WorldWideScience

Sample records for east mesa geothermal field

  1. Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, R.W.; Domingo, N.

    1982-05-01

    Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote some relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.

  2. Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry

    Science.gov (United States)

    Massonnet, D.; Holzer, T.; Vadon, H.

    1997-01-01

    Interferometric combination of pairs of synthetic aperture radar (SAR) images acquired by the ERS-1 satellite maps the deformation field associated with the activity of the East Mesa geothermal plant, located in southern California. SAR interferometry is applied to this flat area without the need of a digital terrain model. Several combinations are used to ascertain the nature of the phenomenon. Short term interferograms reveal surface phase changes on agricultural fields similar to what had been observed previously with SEASAT radar data. Long term (2 years) interferograms allow the study of land subsidence and improve prior knowledge of the displacement field, and agree with existing, sparse levelling data. This example illustrates the power of the interferometric technique for deriving accurate industrial intelligence as well as its potential for legal action, in cases involving environmental damages. Copyright 1997 by the American Geophysical Union.

  3. Uranium disequilibrium investigation of the Las Cruces East Mesa Geothermal Field

    International Nuclear Information System (INIS)

    Gross, J.; Cochran, J.; Icerman, L.

    1985-03-01

    The concentration of dissolved uranium in 33 thermal and nonthermal groundwaters was found to vary from less than 1 part per billion to 285 parts per billion. The uranium-234 to uranium-238 alpha activity ratio of the 33 samples varied from 0.8 to 4.6. Young waters in the recharge area of the Jornada del Muerto Basin are characterized by low uranium concentrations and high activity ratios. Uranium concentrations of groundwaters increase down hydraulic gradient. Concentrations and activity ratios of dissolved uranium in Mesilla Valley groundwater exhibit wide variation and appear to be related to both short-term and long-term removal of groundwater from storage. Geothermal waters exhibit low uranium concentrations and activity ratios. The water produced from New Mexico State University geothermal wells appears to be a mixture of deep upwelling geothermal water and shallow Jornada del Muerto Basin water. The low activity ratio of water from an 800 meter geothermal well may be the result of thermally-induced isotopic equilibration. Isotopic equilibration suggests that higher temperatures may be found deeper within the reservoir

  4. ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

  5. Baseline studies in the desert ecosystem at East Mesa Geothermal Test Site, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Romney, E.M.; Wallace, A.; Lunt, O.R.; Ackerman, T.A.; Kinnear, J.E.

    1977-09-01

    Baseline data reported herein for soil, vegetation, and small mammal components of the East Mesa desert ecosystem represent a collection period from October 1975 to September 1977. Inasmuch as changes in salt balance from geothermal brine sources are of potential impact upon the ecosystem, considerable analytical effort was given to the determination of element constituents in soil, plant, and animal samples. A preliminary synthesis of data was done to investigate the heterogeneity of element constituents among the sampled population and to summarize results. Findings indicate that periodic sampling and chemical analysis of vegetation around an industrialized geothermal energy source is probably the best way to monitor the surrounding ecosystem for assuring containment of any resource pollutants.

  6. Imperial County geothermal development annual meeting: summary

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  7. Near-surface groundwater responses to injection of geothermal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.C.

    1984-06-01

    This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

  8. Magnetotelluric-Geochemistry Investigations of Blawan Geothermal Field, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Sukir Maryanto

    2017-06-01

    Full Text Available An integrated magnetotelluric (MT and geochemical study of the Blawan geothermal field has been performed. The character of the hot springs, the reservoir temperature, and geothermal reserve potential of Blawan geothermal field are assessed. MT measurements, with 250 m up to 1200 m spacings, were made at 19 sites, and 6 locations at the Blawan hot springs have been sampled for geochemical survey. The results of 2D modelling indicated that the geothermal system in the research area consisted of a cap rock zone (≤32 Ω•m, reservoir zone (>32 – ≤512 Ω•m, and heat source zone (>512 Ω•m, and also identified faults. The characteristics of the hot spring water were identified through analyzing the major and minor elements. A ternary diagram (Cl-SO4-HCO3 showed that the Blawan hot springs consist of bicarbonate water (at locations of AP-01, AP-02, AP-03 and chloride water (at locations of AP-04, AP-05, and AP-06, with a reservoir temperature of approximately 90 °C based on the Na–K–Ca geothermometer results. An estimate of the geothermal energy using the volumetric method, gave a total geothermal reserve potential of 1.823 MWe.

  9. Geothermal fields of China

    Science.gov (United States)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  10. Compartmentalization of the Coso East Flank geothermal field imaged by 3-D full-tensor MT inversion

    Science.gov (United States)

    Lindsey, Nathaniel J.; Kaven, Joern; Davatzes, Nicholas C.; Newman, Gregory A.

    2017-01-01

    Previous magnetotelluric (MT) studies of the high-temperature Coso geothermal system in California identified a subvertical feature of low resistivity (2–5 Ohm m) and appreciable lateral extent (>1 km) in the producing zone of the East Flank field. However, these models could not reproduce gross 3-D effects in the recorded data. We perform 3-D full-tensor inversion and retrieve a resistivity model that out-performs previous 2-D and 3-D off-diagonal models in terms of its fit to the complete 3-D MT data set as well as the degree of modelling bias. Inclusion of secondary Zxx and Zyy data components leads to a robust east-dip (60†) to the previously identified conductive East Flank reservoir feature, which correlates strongly with recently mapped surface faults, downhole well temperatures, 3-D seismic reflection data, and local microseismicity. We perform synthetic forward modelling to test the best-fit dip of this conductor using the response at a nearby MT station. We interpret the dipping conductor as a fractured and fluidized compartment, which is structurally controlled by an unmapped blind East Flank fault zone.

  11. Exploration of Ulumbu geothermal field, Flores-east nusa tenggara, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Sulasdi, Didi

    1996-01-26

    This paper describes the progress made in developing geothermal resources at Ulumbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E) Ulumbu mini geothermal power plant.

  12. Identification the geothermal system using 1-D audio-magnetotelluric inversion in Lamongan volcano field, East Java, Indonesia

    Science.gov (United States)

    Ilham, N.; Niasari, S. W.

    2018-04-01

    Tiris village, Probolinggo, East Java, is one of geothermal potential areas in Indonesia. This area is located in a valley flank of Mount Lamongan and Argopuro volcanic complex. This research aimed to identify a geothermal system at Tiris area, particularly the fluid pathways. The geothermal potential can be seen from the presence of warm springs with temperature ranging 35-45°C. The warm spring locations are aligned in the same orientation with major fault structure in the area. The fault structure shows dominant northwest-southeast orientation. We used audio-magnetotelluric data in the frequency range of 10 Hz until 92 kHz. The total magnetotelluric sites are 6. From the data analysis, most of the data orientation were 2-D with geo-electrical direction north-south. We used 1-D inversion using Newton algorithm. The 1-D inversion resulted in low resistive anomaly that corresponds to Lamongan lavas. Additionally, the depth of the resistor are different between the area to the west (i.e. 75 m) and to the east (i.e. 25 m). This indicates that there is a fault around the aligned maar (e.g. Ranu Air).

  13. Reservoir Simulation on the Cerro Prieto Geothermal Field: A Continuing Study

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, M.; Marquez, R.; Arellano, V.; Esquer, C.A.

    1983-12-15

    The Cerro Prieto geothermal field is a liquid-dominated geothermal reservoir of complex geological and hydrological structure. It is located at the southern end of the Salton-Mexicali trough which includes other geothermal anomalies as Heber and East Mesa. Although in 1973, the initial power plant installed capacity was 75 MW of electrical power, this amount increased to 180 MW in 1981 as field development continued. It is expected to have a generating capacity of 620 MW by the end of 1985, when two new plants will be completely in operation. Questions about field deliverability, reservoir life and ultimate recovery related to planned installations are being presently asked. Numerical modeling studies can give very valuable answers to these questions, even at the early stages in the development of a field. An effort to simulate the Cerro Prieto geothermal reservoir has been undergoing for almost two years. A joint project among Comision Federal de Electricidad (CFE), Instituto de Investigaciones Electricas (IIE) and Intercomp of Houstin, Texas, was created to perform reservoir engineering and simulation studies on this field. The final project objective is tosimulate the behavior of the old field region when production from additional wells located in the undeveloped field zones will be used for feeding the new power plants.

  14. Environmental impact in geothermal fields

    International Nuclear Information System (INIS)

    Birkle, P.; Torres R, V.; Gonzalez P, E.; Guevara G, M.

    1996-01-01

    Generally, water exploitation and deep steam of geothermal fields may be cause of a pollution potential on the surface, specially by the chemical composition of geothermal water which has a high concentration of minerals, salts and heavy metals. The utilization of stable isotopes as deuterium and oxygen 18 as radioactive tracers and water origin indicators allow to know the trajectories and sources of background waters as well as possible moistures between geothermal waters and meteoric waters. Some ions such as chlorides and fluorides present solubilities that allow their register as yet long distances of their source. (Author)

  15. PROSPECTS OF GEOTHERMAL RESOURCES DEVELOPMENT FOR EAST CISCAUCASIA

    Directory of Open Access Journals (Sweden)

    A. B. Alkhasov

    2013-01-01

    Full Text Available Abstract. Work subject. Aim. The Northern Caucasus is one of the prospective regions for development of geothermal energy.The hydrogeothermal resources of the only East Ciscaucasian Artesian basin are estimated up to 10000 MW of heat and 1000 MW of electric power. For their large-scale development it is necessary to built wells of big diameter and high flow rate involving huge capital investments. Reconstruction of idle wells for production of thermal water will allow to reduce capital investments for building of geothermal power installations. In the East Ciscaucasian Artesian basin there are a lot of promising areas with idle wells which can be converted for production of thermal water. The purpose of work is substantiation possibility of efficient development of geothermal resources of the Northern Caucasus region using idle oil and gas wells.Methods. The schematic diagram is submitted for binary geothermal power plant (GPP with use of idle gas-oil wells where the primary heat carrier in a loop of geothermal circulation system is used for heating and evaporation of the low-boiling working agent circulating in a secondary contour of steam-power unit. Calculations are carried out for selection of the optimum parameters of geothermal circulation system for obtaining the maximum useful power of GPP. The thermodynamic analysis of low-boiling working agents is made. Development of medial enthalpy thermal waters in the combined geothermal-steam-gas power installations is offered where exhaust gases of gas-turbine installation are used for evaporation and overheat of the working agent circulating in a contour of GPP. Heating of the working agent in GPP up to the temperature of evaporation is carried out by thermal water.Results. The possibility of efficient development of geothermal resources of the Northern Caucasus region by construction of binary geothermal power plants using idle oil and gas wells is substantiated. The capacities and the basic

  16. M.E.S.A, not Just a Seat at the Table: a Chicano Geology Student's Experience with Investigative Field Research

    Science.gov (United States)

    Ponce-Zepeda, M. M.

    2011-12-01

    The MESA (math, engineering, science achievement) program in California engages educationally disadvantaged students, primarily minority groups, providing the opportunity to excel in math and science and graduate with math-based degrees. MESA at East Los Angeles Community College selected me, a returning 24 year-old Chicano student, for the SCEC (Southern California Earthquake Center) summer internship at Utah State University (USU). The project coordinators assigned me to a group with three other undergraduate geology students from across the continent and from a variety of socioeconomic backgrounds to investigate geothermal systems in the Salton Trough and northern Utah. The peer-driven field work transformed student to investigator by forcing each participant to be responsible for the success of the entire group. In this environment, I rose to expectations along with my fellow interns managing a detailed field notebook, sampling, planning routes, level logger maintenance, and x-ray diffractometer analysis interpretation, among other things. Mentorship from and challenges proposed by the USU project advisor further built on this scaffolding of field experience. First hand fieldwork provides a battery of beneficial skills that many undergraduate geology students, especially at the two- year college level, rarely get an opportunity to participate in. The advantage of including non-traditional students from two- year colleges allows for a dynamic research network nationwide. Key sample collection by the East Los Angeles College (ELAC) Geology Club, a student- run club at an inner city community college, facilitated ongoing examination by collecting mud samples from gryphons and mudpots in the Salton Trough and testing temperature, pH levels, electrical conductivity, and total dissolved solids in the field. The samples were sent back to students at USU for further analysis. This collaborative effort is symbiotic as sharing the sampling responsibility allowed USU to

  17. Geochemical studies of the geothermal area East of the Jombo Hill intrusion Coast Province. Final report

    International Nuclear Information System (INIS)

    Tole, M.P.

    1985-09-01

    Geothermal resources in Kenya can be classified into two types; (i) High temperature geothermal resources, found within the Kenyan section of Rift Valley System, and (ii) Low temperature geothermal resources found outside the main Rift Valley System (figure 1). The high temperature geothermal resources have received first priority in research and development, and this has culminated in their exploitation at the Olkaria Geothermal Field which currently generates 45 MW of electricity, representing approximately 18% of Kenya's electricity requirements. Further research is directed at opening up electricity generating plants within the Rift Valley Geothermal Systems occuring between Lake Bogoria and Lake Magadi. The low temperature geothermal resources have received less attention in Kenya. In some countries, low temperature geothermal resources have been utilised for a number of domestic and commercial undertakings (table 1), among them (a) space heating (b) recreational baths (c) sugar refining. In china, low temperature (less than 90 o C) geothermal reservoirs have been used to provide energy for electrical generating plants (Reed and Bliss, 1983). An examination of the distribution of the low temperature geothermal sites in Kenya (figure 1) indicates that most of them could be easily utilised for one or more of the domestic and commercial activities mentioned above, by virtue of their location. In order that recommendations regarding the type of use that each of these hotsprings can be put to can be made, proper evaluation of each site must be made: in particular the underground hotwater temperatures as well as the extent of the geothermal field at each site must be evaluated. Geochemical studies provide the cheapest (most cost-effective) method of geothermal energy exploration. The purpose of this project was to determine the extent of the hot zone, as well as the underground reservoir temperatures in the geothermal field North East of the Jomo Hill intrusion

  18. Geothermal Field Investigations of Turkey

    Science.gov (United States)

    Sayın, N.; Özer, N.

    2017-12-01

    Geothermal energy is a type of energy that are found in the accessible depth of the crust, in the reservoirs by way of the permeable rocks, specially in heated fluid. Geothermal system is made of 3 main components; heat source, reservoir, and fluid bearing heat. Geothermal system mechanism is comprise of fluid transmission. Convection current (heat transmission) is caused by heating and causes the fluid in the system to expand. Heated fluid with low density show tendency to rise in system. Geothermal system occurs with variable geophysics and geochemical properties. Geophysical methods can determine structural properties of shallow and deep reservoirs with temperature, mineralization, gas amount, fluid movement, faulting, and sudden change in lithostratigraphic strata. This study revealed possible reservoir structures and showed examples of geophysics and gas measuring results in Turkey which is wealthy in regard to Geothermal sources.

  19. PROSPECTS OF GEOTHERMAL RESOURCES DEVELOPMENT FOR EAST CISCAUCASIA

    OpenAIRE

    A. B. Alkhasov; D. A. Alkhasova

    2013-01-01

    Abstract. Work subject. Aim. The Northern Caucasus is one of the prospective regions for development of geothermal energy.The hydrogeothermal resources of the only East Ciscaucasian Artesian basin are estimated up to 10000 MW of heat and 1000 MW of electric power. For their large-scale development it is necessary to built wells of big diameter and high flow rate involving huge capital investments. Reconstruction of idle wells for production of thermal water will allow to reduce capital invest...

  20. Klamath Falls geothermal field, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1989-09-01

    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  1. Geomagnetic Survey to Explore High-Temperature Geothermal System in Blawan-Ijen, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Daud Yunus

    2018-01-01

    Full Text Available Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.

  2. Geomagnetic Survey to Explore High-Temperature Geothermal System in Blawan-Ijen, East Java, Indonesia

    Science.gov (United States)

    Daud, Yunus; Rosid, Syamsu; Fahmi, Fikri; Yunus, Faris Maulana; Muflihendri, Reza

    2018-02-01

    Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP) method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.

  3. Cerro Prieto geothermal field: exploration during exploitation

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. The description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field are presented. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development.

  4. Isotope study in geothermal fields in Java Island

    International Nuclear Information System (INIS)

    Wandowo, Z.A.

    1995-01-01

    Study in two geothermal fields, Dieng and Kamojang, in Java island by utilizing isotope technique has been carried out. Isotopic data of wells, springs and other geothermal manifestations providing informations on the recharge area of precipitation contributed to geothermal resources, flow paths and origin of geothermal fluids. The data of oxygen shift has also provided information on the characteristic the fields. (author). 8 refs, 5 figs, 3 tabs

  5. Strain rate orientations near the Coso Geothermal Field

    Science.gov (United States)

    Ogasa, N. T.; Kaven, J. O.; Barbour, A. J.; von Huene, R.

    2016-12-01

    Many geothermal reservoirs derive their sustained capacity for heat exchange in large part due to continuous deformation of preexisting faults and fractures that permit permeability to be maintained. Similarly, enhanced geothermal systems rely on the creation of suitable permeability from fracture and faults networks to be viable. Stress measurements from boreholes or earthquake source mechanisms are commonly used to infer the tectonic conditions that drive deformation, but here we show that geodetic data can also be used. Specifically, we quantify variations in the horizontal strain rate tensor in the area surrounding the Coso Geothermal Field (CGF) by analyzing more than two decades of high accuracy differential GPS data from a network of 14 stations from the University of Nevada Reno Geodetic Laboratory. To handle offsets in the data, from equipment changes and coseismic deformation, we segment the data, perform a piecewise linear fit and take the average of each segment's strain rate to determine secular velocities at each station. With respect to North America, all stations tend to travel northwest at velocities ranging from 1 to 10 mm/yr. The nearest station to CGF shows anomalous motion compared to regional stations, which otherwise show a coherent increase in network velocity from the northeast to the southwest. We determine strain rates via linear approximation using GPS velocities in Cartesian reference frame due to the small area of our network. Principal strain rate components derived from this inversion show maximum extensional strain rates of 30 nanostrain/a occur at N87W with compressional strain rates of 37nanostrain/a at N3E. These results generally align with previous stress measurements from borehole breakouts, which indicate the least compressive horizontal principal stress is east-west oriented, and indicative of the basin and range tectonic setting. Our results suggest that the CGF represents an anomaly in the crustal deformation field, which

  6. Mesa with Apron

    Science.gov (United States)

    2006-01-01

    23 September 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a mesa and an impact grater just east of Phlegra Montes. The mesa is the eroded remnant of a once more extensive terrain. An apron of material surrounds the mesa. Location near: 38.5oN, 193.4oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

  7. Relation between 1m depth temperature and average geothermal gradient at 75cm depth in geothermal fields

    OpenAIRE

    江原, 幸雄

    2009-01-01

    Shallow ground temperatures such as 1m depth temperature have been measured to delineate thermal anomalies of geothermal fields and also to estimate heat discharge rates from geothermal fields. As a result, a close linear relation between 1m depth temperature and average geothermal gradient at 75cm depth has been recognized in many geothermal fields and was used to estimate conductive heat discharge rates. However, such a linear relation may show that the shallow thermal regime in geothermal ...

  8. GEOTHERM programme supports geothermal energy world-wide. Geothermal energy, a chance for East African countries; GEOTHERM: BGR foerdert weltweit Nutzung geothermischer Energie. Geothermie - eine Chance fuer ostafrikanische Laender

    Energy Technology Data Exchange (ETDEWEB)

    Kraml, M.; Kessels, K.; Kalberkamp, U.; Ochmann, N.; Stadtler, C. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany)

    2007-02-15

    The high geothermal potential of East Africa, especially of the Eastern Rift, is known for a long time. Since these pioneer studies, geothermal plants have been constructed at three sites in East Africa. Nevertheless, up to now geothermal has been a success story only in Kenya. The steam power plant Olkaria I in Kenya is running reliability since 25 years. Today, the country produces more than 12% of its electricity from geothermal. Now, Eritrea, Djibouti, Uganda, Tanzania and Ethiopia which are also situated along the East African Rift, are planning similar projects. The countries need to develop new energy sources because oil prices have reached a critical level. In the past, hydro power was regarded to be a reliable source of energy, but increased droughts changed the situation. Thus, the african states are searching for alternatives to be able to stabilise their energy supply and to cover the growing energy demand. There is much hope that the success of the Kenyan geothermal power plants will be repeated in the neighbouring countries. The East African countries have joined their forces to give impetus to the use of the regional geothermal resources. On behalf of the Federal Ministry for Economic Cooperation and Development, the Federal Institute for Geosciences and Natural Resources supports the countries in realising their plans as part of the GEOTHERM Programme. Together with further donors (Iceland, France, USA, Global Environment Facility) the path will be paved for geothermal power plants in the above mentioned six East African countries. The following main steps are necessary: - Awareness raising of political decision makers about the advantages of including geothermal into the national power plans - Improvement of knowledge about potentials geothermal sites - Development of a regional equipment pool including the necessary geophysical equipment, laboratories, etc. - Training in geothermal exploration and plant maintenance, to minimise risks of site

  9. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  10. Three-dimensional magnetotelluric characterization of the Coso geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Gregory A.; Gasperikova, Erika [Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, CA 94720 (United States); Hoversten, G. Michael [Chevron Energy Technology Company, Seismic Analysis and Property Estimation, San Ramon, CA 94583 (United States); Wannamaker, Philip E. [Energy and Geoscience Institute, University of Utah, Salt Lake City, UT 84108 (United States)

    2008-08-15

    A dense grid of 125 magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling has been acquired over the east flank of the Coso geothermal system, CA, USA. Due to production related electromagnetic (EM) noise the permanent observatory at Parkfield, CA was used as a remote reference to suppress this cultural EM noise interference. These data have been inverted to a fully three-dimensional (3D) resistivity model. This model shows the controlling geological structures possibly influencing well production at Coso and correlations with mapped surface features such as faults and the regional geoelectric strike. The 3D model also illustrates the refinement in positioning of resistivity contacts when compared to isolated 2D inversion transects. The resistivity model has also been correlated with micro-earthquake locations, reservoir fluid production intervals and most importantly with an acoustic and shear velocity model derived by Wu and Lees [Wu, H., Lees, J.M., 1999. Three-dimensional P and S wave velocity structures of the Coso Geothermal Area, California, from microseismic travel time data. J. Geophys. Res. 104 (B6), 13217-13233]. This later correlation shows that the near-vertical low-resistivity structure on the eastern flank of the producing field is also a zone of increased acoustic velocity and increased V{sub p}/V{sub s} ratio bounded by mapped fault traces. Over of the Devils' Kitchen is an area of large geothermal well density, where highly conductive near surface material is interpreted as a smectite clay cap alteration zone manifested from the subsurface geothermal fluids and related geochemistry. Enhanced resistivity beneath this cap and within the reservoir is diagnostic of propylitic alteration causing the formation of illite clays, which is typically observed in high-temperature reservoirs (>230 C). In the southwest flank of the field the V{sub p}/V{sub s} ratio is enhanced over the production intervals, but the

  11. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    Science.gov (United States)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  12. Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field; FINAL

    International Nuclear Information System (INIS)

    Steven Enedy

    2001-01-01

    A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant

  13. Symposium in the field of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

  14. Environmental impact in geothermal fields; Impacto ambiental en campos geotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, P; Torres R, V; Gonzalez P, E; Guevara G, M [Instituto de Investigaciones Electricas. Departamento de Geotermia. Cuernavaca (Mexico)

    1997-12-31

    Generally, water exploitation and deep steam of geothermal fields may be cause of a pollution potential on the surface, specially by the chemical composition of geothermal water which has a high concentration of minerals, salts and heavy metals. The utilization of stable isotopes as deuterium and oxygen 18 as radioactive tracers and water origin indicators allow to know the trajectories and sources of background waters as well as possible moistures between geothermal waters and meteoric waters. Some ions such as chlorides and fluorides present solubilities that allow their register as yet long distances of their source. (Author).

  15. Vegetation and geothermal development in the vicinity of the Takinogami geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, T

    1973-07-01

    After site studies for a new geothermal power plant at the Takinogami geothermal field, the Japan Natural Conservation Association recommended against locating the plant near the office and dormitory complexes at Matsukurasawa junction. An alternate site located about 1 km upstream on the Takinogami River was proposed. It was recommended that a buffer zone be established between the construction road and the local forest. This zone would be planted with Uwamizu cherry, Azuki pear, Tani deutia, Tamu brushwood, Clathracea, Rowan, Kobano ash and Yama (Japanese lacquer tree). A road embankment would be constructed of terraced masonry which would be landscaped with Tani deutia, Kuma raspberry, giant knotweed and mugwort. Previous development of geothermal wells in the area resulted in severe effects on the local flora. Consequently, further development was not recommended.

  16. Multi-usages of the Ilan geothermal field, NE Taiwan

    Science.gov (United States)

    Lee, C. S.; Tseng, P.; Wang, S.; Chang, C.

    2017-12-01

    The tectonics of Taiwan is very dynamic. The area produces more than 30,000 earthquakes/year; the mountains uplift 4-5 cm/year; the rainfall culminates 3,000 mm/year; there are some 4,000 hot spring operators. One of the two hot geothermal areas is located in NE Taiwan - the Ilan geothermal field. In order to develop the geothermal energy for the electricity need, the Ministry of Science and Technology have provided the fund to drill two 2,500 deep wells. The results are not so encourage for the need of an Enhanced Geothermal System. However, one of the wells has a bottom temperature of 160oC and the water up loading with 60 ton/hr. This can be combined with the near-by wells drilled by the private drilling company and the Cardinal Tien Junior College of Healthcare and Management to develop the multi-usages of the geothermal energy, such as 1 MW of electricity for the college and village, the long-term healthcare and hot spring medicare, aquaculture and agriculture need etc. The universities and private drilling company cooperate together to join the development. Hope this will provide a new model for the need of a self-sufficient community. The geothermal is a clean, renewable, and no pollution energy. Taiwan is in an initial stage of using this green energy.

  17. 3D Magnetotelluic characterization of the Coso GeothermalField

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

    2007-04-23

    Electrical resistivity may contribute to progress inunderstanding geothermal systems by imaging the geometry, bounds andcontrolling structures in existing production, and thereby perhapssuggesting new areas for field expansion. To these ends, a dense grid ofmagnetotelluric (MT) stations plus a single line of contiguous bipolearray profiling has been acquired over the east flank of the Cosogeothermal system. Acquiring good quality MT data in producing geothermalsystems is a challenge due to production related electromagnetic (EM)noise and, in the case of Coso, due to proximity of a regional DCintertie power transmission line. To achieve good results, a remotereference completely outside the influence of the dominant source of EMnoise must be established. Experimental results so far indicate thatemplacing a reference site in Amargosa Valley, NV, 65 miles from the DCintertie, isstill insufficient for noise cancellation much of the time.Even though the DC line EM fields are planar at this distance, theyremain coherent with the nonplanar fields in the Coso area hence remotereferencing produces incorrect responses. We have successfully unwrappedand applied MT times series from the permanent observatory at Parkfield,CA, and these appear adequate to suppress the interference of thecultural EM noise. The efficacy of this observatory is confirmed bycomparison to stations taken using an ultra-distant reference site eastof Socorro, NM. Operation of the latter reference was successful by usingfast ftp internet communication between Coso Junction and the New MexicoInstitute of Mining and Technology, using the University of Utah site asintermediary, and allowed referencing within a few hours of datadownloading at Coso. A grid of 102 MT stations was acquired over the Cosogeothermal area in 2003 and an additional 23 stations were acquired toaugment coverage in the southern flank of the first survey area in 2005.These data have been inverted to a fully three

  18. The Hydrogeochemistry of Qingshui Geothermal Field, Northeastern Taiwan.

    Science.gov (United States)

    Yu-Wen, Chen; Cheng-Kuo, Lin; Wayne, Lin; Yu-Te, Chang; Pei-Shan, Hsieh

    2015-04-01

    The Qingshui geothermal field is located at the upstream valley of Lanyang Creek, northeastern Taiwan. It is renowned as a geothermal field. The previous studies demonstrated a higher geothermal gradient, 100oC/km warmer than a normal geotherm. However, Qingshui geothermal field has not been well developed due to the higher mining costs. In the recent years, the Taiwan government has been focusing on developing alternative and renewable energy and initiated a 10 year project, Nation Energy Program. This study is part of this project In general, it is very difficult to collect deep downhole samples without considerable change of hydro- and gas- chemistry of water under high temperature and pressure. A new sampling tool, GTF Sampler, was designed by the research team, Green Energy and Environment Laboratories, Industrial Technology Research Institute. This tool can simultaneously collect high quality geothermal water and gas sample and moreover, the sampling depth can reach up to 800 meters. Accordingly, a more accurate measurements can be conducted in the laboratory. In this study, 10 geothermal samples were collected and measured. The results demonstrate that geothermal water samples are characterized with Na(K)-HCO3 water type and located at the mature water area in Giggenbach Na-K-Mg diagram. Several geothermometers, including silica and cation geothermometry, were used to estimate potential temperature in the geothermal reservoir systems. In general, the geothermoters of Na-K and Na-K-Ca obtain reservoir temperatures between 120-190oC and 130-210oC, respectively, but the silica geothermometer indicates a lower reservoir temperature between 90 and 170oC. There is no big difference among them. It is worth to note that all calculated temperatures are lower than those of in-situ downhole measurements; therefore, more detailed and advanced researches would be needed for the inconsistency. To examine the argument about igneous heat source in the previous studies, rare

  19. Measurement of Subsidence in the Yangbajain Geothermal Fields from TerraSAR-X

    Science.gov (United States)

    Li, Yongsheng; Zhang, Jingfa; Li, Zhenhong

    2016-08-01

    Yangbajain contains the largest geothermal energy power station in China. Geothermal explorations in Yangbajain first started in 1976, and two plants were subsequently built in 1981 and 1986. A large amount of geothermal fluids have been extracted since then, leading to considerable surface subsidence around the geothermal fields. In this paper, InSAR time series analysis is applied to map the subsidence of the Yangbajain geothermal fields during the period from December 2011 to November 2012 using 16 senses of TerraSAR-X stripmap SAR images. Due to its high resolution and short repeat cycle, TerraSAR-X provides detailed surface deformation information at the Yangbajain geothermal fields.

  20. Radon studies for extending Los Azufres geothermal energy field in Mexico

    International Nuclear Information System (INIS)

    Tavera, L.; Balcazar, M.; Camacho, M.E.; Chavez, A.; Perez, H.; Gomez, J.

    1999-01-01

    Los Azufres is a 98 MW producing geothermal energy field situated in the Mexican volcanic belt at the west part of the country. Recently, hydrothermal activity and geochemical analysis of geothermal fluids from the north part of the geothermal field gave indications of a possible geothermal-production area, similar to the already producing field. In order to investigate the activity of geological structures, which are considered the means of geothermal fluids transporters, radon mapping was carried out using sets of 240 LR-115 detectors in the area of interest. Radon values higher than 10 kBq m -3 were considered anomalous and indicative of geothermal anomalies

  1. Radon studies for extending Los Azufres geothermal energy field in Mexico

    CERN Document Server

    Tavera, L; Camacho, M E; Chavez, A; Pérez, H; Gómez, J

    1999-01-01

    Los Azufres is a 98 MW producing geothermal energy field situated in the Mexican volcanic belt at the west part of the country. Recently, hydrothermal activity and geochemical analysis of geothermal fluids from the north part of the geothermal field gave indications of a possible geothermal-production area, similar to the already producing field. In order to investigate the activity of geological structures, which are considered the means of geothermal fluids transporters, radon mapping was carried out using sets of 240 LR-115 detectors in the area of interest. Radon values higher than 10 kBq m sup - sup 3 were considered anomalous and indicative of geothermal anomalies.

  2. Deep geothermal processes acting on faults and solid tides in coastal Xinzhou geothermal field, Guangdong, China

    Science.gov (United States)

    Lu, Guoping; Wang, Xiao; Li, Fusi; Xu, Fangyiming; Wang, Yanxin; Qi, Shihua; Yuen, David

    2017-03-01

    This paper investigated the deep fault thermal flow processes in the Xinzhou geothermal field in the Yangjiang region of Guangdong Province. Deep faults channel geothermal energy to the shallow ground, which makes it difficult to study due to the hidden nature. We conducted numerical experiments in order to investigate the physical states of the geothermal water inside the fault zone. We view the deep fault as a fast flow path for the thermal water from the deep crust driven up by the buoyancy. Temperature measurements at the springs or wells constrain the upper boundary, and the temperature inferred from the Currie temperature interface bounds the bottom. The deepened boundary allows the thermal reservoir to revolve rather than to be at a fixed temperature. The results detail the concept of a thermal reservoir in terms of its formation and heat distribution. The concept also reconciles the discrepancy in reservoir temperatures predicted from both quartz and Na-K-Mg. The downward displacement of the crust increases the pressure at the deep ground and leads to an elevated temperature and a lighter water density. Ultimately, our results are a first step in implementing numerical studies of deep faults through geothermal water flows; future works need to extend to cases of supercritical states. This approach is applicable to general deep-fault thermal flows and dissipation paths for the seismic energy from the deep crust.

  3. Oxygen isotope studies of the Salton Sea geothermal field

    International Nuclear Information System (INIS)

    Olson, E.R.

    1978-01-01

    Interbedded shales and sandstones were drilled to a depth of 1588 metres in Sinclair Number Four Well, Salton Sea Geothermal Field. Bottom hole temperatures are approximately 290 0 C. The oxygen dels of hydrothermal and detrital calcite have a systematic relationship at any depth in the geothermal reservoir. Typical values are: vein calcite, +6 0 / 00 ; calcite in white sandstone, +10 0 / 00 ; calcite in dark gray shale, +11 0 / 00 ; calcite in light gray shale, +17 0 / 00 ; calcite in red-brown shale, +20 0 / 00 . This succession represents decreasing water-rock interaction that is also indicated by the clay mineralogy of the shales. Permeability has a marked effect on the equilibration of water and rocks at any given temperature. Original differences in permeability have resulted in partial preservation of original detrital sedimentary compositions. The fluids in the Salton Sea Geothermal Field are probabaly partially evaporated Colorado River water, and their oxygen del values vary as much as 4 0 / 00 throughout the field. Truesdell's (1974) data suggest that dissolved salts may make the water oxygen activity del as much as 6 0 / 00 greater than the concentration del in the geothermal reservoir. Such an uncertainty is a serious impediment to precise isotope geothermometry in this system.(auth.)

  4. Human Resources in Geothermal Development

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  5. Seismicity and source spectra analysis in Salton Sea Geothermal Field

    Science.gov (United States)

    Cheng, Y.; Chen, X.

    2016-12-01

    The surge of "man-made" earthquakes in recent years has led to considerable concerns about the associated hazards. Improved monitoring of small earthquakes would significantly help understand such phenomena and the underlying physical mechanisms. In the Salton Sea Geothermal field in southern California, open access of a local borehole network provides a unique opportunity to better understand the seismicity characteristics, the related earthquake hazards, and the relationship with the geothermal system, tectonic faulting and other physical conditions. We obtain high-resolution earthquake locations in the Salton Sea Geothermal Field, analyze characteristics of spatiotemporal isolated earthquake clusters, magnitude-frequency distributions and spatial variation of stress drops. The analysis reveals spatial coherent distributions of different types of clustering, b-value distributions, and stress drop distribution. The mixture type clusters (short-duration rapid bursts with high aftershock productivity) are predominately located within active geothermal field that correlate with high b-value, low stress drop microearthquake clouds, while regular aftershock sequences and swarms are distributed throughout the study area. The differences between earthquakes inside and outside of geothermal operation field suggest a possible way to distinguish directly induced seismicity due to energy operation versus typical seismic slip driven sequences. The spatial coherent b-value distribution enables in-situ estimation of probabilities for M≥3 earthquakes, and shows that the high large-magnitude-event (LME) probability zones with high stress drop are likely associated with tectonic faulting. The high stress drop in shallow (1-3 km) depth indicates the existence of active faults, while low stress drops near injection wells likely corresponds to the seismic response to fluid injection. I interpret the spatial variation of seismicity and source characteristics as the result of fluid

  6. Micro-seismicity and seismic moment release within the Coso Geothermal Field, California

    Science.gov (United States)

    Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.

    2014-01-01

    We relocate 16 years of seismicity in the Coso Geothermal Field (CGF) using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We expand on our previous results by doubling the number of relocated events from April 1996 through May 2012 using a new field-wide 3-D velocity model. Relocated micro-seismicity sharpens in many portions of the active geothermal reservoir, likely defining large-scale fault zones and fluid pressure compartment boundaries. However, a significant fraction of seismicity remains diffuse and does not cluster into sharply defined structures, suggesting that permeability is maintained within the reservoir through distributed brittle failure. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vs generally higher in the Main Field and East Flank and Vp remaining relatively uniform across the CGF, but with significant local variations. The Vp/Vs ratio appears to outline the two main producing compartments of the reservoir at depths below mean ground level of approximately 1 to 2.5 km, with a ridge of relatively high Vp/Vs separating the Main Field from the East Flank. Detailed analyses of spatial and temporal variations in earthquake relocations and cumulative seismic moment release in the East Flank reveal three regions with persistently high rates of seismic activity. Two of these regions exhibit sharp, stationary boundaries at the margins of the East Flank that likely represent barriers to fluid flow and advective heat transport. However, seismicity and moment release in a third region at the northern end of the East Flank spread over time to form an elongated NE to SW structure, roughly parallel both to an elongated cluster of seismicity at the southern end of the East Flank and to regional fault traces mapped at the surface. Our results indicate that high

  7. Tracking Hydrothermal Fluid Pathways from Surface Alteration Mineralogy: The Case of Licancura Geothermal Field, Northern Chile

    Science.gov (United States)

    Camus, E.; Elizalde, J. D.; Morata, D.; Wechsler, C.

    2017-12-01

    In geothermal systems alteration minerals are evidence of hot fluid flow, being present even in absence of other surface manifestations. Because these minerals result from the interaction between geothermal fluids and surrounding host rocks, they will provide information about features of thermal fluids as temperature, composition and pH, allowing tracking their changes and evolution. In this work, we study the Licancura Geothermal field located in the Andean Cordillera in Northern Chile. The combination of Principal Components Analysis on ASTER-L1T imagery and X Ray Diffraction (XRD) allow us to interpret fluid conditions and the areas where fluid flow took place. Results from red, green, blue color composite imagery show the presence of three types of secondary paragenesis. The first one corresponds to hematite and goethite, mainly at the east of the area, in the zone of eroded Pliocene volcanic edifices. The second one, mainly at the center of the area, highlighting propylitic alteration, includes minerals such as chlorite, illite, calcite, zeolites, and epidote. The third paragenesis, spatially related to the intersection between faults, represents advanced argillic alteration, includes minerals as alunite, kaolinite, and jarosite. XRD analysis support results from remote sensing techniques. These results suggest an acid pH hydrothermal fluid reaching temperatures at surface up to 80-100°C, which used faults as a conduit, originating advanced argillic minerals. The same fluid was, probably, responsible for propylitic paragenesis. However, iron oxides paragenesis identified in the area of eroded volcanoes probably corresponds to other processes associated with weathering rather than geothermal activity. In this work, we propose the applicability of remote sensing techniques as a first level exploration tool useful for high-altitude geothermal fields. Detailed clay mineral studies (XRD and SEM) would allow us to a better characterization of the geothermal fluid

  8. Absence of remote earthquake triggering within the Coso and Salton Sea geothermal production fields

    Science.gov (United States)

    Zhang, Qiong; Lin, Guoqing; Zhan, Zhongwen; Chen, Xiaowei; Qin, Yan; Wdowinski, Shimon

    2017-01-01

    Geothermal areas are long recognized to be susceptible to remote earthquake triggering, probably due to the high seismicity rates and presence of geothermal fluids. However, anthropogenic injection and extraction activity may alter the stress state and fluid flow within the geothermal fields. Here we examine the remote triggering phenomena in the Coso geothermal field and its surrounding areas to assess possible anthropogenic effects. We find that triggered earthquakes are absent within the geothermal field but occur in the surrounding areas. Similar observation is also found in the Salton Sea geothermal field. We hypothesize that continuous geothermal operation has eliminated any significant differential pore pressure between fractures inside the geothermal field through flushing geothermal precipitations and sediments out of clogged fractures. To test this hypothesis, we analyze the pore-pressure-driven earthquake swarms, and they are found to occur outside or on the periphery of the geothermal production field. Therefore, our results suggest that the geothermal operation has changed the subsurface fracture network, and differential pore pressure is the primary controlling factor of remote triggering in geothermal fields.

  9. Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda

    Science.gov (United States)

    Uwiduhaye, Jean d.'Amour; Mizunaga, Hideki; Saibi, Hakim

    2018-03-01

    A land gravity survey was carried out in the Kinigi geothermal field, Northwest Rwanda using 184 gravity stations during August and September, 2015. The aim of the gravity survey was to understand the subsurface structure and its relation to the observed surface manifestations in the study area. The complete Bouguer Gravity anomaly was produced with a reduction density of 2.4 g/cm3. Bouguer anomalies ranging from -52 to -35 mGals were observed in the study area with relatively high anomalies in the east and northwest zones while low anomalies are observed in the southwest side of the studied area. A decrease of 17 mGals is observed in the southwestern part of the study area and caused by the low-density of the Tertiary rocks. Horizontal gradient, tilt angle and analytical signal methods were applied to the observed gravity data and showed that Mubona, Mpenge and Cyabararika surface springs are structurally controlled while Rubindi spring is not. The integrated results of gravity gradient interpretation methods delineated a dominant geological structure trending in the NW-SE, which is in agreement with the regional geological trend. The results of this gravity study will help aid future geothermal exploration and development in the Kinigi geothermal field.

  10. Development case histories: Tongonan and Palinpinon geothermal fields, Philippines

    International Nuclear Information System (INIS)

    Ogena, M.S.

    1992-01-01

    The background on the general scenario of energy resource development in the country is described. Highlights of the exploration history of the Tongonan and Palinpinon geothermal fields in the Philippines are then presented. This is discussed in conjunction with the strategies and policies taken in the development of each field. Finally, the common policies and contrasting development strategies are compared and evaluated. The conclusion derived is that the development strategy decisions at Tongonan are influenced by the regional power demand, topography, and the large extent of the resource. In contrast, the development at Palinpinon is less constrained by the external influence of regional power needs, but, instead, is significantly dominated by the limitations imposed by the rugged terrain and the physical characteristics of the resource area. Such comparison demonstrates the site-specific nature of geothermal development. (auth.). 8 figs.; 2 refs

  11. INTERGEO - Central/East European Collaboration Network on direct application of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Popovski, K [Central/East European Collaboration Network on Direct Application of Geothermal Energy, Bitola (Yugoslavia); Arpasi, M [International Geothermal Association - European Branch, Budapest (Hungary)

    1997-12-01

    A proposal for organisation of a Network to be known as INTERGEO is presented, which should extend and reinforce the cooperation for the development of the direct application of geothermal energy between the developed EC countries and the ones of the so called Central/East European region. Unter the term `developed countries` for this particular energy source utilisation mainly Italy, France and Germany should be understood. The Central/East European region consists the following countries: Albania, Bosnia and Herzegovina, Bulgaria, Belarus, Croatia, Czech Republic, Estonia, Hungary, Latvia, Lituania, Macedonia, Moldova, Poland, Roumania, Slovenia, Slovakia, Turkey, Ukraine and Yugoslavia. The idea itself, the need and possibilities for organisation, possible plan of action and expected benefits for the EC and Central/East European countries are elaborated in order to come to the conclusions for the proposal justifiableness and feasibility for realisation. (orig.)

  12. The Geysers Geothermal Field Update1990/2010

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, P.; Lippmann, M.; Dobson, P.F.; Poux, B.

    2010-10-01

    In this report, we have presented data in four sections: (1) THE GEYSERS HISTORICAL UPDATE 1990-2010 - A historical update of the primary developments at The Geysers between 1990 and 2010 which uses as its start point Section IIA of the Monograph - 'Historical Setting and History of Development' that included articles by James Koenig and Susan Hodgson. (2) THE GEYSERS COMPREHENSIVE REFERENCE LIST 1990-2010 - In this section we present a rather complete list of technical articles and technical related to The Geysers that were issued during the period 1990-2010. The list was compiled from many sources including, but not limited to scientific journals and conference proceedings. While the list was prepared with care and considerable assistance from many geothermal colleagues, it is very possible that some papers could have been missed and we apologize to their authors in advance. The list was subdivided according to the following topics: (1) Field characterization; (2) Drilling; (3) Field development and management; (4) Induced seismicity; (5) Enhanced Geothermal Systems; (6) Power production and related issues; (7) Environment-related issues; and (8) Other topics. (3) GRC 2010 ANNUAL MEETING GEYSERS PAPERS - Included in this section are the papers presented at the GRC 2010 Annual Meeting that relate to The Geysers. (4) ADDITIONAL GEYSERS PAPERS 1990-2010 - Eighteen additional technical papers were included in this publication in order to give a broad background to the development at The Geysers after 1990. The articles issued during the 1990-2010 period were selected by colleagues considered knowledgeable in their areas of expertise. We forwarded the list of references given in Section 2 to them asking to send us with their selections with a preference, because of limited time, to focus on those papers that would not require lengthy copyright approval. We then chose the articles presented in this section with the purpose of providing the broadest possible

  13. Interstratified Illite/Montmorillonite in Kamojang Geothermal Field, Indonesia

    Directory of Open Access Journals (Sweden)

    D. F. Yudiantoro

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i4.167Kamojang geothermal field located in West Java Province, falls under the Pangkalan Subregency, Bandung Regency. The researched area is a geothermal field located in the Quaternary volcanic caldera system of about 0.452 to 1.2 Ma. The volcanic activity generated hydrothermal fluids, interacting with rocks producing mineral alteration. The minerals formed in the areas of research are interstratified illite/montmorillonite (I/M. Analyses to identify interstratified I/M have been performed by X-ray diffraction using ethylene glycol, while the determination of the type and percentage of interstratified I/M was based on the calculation method of Watanabe. The methodology was applied on core and cutting samples from Wells KMJ-8, 9, 11, 13, 16, 23, 49, 51, and 54. The result of analysis of the samples shows that the type of clay is interstratified illite/montmorillonite and the minerals are formed at temperatures ranging from 180 to 220° C. The type of interstratified I/M in the studied area is S = 0 and S = 1. The percentage of illite type S = 0 is between 20 - 35% illite, whereas type S = 1 has about 45 - 72% illite. Along with the increasing depth, the percentage of illite is getting greater. This is consistent with the vertical distribution of temperature which increases according to the depth. This correlation results in an interpretation that the upflow zone of the geothermal reservoir is located in the centre of the Kamojang geothermal field.

  14. Site-specific analysis of hybrid geothermal/fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    A preliminary economic analysis of a hybrid geothermal/coal power plant was completed for four geothermal resource areas: Roosevelt Hot Springs, Coso Hot Springs, East Mesa, and Long Valley. A hybrid plant would be economically viable at Roosevelt Hot Springs and somewhat less so at Coso Hot Springs. East Mesa and Long Valley show no economic promise. A well-designed hybrid plant could use geothermal energy for boiler feedwater heating, auxiliary power, auxiliary heating, and cooling water. Construction and operation of a hybrid plant at either Roosevelt Hot Springs or Coso Hot Springs is recommended. A modified version of the Lawrence Berkeley Livermore GEOTHM Program is the major analytical tool used in the analysis. The Intermountain Power Project is the reference all coal-fired plant.

  15. Sustainability analysis of the Ahuachapan geothermal field: management and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Monterrosa, Manuel; Montalvo Lopez, Francisco E. [LaGeo S.A. de C.V., Reservoir Engineering, 15 Av. Sur, Colonia Utila, Santa Tecla, La Libertad (El Salvador)

    2010-12-15

    The Ahuachapan geothermal field (AGF) is located in north western El Salvador. To date, 53 wells (20 producers and 8 injectors) have been drilled in the Ahuachapan geothermal field and the adjacent Chipilapa area. Over the past 33 years, 550 Mtonnes have been extracted from the reservoir, and the reservoir pressure has declined by more than 15 bars. By 1985, the large pressure drawdown due to over-exploitation of the resource reduced the power generation capacity to only 45 MW{sub e}. Several activities were carried out in the period 1997-2005 as part of ''stabilization'' and ''optimization'' projects to increase the electric energy generation to 85 MW{sub e}, with a total mass extraction of 850 kg/s. LaGeo is assessing the sustainability of geothermal reservoir utilization. Preliminary results indicate the planned power production and mass extraction (95 MW, 900 kg/s) cannot be sustained for more than 50 years using current power plant technology. To sustain the exploitation for at least 100 years, the following changes should be implemented: (1) improve the gathering system using large-diameter steam pipelines, (2) expand the exploitation area to the southeast and southwest, and (3) reduce the inlet pressure of the turbines to less than 4 bars. (author)

  16. Groundwater Chemistry and Overpressure Evidences in Cerro Prieto Geothermal Field

    Directory of Open Access Journals (Sweden)

    Ivan Morales-Arredondo

    2017-01-01

    Full Text Available In order to understand the geological and hydrogeological processes influencing the hydrogeochemical behavior of the Cerro Prieto Geothermal Field (CP aquifer, Mexico, a characterization of the water samples collected from geothermal wells was carried out. Different hydrochemical diagrams were used to evaluate brine evolution of the aquifer. To determine pressure conditions at depth, a calculation was performed using hydrostatic and lithostatic properties from CP, considering geological characteristics of the study area, and theoretical information about some basin environments. Groundwater shows hydrogeochemical and geological evidences of the diagenetic evolution that indicate overpressure conditions. Some physical, chemical, textural, and mineralogical properties reported in the lithological column from CP are explained understanding the evolutionary process of the sedimentary material that composes the aquifer.

  17. Status and potential of geothermal power in East Africa; Status quo und Entwicklungspotential der Geothermie in Ostafrika

    Energy Technology Data Exchange (ETDEWEB)

    Kraml, M.; Kessels, K.; Kalberkamp, U.; Kehrer, P.; Ochmann, N.; Reitmayr, G.; Stadtler, C. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Delvaux, D. [Royal Museum for Central Africa, Tervuren (Belgium)

    2006-10-15

    Each country of the East African rift has potential sites for geothermal power generation. The biggest resources are expected in Kenya and Ethiopia, where conventional steam power plants can be constructed. In 2003, the six states of the region, i.e. Djibouti, Eritrea, Ethiopia, Kenya, Tanzania and Uganda come together and decided, together with the UNEP (United Nations Environment Programme), to work on the systematic development of geothermal power in the region. Together with several investors, the ''African Rift Geothermal Development Facility'' (ARGeo) was founded with total funds of nearly 24 million US dollars. (orig.)

  18. Hydrothermal surface alteration in the Copahue Geothermal Field (Argentina)

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Graciela R.; Mas, Luis C.; Bengochea, Leandro

    1996-01-24

    In the area of the Copahue Geothermal Field, there are five active geothermal manifestations, which mainly consist of fumaroles, hot springs and mud pots. Four of these manifestations are located in Argentina: Las Máquinas, Termas de Copahue, Las Maquinitas and El Anfiteatro, and the fifth on the Chilean side: Chancho Co. All of them present a strong acid sulfate country rock alteration, characterized by the assemblage alunite + kaolinite + quartz + cristobalite + pyrite + sulfur + jarosite, as the result of the base leaching by fluids concentrated in H2SO4 by atmospheric oxidation at the water table in a steam heated environment of H2S released by deeper boiling fluids. Another alteration zone in this area, called COP-2, is a fossil geothermal manifestation which shows characteristics of neutral to alkaline alteration represented mainly by the siliceous sinter superimposed over the acid alteration. The mineralogy and zoning of these alteration zones, and their relation with the hidrothermal solutions and the major structures of the area are analized.

  19. Strategies and Perceptions of Students' Field Note-Taking Skills: Insights from a Geothermal Field Lesson

    Science.gov (United States)

    Dohaney, Jacqueline; Brogt, Erik; Kennedy, Ben

    2015-01-01

    Field note-taking skills are fundamental in the geosciences but are rarely explicitly taught. In a mixed-method study of an introductory geothermal field lesson, we characterize the content and perceptions of students' note-taking skills to derive the strategies that students use in the field. We collected several data sets: observations of the…

  20. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.

    Science.gov (United States)

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang

    2018-02-01

    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by

  1. Hydrogeochemistry and reservoir model of Fuzhou geothermal field, China

    Science.gov (United States)

    Huang, H. F.; Goff, Fraser

    1986-03-01

    Fuzhou geothermal field is a low- to intermediate-temperature geothermal system consisting of meteoric water that circulates deeply along faults. The area of the field is about 9 km 2 but it is elongated in a NNW-trending direction. Fluids in the field are controlled by a series of four NNW extensional faults in Cretaceous granitic basement (Fuzhou fault zone). These faults feed warm waters into overlying permeable Quaternary sediments. The hydrothermal system consists of north and south parts whose chemical compositions are subtly different. In the northern part the system discharges sulfate/chloride waters with relatively low chloride concentrations, but in the south the system discharges chloride waters having relatively high chloride concentrations. Maximum wellhead temperatures are 97°C, which agrees with the chalcedony geothermometer in many cases. Based on the solubility of quartz, the deep-reservoir temperature cannot exceed 123 to 131°C. From heat and mass balance calculations, we conclude that the present total extracted capacity of fluid from the reservoir (20,000 tons/day) could be doubled without noticeable drawdown. We estimate the recoverable heat in the reservoir to be about 1.71 × 10 11 MJ.

  2. Geothermal Energy

    International Nuclear Information System (INIS)

    Haluska, Oscar P.; Tangir, Daniel; Perri, Matias S.

    2002-01-01

    A general overview of geothermal energy is given that includes a short description of the active and stable areas in the world. The possibilities of geothermal development in Argentina are analyzed taking into account the geothermal fields of the country. The environmental benefits of geothermal energy are outlined

  3. Geological investigation of hydrothermal alteration haloes in Toyoha geothermal field, Hakkaido

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, T; Furukawa, Y; Sugawara, K; Nishimura, S; Okabe, K

    1978-01-01

    In Toyoha geothermal field, the altered haloes are located along a tectonic line extending on a NW-SE direction along the Yunosawa River, east of the Toyoha Mine, a well known Neogene epithermal ore deposit. The investigation was carried out to clarify the stage of alteration, based on the altered haloes geologic structure, composition, and size. The Quaternary distribution at the eastern foot of Mt. Yotei was also studied. The field is covered by various kinds of Miocene sediments but the altered haloes are found only in an area covered by the Takinosawa formation and its older formations. Among the Yunosawa, Koyanagizawa and Takinosawa alteration haloes, the Yunosawa is the most important. It is composed of blocky silicified rock extending along a river and surrounding argillaceous rock. The silicified rock is composed primarily of quartz and subordinate alunite and opal, while the argillaceous rock consists chiefly of kaloin and is characterized by the occasional presence of sericite and montmorillinite. Fission-track and /sup 14/C methods were employed to determine the stage of alteration, but the results were unsatisfactory. The sublimation sulfur ore deposits in the Yunosawa and Koyanagizawa areas were comparatively small, but their original depositional features remain intact, indicating that geothermal activity continued until recently. Yunosawa is the most promising area as it is closely related to the tectonic line and also it has extraordinarily high ground temperature determined by a recent heat flow survey. Twenty-three references are provided.

  4. Variations of 3/He/4He isotope ratios within the Broadlands geothermal field, New Zealand

    International Nuclear Information System (INIS)

    Hulston, John; Lupton, John; University of California, Santa Barbara; Rosenberg, Nina

    1986-01-01

    The Broadlands-Ohaaki geothermal field is located 20 km NE of Wairakei on the Central Volcanic Zone of New Zealand. It falls within a resistivity low extending 4 km by 3 km. A study of 3 He/ 4 He ratios within this field has shown R/R A ratios close to 6.0 in the Ohaaki production area (NW). In contrast the production area to the SE on the east bank of the Waikato River has R/R A values close to 3.5. Differences in chemical ratios reported previously are found to correlate with the 3 He/ 4 He measurements. A tentative interpretation of the results indicate that there is a contribution of 3 He from the mantle and that the variations in the 3 He/ 4 He ratios are probably related to differences in the geochemistry of the rocks through which the geothermal fluids flow to the surface. Preliminary measurements of the argon isotopes also show a contribution from radiogenic rocks at depth

  5. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    Science.gov (United States)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  6. Soil degassing at the Los Humeros geothermal field (Mexico)

    Science.gov (United States)

    Peiffer, Loïc; Carrasco-Núñez, Gerardo; Mazot, Agnès; Villanueva-Estrada, Ruth Esther; Inguaggiato, Claudio; Bernard Romero, Rubén; Rocha Miller, Roberto; Hernández Rojas, Javier

    2018-05-01

    The Los Humeros geothermal field is the third most important producer of geothermal electricity (70 MW) in Mexico. Geothermal fluids are hosted in fractured andesitic lavas and mostly consist of high enthalpy steam with limited water content (vapor fraction > 0.9). Despite the high reservoir temperature ( 300-400 °C), thermal manifestations at the surface are scarce and locally appear as steaming grounds, weak steam vents and advanced argillic alteration. Geothermal fluid upflow from the reservoir towards the surface is limited by welded ignimbrite deposits that act as a low-permeability barrier. In this study, we present the first measurements of CO2, CH4 and H2S degassing rates from the soil performed at Los Humeros. Flux measurements were complemented with δ13C composition of degassing CO2 and soil temperatures to discuss gas origin and thermal anomalies. We measured high soil degassing rates (up to 7530 g m-2 d-1 CO2, 33 g m-2 d-1 CH4 and 22 g m-2 d-1 H2S) in three localized areas (Humeros North - HN, Humeros South - HS and Xalapazco - XA) as well as high soil temperatures reaching the boiling temperature at the local altitude (90.6 °C). The particular location of these three areas suggests that the steam-dominated reservoir degases to the surface through permeable faults crossing the ignimbritic deposits. The remaining surveyed areas are characterized by weak CO2 fluxes (≤44 g m-2 d-1), non-detectable CH4 and H2S fluxes, and lower soil temperatures (5-21 °C). The compositions in δ13CCO2 from HN-HS-XA areas (δ13CCO2 = -7.94 to -2.73‰) reflect a magmatic source with some possible contribution from the sedimentary basement, as well as fractionation induced by boiling and CO2 dissolution in shallow water bodies. We also discuss the processes causing the spread in CO2/CH4 flux ratios. Finally, we estimate the heat output from the three high degassing areas to a value of 16.4 MWt.

  7. The impact of injection on seismicity at The Geysers, California Geothermal Field

    OpenAIRE

    Majer, Ernest L.; Peterson, John E.

    2007-01-01

    Water injection into geothermal systems has often become a required strategy to extend and sustain production of geothermal resources. To reduce a trend of declining pressures and increasing non-condensable gas concentrations in steam produced from The Geysers, operators have been injecting steam condensate, local rain and stream waters, and most recently treated wastewater piped to the field from neighboring communities. If geothermal energy is to provide a significant increase in energy in ...

  8. The Impact of Injection on Seismicity at The Geyses, California Geothermal Field

    OpenAIRE

    Majer, Ernest L.; Peterson, John E.

    2008-01-01

    Water injection into geothermal systems has often become a required strategy to extended and sustain production of geothermal resources. To reduce a trend of declining pressures and increasing non-condensable gas concentrations in steam produced from The Geysers, operators have been injecting steam condensate, local rain and stream waters, and most recently treated wastewater piped to the field from neighboring communities. If geothermal energy is to provide a significant increase in ene...

  9. The Use of Unmanned Aerial Vehicle for Geothermal Exploitation Monitoring: Khankala Field Example

    OpenAIRE

    Sergey V. Cherkasov; Anvar M. Farkhutdinov; Dmitriy P. Rykovanov; Arbi A. Shaipov

    2018-01-01

    The article is devoted to the use of unmanned aerial vehicle for geothermal waters exploitation monitoring. Development of a geothermal reservoir usually requires a system of wells, pipelines and pumping equipment and control of such a system is quite complicated. In this regard, use of unmanned aerial vehicle is relevant. Two test unmanned aerial vehicle based infrared surveys have been conducted at the Khankala field (Chechen Republic) with the Khankala geothermal plant operating at differe...

  10. Hydrothermal alteration in the Aluto-Langano geothermal field, Ethopia

    Energy Technology Data Exchange (ETDEWEB)

    Teklemariam, M. [Ethiopian Institute of Geological Surveys, Addis Adaba (Ethiopia). Geothermal Exploration Project; Battaglia, S.; Gianelli, G.; Ruggieri, G. [Consiglio Nazionale delle Ricerche, Pisa (Italy). Ist. Internazionale per le Ricerche Geotermiche

    1996-12-01

    The hydrothermal mineral assemblages found in eight wells (with a depth range of 1320-2500 m) of the active geothermal field of Aluto-Langano (Ethiopia) indicate a complex evolution of water-rock interaction processes. The zone of upflow is characterized by high temperatures (up to 335{sup o}C) and the presence of a propylitic alteration (epidote, calcite, quartz and chlorite, as major phases) coexisting with calcite and clay minerals. The zone of lateral outflow is characterized by mixing of deep and shallow waters and the occurrence of a calcite-clay alteration that overprints a previous propylitic assemblage. Clay minerals have a mushroom-shaped zonal distribution consistent with the present thermal structure of the field. Microprobe analyses have been carried out on chlorite and illite in order to apply several geothermometers. (author)

  11. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    West, H.B.; Delanoy, G.A.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States). Hawaii Inst. of Geophysics); Gerlach, D.C. (Lawrence Livermore National Lab., CA (United States)); Chen, B.; Takahashi, P.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States) Evans (Charles) and Associates, Redwood City, CA (United States))

    1992-01-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  12. Near-surface groundwater responses to injection of geothermal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.C.

    1984-06-01

    Experiences with injecting geothermal fluids have identified technical problems associated with geothermal waste disposal. This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented, including: Raft River, Salton Sea, East Mesa, Otake and Hatchobaru in Japan, and Ahuachapan in El Salvador. Hydrogeologic and design/operational factors affecting the success of an injection program are identified. Hydrogeologic factors include subsidence, near-surface effects of injected fluids, and seismicity. Design/operational factors include hydrodynamic breakthrough, condition of the injection system and reservoir maintenance. Existing and potential effects of production/injection on these factors are assessed.

  13. Exploration and development of the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

    1983-07-01

    A multidisciplinary effort to locate, delineate, and characterize the geothermal system at Cerro Prieto, Baja California, Mexico, began about 25 years ago. It led to the identification of an important high-temperature, liquid-dominated geothermal system which went into production in 1973. Initially, the effort was undertaken principally by the Mexican electric power agency, the Comision Federal de Electricidad (CFE). Starting in 1977 a group of US organizations sponsored by the US Department of Energy, joined CFE in this endeavor. An evaluation of the different studies carried out at Cerro Prieto has shown that: (1) surface electrical resistivity and seismic reflection surveys are useful in defining targets for exploratory drilling; (2) the mineralogical studies of cores and cuttings and the analysis of well logs are important in designing the completion of wells, identifying geological controls on fluid movement, determining thermal effects and inferring the thermal history of the field; (3) geochemical surveys help to define zones of recharge and paths of fluid migration; and (4) reservoir engineering studies are necessary in establishing the characteristics of the reservoir and in predicting its response to fluid production.

  14. Sources of subsidence at the Salton Sea Geothermal Field

    Science.gov (United States)

    Barbour, Andrew J.; Evans, Eileen; Hickman, Stephen H.; Eneva, Mariana

    2016-01-01

    At the Salton Sea Geothermal Field (SSGF) in Southern California, surface deformation associated with geologic processes including sediment compaction, tectonic strain, and fault slip may be augmented by energy production activities. Separating the relative contributions from natural and anthropogenic sources is especially important at the SSGF, which sits at the apex of a complex tectonic transition zone connecting the southern San Andreas Fault with the Imperial Fault; but this has been a challenging task so far. Here we analyze vertical surface velocities obtained from the persistent scatterer InSAR method and find that two of the largest subsidence anomalies can be represented by a set of volumetric strain nuclei at depths comparable to geothermal well completion zones. In contrast, the rates needed to achieve an adequate fit to the magnitudes of subsidence are almost an order of magnitude greater than rates reported for annual changes in aggregate net-production volume, suggesting that the physical mechanism responsible for subsidence at the SSGF is a complicated interplay between natural and anthropogenic sources.

  15. Mechanisms of formation damage in matrix-permeability geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Bergosh, J.L.; Wiggins, R.B.; Enniss, D.O.

    1982-04-01

    Tests were conducted to determine mechanisms of formation damage that can occur in matrix permeability geothermal wells. Two types of cores were used in the testing, actual cores from the East Mesa Well 78-30RD and cores from a fairly uniform generic sandstone formation. Three different types of tests were run. The East Mesa cores were used in the testing of the sensitivity of core to filtrate chemistry. The tests began with the cores exposed to simulated East Mesa brine and then different filtrates were introduced and the effects of the fluid contrast on core permeability were measured. The East Mesa cores were also used in the second series of tests which tested formation sandstone cores were used in the third test series which investigated the effects of different sizes of entrained particles in the fluid. Tests were run with both single-particle sizes and distributions of particle mixes. In addition to the testing, core preparation techniques for simulating fracture permeability were evaluated. Three different fracture formation mechanisms were identified and compared. Measurement techniques for measuring fracture size and permeability were also developed.

  16. Geothermal Flux, Basal Melt Rates, and Subglacial Lakes in Central East Antarctica

    Science.gov (United States)

    Carter, S. P.; Blankenship, D. D.; Morse, D. L.

    2002-12-01

    The lakes beneath the East Antarctic ice sheet represent a unique environment on Earth, entirely untouched by human interference. Life forms which survive in this cold, lightless, high pressure environment may resemble the life forms which survived through "snowball earth" and evolved into the life forms we know today (Kirchvink, 2000). Recent airborne radar surveys over Dome C and the South Pole regions allow us to assess where these lakes are most likely to exist and infer melting and freezing rates at base of the ice sheet. Lakes appear as strong, flat basal reflectors in airborne radar sounding data. In order to determine the absolute strength of the reflector it is important to accurately estimate signal loss due to absorption by the ice. As this quantity is temperature sensitive, especially in regions where liquid water is likely to exist, we have developed a one dimensional heat transfer model, incorporating surface temperature, accumulation, ice sheet thickness, and geothermal flux. Of the four quantities used for our temperature model, geothermal flux has usually proven to be the most difficult to asses, due to logistical difficulties. A technique developed by Fahnestock et al 2001 is showing promise for inferring geothermal flux, with airborne radar data. This technique assumes that internal reflectors, which result from varying electrical properties within the ice column, can be approximated as constant time horizons. Using ice core data from our study area, we can place dates upon these internal layers and develop an age versus depth relationship for the surveyed region, with margin of error of +- 50 m for each selected layer. Knowing this relationship allows us to infer the vertical strain response of the ice to the stress of vertical loading by snow accumulation. When ice is frozen to the bed the deeper ice will accommodate the increased stress of by deforming and thinning (Patterson 1994). This thinning of deeper layers occurs throughout most of our

  17. A reservoir engineering assessment of the San Jacinto-Tizate Geothermal Field, Nicaragua

    Energy Technology Data Exchange (ETDEWEB)

    Ostapenko, S.; Spektor, S.; Davila, H.; Porras, E.; Perez, M.

    1996-01-24

    More than twenty yews have passed since geothermal research and drilling took place at the geothermal fields in Nicaragua- Tbe well horn Momotombo Geothermal Field (70 We) has been generating electricity since 1983, and now a new geothermal field is under exploration. the San Jacinto-Tizate. Two reservoirs hydraulic connected were found. The shallow reservoir (270°C) at the depth of 550 - 1200 meters, and the deep one at > 1600 meters. Both of theme are water dominated reservoirs, although a two phase condition exist in the upper part of the shallow one. Different transient tests and a multi-well interference test have been carried out, very high transmissivity value were estimated around the well SJ-4 and average values for the others. A preliminar conceptual model of the geothermal system is given in this paper, as the result of the geology, geophysics, hydrology studies, drilling and reservoir evaluation.

  18. Briefing Book, Interagency Geothermal Coordinating Council (IGCC) Meeting of April 28, 1988

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-04-28

    The IGCC of the U.S. government was created under the intent of Public Law 93-410 (1974) to serve as a forum for the discussion of Federal plans, activities, and policies that are related to or impact on geothermal energy. Eight Federal Departments were represented on the IGCC at the time of this meeting. The main presentations in this report were on: Department of Energy Geothermal R&D Program, the Ormat binary power plant at East Mesa, CA, Potential for direct use of geothermal at Defense bases in U.S. and overseas, Department of Defense Geothermal Program at China Lake, and Status of the U.S. Geothermal Industry. The IGCC briefing books and minutes provide a historical snapshot of what development and impact issues were important at various time. (DJE 2005)

  19. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China

    Science.gov (United States)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2007-10-01

    The Yangbajing geothermal field with the highest reservoir temperature in China is located about 90 km northwest to Lhasa City, capital of Tibet, where high temperature geothermal fluids occur both in shallow and deep reservoirs. The geophysical survey by the INDEPTH (International Deep Profiling of Tibet and the Himalayas) project group proved the existence of magmatic heat source at Yangbajing. In the study area, the hydrochemistry of cold surface waters and groundwaters and that of thermal groundwaters from both reservoirs are distinctively different. However, analysis of the relationship between enthalpy values and Cl concentrations of cold groundwaters and geothermal fluids indicates that the geothermal fluids from the shallow reservoir were formed as a result of mixing of cold groundwaters with geothermal fluids from the deep reservoir. In other words, the geothermal fluids from the deep reservoir flowed upwards into the shallow reservoir where it was diluted by the shallow cold groundwaters to form the shallow geothermal fluids with much lower temperature. A binary mixing model with two endmembers (the cold groundwaters and the deep geothermal fluids) was proposed and the mixing ratios for the geothermal fluid from each shallow well were estimated. Using the mixing ratios, the concentrations of some constituents in shallow geothermal fluids, such as As, B, SiO 2, SO 42- and F, were calculated and their differences with the actual concentrations were estimated. The results show that the differences between estimated and actual concentrations of As and B are small (the average absolute values being only 1.9% and 7.9%, respectively), whereas those of SiO 2, SO 42- and F are much bigger, indicating that other hydrogeochemical processes are responsible for the concentrations of these constituents. It is postulated that SiO 2 precipitation due to water temperature decrease, H 2S oxidation and ion exchange between OH - in geothermal waters and exchangeable F - in

  20. The Ahuachapan geothermal field, El Salvador: Reservoir analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A. (Lawrence Berkeley Lab., CA (USA); Icelandic National Energy Authority, Reykjavik (Iceland); Geological Survey, Menlo Park, CA (USA); Lawrence Berkeley Lab., CA (USA))

    1989-08-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL). This report describes the work done during the first year of the study (FY 1988--89), and includes the (1) development of geological and conceptual models of the field, (2) evaluation of the initial thermodynamic and chemical conditions and their changes during exploitation, (3) evaluation of interference test data and the observed reservoir pressure decline, and (4) the development of a natural state model for the field. The geological model of the field indicates that there are seven (7) major and five (5) minor faults that control the fluid movement in the Ahuachapan area. Some of the faults act as a barrier to flow as indicated by large temperature declines towards the north and west. Other faults act as preferential pathways to flow. The Ahuachapan Andesites provide good horizontal permeability to flow and provide most of the fluids to the wells. The underlying Older Agglomerates also contribute to well production, but considerably less than the Andesites. 84 refs.

  1. Geophysical exploration at Takigami geothermal field in Oita Prefecture, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, M. (Idemitsu Geothermal Co., Ltd., Tokyo (Japan))

    1988-11-10

    Remote sensing study, gravity and magneto-telluric (MT) surveys in Takigami geothermal field were carried out. A great number of E-W lineaments are easily recognized with LANDSAT and so on. These E-W lineaments might be distinguished into two groups. One group might be considered to be made simply related to N-S tensional stress, the other has circular feature enclosing mountainous body. The center part of the volcano seems to be depressed relatively. These lineaments are thought to be associated with the volcanic activity which created these volcanos, in addition to the regional tensional stress. The gravitational slope is steep and inclines to the west (-35m gal minimum), the easternmost part is almost on the gravitational high. Takigami area is positioned on the gravitational slope, probably related to the large-scale tectonic depression. There are many geothermal active manifestations. The correlation between MT data and real logging data was excellent beyond expectation. In Takigami area, surface layer is resistive and shows 30-500{Omega}-m. Intermediate layer is extremely conductive one with 1-10{Omega}-m. Bottom layer is relatively resistive and is within 30-500{Omega}-m. Intermediate layer is shallow and thin in the eastern part. On the other hand, this layer is deep and thick in the western part. This shape of structure is a common feature with gravitational structure. According to the X-ray diffraction study of hydrothermal alteration, surface layer is unaltered, but intermediate and bottom layer suffer hydrothermal alteration.

  2. Modeling study of the Pauzhetsky geothermal field, Kamchatka, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Kiryukhin, A.V. [Institute of Volcanology, Kamchatsky (Russian Federation); Yampolsky, V.A. [Kamchatskburgeotermia State Enterprise, Elizovo (Russian Federation)

    2004-08-01

    Exploitation of the Pauzhetsky geothermal field started in 1966 with a 5 MW{sub e} power plant. A hydrogeological model of the Pauzhetsky field has been developed based on an integrated analysis of data on lithological units, temperature, pressure, production zones and natural discharge distributions. A one-layer 'well by well' model with specified vertical heat and mass exchange conditions has been used to represent the main features of the production reservoir. Numerical model development was based on the TOUGH2 code [Pruess, 1991. TOUGH2 - A General Purpose Numerical Simulator for Multiphase Fluid and Heat Flow, Lawrence Berkeley National Laboratory Report, Berkeley, CA; Pruess et al., 1999. TOUGH2 User's Guide, Version 2.0, Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, CA] coupled with tables generated by the HOLA wellbore simulator [Aunzo et al., 1991. Wellbore Models GWELL, GWNACL, and HOLA, Users Guide, Draft, 81 pp.]. Lahey Fortran-90 compiler and computer graphical packages (Didger-3, Surfer-8, Grapher-3) were also used to model the development process. The modeling study of the natural-state conditions was targeted on a temperature distribution match to estimate the natural high-temperature upflow parameters: the mass flow-rate was estimated at 220 kg/s with enthalpy of 830-920 kJ/kg. The modeling study for the 1964-2000 exploitation period of the Pauzhetsky geothermal field was targeted at matching the transient reservoir pressure and flowing enthalpies of the production wells. The modeling study of exploitation confirmed that 'double porosity' in the reservoir, with a 10-20% active volume of 'fractures', and a thermo-mechanical response to reinjection (including changes in porosity due to compressibility and expansivity), were the key parameters of the model. The calibrated model of the Pauzhetsky geothermal field was used to forecast reservoir behavior under different exploitation scenarios for

  3. Remote Sensing Techniques as a Tool for Geothermal Exploration: the Case Study of Blawan Ijen, East Java

    Science.gov (United States)

    Pasqua, Claudio; Verdoya, Massimo

    2014-05-01

    The use of remote sensing techniques in the initial phase of geothermal surveys represents a very cost-effective tool, which can contribute to a successful exploration program. Remote sensing allows the analysis of large surfaces and can lead to a significant improvement of the identification of surface thermal anomalies, through the use of thermal infra red data (TIR), as well as of zones of widespread and recent faulting, which can reflect larger permeability of geological formations. Generally, the fractures analysis from remote sensing can be fundamental to clarify the structural setting of an area. In a regional volcanic framework, it can also help in defining the spatial and time evolution of the different volcanic apparatuses. This paper describes the main results of a remote sensing study, conducted in the Blawan-Ijen volcanic area (East Java), which is at present subject of geothermal exploration. This area is characterized by the presence of a 15 km wide caldera originated by a collapsed strato volcano. This event was followed by the emplacement of several peri-calderic and intra-calderic volcanoes, among which G. Raung, as testified by the frequent occurrence of shallow earthquakes and by H2S emission and sulfur deposition, and G. Kawah Ijen, occurring at the eastern rim of the caldera, are still active. The summit of G. Kawah Ijen volcano consists of two interlocking craters forming an E-W elongated depression filled up by a hyperacidic lake. Along the southern shore of the lake, a small rhyolitic dome occurs, which exhibits strong fumarolic activity with temperature of as much as 600 °C. We performed an analysis based on the combined interpretation of Landsat ETM+7, Aster and Synthetic Aperture Radar (SAR) images, focused on the identification of subsurface high permeability zones. The main trends of the linear features as derived from the fractures analysis, as well as their relation with the distribution of volcanic centres, were identified

  4. Innovative approach for risk assessment in green field geothermal project

    NARCIS (Netherlands)

    Batini, F.; Wees, J.-D. van

    2010-01-01

    At present, the worldwide geothermal energy production provides less than 1% of the world's energy needs but the geothermal resources confined in the first 6 km of the earth's crust are estimated to be in the fairly above 200 GW of which 50-80 GW are located in Europe. Exploring and developing at

  5. Microearthquakes in the ahuachapan geothermal field, el salvador, central america.

    Science.gov (United States)

    Ward, P L; Jacob, K H

    1971-07-23

    Microearthquakes occur on a steeply dipping plane interpreted here as the fault that allows hot water to circulate to the surface in the geothermal region. These small earthquakes are common in many geothermal areas and may occur because of the physical or chemical effects of fluids and fluid pressure.

  6. Extension of the Cerro Prieto field and zones in the Mexicali Valley with geothermal possibilities in the future

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca L, H.L.; de la Pena L, A.; Puente C, I.; Diaz C, E.

    1981-01-01

    This study concerns the possible extension of the Cerro Prieto field and identification of other zones in the Mexicali Valley with geothermal development potential by assessing the structural geologic conditions in relation to the regional tectonic framework and the integration of geologic and geophysical surveys carried out at Cerro Prieto. This study is based on data obtained from the wells drilled to date and the available geological and geophysical information. With this information, a geologic model of the field is developed as a general description of the geometry of what might be the geothermal reservoir of the Cerro Prieto field. In areas with geothermal potential within the Mexicali Valley, the location of irrigation wells with anomalous temperatures was taken as a point of departure for subsequent studies. Based on this initial information, gravity and magnetic surveys were made, followed by seismic reflection and refraction surveys and the drilling of 1200-m-deep multiple-use wells. Based on the results of the final integration of these studies with the geology of the region, it is suggested that the following areas should be explored further: east of Cerro Prieto, Tulecheck, Riito, Aeropuerto-Algodones, and San Luis Rio Colorado, Sonora.

  7. Analysis of induced seismicity at The Geysers geothermal field, California

    Science.gov (United States)

    Emolo, A.; Maercklin, N.; Matrullo, E.; Orefice, A.; Amoroso, O.; Convertito, V.; Sharma, N.; Zollo, A.

    2012-12-01

    Fluid injection, steam extraction, and reservoir stimulation in geothermal systems lead to induced seismicity. While in rare cases induced events may be large enough to pose a hazard, on the other hand the microseismicity provides information on the extent and the space-time varying properties of the reservoir. Therefore, microseismic monitoring is important, both for mitigation of unwanted effects of industrial operations and for continuous assessment of reservoir conditions. Here we analyze induced seismicity at The Geysers geothermal field in California, a vapor-dominated field with the top of the main steam reservoir some 1-3 km below the surface. Commercial exploitation began in the 1960s, and the seismicity increased with increasing field development. We focus our analyses on induced seismicity recorded between August 2007 and October 2011. Our calibrated waveform database contains some 15000 events with magnitudes between 1.0 and 4.5 and recorded by the LBNL Geysers/Calpine surface seismic network. We associated all data with events from the NCEDC earthquake catalog and re-picked first arrival times. Using selected events with at least 20 high-quality P-wave picks, we determined a minimum 1-D velocity model using VELEST. A well-constrained P-velocity model shows a sharp velocity increase at 1-2 km depth (from 3 to 5 km/s) and then a gradient-like trend down to about 5 km depth, where velocities reach values of 6-7 km/s. The station corrections show coherent, relatively high, positive travel time delays in the NW zone, thus indicating a strong lateral variation of the P-wave velocities. We determined an average Vp-to-Vs ratio of 1.67, which is consistent with estimates from other authors for the same time period. The events have been relocated in the new model using a non-linear probabilistic methods. The seismicity appears spatially diffused in a 15x10 km2 area elongated in NW-SE direction, and earthquake depths range between 0 and 6 km. As in previous

  8. Magnetostratigraphy of the Ahuachapan-Chipilapa geothermal field, El Salvador

    Energy Technology Data Exchange (ETDEWEB)

    Fucugauchi, Jaime Urrutia [Universidad Nacional Autonoma de Mexico, Lab. de Paleomagnetismo y Geofisica Nuclear, Coyoacan (Mexico); Rodriguez, Vicente Torres; Partida, Eduardo Gonzalez [Instituto de Investigaciones Electricas, Dept. de Geotermia, Cuernavaca, Morelos (Mexico)

    1997-12-01

    The volcanic stratigraphy for the Ahuachapan-Chipilapa geothermal field is defined on the basis of the magnetostratigraphic results on 156 oriented samples from 33 sites. The magnetostratigraphic sequence shows that the major volcanism associated with the Concepcion de Ataco caldera and the Cuyanausul volcano took place during the middle Brunhes chron (Quaternary). Pre-caldera activity of small centers such as Empalizada and Apaneca in the southern sector of the field occurred during the early Brunhes (0.77{+-}0.07 Ma). Basaltic-andesitic activity associated with the Cuyanausul volcano took place earlier, i.e. during the Matuyama chron, possibly around 1.3{+-}0.15 and 1.7{+-}0.3 Ma. The local igneous basement is composed of Late Miocene-Pliocene andesites, ignimbrites and volcano-sedimentary deposits. Normal polarities and a K-Ar date of 7.37{+-}0.73 Ma indicate that the volcanic activity in the study area extends beyond the Gauss chron. The polarity of some of the units in the post-caldera sequence and in the Concepcion de Ataco and Cuyanausul sequences suggest that they may have recorded short polarity sub-chrons. (Author)

  9. Hydrogeology of the Owego-Apalachin Elementary School Geothermal Fields, Tioga County, New York

    Science.gov (United States)

    Williams, John H.; Kappel, William M.

    2015-12-22

    The hydrogeology of the Owego-Apalachin Elementary School geothermal fields, which penetrate saline water and methane in fractured upper Devonian age bedrock in the Owego Creek valley, south-central New York, was characterized through the analysis of drilling and geophysical logs, water-level monitoring data, and specific-depth water samples. Hydrogeologic insights gained during the study proved beneficial for the design of the geothermal drilling program and protection of the overlying aquifer during construction, and may be useful for the development of future geothermal fields and other energy-related activities, such as drilling for oil and natural gas in similar fractured-bedrock settings.

  10. Estimation of geothermal gradients from single temperature log-field cases

    International Nuclear Information System (INIS)

    Kutasov, I M; Eppelbaum, L V

    2009-01-01

    A geothermal gradient is one of the most frequently used parameters in logging geophysics. However, the drilling process greatly disturbs the temperature of the formations around the wellbore. For this reason, in order to determine with the required accuracy the formation temperatures and geothermal gradients, a certain length of shut-in time is required. It was shown earlier (Kutasov 1968 Freiberger Forshungshefte C 238 55–61, 1987 Geothermics 16 467–72) that at least two transient temperature surveys are needed to determine the geothermal gradient with adequate accuracy. However, in many cases only one temperature log is conducted in a shut-in borehole. For these cases, we propose an approximate method for the estimation of the geothermal gradient. The utilization of this method is demonstrated on four field examples

  11. Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland

    KAUST Repository

    Keiding, Marie

    2010-07-01

    We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992-1999 and 2003-2008 as well as GPS data from 2000-2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10. cm is observed during the first 2. years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction. © 2010 Elsevier B.V.

  12. Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland

    KAUST Repository

    Keiding, Marie; Á rnadó ttir, Thó ra; Jonsson, Sigurjon; Decriem, Judicaë l; Hooper, Andrew John

    2010-01-01

    We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992-1999 and 2003-2008 as well as GPS data from 2000-2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10. cm is observed during the first 2. years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction. © 2010 Elsevier B.V.

  13. Resistivity imaging of Aluto-Langano geothermal field using 3-D magnetotelluric inversion

    Science.gov (United States)

    Cherkose, Biruk Abera; Mizunaga, Hideki

    2018-03-01

    Magnetotelluric (MT) method is a widely used geophysical method in geothermal exploration. It is used to image subsurface resistivity structures from shallow depths up to several kilometers of depth. Resistivity imaging using MT method in high-enthalpy geothermal systems is an effective tool to identify conductive clay layers that cover the geothermal systems and to detect a potential reservoir. A resistivity model is vital for deciding the location of pilot and production sites at the early stages of a geothermal project. In this study, a 3-D resistivity model of Aluto-Langano geothermal field was constructed to map structures related to a geothermal resource. The inversion program, ModEM was used to recover the 3-D resistivity model of the study area. The 3-D inversion result revealed the three main resistivity structures: a high-resistivity surface layer related to unaltered volcanic rocks at shallow depth, underlain by a conductive zone associated with the presence of conductive clay minerals, predominantly smectite. Beneath the conductive layer, the resistivity increases gradually to higher values related to the formation of high-temperature alteration minerals such as chlorite and epidote. The resistivity model recovered from 3-D inversion in Aluto-Langano corresponds very well to the conceptual model for high-enthalpy volcanic geothermal systems. The conductive clay cap is overlying the resistive propylitic upflow zone as confirmed by the geothermal wells in the area.

  14. Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical

    Science.gov (United States)

    Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.

    2017-12-01

    The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction

  15. A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China

    OpenAIRE

    Hedlund, Brian P.; Cole, Jessica K.; Williams, Amanda J.; Hou, Weiguo; Zhou, Enmin; Li, Wenjun; Dong, Hailiang

    2012-01-01

    The Rehai Geothermal Field, located in Tengchong County, in central-western Yunnan Province, is the largest and most intensively studied geothermal field in China. A wide physicochemical diversity of springs (ambient to ∼97 °C; pH from ≤1.8 to ≥9.3) provides a multitude of niches for extremophilic microorganisms. A variety of studies have focused on the cultivation, identification, basic physiology, taxonomy, and biotechnological potential of thermophilic microorganisms from Rehai. Thermophil...

  16. Modeling research in low-medium temperature geothermal field, Tianjin

    Institute of Scientific and Technical Information of China (English)

    WANG; Kun(王坤); LI; Chunhua(李春华)

    2002-01-01

    The geothermal reservoir in Tianjin can be divided into two parts: the upper one is the porous medium reservoir in the Tertiary system; the lower one includes the basement reservoir in Lower Paleozoic and Middle-Upper Proterozoic. Hot springs are exposed in the northern mountain and confined geothermal water is imbedded in the southern plain. The geothermal reservoir is incised by several fractures. In recent years, TDS of the geothermal water have gone up along with the production rate increasing, along the eastern fracture zone (Cangdong Fracture and West Baitangkou Fracture). This means that the northern fracture system is the main seepage channel of the deep circulation geothermal water, and the reservoir has good connection in a certain area and definite direction. The isotopic research about hydrogen and carbon chronology indicates that the main recharge period of geothermal water is the Holocene Epoch, the pluvial and chilly period of 20 kaBP. The karst conduits in weathered carbonate rocks of the Proterozoic and Lower Paleozoic and the northeast regional fracture system are the main feeding channels of Tianjin geothermal water. Since the Holocene epoch, the geothermal water stayed at a sealed warm period. The tracer test in WR45 doublet system shows that the tracer test is a very effective measure for understanding the reservoir's transport nature and predicting the cooling time and transport velocity during the reinjection. 3-D numerical simulation shows that if the reinjection well keeps a suitable distance from the production well, reinjection will be a highly effective measure to extract more thermal energy from the rock matrix. The cooling of the production well will not be a problem.

  17. Applications of stable isotopes and radioisotopes in the exploration and reservoir management of Philippine geothermal fields

    International Nuclear Information System (INIS)

    Ferrer, H.P.; Alvis-Isidro, R.R.

    1996-01-01

    The development of indigenous geothermal energy resources is currently one of the primary thrusts of the country's energy program. Presently, the Philippines has a total of geothermal generating capacity of about 1400 MWe. This comprises about 20% of the total energy mix and electricity requirements of the country. By 1998, an additional capacity of about 500 MWe will be commissioned, and the PHilippines would be generating 1900 MWe of electricity from geothermal energy resources. From 1990 to 1993, PNOC EDC (Philippine National Oil Company, Energy Development Corporation) has been granted a research contract by the International Atomic Energy Agency (IAEA). The Company has also been a recipient since 1991 of an IAEA Technical Assistance on the use of stable isotope techniques in geothermal hydrology. Stable isotopes, particularly 18 O and 2 H, in conjunction with other geochemical parameters and geological and geophysical data, have been used to: a) establish the local meteoric water line; b) determine the origin of geothermal fluids; c) delineate the elevation of recharge of geothermal and ground water systems; d) confirm pre-exploitation hydrochemical models; e) identify physical and chemical processes due to exploitation of the geothermal resource (i.e. reinjection fluid returns, incursion of cold meteoric water, boiling due to pressure drawdown and mixing with acidic steam condensates); and, f) estimate reservoir temperatures. Techniques using radioisotopes, such as 14 C, have also been used for the age-dating of charred wood samples collected from some of our geothermal exploration areas. The detection of 3 H has also been used as an indicator for the incursion of recent cold meteoric water into the geothermal system. Tracer studies using 131 I, have also been previously carried out, in coordination with the Philippine Nuclear Research Institute, to determine local hydrology and flow paths of reinjected water in some of our geothermal fields

  18. Application of ethanol as a geothermal tracer: a field-test in the Los Azufres geothermal field, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tello Hinojosa, Enrique [Comision Federal de Electricidad, Morelia, Michoacan (Mexico); Pal Verma, Mahendra [Comision Federal de Electricidad, Morelia, Michoacan (Mexico); Suarez Arriaga, Mario C. [Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan (Mexico); Barrera Conzalez, Victor; Sandoval Medina, Fernando [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2005-12-01

    The thermal decomposition rate of ethanol, rhodamine WT and fluoroscein was determined from laboratory data obtained under conditions of temperature and pressure that simulated a geothermal reservoir. It was found that ethylic alcohol had better thermal stability rhodamine and fluoroscein. Using data obtained from de-ionized water experiments after 168 hours and 200 degree centigrade of temperature, the rhodamine WT and fluoroscein presented a degradation of 99.4% and 99.7%, respectively, while for the ethanol the degradation percentage under the same conditions was only of 44.6%. According to this, ethylic alcohol can be used as a conservative tracer up to about 250 degree centigrade, while rhodamine WT and fluoroscein can be used only at less than 200 degree centigrade, and only where the transit return time is expected to be less than 7 days. Ethanol was used as a conservative tracer in a field test in the southern zone of the Los Azufres geothermal field. The highest concentration was detected in a monitoring well in the steam phase 15 days after the injection, and in the liquid phase, or brine, 34 days after the injection. This suggests that alcohol fractionates preferentially in the steam phase and moves or migrates twice as fast than it does in the liquid phase. The tracer speed can be calculated in 176 m/day in the steam phase and 77.5 m/day in the brine. The ethanol presents good enough characteristics to be used as a tracer in both phases in geothermal environments. [Spanish] Se determino la velocidad de descomposicion termica del etanol, la rodamina y la fluoresceina a partir de datos de laboratorio obtenidos bajo condiciones de presion y de temperatura que simulan las de un yacimiento geotermico. Se encontro que el alcohol etilico presenta una mayor estabilidad termica que la rodamina y la fluoresceina. Empleando los datos obtenidos de experimentos con agua de-ionizada despues de 168 horas y a 200 grados centigrados de temperatura, la rodamina y la

  19. Reservoir engineering assessment of Dubti geothermal field, Northern Tendaho Rift, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Battistelli, A.; Ferragina, C. [Aquater S.p.A. (ENI Group), San Lorenzo in Campo (Italy); Yiheyis, A.; Abatneh, W. [Ethiopian Institute of Geological Surveys, Addis Ababa (Ethiopia); Calore, C. [International Institute for Geothermal Research, Pisa (Italy)

    2002-06-01

    Following on from surface exploration surveys performed during the 1970s and early 1980s, exploration drilling was carried out in the Tendaho Rift, in Central Afar (Ethiopia), from October 1993 to June 1995. Three deep and one shallow well were drilled in the central part of the Northern Tendaho Rift to verify the existence of a geothermal reservoir and its possible utilisation for electric power generation. The project was jointly financed by the Ethiopian Ministry of Mines and Energy and the Italian Ministry for Foreign Affairs. Project activities were performed by the Ethiopian Institute of Geological Surveys and Aquater SpA. The main reservoir engineering data discussed in this paper were collected during drilling and testing of the above four wells, three of which are located inside the Dubti Cotton Plantation, in which a promising hydrothermal area was identified by surface exploration surveys. Drilling confirmed the existence of a liquid-dominated shallow reservoir inside the Dubti Plantation, characterised by a boiling -point-for-depth temperature distribution down to about 500 m depth. The main permeable zones in the Sedimentary Sequence, which is made up of lacustrine deposits, are located in correspondence to basalt lava flow interlayerings, or at the contact between volcanic and sedimentary rocks. At depth, the basaltic lava flows that characterise the Afar Stratoid Series seem to have low permeability, with the exception of fractured zones associated with sub-vertical faults. Two different upflows of geothermal fluids have been inferred: one flow connected to the Dubti fault feeds the shallow reservoir crossed by wells TD-2 and TD-4, where a maximum temperature of 245{sup o}C was recorded; the second flow seems to be connected with a fault located east of well TD-1, where the maximum recorded temperature was 270{sup o}C. A schematic conceptual model of the Dubti hydrothermal area, as derived from reservoir engineering studies integrated with geological

  20. EXPLORATION BY MEANS OF GEOPHYSICAL METHODS OF GEOTHERMAL FIELDS AND CASE STUDIES

    Directory of Open Access Journals (Sweden)

    Züheyr KAMACI

    1997-01-01

    Full Text Available Geothermal energy which is one of the reuseable energy resources, can save as much as 77 million barrels of petroleum equivalent annually when used in the production of electricity and heating-environment. Geophysical exploration methods plays in important role in the fields of geothermal exploration, development and observational studies. Thermal and geoelectrical methods are the most effective methods which shows the temperature variation anomalies and mechanical drilling places. But, when the other methods of gravity, magnetic, radiometric, well geophysics and well logs can be used in conjunction with seismic tomography, apart from the mentioned geophysical exploration method, better results could be obtained. From the above mentioned facts various case history reports are given from our country and worldwide to determine geothermal energy resources by using geophysical exploration technique application. From these results of studies a 55 °C hot water artessian aquifer is found in the Uşak-Banaz geothermal field by applying geoelectrical methods.

  1. The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-07-01

    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of

  2. The Use of Unmanned Aerial Vehicle for Geothermal Exploitation Monitoring: Khankala Field Example

    Directory of Open Access Journals (Sweden)

    Sergey V. Cherkasov

    2018-06-01

    Full Text Available The article is devoted to the use of unmanned aerial vehicle for geothermal waters exploitation monitoring. Development of a geothermal reservoir usually requires a system of wells, pipelines and pumping equipment and control of such a system is quite complicated. In this regard, use of unmanned aerial vehicle is relevant. Two test unmanned aerial vehicle based infrared surveys have been conducted at the Khankala field (Chechen Republic with the Khankala geothermal plant operating at different regimes: during the first survey – with, and the second – without reinjection of used geothermal fluid. Unmanned aerial vehicle Geoscan 201 equipped with digital (Sony DSX-RX1 and thermal imaging (Thermoframe-MX-TTX cameras was used. Besides different images of the geothermal plant obtained by the surveys, 13 thermal anomalies have been identified. Analysis of the shape and temperature facilitated determination of their different sources: fire, heating systems, etc., which was confirmed by a ground reconnaissance. Results of the study demonstrate a high potential of unmanned aerial vehicle based thermal imagery use for environmental and technological monitoring of geothermal fields under operation.

  3. Contributions of arsenic and chloride from the Kawerau geothermal field to the Tarawera River, New Zealand

    International Nuclear Information System (INIS)

    Mroczek, E.K.

    2005-01-01

    The Tarawera River flows through the Kawerau geothermal field. Natural geothermal drainage as well as geothermal production fluid effluent (0.193 m 3 /s) discharge to the river. The concentrations and fluxes of arsenic and chloride were measured upstream and downstream of the field to quantify the proportion of natural inflows of geothermal fluid compared to the discharge of effluent. Upstream of the geothermal effluent outfalls, the arsenic and chloride concentrations in the river are about 0.021 mg/l and 39 mg/l, respectively. The discharge of effluent increases the concentrations in the river to 0.029 mg/l and 48 mg/l, respectively. Calculated concentrations, given the known discharge of effluent, are 0.038 mg/l for arsenic and 50 mg/l for chloride. The differences between the measured and calculated concentrations are within the gauging and analytical errors. At minimum and maximum mean river flows (1984-1992), the concentrations would increase and decrease by 23% and 46%, respectively. Arsenic appears to be soluble and not associated with suspended solids. However, increased transport of arsenic by suspended solids may be a factor at higher river flows. The input of natural geothermal fluid upstream of the effluent outfalls (estimated < 0.170 m3/s) could not be detected (within the errors) by an increase in river chloride concentrations. (author)

  4. Geothermal system boundary at the northern edge of Patuha Geothermal Field based on integrated study of volcanostratigraphy, geological field mapping, and cool springs contamination by thermal fluids

    Science.gov (United States)

    Suryantini; Rachmawati, C.; Abdurrahman, M.

    2017-12-01

    Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is

  5. Geothermal studies in oil field districts of North China

    Science.gov (United States)

    Wang, Ji-An; Wang, Ji-Yang; Yan, Shu-Zhen; Lu, Xiu-Wen

    In North China, Tertiary sediments give the main oil-genetic series. The mean value of terrestrial heat flow density has been considered to be 60 - 65 mW/m2, and the geothermal gradient in Tertiary sediments usually ranges from 30 to 40° C/km in the region studied. Supposing that the onset of oil generation lies at about 90° C, the upper limit of the depth of oil-generation is at about 2000 to 2500 m depth. Recent paleogeothermal studies using vitrinite reflectance, clay and authigenic minerals, as well as other methods showed that in Eocene the geothermal gradient has been higher than at present. Some results were obtained and discussed.

  6. Uranium-thorium series radionuclides in brines and reservoir rocks from two deep geothermal boreholes in the Salton Sea geothermal field, southeastern California

    International Nuclear Information System (INIS)

    Zukin, J.G.; Hammond, D.E.; Ku, Tehlung; Elders, W.A.

    1987-01-01

    Naturally occurring U and Th series radionuclides have been analyzed in high temperature brines (∼ 300 degree C, 25 wt% dissolved solids) and associated rocks from two deep geothermal wells located on the northeastern margin of the Salton Sea Geothermal Field (SSGF). These data are part of a study of the SSGF as a natural analog of possible radionuclide behavior near a nuclear waste repository constructed in salt beds, and permit evaluation of some characteristics of water-rock interaction in the SSGF

  7. Microseismic monitoring during production and reinjection tests in the Chipilapa geothermal field (El Salvador)

    International Nuclear Information System (INIS)

    Fabriol, H.; Beauce, A.; Jacobo, R.; Quijano, J.

    1992-01-01

    The microseismic monitoring of the Chipilapa geothermal field has investigated the microseismic activity prior to and during the production and injection tests of three wells drilled between 1989 and 1991. Two surveys were carried out, in 1988 and 1991-1992 respectively, in order to study the reservoir and its recharge and to monitor microseismicity induced by reinjection. Natural microseismicity is distributed around the known geothermal area, and related either to tectonic activity under the volcanic range sited at the south (and which is the upflow zone of the geothermal field) or to the Central Graben at the north. No evidences of induced microseismicity appeared at this stage of interpretation, probably due to the unfavourable conditions prevailing during the tests: Namely reinjection by gravity and low productivity

  8. Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.

    Science.gov (United States)

    Brodsky, Emily E; Lajoie, Lia J

    2013-08-02

    Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.

  9. Thermal modeling of step-out targets at the Soda Lake geothermal field, Churchill County, Nevada

    Science.gov (United States)

    Dingwall, Ryan Kenneth

    Temperature data at the Soda Lake geothermal field in the southeastern Carson Sink, Nevada, highlight an intense thermal anomaly. The geothermal field produces roughly 11 MWe from two power producing facilities which are rated to 23 MWe. The low output is attributed to the inability to locate and produce sufficient volumes of fluid at adequate temperature. Additionally, the current producing area has experienced declining production temperatures over its 40 year history. Two step-out targets adjacent to the main field have been identified that have the potential to increase production and extend the life of the field. Though shallow temperatures in the two subsidiary areas are significantly less than those found within the main anomaly, measurements in deeper wells (>1,000 m) show that temperatures viable for utilization are present. High-pass filtering of the available complete Bouguer gravity data indicates that geothermal flow is present within the shallow sediments of the two subsidiary areas. Significant faulting is observed in the seismic data in both of the subsidiary areas. These structures are highlighted in the seismic similarity attribute calculated as part of this study. One possible conceptual model for the geothermal system(s) at the step-out targets indicated upflow along these faults from depth. In order to test this hypothesis, three-dimensional computer models were constructed in order to observe the temperatures that would result from geothermal flow along the observed fault planes. Results indicate that the observed faults are viable hosts for the geothermal system(s) in the step-out areas. Subsequently, these faults are proposed as targets for future exploration focus and step-out drilling.

  10. Orthogonal Test Analysis on Conditions Affecting Electricity Generation Performance of an Enhanced Geothermal System at Yangbajing Geothermal Field

    Directory of Open Access Journals (Sweden)

    Yuchao Zeng

    2017-12-01

    Full Text Available The main conditions affecting electricity generation performance of an enhanced geothermal system (EGS include reservoir porosity, reservoir permeability, rock heat conductivity, water production rate and injection temperature. Presently there is lack of systematic research the relative importance of the five aforementioned conditions. The orthogonal test method is a statistical approach to analyze multi-factor and multi-level influence on system performance. In this work, based on the geological data at Yangbajing geothermal field, we analyzed the five conditions affecting the electricity generation performance of EGS, and ranked the relative importance of the five factors. The results show that the order of the relative importance of the conditions on electric power is water production rate > injection temperature > reservoir porosity > rock heat conductivity > reservoir permeability; the order of the relative importance of the conditions on reservoir impedance is reservoir permeability > injection temperature > water production rate > reservoir porosity > rock heat conductivity; the order of the relative importance of the conditions on pump power is water production rate > reservoir permeability > injection temperature > reservoir porosity > rock heat conductivity, and; the order of the relative importance of the conditions on energy efficiency is water production rate > reservoir permeability > reservoir porosity > injection temperature > rock heat conductivity. The construction of an EGS reservoir should be located at a formation with higher reservoir porosity or rock heat conductivity, while the determination of reservoir permeability, water production rate and injection temperature should be based on the comprehensive target.

  11. Prospects of development of highly mineralized high-temperature resources of the Tarumovskoye geothermal field

    Science.gov (United States)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2016-06-01

    The promising nature of integrated processing of high-temperature geothermal brines of the Tarumovskoye geothermal field is shown. Thermal energy of a geothermal brine can be converted to the electric power at a binary geothermal power plant (GPP) based on low-boiling working substance. The thermodynamic Rankine cycles are considered which are implemented in the GPP secondary loop at different evaporation temperatures of the working substance―isobutane. Among them, the most efficient cycle from the standpoint of attaining a maximum power is the supercritical one which is close to the so-called triangular cycle with an evaporation pressure of p e = 5.0 MPa. The used low-temperature brine is supplied from the GPP to a chemical plant, where main chemical components (lithium carbonate, burnt magnesia, calcium carbonate, and sodium chloride) are extracted from it according to the developed technology of comprehensive utilization of geothermal brines of chloride-sodium type. The waste water is delivered to the geotechnological complex and other consumers. For producing valuable inorganic materials, the electric power generated at the GPP is used. Owing to this, the total self-sufficiency of production and independence from external conditions is achieved. The advantages of the proposed geotechnological complex are the full utilization of the heat potential and the extraction of main chemical components of multiparameter geothermal resources. In this case, there is no need for reverse pumping, which eliminates the significant capital costs for building injection wells and a pumping station and the operating costs for their service. A characteristic of the modern state of the field and estimated figures of the integrated processing of high-temperature brines of well no. 6 are given, from which it follows that the proposed technology has a high efficiency. The comprehensive development of the field resources will make it possible to improve the economic structure of the

  12. Light hydrocarbons as redox and temperature indicators in the geothermal field of El Tatio (northern Chile)

    Energy Technology Data Exchange (ETDEWEB)

    Tassi, F. [University of Florence (Italy). Dept. of Earth Sciences; Martinez, C. [University Catolica del Norte, Antofagasta (Chile). Dept. of Earth Science; Vaselli, O. [University of Florence (Italy). Dept. of Earth Sciences; Institute of Geosciences and Earth Resources, Florence (Italy). National Council of Research; Capaccioni, B. [University of Urbino (Italy). Institute of Volcanology and Geochemistry; Viramonte, J. [National University of Salta (Argentina). Institute GEONORTE and CONICET

    2005-11-15

    El Tatio (northern Chile), one of the largest geothermal fields of South America, is presently undergoing a new program of geothermal exploration, after the failure of the first exploration phase in the early 1970s. The geochemical features of the fluid discharges characterizing this system mainly consist of boiling pools and fumaroles, and represent the result of a complex mixing process involving 3 main components: (i) hydrothermal; (ii) atmospheric; (iii) magmatic. Chemical reactions involving light hydrocarbons equilibrate at higher temperature than those directly measured in the geothermal wells and calculated on the basis of the composition of the inorganic gas species. This suggests that in the deeper parts of the hydrothermal system temperatures higher than 300{sup o}C may be achieved. Such results can have a strong impact for the evaluation of the potential resources of this geothermal system. Moreover, the chemical characteristics of the organic gas fraction allow the assessment of the chemical-physical conditions governing the geochemical processes acting on geothermal fluids at depth. (author)

  13. Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps

    Science.gov (United States)

    Zhurmilova, I.; Shtym, A.

    2017-11-01

    For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.

  14. French know-how in the field of geothermal energy. District heating and electricity generation systems

    International Nuclear Information System (INIS)

    2012-08-01

    This brochure is aimed at presenting the French expertise, public and private, at international level in the field of geothermal energy (district heating and electricity generation systems). It presents a summary of the French public policy framework, measures to support Research and Development, innovation and training and offers from private companies. It has been designed by the ADEME in cooperation with the French ministry for Ecology and Sustainable Development, the French association of geothermal energy professionals, Ubifrance (the French Agency for international business development) and the French renewable energies union

  15. The possibilities of utilisation of heat from Tattapani Geothermal field, India

    Energy Technology Data Exchange (ETDEWEB)

    Sarolkar, P.B. [Geological Survey of India, Hyderabad (India); Pitale, U.L. [Geological Survey of India, Nagpur (India)

    1996-12-31

    The Tattapani Geothermal field produces + 1800 1pm thermal water of 100{degrees}C from five production wells. The hot water production can sustain electricity production of 300 kWe by using a binary cycle power plant. The heat energy of effluent water from power plant can be utilized for direct heat utilization on horticulture, aquaculture, cold storage, silviculture etc; to augment the economics of the power plant be spot can be developed as a centre for tourist attraction by constructing botanical park, greenhouse, geyser show and crocodile farm. The direct heat utilization shemes can be planned in cascading order to achieve maximum utility of thermal water. Additional deep drilling is essential for optimum commercial utilization of the Geothermal energy. The direct heat utilisation shemes along with binary cycle power plant may help in development of the geothermal energy and boosting the economy of this region.

  16. Feasibility of Geothermal Energy Extraction from Non-Activated Petroleum Wells in Arun Field

    Science.gov (United States)

    Syarifudin, M.; Octavius, F.; Maurice, K.

    2016-09-01

    The big obstacle to develop geothermal is frequently came from the economical viewpoint which mostly contributed by the drilling cost. However, it potentially be tackled by converting the existing decommissioned petroleum well to be converted for geothermal purposes. In Arun Field, Aceh, there are 188 wells and 62% of them are inactive (2013). The major obstacle is that the outlet water temperature from this conversion setup will not as high as the temperature that come out from the conventional geothermal well, since it will only range from 60 to 180oC depending on several key parameters such as the values of ground temperature, geothermal gradient in current location, the flow inside of the tubes, and type of the tubes (the effect from these parameters are studied). It will just be considered as low to medium temperature, according to geothermal well classification. Several adjustments has to be made such as putting out pipes inside the well that have been used to lift the oil/gas and replacing them with a curly long coil tubing which act as a heat exchanger. It will convert the cold water from the surface to be indirectly heated by the hot rock at the bottom of the well in a closed loop system. In order to make power production, the binary cycle system is used so that the low to medium temperature fluid is able to generate electricity. Based on this study, producing geothermal energy for direct use and electricity generation in Arun Field is technically possible. In this study case, we conclude that 2900 kW of electricity could be generated. While for-direct utility, a lot of local industries in Northern Sumatera could get the benefits from this innovation.

  17. The timing and origin of pre- and post-caldera volcanism associated with the Mesa Falls Tuff, Yellowstone Plateau volcanic field

    Science.gov (United States)

    Stelten, Mark E.; Champion, Duane E.; Kuntz, Mel A.

    2018-01-01

    We present new sanidine 40Ar/39Ar ages and paleomagnetic data for pre- and post-caldera rhyolites from the second volcanic cycle of the Yellowstone Plateau volcanic field, which culminated in the caldera-forming eruption of the Mesa Falls Tuff at ca. 1.3 Ma. These data allow for a detailed reconstruction of the eruptive history of the second volcanic cycle and provide new insights into the petrogenesis of rhyolite domes and flows erupted during this time period. 40Ar/39Ar age data for the biotite-bearing Bishop Mountain flow demonstrate that it erupted approximately 150 kyr prior to the Mesa Falls Tuff. Integrating 40Ar/39Ar ages and paleomagnetic data for the post-caldera Island Park rhyolite domes suggests that these five crystal-rich rhyolites erupted over a centuries-long time interval at 1.2905 ± 0.0020 Ma (2σ). The biotite-bearing Moonshine Mountain rhyolite dome was originally thought to be the downfaulted vent dome for the pre-caldera Bishop Mountain flow due to their similar petrographic and oxygen isotope characteristics, but new 40Ar/39Ar dating suggest that it erupted near contemporaneously with the Island Park rhyolite domes at 1.2931 ± 0.0018 Ma (2σ) and is a post-caldera eruption. Despite their similar eruption ages, the Island Park rhyolite domes and the Moonshine Mountain dome are chemically and petrographically distinct and are not derived from the same source. Integrating these new data with field relations and existing geochemical data, we present a petrogenetic model for the formation of the post-Mesa Falls Tuff rhyolites. Renewed influx of basaltic and/or silicic recharge magma into the crust at 1.2905 ± 0.0020 Ma led to [1] the formation of the Island Park rhyolite domes from the source region that earlier produced the Mesa Falls Tuff and [2] the formation of Moonshine Mountain dome from the source region that earlier produced the biotite-bearing Bishop Mountain flow. These magmas were stored in the crust for less than a few thousand

  18. Geothermal energy

    International Nuclear Information System (INIS)

    Laplaige, Ph.; Lemale, J.

    2008-01-01

    Geothermal energy is a renewable energy source which consists in exploiting the heat coming from the Earth. It covers a wide range of techniques and applications which are presented in this article: 1 - the Earth, source of heat: structure of the Earth, geodynamic model and plate tectonics, origin of heat, geothermal gradient and terrestrial heat flux; 2 - geothermal fields and resources; 3 - implementation of geothermal resources: exploration, main characteristic parameters, resource exploitation; 4 - uses of geothermal resources: power generation, thermal uses, space heating and air conditioning heat pumps, district heating, addition of heat pumps; 5 - economical aspects: power generation, heat generation for district heating; 6 - environmental aspects: conditions of implementation, impacts as substitute to fossil fuels; 7 - geothermal energy in France: resources, organisation; 8 - conclusion. (J.S.)

  19. Geo-electrical and geological strikes of the Mount Lamongan geothermal area, East Java, Indonesia – preliminary results

    Science.gov (United States)

    Nugraheni, L. R.; Niasari, S. W.; Nukman, M.

    2018-04-01

    Geothermal manifestations located in the Tiris, Mount Lamongan, Probolinggo, consist of warm springs. These warm springs have temperature from 35° until 45°C. Tiris fault has NW-SE dominant orientation, similar to some lineaments of maars and cinder cones around Mount Lamongan. The Mount Lamongan geothermal area is situated between Bromo and Argapura volcanoes. This study aims to map the geo-electrical and geological strikes in the study area. Phase tensor analysis has been performed in this study to determine geo-electrical strike of study area. Geological field campaign has been conducted to measure geological strikes. Then, orientation of geo-electrical strike was compared to geological strike. The result presents that the regional geological strike of study area is NW-SE while the orientation of geo-electrical strike is N-S.

  20. Application of oil-field well log interpretation techniques to the Cerro Prieto Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Ershaghi, I.; Phillips, L.B.; Dougherty, E.L.; Handy, L.L.

    1979-10-01

    An example is presented of the application of oil-field techniques to the Cerro Prieto Field, Mexico. The lithology in this field (sand-shale lithology) is relatively similar to oil-field systems. The study was undertaken as a part of the first series of case studies supported by the Geothermal Log Interpretation Program (GLIP) of the US Department of Energy. The suites of logs for individual wells were far from complete. This was partly because of adverse borehole conditions but mostly because of unavailability of high-temperature tools. The most complete set of logs was a combination of Dual Induction Laterolog, Compensated Formation Density Gamma Ray, Compensated Neutron Log, and Saraband. Temperature data about the wells were sketchy, and the logs had been run under pre-cooled mud condition. A system of interpretation consisting of a combination of graphic and numerical studies was used to study the logs. From graphical studies, evidence of hydrothermal alteration may be established from the trend analysis of SP (self potential) and ILD (deep induction log). Furthermore, the cross plot techniques using data from density and neutron logs may help in establishing compaction as well as rock density profile with depth. In the numerical method, R/sub wa/ values from three different resistivity logs were computed and brought into agreement. From this approach, values of formation temperature and mud filtrate resistivity effective at the time of logging were established.

  1. Application of a computer model to the study of the geothermic field of Mofete, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, G.; Turriani, C; Pistellie, E

    1984-01-01

    The aim of the study was to develop a reliable and comprehensive reservoir simulation package for a better understanding of ''in-situ'' processes pertinent to geothermal reservoir hydrodynamics and thermodynamics, and to enable an assessment of optimum reservoir management strategies as to production and reinjection policies. The study consists of four parts: The first deals with the computer programme. This is based on a programme called ''CHARG''developed in the US. Some adaptation was necessary. The second part concerns the fall-off and pit-tests of the geothermal well close to Naples ''Mofete 2''. This has been a crucial test for the CHARG model using asymmetric cylindrical coordinates and 14 different layers. Part three deals with predictions about longevity of the geothermal field of Mofete. The area is divided into 2500 blocs distibuted over 14 layers. Several configurations (various numbers of production and reinjection wells) have been tested. The last chapter delas with a comparison between the ISMES reservoir model, based on the finite elements approach and the AGIP model (finite differences). Both models give nearly the same results when applied to the geothermal field of Travale.

  2. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    International Nuclear Information System (INIS)

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-01-01

    The 36 Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The 36 Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field

  3. Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Kiryukhin, Alexey V. [Institute of Volcanology and Seismology FEB RAS, Piip-9, P-Kamchatsky 683006 (Russian Federation); Asaulova, Natalia P. [Kamchatskburgeotemia Enterprise, Krasheninnikova-1, Thermalny, Kamchatka 684035 (Russian Federation); Finsterle, Stefan [Lawrence Berkeley National Laboratory, MS 90-1116, One Cyclotron Road, Berkeley, CA 94720 (United States)

    2008-10-15

    A three-dimensional numerical model of the Pauzhetsky geothermal field has been developed based on a conceptual hydrogeological model of the system. It extends over a 13.6-km{sup 2} area and includes three layers: (1) a base layer with inflow; (2) a geothermal reservoir; and (3) an upper layer with discharge and recharge/infiltration areas. Using the computer program iTOUGH2 [Finsterle, S., 2004. Multiphase inverse modeling: review and iTOUGH2 applications. Vadose Zone J. 3, 747-762], the model is calibrated to a total of 13,675 calibration points, combining natural-state and 1960-2006 exploitation data. The principal model parameters identified and estimated by inverse modeling include the fracture permeability and fracture porosity of the geothermal reservoir, the initial natural upflow rate, the base-layer porosity, and the permeabilities of the infiltration zones. Heat and mass balances derived from the calibrated model helped identify the sources of the geothermal reserves in the field. With the addition of five make-up wells, simulation forecasts for the 2007-2032 period predict a sustainable average steam production of 29 kg/s, which is sufficient to maintain the generation of 6.8 MWe at the Pauzhetsky power plant. (author)

  4. Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, Stefan; Kiryukhin, A.V.; Asaulova, N.P.; Finsterle, S.

    2008-04-01

    A three-dimensional numerical model of the Pauzhetsky geothermal field has been developed based on a conceptual hydrogeological model of the system. It extends over a 13.6-km2 area and includes three layers: (1) a base layer with inflow; (2) a geothermal reservoir; and (3) an upper layer with discharge and recharge/infiltration areas. Using the computer program iTOUGH2 (Finsterle, 2004), the model is calibrated to a total of 13,675 calibration points, combining natural-state and 1960-2006 exploitation data. The principal model parameters identified and estimated by inverse modeling include the fracture permeability and fracture porosity of the geothermal reservoir, the initial natural upflow rate, the base-layer porosity, and the permeabilities of the infiltration zones. Heat and mass balances derived from the calibrated model helped identify the sources of the geothermal reserves in the field. With the addition of five makeup wells, simulation forecasts for the 2007-2032 period predict a sustainable average steam production of 29 kg/s, which is sufficient to maintain the generation of 6.8 MWe at the Pauzhetsky power plant.

  5. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-07-01

    The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field.

  6. Mapping the Geothermal System Using AMT and MT in the Mapamyum (QP Field, Lake Manasarovar, Southwestern Tibet

    Directory of Open Access Journals (Sweden)

    Lanfang He

    2016-10-01

    Full Text Available Southwestern Tibet plays a crucial role in the protection of the ecological environment and biodiversity of Southern Asia but lacks energy in terms of both power and fuel. The widely distributed geothermal resources in this region could be considered as potential alternative sources of power and heat. However, most of the known geothermal fields in Southwestern Tibet are poorly prospected and currently almost no geothermal energy is exploited. Here we present a case study mapping the Mapamyum (QP geothermal field of Southwestern Tibet using audio magnetotellurics (AMT and magnetotellurics (MT methods. AMT in the frequency range 11.5–11,500 Hz was used to map the upper part of this geothermal reservoir to a depth of 1000 m, and MT in the frequency range 0.001–320 Hz was used to map the heat source, thermal fluid path, and lower part of the geothermal reservoir to a depth greater than 1000 m. Data from 1300 MT and 680 AMT stations were acquired around the geothermal field. Bostick conversion with electromagnetic array profiling (EMAP filtering and nonlinear conjugate gradient inversion (NLCGI was used for data inversion. The AMT and MT results presented here elucidate the geoelectric structure of the QP geothermal field, and provide a background for understanding the reservoir, the thermal fluid path, and the heat source of the geothermal system. We identified a low resistivity anomaly characterized by resistivity in the range of 1–8 Ω∙m at a depth greater than 7 km. This feature was interpreted as a potential reflection of the partially melted magma in the upper crust, which might correlate to mantle upwelling along the Karakorum fault. It is likely that the magma is the heat source of the QP geothermal system, and potentially provides new geophysical evidence to understand the occurrence of the partially melted magmas in the upper crust in Southwestern Tibet.

  7. Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon

    Science.gov (United States)

    Edwards, J. H.; Faulds, J. E.

    2012-12-01

    Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks

  8. Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Adams, A.; Dennis, B.; Van Eeckhout, E.; Goff, F.; Lawton, R.; Trujillo, P.E.; Counce, D.; Archuleta, J. (Los Alamos National Lab., NM (USA)); Medina, V. (Instituto Nacional de Electrificacion, Guatemala City (Guatemala). Unidad de Desarollo Geotermico)

    1991-07-01

    The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions were conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.

  9. El Centro Geothermal Utility Core Field Experiment environmental-impact report and environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    The City of El Centro is proposing the development of a geothermal energy utility core field experiment to demonstrate the engineering and economic feasibility of utilizing moderate temperature geothermal heat, on a pilot scale, for space cooling, space heating, and domestic hot water. The proposed facility is located on part of a 2.48 acre (1 hectare) parcel owned in fee by the City in the southeastern sector of El Centro in Imperial County, California. Geothermal fluid at an anticipated temperature of about 250/sup 0/F (121/sup 0/C) will heat a secondary fluid (water) which will be utilized directly or processed through an absorption chiller, to provide space conditioning and water heating for the El Centro Community Center, a public recreational facility located approximately one-half mile north of the proposed well site. The geothermal production well will be drilled to 8500 feet (2590m) and an injection well to 4000 feet (1220m) at the industrially designated City property. Once all relevant permits are obtained it is estimated that site preparation, facility construction, the completion and testing of both wells would be finished in approximately 26 weeks. The environmental impacts are described.

  10. Fracture mapping in geothermal fields with long-offset induction logging

    Energy Technology Data Exchange (ETDEWEB)

    Wilt, M.; Takasugi, Shinji; Uchida, Toshihiro [and others

    1997-12-31

    The mapping of producing fractures in a geothermal field is an important technical objective in field development. Locating, orienting, and assessing producing fractures can guide drilling programs and optimize the placement of production and injection wells. A long-offset multicomponent borehole induction resistivity tool capable of surviving the high temperatures encountered in geothermal wells has recently been developed in a NEDO project, {open_quotes}Deep-Seated Geothermal Reservoirs,{close_quotes} and tested in a high temperature environment. Several characteristics of this device make it ideal for detecting producing fractures. Whereas commercial induction logging devices have source-receiver separations of 1 m, this device has multiple sensors with separations up to 8 m, allowing for deeper penetration and the ability to straddle fracture-induced washout zones in boreholes. The three-component measurements also make it possible to map the strike and inclination of nearby fractures and other three-dimensional structures. This, in turn, allows for accurate projection of these structures into the space between wells. In this paper, we describe the design of the tool and show results of a performance test carried out in an oil-field steam flood. Data from vertical sensors are compared to conventional logging results and indicate the recent formation of a low-resistivity zone associated with high temperatures due to steam flood breakthrough. Horizontal field data indicate that the high-temperature zone is irregular in the vicinity of the borehole and more pronounced closest to the steam injector.

  11. Use of high-resolution satellite images for detection of geological structures related to Calerias geothermal field, Chile

    Science.gov (United States)

    Arellano-Baeza, A. A.; Urzua, L.

    2011-12-01

    Chile has enormous potential to use the geothermal resources for electric energy generation. The main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT and ASTER satellites have been used to delineate the geological structures related to the Calerias geothermal field located at the northern end of the Southern Volcanic Zone of Chile. It was done by applying the lineament extraction technique developed by authors. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields.

  12. Coseismic Slip Deficit of the 2017 Mw 6.5 Ormoc Earthquake That Occurred Along a Creeping Segment and Geothermal Field of the Philippine Fault

    Science.gov (United States)

    Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang

    2018-03-01

    Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.

  13. 3-D seismic velocity and attenuation structures in the geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  14. Simulation of the Heber geothermal field, a TOUGH2/PC application

    Energy Technology Data Exchange (ETDEWEB)

    Antunez, E.; Lippmann, M. [Lawrence Berkeley Laboratory, Berkeley, CA (United States); Ali Khan, M. [California Department of Conservation, Santa Rosa, CA (United States)

    1995-03-01

    A numerical simulation model for the Heber geothermal field in southern California is being developed under a technology transfer agreement between the Department of Energy/LBL and the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources (Division). The two objectives of the cooperation are: (1) to train Division personnel in the use of the TOUGH2/PC computer code; and (2) to develop a module compatible with TOUGH2 to investigate the effects of production/injection operations on the ground surface subsidence-rebound phenomenon observed in the field. The compaction of the rock formation will be handled assuming an elastic behavior of the rock-fluid system. Considered will be changes in pore volume and in-grid block dimensions, as well as, the process by which the change in formation volume is transmitted to the surface (vertical deformation; subsidence and rebound).

  15. Shallow geothermal field in Lanzarote (Canary Island). Potential evaluation and heat extraction test

    Energy Technology Data Exchange (ETDEWEB)

    Diez-Gil, J.L.; Valentin, A. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain); Torres, F. [Universidad de Barcelona (Spain); Albert, J.F.

    1994-12-31

    Boreholes were used to perform various experiments. A thermometry was carried out, as well as chemical analysis and an hydrodynamic modelling. This paper presents the scientific aims and conclusions of the whole project called ``Shallow H.D.R. geothermal field`` in Lanzarote (Canary Islands). Potential evaluation and heat extraction test are presented. (Project JOUG-0004 ES -JR - JOULE Program of the EEC). (TEC). 2 tabs.

  16. Microearthquake Study of the Salton Sea Geothermal Field, California: Evidence of Stress Triggering

    International Nuclear Information System (INIS)

    Holland, Austin A.

    2002-01-01

    A digital network of 24 seismograph stations was operated from September 15, 1987 to September 30, 1988, by Lawrence Livermore National Laboratory and Unocal as part of the Salton Sea Scientific Drilling Project to study seismicity related to tectonics and geothermal activity near the drilling site. More than 2001 microearthquakes were relocated in this study in order to image any pervasive structures that may exist within the Salton Sea geothermal field. First, detailed velocity models were obtained through standard 1-D inversion techniques. These velocity models were then used to relocate events using both single event methods and Double-Differencing, a joint hypocenter location method. An anisotropic velocity model was built from anisotropy estimates obtained from well logs within the study area. During the study period, the Superstition Hills sequence occurred with two moderate earthquakes of MS 6.2 and MS 6.6. These moderate earthquakes caused a rotation of the stress field as observed from the inversion of first motion data from microearthquakes at the Salton Sea geothermal field. Coulomb failure analysis also indicates that microearthquakes occurring after the Superstition Hills sequence are located within a region of stress increase suggesting stress triggering caused by the moderate earthquakes

  17. Origin of rainwater acidity near the Los Azufres geothermal field, Mexico

    International Nuclear Information System (INIS)

    Verma, M.P.; Arellano, V.; Quijano, J.L.; Johnson, C.; Gerardo, J.Y.

    2000-01-01

    The chemical and isotopic compositions of rainwater were monitored at Los Azufres geothermal field (88 MWe) and its surroundings during May-September 1995, which is the rainy season. Samples were collected from eight sites: three within the field, three in its surroundings and two sufficiently far from the field such that they have no geothermal input. The concentrations of Cl - , SO 4 2- and NO 3 - were measured in about 350 samples and found to be generally - , SO 4 2- and delta 34 S also suggests an industrial source for the rainwater sulfur. The determination of pH was found to be necessary, but is not sufficient to characterize rainwater acidity. The Gran titration method was used to determine alkalinity with respect to equivalence point of H 2 CO 3 * . Values of alkalinity were found to range from 10 -4 to 10 -6 eq/L, and were negative only for some samples from Vivero and Guadalajara. Thus, SO 4 2- and NO 3 - are in general not in acidic form (i.e. balanced by Na + Ca 2+ etc. rather than H + ). Sulfate delta 34 S values were about -1.5 per mille in Los Azufres and its surroundings, and in Morelia, but differed from the value of -0.2 per mille for Guadalajara. The delta 34 S values for H 2 S from the Los Azufres geothermal wells are in the range -3.4 to 0.0 per mille. Thedelta 34 S ranges for the natural and anthropogenic sources for environmental sulfur overlap, making it difficult to differentiate between the contribution of different sources. However, a similarity of values of delta 34 S at Los Azufres and Morelia (85km distant) suggest a regional source of sulfate that is not associated with geothermal emissions from Los Azufres. (Author)

  18. Three-dimensional Magnetotelluric Characterization of the Xinzhou Geothermal Field, Southeastern China

    Science.gov (United States)

    Han, Q.; Hu, X.; Cai, J.; Wei, W.

    2016-12-01

    Xinzhou geothermal field is located in the Guangdong province and adjacent to the China South Sea, and its hot springs can reach up to 92 degree Celsius. Yanshanian granite expose widely in the south of this geothermal field and four faults cut across each other over it. A dense grid of 176 magnetotelluric (MT) sites with broadband has been acquired over the Xinzhou geothermal field and its surrounding area. Due to the related electromagnetic (EM) noise one permanent observatory was placed as a remote reference to suppress this cultural EM noise interference. The datasets are processed using the mutual reference technique, static shift correction, and structural strike and dimensionality analysis based on tensor decomposition. Data analysis reveals that the underground conductivity structure has obvious three-dimensional characterization. For the high resolution result ,two and three dimensional inversion are both applied in this area employing the non-linear conjugate gradient method (NLCG).These MT data sets are supposed to detect the deep subsurface resistivity structure correlated to the distribution of geothermal reservoir (such as faults and fractured granite) and investigate the channel of the upwelling magma. The whole and cold granite usually present high resistivity but once it functions as reservoir the resistivity will decrease, sometimes it is hard to separate the reservoir from the cap layer. The 3D inversion results delineate three high resistivity anomalies distributed in different locations. At last we put forward that the large areas of granite form the major thermal source for the study area and discuss whether any melt under these magma intrusions exists.

  19. Monitoring production using surface deformation: the Hijiori test site and the Okuaizu geothermal field

    International Nuclear Information System (INIS)

    Vasco, D.W.; Karasaki, Kenzi

    2002-01-01

    Production in geothermal reservoirs often leads to observable surface displacement. As shown in this paper, there is a direct relationship between such displacement and reservoir dynamics. This relationship is exploited in order to image fluid flow at two geothermal field sites. At the first locality, the Hijiori Hot Dry Rock (HDR) test site, 17 tilt meters record deformation associated with a 2.2 km deep injection experiment. Images of fluid migration along a ring fracture system of the collapsed Hijiori caldera are obtained. At the Okuaizu geothermal field, leveling and tilt meter data provide constraints on long- and short-term fluid movement within the reservoir. A set of 119 leveling data suggest that the north-to-northeast trending Takiyagawa fault acts as a barrier to flow. The northwesterly oriented Chinoikezawa and Sarukurazawa faults appear to channel fluid from the southeast. The tilt data from Okuaizu indicate that a fault paralleling the Takiyagawa fault zone acts as a conduit to transient flow, on a time scale of several weeks. The volume strain in a region adjacent to the injection wells reaches a maximum and then decreases with time. The transient propagation of fluid along the fault may be due to pressure build-up, resulting from the re-initiation of injection. (author)

  20. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.

  1. Hydro-geochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central Mexico

    International Nuclear Information System (INIS)

    Gonzalez-Partida, E.; Carrillo-Chavez, A.; Levresse, G.; Tello-Hinojosa, E.; Venegas-Salgado, S.; Ramirez-Silva, G.; Pal-Verma, M.; Tritlla, J.; Camprubi, A.

    2005-01-01

    Hydrothermal alteration at Los Azufres geothermal field is mostly propylitic with a progressive dehydration with depth and temperature increase. Argillic and advanced argillic zones overlie the propylitic zone owing to the activity of gases in the system. The deepest fluid inclusions (proto-fluid) are liquid-rich with low salinity, with NaCl dominant fluid type and ice melting temperatures (T mi ) near zero (0 deg C), and salinities of 0.8 wt% NaCl equivalent. The homogenization temperature (T h ) = 325 ± 5 deg C. The boiling zone shows T h = ±300 deg C and apparent salinities between 1 and 4.9 wt% NaCl equivalent, implying a vaporization process and a very important participation of non-condensable gases (NCGs), mostly CO 2 . Positive clathrate melting temperatures (fusion) with T h = 150 deg C are observed in the upper part of the geothermal reservoir (from 0 to 700 m depth). These could well be the evidence of a high gas concentration. The current water produced at the geothermal wells is NaCl rich (geothermal brine) and is fully equilibrated with the host rock at temperatures between T = 300 and 340 deg C. The hot spring waters are acid-sulfate, indicating that they are derived from meteoric water heated by geothermal steam. The NCGs related to the steam dominant zone are composed mostly of CO 2 (80-98% of all the gases). The gases represent between 2 and 9 wt% of the total mass of the fluid of the reservoir. The authors interpret the evolution of this system as deep liquid water boiling when ascending through fractures connected to the surface. Boiling is caused by a drop of pressure, which favors an increase in the steam phase within the brine ascending towards the surface. During this ascent, the fluid becomes steam-dominant in the shallowest zone, and mixes with meteoric water in perched aquifers. Stable isotope compositions (δ 18 O-δD) of the geothermal brine indicate mixing between meteoric water and a minor magmatic component. The enrichment in δ 18

  2. Relationship between water chemistry and sediment mineralogy in the Cerro Prieto geothermal field: a preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Valette-Silver, J.N. (Univ. de Perpignan, France); Thompson, J.M.; Ball, J.W.

    1981-01-01

    The chemical compositions of waters collected from the Cerro Prieto geothermal production wells and hydrothermal emanations are different. Compared to the Cerro Prieto well waters, the surficial waters generally contain significantly less potassium, slightly less calcium and chloride, and significantly more magnesium and sulfate. In comparison to the unaltered sediments, the changes in the mineralogy of the altered sediments appear to be controlled by the type of emanation (well, spring, mud pot, geyser, fumarole, or cold pool). However, an increase in quartz and potassium feldspar percentages seems to be characteristic of the majority of the sediments in contact with geothermal fluids. Preliminary attempts to model the chemical processes occurring in the Cerro Prieto geothermal field using chemical equilibrium calculations are reported. For this purpose the chemical compositions of thermal waters (well and surficial emanation) were used as input data to make calculations with SOLMNEQ and WATEQ2 computer programs. Then the theoretical mineral composition of altered sediments was predicted and compared to the mineralogy actually observed in the solid samples.

  3. A method of fundamental solutions in poroelasticity to model the stress field in geothermal reservoirs

    CERN Document Server

    Augustin, Matthias Albert

    2015-01-01

    This monograph focuses on the numerical methods needed in the context of developing a reliable simulation tool to promote the use of renewable energy. One very promising source of energy is the heat stored in the Earth’s crust, which is harnessed by so-called geothermal facilities. Scientists from fields like geology, geo-engineering, geophysics and especially geomathematics are called upon to help make geothermics a reliable and safe energy production method. One of the challenges they face involves modeling the mechanical stresses at work in a reservoir. The aim of this thesis is to develop a numerical solution scheme by means of which the fluid pressure and rock stresses in a geothermal reservoir can be determined prior to well drilling and during production. For this purpose, the method should (i) include poroelastic effects, (ii) provide a means of including thermoelastic effects, (iii) be inexpensive in terms of memory and computational power, and (iv) be flexible with regard to the locations of data ...

  4. High radiogenic heat-producing Caenozoic granites: implications for the origin of Quman geothermal field in Taxkorgan, northwestern China

    Science.gov (United States)

    Shuai, W.; Shihua, Q.

    2017-12-01

    As a new found geothermal field, Quman geothermal field (Taxkorgan, China) holds a wellhead temperature of 144 ° and a shallow buried depth of heat reservoir. The heat source of the geothermal field is thought to be the heat flow from the upper mantle, which is disputable with the average Pamir Moho depth of 70 km. The new geochemical data of Taxkorgan alkaline complex, which is located to the west of the geothermal field and is exposed for 60 km along the western side of the Taxkorgan Valley, shed a light on the origin of Quman geothermal field. Together with the lithological association, the geochemical results present that Taxkorgan alkaline complex are mainly composed of alkaline syenites and subalkaline granitoids. Based on the contents of Th, U and K of 25 rock samples, the average radioactive heat generation of the complex (9.08 μW/m3) is 2 times of the standard of high heat production granites (HHPGs) (5 μW/m3), and 4 times of the average upper continental crust (UCC) heat production (2.7 μW/m3). According to U-Pd dating of zircon in aegirine-augite syenite, the crystallization age of the complex is 11 Ma. The complex has incompatible element abundances higher than generally observed for the continental crust, therefore a mantle source should be considered. The results of apatite fission track ange and track length of the complex indicate a low uplift rate (0.11 mm/a) in 3 5 Ma and a high uplift rate (2 3 mm/a) since ca. 2Ma, which indicates a low exposed age of the complex. Therefore, combined with previous studies, we propose that radioactive heat production of the complex and afterheat of magma cooling are the heat source of Quman geothermal field. With a shallow buried heat source, the geothermal field is potential for EGS development.

  5. Characterization of Hydrologic and Thermal Properties at Brady Geothermal Field, NV

    Science.gov (United States)

    Patterson, J.; Cardiff, M. A.; Lim, D.; Coleman, T.; Wang, H. F.; Feigl, K. L.

    2017-12-01

    Understanding and predicting the temperature evolution of geothermal reservoirs is a primary focus for geothermal power plant operators ensuring continued financial sustainability of the resource. Characterization of reservoir properties - such as thermal diffusivity and hydraulic conductivity - facilitates modeling efforts to develop a better understanding of temperature evolution. As part of the integrated "PoroTomo" experiment, borehole pressure measurements were collected in three monitoring wells of various depths under varying operational conditions at the Brady Geothermal Field near Reno, NV. During normal operational conditions, a vertical profile of borehole temperature to 330 m depth was collected using distributed temperature sensing (DTS) for a period of 5 days. Borehole pressure data indicates 2D flow and shows rapid responses to changes in pumping /injection rates, likely indicating fault-dominated flow. The temperature data show that borehole temperature recovery following cold water slug injection is variable with depth. Late time vertical temperature profiles show the borehole following a shallow geotherm to a depth of approximately 275 meters, below which the temperature declines until a depth of approximately 320 meters, with a stable zone of cold water forming below this, possibly indicating production-related thermal drawdown. A validated heat transfer model is used in conjunction with the temperature data to determine depth-dependent reservoir thermal properties. Hydraulic reservoir properties are determined through inversion of the collected pressure data using MODFLOW. These estimated thermal and hydraulic properties are synthesized with existing structural and stratigraphic datasets at Brady. The work presented herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award Number DE-EE0006760.

  6. Geologic structure and volcanic history of the Yanaizu-Nishiyama (Okuaizu) geothermal field, Northeast Japan

    Energy Technology Data Exchange (ETDEWEB)

    Mizugaki, Keiko [Geological Survey of Japan, Geothermal Research Dept., Higashi Tsukuba (Japan)

    2000-04-01

    The Yanaizu-Nishiyama geothermal field, also known as Okuaizu, supports a 65 MWe geothermal power station. It is located in the western part of Fukushima Prefecture, northeast Japan. This field is characterised by rhyolitic volcanism of about 0.3-0.2 Ma that formed Sunagohara volcano. Drillcore geology indicates that volcanism began with a caldera-forming eruption in the center of this field, creating a 2-km-diameter funnel-shaped caldera. Subsequently, a fault-bounded block including this caldera subsided to form a 5-km-wide lake that accumulated lake sediments. Post-caldera volcanism formed lava domes and intrusions within the lake, and deposited ash-flow tuffs in and around the lake. The hydrothermal system of this field is strongly controlled by subvertical faults that have no relation to the volcanism. The principal production zone occurs at a depth of 1.0-2.6 km within fractured Neogene formations along two northwest-trending faults to the southeast of the caldera. These faults also formed fracture zones in the lake sediments, but there was no apparent offset of the sediments. Stratigraphic studies suggest that post-caldera activities of Sunagohara volcano have migrated southeastward to the present high-temperature zone. The source magma of Sunagohara volcano may contribute to the thermal potential of this field. (Author)

  7. Identification of natural fractures and in situ stress at Rantau Dedap geothermal field

    Science.gov (United States)

    Artyanto, Andika; Sapiie, Benyamin; Idham Abdullah, Chalid; Permana Sidik, Ridwan

    2017-12-01

    Rantau Dedap Area is a geothermal field which is located in Great Sumatra Fault (GSF). The fault and fracture are main factor in the permeability of the geothermal system. However, not all faults and fractures have capability of to flow the fluids. Borehole image log is depiction of the borehole conditions, it is used to identify the natural fractures and drilling induced fracture. Both of them are used to identify the direction of the fracture, direction of maximum horizontal stress (SHmax), and geomechanics parameters. The natural fractures are the results of responses to stress on a rock and permeability which controlling factor in research area. Breakouts is found in this field as a trace of drilling induced fracture due to in situ stress work. Natural fractures are strongly clustered with true strike trending which first, second, and third major direction are N170°E - N180°E (N-S), N60°E - N70°E (NE-SW), and N310°E - N320°E (NW-SE), while the dominant dip is 80° -90°. Based on borehole breakout analysis, maximum horizontal stress orientation is identified in N162°E - N204°E (N-S) and N242°E (NE-SW) direction. It’s constantly similar with regional stress which is affected by GSF. Several parameters have been identified and analyzed are SHmax, SHmin, and Sy. It can be concluded that Rantau Dedap Geothermal Field is affected by strike-slip regime. The determination of in situ stress and natural fractures are important to study the pattern of permeability which is related to the fault in reservoir of this field.

  8. Probabilistic approach of resource assessment in Kerinci geothermal field using numerical simulation coupling with monte carlo simulation

    Science.gov (United States)

    Hidayat, Iki; Sutopo; Pratama, Heru Berian

    2017-12-01

    The Kerinci geothermal field is one phase liquid reservoir system in the Kerinci District, western part of Jambi Province. In this field, there are geothermal prospects that identified by the heat source up flow inside a National Park area. Kerinci field was planned to develop 1×55 MWe by Pertamina Geothermal Energy. To define reservoir characterization, the numerical simulation of Kerinci field is developed by using TOUGH2 software with information from conceptual model. The pressure and temperature profile well data of KRC-B1 are validated with simulation data to reach natural state condition. The result of the validation is suitable matching. Based on natural state simulation, the resource assessment of Kerinci geothermal field is estimated by using Monte Carlo simulation with the result P10-P50-P90 are 49.4 MW, 64.3 MW and 82.4 MW respectively. This paper is the first study of resource assessment that has been estimated successfully in Kerinci Geothermal Field using numerical simulation coupling with Monte carlo simulation.

  9. Estimation of tritium radiotracer activity for interconnection study in geothermal field

    International Nuclear Information System (INIS)

    Rasi Prasetio; Satrio

    2016-01-01

    Tritium radiotracer (3H) has been applied widely in many geothermal fields around the world. This application was done by injecting radiotracer with certain amount of activity into reinjection well in order to investigate interconnection between reinjection well with surrounding production wells. The activity of injected radiotracer must meets the field condition and the volume of reservoir, detection limit of instrument, as well as safety aspect for the workers and environment from radioactive hazard. The planning of injection process must consider the maximum permissible concentration (MPC) and minimum detection limit (MDL). Based on calculation, tritium radiotracer injection in Kamojang geothermal field can be done with minimal activity of 0.15 Ci and maximum 22100 Ci, while in Lahendong field minimum activity of 0.65 Ci and maximum 7230 Ci. In these two injection studies, tritium was detected in monitoring wells between MDL and MPC limit. By using this estimation calculation, the activity of tritium that released into the environment within safety limit, thus monitoring wells with undetectable tritium infer no connectivity between those wells with reinjection well. (author)

  10. The characteristics of geothermal field of Qiabuqia town in Gonghe basin, northeastern Tibetan Plateau

    Science.gov (United States)

    Zhang, C.; Shi, Y.; Jiang, G.

    2017-12-01

    Located in the northeastern margin of Gonghe basin, Qiabuqia town displays the most potential of hot dry rock geothermal resources exploration and development in China so far. Although large quantities of geophysical exploration work have been down since 2013, the study of present geothermal field is almost empty, which is seriously restricting the evaluation and utilization of geothermal resources in Qiabuqia town. This study is to revel the geothermal characteristics of four hot dry rock boreholes (DR4, DR3, GR1 and GR2) though continuous steady temperature logging and thermal conductivity measurements of core samples. The main stratum of study area are Indosinian granitic rocks (below 1400 m) which is overlain by thick Paleogene, Neogene and Quaternary lacustrine strata (0 1400 m). Continuous temperature logs display that the bottom hole temperature of DR3 borehole is up to 180 oC at the depth of 3000 m and it is the first successfully verification of the existence of hot dry rock geothermal resources in China. The temperature gradients of these for boreholes are obtained by the linear least squares regression method and it turns out that the temperature gradient varies from 38 to 45.2 oC • km-1 with an average of 40.4 oC • km-1. Average thermal conductivity of bedrocks ranges from 2.07 to 3.10 W/(m • K) with an mean of 2.52 W/(m • K). Heat flow values are calculated as the product of least-square thermal gradients and corresponding thermal conductivity. By the result of the calculation, the heat flow are 98.9 mW • m-2, 114.7 mW • m-2, 96.2 mW • m-2, 97.8 mW • m-2 for DR4, DR3, GR1 and GR2 borehole, respectively. Compared to the adjacent Qaidam basin, Sichuan basin and Ordos basin, the study area appear to be a thermal abnormal area with high temperature gradient and high heat flow.

  11. Rapid high temperature field test method for evaluation of geothermal calcite scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.

    1982-08-01

    A test method is described which allows the rapid field testing of calcite scale inhibitors in high- temperature geothermal brines. Five commercial formulations, chosen on the basis of laboratory screening tests, were tested in brines with low total dissolved solids at ca 500 F. Four were found to be effective; of these, 2 were found to be capable of removing recently deposited scale. One chemical was tested in the full-flow brine line for 6 wks. It was shown to stop a severe surface scaling problem at the well's control valve, thus proving the viability of the rapid test method. (12 refs.)

  12. Trace element hydrochemistry indicating water contamination in and around the Yangbajing geothermal field, Tibet, China.

    Science.gov (United States)

    Guo, Qinghai; Wang, Yanxin

    2009-10-01

    Thirty-eight water samples were collected at Yangbajing to investigate the water contamination resulting from natural geothermal water discharge and anthropogenic geothermal wastewater drainage. The results indicate that snow or snow melting waters, Yangbajing River waters and cold groundwaters are free from geothermal water-related contamination, whereas Zangbo river waters are contaminated by geothermal wastewaters. Moreover, there may exist geothermal springs under the riverbed of a tributary stream of Zangbo River as shown by its Cd, Li, Mo and Pb concentrations. The efforts made in this study show trace element hydrochemistry can well indicate water quality degradation related to geothermal water exploitation.

  13. Guidebook to Geothermal Finance

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  14. Analysis of influencing factors of production performance of enhanced geothermal system: A case study at Yangbajing geothermal field

    International Nuclear Information System (INIS)

    Zeng, Yuchao; Tang, Liansheng; Wu, Nengyou; Cao, Yifei

    2017-01-01

    Deep geological exploration indicates that there is a high-temperature fractured granite reservoir at depth of 950–1350 m in well ZK4001 in the north of Yangbajing geothermal field, with an average temperature of 248 °C and a pressure within 8.01–11.57 MPa. In this work we established a conceptual and numerical model of this granite reservoir, evaluated heat production and electricity generation potential from this fractured reservoir by means of numerical simulation, and analyzed main factors affecting the heat production performance. The results indicate that in the reference case the system attains an electric power of 29.5–25.1 MW, a reservoir impedance of 0.12–0.21MPa/(kg/s), a pump power of 0.7–1.6 MW and an energy efficiency of 41.1–15.7 during a 50 year period. Main factors affecting the electric power are water production rate and injection temperature. Main factors affecting the reservoir impedance are the reservoir permeability, the water production rate and the injection temperature. Main factors affecting the pump power are the reservoir permeability, the water production rate and the injection temperature. Main factors affecting the energy efficiency are the reservoir permeability, the water production rate and the injection temperature. Within certain ranges main measures to improve the reservoir performance are to increase the reservoir permeability or adopt more reasonable water production rate and injection temperature. - Highlights: • We established a numerical model of the 950–1350 m fractured granite reservoir. • Desirable electricity production performance can be obtained under suitable conditions. • The system attains an electric power of 29.5–25.1 MW with an efficiency of about 41.1–15.7. • Electric power mainly depends on water production rate and injection temperature. • Higher permeability within a certain range is favorable for electricity generation.

  15. A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    Brian P. Hedlund

    2012-05-01

    Full Text Available The Rehai Geothermal Field, located in Tengchong County, in central-western Yunnan Province, is the largest and most intensively studied geothermal field in China. A wide physicochemical diversity of springs (ambient to ∼97 °C; pH from ≤1.8 to ≥9.3 provides a multitude of niches for extremophilic microorganisms. A variety of studies have focused on the cultivation, identification, basic physiology, taxonomy, and biotechnological potential of thermophilic microorganisms from Rehai. Thermophilic bacteria isolated from Rehai belong to the phyla Firmicutes and Deinococcus-Thermus. Firmicutes include neutrophilic or alkaliphilic Anoxybacillus, Bacillus, Caldalkalibacillus, Caldanaerobacter, Laceyella, and Geobacillus, as well as thermoacidophilic Alicyclobacillus and Sulfobacillus. Isolates from the Deinococcus-Thermus phylum include several Meiothermus and Thermus species. Many of these bacteria synthesize thermostable polymer-degrading enzymes that may be useful for biotechnology. The thermoacidophilic archaea Acidianus, Metallosphaera, and Sulfolobus have also been isolated and studied. A few studies have reported the isolation of thermophilic viruses belonging to Siphoviridae (TTSP4 and TTSP10 and Fuselloviridae (STSV1 infecting Thermus spp. and Sulfolobus spp., respectively. More recently, cultivation-independent studies using 16S rRNA gene sequences, shotgun metagenomics, or “functional gene” sequences have revealed a much broader diversity of microorganisms than represented in culture. Studies of the gene and mRNA encoding the large subunit of the ammonia monooxygenase (amoA of ammonia-oxidizing Archaea (AOA and the tetraether lipid crenarchaeol, a potential biomarker for AOA, suggest a wide diversity, but possibly low abundance, of thermophilic AOA in Rehai. Finally, we introduce the Tengchong Partnerships in International Research and Education (PIRE project, an international collaboration between Chinese and U.S. scientists with

  16. Geothermal and volcanism in west Java

    Science.gov (United States)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  17. Mining on the Mesa

    Energy Technology Data Exchange (ETDEWEB)

    Sprouls, M.W.

    1994-10-01

    Peabody Western Coal Co. is the owner of Black Mesa and Kayenta coal opencast mines, both sited on Hopi and Navajo lands. 93% of the employees are native American, mostly Navajo. Kayenta is the larger and extracts coal with draglines. Sulphur content is high so the coal has to be analyzed and carefully blended before use. Black Mesa also uses draglines, here quality control is not as important as it is at Kayenta. Coal is transported to power stations using slurry pipelines. Both mines are heavily involved in land reclamation, leaving a landscape that makes better grazing than it did before mining. 2 figs.

  18. Project Title: Geothermal Play Fairway Analysis of Potential Geothermal Resources in NE California, NW Nevada, and Southern Oregon: A Transition between Extension$-$Hosted and Volcanically$-$Hosted Geothermal Fields

    Energy Technology Data Exchange (ETDEWEB)

    McClain, James S. [Univ. of California, Davis, CA (United States). Dept. of; Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Glassley, William [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Schiffman, Peter [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zierenberg, Robert [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zhang, Yingqi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siler, Drew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gasperikova, Erika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spycher, Nicolas F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-30

    Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.

  19. Integrated geophysical investigations in the Hisar geothermal field, Demirci, western Turkey

    Energy Technology Data Exchange (ETDEWEB)

    OEzuerlan, Guelcin [Istanbul Technical University, Maslak, Istanbul (Turkey). Faculty of Mines, Geophysical Engineering Department; Sahin, M. Huedavendigar [Department of Geophysics, General Directorate of Mineral Research and Exploration (MTA), Ankara (Turkey)

    2006-04-15

    The shallow, low-temperature geothermal field of Hisar, in western Turkey, was studied by means of vertical electrical sounding (VES), Wenner, self-potential (SP) and very low-frequency electromagnetic (VLF-EM) profiling surveys. The VES survey, conducted along the valley in an E-W direction, provided lithological and structural information that is in good agreement with the well data, and suggests that the field is characterized by low-resistivity values (=30Om). Because the resistivity structure in a N-S direction could not be investigated due to the rough topography towards the north, SP, Wenner and VLF-EM measurements were made to identify and characterize a possible hot-fluid carrying fault/fracture zone that forms one of the boundaries of the valley. There is a good correlation between the results of the SP, VLF-EM and Wenner surveys, which confirm the existence of the NE-SW striking fault zone that had been inferred from geologic information. Tensional fractures that developed perpendicular to the fault zone were also identified. Consistent with the results of the SP and Wenner profilings, the two-dimensional model derived from VLF-EM data and a Karous-Hjelt current density pseudo-section detected the conductive fault zones bearing the geothermal fluids. (author)

  20. Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, southern China

    Science.gov (United States)

    Bai, Denghai; Meju, Maxwell A.; Liao, Zhijie

    2001-12-01

    Broadband (0.004-4096s) magnetotelluric (MT) soundings have been applied to the determination of the deep structure across the Rehai geothermal field in a Quaternary volcanic area near the Indo-Eurasian collisional margin. Tensorial analysis of the data show evidence of weak to strong 3-D effects but for approximate 2-D imaging, we obtained dual-mode MT responses for an assumed strike direction coincident with the trend of the regional-scale faults and with the principal impedance azimuth at long periods. The data were subsequently inverted using different approaches. The rapid relaxation inversion models are comparable to the sections constructed from depth-converted invariant impedance phase data. The results from full-domain 2-D conjugate-gradient inversion with different initial models are concordant and evoke a picture of a dome-like structure consisting of a conductive (50-1000 Ωm) cap which is about 5-6km thick in the central part of the known geothermal field and thickens outwards to about 15-20km. The anomalous structure rests on a mid-crustal zone of 20-30 Ωm resistivity extending down to about 25km depth where there appears to be a moderately resistive (>30 Ωm) substratum. The MT images are shown to be in accord with published geological, isotopic and geochemical results that suggested the presence of a magma body underneath the area of study.

  1. Icelandic basaltic geothermal field: A natural analog for nuclear waste isolation in basalt

    International Nuclear Information System (INIS)

    Ulmer, G.C.; Grandstaff, D.E.

    1984-01-01

    Analog studies of Icelandic geothermal fields have shown that the design of nuclear waste repositories in basalt can benefit by comparison to the data base already available from the development of these geothermal fields. A high degree of similarity exists between these two systems: their petrology, groundwater geochemistry, mineral solubilities, hydrologic parameters, temperature ranges, water-rock redox equilibria, hydrothermal pH values, and secondary mineralogies all show considerable overlap in the range of values. The experimentally-simulated hydrothermal studies of the basaltic nuclear waste repository rocks have, at this time, produced a data base that receives a strong confirmation from the Icelandic analog. Furthermore, the Icelandic analog should eventually be employed to extrapolate into higher and lower temperatures, into longer time-base chemical comparisons, and into more realistic mineral deposition studies, than have been possible in the laboratory evaluations of the nuclear waste repository designs. This eventual use of the Icelandic analog will require cooperative work with the Icelandic Geological Survey. 46 refs., 4 figs., 2 tabs

  2. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California

    Science.gov (United States)

    Taira, Taka’aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes. PMID:29326977

  3. Optimization of Wellhead Piping Design for Production Wells at Development of Steam-Water Geothermal Fields

    Directory of Open Access Journals (Sweden)

    A.N. Shulyupin

    2017-03-01

    Full Text Available At present, the exploitation of geothermal resources develops in a fair competition with other types of energy resources. This leads to actuality of questions which associated with the more efficient use of existing wells, because cost of their drilling is a significant share of geothermal projects. In domestic practice of development of geothermal resources the steam-water wells have greatest energy potential. One way to improve the performance of these wells is a providing of smooth change of direction of motion of steam-water mixture from the vertical, in the well, to the horizontal, in steam gathering system. Typical wellhead piping of domestic steam-water wells involves the removal of the mixture through a cross bar at a right angle. Cross bar can generate considerable pressure loss that increases the operating pressure at the mouth of the well and reduces flow rate. It seems reasonable to substitute the typical cross bar by smooth pipe bend. This reduces wellhead resistance coefficient by more than on 2. Increase of curvature radius of pipe bend reduces the pressure loss to a local resistance but increases the friction pressure loss. There is an optimal curvature radius of pipe bend for minimum pressure loss in view of a local resistance and friction in the pipe bend. Calculations have shown that the optimum value for the radius of curvature is found in the range from 1.4 to 4.5 tube internal diameters. However, for technological reasons it is recommended to choose the radius of curvature from 1.4 to 2.4 diameters. Mounting of smooth pipe bend on the wellhead can provide significant economic benefits. For Mutnovka field (Kamchatka, this effect is estimated at 17.5 million rubles in year.

  4. PNAS Plus: Origin of first cells at terrestrial, anoxic geothermal fields

    Science.gov (United States)

    Mulkidjanian, Armen Y.; Bychkov, Andrew Yu.; Dibrova, Daria V.; Galperin, Michael Y.; Koonin, Eugene V.

    2012-04-01

    All cells contain much more potassium, phosphate, and transition metals than modern (or reconstructed primeval) oceans, lakes, or rivers. Cells maintain ion gradients by using sophisticated, energy-dependent membrane enzymes (membrane pumps) that are embedded in elaborate ion-tight membranes. The first cells could possess neither ion-tight membranes nor membrane pumps, so the concentrations of small inorganic molecules and ions within protocells and in their environment would equilibrate. Hence, the ion composition of modern cells might reflect the inorganic ion composition of the habitats of protocells. We attempted to reconstruct the "hatcheries" of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells. These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K+, Zn2+, Mn2+, and phosphate. Thus, protocells must have evolved in habitats with a high K+/Na+ ratio and relatively high concentrations of Zn, Mn, and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under the anoxic, CO2-dominated primordial atmosphere, the chemistry of basins at geothermal fields would resemble the internal milieu of modern cells. The precellular stages of evolution might have transpired in shallow ponds of condensed and cooled geothermal vapor that were lined with porous silicate minerals mixed with metal sulfides and enriched in K+, Zn2+, and phosphorous compounds.

  5. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California.

    Science.gov (United States)

    Taira, Taka'aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes.

  6. Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

  7. Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Trusdell, Frank A.; Moore, Richard B.

    2006-01-01

    K'lauea is an active shield volcano in the southeastern part of the Island of Hawai'i. The middle east rift zone (MERZ) map includes about 27 square kilometers of the MERZ and shows the distribution of the products of 37 separate eruptions during late Holocene time. Lava flows erupted during 1983-96 have reached the mapped area. The subaerial part of the MERZ is 3-4 km wide and about 18 km long. It is a constructional ridge, 50-150 m above the adjoining terrain, marked by low spatter ramparts and cones as high as 60 m. Lava typically flowed either northeast or southeast, depending on vent location relative to the topographic crest of the rift zone. The MERZ receives more than 100 in. of rainfall annually and is covered by tropical rain forest. Vegetation begins to grow on lava a few months after its eruption. Relative heights of trees can be a guide to relative ages of underlying lava flows, but proximity to faults, presence of easily weathered cinders, and human activity also affect the rate of growth. The rocks have been grouped into five basic age groups. The framework for the ages assigned is provided by eight radiocarbon ages from previous mapping by the authors and a single date from the current mapping effort. The numerical ages are supplemented by observations of stratigraphic relations, degree of weathering, soil development, and vegetative cover.

  8. Hydro-geochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Partida, E. [Centro de Geociencias, UNAM, Campus Juriquilla, A.P. 15, Juriquilla, Qro., 76230 (Mexico)]. E-mail: egp@geociencias.unam.mx; Carrillo-Chavez, A. [Centro de Geociencias, UNAM, Campus Juriquilla, A.P. 15, Juriquilla, Qro., 76230 (Mexico); Levresse, G. [Centro de Geociencias, UNAM, Campus Juriquilla, A.P. 15, Juriquilla, Qro., 76230 (Mexico); Tello-Hinojosa, E. [Comision Federal de Electricidad, A.P. 31-7, C.P. 58090 Morelia, Mich. (Mexico); Venegas-Salgado, S. [Comision Federal de Electricidad, A.P. 31-7, C.P. 58090 Morelia, Mich. (Mexico); Ramirez-Silva, G. [Comision Federal de Electricidad, A.P. 31-7, C.P. 58090 Morelia, Mich. (Mexico); Pal-Verma, M. [Instituto de Investigaciones Electricas, A.P. 1-475, C.P. 62001 Cuernavaca, Morelos (Mexico); Tritlla, J. [Centro de Geociencias, UNAM, Campus Juriquilla, A.P. 15, Juriquilla, Qro., 76230 (Mexico); Camprubi, A. [Centro de Geociencias, UNAM, Campus Juriquilla, A.P. 15, Juriquilla, Qro., 76230 (Mexico)

    2005-01-01

    Hydrothermal alteration at Los Azufres geothermal field is mostly propylitic with a progressive dehydration with depth and temperature increase. Argillic and advanced argillic zones overlie the propylitic zone owing to the activity of gases in the system. The deepest fluid inclusions (proto-fluid) are liquid-rich with low salinity, with NaCl dominant fluid type and ice melting temperatures (T{sub mi}) near zero (0 deg C), and salinities of 0.8 wt% NaCl equivalent. The homogenization temperature (T{sub h}) = 325 {+-} 5 deg C. The boiling zone shows T{sub h} = {+-}300 deg C and apparent salinities between 1 and 4.9 wt% NaCl equivalent, implying a vaporization process and a very important participation of non-condensable gases (NCGs), mostly CO{sub 2}. Positive clathrate melting temperatures (fusion) with T{sub h} = 150 deg C are observed in the upper part of the geothermal reservoir (from 0 to 700 m depth). These could well be the evidence of a high gas concentration. The current water produced at the geothermal wells is NaCl rich (geothermal brine) and is fully equilibrated with the host rock at temperatures between T = 300 and 340 deg C. The hot spring waters are acid-sulfate, indicating that they are derived from meteoric water heated by geothermal steam. The NCGs related to the steam dominant zone are composed mostly of CO{sub 2} (80-98% of all the gases). The gases represent between 2 and 9 wt% of the total mass of the fluid of the reservoir. The authors interpret the evolution of this system as deep liquid water boiling when ascending through fractures connected to the surface. Boiling is caused by a drop of pressure, which favors an increase in the steam phase within the brine ascending towards the surface. During this ascent, the fluid becomes steam-dominant in the shallowest zone, and mixes with meteoric water in perched aquifers. Stable isotope compositions ({delta}{sup 18}O-{delta}D) of the geothermal brine indicate mixing between meteoric water and a

  9. Reservoir Changes Derived from Seismic Observations at The Geysers Geothermal Field, CA, USA

    Science.gov (United States)

    Gritto, R.; Jarpre, S.

    2012-04-01

    Induced seismicity associated with the exploitation of geothermal fields is used as a tool to characterize and delineate changes associated with injection and production of fluids from the reservoir. At the same time public concern of felt seismicity has led to objections against the operation of geothermal reservoirs in close proximity to population centers. Production at the EGS sites in Basel (Switzerland) was stopped after renewed seismicity caused concern and objection from the public in the city. Operations in other geothermal reservoirs had to be scaled back or interrupted due to an unexpected increase in seismicity (Soultz-sous-forêt, France, Berlín, El Salvador). As a consequence of these concerns and in order to optimize the use of induced seismicity for reservoir engineering purposes, it becomes imperative to understand the relationship between seismic events and stress changes in the reservoir. We will address seismicity trends at The Geysers Geothermal Reservoir, CA USA, to understand the role of historical seismicity associated with past injection of water and/or production of steam. Our analysis makes use of a comprehensive database of earthquakes and associated phase arrivals from 2004 to 2011. A high-precision sub-set of the earthquake data was selected to analyze temporal changes in seismic velocities and Vp/Vs-ratio throughout the whole reservoir. We find relatively low Vp/Vs values in 2004 suggestive of a vapor dominated reservoir. With passing time, however, the observed temporal increase in Vp/Vs, coupled with a decrease in P- and S-wave velocities suggests the presence of fluid-filled fractured rock. Considering the start of a continuous water injection project in 2004, it can be concluded that the fluid saturation of the reservoir has successfully recovered. Preliminary results of 3-D velocity inversions of seismic data appear to corroborate earlier findings that the lowest Vp/Vs estimates are observed in the center of the reservoir

  10. Relationships among seismic velocity, metamorphism, and seismic and aseismic fault slip in the Salton Sea Geothermal Field region

    Science.gov (United States)

    McGuire, Jeffrey J.; Lohman, Rowena B.; Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.

    2015-01-01

    The Salton Sea Geothermal Field is one of the most geothermally and seismically active areas in California and presents an opportunity to study the effect of high-temperature metamorphism on the properties of seismogenic faults. The area includes numerous active tectonic faults that have recently been imaged with active source seismic reflection and refraction. We utilize the active source surveys, along with the abundant microseismicity data from a dense borehole seismic network, to image the 3-D variations in seismic velocity in the upper 5 km of the crust. There are strong velocity variations, up to ~30%, that correlate spatially with the distribution of shallow heat flow patterns. The combination of hydrothermal circulation and high-temperature contact metamorphism has significantly altered the shallow sandstone sedimentary layers within the geothermal field to denser, more feldspathic, rock with higher P wave velocity, as is seen in the numerous exploration wells within the field. This alteration appears to have a first-order effect on the frictional stability of shallow faults. In 2005, a large earthquake swarm and deformation event occurred. Analysis of interferometric synthetic aperture radar data and earthquake relocations indicates that the shallow aseismic fault creep that occurred in 2005 was localized on the Kalin fault system that lies just outside the region of high-temperature metamorphism. In contrast, the earthquake swarm, which includes all of the M > 4 earthquakes to have occurred within the Salton Sea Geothermal Field in the last 15 years, ruptured the Main Central Fault (MCF) system that is localized in the heart of the geothermal anomaly. The background microseismicity induced by the geothermal operations is also concentrated in the high-temperature regions in the vicinity of operational wells. However, while this microseismicity occurs over a few kilometer scale region, much of it is clustered in earthquake swarms that last from

  11. Compilation of gas geochemistry and isotopic analyses from The Geysers geothermal field: 1978-1991

    Science.gov (United States)

    Lowenstern, Jacob B.; Janik, Cathy; Fahlquist, Lynne; Johnson, Linda S.

    1999-01-01

    We present 45 chemical and isotopic analyses from well discharges at The Geysers geothermal field and summarize the most notable geochemical trends. H2 and H2S concentrations are highest in the Southeast Geysers, where steam samples have δD and δ18O values that reflect replenishment by meteoric water. In the Northwest Geysers, samples are enriched in gas/steam, CO2, CH4, and N2/Ar relative to the rest of the field, and contain steam that is elevated in δD and δ18O, most likely due to substantial contributions from Franciscan-derived fluids. The δ13C of CO2, trends in CH4 vs. N2, and abundance of NH3 indicate that the bulk of the non-condensable gases are derived from thermal breakdown of organic materials in Franciscan meta-sediments.

  12. Addendum to material selection guidelines for geothermal energy-utilization systems. Part I. Extension of the field experience data base. Part II. Proceedings of the geothermal engineering and materials (GEM) program conference (San Diego, CA, 6-8 October 1982)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.S.; Ellis, P.F. II

    1983-05-01

    The extension of the field experience data base includes the following: key corrosive species, updated field experiences, corrosion of secondary loop components or geothermal binary power plants, and suitability of conventional water-source heat pump evaporator materials for geothermal heat pump service. Twenty-four conference papers are included. Three were abstracted previously for EDB. Separate abstracts were prepared for twenty-one. (MHR)

  13. Hydrothermal Alteration in Submarine Basaltic Rocks from the Reykjanes Geothermal Field, Iceland. (Invited)

    Science.gov (United States)

    Zierenberg, R. A.; Schiffman, P.; Fowler, A. P.; Marks, N.; Fridleifsson, G.; Elders, W. A.

    2013-12-01

    The Iceland Deep Drilling Project (IDDP) is preparing to drill to 4-5 km in the Reykjanes Geothermal Field to sample geothermal fluids at supercritical temperature and pressure for power generation. The Reykjanes geothermal field is the on-land extension of the Reykjanes Ridge spreading center. The upper 1-2 kilometers drilled at Reykjanes are submarine basalts and basaltic sediments, hyalloclastites, and breccias, with an increasing proportion of basaltic intrusive rocks below 2 km depth. Geothermal fluids are evolved seawater with a composition similar to mid-ocean ridge hydrothermal systems. Zn- and Cu-rich sulfide scale, locally enriched in Au and Ag, are deposited in production pipes. The sulfide deposits are compositionally and isotopically similar to seafloor massive sulfides. In anticipation of deeper drilling, we have investigated the mineralogy and geochemistry of drill cuttings from a 3 km deep well (RN-17). The depth zoning of alteration minerals is similar to that described from other Icelandic geothermal fields, and is comparable to observed seafloor metamorphic gradients in ODP drill holes and ophiolites. Chlorite-epidote alteration occurs at depths >400 m and passes downhole through epidote-actinolite alteration and into amphibole facies (hornblende-calcic plagioclase) alteration below 2.5 km. Local zones of high temperature (>800°C), granoblastic-textured, pyroxene hornfels, are interpreted to form by contact metamorphism during dike/sill emplacement. Similar granoblasically altered basalts were recovered from the base of the sheeted dikes in IODP Hole 1256D. Downhole compositional variations of drill cuttings, collected every 50 m, suggest that rocks below ~ 2 km are little altered. Whole-rock oxygen isotope profiles are consistent with low water/rock ratios, but suggest that early stages of hydrothermal alteration included meteoric water-derived fluids. Strontium isotope profiles indicate more extensive exchange with seawater-derived fluids

  14. Irregular focal mechanisms observed at Salton Sea Geothermal Field: Possible influences of anthropogenic stress perturbations

    Science.gov (United States)

    Crandall-Bear, Aren; Barbour, Andrew J.; Schoenball, Martin; Schoenball, Martin

    2018-01-01

    At the Salton Sea Geothermal Field (SSGF), strain accumulation is released through seismic slip and aseismic deformation. Earthquake activity at the SSGF often occurs in swarm-like clusters, some with clear migration patterns. We have identified an earthquake sequence composed entirely of focal mechanisms representing an ambiguous style of faulting, where strikes are similar but deformation occurs due to steeply-dipping normal faults with varied stress states. In order to more accurately determine the style of faulting for these events, we revisit the original waveforms and refine estimates of P and S wave arrival times and displacement amplitudes. We calculate the acceptable focal plane solutions using P-wave polarities and S/P amplitude ratios, and determine the preferred fault plane. Without constraints on local variations in stress, found by inverting the full earthquake catalog, it is difficult to explain the occurrence of such events using standard fault-mechanics and friction. Comparing these variations with the expected poroelastic effects from local production and injection of geothermal fluids suggests that anthropogenic activity could affect the style of faulting.

  15. Thermal and petrologic constraints on lower crustal melt accumulation under the Salton Sea Geothermal Field

    Science.gov (United States)

    Karakas, Ozge; Dufek, Josef; Mangan, Margaret T.; Wright, Heather M.; Bachmann, Olivier

    2017-06-01

    In the Salton Sea region of southern California (USA), concurrent magmatism, extension, subsidence, and sedimentation over the past 0.5 to 1.0 Ma have led to the creation of the Salton Sea Geothermal Field (SSGF)-the second largest and hottest geothermal system in the continental United States-and the small-volume rhyolite eruptions that created the Salton Buttes. In this study, we determine the flux of mantle-derived basaltic magma that would be required to produce the elevated average heat flow and sustain the magmatic roots of rhyolite volcanism observed at the surface of the Salton Sea region. We use a 2D thermal model to show that a lower-crustal, partially molten mush containing Salton Trough, and are consistent with seismic observations. Our results indicate limited melting and assimilation of pre-existing rocks in the lower crust. Instead, we find that basalt fractionation in the lower crust produces derivative melts of andesitic to dacitic composition. Such melts are then expected to ascend and accumulate in the upper crust, where they further evolve to give rise to small-volume rhyolite eruptions (Salton Buttes) and fuel local spikes in surface heat flux as currently seen in the SSGF. Such upper crustal magma evolution, with limited assimilation of hydrothermally altered material, is required to explain the slight decrease in δ18 O values of zircons (and melts) that have been measured in these rhyolites.

  16. Hydrothermal Alteration in an Acid-Sulphate Geothermal Field: Sulphur Springs, Saint Lucia

    Science.gov (United States)

    Joseph, E. P.; Barrett, T. J.

    2017-12-01

    Sulphur Springs is a vigorous geothermal field associated with the Soufrière Volcanic Centre in southern Saint Lucia. Bubbling hydrothermal pools are rich in sodium-calcium sulphate, with pHs of 3-7 and temperatures of 41-97ºC. Fumaroles have temperatures up to, and at times above, 100°C. Gases from bubbling pools and fumaroles have high contents of CO2 (601-993 mmol/mol) and H2S (3-190 mmol/mol). To investigate the nature and extent of hydrothermal alteration, detailed chemical analysis was carried out on 25 altered rocks, 10 sediments from pools and creeks in the main discharge area, and 15 little-altered rocks up to 2 km away from geothermal field. Eight altered samples were also analysed for stable isotope compositions, with mineralogy determined by X-ray diffraction and mineral liberation analysis. Least-altered host rocks comprise calc-alkaline feldspar-quartz-porphyritic dacites of near-uniform composition that form massive domes and volcaniclastic units. These rocks were emplaced 10-30 Ka ago (Lindsay et al. 2013). Within the geothermal field, the dacites have been highly altered to kaolinite, quartz, cristobalite, alunite, natroalunite, smectite, native sulphur, jarosite, gypsum and amorphous compounds. Muds from grey to blackish hydrothermal pools additionally contain iron sulphides, mainly pyrite. Despite intense alteration of the original dacites, Zr and Ti have remained essentially immobile, allowing the calculation of mass changes. Major depletions of Fe, Mg, Ca, Na and commonly Si occur over an area of at least 200 x 400 m. The most altered rocks also show losses of Al, light REE and Y, implying leaching by highly acidic waters. A few altered rocks have, however, gained Al together with Si and P. Also present are m-scale zones of silica + native sulphur, wherein the silica appears to represent a residue from the leaching of dacite, rather than a hydrothermal addition. Delta-34S values of samples containing mixtures of sulphates, native sulphur and

  17. Geothermal handbook

    Science.gov (United States)

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  18. Geothermal Resource Exploration by Stream pH Mapping in Mutsu Hiuchi Dake Volcano, Japan

    Directory of Open Access Journals (Sweden)

    Yota Suzuki

    2017-07-01

    Full Text Available Although pH measurements of hot spring water are taken in conventional geothermal resource research, previous studies have seldom created pH distribution maps of stream and spring waters for an entire geothermal field as a technique for geothermal exploration. In this study, a pH distribution map was created by measuring stream and spring water pH at 75 sites in the Mutsu Hiuchi Dake geothermal field, Japan. Areas of abnormally high pH were detected in midstream sections of the Ohaka and Koaka rivers; these matched the location of the Mutsu Hiuchi Dake East Slope Fault, which is believed to have formed a geothermal reservoir. The abnormally high pH zone is attributed to the trapping of rising volcanic gases in a mature geothermal reservoir with neutral geothermal water. This causes the gas to dissolve and prevents it from reaching the surface. Thus, the mapping of stream water pH distribution in a geothermal field could provide a new and effective method for estimating the locations of geothermal reservoirs. As the proposed method does not require laboratory analysis, and is more temporally and economically efficient than conventional methods, it might help to promote geothermal development in inaccessible and remote regions.

  19. Stable isotopes as signposts of fluid throughput in Rotokawa and other geothermal fields, and the difficulty of identifying magmatic fingerprints

    International Nuclear Information System (INIS)

    Blattner, P.; Woldemichael, S.; Auckland Univ.; Browne, P.R.L.; Auckland Univ.

    1994-01-01

    We present a background for water-rock interaction generally, and new data on the Rotokawa geothermal field. The oxygen isotope shift of total rock samples allow the deduction of past flowpaths and total fluid throughput. Estimates of any input true exsolved magmatic water are difficult as the lithosphere can act as an effective isotopic screen. (authors). 1 fig., 6 refs

  20. Enhancement of subsurface geologic structure model based on gravity, magnetotelluric, and well log data in Kamojang geothermal field

    Science.gov (United States)

    Yustin Kamah, Muhammad; Armando, Adilla; Larasati Rahmani, Dinda; Paramitha, Shabrina

    2017-12-01

    Geophysical methods such as gravity and magnetotelluric methods commonly used in conventional and unconventional energy exploration, notably for exploring geothermal prospect. They used to identify the subsurface geology structures which is estimated as a path of fluid flow. This study was conducted in Kamojang Geothermal Field with the aim of highlighting the volcanic lineament in West Java, precisely in Guntur-Papandayan chain where there are three geothermal systems. Kendang Fault has predominant direction NE-SW, identified by magnetotelluric techniques and gravity data processing techniques. Gravity techniques such as spectral analysis, derivative solutions, and Euler deconvolution indicate the type and geometry of anomaly. Magnetotelluric techniques such as inverse modeling and polar diagram are required to know subsurface resistivity charactersitics and major orientation. Furthermore, the result from those methods will be compared to geology information and some section of well data, which is sufficiently suitable. This research is very useful to trace out another potential development area.

  1. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  2. INVESTIGATION OF DISSOLVED SULPHATE IN VARIOUS GEOTHERMAL FIELDS OF SUMATRA USING OXYGEN AND SULPHUR ISOTOPES

    Directory of Open Access Journals (Sweden)

    E. Ristin Pujiindiyati

    2010-06-01

    Full Text Available There are at least 30 high temperature systems; eleven active volcanoes, five degassing volcanoes and one caldera volcano controlled by Sumatra Fault Zone over a length of 1700 km. To understand this geothermal field system, some information about geochemistry including isotope composition in its fluid is needed. Sulphur-34 and oxygen-18 isotopes in dissolved sulphate pair have been used to determine the origin of acidic fluid of sulphate and to evaluate the process involved. The fluids from eight hot springs, two fumaroles, four deep wells and crater have been collected in along Sumatra geothermal fields. Sulphur-34 (d 34S (SO4, 0/00 CDT and oxygen-18 (d 18O (SO4, 0/00 SMOW in sulphate is analyzed according to Robinson-Kusakabe and Rafter method, respectively. The d 34S (SO4 values from Sibayak wells are more enriched of 16.8 0/00 to 18.2 0/0 that may indicate the dissolution of anhydrite minerals or isotope partitioning in hydration of SO2. The d 34S (SO4 values from two fumaroles (Pusuk Bukit - North Sumatra and Rantau Dadap - South Sumatra are at depleted value of -0.150/00 and 1.80/00, those are close to d 34S from magmatic sulphur.  In general, the d 34S (SO4 of springs spread in a wide range of 5.250/00 to14.20/00 and show a mixing process between atmospheric sulphate and sulphate from deep wells. The d 18O (SO4 from wells exhibits depleted value around -3.60/00 suggesting that 87.5% of sulphate oxygen is derived from groundwater oxygen and 12.5% is derived from atmospheric molecular oxygen in sulphide oxidation reaction. In the other hand, hot springs (except Semurup, crater and fumaroles have enriched value of d 18O (SO4. These enriched values suggest that a higher percentage of atmospherically derived oxygen compared to those from the depth.   Keywords: isotope, geothermal, Sumatra

  3. Analysis of earthquake clustering and source spectra in the Salton Sea Geothermal Field

    Science.gov (United States)

    Cheng, Y.; Chen, X.

    2015-12-01

    The Salton Sea Geothermal field is located within the tectonic step-over between San Andreas Fault and Imperial Fault. Since the 1980s, geothermal energy exploration has resulted with step-like increase of microearthquake activities, which mirror the expansion of geothermal field. Distinguishing naturally occurred and induced seismicity, and their corresponding characteristics (e.g., energy release) is important for hazard assessment. Between 2008 and 2014, seismic data recorded by a local borehole array were provided public access from CalEnergy through SCEC data center; and the high quality local recording of over 7000 microearthquakes provides unique opportunity to sort out characteristics of induced versus natural activities. We obtain high-resolution earthquake location using improved S-wave picks, waveform cross-correlation and a new 3D velocity model. We then develop method to identify spatial-temporally isolated earthquake clusters. These clusters are classified into aftershock-type, swarm-type, and mixed-type (aftershock-like, with low skew, low magnitude and shorter duration), based on the relative timing of largest earthquakes and moment-release. The mixed-type clusters are mostly located at 3 - 4 km depth near injection well; while aftershock-type clusters and swarm-type clusters also occur further from injection well. By counting number of aftershocks within 1day following mainshock in each cluster, we find that the mixed-type clusters have much higher aftershock productivity compared with other types and historic M4 earthquakes. We analyze detailed spatial variation of 'b-value'. We find that the mixed-type clusters are mostly located within high b-value patches, while large (M>3) earthquakes and other types of clusters are located within low b-value patches. We are currently processing P and S-wave spectra to analyze the spatial-temporal correlation of earthquake stress parameter and seismicity characteristics. Preliminary results suggest that the

  4. Testing for the ‘predictability’ of dynamically triggered earthquakes in Geysers Geothermal Field

    Science.gov (United States)

    Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne L.

    2018-01-01

    The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is ‘predictable’ or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily ‘predictable’ in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock–aftershock sequences. Thus, we may be able to ‘predict’ what size earthquakes to expect at The Geysers following a large distant earthquake.

  5. Testing for the 'predictability' of dynamically triggered earthquakes in The Geysers geothermal field

    Science.gov (United States)

    Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne

    2018-03-01

    The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is 'predictable' or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily 'predictable' in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock-aftershock sequences. Thus, we may be able to 'predict' what size earthquakes to expect at The Geysers following a large distant earthquake.

  6. Radon measurements at IC-09 well of Chingshui geothermal field (Taiwan): A case study

    International Nuclear Information System (INIS)

    Chen, Y.; Kuo, T.; Fan, K.; Liang, H.; Tsai, C.; Chiang, C.; Su, C.

    2011-01-01

    Radon concentration was monitored during the flow tests of well IC-09 at the Chingshui geothermal field. The radon concentration was found to increase from 54 ± 29 to 983 ± 65 Bq/m 3 as a step function of production time, or cumulative production. The observed radon behavior can be explained by a radial composite model with the carbonate scales deposited in the skin zone near the well. The radius of skin zone near well IC-09 can be estimated with radon data at about 20 m using a plug flow model. Monitoring natural radon during the well flow tests is a helpful tracer to diagnose the formation damage near the well.

  7. Development And Application Of A Hydrothermal Model For The Salton Sea Geothermal Field, California

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1984-01-01

    A simple lateral flow model adequately explains many of the features associated with the Salton Sea Geothermal Field. Earthquake swarms, a magnetic anomaly, and aspects of the gravity anomaly are all indirect evidence for the igneous activity which is the ultimate source of heat for the system. Heat is transferred from this area of intrusion by lateral spreading of hot water in a reservoir beneath an impermeable cap rock. A two dimensional analytic model encompassing this transport mechanism matches general features of the thermal anomaly and has been used to estimate the age of the presently observed thermal system. The age is calculated by minimizing the variance between the observed surface heat-flow data and the model. Estimates of the system age for this model range from 3,000 to 20,000 years.

  8. The Experiences and Challenges in Drilling into Semi molten or Molten Intrusive in Menengai Geothermal Field

    Science.gov (United States)

    Mortensen, A. K.; Mibei, G. K.

    2017-12-01

    Drilling in Menengai has experienced various challenges related to drilling operations and the resource itself i.e. quality discharge fluids vis a vis gas content. The main reason for these challenges is related to the nature of rocks encountered at depths. Intrusives encountered within Menengai geothermal field have been group into three based on their geological characteristics i.e. S1, S2 and S3.Detailed geology and mineralogical characterization have not been done on these intrusive types. However, based on physical appearances, S1 is considered as a diorite dike, S2 is syenite while S3 is molten rock material. This paper summarizes the experiences in drilling into semi molten or molten intrusive (S3).

  9. The transient electric field measurement system for EAST device

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wayong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Ji, Z.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Zhu, C.M. [The Experiment & Verification Center of State Grid Electric Power Research Institute (The Automation Equipment EMC Lab. of State Grid Co.), Nanjing, Jiangsu (China); Zhang, Z.C.; Ma, T.F.; Xu, Z.H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2016-11-15

    The electromagnetic environment around the Experimental Advanced Superconducting Tokamak (EAST) device is very complex during plasma discharge experiment. In order to fully monitor the changes of electric field around the EAST device during plasma discharge, a transient electric field measurement system based on PCI eXtensions for Instrumentation (PXI) platform has been designed. A digitizer is used for high-speed data acquisition of raw signals from electric field sensors, and a Field Programmable Gate Array (FPGA) module is used for realizing an on-the-fly fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) algorithm including a beforehand identified antenna factor (AF) to achieve finally a calibrated and filtered electric field measurement, then these signals can be displayed and easily analyzed. The raw signals from electric field sensors are transferred through optical fiber by optical isolation to reduce electromagnetic interference (EMI). The high speed data streaming technology is used for data storage. A prototype of this system has been realized to measure the transient electric field strength, with the real-time processing and continuous acquisition ability of one channel of 14-bit resolution and up to 50 MHz sampling rate, and 6 KHz FFT frequency resolution.

  10. A comparison of long-term changes in seismicity at The Geysers, Salton Sea, and Coso geothermal fields

    Science.gov (United States)

    Trugman, Daniel T.; Shearer, Peter M.; Borsa, Adrian A.; Fialko, Yuri

    2016-01-01

    Geothermal energy is an important source of renewable energy, yet its production is known to induce seismicity. Here we analyze seismicity at the three largest geothermal fields in California: The Geysers, Salton Sea, and Coso. We focus on resolving the temporal evolution of seismicity rates, which provides important observational constraints on how geothermal fields respond to natural and anthropogenic loading. We develop an iterative, regularized inversion procedure to partition the observed seismicity rate into two components: (1) the interaction rate due to earthquake-earthquake triggering and (2) the smoothly varying background rate controlled by other time-dependent stresses, including anthropogenic forcing. We apply our methodology to compare long-term changes in seismicity to monthly records of fluid injection and withdrawal. At The Geysers, we find that the background seismicity rate is highly correlated with fluid injection, with the mean rate increasing by approximately 50% and exhibiting strong seasonal fluctuations following construction of the Santa Rosa pipeline in 2003. In contrast, at both Salton Sea and Coso, the background seismicity rate has remained relatively stable since 1990, though both experience short-term rate fluctuations that are not obviously modulated by geothermal plant operation. We also observe significant temporal variations in Gutenberg-Richter b value, earthquake magnitude distribution, and earthquake depth distribution, providing further evidence for the dynamic evolution of stresses within these fields. The differing field-wide responses to fluid injection and withdrawal may reflect differences in in situ reservoir conditions and local tectonics, suggesting that a complex interplay of natural and anthropogenic stressing controls seismicity within California's geothermal fields.

  11. World geothermal congress

    International Nuclear Information System (INIS)

    Povarov, O.A.; Tomarov, G.V.

    2001-01-01

    The World geothermal congress took place in the period from 28 May up to 10 June 2000 in Japan. About 2000 men from 43 countries, including specialists in the area of developing geothermal fields, creating and operating geothermal electrical and thermal plants and various systems for the earth heat application, participated in the work of the Congress. It was noted at the Congress, that development of the geothermal power engineering in the world is characterized by the large-scale application of geothermal resources for the electrical energy generation [ru

  12. Archaeology in the Kilauea East Rift Zone: Part 2, A preliminary sample survey, Kapoho, Kamaili and Kilauea geothermal subzones, Puna District, Hawaii island

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, M.T.K.; Burtchard, G.C. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1995-05-01

    This report describes a preliminary sample inventory and offers an initial evaluation of settlement and land-use patterns for the Geothermal Resources Subzones (GRS) area, located in Puna District on the island of Hawaii. The report is the second of a two part project dealing with archaeology of the Puna GRS area -- or more generally, the Kilauea East Rift Zone. In the first phase of the project, a long-term land-use model and inventory research design was developed for the GRS area and Puna District generally. That report is available under separate cover as Archaeology in the Kilauea East Rift Zone, Part I: Land-Use Model and Research Design. The present report gives results of a limited cultural resource survey built on research design recommendations. It offers a preliminary evaluation of modeled land-use expectations and offers recommendations for continuing research into Puna`s rich cultural heritage. The present survey was conducted under the auspices of the United States Department of Energy, and subcontracted to International Archaeological Research Institute, Inc. (IARII) by Martin Marietta Energy Systems, Inc. The purpose of the archaeological work is to contribute toward the preparation of an environmental impact statement by identifying cultural materials which could be impacted through completion of the proposed Hawaii Geothermal Project.

  13. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    Science.gov (United States)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of

  14. Assessing Past Fracture Connectivity in Geothermal Reservoirs Using Clumped Isotopes: Proof of Concept in the Blue Mountain Geothermal Field, Nevada USA

    Science.gov (United States)

    Huntington, K. W.; Sumner, K. K.; Camp, E. R.; Cladouhos, T. T.; Uddenberg, M.; Swyer, M.; Garrison, G. H.

    2015-12-01

    Subsurface fluid flow is strongly influenced by faults and fractures, yet the transmissivity of faults and fractures changes through time due to deformation and cement precipitation, making flow paths difficult to predict. Here we assess past fracture connectivity in an active hydrothermal system in the Basin and Range, Nevada, USA, using clumped isotope geochemistry and cold cathodoluminescence (CL) analysis of fracture filling cements from the Blue Mountain geothermal field. Calcite cements were sampled from drill cuttings and two cores at varying distances from faults. CL microscopy of some of the cements shows banding parallel to the fracture walls as well as brecciation, indicating that the cements record variations in the composition and source of fluids that moved through the fractures as they opened episodically. CL microscopy, δ13C and δ18O values were used to screen homogeneous samples for clumped isotope analysis. Clumped isotope thermometry of most samples indicates paleofluid temperatures of around 150°C, with several wells peaking at above 200°C. We suggest that the consistency of these temperatures is related to upwelling of fluids in the convective hydrothermal system, and interpret the similarity of the clumped isotope temperatures to modern geothermal fluid temperatures of ~160-180°C as evidence that average reservoir temperatures have changed little since precipitation of the calcite cements. In contrast, two samples, one of which was associated with fault gauge observed in drill logs, record significantly cooler temperatures of 19 and 73°C and anomalous δ13C and δ18Owater values, which point to fault-controlled pathways for downwelling meteoric fluid. Finally, we interpret correspondence of paleofluid temperatures and δ18Owater values constrained by clumped isotope thermometry of calcite from different wells to suggest past connectivity of fractures among wells within the geothermal field. Results show the ability of clumped isotope

  15. Success in geothermal development

    International Nuclear Information System (INIS)

    Stefansson, V.

    1992-01-01

    Success in geothermal development can be defined as the ability to produce geothermal energy at compatible energy prices to other energy sources. Drilling comprises usually the largest cost in geothermal development, and the results of drilling is largely influencing the final price of geothermal energy. For 20 geothermal fields with operating power plants, the ratio between installed capacity and the total number of well in the field is 1.9 MWe/well. The drilling history in 30 geothermal fields are analyzed by plotting the average cumulative well outputs as function of the number of wells drilled in the field. The range of the average well output is 1-10 MWe/well with the mean value 4.2 MWe/well for the 30 geothermal fields studied. A leaning curve is defined as the number of wells drilled in each field before the average output per well reaches a fairly constant value, which is characteristic for the geothermal reservoir. The range for this learning time is 4-36 wells and the average is 13 wells. In general, the average well output in a given field is fairly constant after some 10-20 wells has been drilled in the field. The asymptotic average well output is considered to be a reservoir parameter when it is normalized to the average drilling depth. In average, this reservoir parameter can be expressed as 3.3 MWe per drilled km for the 30 geothermal fields studied. The lifetime of the resource or the depletion time of the geothermal reservoir should also be considered as a parameter influencing the success of geothermal development. Stepwise development, where the reservoir response to the utilization for the first step is used to determine the timing of the installment of the next step, is considered to be an appropriate method to minimize the risk for over investment in a geothermal field

  16. Geological, Geophysical, And Thermal Characteristics Of The Salton Sea Geothermal Field, California

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Kasameyer, P. W.; Tewhey, J. D.

    1981-01-01

    The Salton Sea Geothermal Field is the largest water-dominated geothermal field in the Salton Trough in Southern California. Within the trough, local zones of extension among active right-stepping right-lateral strike-slip faults allow mantle-derived magmas to intrude the sedimentary sequence. The intrusions serves as heat sources to drive hydrothermal systems. We can characterize the field in detail because we have an extensive geological and geophysical data base. The sediments are relatively undeformed and can be divided into three categories as a function of depth: (1) low-permeability cap rock, (2) upper reservoir rocks consisting of sandstones, siltstones, and shales that were subject to minor alterations, and (3) lower reservoir rocks that were extensively altered. Because of the alteration, intergranular porosity and permeability are reduced with depth. permeability is enhanced by renewable fractures, i.e., fractures that can be reactivated by faulting or natural hydraulic fracturing subsequent to being sealed by mineral deposition. In the central portion of the field, temperature gradients are high near the surface and lower below 700 m. Surface gradients in this elliptically shaped region are fairly constant and define a thermal cap, which does not necessarily correspond to the lithologic cap. At the margin of the field, a narrow transition region, with a low near-surface gradient and an increasing gradient at greater depths, separates the high temperature resource from areas of normal regional gradient. Geophysical and geochemical evidence suggest that vertical convective motion in the reservoir beneath the thermal cap is confined to small units, and small-scale convection is superimposed on large-scale lateral flow of pore fluid. Interpretation of magnetic, resistivity, and gravity anomalies help to establish the relationship between the inferred heat source, the hydrothermal system, and the observed alteration patterns. A simple hydrothermal model is

  17. Temporal changes of static stress drop as a proxy for poroelastic effects at The Geysers geothermal field, California

    Science.gov (United States)

    Staszek, Monika; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Kwiatek, Grzegorz; Leptokaropoulos, Konstantinos; Martinez-Garzon, Patricia

    2017-04-01

    One of the major environmental impacts of shale gas exploitation is triggered and induced seismicity. Due to the similarity of fluid injection process data from geothermal fields can be used as a proxy for shale gas exploitation associated seismicity. Therefore, in this paper we utilize 'The Geysers' dataset compiled within SHale gas Exploration and Exploitation induced Risks (SHEER) project. The dependence of earthquake static stress drops on pore pressure in the medium was previously suggested by Goertz-Allmann et al. (2011), who observed an increase of the static stress drop with the distance from injection well during reservoir stimulation at Deep Heat Mining project in Basel, Switzerland. Similar observation has been done by Kwiatek et al. (2014) in Berlín geothermal field, El Salvador. In this study, we use a high-quality data from The Geysers geothermal field to determine whether the static stress drops and the stress drop distributions change statistically significantly in time or not, and how such changes are correlated with the values of hypocenter depth, water injection rate, and distance from injection well. For the analyses we use a group of 354 earthquakes, which occurred in the proximity of Prati-9 and Prati-29 injection wells. Spectral parameters of these earthquakes were determined using mesh spectral ratio technique. Our results indicate that: (1) the static stress drop variation in time is statistically significant, (2) median static stress drop is inversely related to median injection rate. Therefore, it is highly expected that static stress drop is influenced by pore pressure in underground fluid injection conditions. References: Goertz-Allmann B., Goertz A., Wiemer S. (2011), Stress drop variations of induced earthquakes at the Basel geothermal site. Geophysical Research Letters, 38, L09308, doi:10.1029/2011GL047498. Kwiatek G., Bulut F., Bohnhoff M., Dresen G. (2014), High-resolution analysis of seismicity induced at Berlin geothermal field

  18. Temporal Variability in Seismic Velocity at the Salton Sea Geothermal Field

    Science.gov (United States)

    Taira, T.; Nayak, A.; Brenguier, F.

    2015-12-01

    We characterize the temporal variability of ambient noise wavefield and search for velocity changes associated with activities of the geothermal energy development at the Salton Sea Geothermal Field. The noise cross-correlations (NCFs) are computed for ~6 years of continuous three-component seismic data (December 2007 through January 2014) collected at 8 sites from the CalEnergy Subnetwork (EN network) with MSNoise software (Lecocq et al., 2014, SRL). All seismic data are downloaded from the Southern California Earthquake Data Center. Velocity changes (dv/v) are obtained by measuring time delay between 5-day stacks of NCFs and the reference NCF (average over the entire 6 year period). The time history of dv/v is determined by averaging dv/v measurements over all station/channel pairs (252 combinations). Our preliminary dv/v measurement suggests a gradual increase in dv/v over the 6-year period in a frequency range of 0.5-8.0 Hz. The resultant increase rate of velocity is about 0.01%/year. We also explore the frequency-dependent velocity change at the 5 different frequency bands (0.5-2.0 Hz, 0.75-3.0 Hz, 1.0-4.0 Hz, 1.5-6.0 Hz, and 2.0-8.0 Hz) and find that the level of this long-term dv/v variability is increased with increase of frequency (i.e., the highest increase rate of ~0.15%/year at the 0.5-2.0 Hz band). This result suggests that the velocity changes were mostly occurred in a depth of ~500 m assuming that the coda parts of NCFs (~10-40 s depending on station distances) are predominantly composed of scattered surface waves, with the SoCal velocity model (Dreger and Helmberger, 1993, JGR). No clear seasonal variation of dv/v is observed in the frequency band of 0.5-8.0 Hz.

  19. Geothermal energy in Jordan

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.

    1993-11-01

    The potential of geothermal energy utilization in Jordan was discussed. The report gave a summary of the location of geothermal anomalies in Jordan, and of ongoing projects that utilize geothermal energy for greenhouse heating, fish farming, refrigeration by absorption, and water desalination of deep aquifers. The problems facing the utilization of geothermal energy in Jordan were identified to be financial (i.e. insufficient allocation of local funding, and difficulty in getting foreign financing), and inadequate expertise in the field of geothermal energy applications. The report gave a historical account of geothermal energy utilization activities in Jordan, including cooperation activities with international organizations and foreign countries. A total of 19 reports already prepared in the areas of geochemical and hydrological studies were identified. The report concluded that the utilization of geothermal energy offers some interesting economic possibilities. (A.M.H.). 4 refs. 1 map

  20. Oxygen isotope fine structure and fluid throughput of the Tongonan geothermal field, Philippines

    International Nuclear Information System (INIS)

    Scott, G.L.; Blattner, P.; Department of Scientific and Industrial Research, Lower Hutt

    1986-01-01

    Oxygen isotope ratios for 40 reservoir rocks from the plutonic basement and overlying andesitic rocks, and 14 separated geothermal quartz samples from the volcanics, range from 2.5 to 9.9 per mil. The lowest δ 18 O values (average 2.9 per mil) in diorite cores from wells 401, 407 and 410 are located in the most productive northwest (Mahiao) sector of the field. In the Malitbog sector, the average δ 18 O values for basement rocks are higher (c. 4.6 per mil). Plutonic rock samples from the Mamban (well MN1) sector, located outside the present-day field margin, are only slightly altered (6 per mil) except possibly near the contact zone between the basement and overlying volcanics. The highest cumulative fluid/rock ratios are calculated for the Mahiao sector, whereas Malitbog is possibly a relatively recent extension of the field. Relatively shallow (Bao Formation) quartz has δ 18 O values suggesting past tectonic uplift

  1. Integrated geophysical imaging of the Aluto-Langano geothermal field (Ethiopia).

    Science.gov (United States)

    Rizzello, Daniele; Armadillo, Egidio; Verdoya, Massimo; Pasqua, Claudio; Kebede, Solomon; Mengiste, Andarge; Hailegiorgis, Getenesh; Abera, Fitsum; Mengesha, Kebede; Meqbel, Naser

    2017-04-01

    The Aluto-Langano geothermal system is located in the central part of the Main Ethiopian Rift, one of the world's most tectonically active areas, where continental rifting has been occurring since several Ma and has yielded widespread volcanism and enhanced geothermal gradient. The geothermal system is associated to the Mt Aluto Volcanic Complex, located along the eastern margin of the rift and related to the Wonji Fault Belt, constituted by Quaternary NNE-SSW en-echelon faults. These structures are younger than the NE-SW border faults of the central Main Ethiopian Rift and were originated by a stress field oblique to the rift direction. This peculiar tectonism yielded local intense rock fracturing that may favour the development of geothermal reservoirs. In this paper, we present the results of an integrated geophysical survey carried out in 2015 over an area of about 200 km2 covering the Mt Aluto Volcanic Complex. The geophysical campaign included 162 coincident magnetotelluric and time domain electromagnetic soundings, and 207 gravity stations, partially located in the sedimentary plain surrounding the volcanic complex. Three-dimensional inversion of the full MT static-corrected tensor and geomagnetic tipper was performed in the 338-0.001 Hz band. Gravity data processing comprised digital enhancement of the residual Bouguer anomaly and 2D-3D inverse modelling. The geophysical results were compared to direct observations of stratigraphy, rock alteration and temperature available from the several deep wells drilled in the area. The magnetotelluric results imaged a low-resistivity layer which appears well correlated with the mixed alteration layer found in the wells and can be interpreted as a low-temperature clay cap. The clay-cap bottom depth is well corresponds to a change of thermal gradient. The clay cap is discontinuous, and in the central area of the volcanic complex is characterised by a dome-shape structure likely related to isotherm rising. The propilitic

  2. Geological model of supercritical geothermal reservoir related to subduction system

    Science.gov (United States)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  3. A closely-spaced magnetotelluric study of the Ahuachapan-Chipilapa geothermal field, El Salvador

    Energy Technology Data Exchange (ETDEWEB)

    Romo, Jose Manuel; Flores, Carlos; Vega, Raymundo; Vazquez, Rogelio; Flores, Marco A. Perez; Trevino, Enrique Gomez; Esparza, Francisco J; Garcia, Victor H [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Baja California (Mexico); Quijano, Julio E [Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL), Santa Tecla (El Salvador)

    1997-12-01

    The distribution of electrical conductivity beneath the Ahuachapan-Chipilapa geothermal area was simulated using 2-D models based on 126 closely-spaced magnetotelluric (MT) measurements. The observed MT response was interpreted as being produced by the superposition of two orthogonal geological structural systems: an approximately E-W regional trend associated with the Central Graben structure, which affects the loner period response, and a local and younger N-S fault system that is responsible for the short-to-intermediate period data. The MT response in the 0.02-10 s range period was used to simulate the conductivity structure within the first 2 km depth. By correlating the low-resistivity zones between twelve 2-D models, maps of the spatial distribution of conductors at three different depth levels were constructed. Three deep conductors were identified, one of the associated with the Ahuachapan reservoir, another apparently related to the Laguna Verde volcano, and a third one controlled by El Tortuguero Graben. The subsurface geometry of these conductivity anomalies suggests that the the Chipilapa and La Labor hot springs are supplied by two separate sources of hot fluids, one coming from the east and the other from the south or southwest. The distribution of the shallow high-conductivity zones agrees with the hydrothermal alteration zones mapped at the surface, suggesting that at shallow levels the argillitization process contributes significantly to the low resistivity. The large number of drillholes and the dense MT site coverage allowed the definition of important correlations between high temperatures and high conductivity, as well as between deep conductivity anomalies and productive wells. On this basis two years for future drilling are proposed. (Author)

  4. Recover Act. Verification of Geothermal Tracer Methods in Highly Constrained Field Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Matthew W. [California State University, Long Beach, CA (United States)

    2014-05-16

    The prediction of the geothermal system efficiency is strong linked to the character of the flow system that connects injector and producer wells. If water flow develops channels or “short circuiting” between injection and extraction wells thermal sweep is poor and much of the reservoir is left untapped. The purpose of this project was to understand how channelized flow develops in fracture geothermal reservoirs and how it can be measured in the field. We explored two methods of assessing channelization: hydraulic connectivity tests and tracer tests. These methods were tested at a field site using two verification methods: ground penetrating radar (GPR) images of saline tracer and heat transfer measurements using distributed temperature sensing (DTS). The field site for these studies was the Altona Flat Fractured Rock Research Site located in northeastern New York State. Altona Flat Rock is an experimental site considered a geologic analog for some geothermal reservoirs given its low matrix porosity. Because soil overburden is thin, it provided unique access to saturated bedrock fractures and the ability image using GPR which does not effectively penetrate most soils. Five boreholes were drilled in a “five spot” pattern covering 100 m2 and hydraulically isolated in a single bedding plane fracture. This simple system allowed a complete characterization of the fracture. Nine small diameter boreholes were drilled from the surface to just above the fracture to allow the measurement of heat transfer between the fracture and the rock matrix. The focus of the hydraulic investigation was periodic hydraulic testing. In such tests, rather than pumping or injection in a well at a constant rate, flow is varied to produce an oscillating pressure signal. This pressure signal is sensed in other wells and the attenuation and phase lag between the source and receptor is an indication of hydraulic connection. We found that these tests were much more effective than constant

  5. Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China

    Science.gov (United States)

    Du, Jianguo; Liu, Congqiang; Fu, Bihong; Ninomiya, Yoshiki; Zhang, Youlian; Wang, Chuanyuan; Wang, Hualiu; Sun, Zigang

    2005-04-01

    Geothermal variations, origins of carbon-bearing components and reservoir temperatures in the Rehai geothermal field (RGF) of Tengchong volcanic area, Yunnan Province, southwestern China, are discussed on the basis of carbon isotope compositions, combined with helium isotope ratios and geothermal data from 1973 to 2000. δ 13C values of CO 2, CH 4, HCO 3-, CO 3= and travertine in the hot springs range from -7.6‰ to -1.18‰, -56.9‰ to -19.48‰, -6.7‰ to -4.2‰, -6.4‰ to -4.2‰ and -27.1‰ to +0.6‰, respectively. The carbon dioxide probably has a mantle/magma origin, but CH 4 and He have multiple origins. HCO 3- and CO 3= in RGF thermal fluids are predominantly derived from igneous carbon dioxide, but other ions originate from rocks through which the fluids circulate. The 13C values of CO 2, HCO 3- (aq) and CO 3= (aq) illustrate that isotopic equilibriums between CO 2 and HCO 3- (aq), and CO 3= (aq) and between DIC and travertine were not achieved, and no carbon isotope fractionation between HCO 3- (aq) and CO 3= (aq) of the hot springs in RGF was found. Using various geothermometers, temperatures of the geothermal reservoirs are estimated in a wide range from 69 °C to 450 °C that fluctuated from time to time. The best estimate of subsurface reservoir temperature may be 250-300 °C. Contributions of mantle fluids and shallow crust fluids in Rehai geothermal field varied with time, which resulted in variations of chemical and isotopic compositions and reservoir temperatures.

  6. Origin, evolution and geothermometry of the thermal waters in the Gölemezli Geothermal Field, Denizli Basin (SW Anatolia, Turkey)

    Science.gov (United States)

    Alçiçek, Hülya; Bülbül, Ali; Brogi, Andrea; Liotta, Domenico; Ruggieri, Giovanni; Capezzuoli, Enrico; Meccheri, Marco; Yavuzer, İbrahim; Alçiçek, Mehmet Cihat

    2018-01-01

    The Gölemezli Geothermal Field (GGF) is one of the best known geothermal fields in western Anatolia (Turkey). The exploited fluids are of meteoric origin, mixed with deep magmatic fluids, which interacted with the metamorphic rocks of the Menderes Massif. The geothermal fluids are channeled along Quaternary faults belonging to the main normal faults system delimiting the northern side of the Denizli Basin and their associated transfer zones. In this study, hydrochemical and isotopic analyses of the thermal and cold waters allow us to determine water-rock interactions, fluid paths and mixing processes. Two groups of thermal waters have been distinguished: (i) Group 1A, comprising Na-SO4 type and Ca-SO4 type and (ii) Group 1B, only consisting Ca-HCO3 type waters. Differently, two groups were recognized in the cold waters: (i) Group 2A, corresponding to Ca-HCO3 type and (ii) Group 2B, including Mg-HCO3 type. Their geochemical characteristics indicate interactions with the Paleozoic metamorphic rocks of the Menderes Massif and with the Neogene lacustrine sedimentary rocks. Dissolution of host rock and ion-exchange reactions modify thermal water composition in the reservoir of the GGF. High correlation in some ionic ratios and high concentrations of some minor elements suggest an enhanced water-rock interaction. None of the thermal waters has been reached a complete chemical re-equilibrium, possibly as a result of mixing with cold water during their pathways. Geothermal reservoir temperatures are calculated in the range of 130-210°C for the Gölemezli field. Very negative δ18O and δ2H isotopic ratios are respectively between -8.37 and -8.13‰ and -61.09 and -59.34‰ for the SO4-rich thermal waters, and ca. - 8.40 and -8.32‰ and - 57.80 and -57.41‰ for the HCO3-rich thermal waters. Low tritium (link existing between fractures and fluid convection in the extensional settings. In this view, the GGF is a very good example of geothermal field associated to active

  7. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    International Nuclear Information System (INIS)

    Elders, W.A.; Cohen, L.H.

    1983-11-01

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365 0 C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables

  8. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    Science.gov (United States)

    Elders, W. A.; Cohen, L. H.

    1983-11-01

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 3650C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high conentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it.

  9. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    Energy Technology Data Exchange (ETDEWEB)

    Elders, W.A.; Cohen, L.H.

    1983-11-01

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

  10. A time-lapse gravity survey of the Coso geothermal field, China Lake Naval Air Weapons Station, California

    Science.gov (United States)

    Phelps, Geoffrey; Cronkite-Ratcliff, Collin; Blake, Kelly

    2018-04-19

    We have conducted a gravity survey of the Coso geothermal field to continue the time-lapse gravity study of the area initiated in 1991. In this report, we outline a method of processing the gravity data that minimizes the random errors and instrument bias introduced into the data by the Scintrex CG-5 relative gravimeters that were used. After processing, the standard deviation of the data was estimated to be ±13 microGals. These data reveal that the negative gravity anomaly over the Coso geothermal field, centered on gravity station CER1, is continuing to increase in magnitude over time. Preliminary modeling indicates that water-table drawdown at the location of CER1 is between 65 and 326 meters over the last two decades. We note, however, that several assumptions on which the model results depend, such as constant elevation and free-water level over the study period, still require verification.

  11. Three-dimensional numerical reservoir simulation of the EGS Demonstration Project at The Geysers geothermal field

    Science.gov (United States)

    Borgia, Andrea; Rutqvist, Jonny; Oldenburg, Curt M.; Hutchings, Lawrence; Garcia, Julio; Walters, Mark; Hartline, Craig; Jeanne, Pierre; Dobson, Patrick; Boyle, Katie

    2013-04-01

    The Enhanced Geothermal System (EGS) Demonstration Project, currently underway at the Northwest Geysers, California, aims to demonstrate the feasibility of stimulating a deep high-temperature reservoir (up to 400 °C) through water injection over a 2-year period. On October 6, 2011, injection of 25 l/s started from the Prati 32 well at a depth interval of 1850-2699 m below sea level. After a period of almost 2 months, the injection rate was raised to 63 l/s. The flow rate was then decreased to 44 l/s after an additional 3.5 months and maintained at 25 l/s up to August 20, 2012. Significant well-head pressure changes were recorded at Prati State 31 well, which is separated from Prati 32 by about 500 m at reservoir level. More subdued pressure increases occur at greater distances. The water injection caused induced seismicity in the reservoir in the vicinity of the well. Microseismic monitoring and interpretation shows that the cloud of seismic events is mainly located in the granitic intrusion below the injection zone, forming a cluster elongated SSE-NNW (azimuth 170°) that dips steeply to the west. In general, the magnitude of the events increases with depth and the hypocenter depth increases with time. This seismic cloud is hypothesized to correlate with enhanced permeability in the high-temperature reservoir and its variation with time. Based on the existing borehole data, we use the GMS™ GUI to construct a realistic three-dimensional (3D) geologic model of the Northwest Geysers geothermal field. This model includes, from the top down, a low permeability graywacke layer that forms the caprock for the reservoir, an isothermal steam zone (known as the normal temperature reservoir) within metagraywacke, a hornfels zone (where the high-temperature reservoir is located), and a felsite layer that is assumed to extend downward to the magmatic heat source. We then map this model onto a rectangular grid for use with the TOUGH2 multiphase, multicomponent, non

  12. Hydrochemical and isotopic studies in Aksaray geothermal fields central Anatolia, Turkey

    International Nuclear Information System (INIS)

    Burcak, M.

    2005-01-01

    The studied area is located at eastern part of Aksaray province in Central Anatolia. The basement rocks of studied area is Paleozoic aged Bozcaldag formation composed of marble, schist and gneiss and Cretaseous aged granitoid intrusion intrude within these basement rocks. These rock units are overlain uncomfortably by middle miocene to Quaternary aged volcanic rocks of Cappadocian volcanic belt interlayer sediments. The compositions of these units are mainly represented by tuff, ignimbrite, reworked tuff interlayer sediments, basalt lavas, ash fall deposits, pumice and dasite to rhyodasitic lava domes.The study area contains Ziga and Acigoel (Narkoey) thermal area, which they have similar geologic environments with in the Cappadocian volcanic belt of the Tertiary to Quaternary age. Existence of surface manifestation like that high regional heat flow, the presence of expanding acidic to weakly acidic hydrothermal alteration surrounding the geothermal area, hot springs which have a temperature of 44-65 degrees indicating the important of geothermal possibilities in the area. Water chemistry studies have been carried out on 34 water samples to estimate relation between hot and cold water, calculate reservoir temperature using geothermometre and mixing models, hydrological isotope studies were carried out to on 10 samples to clarify extending of recharging area and travel time from recharging area to discharging area. Water analyses results were assested using some diagram such as Fournier Cl-Entalphy, SiO 2 -Entalphy, Langelier- Ludwig, Piper, schoeller etc to classify them. Water-rock interaction have been tried to be define on the base of these result.On the base of water chemistry analyses, all of the cold waters are Ca-Mg-HCO 3 and CaHCO 3 type. the hot waters in Ziga field classified as Na-Cl-HCO 3 type and As and B bearing mineralized hot water. Geothermal fluids in Acigoel field, classified as Ca-Na-HCO 3 -Cl type and B bearing mineralized hot water, and

  13. Sulfate mineralogy of fumaroles in the Salton Sea Geothermal Field, Imperial County, California

    Science.gov (United States)

    Adams, Paul M.; Lynch, David K.; Buckland, Kerry N.; Johnson, Patrick D.; Tratt, David M.

    2017-11-01

    The Salton Trough lies in the transition between the San Andreas Fault and oblique spreading centers and transform faults in the Gulf of California. The Salton Sea Geothermal Field is the northernmost expression of those spreading centers. In 2007 two ammonia-emitting fumarole fields that had been submerged beneath the Salton Sea were exposed for the first time in nearly 50 years. As the sea level continued to drop these fields have developed a number of boiling pools, mud pots, gryphons and a unique suite of ammonium sulfate minerals. These have been studied over time with long-wave infrared remote sensing coupled with ground truth surveys backed by laboratory analyses of the minerals. Many vents lie at the center of concentric rings of mineralization with systematic occurrence of different minerals from center to edge. Three semi-concentric zones (fumarole, transition and evaporite) have been defined with respect to ammonia-emitting vents and bubbling pools. The scale of these zones range from several meters, localized around individual vents, to that of the fumarole fields as a whole. The fumarole zone is closest to the vents and locally contains cavernous sulfur crystals and significant deposits of gypsum, mascagnite, boussingaultite and other ammonium sulfates. The transition zone comprises a dark brown surficial band of inconspicuous sodium nitrate underlain by anhydrite/bassanite that is thought to have formed by ammonia-oxidizing microbes interacting with the ammonium sulfates of the outer fumarole zone. The evaporite zone is the outermost and contains blödite, thenardite and glauberite, which are typical of the sulfates associated with the shoreline of the Salton Sea. Remote sensing has shown that the mineral zones have remained relatively stable from 2013 to 2017, with minor variations depending on rainfall, temperature and levels of agricultural runoff.

  14. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  15. Deformation near the Casa Diablo geothermal well field and related processes Long Valley caldera, Eastern California, 1993-2000

    Science.gov (United States)

    Howle, J.F.; Langbein, J.O.; Farrar, C.D.; Wilkinson, S.K.

    2003-01-01

    Regional first-order leveling lines, which extend from Lee Vining, CA, to Tom's Place, CA, have been surveyed periodically since 1957 by the U.S. Geological Survey (USGS), the National Geodetic Survey (NGS), and Caltrans. Two of the regional survey lines, or leveling networks, intersect at the Casa Diablo geothermal well field. These leveling networks, referenced to a distant bench mark (C916) near Lee Vining, provide time-series vertical control data of land-surface deformation that began around 1980. These data are also useful for delineating localized subsidence at Casa Diablo related to reservoir pressure and temperature changes owing to geothermal development that began in 1985. A comparison of differences in bench-mark elevations for five time periods between 1983 and 1997 shows the development and expansion of a subsidence bowl at Casa Diablo. The subsidence coincides spatially with the geothermal well field and temporally with the increased production rates and the deepening of injection wells in 1991, which resulted in an increase in the rate of pressure decline. The subsidence, superimposed on a broad area of uplift, totaled about 310 mm by 1997. The USGS established orthogonal tilt arrays in 1983 to better monitor deformation across the caldera. One tilt array (DBR) was established near what would later become the Casa Diablo geothermal well field. This array responded to magmatic intrusions prior to geothermal development, tilting away from the well field. With the start of geothermal fluid extraction in 1985, tilt at the DBR array reversed direction and began tilting into the well field. In 1991, geothermal power production was increased by a factor of four, and reservoir pressures began a period of steep decline. These changes caused a temporary three-fold increase in the tilt rate. The tilt rate became stable in 1993 and was about 40% lower than that measured in 1991-1992, but still greater than the rates measured during 1985-1990. Data from the

  16. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    Science.gov (United States)

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    experiments, our research goals are 1)Analysis and understanding of geothermal structure and geofluids in ductile condition of the Japanese Island arc, 2)Fundamental technologies of drilling under ductile region for geothermal reservoir, 3) Development of geothermal reservoir simulator of two phase and multiphase flow including supercritical state through rock fracture, 4) Lab scale support for ICDP-JBBP, 5) Application of new EGS technologies to conventional geothermal fields as recovery from the 2011 Great East Japan Earthquake and energy crisis in Japan. [Publications Relevant to the Research] Tsuchiya, N. and Hirano, N. (2007), ISLAND ARC, 16, 6-15. Okamoto, A., Saishu, H., Hirano, N. & Tsuchiya, N. (2010) Geochimica et Cosmochimica Acta, 74, 3692-3706. Majer, E.L., Baria, R., Stark, M., Oates, S., Bonner, J. Smith, B. & Asanuma H., (2007) Geothermics, 36, 185-222. Watanabe, N., Hirano, N. Tsuchiya, N. (2009) Journal of Geophysical Research B: Solid Earth, 114(4), B04208.

  17. Hydraulic Property and Soil Textural Classification Measurements for Rainier Mesa, Nevada Test Site, Nevada

    Science.gov (United States)

    Ebel, Brian A.; Nimmo, John R.

    2010-01-01

    This report presents particle size analysis, field-saturated hydraulic conductivity measurements, and qualitative descriptions of surficial materials at selected locations at Rainier Mesa, Nevada. Measurements and sample collection were conducted in the Rainier Mesa area, including unconsolidated sediments on top of the mesa, an ephemeral wash channel near the mesa edge, and dry U12n tunnel pond sediments below the mesa. Particle size analysis used a combination of sieving and optical diffraction techniques. Field-saturated hydraulic conductivity measurements employed a single-ring infiltrometer with analytical formulas that correct for falling head and spreading outside the ring domain. These measurements may prove useful to current and future efforts at Rainier Mesa aimed at understanding infiltration and its effect on water fluxes and radionuclide transport in the unsaturated zone.

  18. Successive hydrothermal events as indicated by oxygen isotope composition and petrography of greywacke basement rocks, Kawerau geothermal field, New Zealand

    International Nuclear Information System (INIS)

    Absar, A.; Blattner, P.

    1985-01-01

    Fifteen drillholes at the Kawerau geothermal field penetrated a sequence of Quaternary volcanic rocks overlying Mesozoic greywackes and argillites in the depth range of 650 to 1220 m below sea level. Maximum temperature in the basement is 250 to 303 deg. C. Twelve greywacke cores were modally analysed in order to determine their intensity of alteration, which in turn was compared with their oxygen isotope composition. It is concluded that Kawerau geothermal field has experienced at least three hydrothermal regimes. The earliest was characterised by fluids with low m CO 2 and δ 18 O, as indicated by the wairakite-prehnite mineral assemblage in greywacke depleted by 5 ppm. This regime was followed by a period of hydraulic fracturing the formation of a mineral assemblage with abundant calcite indicative of fluids with high dissolved CO 2 . Precipitation of minerals during these two early successive hydrothermal regimes resulted in sealing of fractures in the southern part of the field. These two mineral assemblages are indicated to have formed prior to faulting. The latest mineral assemblage comprising quartz-calcite-adularia-calc silicates on the other hand, is related to a series of NE trending faults which enabled geothermal fluids to move northeastward after circulation was precluded in the southern part. This suggests that future exploration for production from the greywacke basement should be in the north where mineralogy and δ 18 O composition of calcite indicate that much better permeability occurs

  19. Geochemical structure and position of the Waiotapu geothermal field, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Giggenbach, W F; Sheppard, D S; Robinson, B W; Stewart, M K; Lyon, G L [Institute of Geological and Nuclear Sciences Ltd., Lower Hutt (New Zealand)

    1994-10-01

    The Waiotapu geothermal system occupies the central part of the Taupo Volcanic Zone (TVZ). With a surface area of 17 km{sup 2} and a natural heat discharge rate of some 550 MW, it is one of the largest in New Zealand. Between 1957 and 1962 seven wells were drilled to a maximum depth of about 1000 m. The highest temperature measured in these wells was 295{sup o}C. In contrast to most other geothermal systems of the TVZ, the rising plume of hot water shows a pronounced lateral component due to the position of the system on the flanks of a hydrological high. The presence of thermal features generally associated with rising vapours, such as fumaroles, mud pools and acid sulphate springs, suggests that the major upflow of hot water occurs over the northern sector of the field, close to two rhyo-dacite domes. The magma bodies associated with these domes may represent the heat sources for the system. Neutral Cl waters are discharged some 4 km to the south from a series of boiling springs and a large, sub-circular pool occupying a hydrothermal explosion crater (Champagne Pool). The chemical and isotopic compositions of Champagne Pool water reflect extensive non-equilibrium evaporation of a deep water with {delta}{sup 2}H -40``per mille`` and {delta}{sup 18}O = 2.5``per mille``, in a process similar to that governing evaporation from steam-heated pools. The Cl content of the parent water is 1250 mg/kg, its CO{sub 2} content is, at about 0.1 mmol/mol or 240 mg/kg, very low. The {sup 34}S content of H{sub 2}S corresponds to +5.3 {+-} 1.0 ``per mille``, and the {sup 13}C content of CO{sub 2} to -7.3 {+-} 1.2 ``per mille``. Geochemical evidence suggests that the Waiotapu system is linked hydrologically to its neighbouring systems Reporoa and Waikite. Each of these, however, is likely to receive additional input of heat and chemicals from separate sources. (Author)

  20. Archaeology in the Kilauea East Rift Zone: Part 1, Land-use model and research design, Kapoho, Kamaili and Kilauea Geothermal Subzones, Puna District, Hawaii Island

    Energy Technology Data Exchange (ETDEWEB)

    Burtchard, G.C.; Moblo, P. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1994-07-01

    The Puna Geothermal Resource Subzones (GRS) project area encompasses approximately 22,000 acres centered on the Kilauea East Rift Zone in Puna District, Hawaii Island. The area is divided into three subzones proposed for geothermal power development -- Kilauea Middle East Rift, Kamaili and Kapoho GRS. Throughout the time of human occupation, eruptive episodes along the rift have maintained a dynamic landscape. Periodic volcanic events, for example, have changed the coastline configuration, altered patterns of agriculturally suitable sediments, and created an assortment of periodically active, periodically quiescent, volcanic hazards. Because of the active character of the rift zone, then, the area`s occupants have always been obliged to organize their use of the landscape to accommodate a dynamic mosaic of lava flow types and ages. While the specific configuration of settlements and agricultural areas necessarily changed in response to volcanic events, it is possible to anticipate general patterns in the manner in which populations used the landscape through time. This research design offers a model that predicts the spatial results of long-term land-use patterns and relates them to the character of the archaeological record of that use. In essence, the environmental/land-use model developed here predicts that highest population levels, and hence the greatest abundance and complexity of identifiable prehistoric remains, tended to cluster near the coast at places that maximized access to productive fisheries and agricultural soils. With the possible exception of a few inland settlements, the density of archaeological remains expected to decrease with distance from the coastline. The pattern is generally supported in the regions existing ethnohistoric and archaeological record.

  1. Modeling study of the natural state of the Heber geothermal field, California

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, M.J.; Bodvarsson, G.S.

    1983-06-01

    As a first step in simulating the behavior of the Heber field under exploitation, the system is modeled in its natural (pre-exploitation) state. Using Lawrence Berkeley Laboratory's (LBL) computer code PT and a radially symmetric model, a reasonable match between published and calculated temperature and pressure distributions is obtained. The results of the study indicate that the Heber geothermal system is created by the upflow of hot water through a central zone of higher permeability. The model shows that in its natural state the system is recharged at depth by a 15 MW(thermal) convective heat source. The existence of a radially symmetric convection pattern, whose axis coincides with that of the Heber anomaly is suggested. At the lower part of the ascending hot water plume, the deep recharge water mixes with colder water moving laterally towards the axis of the system. On the upper part, the rising plume spreads radially outward before reaching the bottom of the caprock, at 550 m depth. The model results suggest that the caprock is quite permeable, with convection controlling the temperature distribution. The low permeability of the upper zones in the outer region of the system may be due to mineral precipitation.

  2. The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China

    Science.gov (United States)

    Li, Haizhou; Yang, Qunhui; Li, Jian; Gao, Hang; Li, Ping; Zhou, Huaiyang

    2015-11-01

    Using a culture-independent method that combines CARD-FISH, qPCR and 16S rDNA, we investigated the abundance, community structure and diversity of microbes along a steep thermal gradient (50-90 °C) in the Tengchong Geothermal Field. We found that Bacteria and Archaea abundance changed markedly with temperature changes and that the number of cells was lowest at high temperatures (90.8 °C). Under low-temperature conditions (52.3-74.6 °C), the microbial communities were dominated by Bacteria, which accounted for 60-80% of the total number of cells. At 74.6 °C, Archaea were dominant, and at 90.8 °C, they accounted for more than 90% of the total number of cells. Additionally, the microbial communities at high temperatures (74.6-90.8 °C) were substantially simpler than those at the low-temperature sites. Only a few genera (e.g., bacterial Caldisericum, Thermotoga and Thermoanaerobacter, archaeal Vulcanisaeta and Hyperthermus) often dominated in high-temperature environments. Additionally, a positive correlation between Ammonia-Oxidizing Archaea (AOA) activity and temperature was detected. AOA activity increased from 17 to 52 pmol of NO2- per cell d-1 with a temperature change from 50 to 70 °C.

  3. The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China.

    Science.gov (United States)

    Li, Haizhou; Yang, Qunhui; Li, Jian; Gao, Hang; Li, Ping; Zhou, Huaiyang

    2015-11-26

    Using a culture-independent method that combines CARD-FISH, qPCR and 16S rDNA, we investigated the abundance, community structure and diversity of microbes along a steep thermal gradient (50-90 °C) in the Tengchong Geothermal Field. We found that Bacteria and Archaea abundance changed markedly with temperature changes and that the number of cells was lowest at high temperatures (90.8 °C). Under low-temperature conditions (52.3-74.6 °C), the microbial communities were dominated by Bacteria, which accounted for 60-80% of the total number of cells. At 74.6 °C, Archaea were dominant, and at 90.8 °C, they accounted for more than 90% of the total number of cells. Additionally, the microbial communities at high temperatures (74.6-90.8 °C) were substantially simpler than those at the low-temperature sites. Only a few genera (e.g., bacterial Caldisericum, Thermotoga and Thermoanaerobacter, archaeal Vulcanisaeta and Hyperthermus) often dominated in high-temperature environments. Additionally, a positive correlation between Ammonia-Oxidizing Archaea (AOA) activity and temperature was detected. AOA activity increased from 17 to 52 pmol of NO2(-) per cell d(-1) with a temperature change from 50 to 70 °C.

  4. Gas and Isotope Geochemistry of 81 Steam Samples from Wells in The Geysers Geothermal Field, Sonoma and Lake Counties, California

    Science.gov (United States)

    Lowenstern, Jacob B.; Janik, Cathy J.; Fahlquist, Lynne; Johnson, Linda S.

    1999-01-01

    The Geysers geothermal field in northern California, with about 2000-MW electrical capacity, is the largest geothermal field in the world. Despite its importance as a resource and as an example of a vapor-dominated reservoir, very few complete geochemical analyses of the steam have been published (Allen and Day, 1927; Truesdell and others, 1987). This report presents data from 90 steam, gas, and condensate samples from wells in The Geysers geothermal field in northern California. Samples were collected between 1978 and 1991. Well attributes include sampling date, well name, location, total depth, and the wellhead temperature and pressure at which the sample was collected. Geochemical characteristics include the steam/gas ratio, composition of noncondensable gas (relative proportions of CO2, H2S, He, H2, O2, Ar, N2, CH4, and NH3), and isotopic values for deltaD and delta18O of H2O, delta13C of CO2, and delta34S of H2S. The compilation includes 81 analyses from 74 different production wells, 9 isotopic analyses of steam condensate pumped into injection wells, and 5 complete geochemical analyses on gases from surface fumaroles and bubbling pools. Most samples were collected as saturated steam and plot along the liquid-water/steam boiling curve. Steam-togas ratios are highest in the southeastern part of the geothermal field and lowest in the northwest, consistent with other studies. Wells in the Northwest Geysers are also enriched in N2/Ar, CO2 and CH4, deltaD, and delta18O. Well discharges from the Southeast Geysers are high in steam/gas and have isotopic compositions and N2/Ar ratios consistent with recharge by local meteoric waters. Samples from the Central Geysers show characteristics found in both the Southeast and Northwest Geysers. Gas and steam characteristics of well discharges from the Northwest Geysers are consistent with input of components from a high-temperature reservoir containing carbonrich gases derived from the host Franciscan rocks. Throughout the

  5. Hyperspectral image analysis for the determination of alteration minerals in geothermal fields: Çürüksu (Denizli) Graben, Turkey

    Science.gov (United States)

    Uygur, Merve; Karaman, Muhittin; Kumral, Mustafa

    2016-04-01

    Çürüksu (Denizli) Graben hosts various geothermal fields such as Kızıldere, Yenice, Gerali, Karahayıt, and Tekkehamam. Neotectonic activities, which are caused by extensional tectonism, and deep circulation in sub-volcanic intrusions are heat sources of hydrothermal solutions. The temperature of hydrothermal solutions is between 53 and 260 degree Celsius. Phyllic, argillic, silicic, and carbonatization alterations and various hydrothermal minerals have been identified in various research studies of these areas. Surfaced hydrothermal alteration minerals are one set of potential indicators of geothermal resources. Developing the exploration tools to define the surface indicators of geothermal fields can assist in the recognition of geothermal resources. Thermal and hyperspectral imaging and analysis can be used for defining the surface indicators of geothermal fields. This study tests the hypothesis that hyperspectral image analysis based on EO-1 Hyperion images can be used for the delineation and definition of surfaced hydrothermal alteration in geothermal fields. Hyperspectral image analyses were applied to images covering the geothermal fields whose alteration characteristic are known. To reduce data dimensionality and identify spectral endmembers, Kruse's multi-step process was applied to atmospherically and geometrically-corrected hyperspectral images. Minimum Noise Fraction was used to reduce the spectral dimensions and isolate noise in the images. Extreme pixels were identified from high order MNF bands using the Pixel Purity Index. n-Dimensional Visualization was utilized for unique pixel identification. Spectral similarities between pixel spectral signatures and known endmember spectrum (USGS Spectral Library) were compared with Spectral Angle Mapper Classification. EO-1 Hyperion hyperspectral images and hyperspectral analysis are sensitive to hydrothermal alteration minerals, as their diagnostic spectral signatures span the visible and shortwave

  6. Geothermal energy

    International Nuclear Information System (INIS)

    Rummel, F.; Kappelmeyer, O.; Herde, O.A.

    1992-01-01

    Objective of this brochure is to present the subject Geothermics and the possible use of geothermal energy to the public. The following aspects will be refered to: -present energy situation -geothermal potential -use of geothermal energy -environemental aspects -economics. In addition, it presents an up-dated overview of geothermal projects funded by the German government, and a list of institutions and companies active in geothermal research and developments. (orig./HP) [de

  7. Microbial diversity of acidic hot spring (kawah hujan B) in geothermal field of kamojang area, west java-indonesia.

    Science.gov (United States)

    Aditiawati, Pingkan; Yohandini, Heni; Madayanti, Fida; Akhmaloka

    2009-01-01

    Microbial communities in an acidic hot spring, namely Kawah Hujan B, at Kamojang geothermal field, West Java-Indonesia was examined using culture dependent and culture independent strategies. Chemical analysis of the hot spring water showed a characteristic of acidic-sulfate geothermal activity that contained high sulfate concentrations and low pH values (pH 1.8 to 1.9). Microbial community present in the spring was characterized by 16S rRNA gene combined with denaturing gradient gel electrophoresis (DGGE) analysis. The majority of the sequences recovered from culture-independent method were closely related to Crenarchaeota and Proteobacteria phyla. However, detail comparison among the member of Crenarchaeota showing some sequences variation compared to that the published data especially on the hypervariable and variable regions. In addition, the sequences did not belong to certain genus. Meanwhile, the 16S Rdna sequences from culture-dependent samples revealed mostly close to Firmicute and gamma Proteobacteria.

  8. Analysis of Geothermal Pathway in the Metamorphic Area, Northeastern Taiwan

    Science.gov (United States)

    Wang, C.; Wu, M. Y.; Song, S. R.; Lo, W.

    2016-12-01

    A quantitative measure by play fairway analysis in geothermal energy development is an important tool that can present the probability map of potential resources through the uncertainty studies in geology for early phase decision making purpose in the related industries. While source, pathway, and fluid are the three main geologic factors in traditional geothermal systems, identifying the heat paths is critical to reduce drilling cost. Taiwan is in East Asia and the western edge of Pacific Ocean, locating on the convergent boundary of Eurasian Plate and Philippine Sea Plate with many earthquake activities. This study chooses a metamorphic area in the western corner of Yi-Lan plain in northeastern Taiwan with high geothermal potential and several existing exploration sites. Having high subsurface temperature gradient from the mountain belts, and plenty hydrologic systems through thousands of millimeters annual precipitation that would bring up heats closer to the surface, current geothermal conceptual model indicates the importance of pathway distribution which affects the possible concentration of extractable heat location. The study conducts surface lineation analysis using analytic hierarchy process to determine weights among various fracture types for their roles in geothermal pathways, based on the information of remote sensing data, published geologic maps and field work measurements, to produce regional fracture distribution probability map. The results display how the spatial distribution of pathways through various fractures could affect geothermal systems, identify the geothermal plays using statistical data analysis, and compare against the existing drilling data.

  9. Hydrochemical Characteristics and Evolution of Geothermal Fluids in the Chabu High-Temperature Geothermal System, Southern Tibet

    Directory of Open Access Journals (Sweden)

    X. Wang

    2018-01-01

    Full Text Available This study defines reasonable reservoir temperatures and cooling processes of subsurface geothermal fluids in the Chabu high-temperature geothermal system. This system lies in the south-central part of the Shenzha-Xietongmen hydrothermal active belt and develops an extensive sinter platform with various and intense hydrothermal manifestations. All the geothermal spring samples collected systematically from the sinter platform are divided into three groups by cluster analysis of major elements. Samples of group 1 and group 3 are distributed in the central part and northern periphery of the sinter platform, respectively, while samples of group 2 are scattered in the transitional zone between groups 1 and 3. The hydrochemical characteristics show that the geothermal waters of the research area have generally mixed with shallow cooler waters in reservoirs. The reasonable reservoir temperatures and the mixing processes of the subsurface geothermal fluids could be speculated by combining the hydrochemical characteristics of geothermal springs, calculated results of the chemical geothermometers, and silica-enthalpy mixing models. Contour maps are applied to measured emerging temperatures, mass flow rates, total dissolved solids of spring samples, and reasonable subsurface temperatures. They indicate that the major cooling processes of the subsurface geothermal fluids gradually transform from adiabatic boiling to conduction from the central part to the peripheral belt. The geothermal reservoir temperatures also show an increasing trend. The point with the highest reservoir temperature (256°C appears in the east-central part of the research area, which might be the main up-flow zone. The cooling processes of the subsurface geothermal fluids in the research area can be shown on an enthalpy-chloride plot. The deep parent fluid for the Chabu geothermal field has a Cl− concentration of 290 mg/L and an enthalpy of 1550 J/g (with a water temperature of

  10. Simulation studies for wells AH-4bis/AH-17 and AH-18, Ahuachapan Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Monterrosa, Manuel Ernesto

    1996-01-24

    Well AH-4bis, at the Ahuachapan Geothermal Field is planned to be drilled on the same pad as the former AH-4. A simulation study was carried out for two casing dameters 13 5/8 and 9 5/8” in order to estimate its production and to know its economic feasibility. The simulation results indcate a high probability of production in the range of 7 Mwe, equivalent to 120 kg/s total mass flow rate, 1250 kJ/kg at 6 bar-a for the new well AH-4bis. Well AH- 17 is good producer, during 1991 after ten years of production, the well was shut-in due to silica scaling problems. A wellbore simulation was carried out in order to predict the new production conditions after the work-over, mainly to estimate the water flow rate in order to reduce the silica scaling. The results indicate a very low water flow rate. The match between the simulated and measured production curves after the work-over was successful. The well AH-18 is located at the southern part of the actual bore field. CEL is planning to expand the borefield at this area and it is neccessary to estimate the possible production condtions at that zone. The results indicate a high probabilty of production at that area. The power potential is estimated at 3.5 Mwe per well at WHP 6 bar-a and the wells will not require induction.

  11. Environmental summary document for the Republic Geothermal, Inc. application for a geothermal loan guaranty project: 64 MW well field and 48 MW (net) geothermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D.W.; Powers, D.J.; Leitner, P.; Crow, N.B.; Gudiksen, P.H.; Ricker, Y.E.

    1979-07-01

    A comprehensive review and analysis is provided of the environmental consequences of (1) guaranteeing a load for the completion of the 64 MW well field and the 48 MW (net) power plant or (2) denying a guaranteed load that is needed to finish the project. Mitigation measures are discussed. Alternatives and their impacts are compared and some discussion is included on unavoidable adverse impacts. (MHR)

  12. Investigation of geothermal fields in himalayan range in pakistan using isotope and chemical techniques

    International Nuclear Information System (INIS)

    Ahmad, M.; Sheikh, M.R.; Akram, W.; Tasneem, M.A.; Iqbal, N.; Latif, Z.

    2007-07-01

    There are many geothermal sites in Himalayan belt of Pakistan having low to high temperatures(boiling water). Isotopes and geochemical techniques were applied to investigate the origin, subsurface history and reservoir temperatures of geothermal fields at Tatta Pani and Tato lying along Main Mantle Thrust, Murtazabad along Main Karakoram Thrust and Kotli in the area of overlapping thrusts: Punjal Thrust, Main Boundary Thrust and the Himalaya Frontal Thrust. Discharge of the springs varies from 30 to 2000 liters per minute with the surface temperature from 47.3 to 92 degree C. Two sets of water samples were collected from these fields. The samples were analyzed for various isotopes (O/sup 18/, H/sup 2/ and H/sup 3/ of water; C/sup 13/ of dissolved inorganic carbon; S/sup 34/ and O/sup 18/ of dissolved sulphates); and water chemistry. The thermal waters of the Northern Areas of Pakistan are generally neutral to slightly alkaline and have low dissolved contents. Sodium is the dominant cation in all the cases. In terms of anions, HCO/sub 3/ is dominating. Source of recharge is meteoric water (rains and/or snow-melt). The dominant process of cooling is conduction at Tatta Pani, Tato, and Murtazabad. Shallow groundwater is mixing with the thermal springs in different proportions at Murtazabad, while there is no mixing in the thermal waters of Tatta Pani and Tato. The equilibrium temperature of the thermal end-member at Murtazabad is in the range of 185- 225 degree C and the isochemical-mixing model based on the Na-K and quartz geothermometers estimates 227 degree C temperature. O/sup 18/ (SO/sub 4/-H/sub 2/O) geothermometer indicates equilibrium temperatures (before mixing) above I85 degree C. The dissolved silica vs. enthalpy plot suggests heat losses through conduction from the original temperature about 245 degree C. The reservoir temperatures of Tatta Pani (100-130 degree C) determined by the Na-K, K-Mg and quartz geothermometers are in good agreement. O/sup 18/ (SO

  13. Quantitative Interpretation of Gravity Anomaly Data in Geothermal Field Seulawah Agam, Aceh Besar

    Directory of Open Access Journals (Sweden)

    Aprillino Wangsa

    2018-01-01

    Keywords: Gravity Method, Density, Grav2DC, Geothermal System, Seulawah Agam REFERENSI Bennett, J.D., dkk. 1981. Peta Geologi Lembar Banda Aceh, Sumatera. Bandung: Pusat Penelitian dan Pengembangan Geologi. Hidayat, N dan Basid, A. 2011. Analisis Anomali Gravitasi Sebagai Acuan Dalam Penentuan Struktur Geologi Bawah Permukaan dan Potensi Geothermal, Jurnal Neutrino, 4.1,p-36. Muzakir. 2014. Investigasi Struktur 2D Lapangan Panasbumi Seulawah Agam Berdasarkan Data Pengukuran Magnetotellurik. Skripsi. Universitas Syiah Kuala, Banda Aceh. Saptadji, N. M. 2001. Teknik Panas Bumi. Departemen Teknik Perminyakan Fakultas Ilmu Kebumian dan Teknologi Mineral. Institut Teknologi Bandung: Bandung. Yu, G., He, Z. X., Hu, Z.Z., borbergsdottir, I. M., Strack, K. –M., dan Tulinius, H.2009. Geothermal Exploration Using MT and Gravity Techniques at Szentlorinc Area in Hungary - SEG 2009 International Expoloration and Annuad Meeting. Houston. P-4333

  14. CFE-DOE agreement for the study of Mexican geothermal fields

    International Nuclear Information System (INIS)

    Le Bert, G.

    1990-01-01

    The Commission Federal de Electricidad (CFE) is the public utility in Mexico in charge of electric energy service, as well as harnessing geothermal resources. An agreement of mutual benefit to achieve a thorough understanding of the nature of geothermal reservoirs was signed on April 17, 1986 with the United State Department of Energy (DOE). The major objective of this agreement was to investigate how geothermal resources can best be explored and exploited. The duration of the agreement was for 3 years, but as happens in many long-term research programs, new topics and problems appear. Thus an extension of 5 years was foreseen. A brief discussion on the results of the main tasks is presented in this paper, as well as of the new tasks and scopes for the 5-year extension of the agreement

  15. Magmatic-like fluid source of the Chingshui geothermal field, NE Taiwan evidenced by carbonate clumped-isotope paleothermometry

    Science.gov (United States)

    Lu, Yi-Chia; Song, Sheng-Rong; Wang, Pei-Ling; Wu, Chung-Che; Mii, Horng-Sheng; MacDonald, John; Shen, Chuan-Chou; John, Cédric M.

    2017-11-01

    The Chingshui geothermal field, a moderate-temperature and water-dominated hydrothermal system, was the site of the first geothermal power plant in Taiwan. Many geological, geophysical and geochemical studies using more than 21 drilled wells have been performed since the 1960s. However, there are still controversies regarding the heat and fluid sources due to the tectonically complicated geological setting. To clarify the heat and fluid sources, we analyzed clumped isotopes with carbon and oxygen isotopic compositions of calcite scaling in geothermal wells and veins on outcrops and calculated the δ18O values of the source fluids. Two populations of δ18O values were calculated: -5.8 ± 0.8‰ VSMOW from scaling in the well and -1.0 ± 1.6‰ to 10.0 ± 1.3‰ VSMOW from outcropping calcite veins, indicative of meteoric and magmatic fluid sources, respectively. Meanwhile, two hydrothermal reservoirs at different depths have been identified by magnetotelluric (MT) imaging with micro-seismicity underneath this area. As a result, we propose a two-reservoir model: the shallow reservoir provides fluids from meteoric water for the scaling sampled from wells, whereas the deep reservoir provides magmatic fluids from deep marble decarbonization recorded in outcropping calcite veins.

  16. Assessment of the Appalachian Basin Geothermal Field: Combining Risk Factors to Inform Development of Low Temperature Projects

    Science.gov (United States)

    Smith, J. D.; Whealton, C.; Camp, E. R.; Horowitz, F.; Frone, Z. S.; Jordan, T. E.; Stedinger, J. R.

    2015-12-01

    Exploration methods for deep geothermal energy projects must primarily consider whether or not a location has favorable thermal resources. Even where the thermal field is favorable, other factors may impede project development and success. A combined analysis of these factors and their uncertainty is a strategy for moving geothermal energy proposals forward from the exploration phase at the scale of a basin to the scale of a project, and further to design of geothermal systems. For a Department of Energy Geothermal Play Fairway Analysis we assessed quality metrics, which we call risk factors, in the Appalachian Basin of New York, Pennsylvania, and West Virginia. These included 1) thermal field variability, 2) productivity of natural reservoirs from which to extract heat, 3) potential for induced seismicity, and 4) presence of thermal utilization centers. The thermal field was determined using a 1D heat flow model for 13,400 bottomhole temperatures (BHT) from oil and gas wells. Steps included the development of i) a set of corrections to BHT data and ii) depth models of conductivity stratigraphy at each borehole based on generalized stratigraphy that was verified for a select set of wells. Wells are control points in a spatial statistical analysis that resulted in maps of the predicted mean thermal field properties and of the standard error of the predicted mean. Seismic risk was analyzed by comparing earthquakes and stress orientations in the basin to gravity and magnetic potential field edges at depth. Major edges in the potential fields served as interpolation boundaries for the thermal maps (Figure 1). Natural reservoirs were identified from published studies, and productivity was determined based on the expected permeability and dimensions of each reservoir. Visualizing the natural reservoirs and population centers on a map of the thermal field communicates options for viable pilot sites and project designs (Figure 1). Furthermore, combining the four risk

  17. Status of geothermal energy in Ethiopia

    International Nuclear Information System (INIS)

    Endeshaw, A.; Belaineh, M.

    1990-01-01

    This paper reports that there are several identified geothermal localities in Ethiopia. Ten geothermal localities have been studied with regional assessments, while three localities have had pre-feasibility studies. In one area, the Aluto-Langano geothermal field, the feasibility studies have been completed. However, the geothermal resources have not been utilized yet except in the traditional baths

  18. Use of high-resolution satellite images for detection of geological structures related to Central Andes geothermal field, Chile.

    Science.gov (United States)

    Benavides-Rivas, C. L.; Soto-Pinto, C. A.; Arellano-Baeza, A. A.

    2014-12-01

    Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT 8 satellite have been used to delineate the geological structures related to the potential geothermal reservoirs located at the northern end of the Southern Volcanic Zone of Chile. It was done by applying the lineament extraction technique, using the ADALGEO software, developed by [Soto et al., 2013]. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields. A lineament is generally defined as a straight or slightly curved feature in the landscape visible satellite image as an aligned sequence of pixel intensity contrast compared to the background. The system features extracted from satellite images is not identical to the geological lineaments that are generally determined by ground surveys, however, generally reflects the structure of faults and fractures in the crust. A temporal sequence of eight Landsat multispectral images of Central Andes geothermal field, located in VI region de Chile, was used to study changes in the configuration of the lineaments during 2011. The presence of minerals with silicification, epidotization, and albitization, which are typical for geothrmal reservoirs, was also identified, using their spectral characteristics, and subsequently corroborated in the field. Both lineament analysis and spectral analysis gave similar location of the reservoir, which increases reliability of the results.

  19. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    Science.gov (United States)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D

  20. Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland

    Science.gov (United States)

    Zierenberg, R.A.; Schiffman, P.; Barfod, G.H.; Lesher, C.E.; Marks, N.E.; Lowenstern, Jacob B.; Mortensen, A.K.; Pope, E.C.; Bird, D.K.; Reed, M.H.; Friðleifsson, G.O.; Elders, W.A.

    2013-01-01

    The Iceland Deep Drilling Project Well 1 was designed as a 4- to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland. The well unexpectedly drilled into a high-silica (76.5 % SiO2) rhyolite melt at approximately 2.1 km. Some of the melt vesiculated while extruding into the drill hole, but most of the recovered cuttings are quenched sparsely phyric, vesicle-poor glass. The phenocryst assemblage is comprised of titanomagnetite, plagioclase, augite, and pigeonite. Compositional zoning in plagioclase and exsolution lamellae in augite and pigeonite record changing crystallization conditions as the melt migrated to its present depth of emplacement. The in situ temperature of the melt is estimated to be between 850 and 920 °C based on two-pyroxene geothermometry and modeling of the crystallization sequence. Volatile content of the glass indicated partial degassing at an in situ pressure that is above hydrostatic (~16 MPa) and below lithostatic (~55 MPa). The major element and minor element composition of the melt are consistent with an origin by partial melting of hydrothermally altered basaltic crust at depth, similar to rhyolite erupted within the Krafla Caldera. Chondrite-normalized REE concentrations show strong light REE enrichment and relative flat patterns with negative Eu anomaly. Strontium isotope values (0.70328) are consistent with mantle-derived melt, but oxygen and hydrogen isotope values are depleted (3.1 and −118 ‰, respectively) relative to mantle values. The hydrogen isotope values overlap those of hydrothermal epidote from rocks altered by the meteoric-water-recharged Krafla geothermal system. The rhyolite melt was emplaced into and has reacted with a felsic intrusive suite that has nearly identical composition. The felsite is composed of quartz, alkali feldspar, plagioclase, titanomagnetite, and augite. Emplacement of the rhyolite magma has resulted in partial melting of

  1. Development of geothermal field following the 2000 eruption of Usu volcano as revealed by ground temperature, resistivity and self-potential variations

    Directory of Open Access Journals (Sweden)

    T. Mogi

    2007-06-01

    Full Text Available The 2000 eruption of Usu volcano, NE Japan, took place on the foot of the somma, and formed a cryptodome of 65 m high accompanying numerous faults. We made repeated measurements of ground temperature, Self-Potential (SP and electrical resistivity, in order to clarify the mechanism of development of the newly formed geothermal field on the fault zone. Prior to the expansion of the geothermal field, we detected a resistive zone at the center of the geothermal zone and it supposed to evidence that the zone involving dry steam phase had been formed beneath the fault zone. A rapid expansion of the geothermal field followed along the fault zone away from the craters. The place of maximum amplitude of the SP field also migrated following the expansion of the high ground temperature zone. The high resistive part has shrunk as a consequence of the progress of condensation to warm the surroundings. Based on the observations, we delineated the process of the hydrothermal circulation. Considering the topographic effect of the SP field observed on the highly permeable zone in the Usu somma, the potential flow along the slope of the soma was expected to play an important role to promote the rapid expansion of the geothermal field and the migration of the most active part.

  2. Isotope and hydrogeochemical studies of southern Jiangxi geothermal systems, China

    International Nuclear Information System (INIS)

    Zhou Wenbin; Li Xueli; Shi Weijun; Sun Zhanxue

    1999-01-01

    Southern Jiangxi is a geothermally active region, especially in Hengjing area. According to the work plan of IAEA Regional Collaboration in the Development of Geothermal Energy Resources and Environment Management through Isotope Techniques in East Asia and the Pacific (RAS-8-075), field investigation was carried out in Hengjing, southern Jiangxi Province, to demonstrate the use of isotope and geochemical techniques in low to medium temperature geothermal system. During the field investigation, 19 samples were taken from cold springs, hot springs and surface water in the area to determine their hydrochemical and gas compositions, hydrogen, oxygen, carbon and helium isotopes. The results of the study have shown that the geothermal waters in the studying region are of the same characteristics with the local meteoric water in oxygen and hydrogen isotope composition, indicating the geothermal waters are mainly derived from the local precipitation, while the gas composition and carbon and helium isotopes reveal that some gases in the geothermal waters have mantle origin. (author)

  3. Hydro-geochemical and isotopic fluid evolution of the Los Azufres caldera geothermal field, Central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Partida, E [Centro de Geociencias, Campus Juriquilla-UNAM, Queretaro (Mexico); Viggiano-Guerra, J C [Subgerencia de Estudios C.F.E., Morelia. Michocan (Mexico); Perez, R J [Universidad de Calgary (Canada)], E-mail: egp@geociencias.unam.mx, E-mail: cesar.viggiano@cfe.gob.mx, E-mail: rene@geochemicalengineering.com

    2008-10-01

    Hydrothermal alteration at Los Azufres geothermal held is mostly propylitic showing progressive dehydration with depth, and temperature increase. The evolution of this system is inferred to be related to deep liquid water, boiling when ascending through fractures connected to the surface.

  4. Hydro-geochemical and isotopic fluid evolution of the Los Azufres caldera geothermal field, Central Mexico

    International Nuclear Information System (INIS)

    Gonzalez-Partida, E; Viggiano-Guerra, J C; Perez, R J

    2008-01-01

    Hydrothermal alteration at Los Azufres geothermal held is mostly propylitic showing progressive dehydration with depth, and temperature increase. The evolution of this system is inferred to be related to deep liquid water, boiling when ascending through fractures connected to the surface.

  5. Environmental assessment of proposed geothermal well testing in the Tigre Lagoon Oil Field, Vermilion Parish, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    An environmental assessment is made of the proposed testing of two geopressured, geothermal aquifers in central coastal Louisiana. On the basis of an analysis of the environmental setting, subsurface characteristics, and the proposed action, potential environmental impacts are determined and evaluated together with potential conflicts with federal, state, and local programs. (LBS )

  6. Chemical composition of deep hydrothermal fluids in the Ribeira Grande geothermal field (São Miguel, Azores)

    Science.gov (United States)

    Carvalho, M. R.; Forjaz, V. H.; Almeida, C.

    2006-08-01

    The Ribeira Grande geothermal field is a water-dominated geothermal system, located within Água de Pau/Fogo Volcano in the central part of the São Miguel Island. This geothermal system is exploited for energy production by wells sustaining two power plants. The wells produce from a formation of pillow lavas divided into different aquifers, with a fairly isothermal zone from 800 to 1300 m in depth, where reservoir temperature reaches 230 to 245 °C. Below the depth of 1300 m there is a slight temperature reversal. The fluid produced has excess enthalpy and, separated at atmospheric pressure, is characterized by mineralization of sodium-chloride type up to 6-7 g/l, the concentration of dissolved silica varies between 450 and 650 mg/l and the pH ranges between 8 and 8.6. The gas phase is dominantly CO 2, at a concentration of 98% of NCG. The composition of the deep geothermal fluid was obtained by computer simulation, using the WATCH program, and was compared with the composition of the bottom-hole samples. The approximations, in this simulation, were considered the single- and multi-step steam separation. The reference temperatures were based on: (i) the measured temperature in wells; (ii) the Na/K geothermometric temperature and (iii) the enthalpy-saturation temperature. According to both the measured and geothermometric temperatures, the deep fluid of the wells has two phases with a steam fraction up to 0.34, at higher well discharges. The measured enthalpy is always greater than the calculated enthalpy. The calcite equilibrium indicates scaling, since the fluid is flashing, around 2.28 mg/l CaCO 3 at the maximum discharge. The geothermal wells exploit three different aquifers, the lower of which is liquid and slightly colder than the upper ones. The intermediate is a two-phase aquifer with a steam fraction up to 0.081. The upper aquifer is probably of steam phase. The main differences between the aquifers are the temperature and boiling; both enthalpy and

  7. The Significance of Acid Alteration in the Los Humeros High-Temperature Geothermal Field, Puebla, Mexico.

    Science.gov (United States)

    Elders, W. A.; Izquierdo, G.

    2014-12-01

    The Los Humeros geothermal field is a high-enthalpy hydrothermal system with more than 40 drilled deep wells, mostly producing high steam fractions at > 300oC. However, although it has a large resource potential, low permeability and corrosive acid fluids have hampered development so that it currently has an installed electrical generating capacity of only 40 MWe. The widespread production of low pH fluids from the reservoir is inconsistent with the marked absence in the reservoir rocks of hydrothermal minerals typical of acid alteration. Instead the hydrothermal alteration observed is typical of that due to neutral to alkaline pH waters reacting with the volcanic rocks of the production zones. Thus it appears that since the reservoir has recently suffered a marked drop in fluid pressure and is in process of transitioning from being water-dominated to being vapor-dominated. However sparse examples of acid leaching are observed locally at depths of about 2 km in the form of bleached, intensely silicified zones, in low permeability and very hot (>350oC) parts of reservoir. Although these leached rocks retain their primary volcanic and pyroclastic textures, they are altered almost entirely to microcrystalline quartz, with some relict pseudomorphs of plagioclase phenocrysts and traces of earlier-formed hydrothermal chlorite and pyrite. These acid-altered zones are usually only some tens of meters thick and deeper rocks lack such silicification. The acid fluids responsible for their formation could either be magmatic volatiles, or could be formed during production (e.g. reaction of water and salts forming hydrogen chloride by hydrolysis at high temperatures). The very high boron content of the fluids produced by the Los Humeros wells suggests that their ultimate source is most likely magmatic gases. However, these acid gases did not react widely with the rocks. We suggest that the silicified zones are forming locally where colder descending waters are encountering

  8. Numerical simulation of electricity generation potential from fractured granite reservoir through vertical wells at Yangbajing geothermal field

    International Nuclear Information System (INIS)

    Zeng, Yu-chao; Zhan, Jie-min; Wu, Neng-you; Luo, Ying-ying; Cai, Wen-hao

    2016-01-01

    Yangbajing geothermal field is the first high-temperature hydrothermal convective geothermal system in China. Research and development of the deep fractured granite reservoir is of great importance for capacity expanding and sustaining of the ground power plant. The geological exploration found that there is a fractured granite heat reservoir at depth of 950–1350 m in well ZK4001 in the north of the geothermal field, with an average temperature of 248 °C and a pressure of 8.01–11.57 MPa. In this work, electricity generation potential and its dependent factors from this fractured granite reservoir by water circulating through vertical wells are numerically investigated. The results indicate that the vertical well system attains an electric power of 16.8–14.7 MW, a reservoir impedance of 0.29–0.46 MPa/(kg/s) and an energy efficiency of about 29.6–12.8 during an exploiting period of 50 years under reference conditions, showing good heat production performance. The main parameters affecting the electric power are water production rate and injection temperature. The main parameters affecting reservoir impedance are reservoir permeability, injection temperature and water production rate. The main parameters affecting the energy efficiency are reservoir permeability, injection temperature and water production rate. Higher reservoir permeability or more reasonable injection temperature or water production rate within certain ranges will be favorable for improving the electricity generation performance. - Highlights: • We established a numerical model of vertical well heat mining system. • Desirable electricity production performance can be obtained under suitable conditions. • The system attains an electric power of 16.8–14.7 MW with an efficiency of about 29.6–12.8. • Electric power mainly depends on water production rate and injection temperature. • Higher permeability within a certain range is favorable for electricity generation.

  9. Reservoir Considerations and Direct Uses of São Pedro do Sul Hydromineral and Geothermal Field, Northern Portugal

    Science.gov (United States)

    Ferreira Gomes, L. M.; Neves Trota, A. P.; Sousa Oliveira, A.; Soares Almeida, S. M.

    2017-12-01

    São Pedro do Sul Hydromineral and Geothermal Field, located in the northern interior zone of Portugal (Lafões zone), has the greatest widespread utilization of geothermal energy in Portugal mainland and is the most important thermal centre from the economical revenues point of view, obtained from direct and indirect utilization of the thermal water, mostly for wellness, health, and leisure of human beings. Recent utilization includes district and greenhouses heating and even cosmetic applications. The Hydromineral Field includes two exploitable zones: the Termas and Vau Poles. The waters are recognised for their mineral and medicinal effects, since the time of the Romans about 2000 years ago and, later on, on the 12th century, by the first King of Portugal, D. Afonso Henriques. The traditional spring and the 500 m well (AC1), located in the Termas Pole, currently supplies artesian hot water flow of about 16.9 L/s with a temperature of 67 °C. Despite the low flow rate of the actual two exploration wells drilled in the Vau Pole, the geothermal potential is high; a new deep well is planned to be drilled in this zone where is expected to obtain fluid temperature of around 75 °C. The occurrence of São Pedro do Sul mineral water, included in the sulphurous type waters, are linked to Hercynian granitoids, emplaced between 290 and 321 Myr. There is a close relationship between the placement of the main hot springs and the Verin-Chaves-Penacova fault, namely Verin (Spain), Chaves, Moledo, and S. Pedro do Sul (Portugal) hot springs. Heat flow generated at shallow crustal zones by the radiogenic host mineral of the granitic rocks, added to the deep Earth heat flow, heats the cold water inflow along fractures. Open fracture network along the main faults allows the hot fluids reach the surface, thus giving chance to the occurrence of hot springs and mineralized cold springs. Coupling between fracture opening and density difference between cold water inflow and hot water

  10. Effective geothermal heat

    International Nuclear Information System (INIS)

    Abelsen, Atle

    2006-01-01

    Scandinavia's currently largest geothermal heating project: the New Ahus hospital, is briefly presented. 300-400 wells on a field outside the hospital are constructed to store energy for both heating and cooling purposes

  11. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  12. Inversion modeling of the natural state and production history of Mutnovsky geothermal field in 1986-2006

    Directory of Open Access Journals (Sweden)

    А. В. Кирюхин

    2017-04-01

    Full Text Available Numerical 3D model of Mutnovsky geothermal field (Dachny springs, which consist of 517 elements and partially takes into account double porosity, was developed in 1992-1993 using computer program TOUGH2. Calibration of the model was based on data from test yield of the wells and initial distribution of temperature and pressure in the reservoir. This model was used for techno-economic justification of power plant construction (Mutnovskaya GeoES, 2002. The model was recreated in the program PetraSim v.5.2, the calibration was carried out using additional data on production history before year 2006 and inversion iTOUGH2-EOS1 modeling. Comparison of reservoir parameters, estimated using inversion modeling, with previous parameter estimations (given in brackets showed the following: upflow rate of heat-transfer agent in natural conditions 80.5 (54.1 kg/s, heat flux enthalpy 1430 (1390 kJ/kg, reservoir permeability 27∙10–15-616∙10–15 (3∙10–15-90∙10–15 m2. Inversion modeling was also used to estimate reinjection rates, inflow of meteoric water in the central part of geothermal field and compressibility of reservoir rocks.

  13. Analysis and application of impedance polar diagram and zstrike rose diagram of magnetotellurics data in southern part of the Wayang Windu geothermal field

    Science.gov (United States)

    Rohayat, O. R.; Wicaksono, R. A.; Daud, Y.

    2018-03-01

    In this study, we determined the main direction of geoelectric strike in the southern part of the Wayang Windu geothermal field using magnetotellurics (MT) data. The strike direction was obtained by analyzing data using impedance polar and Zstrike rose diagram. We investigated 51 MT data at different sites of the southern part of the Wayang Windu geothermal field. Determination of geoelectric strike direction is important since the strike is the rotation references in MT data processing. Our findings had pointed out that the geoelectric strike direction in this study area is in accordance with the direction of geological structure and has a good correlation with structures delineated from 3D MT inversion model.

  14. Improving the Curie depth estimation through optimizing the spectral block dimensions of the aeromagnetic data in the Sabalan geothermal field

    Science.gov (United States)

    Akbar, Somaieh; Fathianpour, Nader

    2016-12-01

    The Curie point depth is of great importance in characterizing geothermal resources. In this study, the Curie iso-depth map was provided using the well-known method of dividing the aeromagnetic dataset into overlapping blocks and analyzing the power spectral density of each block separately. Determining the optimum block dimension is vital in improving the resolution and accuracy of estimating Curie point depth. To investigate the relation between the optimal block size and power spectral density, a forward magnetic modeling was implemented on an artificial prismatic body with specified characteristics. The top, centroid, and bottom depths of the body were estimated by the spectral analysis method for different block dimensions. The result showed that the optimal block size could be considered as the smallest possible block size whose corresponding power spectrum represents an absolute maximum in small wavenumbers. The Curie depth map of the Sabalan geothermal field and its surrounding areas, in the northwestern Iran, was produced using a grid of 37 blocks with different dimensions from 10 × 10 to 50 × 50 km2, which showed at least 50% overlapping with adjacent blocks. The Curie point depth was estimated in the range of 5 to 21 km. The promising areas with the Curie point depths less than 8.5 km are located around Mountain Sabalan encompassing more than 90% of known geothermal resources in the study area. Moreover, the Curie point depth estimated by the improved spectral analysis is in good agreement with the depth calculated from the thermal gradient data measured in one of the exploratory wells in the region.

  15. Seismic and potential field studies over the East Midlands

    Science.gov (United States)

    Kirk, Wayne John

    A seismic refraction profile was undertaken to investigate the source of an aeromagnetic anomaly located above the Widmerpool Gulf, East Midlands. Ten shots were fired into 51 stations at c. 1.5km spacing in a 70km profile during 41 days recording. The refraction data were processed using standard techniques to improve the data quality. A new filtering technique, known as Correlated Adaptive Noise Cancellation was tested on synthetic data and successfully applied to controlled source and quarry blast data. Study of strong motion data reveals that the previous method of site calibration is invalid. A new calibration technique, known as the Scaled Amplitude method is presented to provide safer charge size estimation. Raytrace modelling of the refraction data and two dimensional gravity interpretation confirms the presence of the Widmerpool Gulf but no support is found for the postulated intrusion. Two dimensional magnetic interpretation revealed that the aeromagnetic anomaly could be modelled with a Carboniferous igneous source. A Lower Palaeozoic refractor with a velocity of 6.0 km/s is identified at a maximum depth of c. 2.85km beneath the Widmerpool Gulf. Carboniferous and post-Carboniferous sediments within the gulf have velocities between 2.6-5.5 km/s with a strong vertical gradient. At the gulf margins, a refractor with a constant velocity of 5.2 km/s is identified as Dinantian limestone. A low velocity layer of proposed unaltered Lower Palaeozoics is identified beneath the limestone at the eastern edge of the Derbyshire Dome. The existence and areal extent of this layer are also determined from seismic reflection data. Image analysis of potential field data, presents a model identifying 3 structural provinces, the Midlands Microcraton, the Welsh and English Caledonides and a central region of complex linears. This model is used to explain the distribution of basement rocks determined from seismic and gravity profiles.

  16. Uranium-thorium series radionuclides in brines and reservoir rocks from two deep geothermal boreholes in the Salton Sea Geothermal Field, southeastern California

    Science.gov (United States)

    Zukin, Jeffrey G.; Hammond, Douglas E.; Teh-Lung, Ku; Elders, Wilfred A.

    1987-10-01

    Naturally occurring U and Th series radionuclides have been analyzed in high temperature brines (~300°C, 25 wt% dissolved solids) and associated rocks from two deep geothermal wells located on the northeastern margin of the Salton Sea Geothermal Field (SSGF). These data are part of a study of the SSGF as a natural analog of possible radionuclide behavior near a nuclear waste repository constructed in salt beds, and permit evaluation of some characteristics of water-rock interaction in the SSGF. Rock/Brine concentration ratios ( Rc = (dpm/ g) rock/(dpm/ g) brine) were found to vary from near unity for isotopes of Ra, Pb and Rn to about 5 × 10 5 for 232Th. The high sorptivity of 232Th is closely followed by that of 238U and 234U ( Rc ~ 5 × 10 4), suggesting that U is retained in the +4 oxidation state by the reducing conditions in the brines. The relatively high solubility of 210Pb and 212Pb is attributed to formation of chloride complexes, while the high Ra solubility is attributed to chloride complexing, a lack of suitable adsorption sites due to the high brine salinity and temperature, and the reducing conditions that prevent MnO 2 and RaSO 4 from forming. The 228Ra /226Ra ratios in the brines are approximately equal to those of their parents ( 232Th /230Th ) in associated rocks, indicating that Ra equilibration in the brine-rock system is achieved within the mean life of 228Ra (8.3 years). The 224Ra /228Ra ratios in these brines are about 0.7, indicating that either (1) brine composition is not homogeneous and 224Ra decays in fracture zones deficient in Ra and Th as the brine travels to the wellhead or (2) Ra equilibration in the brine-host rock system is not complete within the mean life of 224Ra (5.2 days) because the desorption of 224Ra from the solid phase is impeded. The 228Ac /228Ra activity ratio in the SSGF brines studied is <0.1, and from this ratio the residence time of 228Ac in the brine before sorption onto solid surfaces is estimated to be <70

  17. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  18. The gravity field of the Red Sea and East Africa

    Science.gov (United States)

    Makris, Jannis; Henke, Christian H.; Egloff, Frank; Akamaluk, Thomas

    1991-11-01

    Reevaluation of all gravity data from the Red Sea, the Gulf of Aden and East Africa permitted the compilation of a new Bouguer anomaly map. The intensity of the gravity field and its regional pattern correlate closely with the topographic features of the region. The maximum Bouguer values (> + 100 mGal) are located over the median troughs of the Red Sea and Gulf of Aden. Dense juvenile oceanic crust in these rifts and intruding magmas in stretched continental areas produce excess mass responsible for the anomaly highs. In the Red Sea the orientation of the gravity highs is NW-SE in the south, turning to NE-SW in the north, almost parallel to the Aqaba-Dead Sea strike. This pattern reveals that the present basin axis is not identical with that which formed the Tertiary coastal margins and the pre-Red Sea zones of crustal weakness. In the Gulf of Aden, new oceanic crust along the Tadjura Trench and its eastward extension is also expressed in the Bouguer anomaly map by gravity highs and a sharp bending of the isolines. A maximum of approx. +150 mGal is located over the central section of the Sheba Ridge. Bouguer gravity values over the East African and Yemen Plateaus are of the order of -180 to -240 mGal, indicating significant crustal thickening. On the Somali Plateau, the Marda Fault also has a strong gravity signature that can be traced towards Somalia. By constraining crustal thickness and structure with seismic data and density values from the velocity distribution by means of the Nafe-Drake and Birch relationships, we computed density models for the crust and upper mantle. The crustal thickness is of the order of 40 km beneath the plateaus and only 5 to 6 km at the oceanized parts in the central and southern portions of the Red Sea median trough. The flanks of the southern Red Sea and the corresponding Arabian side are underlain by 12 to 16 km thick stretched continental type crust. Oceanization offshore Sudan and Egypt is asymmetrical. The continental crust

  19. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. T. [Univ. of Wisconsin, Madison, WI (United States); Akerley, J. [Ormat Technologies Inc., Reno, NV (United States); Baluyut, E. C. [Univ. of Wisconsin, Madison, WI (United States); Cardiff, M. [Univ. of Wisconsin, Madison, WI (United States); Davatzes, N. C. [Temple Univ., Philadelphia, PA (United States). Dept. of Earth and Environmental Science; Feigl, K. L. [Univ. of Wisconsin, Madison, WI (United States); Foxall, W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fratta, D. [Univ. of Wisconsin, Madison, WI (United States); Mellors, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spielman, P. [Ormat Technologies Inc., Reno, NV (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Zemach, E. [Ormat Technologies Inc., Reno, NV (United States)

    2016-05-01

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.

  20. Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    2018-01-01

    Full Text Available Two separate groups of geothermal waters have been identified in the coastal region of Guangdong, China. One is Xinzhou thermal water of regional groundwater flow system in a granite batholith and the other is thermal water derived from shallow coastal aquifers in Shenzao geothermal field, characterized by high salinity. The hydrochemical characteristics of the thermal waters were examined and characterized as Na-Cl and Ca-Na-Cl types, which are very similar to that of seawater. The hydrochemical evolution is revealed by analyzing the correlations of components versus Cl and their relative changes for different water samples, reflecting different extents of water-rock interactions and clear mixing trends with seawaters. Nevertheless, isotopic data indicate that thermal waters are all of the meteoric origins. Isotopic data also allowed determination of different recharge elevations and presentation of different mixing proportions of seawater with thermal waters. The reservoir temperatures were estimated by chemical geothermometries and validated by fluid-mineral equilibrium calculations. The most reliable estimates of reservoir temperature lie in the range of 148–162°C for Xinzhou and the range of 135–144°C for Shenzao thermal waters, based on the retrograde and prograde solubilities of anhydrite and chalcedony. Finally, a schematic cross-sectional fault-hydrology conceptual model was proposed.

  1. Direct utilization of geothermal resources field experiments at Monroe, Utah. Final report, July 14, 1978-July 13, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Blair, C.K.; Owen, L.B. (eds.)

    1982-12-01

    The City of Monroe, Utah undertook a project to demonstrate the economic and technical viability of utilizing a low temperature geothermal resource to provide space and hot water heating to commercial, municipal, and domestic users within the community. During the course of the project, resource development and assessment, including drilling of a production well, was successfully completed. Upon completion of the field development and assessment phase of the program and of a preliminary design of the district heating system, it was determined that the project as proposed was not economically viable. This was due to: (1) a significant increase in estimated capital equipment costs resulting from the general inflation in construction costs, the large area/low population density in Monroe, and a more remote fluid disposal well site than planned, could not balance increased construction costs, (2) a lower temperature resource than predicted, and (3) due to predicted higher pumping and operating costs. After a thorough investigation of alternatives for utilizing the resource, further project activities were cancelled because the project was no longer economical and an alternative application for the resource could not be found within the constraints of the project. The City of Monroe, Utah is still seeking a beneficial use for the 600 gpm, 164/sup 0/F geothermal well. A summary of project activities included.

  2. Stress concentrations at structural discontinuities in active fault zones in the western United States: Implications for permeability and fluid flow in geothermal fields

    Science.gov (United States)

    Siler, Drew; Hinz, Nicholas H.; Faulds, James E.

    2018-01-01

    Slip can induce concentration of stresses at discontinuities along fault systems. These structural discontinuities, i.e., fault terminations, fault step-overs, intersections, bends, and other fault interaction areas, are known to host fluid flow in ore deposition systems, oil and gas reservoirs, and geothermal systems. We modeled stress transfer associated with slip on faults with Holocene-to-historic slip histories at the Salt Wells and Bradys geothermal systems in western Nevada, United States. Results show discrete locations of stress perturbation within discontinuities along these fault systems. Well field data, surface geothermal manifestations, and subsurface temperature data, each a proxy for modern fluid circulation in the fields, indicate that geothermal fluid flow is focused in these same areas where stresses are most highly perturbed. These results suggest that submeter- to meter-scale slip on these fault systems generates stress perturbations that are sufficiently large to promote slip on an array of secondary structures spanning the footprint of the modern geothermal activity. Slip on these secondary faults and fractures generates permeability through kinematic deformation and allows for transmission of fluids. Still, mineralization is expected to seal permeability along faults and fractures over time scales that are generally shorter than either earthquake recurrence intervals or the estimated life span of geothermal fields. This suggests that though stress perturbations resulting from fault slip are broadly important for defining the location and spatial extent of enhanced permeability at structural discontinuities, continual generation and maintenance of flow conduits throughout these areas are probably dependent on the deformation mechanism(s) affecting individual structures.

  3. Geology of the Pavana geothermal area, Departamento de Choluteca, Honduras, Central America: Field report

    Energy Technology Data Exchange (ETDEWEB)

    Eppler, D.B.; Heiken, G.; Wohletz, K.; Flores, W.; Paredes, J.R.; Duffield, W.A.

    1987-09-01

    The Pavana geothermal area is located in southern Honduras near the Gulf of Fonseca. This region is underlain by late Tertiary volcanic rocks. Within ranges near the geothermal manifestations, the rock sequences is characterized by intermediate to mafic laharic breccias and lavas overlain by silicic tuffs and lavas, which are in turn overlain by intermediate to mafic breccias, lavas, and tuffs. The nearest Quaternary volcanoes are about 40 km to the southwest, where the chain of active Central American volcanoes crosses the mouth of the Gulf of Fonseca. Structure of the Pavana area is dominated by generally northwest-trending, southwest-dipping normal faults. This structure is topographically expressed as northwest-trending escarpments that bound blocks of bedrock separated by asymmetric valleys that contain thin alluvial deposits. Thermal waters apparently issue from normal faults and are interpreted as having been heated during deep circulation along fault zones within a regional environment of elevated heat flow. Natural outflow from the main thermal area is about 3000 l/min of 60/sup 0/C water. Geothermometry of the thermal waters suggests a reservoir base temperature of about 150/sup 0/C.

  4. Geothermal spas

    International Nuclear Information System (INIS)

    Woodruff, J.L.; Takahashi, P.K.

    1990-01-01

    The spa business, part of the health and fitness industry that has sprung up in recent years, is highly successful world-wide. The most traditional type of spa is the geothermal spa, found in geothermal areas around the world. In Japan, for example, some 2,000 geothermal spas and resorts generate $6 billion annually. Hawaii has an ideal environment for geothermal spas, and several locations in the islands could supply warm mineral water for spa development. Hawaii receives about 6 million visitors annually, a high percentage of whom are familiar with the relaxing and therapeutic value of geothermal spas, virtually guaranteeing the success of this industry in Hawaii. Presently, Hawaii does not have a single geothermal spa. This paper reports that the geothermal spa business is an industry whose time has come, an industry that offers very promising investment opportunities, and one that would improve the economy while expanding the diversity of pleasurable vacation options in Hawaii

  5. Land subsidence in the Cerro Prieto Geothermal Field, 1 Baja California, Mexico, from 1994 to 2005. An integrated analysis of DInSAR, levelingand geological data.

    Energy Technology Data Exchange (ETDEWEB)

    Sarychikhina, O; Glowacka, E; Mellors, R; Vidal, F S

    2011-03-03

    Cerro Prieto is the oldest and largest Mexican geothermal field in operation and has been producing electricity since 1973. The large amount of geothermal fluids extracted to supply steam to the power plants has resulted in considerable deformation in and around the field. The deformation includes land subsidence and related ground fissuring and faulting. These phenomena have produced severe damages to infrastructure such as roads, irrigation canals and other facilities. In this paper, the technique of Differential Synthetic Aperture Radar Interferometry (DInSAR) is applied using C-band ENVISAR ASAR data acquired between 2003 and 2006 to determine the extent and amount of land subsidence in the Mexicali Valley near Cerro Prieto Geothermal Field. The DInSAR results were compared with published data from precise leveling surveys (1994- 1997 and 1997-2006) and detailed geological information in order to improve the understanding of temporal and spatial distributions of anthropogenic subsidence in the Mexicali Valley. The leveling and DInSAR data were modeled to characterize the observed deformation in terms of fluid extraction. The results confirm that the tectonic faults control the spatial extent of the observed subsidence. These faults likely act as groundwater flow barriers for aquifers and reservoirs. The shape of the subsiding area coincides with the Cerro Prieto pull-apart basin. In addition, the spatial pattern of the subsidence as well as changes in rate are highly correlated with the development of the Cerro Prieto Geothermal Field.

  6. Preliminary study on the characteristics of carbon and oxygen isotopes in the Shiziping geothermal field groundwater in Emei Mountain

    International Nuclear Information System (INIS)

    Yu Xiujing; Jia Shuyuan

    2000-01-01

    Emei Mountain is a well-known scenic tourism spot in China. In order to promote the development of tourist trade, the authors have explored the hydrothermal water in Emei Mountain. At the beginning of 1998, the hydrothermal water was successfully drilled from the Shiziping geothermal field. In the process of prospecting the hydrothermal water, the authors adopted the geochemical method such as carbon and oxygen isotopes. The result indicates that the groundwater of different genetic types has different constitution characteristics of carbon and oxygen isotopes. This provides the important basis for finding out the forming conditions of underground hydrothermal water. So, it is prospective to study the growth characteristics of hydrothermal water with the carbon and oxygen isotopes of HCO 3 in groundwater

  7. The Tianjin geothermal field (north-eastern China): Water chemistry and possible reservoir permeability reduction phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, Angelo; Montegrossi, Giordano; Orlando, Andrea [Institute of Geosciences and Earth Resources, National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Florence (Italy); Borrini, Daniele; Tassi, Franco [Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence (Italy); Vaselli, Orlando [Institute of Geosciences and Earth Resources, National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Florence (Italy); Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence (Italy); Huertas, Antonio Delgado [Estacion Experimental de Zaidin (CSIC), Prof. Albareda 1, 18008 Granada (Spain); Yang, Jincheng; Cheng, Wanquing [Aode Renewable Energy Research Institute, 90 Weijin South Road, Nankai District, 300381 Tianjin (China); Tedesco, Dario [Department of Environmental Sciences, Second University of Naples, Via Vivaldi 43, Caserta 81100 (Italy); Institute of Environmental Geology and Geo Engineering (CNR), Piazzale A. Moro 5, Roma 00100 (Italy); Poreda, Robert [Department of Earth and Environmental Sciences, University of Rochester, 227 Hutchison Hall, Rochester, NY 14627 (United States)

    2008-08-15

    Injection of spent (cooled) thermal fluids began in the Tianjin geothermal district, north-eastern China, at the end of the 1990s. Well injectivities declined after 3-4 years because of self-sealing processes that reduced reservoir permeability. The study focuses on the factors that may have caused the observed decrease in permeability, using chemical and isotopic data on fluids (water and gas) and mineral phases collected from production and injection wells. The results of data processing and interpretation indicate that (1) it is very unlikely that calcite and silica precipitation is taking place in the reservoir; (2) the Fe- and Zn-rich mineral phases (e.g. sulfides, hydroxides and silicates) show positive saturation indexes; (3) SEM and XRD analyses of filtered material reveal that the latter mineral phases are common; (4) visual observation of casings and surface installations, and of corrosion products, suggests that a poor quality steel was used in their manufacture; (5) significant quantities of solids (e.g. quartz and feldspar crystals) are carried by the geothermal fluid; (6) seasonal changes in fluid composition lead to a reduction in casing corrosion during the summer. It was concluded that the decrease in injectivity in the Tianjin wells is caused only in part by the oxidation of casings, downhole pumps, and surface installations, triggered by free oxygen in the injected fluids; the utilization of better quality steels should drastically reduce this type of corrosion. Self-sealing of pores and fractures by reservoir formation solids and by the Fe-corrosion products suspended in the injected fluids seems to be a more important phenomenon, whose effect could be greatly reduced by installing filtering devices at all sites. (author)

  8. Field evaluation of reflective insulation in south east Asia

    Science.gov (United States)

    Teh, Khar San; Yarbrough, David W.; Lim, Chin Haw; Salleh, Elias

    2017-12-01

    The objective of this research was to obtain thermal performance data for reflective insulations in a South East Asia environment. Thermal resistance data (RSI, m2 ṡ K/W) for reflective insulations are well established from 1-D steady-state tests, but thermal data for reflective insulation in structures like those found in South East Asia are scarce. Data for reflective insulations in South East Asia will add to the worldwide database for this type of energy-conserving material. RSI were obtained from heat flux and temperature data of three identical structures in the same location. One unit did not have insulation above the ceiling, while the second and third units were insulated with reflective insulation with emittance less than 0.05. RSI for the uninsulated test unit varied from 0.37 to 0.40 m2 ṡ K/W. RSI for a single-sheet reflective insulation (woven foil) varied from 2.15 to 2.26 m2 ṡ K/W, while bubble-foil insulation varied from 2.69 to 3.09 m2 ṡ K/W. The range of RSI values resulted from differences in the spacing between the reflective insulation and the roof. In addition, the reflective insulation below the roof lowered attic temperatures by as much as 9.7° C. Reductions in ceiling heat flux of 80 to 90% relative to the uninsulated structure, due to the reflective insulation, were observed.

  9. Hot and steamy fractures in the Philippines: the characterisation and permeability evaluation of fractures of the Southern Negros Geothermal Field, Negros Oriental, Philippines

    Science.gov (United States)

    Pastoriza, Loraine; Holdsworth, Robert; McCaffrey, Kenneth; Dempsey, Eddie; Walker, Richard; Gluyas, Jon; Reyes, Jonathan

    2017-04-01

    Fluid flow pathway characterisation is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.

  10. Hot and Steamy Fractures in the Philippines: The Geological Characterization and Permeability Evaluation of Fractures in the Southern Negros Geothermal Field, Philippines

    Science.gov (United States)

    Pastoriza, L. R.; Holdsworth, R.; McCaffrey, K. J. W.; Dempsey, E. D.; Walker, R. J.; Gluyas, J.; Reyes, J. K.

    2016-12-01

    Fluid flow pathway characterization is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.

  11. Geothermal energy

    OpenAIRE

    Manzella A.

    2017-01-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. Fo...

  12. Geothermal heat can cool, too

    International Nuclear Information System (INIS)

    Wellstein, J.

    2008-01-01

    This article takes a look at how geothermal energy can not only be used to supply heating energy, but also be used to provide cooling too. The article reports on a conference on heating and cooling with geothermal energy that was held in Duebendorf, Switzerland, in March 2008. The influence of climate change on needs for heating and cooling and the need for additional knowledge and data on deeper rock layers is noted. The seasonal use of geothermal systems to provide heating in winter and cooling in summer is discussed. The planning of geothermal probe fields and their simulation is addressed. As an example, the geothermal installations under the recently renewed and extended 'Dolder Grand' luxury hotel in Zurich are quoted. The new SIA 384/6 norm on geothermal probes issued by the Swiss Association of Architects SIA is briefly reviewed.

  13. Chemical and physical reservoir parameters at initial conditions in Berlin geothermal field, El Salvador: a first assessment

    Energy Technology Data Exchange (ETDEWEB)

    D`Amore, F. [CNR, Pisa (Italy). International Institute for Geothermal Research ; Mejia, J.T. [Comision Ejuctiva Hidroelectrica del Rio Lempa, El Salvador (El Salvador)

    1999-02-01

    A study has been made to obtain the main chemical and physical reservoir conditions of the Berlin field (El Salvador), before the commencement of large-scale exploitation of the geothermal resource. The upflow zone and the main flow path within the geothermal system have been determined from the area distribution of chemical parameters such as Cl concentrations, ratios such as Na/K, K/Mg, K/Ca, and temperatures computed from silica concentrations and cation ratios. Gas compositions have been used to calculate reservoir parameters such as temperature, steam fraction and P{sub CO{sub 2}}. The computer code WATCH (new edition 1994) has been used to evaluate the temperature of equilibrium between the aqueous species and selected alteration minerals in the reservoir. The fluid in Berlin flows to the exploited reservoir from the south, entering it in the vicinity of well TR-5. Along its flow-path (south-north direction), the fluid is cooled by boiling and conductive cooling. The chloride-enthalpy diagram indicates the existence of a parent water, with a chemical composition similar to well TR-5, that boils and the residual brine produces the fluid of well TR-3, which is very concentrated in salts. The fluid of TR-5 is probably produced from this parent water, generating the fluids of wells TR-2 and TR-9 by boiling, and the fluids of wells TR-1 and TR-4 by conductive cooling. The computed values for the deep steam fraction clearly indicate that this is a liquid-dominated system, with computed temperature values decreasing from 310{sup o}C (upflow zone) to about 230{sup o}C, from south to north. (author)

  14. Geothermal energy

    International Nuclear Information System (INIS)

    Le Du, H.; Bouchot, V.; Lopez, S.; Bialkowski, A.; Colnot, A.; Rigollet, C.; Sanjuan, B.; Millot, R.; Brach, M.; Asmundsson, R.; Giroud, N.

    2010-01-01

    Geothermal energy has shown a revival for several years and should strongly develop in a near future. Its potentiality is virtually unexhaustible. Its uses are multiple and various: individual and collective space heating, heat networks, power generation, heat storage, heat exchanges etc.. Re-launched by the demand of renewable energy sources, geothermal energy has become credible thanks to the scientific works published recently which have demonstrated its economical and technical relevance. Its image to the public is changing as well. However, lot of work remains to do to make geothermal energy a real industry in France. Several brakes have to be removed rapidly which concern the noise pollution of geothermal facilities, the risk of bad results of drillings, the electricity costs etc. This dossier gives an overview of today's main research paths in the domain of geothermal energy: 1 - geothermal energy in France: historical development, surface and deep resources, ambitions of the French national energy plan (pluri-annual investment plan for heat generation, incentives, regional 'climate-air-energy' schemes), specific regulations; 2 - geothermal energy at the city scale - sedimentary basins: Ile-de-France 40 years of Dogger reservoir exploitation, potentialities of clastic reservoirs - the Chaunoy sandstones example; 3 - geothermal power generation: conventional reservoirs - the Bouillante model (Guadeloupe, French Indies); the Soultz-sous-Forets pilot plant (Bas-Rhin, France); the supercritical reservoirs - the Krafla geothermal area (Iceland). (J.S.)

  15. Heat Flow and Geothermal Potential in the South-Central United States

    International Nuclear Information System (INIS)

    Negraru, Petru T.; Blackwell, David D.; Erkan, Kamil

    2008-01-01

    Geothermal exploration is typically limited to high-grade hydrothermal reservoirs that are usually found in the western United States, yet large areas with subsurface temperatures above 150 deg. C at economic drilling depths can be found east of the Rocky Mountains. The object of this paper is to present new heat flow data and to evaluate the geothermal potential of Texas and adjacent areas. The new data show that, west of the Ouachita Thrust Belt, the heat flow values are lower than east of the fault zone. Basement heat flow values for the Palo Duro and Fort Worth Basins are below 50 mW/m 2 while, in the frontal zone of the belt, they can exceed 60 mW/m 2 . Further east, along the Balcones fault system the heat flow is in general higher than 55 mW/m 2 . The eastern most heat flow sites are in Louisiana and they show very high heat flow (over 80 mW/m 2 ), which is associated with the apparently highly radioactive basement of the Sabine uplift. The geothermal resource in this area is large and diverse, and can be divided in high grade (temperature above 150 deg. C) convective systems, conductive based enhanced geothermal systems and geothermal/geopressured systems. One of the most attractive areas east of the cordillera extends from eastern Texas across Louisiana and Arkansas to western Mississippi. Here temperatures reach exploitation range at depths below 4 km, and tapping such a resource from shut in hydrocarbon fields is relatively easy. The initial costs of the development can be greatly reduced if existing hydrocarbon infrastructure is used, and therefore using shut-in hydrocarbon fields for geothermal purposes should not be neglected

  16. Geothermal systems: Principles and case histories

    Science.gov (United States)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  17. Methods for collection and analysis of geopressured geothermal and oil field waters

    Energy Technology Data Exchange (ETDEWEB)

    Lico, M.S.; Kharaka, Y.K.; Carothers, W.W.; Wright, V.A.

    1982-01-01

    Present methods are described for the collection, preservation, and chemical analysis of waters produced from geopressured geothermal and petroleum wells. Detailed procedures for collection include precautions and equipment necessary to ensure that the sample is representative of the water produced. Procedures for sample preservation include filtration, acidification, dilution for silica, methyl isobutyl ketone (MIBK) extraction of aluminum, addition of potassium permanganate to preserve mercury, and precipitation of carbonate species as strontium carbonate for stable carbon isotopes and total dissolved carbonate analysis. Characteristics determined at the well site are sulfide, pH, ammonia, and conductivity. Laboratory procedures are given for the analysis of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, iron, manganese, zinc, lead, aluminum, and mercury by atomic absorption and flame emission spectroscopy. Chloride is determined by silver nitrate titration and fluoride by ion-specific electrode. Bromide and iodide concentrations are determined by the hypochlorite oxidation method. Sulfate is analyzed by titration using barium chloride with thorin indicator after pretreatment with alumina. Boron and silica are determined colorimetrically by the carmine and molybdate-blue methods, respectively. Aliphatic acid anions (C/sub 2/ through C/sub 5/) are determined by gas chromatography after separation and concentration in a chloroform-butanol mixture.

  18. Methods for collection and analysis of geopressured geothermal and oil field waters

    Science.gov (United States)

    Lico, Michael S.; Kharaka, Yousif K.; Carothers, William W.; Wright, Victoria A.

    1982-01-01

    Present methods are described for the collection, preservation, and chemical analysis of waters produced from geopressured geothermal and petroleum wells. Detailed procedures for collection include precautions and equipment necessary to ensure that the sample is representative of the water produced. Procedures for sample preservation include filtration, acidification, dilution for silica, methyl isobutyl ketone (MIBK) extraction of aluminum, addition of potassium permanganate to preserve mercury, and precipitation of carbonate species as strontium carbonate for stable carbon isotopes and total dissolved carbonate analysis. Characteristics determined at the well site are sulfide, pH, ammonia, and conductivity. Laboratory procedures are given for the analysis of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, iron, manganese, zinc, lead, aluminum, .and mercury by atomic absorption and flame emission spectroscopy. Chloride is determined by silver nitrate titration and fluoride by ion-specific electrode. Bromide and iodide concentrations are determined by the hypochlorite oxidation method. Sulfate is analyzed by titration using barium chloride with thorin indicator after pretreatment with alumina. Boron and silica are determined colorimetrically by the carmine and molybdate-blue methods, respectively. Aliphatic acid anions (C2 through C5) are determined by gas chromatography after separation and concentration in a chloroform-butanol mixture.

  19. Geothermal energy

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1991-01-01

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  20. Variability of thermohaline fields in the East China Sea

    Science.gov (United States)

    Moroz, V. V.; Bogdanov, K. T.

    2007-04-01

    Characteristic features of the water structure and dynamics in the East China Sea, which is the zone of the formation of the Kuroshio Current, are studied from a database of mean multiannual hydrological and meteorological characteristics gathered for more than a half-century period and the data of expeditionary observations in this region. Characteristic distinctions between the waters in different regions of the current zone are shown. It was found that the formation of the structure of the water in the current zone is affected by the variability of the water exchange via the straits of the Ryukyu Islands and by the supply of the shelf waters against the background of the climatic variability.

  1. Microbial Diversity, Distribution and Insight into Their Role in S, Fe and N Biogeochemical Cycling in the Hot Springs at Tengchong Geothermal Fields, Southwest China

    Science.gov (United States)

    Li, J.; Peng, X.; Zhang, L.

    2014-12-01

    Ten sediment samples collected from one acidic and three alkaline high temperature hot springs at Tengchong terrestrial geothermal field, Southwest China, were examined by the mineralogical, geochemical, and molecular biological techniques. The mineralogical and geochemical analyses suggested that these hot springs contain relative high concentrations of S, Fe and N chemical species. Specifically, the acidic hot spring was rich in Fe2+, SO42- and NH4+, while the alkaline hot springs were high in NO3-, H2S and S2O3-. Analyses of 16S rRNA sequences showed their bacterial communities were dominated by Aquificae, Cyanobacteria, Deinococci-Thermus, Firmicutes, Proteobacteria, and Thermodesulfobacteria, while the archeal clone libraries were dominated by Desulfurococcales, Sulfolobales, and Thermoproteales. Among them, the potential S-, N- and Fe-related oxidizing and reducing prokaryote were presenting as a relative high proportion but with a great difference in diversity and metabolic approaches of each sample. These findings provide some significant implications for the microbial function in element biogeochemical cycles within the Tengchong geothermal environments: i). the distinct differences in abundance and diversity of microbial communities of geothermal sediments were related to in situ different physicochemical conditions; ii). the S-, N- and Fe-related prokaryote would take advantage of the strong chemical disequilibria in the hot springs; iii). in return, their metabolic activities can promote the transformation of S, Fe and N chemical species, thus founded the bases of biogeochemical cycles in the terrestrial geothermal environments.

  2. Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy

    Directory of Open Access Journals (Sweden)

    Angelo Algieri

    2018-03-01

    Full Text Available This work aims to investigate the energy performances of small-scale Organic Rankine Cycles (ORCs for the exploitation of high temperature geothermal sources in volcanic areas. For this purpose, a thermodynamic model has been developed, and a parametric analysis has been performed that considers subcritical and transcritical configurations, and different organic fluids (isobutane, isopentane, and R245ca. The investigation illustrates the significant effect of the temperature at the entrance of the expander on the ORC behaviour and the rise in system effectiveness when the internal heat exchange (IHE is adopted. As a possible application, the analysis has focused on the active volcanic area of Phlegraean Fields (Southern Italy where high temperature geothermal reservoirs are available at shallow depths. The work demonstrates that ORC systems represent a very interesting option for exploiting geothermal sources and increasing the share of energy production from renewables. In particular, the investigation has been performed considering a 1 kg/s geothermal mass flow rate at 230 °C. The comparative analysis highlights that transcritical configurations with IHE guarantee the highest performance. Isopentane is suggested to maximise the ORC electric efficiency (17.7%, while R245ca offers the highest electric power (91.3 kWel. The selected systems are able to fulfil a significant quota of the annual electric load of domestic users in the area.

  3. Long Range Effect of The M7.8 April 2015 Nepal Earth Quake on the Deep Groudwater Outflow in a Thousand-Mile-Away Geothermal Field in Southern China's Guangdong

    Science.gov (United States)

    Lu, G.; Yu, S.; Xu, F.; Wang, X.; Yan, K.; Yuen, D. A.

    2015-12-01

    Deep ground waters sustain high temperature and pressure and are susceptible to impact from an earthquake. How an earthquake would have been associated with long-range effect on geological environment of deep groundwater is a question of interest to the scientific community and general public. The massive Richter 8.1 Nepal Earthquake (on April 25, 2015) provided a rare opportunity to test the response of deep groundwater systems. Deep ground waters at elevated temperature would naturally flow to ground surface along preferential flow path such as a deep fault, forming geothermal water flows. Geothermal water flows are susceptible to stress variation and can reflect the physical conditions of supercritical hot water kilometers deep down inside the crust. This paper introduces the monitoring work on the outflow in Xijiang Geothermal Field of Xinyi City, Guangdong Province in southern China. The geothermal field is one of typical geothermal fields with deep faults in Guangdong. The geothermal spring has characteristic daily variation of up to 72% in flow rate, which results from being associated with a north-south run deep fault susceptible to earthquake event. We use year-long monitoring data to illustrate how the Nepal earthquake would have affected the flows at the field site over 2.5 thousand kilometers away. The irregularity of flow is judged by deviation from otherwise good correlation of geothermal spring flow with solid earth tidal waves. This work could potentially provide the basis for further study of deep groundwater systems and insight to earthquake prediction.

  4. Micro-topography showing the landslide-origin of the Marumori hill, Matsukawa geothermal field Iwate Prefecture, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Tomomasa; Ikeda, Kazuo; Sumi, Seiai

    1988-07-27

    The Marumori Hill in the Matsukawa geothermal field has been previously considered to be a central cone or a lava dome in a caldera. Airphotogeological study, topographical surveying, and trenching are carried out in order to clarify the origin of the hill. Fifty six topographic linearments trending NE-SW direction distributed parallelly were detected on the top area and the northern flank of the hill. This linearment swarm is composed of the alternated small ranges and valleys with asymmetric profiles similar to cuesta topography. These topographic features are considered to be formed under the tensional stress field trending NW-SE direction on the surface of a landslide block. The hill is inferred to be not a lava dome but a landslide block which slide down from the steep scarp north and west of the hill. The age of the landslide is dated back to be older than 2400 years B.P. according to 14C age of the humic strata covering the hill. (7 figs, 1 tab, 14 refs)

  5. A preliminary study on the feedback of heat transfer on groundwater flow in a Karst geothermal field

    Science.gov (United States)

    Kong, Y.; Pang, Z.; Hu, S.; Pang, J.; Shao, H.; Kolditz, O.

    2014-12-01

    In deep sedimentary basins, groundwater movement can significantly alter the heat flow pattern. At the same time, heat flux induced temperature change can reversely determine the flow regime through density dependent convection process. In Karst aquifers, the heterogeneity in the carbonate rocks makes the identification of this feedback much more complex. In this work, a preliminary study has been made on this feedback in Xiongxian geothermal field. The Karst aquifer in our site has an average thickness of about 1000 m, and is overlaid by over 400 m of quaternary clay, and subsequently 600 m of Neogene sandstone. Geothermal energy has been exploited in the site for space heating. During the heating period from Nov 15th to Mar 15th every year, hot water was extracted from the aquifer and re-injected after the heat extraction. A detailed temperature logging has been carried out in the field, both before and after the heating period, with the consideration that temperature distribution will be affected by the re-injection of cold water. The vertical distribution of temperature in the cap rock shows a constant positive gradient over depth. The heat flux at different locations has been calculated respectively. It is found to decline from southwest to northeast, with the highest value of 113.9 mW/m2 to the lowest of 80.6 mW/m2. This pattern can be well explained by the tectonic features. More interestingly, two inflection points appear on the temperature profile of the Karst layer, revealing strong influence from the cold re-injection water. Also, a 3℃ temperature difference was observed in the June and October measurement, which is related to the reservoir recovery. Currently, a 3D numerical model is being constructed, using the open-source software OpenGeoSys. Heat transport process is coupled with density dependent flow in a monolithic approach, to simulate both heat conduction and groundwater convection. This model will help to quantify the feedback from heat

  6. Thermal-permeability structure and recharge conditions of the Mutnovsky high-temperature geothermal field (Kamchatka, Russia)

    Science.gov (United States)

    Kiryukhin, A. V.; Polyakov, A. Y.; Usacheva, O. O.; Kiryukhin, P. A.

    2018-05-01

    The Mutnovsky geothermal area is part of the Eastern Kamchatka active volcano belt. Mutnovsky, 80 kY old and an aging strato-volcano (a complex of 4 composite volcanic cones), acts as a magma- and water-injector into the 25-km-long North Mutnovsky extension zone. Magmatic injection events (dykes) are associated with plane-oriented MEQ (Micro Earth Quakes) clusters, most of them occurring in the NE sector of the volcano (2 × 10 km2) at elevations from -4 to -2 km, while some magmatic injections occur at elevations from -6.0 to -4.0 km below the Mutnovsky production field. Water recharge of production reservoirs is from the Mutnovsky volcano crater glacier (+1500 to +1800 masl), which was confirmed by water isotopic data (δD, δ18O) of production wells at an earlier stage of development. The Mutnovsky (Dachny) 260-310 °C high-temperature production geothermal reservoir with a volume of 16 km3 is at the junction of NNE- and NE-striking normal faults, which coincides with the current dominant dyke injection orientation. TOUGH2-modeling estimates of the reservoir properties are as follows: the reservoir permeability is 90-600 e-15 m2, the deep upflow recharge is 80 kg/s and the enthalpy is 1420 kJ/kg. Modeling was used to reproduce the history of the Mutnovsky (Dachny) reservoir exploitation since 1983 with an effective power of 48 MWe by 2016. Modeling also showed that the reservoir is capable of yielding 65-83 MWe of sustainable production until 2055, if additional production drilling in the SE part of the field is performed. Moreover, this power value may increase to 87-105 MWe if binary technologies are applied. Modeling also shows that the predicted power is sensitive to local meteoric water influx during development. Conceptual iTOUGH2-EOS1sc thermal hydrodynamic modeling of the Mutnovsky magma-hydrothermal system as a whole reasonably explains its evolution over the last 1500-5000 years in terms of heat recharge (dyke injection from the Mutnovsky-4 funnel) and

  7. Empirical Green's tensor retrieved from ambient noise cross-correlations at The Geysers geothermal field, Northern California

    Science.gov (United States)

    Nayak, Avinash; Taira, Taka'aki; Dreger, Douglas S.; Gritto, Roland

    2018-04-01

    We retrieve empirical Green's functions in the frequency range (˜0.2-0.9 Hz) for interstation distances ranging from ˜1 to ˜30 km (˜0.22 to ˜6.5 times the wavelength) at The Geysers geothermal field, Northern California, from coherency of ambient seismic noise being recorded by a variety of sensors (broad-band, short-period surface and borehole sensors, and one accelerometer). The applied methodology preserves the intercomponent relative amplitudes of the nine-component Green's tensor that allows us to directly compare noise-derived Green's functions (NGFs) with normalized displacement waveforms of complete single-force synthetic Green's functions (SGFs) computed with various 1-D and 3-D velocity models using the frequency-wavenumber integration method and a 3-D finite-difference wave propagation method, respectively. These comparisons provide an effective means of evaluating the suitability of different velocity models to different regions of The Geysers, and assessing the quality of the sensors and the NGFs. In the T-Tangential, R-Radial, Z-Vertical reference frame, the TT, RR, RZ, ZR and ZZ components (first component: force direction, second component: response direction) of NGFs show clear surface waves and even body-wave phases for many station pairs. They are also broadly consistent in phase and intercomponent relative amplitudes with SGFs for the known local seismic velocity structure that was derived primarily from body-wave traveltime tomography, even at interstation distances less than one wavelength. We also find anomalous large amplitudes in TR, TZ, RT and ZT components of NGFs at small interstation distances (≲4 km) that can be attributed to ˜10°-30° sensor misalignments at many stations inferred from analysis of longer period teleseismic waveforms. After correcting for sensor misalignments, significant residual amplitudes in these components for some longer interstation distance (≳8 km) paths are better reproduced by the 3-D velocity

  8. Configuration of the mudstones, gray- and coffee-colored shale lithologic units, zones of silica and epidote, and their relation to the tectonics of the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Cobo R, J.M.

    1981-01-01

    Based on well cuttings, five lithological units have been recognized within the area of what is now the Cerro Prieto geothermal field. These five units are described. Differences in origin, mineralogy, grading, color, compaction, etc., are shown.

  9. Cost model for geothermal wells applied to the Cerro Prieto geothermal field case, BC Abstract; Modelo de costeo de pozos geotermicos aplicado para el caso del campo geotermico de Cerro Prieto, BC

    Energy Technology Data Exchange (ETDEWEB)

    Vaca Serrano, Jaime M.E [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: jaime.vaca@cfe.gob.mx

    2008-01-15

    A project for drilling geothermal wells to produce electrical energy can be defined as a sequence of plans to get steam or geothermal fluids to satisfy a previously known demand, and, under the best possible conditions, to obtain payment. This paper presents a cost model for nine wells drilled at the Cerro Prieto geothermal field in 2005 and 2006 to supply steam to the power plants operating in the field. The cost model is based on the well cost, the initial steam production, the annual decline of steam, the drilling schedule and the break-even point for each well. The model shows the cost of steam by the ton and the sale price needed to determine the discount rate and the investment return time. [Spanish] Un proyecto de perforacion de pozos geotermicos puede definirse como una secuencia o sucesion de planes para obtener vapor o fluidos geotermicos destinados a satisfacer una demanda previamente determinada, que se emplearan principalmente para generar energia electrica, bajo las mejores condiciones para obtener un pago. Este trabajo presenta un modelo de costeo para nueve pozos en el campo geotermico de Cerro Prieto, que fueron perforados entre 2005 y 2006 como parte del suministro de vapor para las plantas generadoras que operan en este campo. El modelo de costeo se basa en el costo por pozo, la produccion inicial de vapor, la declinacion anual de vapor, los intereses de las obras de perforacion y el punto de equilibrio para cada pozo. Los resultados permiten conocer el costo de la tonelada de vapor y el precio de venta para determinar la tasa de descuento y el tiempo de retorno de la inversion.

  10. Geothermal Power Generation Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [Oregon Inst. of Technology, Klamath Falls, OR (United States). Geo-Heat Center

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  11. Geothermal energy

    International Nuclear Information System (INIS)

    Vuataz, F.-D.

    2005-01-01

    This article gives a general overview of the past and present development of geothermal energy worldwide and a more detailed one in Switzerland. Worldwide installed electrical power using geothermal energy sources amounts to 8900 MW el . Worldwide utilization of geothermal energy for thermal applications amounts to 28,000 MW th . The main application (56.5%) is ground-coupled heat pumps, others are thermal spas and swimming pools (17.7%), space heating (14.9%), heating of greenhouses (4.8%), fish farming (2.2%), industrial uses (1,8%), cooling and melting of snow (1.2%), drying of agricultural products (0.6 %). Switzerland has become an important user of geothermal energy only in the past 25 years. Earlier, only the exploitation of geothermal springs (deep aquifers) in Swiss thermal baths had a long tradition, since the time of the Romans. Today, the main use of geothermal energy is as a heat source for heat pumps utilizing vertical borehole heat exchangers of 50 to 350 meters length. 35,000 installations of this type with heating powers ranging from a few kW to 1000 kW already exist, representing the highest density of such installations worldwide. Other developments are geostructures and energy piles, the use of groundwater for heating and cooling, geothermal district heating, the utilization of draining water from tunnels and the project 'Deep Heat Mining' allowing the combined production of heat and electric power

  12. Geothermal energy

    International Nuclear Information System (INIS)

    Lemale, J.

    2009-01-01

    The geothermal energy, listed among the new and renewable energy sources, is characterized by a huge variety of techniques and applications. This book deals with the access to underground geothermal resources and with their energy valorization as well. After a presentation of the main geological, hydrogeological and thermal exploitation aspects of this resource, the book presents the different geothermal-related industries in detail, in particular the district heating systems, the aquifer-based heat pumps, the utilizations in the agriculture, fishery and balneology sectors, and the power generation. (J.S.)

  13. Analysis of P- and S-wave VSP (vertical seismic profile) data from the Salton Sea Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Daley, T.M.

    1987-09-01

    To understand any geophysical data, geologic information is necessary. This thesis will begin with a summary of the geology of the Salton Trough region and the Salton Sea Geothermal Field (SSGF). The information available from the SSSDP will also be summarized. After the geologic summary, the design of the VSP will be discussed, including acquisition equipment and procedures. The data processing procedures and software used will be discussed as a separate section. Processing procedures will also be described at various times in the thesis where more specialized procedures are used. Data analysis makes up the bulk of the thesis and it is divided into a number of sections detailing the basic VSP interpretation, the anisotropy analysis and the fracture detection and orientation analysis. A combined interpretation of the results, with probable geologic causes for observed events, is presented as a separate section from the data analysis. Finally, a summary of results for each of the goals stated above will be given. The reader should note that a large volume of data were collected and various display methods were used (from the standard wiggle-trace to three-component hodographs). Much of these data are left in the appendices with important or representative figures given in the body of the thesis. Also given in the appendices are listings of FORTRAN programs developed in conjunction with the thesis work. 46 refs., 63 figs., 12 tabs.

  14. Geotherm: the U.S. geological survey geothermal information system

    Science.gov (United States)

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  15. Self-potential monitoring around wells in Mutnovsky geothermal field, Kamchatka; Kamchatka hanto mutnovsky deno chinetsui shuhen no shizen den`i monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, N.; Tosha, T.; Ishito, K. [Geological Survey of Japan Ibaragi (Japan); Delemen, I.; Kiryukhin, A. [Institute of Volcanology Far East Branch Russia Academy of Sciences (Russia)

    1997-07-01

    Mutnovsky is a geothermal field which lies to the south of and about 80km away from Petropavlovsk, Kamchatsky, the state capital of Kamchatka. The geothermal survey has been conducted since 1978 in this field. In this study, the self-potential variation was observed by monitoring the potential difference between places near and far from a well in the same region. Then, the self-potential associated with spurting vapor from a well was analyzed using a model of the self-potential generated from the steaming current coupled with the flow of hot water in the porous medium. As results of an experiment on the spurt of stream, vapor containing 80% stream in weight was exhausted at a mass flow rate of 30kg/sec at 100degC from wells. Since the specific enthalpy of this vapor is 2225kJ/kg, the underground geothermal storage layer was estimated to be a state of liquid and vapor two-phase. 9 refs., 6 figs.

  16. Geophysical considerations of geothermics

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M

    1967-01-01

    The development and utilization of geothermal energy is described from the standpoint of geophysics. The internal temperature of the Earth and the history and composition of magmas are described. Methods of exploration such as gravity, magnetic, thermal and electrical surveys are discussed, as are geochemical and infrared photogrammetric techniques. Examples are provided of how these techniques have been used in Italy and at the Matsukawa geothermal field in Japan. Drilling considerations such as muds, casings and cementing materials are discussed. Solutions are proposed for problems of environmental pollution and plant expansion.

  17. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  18. Geothermal industry assessment

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  19. Gas geochemistry of Los Humeros geothermal field, Mexico; Geoquimica de gases del campo geotermico de Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Barragan R, Rosa Maria; Arellano G, Victor M; Nieva G, David; Portugal M, Enrique; Garcia G, Alfonso; Aragon A, Alfonso [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico); Torres A, Ignasio S [Centro de Investigacion en Energia, Temixco, Morelos (Mexico); Tovar A, Rigoberto [Comision Federal de Electricidad, Los Humeros, Puebla (Mexico)

    1999-12-01

    Gas data of Los Humeros geothermal field were analyzed. A new method, which is based on the Fischer-Tropch reactions and on the combined pyrite-magnetite mineral equilibrium, was used. Reservoir temperature and reservoir excess steam were estimated for the starting stage of the field by using early data taken from producing wells at controlled conditions. The same parameters were also obtained for the present stage by using 1997 gas data. Reservoir temperatures ranged from 275 and 337 Celsius degrees and positive values for reservoir excess steam fractions were obtained for the starting stage. For well H-1 no excess steam was found since this well was fed by the shallower liquid-dominated reservoir. Results for 1997 showed lower scattering compared to early data and the possible occurrence of a heating process in the shallower stratum which could due to exploitation. [Spanish] En este articulo se presenta un analisis de datos de la fase gaseosa producida por pozos productores del campo geotermico de Los Humeros mediante un metodo que considera el equilibrio de la reaccion de Fischer-Tropsh y el equilibrio de minerales pirita-hematia y pirita-magnetita. Este metodo provee la temperatura del yacimiento y el exceso de vapor presente en la descarga total de los pozos. Los resultados se discuten tanto para el estado inicial del yacimiento utilizando los primeros datos de produccion en los que el flujo del pozo estuvo controlado y los obtenidos en 1997 que representan el estado actual del yacimiento. En el estado inicial se estimaron temperaturas de yacimiento de entre 275 y 337 grados Celsius y excesos de vapor positivos, con excepcion del pozo H-1 que se alimenta del estrato somero dominado por liquido. Los resultados obtenidos para 1997 muestran una dispersion menor y la probable ocurrencia de un proceso de calentamiento del estrato somero propiciado por la explotacion.

  20. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  1. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  2. Geothermal heat pump

    International Nuclear Information System (INIS)

    Bruno, R.; Tinti, F.

    2009-01-01

    In recent years, for several types of buildings and users, the choice of conditioning by heat pump and low enthalpy geothermal reservoir has been increasing in the Italian market. In fact, such systems are efficient in terms of energy and consumption, they can perform, even at the same time, both functions, heating and cooling and they are environmentally friendly, because they do not produce local emissions. This article will introduce the technology and will focus on critical points of a geothermal field design, from actual practice, to future perspectives for the geo exchanger improvement. Finally, the article presents a best practice case in Bologna district, with an economic analysis showing the convenience of a geothermal heat pump. Conclusions of the real benefits of these plants can be drawn: compared to a non-negligible initial cost, the investment has a pay-back period almost always acceptable, usually less than 10 years. [it

  3. Geothermal energy technology

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Geothermal energy research and development by the Sunshine Project is subdivided into five major categories: exploration and exploitation technology, hot-water power generation technology, volcanic power generation technology, environmental conservation and multi-use technology, and equipment materials research. The programs are being carried out by various National Research Institutes, universities, and private industry. During 1976 and 1977, studies were made of the extent of resources, reservoir structure, ground water movement, and neotectonics at the Onikobe and Hachimantai geothermal fields. Studies to be performed in the near future include the use of new prospecting methods, including artificial magnetotellurics, heat balance calculation, brightspot techniques, and remote sensing, as well as laboratory studies of the physical, mechanical, and chemical properties of rock. Studies are continuing in the areas of ore formation in geothermal environments, hot-dry-rock drilling and fracturing, large scale prospecting technology, high temperature-pressure drilling muds and well cements, and arsenic removal techniques.

  4. Geothermal studies in China

    International Nuclear Information System (INIS)

    Wang Ji-Yang; Chen Mo-Xiang; Wang Ji-An; Deng Xiao; Wang Jun; Shen Hsien-Chieh; Hsiung Liang-Ping; Yan Shu-Zhen; Fan Zhi-Cheng; Liu Xiu-Wen

    1981-01-01

    Geothermal studies have been conducted in China continuosly since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research of geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; (3) geothermal studies in mines. (orig./ME)

  5. Origin and potential geothermal significance of China Hat and other late Pleistocene topaz rhyolite lava domes of the Blackfoot Volcanic Field, SE Idaho

    Science.gov (United States)

    McCurry, M. O.; Pearson, D. M.; Welhan, J. A.; Kobs-Nawotniak, S. E.; Fisher, M. A.

    2014-12-01

    The Snake River Plain and neighboring regions are well known for their high heat flow and robust Neogene-Quaternary tectonic and magmatic activity. Interestingly, however, there are comparatively few surficial manifestations of geothermal activity. This study is part of a renewed examination of this region as a possible hidden or blind geothermal resource. We present a testable, integrated volcanological, petrogenetic, tectonic and hydrothermal conceptual model for 57 ka China Hat and cogenetic topaz rhyolite lava domes of the Blackfoot Volcanic Field. This field is well suited for analysis as a blind resource because of its distinctive combination of (1) young bimodal volcanism, petrogenetic evidence of shallow magma storage and evolution, presence of coeval extension, voluminous travertine deposits, and C- and He-isotopic evidence of active magma degassing; (2) a paucity of hot springs or other obvious indicators of a geothermal resource in the immediate vicinity of the lava domes; and (3) proximity to a region of high crustal heat flow, high-T geothermal fluids at 2.5-5 km depth and micro-seismicity characterized by its swarming nature. Eruptions of both basalt and rhyolite commonly evolve from minor phreatomagmatic to effusive. In our model, transport of both magmatic and possible deep crustal aqueous fluids may be controlled by preexisting crustal structures, including west-dipping thrust faults. Geochemical evolution of rhyolite magma is dominated by mid- to upper-crustal fractional crystallization (with pre-eruption storage and phenocryst formation at ~14 km). Approximately 1.2 km3 of topaz rhyolite have been erupted since 1.4 Ma, yielding an average eruption rate of 0.8 km3/m.y. Given reasonable assumptions of magma cumulate formation and eruption rates, and initial and final volatile concentrations, we infer average H2O and CO2 volatile fluxes from the rhyolite source region of ~2MT/year and 340 T/day, respectively. Lithium flux may be comparable to CO2.

  6. INTEGRATED EXPLORATION OF GEOTHERMAL RESOURCES

    Directory of Open Access Journals (Sweden)

    A. B. Alkhasov

    2016-01-01

    Full Text Available The aim. The aim is to develop the energy efficient technologies to explore hydro geothermal resources of different energy potential.Methods. Evaluation of the effectiveness of the proposed technologies has been carried out with the use of physical and mathematical, thermodynamic and optimization methods of calculation and the physical and chemical experimental research.Results. We propose the technology of integrated exploration of low-grade geothermal resources with the application of heat and water resource potential on various purposes. We also argue for the possibility of effective exploration of geothermal resources by building a binary geothermal power plant using idle oil and gas wells. We prove the prospect of geothermal steam and gas technologies enabling highly efficient use of thermal water of low energy potential (80 - 100 ° C degrees to generate electricity; the prospects of complex processing of high-temperature geothermal brine of Tarumovsky field. Thermal energy is utilized in a binary geothermal power plant in the supercritical Rankine cycle operating with a low-boiling agent. The low temperature spent brine from the geothermal power plant with is supplied to the chemical plant, where the main chemical components are extracted - lithium carbonate, magnesium burning, calcium carbonate and sodium chloride. Next, the waste water is used for various water management objectives. Electricity generated in the binary geothermal power plant is used for the extraction of chemical components.Conclusions. Implementation of the proposed technologies will facilitate the most efficient development of hydro geothermal resources of the North Caucasus region. Integrated exploration of the Tarumovsky field resources will fully meet Russian demand for lithium carbonate and sodium chloride.

  7. Geothermal energy development in Turkey

    International Nuclear Information System (INIS)

    Simsek, S.; Okandan, E.

    1990-01-01

    Geothermal fields in Turkey are related to rather complex zones of collision between the Eurasian and African continents, and penetration of the Arabian plate into the Anatolian continental mass. These processes gave rise to fracturing of the lithosphere and eruption of magmas. Geothermal regional assessment studies have proven several low enthalpy sources and some high enthalpy fields suitable for electricity generation. This paper summarizes developments in exploration-drilling and give examples of direct utilization implemented in recent years

  8. Cementing of geothermal wells. Progress report No. 12, January-March, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    Work to implement the program plan for the development of improved high temperature cementing materials for geothermal wells is continuing. Results from initial tests in the Dynamic Brine Exposure Testing Apparatus (D-BETA) are available. Based upon initial data, the rate at which cement coupons undergo change in the D-BETA is between that of the static tests and the dynamic exposures at East Mesa. Several cementing compositions have been formulated with chemical, physical and mechanical properties to withstand the existing geothermal conditions. The pumpability of three formulations has been demonstrated and the materials have been submitted to NBS for additional evaluation. The effect of Al/sub 2/O/sub 3/, Fe/sub 2/O/sub 3/, SO/sub 3/, Na/sub 2/CO/sub 3/ and Na/sub 2/SO/sub 4/ on different binders were studied at Colorado School of Mines. The results were found to range from deleterious to beneficial. Phosphate-bonded cements have been produced at the University of Rhode Island from a glass containing 7% Na/sub 2/O, 24% CaO, 24% Al/sub 2/O/sub 3/ and 45% SiO/sub 2/. Preliminary tests indicate that the material sets in several hours and appears to have some high temperature stability. Tests performed on hydrothermal cements indicate six formulations that are pumpable as long as three hours at 316/sup 0/C. Two formulations, Al/sub 2/O/sub 3/ and ZrO/sub 2/, have been chosen for use at temperatures above 300/sup 0/C. Polymer concentrates containing cement fillers have been found to be hydrothermally stable in 300/sup 0/C brine. Recommended standards for evaluating geothermal well cements have been developed by NBS. (MHR)

  9. The Larderello-Travale geothermal field (Tuscany, central Italy): seismic imaging as a tool for the analysis and assessment of the reservoir

    Science.gov (United States)

    Anselmi, M.; Piccinini, D.; Casini, M.; Spinelli, E.; Ciuffi, S.; De Gori, P.; Saccorotti, G.; chiarabba, C.

    2013-12-01

    The Larderello-Travale is a geothermal field with steam-dominated reservoirs (1300 kg/s of steam and running capacity of 700 MWatt), which is exploited by Enel Green Power, the electric company involved in the renewable energy and resources. The area is located in the pre-Apennine belt of southern Tuscany and has been characterized by extensional tectonics and sporadic events of compression. The result of these tectonic phases is a block-faulting structure with NW-SE trending horsts and basins. Small post-orogenic granitic stocks were emplaced along the main axes of the uplifted structures, causing the anomalous heat flow that marks the area. Results from seismic reflection lines crossing the study area show the presence of the top of a discontinuous reflector in the 3-8 km depth range and with thickness up to ~1 km, referred to as the ';K-horizon'. In this framework we present the results obtained by the processing of a high-quality local earthquake dataset, recorded during the 1977-2005 time interval by the seismic network managed by Enel Green Power. The geothermal target volume was parameterized using a 3-D grid for both Vp (P-wave velocities) and Qp (quality factor of P-waves). Grid nodes are spaced by 5 and 2 km along the two horizontal and vertical directions, respectively. The tomographic Vp images show an overall velocity increase with depth down to the K-horizon. Conversely, some characteristic features are observed in the distribution of Qp anomalies, with high Qp values in the 300-600 range located just below the K-horizon. The relationship between K-horizon and the seismicity distribution doesn't show a clear and homogeneous coupling: the bulk of re-located earthquakes are placed either above or below the top of the K-horizon in the shallower 8 km depth, with an abrupt cut-off at depth greater than 10 km. We then present the preliminary result from the G.A.P.S.S. (Geothermal Area Passive Seismic Sources) experiment, a project that the Istituto

  10. Rapid, high-temperature, field test method for evaluation of geothermal calcium carbonate scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.

    1986-09-01

    A new test method is described that allows the rapid field testing of calcium carbonate scale inhibitors at 500/sup 0/F (260/sup 0/C). The method evolved from use of a full-flow test loop on a well with a mass flow rate of about 1 x 10/sup 6/ lbm/hr (126 kg/s). It is a simple, effective way to evaluate the effectiveness of inhibitors under field conditions. Five commercial formulations were chosen for field evaluation on the basis of nonflowing, laboratory screening tests at 500/sup 0/F (260/sup 0/C). Four of these formulations from different suppliers controlled calcium carbonate scale deposition as measured by the test method. Two of these could dislodge recently deposited scale that had not age-hardened. Performance-profile diagrams, which were measured for these four effective inhibitors, show the concentration interrelationship between brine calcium and inhibitor concentrations at which the formulations will and will not stop scale formation in the test apparatus. With these diagrams, one formulation was chosen for testing on the full-flow brine line. The composition was tested for 6 weeks and showed a dramatic decrease in the scaling occurring at the flow-control valve. This scaling was about to force a shutdown of a major, long-term flow test being done for reservoir economic evaluations. The inhibitor stopped the scaling, and the test was performed without interruption.

  11. Analysis of three geopressured geothermal aquifer-natural gas fields; Duson Hollywood and Church Point, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.A.; Boardman, C.R.

    1981-05-01

    The available well logs, production records and geological structure maps were analyzed for the Hollywood, Duson, and Church Point, Louisiana oil and gas field to determine the areal extent of the sealed geopressured blocks and to identify which aquifer sands within the blocks are connected to commercial production of hydrocarbons. The analysis showed that over the depth intervals of the geopressured zones shown on the logs essentially all of the sands of any substantial thickness had gas production from them somewhere or other in the fault block. It is therefore expected that the sands which are fully brine saturated in many of the wells are the water drive portion of the producing gas/oil somewhere else within the fault block. In this study only one deep sand was identified, in the Hollywood field, which was not connected to a producing horizon somewhere else in the field. Estimates of the reservoir parameters were made and a hypothetical production calculation showed the probable production to be less than 10,000 b/d. The required gas price to profitably produce this gas is well above the current market price.

  12. Upgrade of the synchronous data management system of the EAST poloidal field power supply

    International Nuclear Information System (INIS)

    Zhu, Lili; Huang, Liansheng; Fu, Peng; Gao, Ge; He, Shiying

    2016-01-01

    Highlights: • The upgraded synchronous data management system of EAST poloidal field power supply supports long-pulse data storage. • Slice storage mechanism on MDSplus has been adopted for quasi real-time data storage. • The state machine has been adopted for managing the system sequencer. • IEEE-1588 protocol via Ethernet for the synchronization of clock signal was detailed described. - Abstract: Poloidal field (PF) power supply is an important subsystem of the Experimental Advanced Superconducting Tokamak (EAST). The upgrade of the PF control system of EAST is a great improvement over the original data management system which could not meet the requirements necessary for experiments on synchronization, modularity and sampling rate. In order to better analyze the power operation performance, the Synchronization Data Management System (SDMS) needs to be upgraded as well. This upgrade is based on distributed data acquisition and an MDSPLUS database. It consists of three data acquisition nodes synchronized by an reference clock from the EAST central timing system that also provides the start trigger of the EAST pulse. After being processed by a signal conditioning unit, experimental signals are digitized and written into the database in MDSPLUS format. Multi-channel, multi-tasking and continuous data storage have been achieved by using multi-threading technology on a Linux operation system. The SDMS has been used on the server in PF control system for the entire 2015 EAST campaign. The SDMS has had good performance during experiments and convenient human-machine interface to satisfy the requirements of all the experiments.

  13. Upgrade of the synchronous data management system of the EAST poloidal field power supply

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lili; Huang, Liansheng, E-mail: huangls@ipp.ac.cn; Fu, Peng; Gao, Ge; He, Shiying

    2016-11-15

    Highlights: • The upgraded synchronous data management system of EAST poloidal field power supply supports long-pulse data storage. • Slice storage mechanism on MDSplus has been adopted for quasi real-time data storage. • The state machine has been adopted for managing the system sequencer. • IEEE-1588 protocol via Ethernet for the synchronization of clock signal was detailed described. - Abstract: Poloidal field (PF) power supply is an important subsystem of the Experimental Advanced Superconducting Tokamak (EAST). The upgrade of the PF control system of EAST is a great improvement over the original data management system which could not meet the requirements necessary for experiments on synchronization, modularity and sampling rate. In order to better analyze the power operation performance, the Synchronization Data Management System (SDMS) needs to be upgraded as well. This upgrade is based on distributed data acquisition and an MDSPLUS database. It consists of three data acquisition nodes synchronized by an reference clock from the EAST central timing system that also provides the start trigger of the EAST pulse. After being processed by a signal conditioning unit, experimental signals are digitized and written into the database in MDSPLUS format. Multi-channel, multi-tasking and continuous data storage have been achieved by using multi-threading technology on a Linux operation system. The SDMS has been used on the server in PF control system for the entire 2015 EAST campaign. The SDMS has had good performance during experiments and convenient human-machine interface to satisfy the requirements of all the experiments.

  14. Geologic and Engineering Characterization of East Ford Field, Reeves County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Shirley P.; Flanders, William A.; Guzman, Jose I.; Zirczy, Helena

    1999-08-16

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. The project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit: it contained an estimated 18.4 million barrels (MMbbl) of original oil in place.

  15. Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field

    International Nuclear Information System (INIS)

    Zeng, Yu-Chao; Zhan, Jie-Min; Wu, Neng-You; Luo, Ying-Ying; Cai, Wen-Hao

    2016-01-01

    Deep geological exploration indicates that there is a high-temperature fractured granite reservoir at depth of 950 ~ 1350 m in well ZK4001 in the north of Yangbajing geothermal field, with an average temperature of 248 °C and a pressure within 8.01 ~ 11.57 MPa; in this well there mainly produces liquid and steam two-phase flow. In this work we numerically investigated the electricity generation potential from the fractured granite reservoir through a single vertical well, analyzed the process and mechanism of the two-phase flow, and evaluated main factors affecting the heat production and electricity generation. The results show that under the reference conditions the system attains a pump power of 0.02 ~ 0.16 MW, an electrical power of 2.71 ~ 2.69 MW, and an energy efficiency of 68.06 ~ 16.34, showing favorable electricity generation performance. During the production period, the bottomhole production pressure gradually decreases, and this makes the pump power increasing and the energy efficiency decreasing. When the bottomhole pressure is lower than the saturated vapor pressure, the liquid water begins to evaporate and the bottomhole wellbore begins to produce the mixture of liquid and steam. Main factors affecting the performance are reservoir porosity, permeability and fluid production rate. Higher reservoir porosity or higher permeability or lower fluid production rate will increase the bottomehole pressure, decrease the pump power and improve the energy efficiency. - Highlights: • We established a numerical model of a single vertical well heat mining system. • Desirable electricity production performance can be obtained under suitable conditions. • The system attains an electric power of 2.71 ~ 2.69 MW with an efficiency of about 68.06 ~ 16.34. • Electric power mainly depends on the reservoir porosity and water production rate. • Higher permeability within a certain range is favorable for electricity generation.

  16. Change in color of the hot spring deposits at the Chinoike-Jigoku hot pool, Beppu geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Kazuthoshi, Oue; Ohsawa, Shinji; Yusa, Yuki [Kyoto University, Beppu (Japan). Beppu Geothermal Research Laboratory, Graduate School of Science

    2002-06-01

    The Chinoike-Jigoku hot pool in Beppu geothermal field, Central Kyushu, Japan, displays a blood-red color due to the hematite (Fe{sub 2}O{sub 3}) deposited at the bottom of the pool. The colors of the deposits collected on 1 October 1990, on 27 March 1995, and on 6 March 1996 were measured with a colorimeter. The results show that the red deposits became yellower in 1995 and 1996 than they were in 1990. X-ray diffraction (XRD) patterns and chemical compositions of the deposits indicate that the discoloration of the Chinoike-Jigoku pool water is caused by an increase in the content of jarosite [KFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}]. The temperature of the subsurface thermal water beneath the Chinoike-Jigoku hot pool, as estimated by the anhydrite chemical geothermometer, has declined from 200 to 150{sup o}C over the past 25 years. The Na and Cl concentrations of the hot spring water discharging from Chinoike-Jigoku have decreased, while the SO{sub 4} concentration has increased. The temporal variations in subsurface temperature and dissolved ion concentrations suggest that the mixing ratio between the high-temperature, neutral Na-Cl type water and the relatively low-temperature, acid H-SO{sub 4} type water that form the thermal water of Chinoike-Jigoku has changed over the last 25 years. Hydrothermal studies of jarosite stability have confirmed that the increase in jarosite content in the deposits was caused by a temperature drop of the mixed thermal water beneath Chinoike-Jigoku pool, due to an increase in the contribution of the cooler H-SO{sub 4} water type to the thermal mixture. (author)

  17. Mexican geothermal development and the future

    International Nuclear Information System (INIS)

    Serrano, J.M.E.V.

    1998-01-01

    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth

  18. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  19. Fault and joint geometry at Raft River Geothermal Area, Idaho

    Science.gov (United States)

    Guth, L. R.; Bruhn, R. L.; Beck, S. L.

    1981-07-01

    Raft River geothermal reservoir is formed by fractures in sedimentary strata of the Miocene and Pliocene salt lake formation. The fracturing is most intense at the base of the salt lake formation, along a decollement that dips eastward at less than 50 on top of metamorphosed precambrian and lower paleozoic rocks. Core taken from less than 200 m above the decollement contains two sets of normal faults. The major set of faults dips between 500 and 700. These faults occur as conjugate pairs that are bisected by vertical extension fractures. The second set of faults dips 100 to 200 and may parallel part of the basal decollement or reflect the presence of listric normal faults in the upper plate. Surface joints form two suborthogonal sets that dip vertically. East-northeast-striking joints are most frequent on the limbs of the Jim Sage anticline, a large fold that is associated with the geothermal field.

  20. Geothermal Information Dissemination and Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Clutter, Ted J. [Geothermal Resources Council (United States)

    2005-02-18

    Project Purpose. To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work. GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and

  1. The steam condensate alteration mineralogy of Ruatapu cave, Orakei Korako geothermal field, Taupo Volcanic Zone, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, K.A.; Hamlin, K.A.; Browne, P.R.L.; Campbell, K.A. [Aukland Univ., Dept. of Geology, Auckland (New Zealand); Martin, R.

    2000-02-01

    Ruatapu cave has developed beneath a block of hydrothermally altered quaternary vitric tuff in the active Orakei Korako geothermal field. The cave extends {approx}45 m, with a vertical drop of 23 m, to a shallow pool of clear, sulfate-rich ({approx}450 {mu}g/g), warm (T = 43-48degC), acid (pH 3.0) water. Steam, accompanied by H{sub 2}S, rises from the pool surface, from a second pool nearby, and from fumaroles and joints in the ignimbrite, to condense on surfaces within the cave. Oxidation of the H{sub 2}S to H{sub 2}SO{sub 4} produces acid sulfate fluids which react with the surficial rocks to generate three principal and distinct assemblages of secondary minerals. Kaolinite {+-} opal-A {+-} cristobalite {+-} alunite {+-} alunogen dominate the assemblage at the cave mouth; the essential Al, K and Si are derived from the tuffs and Na, Ca, Fe and Mg removed. In the main body of the cave the highly limited throughflow of water results in the more soluble of the leached constituents, notably Na and K, being retained in surface moisture and becoming available to form tamarugite and potash alum as efflorescences, in part at the expense of kaolin, along with lesser amounts of alunogen, meta-alunogen, mirabilite, halotrichite, kalinite, gypsum and, possibly, tschermigite; the particular species being determined by the prevailing physico-chemical conditions. Heat and moisture assist in moving Fe out of the rock to the air-water interface but, unlike typical surficial acid alteration systems elsewhere in the TVZ, there is an insufficient flow of water, of appropriate Eh-pH, to continue to move Fe out of the cave system. Much becomes locally immobilised as Fe oxides and oxyhydroxides that mottle the side and roof of the cave. Jarosite crusts have developed where acid sulfate pool waters have had protracted contact with ignimbrite wallrock coated with once-living microbial mats. Subsequent lowering of the waters has caused the porous jarositic crusts to alter to potatsh alum

  2. Salton Sea geothermal field as a natural analog for the near-field in a salt high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Elders, W.A.; Moody, J.B.; Battelle Memorial Inst., Columbus, OH)

    1984-01-01

    The Salton Sea Geothermal Field (SSGF), on the delta of the Colorado River in southern California, is being studied as a natural analog for the near-field environment of proposed nuclear waste repositories in salt. A combination of mineralogical and geochemical methods is being employed to develop a three-dimenisonal picture of temperature, salinity, lithology, mineralogy, and chemistry of reactions between the reservoir rocks and the hot brines. Our aim is to obtain quantitative data on mineral stabilities and on mobilities of the naturally occurring radionuclides of concern in Commercial High-Level Waste (CHLW). These data will be used to validate the EQ3/6 geochemical code under development to model the salt near-field repository behavior. Maximum temperatures encountered in wells in the SSGF equal or exceed peak temperatures expected in a salt repository. Brines produced from these wells have major element chemistry similar to brines from candidate salt sites. Relative to the rocks, these brines are enriched in Na, Mn, Sr, Ra, and Po, depleted in Ba, Si, Mg, Ti, and Al, and strongly depleted in U and Th. However, the unaltered rocks contain only about 2 to 3 ppm of U and 4 to 12 ppm of Th, largely in detrital epidotes and zircons. Samples of hydrothermally altered rocks from a wide range of temperature and salinity show rather similar uniform low concentrations of these elements, even when authigenic illite, chlorite, ipidote and feldspar are present. These observations suggest that U and Th are relatively immobile in these hot brines. However, Ra, Po, Cs, and Sr are relatively mobile. Work is continuing to document naturally occurring radionuclide partitioning between SSGF minears and brine over a range of temperature, salinity, and lithology. 8 refs., 7 figs., 2 tabs

  3. Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Aminzadeh, Fred [Univ. of Southern California, Los Angeles, CA (United States); Sammis, Charles [Univ. of Southern California, Los Angeles, CA (United States); Sahimi, Mohammad [Univ. of Southern California, Los Angeles, CA (United States); Okaya, David [Univ. of Southern California, Los Angeles, CA (United States)

    2015-04-30

    The ultimate objective of the project was to develop new methodologies to characterize the northwestern part of The Geysers geothermal reservoir (Sonoma County, California). The goal is to gain a better knowledge of the reservoir porosity, permeability, fracture size, fracture spacing, reservoir discontinuities (leaky barriers) and impermeable boundaries.

  4. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  5. Japanese geothermics

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    At the end of the seventies, the NEDO (New Energy and Industrial Technology Development Organisation) and the Central Research Institute of Electric Power Industry have started two independent projects of deep geothermics research in Honshu island (Japan). The two sites are 50 km apart of each other and the boreholes have been drilled up to 2300 and 1100 m of depth, respectively, in hot-dry moderately fractured volcanic rocks. These sites are characterized by high geothermal gradients with a rock temperature reaching 250 C at the bottom of the wells. Hydraulic circulation tests are still in progress to evaluate the profitability of these sites. (J.S.). 1 fig., 1 photo

  6. Study of the characteristics of crust stress field in East China by inversion of stress tensor

    International Nuclear Information System (INIS)

    Huilan, Z.; Rugang, D.

    1991-12-01

    This paper combines the search procedure with the optimization procedure to inverse the average stress tensor, and applies this method to study the crustal stress field using data of the solution of P wave first motion. By dealing with the data of Haicheng, Tangshan, Xingtai, Anyang, Liyang, Taiwan, Fujian and Guangdong areas, we obtain the characteristics of crust stress field of East China. The directions of the principal pressure stress always possess a small dip angle, but the azimuths vary from NEE (in north part of East China) to SEE (in the south part). This frame probably is related to the push-extrusive effects of the northwestern Pacific plate from NEE and the Philippine plate from SEE. (author). 5 refs, 8 figs, 4 tabs

  7. Geological and production analyses focused on exploration of the eastern part of the Cerro Prieto geothermal field, BC; Analisis geologico-productivo enfocado a la exploracion de la parte oriental del campo geotermico de Cerro Prieto, BC

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Dumas, Alvaro [Comision Federal de Electricidad, Residencia General de Cerro Prieto, B.C (Mexico)]. E-mail: alvaro.aguilar@cfe.gob.mx

    2008-01-15

    The eastern part of the Cerro Prieto geothermal field (CGCP), known as Poligono Nuevo Leon, is an area with proven geothermal resources, as confirmed by seven directional wells located toward the east and by vertical well M-200 located inside the polygon. Well M-200 was drilled in 1984 and has produced about 4 million tons of steam to date. It is integrated into the CP-2 sector, producing 68 t/h of steam. Presently the eastern part of CGCP, representing 25% of the total field area, is producing over half of the steam for the entire field. In the last few years, the steam has come only after increasing the number of production wells located in the eastern zone of CGCP (Rodriguez, 2006), where pressure, enthalpy and temperature conditions are better than in other parts of the field. However in the long term it will be necessary to incorporate Poligono Nuevo Leon into the productive area to expand the productive life of CGCP. This paper includes a geological analysis, plus models for steam production, temperature and enthalpy for Poligono Nuevo Leon. [Spanish] La parte oriental del Campo Geotermico de Cerro Prieto (CGCP), conocida como Poligono Nuevo Leon, representa una area potencial con recursos geotermicos comprobados, lo que demuestran siete pozos direccionales que se han perforado hacia el este, asi como el pozo vertical M-200, localizado dentro del poligono. El pozo M-200 se perforo en 1984 y ha producido a la fecha alrededor de 4 millones de toneladas de vapor, estando integrado al sector CP-2 una produccion de 68 t/h de vapor. Actualmente la parte oriental del CGCP, que representa el 25% del area total del campo, produce mas de la mitad del total de vapor del campo. El suministro de vapor en los ultimos anos se ha logrado cubrir aumentando el numero de pozos en operacion localizados en la zona oriente del CGCP (Rodriguez, 2006), ya que es aqui donde hay condiciones de presion, entalpia y temperatura del yacimiento que son mejores que en otras areas del campo

  8. Geothermal areas as analogues to chemical processes in the near-field and altered zone of the potential Yucca Mountain, Nevada repository

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Meike, A.

    1995-02-01

    The need to bound system performance of the potential Yucca Mountain repository for thousands of years after emplacement of high-level nuclear waste requires the use of computer codes. The use of such codes to produce reliable bounds over such long time periods must be tested using long-lived natural and historical systems as analogues. The geothermal systems of the Taupo Volcanic Zone (TVZ) in New Zealand were selected as the site most amenable to study. The rocks of the TVZ are silicic volcanics that are similar in composition to Yucca Mountain. The area has been subjected to temperatures of 25 to 300 C which have produced a variety of secondary minerals similar to those anticipated at Yucca Mountain. The availability of rocks, fluids and fabricated materials for sampling is excellent because of widespread exploitation of the systems for geothermal power. Current work has focused on testing the ability of the EQ3/6 code and thermodynamic data base to describe mineral-fluid relations at elevated temperatures. Welfare starting long-term dissolution/corrosion tests of rocks, minerals and manufactured materials in natural thermal features in order to compare laboratory rates with field-derived rates. Available field data on rates of silica precipitation from heated fluids have been analyzed and compared to laboratory rates. New sets of precipitation experiments are being planned. The microbially influenced degradation of concrete in the Broadlands-Ohaaki geothermal field is being characterized. The authors will continue to work on these projects in FY 1996 and expand to include the study of naturally occurring uranium and thorium series radionuclides, as a prelude to studying radionuclide migration in heated silicic volcanic rocks. 32 refs

  9. Geothermal Prospecting with Remote Sensing and Geographical Information System Technologies in Xilingol Volcanic Field in the Eastern Inner Mongolia, NE China

    Science.gov (United States)

    Peng, F.; Huang, S.; Xiong, Y.; Zhao, Y.; Cheng, Y.

    2013-05-01

    Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, we apply RS and GIS technics in prospecting the geothermal energy potential in Xilingol, a Cenozoic volcanic field in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with the single-channel algorithm on the platform of ENVI developed by ITT Visual Information Solutions. Information of linear and circular geological structure is then extracted from the LST maps and compared to the existing geological data. Several useful technologies such as principal component analysis (PCA), vegetation suppression technique, multi-temporal comparative analysis, and 3D Surface View based on DEM data are used to further enable a better visual geologic interpretation with the Landsat imagery of Xilingol. The Preliminary results show that major faults in the study area are mainly NE and NNE oriented. Several major volcanism controlling faults and Cenozoic volcanic eruption centers have been recognized from the linear and circular structures in the remote images. Seven areas have been identified as potential targets for further prospecting geothermal energy based on the visual

  10. Selecting, engineering and constructing drilling sites at the Geysers geothermal field. Geysers chinetsu ryoiki ni okeru kussaku shikichi no sentei engineering kochiku

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This paper describes some examples of selection, engineering and construction of drilling sites at the Geysers geothermal field in the northern district of California State. Steep landform, thin-layered soil and violent rainfall create unstable conditions bringing about numerous landslide in the field. Selection of a well drilling site appropriate in such conditions is started by analyzing the aerial photographs by technical staff. After site selection, prospecting and soil test are conducted and a working plan in the well site is decided to prepare engineering drawings. In the construction, land preparation, the open-cutting of base-line trench, etc. are carried out. The base-line trench is a large and sufficiently deep one which is open-cut to the front end or the middle of the bottom part of the well plateau. The final construction work is to build a leading casing for interpolating cementing. The well site construction in the Geysers geothermal field is done in consideration of protecting human life, health and properties. 1 fig.

  11. Fluid circulation and structural system of Cerritos Colorados geothermal field in La Primavera volcanic caldera (Mexico) inferred from geophysical surveys

    Science.gov (United States)

    Bolós, X.; Cifuentes-Nava, G.; Macias, J. L.; Sosa-Ceballos, G.; García-Tenorio, F.; Albor, M., III; Juarez, M.; Gamez, V.

    2017-12-01

    Hydrothermal activity in volcanic calderas is the consequence of energy transfer between deep magmatic chambers and subsurface layers saturated in water. This hydrothermal system is generated by convection of the groundwater supplied by meteoric water recharged and the ascent of hot volcanic gasses exsolved from deep magma reservoirs. Calderas are heterogeneous geological structures that due to their formation and evolution produced a complex stratigraphy. All of these heterogeneities can be affected by deformation and also by the presence of fractures and faults which constitute the main pathways whereby hydrothermal fluids can move easily through the surface as spring discharges and fumarolic activity. Geophysical methods have been used in the last decades to investigate the relationship between structural geology and hydrothermal systems in different volcanic areas around the world. In this work, we have focused on the role of subsurface structures to understand and localize the pathways of fluids related to the hydrothermal system of the Cerritos Colorados geothermal field. We focused in the central area of the caldera (P12 well and Cerritos Colorados graben), where active hydrothermal activity is evidenced by fumaroles, thermal anomalies, CO2 diffuse emission, and sulfur precipitation. We have applied a self-potential method (SP) that combined with temperature measurements that allowed to identify the main infiltration and ascending fluid zones in the area, and their specific surface temperature coinciding with fumarolic activity. From this data we an applied Electrical Resistivity Tomography (ERT) survey in two selected places. One ERT profile (1.2 km in length) was located in the P12 well area. A 3D resistivity model used with the equatorial method was carried out on the Cerritos Colorados graben area. Combining the results of the SP, TºC, and ERT data with a detailed structural map we identified the main degassing zones (i.e. fumaroles) that correspond to

  12. Production data from five major geothermal fields in Nevada analysed using a physiostatistical algorithm developed for oil and gas: temperature decline forecasts and type curves

    Science.gov (United States)

    Kuzma, H. A.; Golubkova, A.; Eklund, C.

    2015-12-01

    Nevada has the second largest output of geothermal energy in the United States (after California) with 14 major power plants producing over 425 megawatts of electricity meeting 7% of the state's total energy needs. A number of wells, particularly older ones, have shown significant temperature and pressure declines over their lifetimes, adversely affecting economic returns. Production declines are almost universal in the oil and gas (O&G) industry. BetaZi (BZ) is a proprietary algorithm which uses a physiostatistical model to forecast production from the past history of O&G wells and to generate "type curves" which are used to estimate the production of undrilled wells. Although BZ was designed and calibrated for O&G, it is a general purpose diffusion equation solver, capable of modeling complex fluid dynamics in multi-phase systems. In this pilot study, it is applied directly to the temperature data from five Nevada geothermal fields. With the data appropriately normalized, BZ is shown to accurately predict temperature declines. The figure shows several examples of BZ forecasts using historic data from Steamboat Hills field near Reno. BZ forecasts were made using temperature on a normalized scale (blue) with two years of data held out for blind testing (yellow). The forecast is returned in terms of percentiles of probability (red) with the median forecast marked (solid green). Actual production is expected to fall within the majority of the red bounds 80% of the time. Blind tests such as these are used to verify that the probabilistic forecast can be trusted. BZ is also used to compute and accurate type temperature profile for wells that have yet to be drilled. These forecasts can be combined with estimated costs to evaluate the economics and risks of a project or potential capital investment. It is remarkable that an algorithm developed for oil and gas can accurately predict temperature in geothermal wells without significant recasting.

  13. Geothermal energy in Italy and abroad

    International Nuclear Information System (INIS)

    Caputo di Calvisi, C.

    2001-01-01

    Geothermal systems and fields are analysed giving particular evidence to the value of the geothermal source as an important natural source of energy. The paper analyses hydrothermal systems and describes the international experimental studies on the use of geothermal reservoirs in hot rocks with geopressured and magmatic systems. Experts are optimistic as far as the use of this innovative source of energy is possible in the medium-short term [it

  14. Assessing geothermal energy potential in upstate New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, D.S. [SUNY, Buffalo, NY (United States)

    1996-08-01

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

  15. Status on high enthalpy geothermal resources in Greece

    International Nuclear Information System (INIS)

    Koutinas, G.A.

    1990-01-01

    Greece is privileged to have many high and medium enthalpy geothermal resources. Related activities during the last 5 years were conducted mainly on the previously discovered geothermal fields of Milos, Nisyros and Lesvos islands, without any deep geothermal drilling. Most efforts were focused on the demonstration of a high enthalpy geothermal reservoir on Milos, by generating electricity from high salinity fluid, with a 2 MW pilot plant. Significant experience has been gained there, by solving technical problems, but still site specific constraints have to be overcome in order to arrive at a comprehensive feasibility study, leading to the development phase. A pre-feasibility study has been carried out in the Nisyros geothermal field. Moreover, a detailed geoscientific exploration program has been completed on Lesvos island, where very promising geothermal areas have been identified. In this paper, reference is made to the most important data concerning high enthalpy geothermal resources by emphasizing the Milos geothermal field

  16. Geothermal energy utilization and technology

    CERN Document Server

    Dickson, Mary H; Fanelli, Mario

    2013-01-01

    Geothermal energy refers to the heat contained within the Earth that generates geological phenomena on a planetary scale. Today, this term is often associated with man's efforts to tap into this vast energy source. Geothermal Energy: utilization and technology is a detailed reference text, describing the various methods and technologies used to exploit the earth's heat. Beginning with an overview of geothermal energy and the state of the art, leading international experts in the field cover the main applications of geothermal energy, including: electricity generation space and district heating space cooling greenhouse heating aquaculture industrial applications The final third of the book focuses upon environmental impact and economic, financial and legal considerations, providing a comprehensive review of these topics. Each chapter is written by a different author, but to a set style, beginning with aims and objectives and ending with references, self-assessment questions and answers. Case studies are includ...

  17. Geothermal tomorrow 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  18. Proceedings of NEDO International Geothermal Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-11

    This is a proceedings of the NEDO International Geothermal Symposium held in Sendai in 1997. The worldwide geothermal energy power generation capacity exceeds 7000 MW. Geothermal energy is widely used also for heating, snow melting, greenhouse cultivation as well as electric power generation. Geothermal energy generates far less CO2 causing the global warming than fossil fuels. The geothermal energy is clean and renewable. Considering the environmental issue and energy supply/demand of the world, we have to exert further efforts for the geothermal development. In this conference, discussions were made on each country`s experiences of the geothermal development, and future prediction and strategies for geothermal utilization in the Asia/Pacific region, in particular. Further, in the technical session, conducted were the IEA study and technical presentation/discussion for technical cooperation. The proceedings includes research reports of more than 30, which are clarified into three fields: impacts of the geothermal development on the environment, technical development of the hot dry rock power generation system, and development of technology for collecting deep-seated geothermal resource

  19. A natural analogue for near-field behaviour in a high level radioactive waste repository in salt: the Salton Sea geothermal field, California, USA

    International Nuclear Information System (INIS)

    Elders, W.A.

    1987-01-01

    In the Salton Sea Geothermal Field (SSGF), in the sediments of the delta of the Colorado River, we are developing a three-dimensional picture of active water/rock reactions at temperatures of 0 C and salinities of 7 to 25 weight percent to produce quantitative data on mineral stabilities and mobilities of naturally-occurring radio-nuclides. The aim is to produce data to validate geochemical computer codes being developed to assess the performance of a Commercial High-Level Waste (CHLW) repository in salt. Among the findings to date are: (1) greenschist facies metamorphism is occurring; (2) brine compositions are fairly similar to those expected in candidate salt repository sites; (3) U and Th concentrations in the rocks are typical for sedimentary rocks; (4) the brines are enriched in Na, Mn, Zn, Sr, Ra Po and strongly depleted in U and Th relative to the rocks; (5) significant radioactive disequilibria exist in brines and solid phases of the SSGF. The disequilibria in the actinide series allow estimation of the rates of brine-rock interaction and understanding of hydrologic processes and radionuclide behaviour. Work is continuing emphasizing the reactions of authigenic clay minerals, epidotes, feldspars, chlorites and sulphates. So far, adapting geochemical codes to the necessary combination of high salinity and high temperature has lagged behind the natural analogue study of the SSGF so that validation is still in progress. In the future our data can be also used in validating performance assessment codes which couple geochemistry and transport processes, and in design of waste packages and back fill compositions. (author)

  20. Geothermal probabilistic cost study

    Energy Technology Data Exchange (ETDEWEB)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  1. Economic analysis using Monte Carlo simulation on Xs reservoir Badak field east Kalimantan

    International Nuclear Information System (INIS)

    Nuraeni, S.; Sugiatmo, Prasetyawan O.J.

    1997-01-01

    Badak field, located in the delta of mahakam river, in east kalimantan, is a gas producer. the field was found in 1972 by VICO. Badak field is the main gas supplier to bontang LNG and gas is exported to japan, south korea and taiwan, as well as utilized for the main feed to the east kalimantan fertilizer plant. To provide the gas demand, field development as well as exploration wells are continued. on these exploration wells, gas in place determination, gas production rate as well as economic evaluation play on important role. the effect of altering gas production rate to net present value and also the effect of altering discounted factor to the rate of return curve using monte carlo simulation is presented on this paper. based on the simulation results it is obtained that the upper limit of the initial gas in place is 1.82 BSCF, the lower limit is 0.27 BSCF and the most likely million US $ with a rate of return ranges from - 30 to 33.5 percent

  2. Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST

    Science.gov (United States)

    Manman, XU; Yuntao, SONG; Gen, CHEN; Yanping, ZHAO; Yuzhou, MAO; Guang, LIU; Zhen, PENG

    2017-11-01

    Ion cyclotron range of frequency (ICRF) heating has been used in tokamaks as one of the most successful auxiliary heating tools and has been adopted in the EAST. However, the antenna load will fluctuate with the change of plasma parameters in the ICRF heating process. To ensure the steady operation of the ICRF heating system in the EAST, fast ferrite tuner (FFT) has been carried out to achieve real-time impedance matching. For the requirements of the FFT impedance matching system, the magnet system of the ferrite tuner (FT) was designed by numerical simulations and experimental analysis, where the biasing magnetic circuit and alternating magnetic circuit were the key researched parts of the ferrite magnet. The integral design goal of the FT magnetic circuit is that DC bias magnetic field is 2000 Gs and alternating magnetic field is ±400 Gs. In the FTT, E-type magnetic circuit was adopted. Ferrite material is NdFeB with a thickness of 30 mm by setting the working point of NdFeB, and the ampere turn of excitation coil is 25 through the theoretical calculation and simulation analysis. The coil inductance to generate alternating magnetic field is about 7 mH. Eddy-current effect has been analyzed, while the magnetic field distribution has been measured by a Hall probe in the medium plane of the biasing magnet. Finally, the test results show the good performance of the biasing magnet satisfying the design and operating requirements of the FFT.

  3. Fusion of Terra-MODIS and Landsat TM data for geothermal sites investigation in Jiangsu Province, China

    Science.gov (United States)

    Chen, Shengbo

    2006-01-01

    Geothermal resources are generally confined to areas of the Earth's crust where heat flow higher than in surrounding areas heats the water contained in permeable rocks (reservoirs) at depth. It is becoming one of attractive solutions for clean and sustainable energy future for the world. The geothermal fields commonly occurs at the boundaries of plates, and only occasionally in the middle of a plate. The study area, Jiangsu Province, as an example, located in the east of China, is a potential area of geothermal energy. In this study, Landsat thematic Mapper (TM) data were georeferenced to position spatially the geothermal energy in the study area. Multi-spectral infrared data of Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra platform were georeferenced to Landsat TM images. Based on the Wien Displacement Law, these infrared data indicate the surface emitted radiance under the same atmospheric condition, and stand for surface bright temperature respectively. Thus, different surface bright temperature data from Terra-MODIS band 20 or band 31 (R), together with Landsat TM band 4 (G) and band 3 (B) separately, were made up false color composite images (RGB) to generate the distribution maps of surface bright temperatures. Combing with geologic environment and geophysical anomalies, the potential area of geothermal energy with different geo-temperature were mapped respectively. Specially, one geothermal spot in Qinhu Lake Scenery Area in Taizhou city was validated by drilling, and its groundwater temperature is up to some 51°.

  4. Areas to explore surrounding the Cerro Prieto geothermal field, BC; Areas para exploracion en los alrededores del campo geotermico de Cerro Prieto, BC

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Dumas, Alvaro [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia General de Cerro Prieto, Mexicali, Baja California (Mexico)]. E-mail: alvaro.aguilar@cfe.gob.mx

    2009-07-15

    Exploration plays an important role in tapping underground natural resources-whether water, oil, natural gas or minerals. Exploratory data allow us to learn reservoir conditions, increasing probable reserves and reservoir life span. Around the Cerro Prieto geothermal field, BC, and in the Mexicali Valley in general, exploration had almost stopped but recently was resumed by the Studies Division of Comision Federal de ELectricidad (CFE)'s Gerencia de Proyectos Geotermoelectricos. The division sent technical personnel to structurally map the northern and eastern portions of Laguna Salada. The paper offers a general outline of the main zones undergoing exploratory studies-studies perhaps culminating in siting exploratory wells to locate more geothermal resources (and ultimately producing them using binary power plants). CFE also wants to site injection wells west of the current production zone, and this is covered, as well. All activities are meant to increase the productive lifespan of the geothermal reservoir. [Spanish] Cuando se trata de la explotacion de recursos naturales del subsuelo, sea agua, gas, petroleo o minerales, la exploracion juega un papel muy importante, ya que permite conocer las condiciones del yacimiento que pudieran llevar a incrementar las reservas de los recursos explotados y extender su vida util. En las zonas aledanas al campo geotermico de Cerro Prieto, BC, y en general en el Valle de Mexicali, la exploracion estaba practicamente detenida habiendose reactivado a raiz de que la Subgerencia de Estudios de la Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad (CFE) envio personal para realizar mapeos estructurales en las porciones norte y oriente de la Laguna Salada. Este trabajo presenta un panorama general de las areas prioritarias para realizar estudios exploratorios y poder programar, con mas bases, pozos exploratorios enfocados a localizar mas recursos geotermicos, inclusive para generar energia por medio

  5. Using noble gases and 87Sr/86Sr to constrain heat sources and fluid evolution at the Los Azufres Geothermal Field, Mexico

    Science.gov (United States)

    Wen, T.; Pinti, D. L.; Castro, M. C.; Lopez Hernandez, A.; Hall, C. M.; Shouakar-Stash, O.; Sandoval-Medina, F.

    2017-12-01

    Geothermal wells and hot springs were sampled for noble gases' volume fraction and isotopic measurements and 87Sr/86Sr in the Los Azufres Geothermal Field (LAGF), Mexico, to understand the evolution of fluid circulation following three decades of exploitation and re-injection of used brines. The LAGF, divided into the Southern Production Zone (SPZ) and the Northern Production Zone (NPZ), is hosted in a Miocene to Pliocene andesitic volcanic complex covered by Quaternary rhyolitic-dacitic units. Air contamination corrected 3He/4He ratios (Rc) normalized to the atmospheric ratio (Ra=1.384 x 10-6), show a median value of 6.58 indicating a dominant mantle helium component. Contributions of crustal helium up to 53% and 18% are observed in NPZ and SPZ, respectively. Observations based on Rc/Ra and 87Sr/86Sr ratios points to the mixing of three magmatic sources supplying mantle helium to the LAGF: (1) a pure mantle He (Rc/Ra = 8) and Sr (87Sr/86Sr = 0.7035) source; (2) a pure mantle helium (Rc/Ra = 8) with some radiogenic Sr (87Sr/86Sr = 0.7049) source possibly resulting from Quaternary rhyolitic volcanism; and (3) a fossil mantle He component (Rc/Ra = 3.8) with some radiogenic Sr (87Sr/86Sr = 0.7038), corresponding possibly to the Miocene andesite reservoir. Intrusions within the last 50 kyrs from sources (1) and (2) are likely responsible for the addition of mantle volatiles and heat to the hydrothermal system of Los Azufres. He and Ar isotopes indicate that heat flow is transported by both convection and conduction. Atmospheric noble gas elemental ratios suggest that geothermal wells located closer to the western re-injection zone are beginning to be dominated by re-injection of used brines (injectate). The area affected by boiling in LAGF has further extended to the north and west since the last noble gas sampling campaign in 2009.

  6. Remote Sensing as a First Step in Geothermal Exploration in the Xilingol Volcanic Field in NE China

    Science.gov (United States)

    Peng, F.; Huang, S.; Xiong, Y.

    2013-12-01

    Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Geological structures play an important role in the transfer and storage of geothermal energy. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting techniques, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, RS and GIS techniques are utilized to prospect the geothermal energy potential in Xilingol, a Cenozoic volcanic area in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with a single-channel algorithm. Prior to the LST retrieval, the imagery data are preprocessed to eliminate abnormal values by reference to the normalized difference vegetation index (NDVI) and the improved normalized water index (MNDWI) on the ENVI platform developed by ITT Visual Information Solutions. Linear and circular geological structures are then inferred through visual interpretation of the LST maps with references to the existing geological maps in conjunction with the computer automatic interpretation features such as lineament frequency, lineament density, and lineament intersection. Several useful techniques such as principal component analysis (PCA), image classification, vegetation suppression, multi-temporal comparative analysis, and 3D Surface View based on DEM data are

  7. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  8. THE ASSESSMENT OF GEOTHERMAL POTENTIAL OF TURKEY BY MEANS OF HEAT FLOW ESTIMATION

    Directory of Open Access Journals (Sweden)

    UĞUR AKIN

    2014-12-01

    Full Text Available In this study, the heat flow distribution of Turkey was investigated in the interest ofexploring new geothermal fields in addition to known ones. For this purposes, thegeothermal gradient was estimated from the Curie point depth map obtained from airbornemagnetic data by means of power spectrum method. By multiplying geothermal gradientwith thermal conductivity values, the heat flow map of Turkey was obtained. The averagevalue in the heat flow map of Turkey was determined as 74 mW/m2. It points out existenceof resources of geothermal energy larger than the average of the world resources. in termsof geothermal potential, the most significant region of Turkey is the Aydin and itssurrounding with a value exceeding 200 mW/m2. On the contrary, the value decreasesbelow 30 mW/m2in the region bordered by Aksaray, Niğde, Karaman and Konya. Thenecessity of conducting a detailed additional studies for East Black sea, East and SoutheastAnatolia is also revealed

  9. 36 CFR 7.39 - Mesa Verde National Park.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Mesa Verde National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.39 Mesa Verde National Park. (a) Visiting of... the admission of commercial automobiles and buses to Mesa Verde National Park, contained in § 5.4 of...

  10. 2012 geothermal energy congress. Proceedings

    International Nuclear Information System (INIS)

    2012-01-01

    Within the Geothermal Energy Congress 2012 from 13th to 16th November 2012, in Karlsruhe (Federal Republic of Germany), the following lectures were held: (1) Comparison of different methods for the design of geothermal probes on the example of the thermal utilization of smouldering fires at heaps (Sylvia Kuerten); (2) Determination of the thermo-physical features of loose rocks (Johannes Stegner); (3) Tools for the planning and operation of district heating grids (Werner Seichter); (4) geo:build - System optimisation of the cooling mode of the ground-source heat and cooling supply (Franziska Bockelmann); (5) Successful and economic conception, planning and optimization of district heating grids (Werner Seichter); (6) Treacer / Heat transfer decoupling in a heterogeneous hydrothermal reservoir characterized by geological faults in the Upper Rhine Graben (I. Ghergut); (7) Determination of the porosity, thermal conductivity and particle size distribution in selected sections of the Meisenheim-1 drilling core (Saar-Nahe basin, Rheinland-Palatinate) under consideration of geothermally relevant formulation of questions (Gillian Inderwies); (8) Innovative technologies of exploration in the Jemez Geothermal project, New Mexico, USA (Michael Albrecht); (9) Geothermal energy, heat pump and TABS - optimization of planning, operational control and control (Franziska Bockelmann); (10) The impact of large-scale geothermal probes (storage probes) on the heat transfer and heat loss (Christopher Steins); (11) Numeric modelling of the permocarbon in the northern Upper Rhine Graben (L. Dohrer); (12) Engineering measurement solutions on quality assurance in the exploitation of geothermal fields (C. Lehr); (13) Evaluation and optimization of official buildings with the near-surface geothermal energy for heating and cooling (Franziska Bockelmann); (14) On-site filtration for a rapid and cost-effective quantification of the particle loading in the thermal water stream (Johannes Birner

  11. MESA, PÚLPITO E PALCO

    OpenAIRE

    Calvani, Carlos Eduardo

    2015-01-01

    O artigo aborda a relação entre arte e religião a partir da liturgia cristã. Na primeira parte, apresenta historicamente, três centros visuais dos espaços litúrgicos nos quais se desenvolve o culto cristão -mesa, púlpito e palco – destacando simbolismos e significados atribuídos a cada um desses centros. A mesa (ou altar) caracteriza as liturgias de matriz católica; a centralidade do púlpito é a marca visual das liturgias protestantes reformadas; o palco, por sua vez, emerge, principalmente n...

  12. Geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Gasparovic, N

    1962-07-01

    Live steam, transformed steam, and steam produced by expansion flashing are outlined with respect to their use in the production of electricity. The capacity, pressure, and temperature of a steam must be determined empirically by exploratory drilling. These factors are dependent on time and on the extent of nearby drilling-activity. Particulars of geothermal-steam power-plants such as steam dryness, hot-water flashing, condensation, gas extraction, and corrosion are discussed in detail. All available data (as per 1962) concerning the costs of operation and construction of geothermal power plants are tabulated. For space-heating purposes, two basic systems are utilized. When little corrosion or precipitation is expected, an open system is used, otherwise, closed systems are necessary. The space-heating system of Reykjavik, Iceland is cited as an example. A brief description of industrial applications of geothermal energy, such as the extraction of NaCl, D/sub 2/O, or boric acid, is provided. Thirty-two references are given.

  13. Federal Geothermal Research Program Update Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently

  14. Federal Geothermal Research Program Update - Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  15. New isotopic and field evidence for the ages and distribution of Archaean rocks in east Antarctica

    International Nuclear Information System (INIS)

    Kinny, P.D.; Delor, C.P.

    1990-01-01

    The Precambrian shield of East Antarctica is composed of a number of recognised Archaean cratonic nuclei surrounded by Proterozoic metamorphic complexes. Poor exposure, inaccessibility and the effects of multiple tectonothermal overprints combine to confound the knowledge of the early history of these terranes. Against this, it is shown how recent advances in zircon geochronology allied with new petrological, geochemical and field observations have resulted in major revisions to the chronostratigraphy of several key areas, including Napier Complex of Enderby Land, Vestfold Hills and Rauer Group. 11 refs

  16. DARPA Workshop on Geothermal Energy for Military Operations

    Science.gov (United States)

    2010-05-01

    is administered by its Geothermal Program Office (GPO) at the Navy Air Weapons Station, China Lake, CA. GPO manages the Coso Geo- thermal Field at...advanced geothermal technologies might reduce the risk and cost to the point where the U.S. military would be able to take advantage. Supplying geothermal...was con- vened to explore whether investment in advanced geothermal technologies might reduce the risk and cost to the point where the U.S. military

  17. Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan

    OpenAIRE

    Lun-Tao Tong; Shoung Ouyang; Tai-Rong Guo; Ching-Ray Lee; Kou-Hsin Hu; Chun-Li Lee; Chun-Jao Wang

    2008-01-01

    The Chingshui geothermal field is the largest known productive geothermal area in Taiwan. The purpose of this paper is to delineate this geothermal structure by integrating geophysical data and borehole information. The existence of a magma chamber in the shallow crust and shallow intrusive igneous rock results in a high heat flow and geothermal gradient; furthermore, the NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive t...

  18. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  19. Layered hydrothermal barite-sulfide mound field, East Diamante Caldera, Mariana volcanic arc

    Science.gov (United States)

    Hein, James R.; de Ronde, Cornel E. J.; Koski, Randolph A.; Ditchburn, Robert G.; Mizell, Kira; Tamura, Yoshihiko; Stern, Robert J.; Conrad, Tracey; Ishizuka, Osamu; Leybourne, Matthew I.

    2014-01-01

    East Diamante is a submarine volcano in the southern Mariana arc that is host to a complex caldera ~5 × 10 km (elongated ENE-WSW) that is breached along its northern and southwestern sectors. A large field of barite-sulfide mounds was discovered in June 2009 and revisited in July 2010 with the R/V Natsushima, using the ROV Hyper-Dolphin. The mound field occurs on the northeast flank of a cluster of resurgent dacite domes in the central caldera, near an active black smoker vent field. A 40Ar/39Ar age of 20,000 ± 4000 years was obtained from a dacite sample. The mound field is aligned along a series of fractures and extends for more than 180 m east-west and >120 m north-south. Individual mounds are typically 1 to 3 m tall and 0.5 to 2 m wide, with lengths from about 3 to 8 m. The mounds are dominated by barite + sphalerite layers with the margins of each layer composed of barite with disseminated sulfides. Rare, inactive spires and chimneys sit atop some mounds and also occur as clusters away from the mounds. Iron and Mn oxides are currently forming small (caldera, mineralization resulted from focused flow along small segments of linear fractures rather than from a point source, typical of hydrothermal chimney fields. Based on the mineral assemblage, the maximum fluid temperatures were ~260°C, near the boiling point for the water depths of the mound field (367–406 m). Lateral fluid flow within the mounds precipitated interstitial sphalerite, silica, and Pb minerals within a network of barite with disseminated sulfides; silica was the final phase to precipitate. The current low-temperature precipitation of Fe and Mn oxides and silica may represent rejuvenation of the system.

  20. Lichens as biological monitors in the Los Azufres geothermal field, Michoacan, Mexico; Liquenes como indicadores biologicos en el campo geotermico Los Azufres, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Peralta, Marlene; Chavez Carmona, Arturo [Universidad Michoacana de San Nicolas de Hidalgo, Morelia (Mexico)

    1995-09-01

    The results obtained in the monitoring of the atmospheric emissions of the Los Azufres geothermal field in Michoacan State, Mexico utilizing lichens as monitors of the presence of sulphur and arsenic, at the areas near geothermal sites, both under evaluation and production, are presented. The results are based on symptoms which included: chlorosis, necrosis, brown and reddish spots, loss of adherence to substrate, thalli disintegration and disappearance of sensitive species; and also on the amounts of sulphur and arsenic contained in the lichens thallus. [Espanol] Se presentan los resultados obtenidos en el monitoreo de las emisiones atmosfericas del campo geotermico Los Azufres, Michoacan, Mexico en el que se utilizaron liquenes como indicadores de la presencia de azufre y arsenico, en las areas cercanas a los sitios de pozos geotermicos tanto en evaluacion como en produccion. Los resultados estan basados en sintomas que incluyen clorosis, necrosis, manchas cafes y rojizas, perdida de adherencia al sustrato, desintegracion del talo y desaparicion de especies sensibles; asi como en los contenidos de azufre y arsenico en los talos liquenicos.

  1. Monitoring of geothermal fields by seismic networks. Guidelines and chances; Monitoring geothermaler Felder durch seismische Netzwerke. Vorgaben und Chancen

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Andreas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Geophysikalisches Inst.; Gaucher, Emmanuel [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Abt. Geothermie

    2012-07-01

    The monitoring of geothermal power plants requires seismic networks in order to quantify ground motions at the earth's surface in the case of a possible micro seismicity or to describe spatio-temporal seismicity distribution in the reservoir. The first case requires official needs. The second case may help to develop the reservoirs. An optimal configuration of the seismic network may adequate for both tasks. It also can be a chance for a long-term investment for the overall benefit.

  2. Prospects of geothermal resource exploitation

    International Nuclear Information System (INIS)

    Bourrelier, P.H.; Cornet, F.; Fouillac, C.

    1994-01-01

    The use of geothermal energy to generate electricity has only occurred during the past 50 years by drilling wells in aquifers close to magmas and producing either dry steam or hot water. The world's production of electricity from geothermal energy is over 6000 MWe and is still growing. The direct use of geothermal energy for major urban communities has been developed recently by exploitation of aquifers in sedimentary basins under large towns. Scaling up the extraction of heat implies the exploitation of larger and better located fields requiring an appropriate method of extraction; the objective of present attempts in USA, Japan and Europe is to create heat exchangers by the circulation of water between several deep wells. Two field categories are considered: the extension of classical geothermal fields beyond the aquifer areas, and areas favoured by both a high geothermal gradient, fractures inducing a natural permeability at large scale, and good commercial prospects (such as in the Rhenan Graben). Hot dry rocks concept has gained a large interest. 1 fig., 5 tabs., 11 refs

  3. Developing MESA : an accelerated reliability test

    NARCIS (Netherlands)

    Baskoro, G.; Rouvroye, J.L.; Bacher, W.; Brombacher, A.C.

    2003-01-01

    This paper describes the on-going research on an accelerated reliability test strategy called MESA (Multiple Environment Stress Analysis) intended to find in a fast and efficient manner (potential) reliability problems during the design phase of high volume consumer products. This test has shown

  4. Geodynamics of the East African Rift System ∼30 Ma ago: A stress field model

    Science.gov (United States)

    Min, Ge; Hou, Guiting

    2018-06-01

    The East African Rift System (EARS) is thought to be an intra-continental ridge that meets the Red Sea and the Gulf of Aden at the Ethiopian Afar as the failed arm of the Afar triple junction. The geodynamics of EARS is still unclear even though several models have been proposed. One model proposes that the EARS developed in a local tensile stress field derived from far-field loads because of the pushing of oceanic ridges. Alternatively, some scientists suggest that the formation of the EARS can be explained by upwelling mantle plumes beneath the lithospheric weak zone (e.g., the Pan-African suture zone). In our study, a shell model is established to consider the Earth's spherical curvature, the lithospheric heterogeneity of the African continent, and the coupling between the mantle plumes and the mid-ocean ridge. The results are calculated via the finite element method using ANSYS software and fit the geological evidence well. To discuss the effects of the different rock mechanical parameters and the boundary conditions, four comparative models are established with different parameters or boundary conditions. Model I ignores the heterogeneity of the African continent, Model II ignores mid-ocean spreading, Model III ignores the upwelling mantle plumes, and Model IV ignores both the heterogeneity of the African continent and the upwelling mantle plumes. Compared to these models is the original model that shows the best-fit results; this model indicates that the coupling of the upwelling mantle plumes and the mid-ocean ridge spreading causes the initial lithospheric breakup in Afar and East Africa. The extension direction and the separation of the EARS around the Tanzanian craton are attributed to the heterogeneity of the East African basement.

  5. Feasibility study of Copahue geothermal development project, Argentina; Aruzenchin kyowakoku Copahue chiiki no chinetsu kaihatsu chosa

    Energy Technology Data Exchange (ETDEWEB)

    Abe, M.; Yamada, M.; Nakanishi, S.; Todaka, N. [Electric Power Development Co. Ltd., Tokyo (Japan); Fujita, T.

    1996-03-15

    Geothermal resources have been evaluated in the Copahue district. For this survey administrated by JICA, drilling of a deep test well with a small bore (COP-3) and blowout tests were conducted. This district is located at the east side of the Andes elongated in the N-S direction. Volcanoes with similar active periods and active states are distributed in the N-S direction, which forms a divide with the Pacific Ocean side. The Copahue-Caviahue composite volcano in the surveyed area is located nearly in the central part of the volcanic zone, which forms a special ring topography. Geology of the Copahue district consists of volcanic effusive rocks during the Tertiary and Quaternary periods. There are five prospecting fields with geothermal indications in the surveyed area. From the survey, an area of about 13 km{sup 2} was evaluated as a geothermal resource field. Especially, in the area of about 4 km{sup 2} including COP-1, 2 and 3 wells, the steam predominant type reservoirs were found out. As a result of estimation of the geothermal resource potential by the volumetric method, a highly prospective power generation potential of 30 MW was evaluated in the field where the steam predominant type reservoirs were confirmed by the boring wells. 7 refs., 13 figs., 1 tab.

  6. Energy and Exergy Analysis of Kalina Cycle for the Utilization of Waste Heat in Brine Water for Indonesian Geothermal Field

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2015-04-01

    Full Text Available The utilization of waste heat in a power plant system—which would otherwise be released back to the environment—in order to produce additional power increases the efficiency of the system itself. The purpose of this study is to present an energy and exergy analysis of Kalina Cycle System (KCS 11, which is proposed to be utilized to generate additional electric power from the waste heat contained in geothermal brine water available in the Lahendong Geothermal power plant site in North Sulawesi, Indonesia. A modeling application on energy and exergy system is used to study the design of thermal system which uses KCS 11. To obtain the maximum power output and maximum efficiency, the system is optimized based on the mass fraction of working fluid (ammonia-water, as well as based on the turbine exhaust pressure. The result of the simulation is the optimum theoretical performance of KCS 11, which has the highest possible power output and efficiency. The energy flow diagram and exergy diagram (Grassman diagram was also presented for KCS 11 optimum system to give quantitative information regarding energy flow from the heat source to system components and the proportion of the exergy input dissipated in the various system components.

  7. High- and middle-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos

  8. Geothermal in transition

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1991-01-01

    This article examines the current market for geothermal projects in the US and overseas. The topics of the article include future capacity needs, upgrading the Coso Geothermal project, the productivity of the Geysers area of Northern California, the future of geothermal, and new projects at Soda Lake, Carson Basin, Unalaska Island, and the Puna Geothermal Venture in Hilo, Hawaii

  9. A preliminary interpretation of gas composition in the CP IV sector wells, Cerro Prieto geothermal field, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Barragan Reyes, Rosa Maria; Arellano Gomez, Victor M; Portugal Marin, Enrique [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Morelos (Mexico)]. E-mail: rmb@iie.org.mx; Perez Hernandez, Alfredo; Rodriguez Rodriguez, Marco Helio; Leon Vivar, Jesus de [Comision Federal de Electricidad, Residencia General Cerro Prieto, B.C. (Mexico)

    2007-07-15

    To increase the electrical generation capacity of the Cerro Prieto geothermal field from 620 MW to 720 MW, the Cerro Prieto IV (CP IV) sector of the field was developed in the NE portion of the exploited field. Fourteen new wells have been drilled there since 2000. The wells in CP IV zone produce two-phase fluids at wellhead with heterogeneous steam fraction characteristics: at the central zone and towards the NW, the wells are liquid-dominated while those towards the E and S produce a relatively high steam fraction. This work studies the gas compositions of produced fluids to obtain reservoir parameters such as temperature and steam fraction and identify different sources of fluids in the wells. A method was used based on the Fischer Tropsch reaction and H{sub 2}S equilibria with pyrite-pyrrhotite as a mineral buffer (FT-HSH3). The results for the natural state showed the presence of fluids with reservoir temperatures from 275 to 310 degrees Celsius and excess steam values from -1 to 50%. Data are aligned in a FT-HSH3 trend, suggesting that the well discharges consist of a mixture in different proportions of the two end members. One seems to be a liquid with a temperature of over 300 degrees Celsius with negative or negligible excess steam. The other seems to be a two-phase fluid with a temperature of about 275 degrees Celsius and an excess steam fraction of about 0.5. According to the data for single wells and depending on the production conditions of the wells, reservoir fluid mixtures could occur in different proportions of liquid and steam. Data for 2005 that included wells drilled after 2000 suggest the presence of a steam phase in the reservoir. The steam could be generated with the boiling of deep reservoir fluid from a pressure drop. The mixing trend obtained for the natural state was also seen for 2005 data but lower temperatures (from 265 to 295 degrees Celsius) were obtained compared with those for natural conditions. The entry of lower

  10. Evolution of mineralizing brines in the east Tennessee Mississippi Valley-type ore field

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, S.E.; Gesink, J.A.; Haynes, F.M. (Univ. of Michingan, Ann Arbor (USA))

    1989-05-01

    The east Tennessee Mississippi Valley-type (MVT) ore field contains barite-fluorite and sphalterite deposits in a continuous paleoaquifer consisting of breccia zones in the Upper Cambrian-Lower Ordovician Knox Group. Paragenetic observations and fluid inclusion compositions in these deposits indicate that the Knox paleoaquifer was invaded first by Ca-rich brines (Ca:Na about 1) that deposited fluorite and barite, and later by Na-Ca brines (Ca:Na = 0.1 to 0.5) that deposited sphalerite. Geologic relation sindicate that these brines were derived from the southeast, in the area of the Middle Ordovician Servier foreland shale basin, and that imposed by fluorite solubility indicate further that all original connate water in the Sevier basin was required to deposit the estimated flourite reserves of the ore field.Thus, the later, sphalerite-depositing brines represent recycled meteoric water from the Sevier basin or connate brines from underlying (Cambrian) shales.

  11. Geothermal Modesty

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    This publication of the Areva Group, a world nuclear industry leader, provides information on the energy in many domains. This issue deals with the uses for radioactivity, the future of the green electricity, the energy policy of Rhone-alps region, the end of the nuclear in Belgium, the nuclear propulsion to explore the solar system, the involvement of the Unites States in the hydrogen development, the gas exportation of China. A special part is devoted to the possibility of the geothermal energy. (A.L.B.)

  12. Status of geothermal resources in Mexico

    International Nuclear Information System (INIS)

    Le-Bert, G.

    1990-01-01

    Except for some isolated instances with tourist or therapeutic objectives and some attempts in the Cerro Prieto geothermal field, there are no projects for direct heat utilization of geothermal resources in Mexico. Therefore, all places that are studied are studied with geothermal-electric objectives. It is convenient to keep in mind that in Mexico, by law, the Comision Federal de Electricidad (CFE) is the public utility in charge of electrical energy service. This institution is directly responsible for the exploration, development and commercial use of geothermal energy for electrical generation. Therefore, this paper includes the present and planned exploration and utilization of geothermal resources only for electricity generation for the period 1985 to the present. Likewise, starting 5 years ago, the CFE efforts have been directed toward the development of high enthalpy fields

  13. 3D Geological Model for "LUSI" - a Deep Geothermal System

    Science.gov (United States)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  14. Decree from July 25, 2015 related to general prescriptions applicable to geothermal activities of minor importance. Decree from July 25, 2015 related to the certification of drilling companies intervening in geothermal energy of minor importance. Decree from July 25, 2015 related to the zoning map in the field minor importance geothermal energy

    International Nuclear Information System (INIS)

    Delduc, P.; Blanc, P.; Michel, L.

    2015-01-01

    These decrees concern various actors of the geothermal sector in the case of projects and works of minor importance. The first one defines general technical prescriptions applicable to a geothermal site of minor importance, the conditions related to the implantation of a geothermal installation of minor importance, measures to be implemented when performing geothermal works and when stopping its exploitation, control and maintenance modalities in order to prevent risks for the environment and to preserve water resource quality. The second decree defines measures to be implemented by drilling companies in the case of geothermal projects of minor importance. The third decree defines the map of geothermal areas of minor importance, specifies the map elaboration methodology and its reviewing modalities

  15. The Geothermal Systems along the Watukosek fault system (East Java, Indonesia):The Arjuno-Welirang Volcanic Complex and the Lusi Mud-Eruption

    Science.gov (United States)

    Inguaggiato, Salvatore; Mazzini, Adriano; Vita, Fabio; Sciarra, Alessandra

    2016-04-01

    The Java Island is characterized by an intense volcanic activity with more then 100 active volcanoes. Moreover, this island is also known by the presence of many mud volcanoes and hydrothermal springs. In particular, in the 2006 several sudden hot mud eruptions, with fluids around 100° C, occurred in the NE side of the island resulting in a prominent eruption named Lusi (contraction of Lumpur Sidoarjo) located along the major Watukosek strike-slip fault zone. The Watukosek fault system, strikes from the Arjuno-Welirang volcanic complex, intersects Lusi and extends towards the NE of the Java island. Conversely of the normal mud eruptions (cold fluids emitted in a short time period of few days), the Lusi eruption was characterized by a persistent effusive hot fluids emissions for a long-time period of, so far, nearly a decade. Moreover, the isotopic composition of emitted gases like Helium showed a clear magmatic origin. For this reasons we decided to investigate the near Arjuno-Welirang complex located on the same strike-slip fault. Arjuno-Welirang is a twin strato-volcano system located in the East of Java along the Watukosek fault, at about 25 km SW respect to the Lusi volcano system. It features two main peaks: Arjuno (3339 masl) and Welirang (3156 masl). The last recorded eruptive activity took place in August 1950 from the flanks of Kawah Plupuh and in October 1950 from the NW part of the Gunung Welirang. This strato-volcano is characterized by a S-rich area, with high T-vent fumarole at least up to 220° C (and likely higher), located mainly in the Welirang crater. In addition, several hot springs vent from the flanks of the volcano, indicate the presence of a large hydrothermal system. During July 2015, in the framework of the Lusi Lab project (ERC grant n° 308126), we carried out a geochemical field campaign on the Arjuno-Welirang volcano hydrothermal system area, sampling water and dissolved gases from the thermal and cold springs located on the flanks of

  16. Problems of developing and working natural gas fields in East Turkmeniya. Problemy osvoyeniya i razrabotki mestorozhdeniy prirodnogo gaza Vostochnoy Turkmenii

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    An examination is made of a number of method questions associated with working a group of gas and gas-condensate fields of East Turkmeniya as an integral. An analysis is made of the problems which developed during start-up and operation of a number of fields (Dauletabad-Donmezskiy, Shatlyk, etc.).

  17. Aspects of the distribution and movement of aluminium in the surface of the Te Kopia geothermal field, Taupo Volcanic Zone, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.; Rodgers, K.A. [University of Auckland (New Zealand). Dept. of Geology; Browne, P.R.L. [University of Auckland (New Zealand). Dept. of Geology; University of Auckland (New Zealand). Geothermal Institute

    2000-09-01

    The principal Al-bearing components of two surface quadrats in the central Te Kopia geothermal field are the atmosphere, substrate ({approx} 10 wt% AI in ignimbrite, clay and protosoils, 0.3-0.6 AI wt% in sinter), vegetation (4-5 g AI/m{sup 2}) and waters (1-4 {mu}g/g AI in semi-permanent acid surface waters, 6-9 {mu}g/g in acid pools, 10-14 {mu}g/g in post-rain, ephemeral streams and pools). About 0.7 g/ha/a of AI is received from the atmosphere. Water transports AI in and out of each quadrat and distributes it between the different components. During initial alteration of the parent ignimbrite by alkali chloride water in the deep reservoir, AI either remained within the quadrat boundaries or transfers out were balanced by contemporaneous gains. Subsequently, alteration by acid sulfate fluids redistributes elements into new mineral assemblages but again with no net movement of AI in or out of either quadrat. The latest, surface alteration event involves interaction of all the previously and variously altered rocks by steam, gases and steam condensate. A primary product of this process is transient, hydrated, AI-rich, water-soluble sulfate efflorescences whose persistence indicates a steady flux of AI at the surface. The magnitude of this flux depends on available moisture and the activities of H{sup +}, SiO{sub 4}{sup 4-}, SO{sub 4}{sup 2} and K{sup +} such that variations in the rate of discharge of AI alone may be used to detect changes in surface conditions as may result from exploitation of a geothermal field. (author)

  18. Thermal-Economic Modularization of Small, Organic Rankine Cycle Power Plants for Mid-Enthalpy Geothermal Fields

    Directory of Open Access Journals (Sweden)

    Yodha Y. Nusiaputra

    2014-07-01

    Full Text Available The costs of the surface infrastructure in mid-enthalpy geothermal power systems, especially in remote areas, could be reduced by using small, modular Organic Rankine Cycle (ORC power plants. Thermal-economic criteria have been devised to standardize ORC plant dimensions for such applications. We designed a modular ORC to utilize various wellhead temperatures (120–170 °C, mass flow rates and ambient temperatures (−10–40 °C. A control strategy was developed using steady-state optimization, in order to maximize net power production at off-design conditions. Optimum component sizes were determined using specific investment cost (SIC minimization and mean cashflow (MCF maximization for three different climate scenarios. Minimizing SIC did not yield significant benefits, but MCF proved to be a much better optimization function.

  19. Active-Source Seismic Tomography at Bradys Geothermal Field, Nevada, with Dense Nodal and Fiber-Optic Seismic Arrays

    Science.gov (United States)

    Thurber, C. H.; Parker, L.; Li, P.; Fratta, D.; Zeng, X.; Feigl, K. L.; Ak, E.; Lord, N.

    2017-12-01

    We deployed a dense seismic array to image the shallow structure in the injection area of the Brady Hot Springs geothermal site in Nevada. The array was composed of 238 5 Hz, three-component nodal instruments and 8,700 m of distributed acoustic sensing (DAS) fiber-optic cable installed in surface trenches plus about 400 m installed in a borehole. The geophone array had about 60 m instrument spacing in the target zone, whereas DAS channel separations were about 1 m. The acquisition systems provided 15 days of continuous records including active source and ambient noise signals. A large vibroseis truck (T-Rex) was operated at 196 locations, exciting a swept-frequency signal from 5 to 80 Hz over 20 seconds using three vibration modes. Sweeps were repeated up to four times during different modes of geothermal plant operation: normal operation, shut-down, high and oscillatory injection and production, and normal operation again. The cross-correlation method was utilized to remove the sweep signal from the geophone records. The first P arrivals were automatically picked from the cross-correlation functions using a combination of methods, and the travel times were used to invert for the 3D P-wave velocity structure. Models with 100 m and 50 m horizontal node spacing were obtained, with vertical node spacing of 10 to 50 m. The travel time data were fit to about 30 ms, close to our estimated picking uncertainty. We will present our 3D Vp model and the result of our search for measurable temporal changes, along with preliminary results for a 3D Vs model. The work presented herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award Number DE-EE0006760.

  20. Evidence for tectonic, lithologic, and thermal controls on fracture system geometries in an andesitic high-temperature geothermal field

    Science.gov (United States)

    Massiot, Cécile; Nicol, Andrew; McNamara, David D.; Townend, John

    2017-08-01

    Analysis of fracture orientation, spacing, and thickness from acoustic borehole televiewer (BHTV) logs and cores in the andesite-hosted Rotokawa geothermal reservoir (New Zealand) highlights potential controls on the geometry of the fracture system. Cluster analysis of fracture orientations indicates four fracture sets. Probability distributions of fracture spacing and thickness measured on BHTV logs are estimated for each fracture set, using maximum likelihood estimations applied to truncated size distributions to account for sampling bias. Fracture spacing is dominantly lognormal, though two subordinate fracture sets have a power law spacing. This difference in spacing distributions may reflect the influence of the andesitic sequence stratification (lognormal) and tectonic faults (power law). Fracture thicknesses of 9-30 mm observed in BHTV logs, and 1-3 mm in cores, are interpreted to follow a power law. Fractures in thin sections (˜5 μm thick) do not fit this power law distribution, which, together with their orientation, reflect a change of controls on fracture thickness from uniform (such as thermal) controls at thin section scale to anisotropic (tectonic) at core and BHTV scales of observation. However, the ˜5% volumetric percentage of fractures within the rock at all three scales suggests a self-similar behavior in 3-D. Power law thickness distributions potentially associated with power law fluid flow rates, and increased connectivity where fracture sets intersect, may cause the large permeability variations that occur at hundred meter scales in the reservoir. The described fracture geometries can be incorporated into fracture and flow models to explore the roles of fracture connectivity, stress, and mineral precipitation/dissolution on permeability in such andesite-hosted geothermal systems.

  1. Calidad de las aceitunas de mesa.

    Directory of Open Access Journals (Sweden)

    Garrido Fernández, Antonio

    1999-06-01

    Full Text Available The paper comments the different regulations related to table olives at national or international scales. The Unified Qualitative standard Applying to Table Olives in International Trade and COI/Codex (International Olive Oil Council, IOC, and IOC/Codex Alimentarius, «Reglamentación Técnico Sanitaria para la elaboración, circulación y venta de aceitunas de mesa» (Spanish, «Normas de calidad para la exportación de aceitunas de mesa» (Spanish, and the United States Standards for Grades of Green and Canned Ripe Olives (USA are especially considered. The effects of the new regulations on Nutritional Labelling (mainly in USA, applications of the Analysis and Control of Critical Points (ACCP, and the problems derived from the application of the ISO 9000, or EN 29000, to this Sector are also discussed.

    El trabajo comenta las diferentes normas, tanto nacionales como internacionales, que regulan los aspectos de la calidad de las aceitunas de mesa. Se comentan especialmente la Norma Cualitativa Unificada Aplicable a Aceitunas de Mesa en el Comercio Internacional y las correspondientes COI/CODEX (Consejo Oleícola Internacional, COI, y COI/Codex Alimentarius, respectivamente, la Reglamentación Técnico Sanitaria para la elaboración, circulación, y venta de aceitunas de mesa (española, las Normas de calidad para la exportación de Aceitunas de Mesa (española, y las «United States Standards for Grades of Green and Canned Ripe Olives» (USA. Asimismo se analizan las implicaciones de las nuevas reglamentaciones sobre etiquetado nutricional (principalmente en el comercio con USA, la aplicación del Análisis de Riesgos y Control de Puntos Críticos (ARCPC, y la necesidad de adaptar el Sector al cumplimiento de las diversas normas de la serie ISO 9000 o su equivalente EN 29000.

  2. Technologies for the exploration of highly mineralized geothermal resources

    Science.gov (United States)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2017-09-01

    The prospects of the integrated processing of the high-parameter geothermal resources of the East Ciscaucasia of artesian basin (ECAB) with the conversion of their heat energy into electric energy at a binary geoPP and the subsequent extraction of solved chemical compounds from thermal waters are evaluated. The most promising areas for the exploration such resources are overviewed. The integrated exploration of hightemperature hydrogeothermal brines is a new trend in geothermal power engineering, which can make it possible to significantly increase the production volume of hydrogeothermal resources and develop the geothermal field at a higher level with the realization of the energy-efficient advanced technologies. The large-scale exploration of brines can solve the regional problems of energy supply and import substitution and fulfill the need of Russia in food and technical salt and rare elements. The necessity of the primary integrated exploration of the oil-field highly mineralized brines of the South Sukhokumskii group of gas-oil wells of Northern Dagestan was shown in view of the exacerbated environmental problems. Currently, the oil-field brines with the radioactive background exceeding the allowable levels are discharged at disposal fields. The technological solutions for their deactivation and integrated exploration are proposed. The realization of the proposed technological solutions provides 300 t of lithium carbonate, 1650 t of caustic magnesite powder, 27300 t of chemically precipitated chalk, 116100 t of food salt, and up to 1.4 mln m3 of desalinated water from oil-field brines yearly. Desalinated water at the output of a geotechnological complex can be used for different economic needs, which is important for the arid North Caucasus region, where the fresh water deficiency is acute, especially in its plain part within the ECAB.

  3. Design and field testing of Savonius wind pump in East Africa

    International Nuclear Information System (INIS)

    Rabah, K.V.O.; Osawa, B.M.

    1995-04-01

    We present here improvements in the wind-scoop geometry and efficiency of a double-stack Savonius rotor, developed through a series of wind tunnel and field testing in East Africa. On an aerodynamic performance basis, the Savonius rotor cannot generally compete with other types of wind turbines. This is entirely due to its mode of operation. Unlike its counter-parts that operate by rotating around a horizontal axis, it rotates around a vertical axis. This has the unfortunate effect of lowering its efficiency, but it has several compensating factors. Its main advantages are that it has better starting torque performance with operating characteristics independent of the wind direction. In addition, it is simple in structure and the fabrication technology required is less sophisticated when compared to similar types of windmills. This makes it a suitable system for small scale applications in wind energy conversion; especially in remote rural regions in developing countries. (author). 8 refs, 5 figs

  4. Analysis of indoor air quality data from East Tennessee field studies

    International Nuclear Information System (INIS)

    Dudney, C.S.; Hawthorne, A.R.

    1985-08-01

    This report presents the results of follow-up experimental activities and data analyses of an indoor air quality study conducted in 40 East Tennessee homes during 1982-1983. Included are: (1) additional experimental data on radon levels in all homes, repeat measurements in house No. 7 with elevated formaldehyde levels, and energy audit information on the participants' homes; (2) further data analyses, especially of the large formaldehyde data base, to ascertain relationships of pollutant levels vs environmental factors and house characteristics; (3) indoor air quality data base considerations and development of the study data base for distribution on magnetic media for both mainframe and desktop computer use; and (4) identification of design and data collection considerations for future field studies. A bibliography of additional publications related to this effort is also presented

  5. Geothermal Resources in China Les ressources géothermiques de la Chine

    OpenAIRE

    An K. S.; Huang S. Y.

    2006-01-01

    The present paper deals mainly with the distribution features, briefly describes the geology in the three geothermal fields of different types in Beijing, Yangbajing of Xizang (Tibet), and Dengwu of Guangdong, and finally gives on account of the development and utilization of geothermal resources. Up to now, more, than 2,500 geothermal water points (including hot springs, hot-water wells, and hot water in mines) have been found. Four major geothermal zones and three basic types of geothermal ...

  6. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  7. Geothermal rice drying unit in Kotchany, Macedonia

    International Nuclear Information System (INIS)

    Popovski, K.; Dimitrov, K.; Andrejevski, B.; Popovska, S.

    1992-01-01

    A geothermal field in Kotchany (Macedonia) has very advantageous characteristics for direct application purposes. Low content of minerals, moderate temperature (78C) and substantial available geothermal water flow (up to 300 1/s) enabled the establishment of a district heating scheme comprising mainly agricultural and industrial uses. A rice drying unit of 10 t/h capacity was installed 8 years ago, using the geothermal water as the primary heat source. A temperature drop of 75/50C enables the adaptation of conventional drying technology, already proven in practice in the surrounding rice growing region. Water to air heat exchanger and all necessary equipment and materials are of local production, made of copper and carbon steel. The use of such drying units is strongly recommended for the concrete district heating scheme because it offers a very simple geothermal application and enables improvement in the annual heating load factor without high investments in geothermal water distribution lines

  8. Greece, Milos Island Geothermal Project

    International Nuclear Information System (INIS)

    Delliou, E.E.

    1990-01-01

    On Milos island (Aegean Sea) a high enthalpy, water dominated geothermal field of high salinity exists. At 1985, a 2MW geothermoelectric pilot plant was installed on the island. This plant has been provided by Mitsubishi Heavy Industries of Japan under a contract with Public Power Corporation of Greece. Due to high salinity of the geothermal fluid, unforeseen problems (scaling mainly) arisen in both steam and brine cycles. As a consequence, the operation (trial mainly) of the power plant have been interrupted several times for long periods, in order to identify the arisen, each time, problems and find the most appropriate technical solution. The above fact, as well as, some unfortunate coincidences described in this paper, led Milos people to react against geothermal development in their island. The sequence of the events, technical and non-technical, their approach and the relevant conclusions are reported in this presentation

  9. Federal Geothermal Research Program Update, FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  10. Genetic and antigenic characterization of serotype O FMD viruses from East Africa for the selection of suitable vaccine strain.

    Science.gov (United States)

    Lloyd-Jones, Katie; Mahapatra, Mana; Upadhyaya, Sasmita; Paton, David J; Babu, Aravindh; Hutchings, Geoff; Parida, Satya

    2017-12-14

    Foot-and-mouth disease (FMD) is endemic in Eastern Africa with circulation of multiple serotypes of the virus in the region. Most of the outbreaks are caused by serotype O followed by serotype A. The lack of concerted FMD control programmes in Africa has provided little incentive for vaccine producers to select vaccines that are tailored to circulating regional isolates creating further negative feedback to deter the introduction of vaccine-based control schemes. In this study a total of 80 serotype O FMD viruses (FMDV) isolated from 1993 to 2012 from East and North Africa were characterized by virus neutralisation tests using bovine antisera to three existing (O/KEN/77/78, O/Manisa and O/PanAsia-2) and three putative (O/EA/2002, O/EA/2009 and O/EA/2010) vaccine strains and by capsid sequencing. Genetically, these viruses were grouped as either of East African origin with subdivision into four topotypes (EA-1, 2, 3 and 4) or of Middle-East South Asian (ME-SA) topotype. The ME-SA topotype viruses were mainly detected in Egypt and Libya reflecting the trade links with the Middle East countries. There was good serological cross-reactivity between the vaccine strains and most of the field isolates analysed, indicating that vaccine selection should not be a major constraint for control of serotype O FMD by vaccination, and that both local and internationally available commercial vaccines could be used. The O/KEN/77/78 vaccine, commonly used in the region, exhibited comparatively lower percent in vitro match against the predominant topotypes (EA-2 and EA-3) circulating in the region whereas O/PanAsia-2 and O/Manisa vaccines revealed broader protection against East African serotype O viruses, even though they genetically belong to the ME-SA topotype. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Geoelectrical structure by electrical logs and Schlumberger sounding at the Akinomiya geothermal field, Akita Prefecture; Denki kenso oyobi Schlumberger ho ni yoru Akinomiya chinetsu chiiki no hiteiko kozo

    Energy Technology Data Exchange (ETDEWEB)

    Kajiwara, T; Takemoto, S

    1997-05-27

    Based on the electrical logging data of the existed well and Schlumberger sounding data obtained in 1974, a two-dimensional inversion analysis of the specific resistance profile was conducted at the Akinomiya geothermal field, Akita Prefecture. From the electrical logging data, relationships between the geology and the specific resistance were illustrated. The specific resistance values of basement rocks showed more than 100 ohm-m, which were higher than those of the other seams. Intrusive rocks and tuffs in the basement rocks showed locally low values less than 100 ohm-m. Younger volcanic rocks showed low values around 10 ohm-m. As a result of the two-dimensional inversion analysis, the basement rocks could be detected as high specific resistance layers. Accordingly, it was considered that the basement rocks in this field can be detected as high specific resistance layers by analyzing the results of field survey sufficiently. Low specific resistance zones were observed in the shallow depth, which corresponded to the fumarolic gases. There were some layers with remarkably varied specific resistance values, which were considered to be related with alteration. 6 refs., 3 figs.

  12. A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Geotechnical Sciences Group

    2007-03-01

    The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive

  13. Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong

    2008-01-01

    Full Text Available The Chingshui geothermal field is the largest known productive geothermal area in Taiwan. The purpose of this paper is to delineate this geothermal structure by integrating geophysical data and borehole information. The existence of a magma chamber in the shallow crust and shallow intrusive igneous rock results in a high heat flow and geothermal gradient; furthermore, the NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive the geothermal system. There is evidence that geothermal fluid deeply circulated within the fracture zone and was heated by a deeply located body of hot rock. The geothermal reservoir of the Chingshui geothermal field might be related to the fracture zone of the Chingshuihsi fault. It is bounded by the C-fault in the north and Xiaonanao fault in the south. Based on information obtained from geophysical interpretations and well logs, a 3-D geothermal conceptual model is constructed in this study. Further, the geothermal reservoir is confined to an area that is 260 m in width, N21°W, 1.5 km in length, and has an 80° dip toward the NE. Ahigh-temperature zone is found in the SE region of the reservoir, which is about 500 m in length; this zone is located near the intersection of the Chingshuihsi and Xiaonanao faults. An area on the NE side of the high-temperature zone has been recommended for the drilling of production wells for future geothermal development.

  14. MT2-D inversion analysis in Kakkonda geothermal field; Kakkonda chinetsu chiiki ni okeru MT ho nijigen kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, K; Takasugi, S [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Miyazaki, S [Japan Metals and Chemicals Co. Ltd., Tokyo (Japan); Uchida, T [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1996-05-01

    Data, collected from an MT method-assisted survey conducted in the Kakkonda geothermal region in 1987, was re-examined, and a new structure was found. The review was carried out by use of a 2D analysis in the TM mode. According to the 1D analysis of 1987 and the geological data gathered then, it is estimated that the resistivity structure of this region runs in the northwest-southeast direction. A northeast-southwest traverse line was set for this analysis, orthogonal to the strike, and the impedance at each observation spot was caused to rotate to this direction across the whole range of frequency. Furthermore, in 1994-95, surveys were conducted using arrayed CSMT/MT methods. All these sum up to indicate that a high-resistivity region extends northwest in the southwestern part of the Kakkonda river but that there exists a low-resistivity region of several 10 Ohm m centering about the B traverse line. The high-resistivity region deep in the ground being the target of excavation in the Kakkonda region, to collect knowledge about this high-resistivity is important, and here the effectiveness of the 2d analysis has been verified. 5 refs., 11 figs.

  15. City of El Centro geothermal energy utility core field experiment. Final report, February 16, 1979-November 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Province, S.G.; Sherwood, P.B.

    1984-11-01

    The City of El Centro was awarded a contract in late 1978 to cost share the development of a low to moderate temperature geothermal resource in the City. The resource would be utilized to heat, cool and provide hot water to the nearby Community Center. In December 1981, Thermal 1 (injector) was drilled to 3970 feet. In January 1982, Thermal 2 (producer) was drilled to 8510 feet. Before testing began, fill migrated into both wells. Both wells were cleaned out. A pump was installed in the producer, but migration of fill again into the injector precluded injection of produced fluid. A short term production test was undertaken and results analyzed. Based upon the analysis, DOE decided that the well was not useful for commercial production due to a low flow rate, the potential problems of continued sanding and gasing, and the requirement to lower the pump setting depth and the associated costs of pumping. There was no commercial user found to take over the wells. Therefore, the wells were plugged and abandoned. The site was restored to its original condition.

  16. Geothermal pilot study final report: creating an international geothermal energy community

    Energy Technology Data Exchange (ETDEWEB)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)

    1978-06-01

    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)

  17. Geothermal Technologies Program: Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  18. Surficial Geologic Map of Mesa Verde National Park, Montezuma County, Colorado

    Science.gov (United States)

    Carrara, Paul E.

    2012-01-01

    Mesa Verde National Park in southwestern Colorado was established in 1906 to preserve and protect the artifacts and dwelling sites, including the famous cliff dwellings, of the Ancestral Puebloan people who lived in the area from about A.D. 550 to A.D. 1300. In 1978, the United Nations designated the park as a World Heritage Site. The geology of the park played a key role in the lives of these ancient people. For example, the numerous (approximately 600) cliff dwellings are closely associated with the Cliff House Sandstone of Late Cretaceous age, which weathers to form deep alcoves. In addition, the ancient people farmed the thick, red loess (wind-blown dust) deposits on the mesa tops, which because of its particle size distribution has good moisture retention properties. The soil in this loess cover and the seasonal rains allowed these people to grow their crops (corn, beans, and squash) on the broad mesa tops. Today, geology is still an important concern in the Mesa Verde area because the landscape is susceptible to various forms of mass movement (landslides, debris flows, rockfalls), swelling soils, and flash floods that affect the park's archeological sites and its infrastructure (roads, septic systems, utilities, and building sites). The map, which encompasses an area of about 100 mi2 (260 km2), includes all of Mesa Verde National Park, a small part of the Ute Mountain Indian Reservation that borders the park on its southern and western sides, and some Bureau of Land Management and privately owned land to the north and east. Surficial deposits depicted on the map include: artificial fills, alluvium of small ephemeral streams, alluvium deposited by the Mancos River, residual gravel on high mesas, a combination of alluvial and colluvial deposits, fan deposits, colluvial deposits derived from the Menefee Formation, colluvial deposits derived from the Mancos Shale, rockfall deposits, debris flow deposits, earthflow deposits, translational and rotational landslide

  19. South Dakota geothermal handbook

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  20. School Psychology Research and Practice in East Asia: Perspectives on the Past, Present, and Future Directions of the Field

    Science.gov (United States)

    Brown, Jacqueline A.; Watanabe, Yayoi; Lee, Dong Hun; McIntosh, Kent

    2016-01-01

    To engage in a comparison of school psychology research and practice in eastern and western countries, the current study sought to identify key themes that have influenced the field of school psychology in East Asian countries. Forty-six leading school psychology professionals in Japan, Hong Kong, South Korea, Thailand, and Taiwan provided their…

  1. Sign of Radon for locate geothermic sources

    International Nuclear Information System (INIS)

    Gonzalez Teran, D.

    1991-01-01

    Evaluation of a geothermic field is based upon geological, geophysical and geochemical studies that enable the evaluation of the deposit potential, that is to say, the amount of energy per unit mass, the volume of the trapped fluid, vapor fraction and fluid chemistry. This thesis has as its objective the evaluation of radon gas emanation in high potential geothermic zones in order to utilize the results as a low cost and easy to manage complimentary tool in geothermic source prospection. In chapter I the importance and evaluation of a geothermic deposit is discussed. In chapter II the general characteristics of radon are discussed: its radioactivity and behavior upon diffusion over the earth's surface> Chapter III establishes the approach used in the geothermic field of Los Azufres, Michoacan, to carry out samplings of radon and the laboratory techniques that were used to evaluate the concentration of radon in the subsoil. Finally in chapter IV measurements of radon in the field are compared to geological faults in the area under study. The sampling zones were: low geothermic potential zone of the northern and the southern zone having a greater geothermic potential than that in the north. The study was carried out at different sampling times using plastics detectors of from 30 to 46 days from February to July. From the results obtained we concluded that the emission of radon was greater in the zones of greatest geothermic potential than in the low geothermic potential zones it was also affected by the fault structure and the time of year in which sampling was done. (Author)

  2. Natural or Induced: Identifying Natural and Induced Swarms from Pre-production and Co-production Microseismic Catalogs at the Coso Geothermal Field

    Science.gov (United States)

    Schoenball, Martin; Kaven, Joern; Glen, Jonathan M. G.; Davatzes, Nicholas C.

    2015-01-01

    Increased levels of seismicity coinciding with injection of reservoir fluids have prompted interest in methods to distinguish induced from natural seismicity. Discrimination between induced and natural seismicity is especially difficult in areas that have high levels of natural seismicity, such as the geothermal fields at the Salton Sea and Coso, both in California. Both areas show swarm-like sequences that could be related to natural, deep fluid migration as part of the natural hydrothermal system. Therefore, swarms often have spatio-temporal patterns that resemble fluid-induced seismicity, and might possibly share other characteristics. The Coso Geothermal Field and its surroundings is one of the most seismically active areas in California with a large proportion of its activity occurring as seismic swarms. Here we analyze clustered seismicity in and surrounding the currently produced reservoir comparatively for pre-production and co-production periods. We perform a cluster analysis, based on the inter-event distance in a space-time-energy domain to identify notable earthquake sequences. For each event j, the closest previous event i is identified and their relationship categorized. If this nearest neighbor’s distance is below a threshold based on the local minimum of the bimodal distribution of nearest neighbor distances, then the event j is included in the cluster as a child to this parent event i. If it is above the threshold, event j begins a new cluster. This process identifies subsets of events whose nearest neighbor distances and relative timing qualify as a cluster as well as a characterizing the parent-child relationships among events in the cluster. We apply this method to three different catalogs: (1) a two-year microseismic survey of the Coso geothermal area that was acquired before exploration drilling in the area began; (2) the HYS_catalog_2013 that contains 52,000 double-difference relocated events and covers the years 1981 to 2013; and (3) a

  3. Operation and Performance of a Biphase Turbine Power Plant at the Cerro Prieto Geothermal Field (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G. [Douglas Energy Company, Placentia, CA (United States)

    2000-09-01

    A full scale, wellhead Biphase turbine was manufactured and installed with the balance of plant at Well 103 of the Cerro Prieto geothermal resource in Baja, California. The Biphase turbine was first synchronized with the electrical grid of Comision Federal de Electricidad on August 20, 1997. The Biphase power plant was operated from that time until May 23, 2000, a period of 2 years and 9 months. A total of 77,549 kWh were delivered to the grid. The power plant was subsequently placed in a standby condition pending replacement of the rotor with a newly designed, higher power rotor and replacement of the bearings and seals. The maximum measured power output of the Biphase turbine, 808 kWe at 640 psig wellhead pressure, agreed closely with the predicted output, 840 kWe. When combined with the backpressure steam turbine the total output power from that flow would be increased by 40% above the power derived only from the flow by the present flash steam plant. The design relations used to predict performance and design the turbine were verified by these tests. The performance and durability of the Biphase turbine support the conclusion of the Economics and Application Report previously published, (Appendix A). The newly designed rotor (the Dual Pressure Rotor) was analyzed for the above power condition. The Dual Pressure Rotor would increase the power output to 2064 kWe by incorporating two pressure letdown stages in the Biphase rotor, eliminating the requirement for a backpressure steam turbine. The power plant availability was low due to deposition of solids from the well on the Biphase rotor and balance of plant problems. A great deal of plant down time resulted from the requirement to develop methods to handle the solids and from testing the apparatus in the Biphase turbine. Finally an online, washing method using the high pressure two-phase flow was developed which completely eliminated the solids problem. The availability of the Biphase turbine itself was 100

  4. Evaluation of CO2-Fluid-Rock Interaction in Enhanced Geothermal Systems: Field-Scale Geochemical Simulations

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2017-01-01

    Full Text Available Recent studies suggest that using supercritical CO2 (scCO2 instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS may improve energy extraction. While CO2-fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO2 as a working fluid (“CO2-EGS” compared to those for water as a working fluid (H2O-EGS are needed. The primary objectives of this study are (1 constraining geochemical processes associated with CO2-fluid-rock interactions under the high pressures and temperatures of a typical CO2-EGS site and (2 comparing geochemical impacts of CO2-EGS to geochemical impacts of H2O-EGS. The St. John’s Dome CO2-EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO2-EGS were larger compared to H2O-EGS, suggesting that using scCO2 as a working fluid may enhance EGS heat extraction. More aqueous CO2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO2 as a working fluid. It indicates that geochemical processes of scCO2-rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.

  5. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  6. Investigating the Influence of Regional Stress on Fault and Fracture Permeability at Pahute Mesa, Nevada National Security Site

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Donald M. [Desert Research Inst. (DRI), Reno, NV (United States); Smith, Kenneth D. [Univ. of Nevada, Reno, NV (United States); Parashar, Rishi [Desert Research Inst. (DRI), Reno, NV (United States); Collins, Cheryl [Desert Research Inst. (DRI), Las Vegas, NV (United States); Heintz, Kevin M. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2017-05-24

    Regional stress may exert considerable control on the permeability and hydraulic function (i.e., barrier to and/or conduit for fluid flow) of faults and fractures at Pahute Mesa, Nevada National Security Site (NNSS). In-situ measurements of the stress field are sparse in this area, and short period earthquake focal mechanisms are used to delineate principal horizontal stress orientations. Stress field inversion solutions to earthquake focal mechanisms indicate that Pahute Mesa is located within a transtensional faulting regime, represented by oblique slip on steeply dipping normal fault structures, with maximum horizontal stress ranging from N29°E to N63°E and average of N42°E. Average horizontal stress directions are in general agreement with large diameter borehole breakouts from Pahute Mesa analyzed in this study and with stress measurements from other locations on the NNSS.

  7. ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Mukul M. Sharma

    2005-03-01

    The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those

  8. Field studies on the terrestrial behavior of actinide elements in East Tennessee

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Bondietti, E.A.; Trabalka, J.R.; Walker, R.L.; Scott, T.G.

    1984-01-01

    Field studies on the comparative uptake of various actinide elements ( 232 Th, 233 U, 238 U, 239 Pu, 241 Am, and 244 Cm) by plants and animals inhabiting historically contaminated environments on the Oak Ridge National Laboratory (ORNL) reservation in East Tennessee are summarized. The present-day pattern of actinide element bioaccumulation from a flood plain site contaminated with Pu in 1944 is U > Th approx. Pu. Thus the environmentally dispersed 239 Pu exhibits a transfer from floodplain soil to biota comparable to that of indigenous 232 Th and less than that of the indigenous 238 U. This ranking agrees with the chemical extractability of U, Th, and Pu from soil, using either weak acids or strongly basic reagents. The pattern of actinide element uptake from the shoreline of a historically contaminated pond is Pu 238 U = 233 U. This ranking also agrees with the chemical extractability of Pu, Am, Cm, and U from shoreline sediment, using weak acids. Results from field studies at ORNL agree with what has been generally inferred about the relative food chain transfer of the actinides, based on laboratory studies and field studies at other sites in the United States. Because they share the same valence state, there are apparent strong similarities in soil sorption, plant uptake, and animal uptake between trivalent Am and Cm and between tetravalent Pu and Th. Available evidence suggests that knowledge of the behavior of naturally occurring 232 Th in the terrestrial food chain can be useful for predicting the long-term fate of environmentally dispersed 239 Pu, while data on 238 U might be used to place an upper limit on the expected long-term food chain transfer of all transuranic elements except Np. 33 references, 5 figures, 1 table

  9. Full-vector geomagnetic field records from the East Eifel, Germany

    Science.gov (United States)

    Monster, Marilyn W. L.; Langemeijer, Jaap; Wiarda, Laura R.; Dekkers, Mark J.; Biggin, Andy J.; Hurst, Elliot A.; Groot, Lennart V. de

    2018-01-01

    To create meaningful models of the geomagnetic field, high-quality directional and intensity input data are needed. However, while it is fairly straightforward to obtain directional data, intensity data are much scarcer, especially for periods before the Holocene. Here, we present data from twelve flows (age range ∼ 200 to ∼ 470 ka) in the East Eifel volcanic field (Germany). These sites had been previously studied and are resampled to further test the recently proposed multi-method palaeointensity approach. Samples are first subjected to classic palaeomagnetic and rock magnetic analyses to optimise the subsequent palaeointensity experiments. Four different palaeointensity methods - IZZI-Thellier, the multispecimen method, calibrated pseudo-Thellier, and microwave-Thellier - are being used in the present study. The latter should be considered as supportive because only one or two specimens per site could be processed. Palaeointensities obtained for ten sites pass our selection criteria: two sites are successful with a single approach, four sites with two approaches, three more sites work with three approaches, and one site with all four approaches. Site-averaged intensity values typically range between 30 and 35 μT. No typically low palaeointensity values are found, in line with paleodirectional results which are compatible with regular palaeosecular variation of the Earth's magnetic field. Results from different methods are remarkably consistent and generally agree well with the values previously reported. They appear to be below the average for the Brunhes chron; there are no indications for relatively higher palaeointensities for units younger than 300 ka. However, our young sites could be close in age, and therefore may not represent the average intensity of the paleofield. Three of our sites are even considered coeval; encouragingly, these do yield the same palaeointensity within uncertainty bounds.

  10. Surveys of the distribution of seabirds found in the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, M.; Ritchotte, G.; Viggiano, A.; Dwyer, J.; Nielsen, B.; Jacobi, J.D. [Fish and Wildlife Service, Hawaii National Park, HI (United States). Hawaii Research Station

    1994-08-01

    In 1993, the US Fish and Wildlife Service (USFWS) entered into an interagency agreement with the Department of Energy (DOE) to conduct specific biological surveys to identify potential impacts of the proposed geothermal development on the natural resources of the East Rift Zone. This report presents information from published literature information and new field data on seabird populations on the island of Hawaii. These data are analyzed with regard to potential impacts of geothermal development on seabird populations in this area. Fifteen species of seabirds, waterbirds, and shorebirds are documented or suspected of being found using habitats within or immediately adjacent to the three geothermal subzones located in the Puna district on the island of Hawai`i. Of these species, two are on the federal Endangered Species List, three are on the State of Hawaii Endangered Species List, and all 15 are protected by the federal Migratory Bird Act.

  11. Spatial analysis of noise emission at the Los Azufres geothermal field, Mich.; Analisis espacial de emision de ruido en el campo geotermico de Los Azufres, Mich.

    Energy Technology Data Exchange (ETDEWEB)

    Camarena Magana, Emilio; Ordaz Mendez, Christian A. [Comision Federal de Electricidad, Residencia de Los Azufres, Morelia, Michoacan (Mexico)]. E-mail: emilio.camarena@cfe.gob.mx

    2010-01-15

    To verify noise emissions from the usual activities in an operating geothermal field, noise measurements were carried out in a 4.2 km{sup 2} area in the southern zone of the Los Azufres, Mich., geothermal field. There are seven production wells operating here and three abandoned wells. The average noise emission in the southern zone was 36.5 decibels (dB), regarded as the natural reading of environmental-noise emission. In the Christmas (valves) tree for operating production wells, the noise ranges from 70.9 to 91.7 dB, while in open discharging valves for steam-pipes, the noise can reach 118 dB. In Mexico the maximum permissible limit of noise on the periphery of a property is 68 dB in daytime and 65 dB at night. Based on measurements made at the periphery of lots where the geothermal wells are located, four out of seven production wells measured do not exceed the maximum allowable level, while the other three seem to exceed it. However no definite limits exist for the lots. It is recommended that the measurement points as indicated by the official standard in environmental matters be re-established, which will enable noise emissions by several wells that have exceeded the permissible limit, to actually fall within it. [Spanish] Se realizaron mediciones sonicas en un area de 4.2 km{sup 2} localizada en la zona sur del campo geotermico de Los Azufres, Mich., a fin de verificar la emision de ruido asociada a las actividades usuales en un campo geotermico en operacion. En esta area se encuentran siete pozos productores en operacion y tres pozos abandonados. La emision promedio de ruido en estos ultimos fue de 36.5 decibeles (dB), considerandose como la condicion natural de emision de ruido ambiental. En el arbol de valvulas de los pozos productores en operacion el ruido va de los 70.9 a los 91.7 dB, mientras que en valvulas abiertas de descarga de vaporductos la emision puede llegar hasta los 118 dB. En Mexico el limite maximo permisible de ruido en la periferia de

  12. Prospecting for a Blind Geothermal System Utilizing Geologic and Geophysical Data, Seven Troughs Range, Northwestern Nevada

    Science.gov (United States)

    Forson, Corina

    To aid in the discovery and evaluation of blind resources, it is important to utilize geologic, geophysical, and geochemical techniques to find the required elements (e.g., heat source, fluid to transport the heat, and permeability in a reservoir) for geothermal energy production. Based on a regional low resistivity anomaly discovered through a reconnaissance magnetotelluric (MT) survey, detailed geologic mapping, structural analysis, and a 2 m temperature survey were conducted to delineate the most likely areas for blind geothermal activity in the Seven Troughs Range, Nevada. The Seven Troughs Range resides in the northwestern Basin and Range province 190 km northeast of Reno and 50 km northwest of Lovelock in western Nevada. There is no known geothermal system in the area. Mesozoic metasedimentary strata and intrusions dominate the northern and southern parts of the range but are nonconformably overlain by a thick sequence (~ 1.5 km) of Oligocene to Miocene volcanic and volcaniclastic rocks and Quaternary sediments in the central part of the range. The southern part of the range consists of a basement horst block bounded by two major range-front faults, with Holocene fault scarps marking the more prominent fault on the east side of the range. In contrast, several gently to moderately west-tilted fault blocks, with good exposures of the Tertiary volcanic strata and bounded by a series of steeply east-dipping normal faults, characterize the central part of the range. Kinematic analysis of faults in the range and regional relations indicate a west-northwest-trending extension direction. Accordingly, slip and dilation tendency analyses suggest that north-northeast striking faults are the most favorably oriented for reactivation and fluid flow under the current stress field. Two areas in the Seven Troughs Range have a favorable structural setting for generating permeability and channeling geothermal fluids to the near surface: 1) A major right step in the range

  13. Hawaii geothermal project

    Science.gov (United States)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  14. Initial Pressure Distribution in the Geothermal Field of Los Humeros, Puebla, Mexico; Distribucion de presion inicial en el campo geotermico de Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, Victor M.; Izquierdo, Georgina; Aragon, Alfonso; Barragan, Rosa Maria; Garcia, Alfonso [Instituto de Investigaciones Electricas (Mexico); Pizano, Arturo [Comision Federal de Electricidad (Mexico)

    2001-09-01

    To obtain the undisturbed distribution of pressures of a field flow, a significant amount of data concerning geological, geochemical, geophysical, and field drilling and engineering aspects, from 42 wells located at the geothermal field of Los Humeros, was analysed. Based on the studied data, models of the field pressure distribution in its initial state were developed. The models reveal the existence of at least two deposits. One of them, the most superficial, is located between 1025 and 1600 meters over the sea level, and from its excellent congruence with the pressure profile of a boiling water column, it may be considered as a predominantly liquid field. The pressure profile of this field is that of a boiling water column, at a temperature of about 300-330 Celsius degrees. The second field is below 850 meters over the sea level and from the known data it reaches at least 100 meters over the sea level. It is considered a low-liquid saturated field. The temperatures of the wells supplied by this field were estimated to be about 300-40 Celsius degrees. [Spanish] Para inferir las distribuciones de presion no perturbadas del fluido del yacimiento, se analizo una considerable cantidad de informacion relacionada con los aspectos geologicos, geoquimicos, geofisicos, de perforacion e ingenieria de yacimientos, correspondiente a 42 pozos del camo geotermico de Los Humeros, Puebla. Sobre la base de los datos analizados se desarrollaron modelos de distribucion de la presion del yacimiento en su estado inicial. Dichos modelos revelan la existencia de, cuando menos, dos yacimientos. El primero y mas superficial se encuentra localizado entre 1,600 y 1,025 metros sobre el nivel del mar (msnm), y dada su excelente concordancia con el perfil de presion correspondiente a una columna de agua en ebullicion, puede afirmarse que se trata de un yacimiento de liquido dominante. El perfil de presion de este yacimiento corresponde a una columna de agua en ebullicion de 300 a 330

  15. Some New Constraints On The Stratigraphic And Structural Setting Of The Soda Lake Geothermal Field, Churchill County, Nevada - McLACHLAN, Holly S. and FAULDS, James E., Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV 89557

    Science.gov (United States)

    McLachlan, H. S.

    2012-12-01

    Our research group is currently conducting a regional survey to identify favorable structural settings of producing and prospective geothermal fields in the Great Basin. The Soda Lake geothermal field - one of the oldest consistently producing fields in this study region - is located in west-central Nevada near the heart of the Carson Sink. Producing and prospective geothermal fields in the surrounding highlands are hosted in 1) fault termination zones (Desert Queen), 2) accommodation zones (Brady's Hot Springs) and 3) fault step-overs (Desert Peak). However, the structural setting is challenging to identify at the Soda Lake field, because it lies in the central part of a large basin with no nearby bedrock exposures. The well field at Soda Lake is centered ~3.5 km NNE of the Holocene Soda Lake maar, from which it takes its name. The geothermal field was identified serendipitously during the drilling of an irrigation survey well in the early 20th century. Modern exploratory drilling at the field began in the mid-1970s and has continued sporadically to the present. There are currently more than 28 500+ m wells at and near the production site. The exceptional drilling density at Soda Lake allows for comparatively reliable correlation of stratigraphy in the subsurface below the feature-poor Carson Sink. Stratigraphy in the Soda Lake geothermal area is relatively "layer cake" at the scale of the well field. Unconsolidated sediments extend more than 1000 m below surface. The upper few hundred meters are composed of fluvial and lacustrine sediments derived from Sierran batholith source rocks. The deeper basin fill derives from more proximal mafic to felsic Miocene volcanic rocks along the basin margins. At ~450-650 m depth, basin sediments are interrupted by a 5.11 Ma trachytic basalt of restricted lateral extent and variable thickness. Most wells intercept ~50-250 m of fine lacustrine sediments below this basalt body before intercepting the basin floor. Basin floor rocks

  16. LOPEZ DE MESA Y LA MEDICINA

    Directory of Open Access Journals (Sweden)

    Humberto Roselli

    1985-04-01

    Full Text Available

    Hace apenas dos meses la Academia Nacional de Medicina y la Sociedad Colombiana de Historia de la Medicina iniciaban en este mismo recinto el homenaje del cuerpo médico colombiano a la memoria del Profesor Luis López de Mesa con motivo del primer centenario de su nacimiento, homenaje que ahora culmina con esta nueva sesión solenme conjunta.

    Fue la del Profesor López de Mesa una vida eminente en grado sumo, habiéndose destacado en todas las actividades que emprendiera, como se ha recordado profudamente en estos días. Autor de más de 20 obras que incluyeron novelas, tratados de sociología, de historia colombiana, ensayos filosóficos y reflexiones personales; hombre público que se destacó como Ministro de Educación, como parlamentario y diplomático, y luego como Ministro de Relaciones Exteriores, Rector de la Universidad Nacional; Académico y Presidente de la Academia Nacional de Medicina,Miembro de las de la Lengua, de Historia y de Ciencia Exactas, Físicas y Naturales; Presidente del Colegio Máximo de Academias; prácticamente no hubo campo de la inteligencia y de la cultura colombianas que el Profesor López de Mesa no hubiera tocado con éxito y en los cuales no hubiera dejado huellas de su pensamiento y de su trajín humanista. Se le considera como uno de los fundadores de la sociología en Colombia y un estilista difícil pero correcto y profundo. La trayectoria de su vida pública es aún ampliamente recordada en nuestro medio.

    En aquella ocasión hicimos un repaso de la carrera del Profesor López de Mesa como médico y psiquiatra y escudriñamos algunas de las circunstancias de su formación científica que habrían posteriormente de reflejarse en su obra como sociólogo y estadista.! En esta oportunidad resumimos aquellos y algunos otros detalles.

  17. Alternative Fuels Data Center: Mesa Unified School District Reaps Economic

    Science.gov (United States)

    and Environmental Benefits with Propane Buses Mesa Unified School District Reaps Economic and School District Reaps Economic and Environmental Benefits with Propane Buses on Facebook Tweet about Alternative Fuels Data Center: Mesa Unified School District Reaps Economic and Environmental Benefits with

  18. Coso geothermal environmental overview study ecosystem quality

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, P.

    1981-09-01

    The Coso Known Geothermal Resource Area is located just east of the Sierra Nevada, in the broad transition zone between the Mohave and Great Basin desert ecosystems. The prospect of large-scale geothermal energy development here in the near future has led to concern for the protection of biological resources. Objectives here are the identification of ecosystem issues, evaluation of the existing data base, and recommendation of additional studies needed to resolve key issues. High-priority issues include the need for (1) site-specific data on the occurrence of plant and animal species of special concern, (2) accurate and detailed information on the nature and extent of the geothermal resource, and (3) implementation of a comprehensive plan for ecosystem protection.

  19. Geothermal for kids

    International Nuclear Information System (INIS)

    Nemzer, M.; Condy, M.

    1990-01-01

    This paper reports that educating children about geothermal energy is crucial to the future growth of the geothermal industry. The Geothermal Education Office (GEO) was founded in 1989 to provide materials and support to teachers and the geothermal community in educating grades K-12 about geothermal energy. GEO's goals are to: provide easy access to or referral to appropriate sources of geothermal information; foster teacher interest; create posters, booklets, lesson plans and other educational materials; monitor and review textbooks, encyclopedias and other educational materials distributed by educational groups to ensure inclusion of appropriate, accurate information and to encourage fair treatment of alternative energy resources; contribute articles to industry, science and educational publications; and foster communication and cooperation among GEO, the geothermal industry, government agencies, and educational and environmental groups

  20. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  1. Dating and tracing of fluids using 129I and 36Cl: results from geothermal fluids, oil field brines and formation waters

    International Nuclear Information System (INIS)

    Fehn, U.; Moran, J.E.; Teng, R.T.D.; Rao, U.

    1994-01-01

    Preliminary results are presented for 129 I/I and 36 Cl/Cl ratios in formation waters from the KTB project in Germany, geothermal waters from the Salton Sea Geothermal System in California and oilfield brines from the Anadarko Basin in Oklahoma. The results demonstrate the use of these isotopic systems to determine residence times, source formations and pathways of fluids in different geologic situations. ((orig.))

  2. Tracing Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Adams; Greg Nash

    2004-03-01

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  3. Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species.

    Science.gov (United States)

    Jiang, Yuan; Wang, Jin-Liang; Chen, Jing; Mao, Li-Juan; Feng, Xiao-Xiao; Zhang, Chu-Long; Lin, Fu-Cheng

    2016-01-01

    We surveyed the Trichoderma (Hypocreales, Ascomycota) biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn), 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates), T. asperellum (425), T. hamatum (397), T. virens (340), T. koningiopsis (248), T. brevicompactum (73), T. atroviride (73), T. fertile (26), T. longibrachiatum (22), T. pleuroticola (16), T. erinaceum (16), T. oblongisporum (2), T. polysporum (2), T. spirale (2), T. capillare (2), T. velutinum (2), and T. saturnisporum (1). T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y) values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14) and the highest Shannon-Wiener diversity index of Trichoderma haplotypes (1.46). We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area) had more T. hamatum than Shandong Province (the northernmost province), not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the

  4. Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species

    Science.gov (United States)

    Chen, Jing; Mao, Li-Juan; Feng, Xiao-Xiao; Zhang, Chu-Long; Lin, Fu-Cheng

    2016-01-01

    We surveyed the Trichoderma (Hypocreales, Ascomycota) biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn), 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates), T. asperellum (425), T. hamatum (397), T. virens (340), T. koningiopsis (248), T. brevicompactum (73), T. atroviride (73), T. fertile (26), T. longibrachiatum (22), T. pleuroticola (16), T. erinaceum (16), T. oblongisporum (2), T. polysporum (2), T. spirale (2), T. capillare (2), T. velutinum (2), and T. saturnisporum (1). T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y) values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14) and the highest Shannon–Wiener diversity index of Trichoderma haplotypes (1.46). We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area) had more T. hamatum than Shandong Province (the northernmost province), not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the

  5. Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species.

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    Full Text Available We surveyed the Trichoderma (Hypocreales, Ascomycota biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn, 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates, T. asperellum (425, T. hamatum (397, T. virens (340, T. koningiopsis (248, T. brevicompactum (73, T. atroviride (73, T. fertile (26, T. longibrachiatum (22, T. pleuroticola (16, T. erinaceum (16, T. oblongisporum (2, T. polysporum (2, T. spirale (2, T. capillare (2, T. velutinum (2, and T. saturnisporum (1. T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14 and the highest Shannon-Wiener diversity index of Trichoderma haplotypes (1.46. We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area had more T. hamatum than Shandong Province (the northernmost province, not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the

  6. Geochemical evidences of the boiling phenomena in Los Humeros geothermal field; Evidencias geoquimicas del fenomeno de ebullicion en el campo de Los Humeros

    Energy Technology Data Exchange (ETDEWEB)

    Munguia Bracamontes, Fernando; Lopez Mendiola, Juan Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    The geochemical behavior of the fluids in the geothermal field Los Humeros suggests the existence of a reservoir of relatively low permeability, with hydrostatic pressure gradients and thermodynamic conditions of pressure-temperature close to the boiling point in stationary conditions, that is, non-disturbed. Nevertheless, the fluid geochemistry also indicates the presence of steam under stationary conditions, mainly in the fault, fracture, fissure, etc. zones. The steam diminishes progressively as the extraction time increases, being replaced by boiling fluid. [Espanol] El comportamiento geoquimico de los fluidos en el campo geotermico de Los Humeros sugiere la existencia de un yacimiento de relativa baja permeabilidad, con gradientes de presion hidrostatica y condiciones termodinamicas de presion-temperatura cercanas al punto de ebullicion a condiciones estables; es decir, no perturbadas. Sin embargo, la geoquimica de los fluidos tambien indica la existencia de vapor bajo condiciones estables, principalmente en las zonas de fallas, fracturas, fisuras, etc. El vapor disminuye progresivamente conforme aumenta el tiempo de extraccion, siendo reemplazado por fluido en ebullicion.

  7. Geochemical evidences of the boiling phenomena in Los Humeros geothermal field; Evidencias geoquimicas del fenomeno de ebullicion en el campo de Los Humeros

    Energy Technology Data Exchange (ETDEWEB)

    Munguia Bracamontes, Fernando; Lopez Mendiola, Juan Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1989-12-31

    The geochemical behavior of the fluids in the geothermal field Los Humeros suggests the existence of a reservoir of relatively low permeability, with hydrostatic pressure gradients and thermodynamic conditions of pressure-temperature close to the boiling point in stationary conditions, that is, non-disturbed. Nevertheless, the fluid geochemistry also indicates the presence of steam under stationary conditions, mainly in the fault, fracture, fissure, etc. zones. The steam diminishes progressively as the extraction time increases, being replaced by boiling fluid. [Espanol] El comportamiento geoquimico de los fluidos en el campo geotermico de Los Humeros sugiere la existencia de un yacimiento de relativa baja permeabilidad, con gradientes de presion hidrostatica y condiciones termodinamicas de presion-temperatura cercanas al punto de ebullicion a condiciones estables; es decir, no perturbadas. Sin embargo, la geoquimica de los fluidos tambien indica la existencia de vapor bajo condiciones estables, principalmente en las zonas de fallas, fracturas, fisuras, etc. El vapor disminuye progresivamente conforme aumenta el tiempo de extraccion, siendo reemplazado por fluido en ebullicion.

  8. Environmental framework for the development of the Los Humeros, Puebla geothermal field; Contexto ambiental del desarrollo del campo geotermico de Los Humeros, Puebla

    Energy Technology Data Exchange (ETDEWEB)

    Pastrana Melchor, Eugenio J.; Fernandez Solorzano, Maria Elena; Mendoza Rangel, Ernesto; Hernandez Ayala, Cuauhtemoc [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2005-06-01

    The construction, operation and maintenance of the Los Humeros, Puebla, geothermal field were undertaken in accordance with Mexican environmental regulations. The resolutions on environmental impacts, license for atmospheric pollution prevention, concession title for exploitation and use of national waters, permission for wastewater discharging services, company registration for producing dangerous wastes and fulfillment of all conditions noted in the documents show the applicable environmental laws for the project have been followed. [Spanish] La construccion, operacion y mantenimiento del campo geotermoelectrico Los Humeros, Puebla, se ha llevado a cabo dentro del marco juridico ambiental vigente en Mexico. Las resoluciones en materia de impacto ambiental, la licencia en materia de prevencion de la contaminacion de la atmosfera, el titulo de concesion para explorar, usar o aprovechar aguas nacionales, el permiso para descargar aguas residuales domesticas, el registro como empresa generadora de residuos peligrosos, y el cumplimiento de las disposiciones y condicionantes establecidos en cada uno de estos documentos, evidencian la observancia de la legislacion ambiental aplicable al proyecto.

  9. The nature and significance of sulphate-rich, aluminous efflorescences from the Te Kopia geothermal field, Taupo Volcanic Zone, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.; Rodgers, K.A. [University of Auckland (New Zealand). Dept. of Geology; Browne, P.R.L. [University of Auckland (New Zealand). Dept. of Geology; University of Auckland (New Zealand). Geothermal Institute

    1999-06-01

    Alunogen and meta-alunogen are the dominant phases present in transient sulphate efflorescences that are the latest products of the alteration of ignimbrite country rocks in the long-lived Te Kopia geothermal field. Meta-alunogen pseudomorphs alunogen and both species occur as white, fibrous. tangled masses, as prismatic, parallel growths, and as thin. platy, crystals, 8-15 ({mu}m across, that coalesce in an open cellular network. Small (<2 mm diam.) spherical aggregates of radiating, acicular halotriechite (Fe{sub 0.51}Mg{sub 0.49}Al{sub 2}(SO{sub 4}){sub 4.22}H{sub 2}O), potash alum, mirabilite, melanterite and tschermigite are present locally. The cations needed to form these minerals derive from the host rocks with the exception of sulphur and ammonia that come from H{sub 2}S and NH{sub 3} gases ascending with steam. The particular efflorescence assemblage reflects the prevailing conditions and ionic activities of a local micro-environment. Kaolinite formed by acid sulphate alteration is now being altered by steam to yield alunogen. In turn, alunogen can react with silica, or co-dissociate with silicic acid, to form kaolinite The alternating dissolution and reprecipitation of kaolinite and alunogen moves aluminium in and through the surficial environment at Te Kopia.

  10. Geochemical study of the Sakalol-Harralol geothermal field (Republic of Djibouti): Evidences of a low enthalpy aquifer between Manda-Inakir and Asal rift settings

    Science.gov (United States)

    Awaleh, Mohamed Osman; Boschetti, Tiziano; Soubaneh, Youssouf Djibril; Baudron, Paul; Kawalieh, Ali Dirir; Dabar, Omar Assowe; Ahmed, Moussa Mahdi; Ahmed, Samaleh Idriss; Daoud, Mohamed Ahmed; Egueh, Nima Moussa; Mohamed, Jalludin

    2017-02-01

    Eighty-six sodium bicarbonate to sodium chloride hot springs and four water wells in the Tadjourah Region of Djibouti were investigated for major, minor (B, Br, F, Sr, Li) chemistry and isotope composition of water and dissolved components (87Sr/86Sr, 11B/10B, 13C/12C and 14C of DIC, 34S/32S and 18O/16O of sulfate). The deep saline Na-Cl reservoir at 143 °C shows affinity with the shallow geothermal water from the "active" Asal rift. Asal water is a diluted and recycled seawater component with the major cation composition obliterated by equilibration with Stratoid basalt. Locally, the deep reservoir is differentiated in term of recharge, and re-equilibration with rocks and mixing. In particular, two spring groups reveal contributions from evaporites typical of the "passive" graben setting of the Afar. A model on 34S/32S and 18O/16O demonstrates the isotope imprint of magmatic SO2 disproportionation on dissolved and solid sulfate, whose values probably persists in a sedimentary environment without trace of seawater. On the other hand a seawater signature, modified by mixing and secondary fractionation effects, is partially maintained according to the boron isotope composition (up to + 27.4‰). Temperature estimation in low-enthalpy geothermal reservoirs is notoriously difficult, especially where mixing with fluids of differing genesis and/or conduction cooling take place. From a geothermometric point of view, the multi-method approach followed in this study (up-to-date theoretical and thermodynamic equations, ad-hoc silica geothermometers inferred from local rocks, checking of the results on a 18Oαsulfate-water vs. temperature diagram) provides some insights and perspectives on how to tackle the problem. Table S2. Sampling locations, T, pH, EC, TDS and hydrochemical types of the sampled waters. Table S3. Chemical analyses of thermal and cold waters from Sakalaol-Haralol geothermal field. Table S4. Mineral saturation indices of SHGF hot springs waters calculated

  11. The geological controls of geothermal groundwater sources in Lebanon

    Energy Technology Data Exchange (ETDEWEB)

    Shaban, Amin [National Council for Scientific Research, Remote Sensing Center, Beirut (Lebanon); Khalaf-Keyrouz, Layla [Notre Dame University-Louaize, Zouk Mosbeh (Lebanon)

    2013-07-01

    Lebanon is a country that is relatively rich in water resources, as compared to its neighboring states in the Middle East. Several water sources are issuing on the surface or subsurface, including nonconventional water sources as the geothermal groundwater. This aspect of water sources exists in Lebanon in several localities, as springs or in deep boreholes. To the present little attention has been given to these resources and their geological setting is still unidentified. The preliminary geological field surveys revealed that they mainly occur in the vicinity of the basalt outcrops. Therefore, understanding their geological controls will help in exploring their origin, and thus giving insights into their economical exploitation. This can be investigated by applying advanced detection techniques, field surveys along with detailed geochemical analysis. This study aims at assessing the geographic distribution of the geothermal water in Lebanon with respect to the different geological settings and controls that govern their hydrogeologic regimes. It will introduce an approach for an integrated water resources management which became of utmost significance for the country.

  12. Xenoliths from Bunyaruguru volcanic field: Some insights into lithology of East African Rift upper mantle

    Science.gov (United States)

    Muravyeva, N. S.; Senin, V. G.

    2018-01-01

    The mineral composition of mantle xenoliths from kamafugites of the Bunyaruguru volcanic field has been determined. The major and some trace elements (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, Cr, Ni, Ba, Sr, La, Ce, Nd, Nb) has been analyzed in olivine, clinopyroxene, phlogopite, Cr-spinel, titanomagnetite, perovskite and carbonates of xenoliths and their host lavas. Bunyaruguru is one of three (Katwe-Kikorongo, Fort Portal and Bunyaruguru) volcanic fields included in the Toro-Ankole province located on the North end of the West Branch of the East African Rift. The xenoliths from three craters within the Bunyaruguru volcanic field revealed the different character of metasomatic alteration, reflecting the heterogeneity of the mantle on the kilometer scale. The most unusual finding was composite glimmerite-wehrlite xenolith from the crater Kazimiro, which contains the fresh primary high-Mg olivine with inclusions of Cr-spinel that had not been previously identified in this area. The different composition of phenocryst and xenolith minerals indicates that the studied xenoliths are not cumulus of enclosing magma, but the composition of xenoliths characterizes the lithology of the upper mantle of the area. The carbonate melt inclusions in olivine Fo90 demonstrate the existence of primary carbonatitic magmas in Bunyaruguru upper mantle. The results of texture and chemical investigation of the xenolith minerals indicate the time sequence of metasomatic alteration of Bunyaruguru upper mantle: MARID metasomatism at the first stage followed by carbonate metasomatism. The abundances of REE in perovskites from kamafugite are 2-4 times higher than similar values for xenolith. Therefore the kamafugite magma was been generated from a more enriched mantle source than the source of the xenoliths. The evaluation of P-T conditions formation of clinopyroxene xenolith revealed the range of pressure 20-65 kbar and the temperatures range 830-1040 °C. The pressure of clinopyroxene phenocryst

  13. The low-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Low-energy geothermal resources are characterized by temperatures ranging from 30 to 100 C. The principal worldwide applications are: towns and greenhouses heating, spa bathing, agriculture products drying, etc.. Sources depth ranges from 1500 to 2500 m in porous and permeable formations (sandstones, sands, conglomerates, limestones..) carrying aquifers. The worldwide installed power was of about 11500 MWth in 1990, with an annual production of about 36000 GWh (about 1% of worldwide energy consumption). The annual production rate is estimated to 10% and would represent a 30000 and 80000 MWth power in 2000 and 2010, respectively. In France, low-energy geothermal resources are encountered principally in Mesozoic sediments of the Parisian and Aquitanian basins. French geothermics has developed during the last 30 years and principally between 1980 and 1985 after the second petroleum crack. After 1985, the decay of fossil fuel costs and the development of corrosion problems in the geothermal wells have led to the abandonment of the less productive fields and to the study of technical solutions to solve the corrosion problems. (J.S.). 1 fig., 5 photos

  14. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    Science.gov (United States)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-07-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3 °C km-1 with a mean of 27.7 ± 5.3 °C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW m-2 with a mean of 64.7 ± 8.9 mW m-2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westwards and northwards. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  15. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    Science.gov (United States)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-03-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3° C km-1 with a mean of 27.7 ± 5.3° C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW/m2 with a mean of 64.7 ± 8.9 mW/m2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westward and northward. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  16. Strontium isotope detection of brine contamination in the East Poplar oil field, Montana

    Science.gov (United States)

    Peterman, Zell E.; Thamke, Joanna N.; Futa, Kiyoto; Oliver, Thomas A.

    2010-01-01

    Brine contamination of groundwater in the East Poplar oil field was first documented in the mid-1980s by the U.S. Geological Survey by using hydrochemistry, with an emphasis on chloride (Cl) and total dissolved solids concentrations. Supply wells for the City of Poplar are located downgradient from the oil field, are completed in the same shallow aquifers that are documented as contaminated, and therefore are potentially at risk of being contaminated. In cooperation with the Office of Environmental Protection of the Fort Peck Tribes, groundwater samples were collected in 2009 and 2010 from supply wells, monitor wells, and the Poplar River for analyses of major and trace elements, including strontium (Sr) concentrations and isotopic compositions. The ratio of strontium-87 to strontium-86 (87Sr/86Sr) is used extensively as a natural tracer in groundwater to detect mixing among waters from different sources and to study the effects of water/rock interaction. On a plot of the reciprocal strontium concentration against the 87Sr/86Sr ratio, mixtures of two end members will produce a linear array. Using this plotting method, data for samples from most of the wells, including the City of Poplar wells, define an array with reciprocal strontium values ranging from 0.08 to 4.15 and 87Sr/86Sr ratios ranging from 0.70811 to 0.70828. This array is composed of a brine end member with an average 87Sr/86Sr of 0.70822, strontium concentrations in excess of 12.5 milligrams per liter (mg/L), and chloride concentrations exceeding 8,000 mg/L mixing with uncontaminated water similar to that in USGS06-08 with 18.0 mg/L chloride, 0.24 mg/L strontium, and a 87Sr/86Sr ratio of 0.70811. The position of samples from the City of Poplar public-water supply wells within this array indicates that brine contamination has reached all three wells. Outliers from this array are EPU-4G (groundwater from the Cretaceous Judith River Formation), brine samples from disposal wells (Huber 5-D and EPU 1-D

  17. Achievement report for fiscal 1999 on project for supporting the formation of energy/environmental technology verification project. International joint verification research project (Use of combined binary power generation systems at new geothermal fields on Mindoro Island, the Philippines, and comparison with conventional power generation systems); 1999 nendo Philippines koku Mindoro to no shinki chinetsutai ni okeru combined binary hatsuden hoshiki no tekiyo seika hokokusho. Conventional hatsuden hoshiki tono hikaku kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Concerning the Manito Lowlands geothermal field and the Montelago geothermal field where the systems are to be newly installed, the geothermal reservoir characteristics are assessed, and cost effectiveness is compared between different power generating systems. According to the investigations conducted into the two geothermal fields in the past, they are supposed to have geothermal potentials of the medium grade. Chemical analyses are conducted anew on this occasion into the hot spring water and fumarole gas, and the MT (magnetotelluric) method is implemented for the survey of reservoir distribution. It is now expected that approximately 20MWe will be exploited from each of the two geothermal fields. The power generation systems studied are the single flash type and double flash type for the conventional power generation system, and the cascade type, bottoming type, and two-phase binary type for the combined binary power generation system. As the result, it is concluded that the double flash type or two-phase binary type will be advantageous to the Manito Lowlands geothermal field, and the double flash type or bottoming type or two-phase binary type will be advantageous to the Montelago geothermal field. (NEDO)

  18. An overview of the Awibengkok geothermal system, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Stimac, James; Nordquist, Gregg; Suminar, Aquardi; Sirad-Azwar, Lutfhie [Chevron Geothermal Salak, Ltd., 11th Floor Sentral Senayan I, Jl. Asia Afrika No. 8, Jakarta 10270 (Indonesia)

    2008-06-15

    The Awibengkok (Salak) geothermal system is a liquid-dominated, fracture-controlled reservoir with benign chemistry and low-to-moderate non-condensable gas content. The geothermal system is hosted mainly by andesitic-to-rhyodacitic rocks, and floored by Miocene marine sedimentary rocks cut by igneous intrusions. The volcanic sequence is capped by an 8400-year-old phreatic explosion breccia, rhyolite fallout tuff (>8400 years and <40,000 years), rhyolite lavas, domes and related tuffs ({>=}40-120 ka), and dacite-to-rhyodate lavas and domes (185-280 ka) that were erupted across the eastern part of the field from NNE-trending vents controlled by a major fault. More regionally extensive basaltic-andesite to andesite volcanic centers are mostly between 180 and 1610 ka old. Surface and subsurface fault patterns, formation image logs and tracer studies indicate strongly anisotropic permeability aligned with the dominant N to NE fracture trend, dividing the field into a number of subcompartments that are locally connected by fractured aquifers and NW- and E-W-trending fractures. Shallow argillic alteration gives way with increasing depth and temperature to argillic-phyllic and propylitic zones, with the latter accounting for the bulk of the fluid produced from the geothermal system. The commercial Awibengkok reservoir is a moderate-to-high temperature (240-312 C) geothermal resource with high fracture permeability, moderate porosity (mean = 10.6%) and moderate-to-low matrix permeability (geometric mean = 0.026 md). The principal deep upflow zone, with fluid temperatures in the 275-312 C range, is located in the western part of the field. The ascending fluids move up along N- or NNE-trending structures that breach low-permeability tuff layers in the central and east-central parts of the field. Fluids in the central part of the reservoir are uniform in composition and temperature, representing the mixing of upflow and convective reflux. Fluids ascend and flow laterally to

  19. Environmental effects of geothermal energy exploitation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H [Japan Metals and Chemicals Co., Ltd., Japan

    1975-01-01

    The environmental effects of geothermal power generation which cause air and water pollution and destruction of natural areas are reviewed. The production of steam and hot water affect existing hot springs sources and can cause ground subsidence. Harmful gas can be released onto the atmosphere from fumarolic gas and hot springs. Hydrothermal geothermal fields occasionally contain harmful substances such as arsenic in the hot water. Serious environmental effects can result from geothermal exploitation activities such as the felling of trees for road construction, well drilling, and plant construction. Once geothermal power generation has begun, the release of H/sub 2/S into the atmosphere and the reinjection of hot water are conducted continuously and sufficient countermeasures can be taken. One problem is the effects of plant construction and operation on natural parks. It is important to reach a compromise between development and protection of natural senic areas. Two figures, two tables, and 13 references are provided.

  20. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  1. Geothermal resource and utilization in Bulgaria

    International Nuclear Information System (INIS)

    Bojadgieva, K.; Benderev, A.

    2011-01-01

    Bulgarian territory is rich in thermal water of temperature in the range of 20 - 100 o C. The highest water temperature (98 o C) is measured in Sapareva banya geothermal reservoir. Electricity generation from geothermal water is not currently available in the country. The major direct thermal water use nowadays covers: balneology, space heating and air-conditioning, domestic hot water supply, greenhouses, swimming pools, bottling of potable water and geothermal ground source heat pumps (GSHP). The total installed capacity amounts to about 77.67 MW (excl. GSHP) and the produced energy is 1083.89 TJ/year. Two applications - balneology and geothermal ground source heat pumps show more stable development during the period of 2005 - 2010. The update information on the state-owned hydrothermal fields is based on issued permits and concessions by the state.

  2. Update of the basement model of the Cerro Prieto, B. C., geothermal field, Mexico; Actualizacion del modelo del basamento en el campo geotermico de Cerro Prieto, B.C., Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Lopez, Macario [Residencia General de Cerro Prieto, Comision Federal de Electricidad, Mexicali, Baja California (Mexico)

    1999-04-01

    With the aim to actualize the basement model of the Cerro Prieto Geothermal Field, a gravity interpretation has been held. We modeled in 2.5 D, nine profiles traced over the Bouguer anomaly map. Well data concerning lithology and density changes were used to fit the gravity models. Results of this work confirm that the geometry of the basement of Cerro Prieto, corresponds to a structural sequence. From west to east it starts as a big depression, continues with a strong uplift of the basement in the middle sector and finally deepens eastward in steps. The basement model proposed in the present work, defines a similar trend to that established by Fonseca y Razo (1980), but there are differences in basement depth in some areas. In the present model we interpret basement depths between 200 and 400 m deeper than in previous models to the south and northwest of the actual exploitation zone. [Spanish] Con el fin de actualizar el modelo del basamento en el Campo Geotermico de Cerro Prieto, se realizo una reinterpretacion gravimetrica, modelando en 2.5 D, 9 perfiles trazados sobre el mapa de anomalia de Bouguer. Utilizando la informacion litologica obtenida a traves de numerosas perforaciones profundas, se hicieron coincidir, dentro de los mofelos gravimetricos, las principales variaciones litologicas con cambios en la densidad. Los resultados de este trabajo reiteran que la geometria del basamento del Campo de Cerro Prieto, vista de W a E, corresponde con una secuencia estructural que se inicia con una gran depresion en el W, continua con un fuerte levantamiento y finalmente se extiende con una tendencia a profundizarse hacia el E de forma escalonada. El modelo de basamento derivado del presente trabajo, define una tendencia muy similar al modelo de basamento establecido (Fonseca y Razo, 1980), pero difiere en cuanto a la profundidad en algunos sectores del campo. En el actual trabajo se interpreta una profundidad entre 200 y 400 m mayor hacia el sur y noroeste de la

  3. Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeanloz, R. [The MITRE Corporation, McLean, VA (United States); Stone, H. [The MITRE Corporation, McLean, VA (United States); et al.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  4. Geothermal energy worldwide

    International Nuclear Information System (INIS)

    Barbier, Enriko

    1997-01-01

    Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)

  5. GEOTHERMAL GREENHOUSING IN TURKEY

    Directory of Open Access Journals (Sweden)

    Sedat Karaman

    2016-07-01

    Full Text Available Use of renewable energy resources should be brought forward to reduce heating costs of greenhouses and to minimize the use of ever-depleting fossil fuels. Geothermal energy not only provides the heat required throughout plant growth, but also allow a year-long production. Geothermal resources with several other benefits therefore play significant role in agricultural activities. With regard to geothermal potential and implementation, Turkey has the 7th place in the world and the 1st place in Europe. Majority of country geothermal resources is used in greenhouse heating. The size of geothermal greenhouses increased 5 folds during the last decade and reached to 2500 decare. In this study, current status of geothermal greenhousing of Turkey was presented; problems and possible solutions were discussed.

  6. Coordination of geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, A.M.; Drury, M.J.

    1983-01-01

    Visits were made in 1983 to various investigators and institutions in Canada to examine developments in geothermal research. Proposals for drilling geothermal wells to provide hot water for heating at a college in Prince Edward Island were made. In Alberta, the first phase of a program examining the feasibility of mapping sedimentary geothermal reservoirs was discussed. Some sites for possible geothermal demonstration projects were identified. In British Columbia, discussions were held between BC Hydro and Energy, Mines and Resources Canada on the drilling of a research hole into the peak of a temperature anomaly in the Meager Creek Valley. The British Columbia government has offered blocks of land in the Mount Cayley volcanic complex for lease to develop geothermal resources. A list of papers of interest to the Canadian geothermal energy program is appended.

  7. The geothermal power organization

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  8. Evolving R Coronae Borealis Stars with MESA

    Science.gov (United States)

    Clayton, Geoffrey C.; Lauer, Amber; Chatzopoulos, Emmanouil; Frank, Juhan

    2018-01-01

    R Coronae Borealis (RCB) stars form a small class of cool, carbon-rich supergiants that have almost no hydrogen. They undergo extreme, irregular declines in brightness of up to 8 magnitudes due to the formation of thick clouds of carbon dust. Two scenarios have been proposed for the origin of an RCB star: the merger of a CO/He white dwarf (WD) binary and a final helium-shell flash. We are using a combination of 3D hydrodynamics codes and the 1D MESA (Modules for Experiments in Stellar Astrophysics) stellar evolution code including nucleosynthesis to construct post-merger spherical models based on realistic merger progenitor models and on our hydrodynamical simulations, and then following the evolution into the region of the HR diagram where RCB stars are located. We are investigating nucleosynthesis in the dynamically accreting material of CO/He WD mergers which may provide a suitable environment for significant production of 18O and the very low 16O/18O values observed.Our MESA modeling consists of two steps: first mimicking the WD merger event using two different techniques, (a) by choosing a very high mass accretion rate with appropriate abundances and (b) by applying "stellar engineering" to an initial CO WD model to account for the newly merged material by applying an entropy adjusting procedure. Second, we follow the post-merger evolution using a large nuclear reaction network including the effects of convective and rotational instabilities to the mixing of material in order to match the observed RCB abundances. MESA follows the evolution of the merger product as it expands and cools to become an RCB star. We then examine the surface abundances and compare them to the observed RCB abundances. We also investigate how long fusion continues in the He shell near the core and how this processed material is mixed up to the surface of the star. We then model the later evolution of RCB stars to determine their likely lifetimes and endpoints when they have returned to

  9. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  10. Computational methods for planning and evaluating geothermal energy projects

    International Nuclear Information System (INIS)

    Goumas, M.G.; Lygerou, V.A.; Papayannakis, L.E.

    1999-01-01

    In planning, designing and evaluating a geothermal energy project, a number of technical, economic, social and environmental parameters should be considered. The use of computational methods provides a rigorous analysis improving the decision-making process. This article demonstrates the application of decision-making methods developed in operational research for the optimum exploitation of geothermal resources. Two characteristic problems are considered: (1) the economic evaluation of a geothermal energy project under uncertain conditions using a stochastic analysis approach and (2) the evaluation of alternative exploitation schemes for optimum development of a low enthalpy geothermal field using a multicriteria decision-making procedure. (Author)

  11. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2017-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...... reservoirs could soon become an important contributor to the energy generation around the world....

  12. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  13. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  14. The Laramide Mesa formation and the Ojo de Agua caldera, southeast of the Cananea copper mining district, Sonora, Mexico

    Science.gov (United States)

    Cox, Dennis P.; Miller, Robert J.; Woodbourne, Keith L.

    2006-01-01

    The Mesa Formation extends from Cananea, Mexico, southeast to the Sonora River and is the main host rock of Laramide porphyry copper deposits in the Cananea District and at the Alacran porphyry prospect to the east. The Mesa consists of two members-a lower andesite and an upper dacite. The lowest part of the dacite member is a crystal tuff about 100 m thick. This tuff is the outfall of a caldera centered near the village of Ojo de Agua, dated by 40Ar/39Ar at 65.8 Ma ?0.4. The Ojo de Agua Caldera is about 9 km in diameter and is filled by a light gray biotite dacite tuff with abundant flattened pumice fragments. The volume of the caldera is estimated to be 24 km3.

  15. Continuity and productivity analysis of three geopressured geothermal aquifer-natural gas fields: Duson, Hollywood and Church Point, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.A.; Boardman, C.R.; Bebout, D.G.; Bachman, A.L. (eds.)

    1981-01-01

    The available well logs, production records and geological structure maps were analyzed for the Hollywood, Duson, and Church Point, Louisiana oil and gas fields to determine the areal extent of the sealed geopressured blocks and to identify which aquifer sands within the blocks are connected to commercial production of hydrocarbons. Studies such as these are needed for the Department of Energy program to identify geopressured brine reservoirs that are not connected to commercial productions. The analysis showed that over the depth intervals at the geopressured zones shown on the logs essentially all of the sands of any substantial thickness had gas production from them somewhere or other in the fault block. It is therefore expected that the sands which are fully brine saturated in many of the wells are the water drive portion of the producing gas/oil somewhere else within the fault block. In this study only one deep sand was identified, in the Hollywood field, which was apparently not connected to a producing horizon somewhere else in the field. Estimates of the reservoir parameters were made for this sand and a hypothetical production calculation showed the probable production to be less than 10,000 b/d. The required gas price to profitably produce this gas is well above the current market price.

  16. Geophysical Investigations at Pahute Mesa, Nevada.

    Science.gov (United States)

    1987-08-12

    be azimuth dependent (Lynnes and Lay, 1984). The body wave magnitude anomalies observed by Alewine are plotted in Figure 1 along with the Bouguer ...of this type can be used to test the seismic Figure 1. The body wave magnitude anomaly is plotted on a map of the Bouguer gravity for Pahute Mesa...Nevada. 370 22’ 30" 370 7’ 300 116 30’ 1160 15’ 0 KILOMTERS 10 BOUGUER GRAVITY 2 mgal CONTOURS AMb o 0.2O 0.1- 0.2 0 0.0- 0.1 -0.1 - 0.0 X -0.2 - -0.1X

  17. Numerical investigation of electricity generation potential from fractured granite reservoir by water circulating through three horizontal wells at Yangbajing geothermal field

    International Nuclear Information System (INIS)

    Zeng, Yuchao; Zhan, Jiemin; Wu, Nengyou; Luo, Yingying; Cai, Wenhao

    2016-01-01

    Highlights: • A numerical model of the 950–1350 m fractured granite reservoir through horizontal wells is established. • Desirable electricity production performance can be obtained under suitable conditions. • The system attains an electric power of 26.9–24.3 MW with an efficiency of about 50.10–22.39. • Electric power mainly depends on water production rate and injection temperature. • Higher permeability within a certain range is favorable for electricity generation. - Abstract: Deep geological exploration indicates that there is a high-temperature fractured granite reservoir at depth of 950–1350 m in well ZK4001 in the north of Yangbajing geothermal field, with an average temperature of 248 °C and a pressure within 8.01–11.57 MPa. In this work, we evaluated electricity generation potential from this fractured granite reservoir by water circulating through three horizontal wells, and analyzed main factors affecting the performance and efficiency through numerical simulation. The results show that in the reference case the system attains a production temperature of 248.0–235.7 °C, an electrical power of 26.9–24.3 MW, an injection pressure of 10.48–12.94 MPa, a reservoir impedance of 0.07–0.10 MPa/(kg/s), a pump power of 0.54–1.08 MW and an energy efficiency of 50.10–22.39 during a period of 20 years, displaying favorable production performance. Main factors affecting the production performance and efficiency are reservoir permeability, water production rate and injection temperature; within certain ranges increasing the reservoir permeability or adopting more reasonable water production rate or injection temperature will obviously improve the system production performance.

  18. An application of neural network in geophysical prospecting. Electrical resistivity at Las Virgenes geothermal field, Baja California Sur, Mexico; Una aplicacion de las redes neuronales a la prospeccion geofisica. Resistividad electrica en las Tres Virgenes, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Palma Guzman, Sergio Hugo [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2000-12-01

    The technology of the neural network is presented with geophysical focus in the Las Virgenes geothermal field, Baja California Sur, Mexico. The results obtained when extrapolating the associative data of the prospecting magnetoteluria and Vertical Electric Sounding, on the area of the geothermal wells to the rest of the area, allows to classify zones of interest for the geothermal exploitation. Also, the use of these associative parameters with the information of the stabilized temperature of the wells, they allow to predict temperatures for the rest of the area. [Spanish] Se presenta una aplicacion de la tecnologia de las redes neuronales con enfoque geofisico en el campo geotermico de Las Virgenes, Baja California Sur, Mexico. Los resultados obtenidos al extrapolar los datos asociativos de las prospecciones geoelectricas de magnetoteluria y sondeos electricos verticales, en la zona de los pozos geotermicos al resto del area, permiten clasificar zonas de interes para la explotacion geotermica. Tambien, la utilizacion de estos parametros asociativos con la informacion de la temperatura estabilizada de los pozos, permiten predecir temperaturas para la misma area.

  19. Cancer incidence study in Mesa County, Colorado

    International Nuclear Information System (INIS)

    Ouimette, D.R.; Ferguson, S.W.; Zoglo, D.; Murphy, S.; Alley, S.; Bahler, S.

    1983-01-01

    In November of 1982 the Colorado Department of Health completed an epidemiologic investigation of leukemia, multiple myeloma, and cancers of the lung, stomach, pancreas and colon in Mesa County, Colorado for the years 1970 to 1979. This investigation was performed in response to a concern that the presence of uranium mill tailings in some Mesa County homes presents a potential cancer hazard. The results of the investigation show that the incidence of multiple myeloma, colon, stomach and pancreatic cancer are not above expected rates. The incidence of leukemia is not above expected rates for the entire study period, 1970 to 1979. The incidence of lung cancer appears elevated when compared to the The Third National Cancer Survey data for Colorado but lower than expected when compared to Surveillance, Epidemiology and End Results data. To further examine the leukemia and lung cancer incidence findings, a case/control study was conducted. The controls consisted of colon, stomach and pancreatic cancer cases. The results of the leukemia case/control analysis show no association with the radiation exposure variables: occupational radiation exposure; uranium mining exposure; having ever lived in a type A home (uranium tailings home); and radiation therapy. The lung cancer case/control analysis shows a significant association with only the radiation exposure variable, uranium mining history, indicating cases were more likely to have been uranium miners than were controls. As with leukemia, the study found no association between lung cancer and living in a uranium mill tailings home. The relatively low radiation exposures typical of type A homes and the small number of persons exposed make it very difficult to establish, by epidemiologic methods, that a risk exists

  20. Flux and genesis of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the India-Asia continent subduction zone

    Science.gov (United States)

    Zhang, Lihong; Guo, Zhengfu; Sano, Yuji; Zhang, Maoliang; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank

    2017-11-01

    Gulu-Yadong rift (GYR) is the longest extensional, NE-SW-trending rift in the Himalayas and Lhasa terrane of South Tibet. Many volcanic-geothermal fields (VGFs), which comprise intense hot springs, steaming fissures, geysers and soil micro-seepage, are distributed in the GYR, making it ideal area for studying deep carbon emissions in the India-Asia continent subduction zone. As for the northern segment of GYR in the Lhasa terrane, its total flux and genesis of CO2 emissions are poorly understood. Following accumulation chamber method, soil CO2 flux survey has been carried out in VGFs (i.e., Jidaguo, Ningzhong, Sanglai, Tuoma and Yuzhai from south to north) of the northern segment of GYR. Total soil CO2 output of the northern GYR is about 1.50 × 107 t a-1, which is attributed to biogenic and volcanic-geothermal source. Geochemical characteristics of the volcanic-geothermal gases (including CO2 and He) of the northern GYR indicate their significant mantle-derived affinities. Combined with previous petrogeochemical and geophysical data, our He-C isotope modeling calculation results show that (1) excess mantle-derived 3He reflects degassing of volatiles related with partial melts from enriched mantle wedge induced by northward subduction of the Indian lithosphere, and (2) the crust-mantle interaction can provide continuous heat and materials for the overlying volcanic-geothermal system, in which magma-derived volatiles are inferred to experience significant crustal contamination during their migration to the surface.