, Alexandre Rodrigues; Peres, Marcelo Borges [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This paper will refer briefly to some key aspects considered for the design of an Electrically Heated Pipe-in-Pipe- EHPIP system integrated to an Electric Submersible Pump-ESP, to be located at 1800 m water depth in the Campos Basin. In this system, under normal operation the well will be producing through the ESP and in case of long well shut in and during well restart up, a percentage of the electrical power will be delivered to heat the PIP system. The electrical system will have a common sub sea power cable and an Electrical Switch Module, to switch power alternatively to the heating system or to the pump. The systems will not operate simultaneously. (author)

  5. River Piracy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. River Piracy Saraswati that Disappeared. K S Valdiya. General Article Volume 1 Issue 5 May 1996 pp 19-28. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/05/0019-0028. Author Affiliations.

  6. Hydrological River Drought Analysis (Case Study: Lake Urmia Basin Rivers

    Directory of Open Access Journals (Sweden)

    Mohammad Nazeri Tahrudi

    2017-02-01

    Full Text Available Introduction: Drought from the hydrological viewpoint is a continuation of the meteorological drought that cause of the lack of surface water such as rivers, lakes, reservoirs and groundwater resources. This analysis, which is generally on the surface streams, reservoirs, lakes and groundwater, takes place as hydrological drought considered and studied. So the data on the quantity of flow of the rivers in this study is of fundamental importance. This data are included, level, flow, river flow is no term (5. Overall the hydrological drought studies are focused on annual discharges, maximum annual discharge or minimum discharge period. The most importance of this analysis is periodically during the course of the analysis remains a certain threshold and subthresholdrunoff volume fraction has created. In situations where water for irrigation or water of a river without any reservoir, is not adequate, the minimum flow analysis, the most important factor to be considered (4. The aim of this study is evaluatingthe statistical distributions of drought volume rivers data from the Urmia Lake’s rivers and its return period. Materials and Methods: Urmia Lake is a biggest and saltiest continued lake in Iran. The Lake Urmia basin is one of the most important basins in Iran region which is located in the North West of Iran. With an extent of 52700 square kilometers and an area equivalent to 3.21% of the total area of the country, This basin is located between the circuit of 35 degrees 40 minutes to 38 degrees 29 minutes north latitude and the meridian of 44 degrees 13 minutes to 47 degrees 53 minutes east longitude. In this study used the daily discharge data (m3s-1 of Urmia Lake Rivers. Extraction of river drought volume The drought durations were extracted from the daily discharge of 13 studied stations. The first mean year was calculated for each 365 days using the Eq 1 (14. (1 (For i=1,2,3,…,365 That Ki is aith mean year, Yijis ith day discharge in jth

  7. Preface to the volume Large Rivers

    Science.gov (United States)

    Latrubesse, Edgardo M.; Abad, Jorge D.

    2018-02-01

    The study and knowledge of the geomorphology of large rivers increased significantly during the last years and the factors that triggered these advances are multiple. On one hand, modern technologies became more accessible and their disseminated usage allowed the collection of data from large rivers as never seen before. The generalized use of high tech data collection with geophysics equipment such as acoustic Doppler current profilers-ADCPs, multibeam echosounders, plus the availability of geospatial and computational tools for morphodynamics, hydrological and hydrosedimentological modeling, have accelerated the scientific production on the geomorphology of large rivers at a global scale. Despite the advances, there is yet a lot of work ahead. Good parts of the large rivers are in the tropics and many are still unexplored. The tropics also hold crucial fluvial basins that concentrate good part of the gross domestic product of large countries like the Parana River in Argentina and Brazil, the Ganges-Brahmaputra in India, the Indus River in Pakistan, and the Mekong River in several countries of South East Asia. The environmental importance of tropical rivers is also outstanding. They hold the highest biodiversity of fluvial fauna and alluvial vegetation and many of them, particularly those in Southeast Asia, are among the most hazardous systems for floods in the entire world. Tropical rivers draining mountain chains such as the Himalaya, the Andes and insular Southeast Asia are also among the most heavily sediment loaded rivers and play a key role in both the storage of sediment at continental scale and the transference of sediments from the continent to the Ocean at planetary scale (Andermann et al., 2012; Latrubesse and Restrepo, 2014; Milliman and Syvitski, 1992; Milliman and Farsnworth, 2011; Sinha and Friend, 1994).

  8. Throughput for steel pipes manufacturing process design

    Directory of Open Access Journals (Sweden)

    N. Fafandjel

    2008-10-01

    Full Text Available Conventional approach to pipe manufacturing process design is using capacity to satisfy maximal load for each process. In the new approach, throughput is suggested as a basic determinant aiming at finding dynamic balance among following and previous process phases. Throughput is defined by the interval of time between product exiting from the preceding process phase and its entry to the next one. Interval of time for the product delivery from the preceding phase must be less or equal as the amount of time necessary for activating the next phase. Knowing the performances of the next phase one can impact to the characteristics of the preceding phase. Throughput can be also used as a more precise way for observed process productivity measurement. Such approach is suggested and for other complex technological processes.

  9. Heat pipe applications for the space shuttle.

    Science.gov (United States)

    Tawil, M.; Alario, J.; Prager, R.; Bullock, R.

    1972-01-01

    Discussion of six specific applications for heat pipe (HP) devices on the space shuttle. These applications were chosen from 27 concepts formulated as part of a study to evaluate the potential benefits associated with HP use. The formulation process is briefly described along with the applications which evolved. The bulk of the discussion deals with the 'top' six - namely, HP radiators for waste heat rejection, an HP augmented cold rail, an HP circuit for electronic equipment cooling, modular heat sink for control of remote packages, an HP temperature control for compartments, and air-cooled equipment racks. The philosophy, physical design details, and performance data are presented for each concept along with a comparison with the baseline design where applicable.

  10. Vortex breakdown in simple pipe bends

    Science.gov (United States)

    Ault, Jesse; Shin, Sangwoo; Stone, Howard

    2016-11-01

    Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.

  11. Bending of pipes with inconel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Nachpitz, Leonardo; Menezes, Carlos Eduardo B.; Vieira, Carlos R. Tavares [Primus Processamento de Tubos S.A. (PROTUBO), Macae, RJ (Brazil)

    2009-07-01

    The high-frequency induction bending process, using API pipes coated with Inconel 625 reconciled to a mechanical transformation for a higher degree of resistance, was developed through a careful specification and control of the manufacturing parameters and inherent heat treatments. The effects of this technology were investigated by a qualification process consisting of a sequence of tests and acceptance criteria typically required by the offshore industry, and through the obtained results was proved the effectiveness of this entire manufacturing process, without causing interference in the properties and the quality of the inconel cladding, adding a gain of resistance to the base material, guaranteed by the requirements of the API 5L Standard. (author)

  12. Geological and Petrographic Characteristics of Kimberlite Pipes

    Directory of Open Access Journals (Sweden)

    N. N. Zinchuk

    2016-12-01

    Full Text Available Studies of the geological structure and petrochemical composition of the Siberian Platform kimberlites indicated complexity, diversity of geological, tectonic, and paleogeographic situations, which must be considered for proper prospecting-exploration for diamonds in each area of investigation. Information about petrochemical composition of potential diatremes, hosting, and overlying sedimentary and magmatic formations is an important prerequisite for prospecting of kimberlite deposits in different geologic-tectonic conditions. The most attention should be paid to typomorphic specific features of primary and secondary minerals of diatremes. Each diamondiferous region is characterized by a certain set of typomorphic associations of kimberlites primary and secondary minerals. The diamonds with ultrabasic association of solid phase inclusions (olivine, chrome-spinel, pyrope, etc. dominate in majority of kimberlite pipes.

  13. Mathematical Modeling of Loop Heat Pipes

    Science.gov (United States)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.

    1998-01-01

    The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.

  14. Non-metallic structural wrap systems for pipe

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.H. [Citadel Technologies Inc. Tulsa, OK (United States); Wesley Rowley, C. [Wesley Corporation, Tulsa, OK (United States)

    2001-07-01

    The use of thermoplastics and reinforcing fiber has been a long-term application of non-metallic material for structural applications. With the advent of specialized epoxies and carbon reinforcing fiber, structural strength approaching and surpassing steel has been used in a wide variety of applications, including nuclear power plants. One of those applications is a NSWS for pipe and other structural members. The NSWS is system of integrating epoxies with reinforcing fiber in a wrapped geometrical configuration. This paper specifically addresses the repair of degraded pipe in heat removal systems used in nuclear power plants, which is typically caused by corrosion, erosion, or abrasion. Loss of structural material leads to leaks, which can be arrested by a NSWS for the pipe. The technical aspects of using thermoplastics to structurally improve degraded pipe in nuclear power plants has been addressed in the ASME B and PV Code Case N-589. Using the fundamentals described in that Code Case, this paper shows how this technology can be extended to pipe repair from the outside. This NSWS has already been used extensively in non-nuclear applications and in one nuclear application. The cost to apply this NSWS is typically substantially less than replacing the pipe and may be technically superior to replacing the pipe. (author)

  15. Refurbishment of the IEAR1 primary coolant system piping supports

    Energy Technology Data Exchange (ETDEWEB)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel, E-mail: gfainer@ipen.br, E-mail: afaloppa@ipen.br, E-mail: calberto@ipen.br, E-mail: mmattar@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    A partial replacement of the IEA-R1 piping system was concluded in 2014. This paper presents the study and the structural analysis of the IEA-R1 primary circuit piping supports, considering all the changes involved in the replacement. The IEA-R1 is a nuclear reactor for research purposes designed by Babcox-Willcox that is operated by IPEN since 1957. The reactor life management and modernization program is being conducted for the last two decades and already resulted in a series of changes, especially on the reactor coolant system. This set of components, divided in primary and secondary circuit, is responsible for the circulation of water into the core to remove heat. In the ageing management program that includes regular inspection, some degradation was observed in the primary piping system. As result, the renewing of the piping system was conducted in 2014. Moreover the poor condition of some original piping supports gave rise to the refurbishment of all piping supports. The aim of the present work is to review the design of the primary system piping supports taking into account the current conditions after the changes and refurbishment. (author)

  16. Autogenous Metallic Pipe Leak Repair in Potable Water Systems.

    Science.gov (United States)

    Tang, Min; Triantafyllidou, Simoni; Edwards, Marc A

    2015-07-21

    Copper and iron pipes have a remarkable capability for autogenous repair (self-repair) of leaks in potable water systems. Field studies revealed exemplars that metallic pipe leaks caused by nails, rocks, and erosion corrosion autogenously repaired, as confirmed in the laboratory experiments. This work demonstrated that 100% (N = 26) of 150 μm leaks contacting representative bulk potable water in copper pipes sealed autogenously via formation of corrosion precipitates at 20-40 psi, pH 3.0-11.0, and with upward and downward leak orientations. Similar leaks in carbon steel pipes at 20 psi self-repaired at pH 5.5 and 8.5, but two leaks did not self-repair permanently at pH 11.0 suggesting that water chemistry may control the durability of materials that seal the leaks and therefore the permanence of repair. Larger 400 μm holes in copper pipes had much lower (0-33%) success of self-repair at pH 3.0-11.0, whereas all 400 μm holes in carbon steel pipes at 20 psi self-repaired at pH 4.0-11.0. Pressure tests indicated that some of the repairs created at 20-40 psi ambient pressure could withstand more than 100 psi without failure. Autogenous repair has implications for understanding patterns of pipe failures, extending the lifetime of decaying infrastructure, and developing new plumbing materials.

  17. Yielding transition of Carbopol gel in a vertical pipe

    Science.gov (United States)

    Liu, Yang; de Bruyn, John R.; John de Bruyn Team

    2016-11-01

    We have investigated the yielding transition of a simple yield-stress fluid (Carbopol 940) in a vertical pipe. The Carbopol gel was displaced by a Newtonian liquid injected at a constant, controlled rate at the bottom of the pipe. Rough- and smooth-walled pipes were used to study the effects of wall boundary conditions. The pressure in the Carbopol was measured by a pressure gauge fixed on the pipe wall, and the velocity profile in the Carbopol was measured by particle-image velocimetry (PIV). When the Newtonian liquid was injected, the rate of pressure increase was initially high, then decreased to a constant slow rate at later times. A time tc was defined by the intersection of straight lines fit to the pressure-time data at early and late times. In the rough pipe, the wall shear stress at tc is equal to the yield stress, suggesting that this time corresponds to yielding of the fluid. The velocity profiles were parabolic before yielding, and nearly a plug-like afterwards. In the smooth pipe, the pressure and velocity profiles appeared to show similar behavior to that in the rough pipe, but the wall shear stress at tc is substantially smaller than the yield stress and fluid motion was due to wall slip. NSERC.

  18. Study on Monitoring Rock Burst through Drill Pipe Torque

    Directory of Open Access Journals (Sweden)

    Zhonghua Li

    2015-01-01

    Full Text Available This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the analysis, a new device for testing drill pipe torque is developed and a series of experiments is performed under different conditions; the results show that drill pipe torque linearly increases with the increase of coal stress and coal strength; the faster the drilling speed, the larger the drill pipe torque, and vice versa. When monitoring rock burst by drill pipe torque method, the index of rock burst is regarded as a function in which coal stress index and coal strength index are principal variables. The results are important for the forecast of rock burst in coal mine.

  19. Inspection of Fusion Joints in Plastic Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  20. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    Energy Technology Data Exchange (ETDEWEB)

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.