WorldWideScience

Sample records for earths doped sral2o4

  1. PRODUCTION OF Pr6O11-DOPED SrAl2O4:Eu2+, Dy3+, Y3+ YELLOWISH-GREEN PHOSPHORS AND THEIR USAGE IN ARTISTIC GLASSES

    Directory of Open Access Journals (Sweden)

    Hanaa El KAZAZZ

    2012-06-01

    Full Text Available A phenomenon of light emission by certain materials after exposure to an excitation source is called luminescence. Long persistent phosphors are those having very long afterglow emission orphosphorescence, in some cases even longer than a whole day, and a large application fields. Afterglow is caused by trapped electrons or holes produced during the excitation. The long persistentphosphorescence mechanism of the inorganic phosphors activated by rare earth ions have been attempted to be explained by many researchers. During the last decade, the researches on thedevelopment of new persistent phosphors and the improvement of their life time have been considerably conducted. In the present study, the effects of praseodymium oxide (Pr6O11 doping in SrAl2O4:Eu2+, Dy3+, Y3+phosphor on the luminescence efficiency and phosphorescence properties were investigated. Additionally, after the production, the possible application of the most suitable pigmentdeveloped during the study onto artistic glasses was searched.

  2. Cost-effective electrostatic-sprayed SrAl2O4:Eu phosphor coatings ...

    Indian Academy of Sciences (India)

    particle size of SrAl2O4:Eu2+ powder prepared by the solid- state reaction is about several micrometers (Jia 2003), much larger than that of the chemical solution-derived powders. Figure 1(a) shows an evidence of coalesced nanoparticles. From the EDS result, strontium and aluminum ions as well as europium ion were ...

  3. Green and microwave synthesis of SrAl2O4 nanoparticles by application of pomegranate juice: study and characterization

    Science.gov (United States)

    Riahi-Madvaar, Ramin; Taher, Mohammad Ali; Fazelirad, Hamid

    2017-11-01

    In the present paper, a green method was applied for the synthesis of SrAl2O4 nanostructures with the aid of microwave irradiation and pomegranate juice. SrAl2O4 nanocrystals were obtained when the raw materials were irradiated with 720-900 W for 6-10 min and then calcinated at 550 °C for 5 h. Using pomegranate juice as a dispersion and stabilizing agent, SrAl2O4 nanoparticles have been made with better properties in view of morphology and particle size. Also, the effect of some parameters affecting synthesis process such as microwave power and reaction time on the morphology and particle size of product was studied and optimized. X-ray diffraction and field emission-scanning electron microscopy were used to study and characterize the manufactured SrAl2O4 nanoparticles.

  4. Enhance luminescence by introducing alkali metal ions (R+ = Li+, Na+ and K+) in SrAl2O4:Eu3+ phosphor by solid-state reaction method

    Science.gov (United States)

    Prasad Sahu, Ishwar

    2016-05-01

    In the present article, the role of charge compensator ions (R+ = Li+, Na+ and K+) in europium-doped strontium aluminate (SrAl2O4:Eu3+) phosphors was synthesized by the high-temperature, solid-state reaction method. The crystal structures of sintered phosphors were in a monoclinic phase with space group P21. The trap parameters which are mainly activation energy (E), frequency factor (s) and order of the kinetics (b) were evaluated by using the peak shape method. The calculated trap depths are in the range from 0.76 to 0.84 eV. Photoluminescence measurements showed that the phosphor exhibited emission peak with good intensity at 595 nm, corresponding to 5D0-7F1 (514 nm) orange emission and weak 5D0-7F2 (614 nm) red emission. The excitation spectra monitored at 595 nm show a broad band from 220 to 320 nm ascribed to O-Eu charge-transfer state transition and the other peaks in the range of 350-500 nm originated from f-f transitions of Eu3+ ions. The strongest band at 394 nm can be assigned to 7F0-5L6 transition of Eu3+ ions due to the typical f-f transitions within Eu3+ of 4f6 configuration. The latter lies in near ultraviolet (350-500 nm) emission of UV LED. CIE color chromaticity diagram and thermoluminescence spectra confirm that the synthesized phosphors would emit an orange-red color. Incorporating R+ = Li+, Na+ and K+ as the compensator charge, the emission intensity of SrAl2O4:Eu3+ phosphor can be obviously enhanced and the emission intensity of SrAl2O4:Eu3+ doping Li+ is higher than that of Na+ or K+ ions.

  5. Anisotropic lattice behavior in elasticoluminescent material SrAl2O4:Eu2+

    Science.gov (United States)

    Yamada, Hiroshi; Kusaba, Hajime; Xu, Chao-Nan

    2008-03-01

    We report that the elasticoluminescent (elastico-L) material SrAl2O4:Eu2+ (SAO-E) shows an extraordinarily anisotropic thermal expansion: the linear thermal expansion coefficient in the c axis was one order of magnitude smaller than those in the a and b axes in the monoclinic phase. This anisotropic lattice behavior was attributed to the development of the spontaneous shear strain e5 upon lowering the temperature, indicating that SAO-E is preferentially deformed by a shear stress. This suggests that controlling the crystal orientation is important for developing elastico-L devices.

  6. SrAl2O4:Eu2+(,Dy3+ Nanosized Particles: Synthesis and Interpretation of Temperature-Dependent Optical Properties

    Directory of Open Access Journals (Sweden)

    Huayna Terraschke

    2015-01-01

    Full Text Available SrAl2O4 nanosized particles (NPs undoped as well as doped with Eu2+ and Dy3+ were prepared by combustion synthesis for the discussion of their intensively debated spectroscopic properties. Emission spectra of SrAl2O4:Eu2+(,Dy3+ NPs are composed by a green band at 19 230 cm−1 (520 nm at room temperature, assigned to anomalous luminescence originated by Eu2+ in this host lattice. At low temperatures, a blue emission band at 22 520 cm−1 (444 nm is observed. Contrary to most of the interpretations provided in the literature, we assign this blue emission band very reliably to a normal 4f6(7FJ5d(t2g→4f7(8S7/2 transition of Eu2+ substituting the Sr2+ sites. This can be justified by the presence of a fine structure in the excitation spectra due to the different 7FJ levels (J=0⋯6 of the 4f6 core. Moreover, Fano antiresonances with the 6IJ (J=9/2,7/2 levels could be observed. In addition, the Stokes shifts (ΔES=1 980 cm−1 and 5 270 cm−1 for the blue and green emission, resp., the Huang-Rhys parameters of S=2.5 and 6, and the average phonon energies of ħω=480 cm-1 and 470 cm−1 coupled with the electronic states could be reliably determined.

  7. SrAl2O4:Eu2+ (1%) luminescence under UV, VUV and electron beam excitation

    Science.gov (United States)

    Nazarov, M.; Mammadova, S.; Spassky, D.; Vielhauer, S.; Abdullayeva, S.; Huseynov, A.; Jabbarov, R.

    2018-01-01

    This paper reports the luminescence properties of nanosized SrAl2O4:Eu2+ (1%) phosphors. The samples were prepared by combustion method at 600 °C, followed by annealing of the resultant combustion ash at 1000 °C in a reductive (Ar + H2) atmosphere. X-ray diffraction (XRD), photo luminescence (PL) and cathodoluminescence (CL) analysis and thermal stimulated luminescence (TSL) method were applied to characterize the phosphor. For the first time a peak at 375 nm was observed in CL spectra of SrAl2O4:Eu2+ (1%) nanophosphors. Luminescence excitation spectra analysis have shown that this peak is related to crystal defects. Also in TSL curve one strong peak was observed in the region above room temperature (T = 325 K), which is attributed to lattice defects, namely oxygen vacancies. A green LED was fabricated by the combination of the SrAl2O4:Eu2+ (1%) nanosized phosphor and a 365 nm UV InGaN chip.

  8. Effect of Composition and Impurities on the Phosphorescence of Green-Emitting Alkaline Earth Aluminate Phosphor.

    Directory of Open Access Journals (Sweden)

    Doory Kim

    Full Text Available Recent improvements to SrAl2O4:Eu2+, Dy3+ phosphors have enabled the use of luminescent hosts with a stable crystal structure and high physical and chemical stability, thus overcoming the bottleneck in the applicability of ZnS:Cu phosphors. However, enhancement of afterglow lifetime and brightness in SrAl2O4:Eu2+, Dy3+ phosphors remains a challenging task. Here, we have improved the afterglow characteristics in terms of persistence time and brightness by a systematic investigation of the composition of Eu-doped alkaline earth aluminate SrAl2O4:Eu2+, Dy3+ crystals. We found that a Dy3+/Eu2+ ratio of ~2.4 and ~0.935 mol Eu2+ (per mol of SrAl2O4 gave the brightest and longest emissions (11% and 9% increase for each. Doping with Si4+ also resulted in a slight increase in brightness up to ~15%. Doping with alkali metal or alkaline earth metal significantly enhanced the phosphorescence intensity. In particular, doping with 0.005 mol Li+ (per mol of SrAl2O4 alone boosted the phosphorescence intensity to 239% of the initial value, as compared to that observed for the non-doped crystal, while doping with 0.01 mol Mg2+ and 0.005 mol Li+ (per 1 mol SrAl2O4 boosted the phosphorescence intensity up to 313% of the initial value. The results of this investigation are expected to act as a guideline for the synthesis of bright and long persistent phosphors, and facilitate the development of persistent phosphors with afterglow characteristics superior to those of conventional phosphors.

  9. Preparation and Photoluminescence Properties of SrAl2O4:Eu2+,RE3+ Green Nanophosphors for Display Device Applications

    Science.gov (United States)

    Singh, Devender; Tanwar, Vijeta; Samantilleke, Anura P.; Mari, Bernabe; Bhagwan, Shri; Kadyan, Pratap Singh; Singh, Ishwar

    2016-06-01

    An efficient rapid gel combustion process was used to prepare divalent-europium-doped strontium aluminate (SrAl2O4:Eu2+/Eu2+,Dy3+/Eu2+,Dy3+,Nd3+) nanophosphors in the presence of boron flux in air. The prepared nanophosphors emitted green light at 507 nm upon excitation at 360 nm. The emission of green light was observed due to the 4 f 65 d 1 → 4 f 7 transition of Eu2+ ions. The absence of the characteristic sharp emission peak at 612 nm for Eu3+ (5D0 → 7F2) indicates that efficient reduction of Eu3+ to Eu2+ occurred in the presence of the boron flux (H3BO3) as reducing agent. The x-ray diffraction pattern suggested monoclinic crystallinity, while transmission electron microscopy revealed the average size of the prepared materials to be between 20 nm and 50 nm. Coactivators in the lattices such as Dy3+ alone or Dy3+ with Nd3+ produced long persistence and enhancement of the optoelectronic properties of the prepared materials.

  10. Size-Dependent Optical Properties of Nanoscale and Bulk Long Persistent Phosphor SrAl2O4:Eu2+, Dy3+

    Directory of Open Access Journals (Sweden)

    Xiaoxia Duan

    2015-01-01

    Full Text Available Nanoscale long persistent phosphor SrAl2O4:Eu2+, Dy3+ was prepared by autocombustion of citrate gel. The energy level shift of activator Eu2+ and coactivator Dy3+ was analyzed according to the emission and the excitation spectra. The band gap change of SrAl2O4 and the resulting trap depth change with particle size were discussed on the basis of analyzing the visible spectra, the vacuum ultraviolet (VUV excitation spectra, and the thermoluminescence (TL spectra. The fluorescence quenching and the shallow traps originating from surface adsorption or surface defects explain the weak initial persistent phosphorescence and the fast phosphorescence decay in nanometer SrAl2O4:Eu2+, Dy3+. It is confirmed that energy level, band gap, trap depth, defect, and surface adsorption are deeply related with each other in this nanoscale long persistent phosphor.

  11. Strong elasticoluminescence from monoclinic-structure SrAl2O4

    Science.gov (United States)

    Xu, Chao-Nan; Yamada, Hiroshi; Wang, Xusheng; Zheng, Xu-Guang

    2004-04-01

    Elastico-deformation luminescence in strontium aluminates was investigated systematically using precisely controlled pure-phase Eu-doped strontium aluminates of SrAl12O19, Sr4Al14O25, SrAl4O7, α-SrAl2O4, β-SrAl2O4, Sr3Al2O6 and their mixed phases. This study revealed that only the α-SrAl2O4 phase produces strong elastico-deformation luminescence; other strontium aluminates show no deformation luminescence. Correlation of deformation luminescence and crystal structure was found. The α-SrAl2O4 has the lowest symmetry, crystallizing in a monoclinic structure. This finding can be applied in designing strong elastico-deformation-luminescent materials.

  12. Synthesis of SrAl2O4: Eu2+ Dy3+ phosphorescence nanosized powder by combustion method and its optical properties

    Science.gov (United States)

    Son, Nguyen Manh; Thi Thao Vien, Le; Van Khoa Bao, Le; Trac, Nguyen Ngoc

    2009-09-01

    Eu2+ Dy3+ codoped strontium aluminate (SrAl2O4) nanosized phosphorescent powder with high brightness and long afterglow were prepared by urea-nitrate solution combustion method at 540°C for 5 minutes. The average particle size of the powders was about 80 nm. The photoluminescent and thermoluminescent properties have been studied. The broad band photoluminescence of SrAl2O4: Eu2+ Dy3+ were observed with maximun wavelength λmax = 516 nm due to transitions from the 4f65d1 to 4f7 configuration of the Eu2+ ions. The main peak of the emission spectra shifted to the short wavelength compared with phosphorescence obtained by the solid state reaction method. The decay time of the afterglow for nanosized phosphorescence was shorter than that obtained by the solid state reaction method.

  13. Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: single-fuel versus fuel-mixture approach.

    Science.gov (United States)

    Ianoş, Robert; Istratie, Roxana; Păcurariu, Cornelia; Lazău, Radu

    2016-01-14

    The solution combustion synthesis of strontium aluminate, SrAl2O4, via the classic single-fuel approach and the modern fuel-mixture approach was investigated in relation to the synthesis conditions, powder properties and thermodynamic aspects. The single-fuel approach (urea or glycine) did not yield SrAl2O4 directly from the combustion reaction. The absence of SrAl2O4 was explained by the low amount of energy released during the combustion process, in spite of the highly negative values of the standard enthalpy of reaction and standard Gibbs free energy. In the case of single-fuel recipes, the maximum combustion temperatures measured by thermal imaging (482 °C - urea, 941 °C - glycine) were much lower than the calculated adiabatic temperatures (1864 °C - urea, 2147 °C - glycine). The fuel-mixture approach (urea and glycine) clearly represented a better option, since (α,β)-SrAl2O4 resulted directly from the combustion reaction. The maximum combustion temperature measured in the case of a urea and glycine fuel mixture was the highest one (1559 °C), which was relatively close to the calculated adiabatic temperature (1930 °C). The addition of a small amount of flux, such as H3BO3, enabled the formation of pure α-SrAl2O4 directly from the combustion reaction.

  14. EFFECT OF ALKALINE IONS ON THE PHASE EVOLUTION, PHOTOLUMINESCENCE, AND AFTERGLOW PROPERTIES OF SrAl2O4: Eu2+, Dy3+ PHOSPHOR

    Directory of Open Access Journals (Sweden)

    HYUNHO SHIN

    2012-12-01

    Full Text Available A series of SrAl2O4: Eu2+, Dy3+ long-afterglow (LAG phosphors with varying concentration of Li+, Na+ and K+, has been synthesized. The increased concentration of the three types of alkaline ions does not decrease the quantity of the total luminescent phases (SrAl2O4 plus Sr4Al14O25, but a different set of secondary phases has been evoluted for the K+-added series due to the failure of the incorporation of relatively large K+ (1.38 Å to the Sr2+ (1.18 Å site in the hosts, unlike the cases of smaller Li+ (0.76 Å and Na+ (1.02 Å ions. PL excitation, PL emission, and LAG luminescence, are decreased by all investigated alkaline ions, which would be due to the diminished incorporation of Eu2+ and Dy3+ activators into the luminescent hosts by the alkaline ions. For the cases of the Li+ and Na+-added series, the incorporated Li+ or Na+ to the luminescent hosts would also limit the activation of Eu2+ and charge trapping/detrapping of Dy3+ to yield the diminished PL properties and LAG luminescence. The type of defect complex formed by the addition of Li+ and Na+ ions has been deduced and compared with that formed when no alkaline ion is added.

  15. Preparation of SrAl2O4:Eu2+, Dy3+ phosphors using propylene oxide as gel agent and its optical properties

    Science.gov (United States)

    Yang, Yuting; Jiang, Hongyi; Xu, Dong; Hai, Ou; Yang, Ting

    2018-01-01

    The SrAl2O4:Eu2+, Dy3+ phosphors were prepared by sol–gel method using propylene oxide as gel agent. The precursors and phosphors were characterized by multiple techniques including Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, fluorescence spectrometer, long afterglow material optical test system, etc. The results indicate that the excitation and emission spectra intensity of phosphors firstly increase and then decrease with the addition of propylene oxide, and sample S3 reach maximum value. The maximum initial brightness can reach 7.28 cd m‑2, and the afterglow time achieve to 253 min, but the initial brightness, afterglow time and decay rate are always declining. These phenomena can be explained on the basis of sample’s crystallization property, the change of aggregates size and increase of liquid phase content. What’s more, this sol–gel method is more advantageous than traditional sol–gel method of NH4HCO3 as gel agent, not only because the gel time is adjustable, but also the afterglow performance is enhanced remarkably.

  16. Mechanoluminescence glow curves of rare-earth doped strontium aluminate phosphors

    Science.gov (United States)

    Chandra, B. P.; Sonwane, V. D.; Haldar, B. K.; Pandey, S.

    2011-01-01

    The present paper reports the mechanoluminescence (ML) glow curves of rare-earth doped strontium aluminate phosphors. When Sr3Al2O6:Eu, Dy phosphor mixed in epoxy resin is compressed at a fixed pressing rate or fixed strain rate, its elastico ML (EML) intensity increases linearly with deformation time or pressure and attains a maximum value Im at the time tm, at which the deformation is stopped. Under the pressed condition, the decay time for fast decrease of EML after tm, gives the time-constant for stopping the cross-head of the testing machine used to deform the sample, and decay time for slow decrease of EML gives the lifetime of electrons in the shallow traps lying in the normal piezoelectric region of the crystals. When SrAl2O4:Eu phosphor mixed in resin is compressed at a fixed rate, then the EML intensity increases linearly with pressure and when the pressure is decreased at a fixed rate, then the EML intensity decreases exponentially with time, in which the decay time of EML is equal to the lifetime of electrons in the shallow traps lying in the normal piezoelectric region of the crystals. The EML intensity of SrAl2O4:Eu film excited by the impact stress, initially increases with time, attains a peak value and later on it decreases exponentially with time, in which the fast decay of EML intensity gives the decay time of impact stress and the decay time of the slow decrease of the EML intensity gives the lifetime of electrons in the shallow traps lying in the normal piezoelectric region of the crystals. The piezoelectrically-induced detrapping model is found to be suitable for the EML of rare-earth doped strontium aluminate phosphors. Expressions derived on the basis of the piezoelectrically-induced detrapping model are able to explain satisfactorily the characteristics of the EML of the phosphors. It is shown that several parameters of the phosphors can be determined from the ML glow curves.

  17. Doped to Rare Earth Ions

    African Journals Online (AJOL)

    In the present work, we are interested by studying the spectroscopic properties for optical applications, mainly laser amplification, of MF2 crystals, where M is an alkaline earth (Ba, Sr) or Cadmium (Cd) doped with rare earth ions (Tb3+, Er3+, Ho3+. So far, we present the absorption and emission properties and also the ...

  18. Cost-effective electrostatic-sprayed SrAl2O4: Eu 2 phosphor ...

    Indian Academy of Sciences (India)

    Department of Biomedical Engineering, Nambu University, 864-1 Wolgye-dong, Gwangsan-gu, Gwangju 506-824, Korea; Department of Electronic and Photonic Engineering, Honam University, 59-1 Seobong-dong, Gwangsan-gu, Gwangju 506-714, Korea; Department of Photonic Engineering, Chosun University, 375 ...

  19. Thermoluminescence dosimetry of rare earth doped calcium ...

    Indian Academy of Sciences (India)

    Unknown

    CaAl2O4) doped with different rare earth ions have been studied and their suitability for radiation dosimetry applications is discussed. It is observed that monocalcium aluminate doped with cerium is a good dosimeter having linear response up to ...

  20. Thermoluminescence dosimetry of rare earth doped calcium ...

    Indian Academy of Sciences (India)

    The thermoluminescence (TL) properties of calcium aluminate (CaAl2O4) doped with different rare earth ions have been studied and their suitability for radiation dosimetry applications is discussed. It is observed that monocalcium aluminate doped with cerium is a good dosimeter having linear response up to about 4 kGy of ...

  1. Enhancement of Red Persistent Luminescence in Cr3+-Doped ZnGa2O4 Phosphors by Bi2O3 Codoping

    Science.gov (United States)

    Zhuang, Yixi; Ueda, Jumpei; Tanabe, Setsuhisa

    2013-05-01

    Bi2O3 was proved to be an effective codopant to enhance red persistent luminescence in Cr3+-doped ZnGa2O4 spinel. The Cr-Bi-codoped ZnGa2O4 phosphors showed about 10 times higher persistent luminescence intensity than the Cr-singly-doped phosphors. The radiance (in mW sr-1m-2) of persistent luminescence in ZnGa2O4:Cr,Bi phosphors was comparable to that in commercialized SrAl2O4:Eu,Dy phosphors. Increases of Cr3+ absorption and photoluminescence were also observed in the Cr-Br-codoped ZnGa2O4 sample. The obtained results suggest that Bi2O3 may play a critical role in stabilizing Cr3+ in ZnGa2O4 spinel.

  2. Monolithic Rare Earth Doped PTR Glass Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of the project is to demonstrate the feasibility of a monolithic solid state laser on the basis of PTR glass co-doped with luminescent rare earth ions....

  3. Negative Refraction in Rare-Earth Doped Crystals

    Science.gov (United States)

    2016-06-09

    AFRL-AFOSR-VA-TR-2016-0221 NEGATIVE REFRACTION IN RARE-EARTH DOPED CRYSTALS Deniz Yavuz UNIVERSITY OF WISCONSIN SYSTEM MADISON WI Final Report 06/09...DATES COVERED (From - To) March 2013-February 2016 4. TITLE AND SUBTITLE NEGATIVE REFRACTION IN RARE-EARTH DOPED CRYSTALS 5a. CONTRACT NUMBER...ABSTRACT In this project, our long-term goal is to demonstrate the first negative refraction in atomic systems. Although the concept of negative

  4. Tuning NaYF4 Nanoparticles through Alkaline Earth Doping

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2013-10-01

    Full Text Available Phase and size of lanthanide-doped nanoparticles are the most important characteristics that dictate optical properties of these nanoparticles and affect their technological applications. Herein, we present a systematic study to examine the effect of alkaline earth doping on the formation of NaYF4 upconversion nanoparticles. We show that alkaline earth doping has a dual function of tuning particle size of hexagonal phase NaYF4 nanoparticles and stabilizing cubic phase NaYF4 nanoparticles depending on composition and concentration of the dopant ions. The study described here represents a facile and general strategy to tuning the properties of NaYF4 upconversion nanoparticles.

  5. Structural and photoluminescence properties of Dy3+ co-doped and Eu2+ activated MAl2O4 (M = Ba, Ca, Sr) nanophosphors

    Science.gov (United States)

    Dejene, F. B.; Kebede, M. A.; Redi-Abshiro, M.; Kgarebe, B. V.

    2013-09-01

    Long afterglow alkaline earth aluminates MAl2O4:Eu, Dy (M: Ca, Sr, Ba) phosphors are generally synthesized by the solid-state process which is more feasible than other conventional processes in terms of operation and large-scale production. However, the constituents of phosphors synthesized using this process are usually not mixed well, the particles agglomerates and very high temperature requirement to synthesize the final powder make it undesirable. In order to circumvent these problems, MAl2O4:Eu, Dy (Ca, Ba, Sr) phosphors were prepared at low temperatures (500 °C) by the solution-combustion of corresponding metal nitrate-urea solution mixtures, over a time of 5-10 min. In order to elucidate the relationship between the constituent, structure and PL properties product's particle size, morphological and structural properties were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), while the characteristic luminescence properties were investigated using emission spectra. The low temperature monoclinic structure for both CaAl2O4 and SrAl2O4 and the hexagonal structure of BaAl2O4 were observed. The emission spectra of these phosphors indicated that all of them are broad band, and the only emission peaks around 448, 490 and 515 nm of CaAl2O4:Eu, Dy, BaAl2O4:Eu, Dy and SrAl2O4:Eu, Dy, respectively, are due to 5d → 4f transition of Eu2+. The decay curves implied that these phosphors contain fast, medium and slow-decay process. The Dy3+ trap levels may be considered to be responsible for the long afterglow phosphorescence at room temperature.

  6. Spectroscopic characterization of manganese-doped alkaline earth ...

    Indian Academy of Sciences (India)

    Alkaline earth lead zinc phosphate glasses doped with Mn(II) are characterized by spectroscopic techniques like X-ray diffraction (XRD), UV–visible, differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), Fourier transform infrared (FTIR) and Raman. Optical absorption spectrum exhibits four ...

  7. Upconversion studies in rare earth ions-doped lanthanide materials

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... for direct vision applications. There are many applications of rare earth-doped materials. [1,2]. Er3+ ion has low photon absorption coefficient at around 976 nm. The 976 nm laser excitation wavelength is cheaply available and absorption of this wavelength in water is also low. Therefore, many researchers ...

  8. Crystallization behavior of rare-earth doped fluorochlorozirconate glasses.

    Science.gov (United States)

    Paßlick, C; Ahrens, B; Henke, B; Johnson, J A; Schweizer, S

    2011-06-01

    A series of fluorochlorozirconate (FCZ) glasses, each doped with a different rare-earth, was prepared and examined to determine thermal stability and activation energy, Ea , of the dopant dependent BaCl2 crystallization. Non-isothermal differential scanning calorimetry (DSC) measurements were done to investigate the endothermic and exothermic reactions upon heat treatment of the glass samples. In comparison to the rare-earth free FCZ glass, significant changes in the Hruby constant, Hr , and Ea were found due to the addition of a rare-earth and also between the individual dopants.

  9. Light Emission from Rare-Earth Doped Silicon Nanostructures

    Directory of Open Access Journals (Sweden)

    P. Mascher

    2008-05-01

    Full Text Available Rare earth (Tb or Ce-doped silicon oxides were deposited by electron cyclotron resonance plasma-enhanced chemical vapour deposition (ECR-PECVD. Silicon nanocrystals (Si-ncs were formed in the silicon-rich films during certain annealing processes. Photoluminescence (PL properties of the films were found to be highly dependent on the deposition parameters and annealing conditions. We propose that the presence of a novel sensitizer in the Tb-doped oxygen-rich films is responsible for the indirect excitation of the Tb emission, while in the Tb-doped silicon-rich films the Tb emission is excited by the Si-ncs through an exciton-mediated energy transfer. In the Ce-doped oxygen-rich films, an abrupt increase of the Ce emission intensity was observed after annealing at 1200∘C. This effect is tentatively attributed to the formation of Ce silicate. In the Ce-doped silicon-rich films, the Ce emission was absent at annealing temperatures lower than 1100∘C due to the strong absorption of Si-ncs. Optimal film compositions and annealing conditions for maximizing the PL intensities of the rare earths in the films have been determined. The light emissions from these films were very bright and can be easily observed even under room lighting conditions.

  10. Promising wastewater treatment using rare earth-doped nanoferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.A., E-mail: moala47@hotmail.com [Materials Science Lab (1), Physics Department, Faculty of Science, Cairo University, Giza (Egypt); Bishay, Samiha T.; Khafagy, Rasha M. [Physics Department, Girls College for Arts, Science and Education, Ain Shams University, Cairo (Egypt); Saleh, N.M. [Physics Department, Faculty of Science, Western Mountain University (Libya)

    2014-01-15

    Single-phases of the spinel nanoferrites Zn{sub 0.5}Co{sub 0.5}Al{sub 0.5}R{sub 0.04}Fe{sub 1.46}O{sub 4}; R=Sm, Pr, Ce and La, were synthesized using the flash auto combustion method. X-ray diffraction (XRD) results indicated that doping nanoferrites with small concentrations of rare earth elements (RE) allowed their entrance to the spinel lattice. Transmission electron microscope (TEM) images revealed that doping with different RE elements resulted in the formation of different nanometric shapes such as nanospheres and nanowires. Doping with Sm{sup 3+} and Ce{sup 3+} resulted in the formation of nanospheres with average diameter of 14 and 30 nm respectively. In addition to the granular nanospheres, doping with Pr{sup 3+} and La{sup 3+} resulted in the formation of some nanowires with different aspect ratios (average length of ≈100 nm and diameter of ≈9 nm) and (average length of ≈150 nm and outer diameter of ≈22 nm) respectively. At fixed temperature, the Ac conductivity (σ) increased as the RE ionic radius increases except for Ce, due to the role of valance fluctuation from Ce{sup 3+} to Ce{sup 4+} ions. La- and Pr-doped nanoferrites showed the highest ac conductivity values, which is most probably due to the presence of large numbers of nanowires in these two types of ferrites. For all entire samples, the effective magnetic moment (μ{sub eff}) decreased, while the Curie temperature (T{sub C}) increased as the RE ionic radius increases. The synthesized rare earth nanoferrites showed promising results in purifying colored wastewater. La-doped ferrite was capable for up-taking 92% of the dye content, followed by Pr-doped ferrite, which adsorbed 85% of the dye, while Sm- and Ce-doped ferrites showed lower dye removal efficiency of 80% and 72% respectively. High dye uptake shown by La- and Pr-doped ferrites is most probably due to the presence of nanowires and their higher Ac conductivity values. These excellent results were not previously reported

  11. Preparation and Characterization of Rare Earth Doped Fluoride Nanoparticles

    OpenAIRE

    DeVol, Timothy A.; Basak Yazgan-Kukouz; Baris Kokuoz; DiMaio, Jeffrey R.; Sprinkle, Kevin B.; Tiffany L. James; Courtney J. Kucera; Luiz G. Jacobsohn; John Ballato

    2010-01-01

    This paper reviews the synthesis, structure and applications of metal fluoride nanoparticles, with particular focus on rare earth (RE) doped fluoride nanoparticles obtained by our research group. Nanoparticles were produced by precipitation methods using the ligand ammonium di-n-octadecyldithiophosphate (ADDP) that allows the growth of shells around a core particle while simultaneously avoiding particle aggregation. Nanoparticles were characterized on their structure, morphology, and luminesc...

  12. Sensing Using Rare-Earth-Doped Upconversion Nanoparticles

    OpenAIRE

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near ...

  13. Rare earth doped zinc oxide varistors

    Science.gov (United States)

    McMillan, April D.; Modine, Frank A.; Lauf, Robert J.; Alim, Mohammad A.; Mahan, Gerald D.; Bartkowiak, Miroslaw

    1998-01-01

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.

  14. Generation of White Light from Dysprosium-Doped Strontium Aluminate Phosphor by a Solid-State Reaction Method

    Science.gov (United States)

    Sahu, Ishwar Prasad; Bisen, D. P.; Brahme, N.; Tamrakar, Raunak Kumar

    2016-04-01

    A single-host lattice, white light-emitting SrAl2O4:Dy3+ phosphor was synthesized by a solid-state reaction method. The crystal structure of prepared SrAl2O4:Dy3+ phosphor was in a monoclinic phase with space group P21. The chemical composition of the sintered SrAl2O4:Dy3+ phosphor was confirmed by the energy dispersive x-ray spectroscopy technique. Under ultra-violet excitation, the characteristic emissions of Dy3+ are peaking at 475 nm, 573 nm and 660 nm, originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 →&!nbsp; 6H13/2 and 4F9/2 → 6H11/2 in the 4f9 configuration of Dy3+ ions. Commission International de I'Eclairage color coordinates of SrAl2O4:Dy3+ are suitable for white light-emitting phosphor. In order to investigate the suitability of the samples as white color light sources for industrial uses, correlated color temperature (CCT) and color rendering index (CRI) values were calculated. Values of CCT and CRI were found well within the defined acceptable range. Mechanoluminescence (ML) intensity of SrAl2O4:Dy3+ phosphor increased linearly with increasing impact velocity of the moving piston. Thus, the present investigation indicates piezo-electricity was responsible for producing ML in sintered SrAl2O4:Dy3+ phosphor. Decay rates of the exponential decaying period of the ML curves do not change significantly with impact velocity. The photoluminescence and ML results suggest that the synthesized SrAl2O4:Dy3+ phosphor was useful for the white light-emitting diodes and stress sensor respectively.

  15. Preparation and Characterization of Rare Earth Doped Fluoride Nanoparticles

    Directory of Open Access Journals (Sweden)

    Timothy A. DeVol

    2010-03-01

    Full Text Available This paper reviews the synthesis, structure and applications of metal fluoride nanoparticles, with particular focus on rare earth (RE doped fluoride nanoparticles obtained by our research group. Nanoparticles were produced by precipitation methods using the ligand ammonium di-n-octadecyldithiophosphate (ADDP that allows the growth of shells around a core particle while simultaneously avoiding particle aggregation. Nanoparticles were characterized on their structure, morphology, and luminescent properties. We discuss the synthesis, properties, and application of heavy metal fluorides; specifically LaF3:RE and PbF2, and group IIA fluorides. Particular attention is given to the synthesis of core/shell nanoparticles, including selectively RE-doped LaF3/LaF3, and CaF2/CaF2 core/(multi-shell nanoparticles, and the CaF2-LaF3 system.

  16. Radioluminescence of rare-earth doped aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, M.; Molina, P. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Pinto 399, 7000 Tandil (Argentina); Barros, V. S.; Khoury, H. J.; Elihimas, D. R., E-mail: msantiag@exa.unicen.edu.ar [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, Recife, PE 50740-540 (Brazil)

    2011-10-15

    Carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) is one of the most used radioluminescence (Rl) materials for fiberoptic dosimetry due to its high efficiency and commercial availability. However, this compound presents the drawback of emitting in the spectral region, where the spurious radioluminescence of fibers is also important. In this work, the radioluminescence response of rare-earth doped Al{sub 2}O{sub 3} samples has been evaluated. The samples were prepared by mixing stoichiometric amounts of aluminum nitrate, urea and dopants with different amounts of terbium, samarium, cerium and thulium nitrates varying from 0 to 0.15 mo 1%. The influence of the different activators on the Rl spectra has been investigated in order to determine the feasibility of using these compounds for Rl fiberoptic dosimetry. (Author)

  17. Giant optical gain in rare-earth-ion-doped thin films and waveguides

    NARCIS (Netherlands)

    Geskus, D.; Aravazhi, S.; García Blanco, Sonia Maria; Pollnau, Markus

    In a rare-earth-ion-doped double tungstate channel waveguide amplifier, we demonstrate an ultra-high modal gain of 950 dB/cm, two order of magnitude higher than in other rare-earth-ion-doped materials and comparable to modal gain in semiconductors.

  18. Electronic and Magnetic Properties of Rare-Earth Metals Doped ZnO Monolayer

    Directory of Open Access Journals (Sweden)

    Changlong Tan

    2015-01-01

    Full Text Available The structural, electronic, and magnetic properties of rare-earth metals doped ZnO monolayer have been investigated using the first-principles calculations. The induced spin polarization is confirmed for Ce, Eu, Gd, and Dy dopings while the induced spin polarization is negligible for Y doping. The localized f states of rare-earth atoms respond to the introduction of a magnetic moment. ZnO monolayer undergoes transition from semiconductor to metal in the presence of Y, Ce, Gd, and Dy doping. More interestingly, Eu doped ZnO monolayer exhibits half-metallic behavior. Our result demonstrates that the RE-doping is an efficient route to modify the magnetic and electronic properties in ZnO monolayer.

  19. Spectroscopy and Device Performance of Rare Earth Doped III-Nitrides

    National Research Council Canada - National Science Library

    Hommerich, Uwe

    2002-01-01

    The recent demonstration of visible thin-film electroluminescence (TFEL) devices based on rare earth doped GaN has spurred great interest in this class of materials for possible applications in full color displays...

  20. Sensing using rare-earth-doped upconversion nanoparticles.

    Science.gov (United States)

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near infrared (NIR) light that are silent to tissues. These features allow not only a high penetration depth in biological tissues but also a high detection sensitivity. Indeed, the energy transfer between UCNPs and biomolecular or chemical indicators provide opportunities for high-sensitive bio- and chemical-sensing. A temperature-sensitive change of the intensity ratio between two close UC bands promises them for use in temperature mapping of a single living cell. In this work, we review recent investigations on using UCNPs for the detection of biomolecules (avidin, ATP, etc.), ions (cyanide, mecury, etc.), small gas molecules (oxygen, carbon dioxide, ammonia, etc.), as well as for in vitro temperature sensing. We also briefly summarize chemical methods in synthesizing UCNPs of high efficiency that are important for the detection limit.

  1. Sensing Using Rare-Earth-Doped Upconversion Nanoparticles

    Science.gov (United States)

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near infrared (NIR) light that are silent to tissues. These features allow not only a high penetration depth in biological tissues but also a high detection sensitivity. Indeed, the energy transfer between UCNPs and biomolecular or chemical indicators provide opportunities for high-sensitive bio- and chemical-sensing. A temperature-sensitive change of the intensity ratio between two close UC bands promises them for use in temperature mapping of a single living cell. In this work, we review recent investigations on using UCNPs for the detection of biomolecules (avidin, ATP, etc.), ions (cyanide, mecury, etc.), small gas molecules (oxygen, carbon dioxide, ammonia, etc.), as well as for in vitro temperature sensing. We also briefly summarize chemical methods in synthesizing UCNPs of high efficiency that are important for the detection limit. PMID:23650480

  2. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  3. Ionic conductivity of rare earth doped phase stabilized Bi2O3: Effect of ionic radius

    Science.gov (United States)

    Bandyopadhyay, S.; Anirban, Sk.; Sinha, A.; Dutta, A.

    2017-05-01

    Nanostructured Bi2O3 was prepared through citrate auto ignition method and stabilized down to room temperature into rhombohedral phase by 30% doping of rare earth cations (Eu3+, Sm3+, Nd3+, La3+), which was experimentally confirmed by the XRD patterns of the doped compositions. The average crystallite size increases with increase of ionic radius. The ionic conductivity of the La-doped compound was found to be highest among other doped compounds. The change in structural and electrical properties were discussed and correlated with the ionic radius of the dopants.

  4. DFT Calculations using WIEN2K to determine oxygen defect structure of rare earth doped ceria

    CERN Document Server

    Khalife, Ali Rida

    2014-01-01

    We perform density functional calculations using the program WIEN2K in order to study oxygen vacancies in rare earth doped ceria. The calculation for all rare earth elements were prepared, however only those foe Cadmium and Europium were performed due to lack of time. Also a short description of my stay at CERN was presented

  5. Spectroscopy and dynamics of rare earth doped fluorides

    NARCIS (Netherlands)

    Ebens, Willem Omco

    1995-01-01

    The defect structure of RE doped Fluorides has been studied along with the conductivity properties, using a variety of techniques, both experimental and theoretical. Two systems have been studied in detail, which represent two kinds of defect states for RE doped SrFr. The system SrFr:CeF, has been

  6. Raman and Rietveld structural characterization of sintered alkaline earth doped ceria

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira Junior, Jose Marcio; Brum Malta, Luiz Fernando; Garrido, Francisco M.S. [Departamento de Quimica Inorganica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Centro de Tecnologia, Bloco A, room 632, CEP 68563, 21941-909 Rio de Janeiro, RJ (Brazil); Ogasawara, Tsuneharu [Programa de Engenharia Metalurgica e de Materiais, Coordenacao dos Programas de Pos - Graduacao de Engenharia, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Ilha do Fundao, CEP 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Medeiros, Marta Eloisa, E-mail: chico@iq.ufrj.br [Departamento de Quimica Inorganica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Centro de Tecnologia, Bloco A, room 632, CEP 68563, 21941-909 Rio de Janeiro, RJ (Brazil)

    2012-08-15

    Nanocrystalline calcium and strontium singly doped ceria and co-doped ceria materials for solid electrolytes were prepared via a hydrothermal route. The effect of the hydrothermal treatment time on the solid solution composition was evaluated. Sr doped ceria was the most difficult to form, due to the Sr{sup 2+} large ionic radius. The small crystal size (12-16 nm) of powders allowed sintering into dense ceramic pellets at 1350 Degree-Sign C for 5 h. Raman spectroscopy evidenced a great lattice distortion for Sr doped and co-doped ceria materials, explaining the deterioration of the electrical properties for these ceramics. Besides that, a second phase was detected for Sr doped ceria pellet by using X-ray powder diffraction and Rietveld refinement of XRD data. Impedance measurements showed that Ca-doped ceria behaves as the best ionic conductor ({sigma}{sub g} 390 Degree-Sign C = 1.0 Multiplication-Sign 10{sup -3} S cm{sup -1}) since the nominal composition was achieved; on the other hand, Sr doped ceria performed as resistive materials since Sr incorporation into ceria lattice was critical. These results enhance the close interlace between electrical performance and chemical composition of alkaline earth doped ceria. -- Highlights: Black-Right-Pointing-Pointer Hydrothermally synthesized calcium doped ceria nanoparticles. Black-Right-Pointing-Pointer Incorporation of alkaline earth dopant into ceria lattice. Black-Right-Pointing-Pointer Raman and Rietveld structural characterization. Black-Right-Pointing-Pointer Calcium doped ceria ceramic pellets with high ionic conductivity. Black-Right-Pointing-Pointer Problems associated with the Sr{sup 2+} incorporation into ceria lattice.

  7. Optical and Spectroscopic Properties of Polymer Layers Doped with Rare Earth Ions

    OpenAIRE

    Prajzler, Vaclav; Lyutakov, Oleksiy; Huttel, Ivan; Oswald, Jiri; Jerabek, Vitezslav

    2010-01-01

    We report on spectroscopic properties of the Polymethylmethacrylate and Epoxy Novolak Resin polymer doped with Rare Earth ions. Polymer layers were fabricated by a spin coating or by pouring the polymer into a bottomless mould placed on a quartz substrate. The fabricated polymer layers doped with RE ions were examined by infrared spectroscopy and IR spectroscopy of the samples revealed absorption bands corresponding to the O-H vibrations in the region from 3340 cm-1 to 3380 cm-1. Transmission...

  8. Three-color integration on rare-earth-doped GaN electroluminescent thin films

    Science.gov (United States)

    Wang, Y. Q.; Steckl, A. J.

    2003-01-01

    We have realized full color integration on rare-earth-doped thin-film electroluminescent (EL) GaN using lateral integration. Tm, Er, and Eu dopants were in situ doped into GaN thin films during growth in order to obtain blue, green, and red emission, respectively. Three color pixel arrays have been fabricated using spin-on-glass films as the sacrificial layers for lift-off lithography. The pixel dimensions are 0.2×0.7 mm2, and the separation is 0.2 mm. dc EL devices were fabricated using indium tin oxide transparent electrodes. Typical applied voltage was 30-40 V. The blue emission from Tm-doped GaN has a peak at 477 nm, the green emission from Er-doped GaN has two peaks at 537 and 558 nm, while the red emission from Eu-doped GaN has a peak at 621 nm.

  9. Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal.

    Science.gov (United States)

    O'Brien, Christopher; Lauk, Nikolai; Blum, Susanne; Morigi, Giovanna; Fleischhauer, Michael

    2014-08-08

    We propose a scheme to couple short single photon pulses to superconducting qubits. An optical photon is first absorbed into an inhomogeneously broadened rare-earth doped crystal using controlled reversible inhomogeneous broadening. The optical excitation is then mapped into a spin state using a series of π pulses and subsequently transferred to a superconducting qubit via a microwave cavity. To overcome the intrinsic and engineered inhomogeneous broadening of the optical and spin transitions in rare-earth doped crystals, we make use of a special transfer protocol using staggered π pulses. We predict total transfer efficiencies on the order of 90%.

  10. Rare-earth (Nd3+, Er3+, and Yb3+)-doped aluminium phosphate sol-gel films

    Science.gov (United States)

    He, Qing; Lafreniere, Sylvain; Najafi, S. Iraj; Honkanen, Seppo

    1993-04-01

    In this paper, we report on fabrication process of ordinary and rare-earth-doped aluminum phosphate sol-gel films and their physical and optical properties. The gel films are transparent, hard and of good optical quality as glass. High doping of rare-earths (Nd3+, Er3+ and Yb3+) are realized in films with this technique. This type of doped films offer potential benefits for applications in the field of active integrated optics devices for optical telecommunication systems.

  11. INFLUENCE OF RARE-EARTH DOPING ON THE ELECTRICAL PROPERTIES OF HIGH VOLTAGE GRADIENT ZnO VARISTORS

    Directory of Open Access Journals (Sweden)

    LEI KE

    2013-03-01

    Full Text Available The influence of rare-earth doping on the electrical properties of ZnO varistors was investigated. In a lower doping region, the electrical properties were greatly improved with the increase of rare-earth contents. The highest voltage gradient value of 1968.0 V/mm was obtained with a rare-earth concentration of 0.06 mol. %. The microstructure of samples with different amounts of rare-earth oxides was examined and the notable decrease of grain size was identified as the origin for the increased voltage gradient. The doped rare-earth oxides dissolved at the grain boundaries and the excessive doping reduced the voltage across the single grain/grain boundary from 2.72 V to 0.91 V. The poor electrical properties in a higher doping region resulted from the degeneration of grain boundaries and the decrease of block density.

  12. Numerical simulations of the optical gain of crystalline fiber doped by rare earth and transition ion

    Science.gov (United States)

    Daoui, A. K.; Boubir, B.; Adouane, A.; Demagh, N.; Ghoumazi, M.

    2015-02-01

    A fiber laser is a laser whose gain medium is a doped fiber, although lasers whose cavity is made wholly of fibers have also been called fiber lasers. The gain media in a fiber laser is usually fiber doped with rare-earth ions, such as erbium (Er), neodymium (Nd), ytterbium (Yb), thulium (Tm), or praseodymium (Pr), which is doped into the core of the optical fiber, similar to those used to transmit telecommunications signals. Fiber lasers find many applications in materials processing, including cutting, welding, drilling, and marking metal. To maximize their market penetration, it is necessary to increase their output power. In this work, we present a detailed study based on the numerical simulation using MATLAB, of one of the principal characteristics of a fiber laser doped with rare earth ions and transition ion. The gain depends on several parameters such as the length of the doped fiber, the density, the pump power, noise, etc.). The used program resolves the state equations in this context together with those governing the light propagation phenomena. The developed code can also be used to study the dynamic operating modes of a doped fiber laser.

  13. Effects of rare earth doping on multi-core iron oxide nanoparticles properties

    Science.gov (United States)

    Petran, Anca; Radu, Teodora; Borodi, Gheorghe; Nan, Alexandrina; Suciu, Maria; Turcu, Rodica

    2018-01-01

    New multi-core iron oxide magnetic nanoparticles doped with rare earth metals (Gd, Eu) were obtained by a one step synthesis procedure using a solvothermal method for potential biomedical applications. The obtained clusters were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray microanalysis (EDX), X-ray photoelectron spectroscopy (XPS) and magnetization measurements. They possess high colloidal stability, a saturation magnetization of up to 52 emu/g, and nearly spherical shape. The presence of rare earth ions in the obtained samples was confirmed by EDX and XPS. XRD analysis proved the homogeneous distribution of the trivalent rare earth ions in the inverse-spinel structure of magnetite and the increase of crystal strain upon doping the samples. XPS study reveals the valence state and the cation distribution on the octahedral and tetrahedral sites of the analysed samples. The observed shift of the XPS valence band spectra maximum in the direction of higher binding energies after rare earth doping, as well as theoretical valence band calculations prove the presence of Gd and Eu ions in octahedral sites. The blood protein adsorption ability of the obtained samples surface, the most important factor of the interaction between biomaterials and body fluids, was assessed by interaction with bovine serum albumin (BSA). The rare earth doped clusters surface show higher afinity for binding BSA. In vitro cytotoxicity test results for the studied samples showed no cytotoxicity in low and medium doses, establishing a potential perspective for rare earth doped MNC to facilitate multiple therapies in a single formulation for cancer theranostics.

  14. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    CERN Document Server

    Blanc, Wilfried; Nguyen, Luan; Bhaktha, S N B; Sebbah, Patrick; Pal, Bishnu P; Dussardier, Bernard

    2011-01-01

    Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporati...

  15. Photo-Induced conductivity of heterojunction GaAs/Rare-Earth doped SnO2

    Directory of Open Access Journals (Sweden)

    Cristina de Freitas Bueno

    2013-01-01

    Full Text Available Rare-earth doped (Eu3+ or Ce3+ thin layers of tin dioxide (SnO2 are deposited by the sol-gel-dip-coating technique, along with gallium arsenide (GaAs films, deposited by the resistive evaporation technique. The as-built heterojunction has potential application in optoelectronic devices, because it may combine the emission from the rare-earth-doped transparent oxide, with a high mobility semiconductor. Trivalent rare-earth-doped SnO2 presents very efficient emission in a wide wavelength range, including red (in the case of Eu3+ or blue (Ce3+. The advantage of this structure is the possibility of separation of the rare-earth emission centers, from the electron scattering, leading to an indicated combination for electroluminescence. Electrical characterization of the heterojunction SnO2:Eu/GaAs shows a significant conductivity increase when compared to the conductivity of the individual films. Monochromatic light excitation shows up the role of the most external layer, which may act as a shield (top GaAs, or an ultraviolet light absorber sink (top RE-doped SnO2. The observed improvement on the electrical transport properties is probably related to the formation of short conduction channels in the semiconductors junction with two-dimensional electron gas (2DEG behavior, which are evaluated by excitation with distinct monochromatic light sources, where the samples are deposited by varying the order of layer deposition.

  16. Bragg-grating-based rare-earth-ion-doped channel waveguide lasers and their applications

    NARCIS (Netherlands)

    Bernhardi, Edward

    2012-01-01

    The research presented in this thesis concerns the investigation and development of Bragggrating-based integrated cavities for the rare-earth-ion-doped Al2O3 (aluminium oxide) waveguide platform, both from a theoretical and an experimental point of view, with the primary purpose of realizing

  17. Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range

    NARCIS (Netherlands)

    Dekker, R.; Worhoff, Kerstin; Stouwdam, J.W.; van Veggel, F.C.J.M.; Driessen, A.

    In the present work we applied a measurement setup to determine several relevant properties of rare-earth doped nanoparticles dispersed in polymer slab waveguides in a single absorption measurement: background absorption of the polymer host material, water absorption, polymer composition

  18. Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range

    NARCIS (Netherlands)

    Dekker, R.; Worhoff, Kerstin; Stouwdam, J.W.; van Veggel, F.C.J.M.; Driessen, A.

    2005-01-01

    In the present work we applied a measurement setup to determine several relevant properties of rare-earth doped nanoparticles dispersed in polymer slab waveguides in a single absorption measurement: background absorption of the polymer host material, water absorption, polymer composition

  19. Radioluminescence study of rare earth doped some yttrium based phosphors

    Science.gov (United States)

    Ayvacıklı, Mehmet; Ege, Arzu; Ekdal, Elçin; Popovici, Elisabeth-Jeanne; Can, Nurdoğan

    2012-09-01

    This paper reports the luminescence emission spectra of Y(Ta,Nb)O4 activated by rare earth ions such as Eu3+ and Tb3+. The influence of these rare earth ions on the radioluminescence (RL) of yttrium niobate and tantalate phosphors was investigated. The luminescent properties were studied under X-ray and preliminary RL measurements to further evaluate prepared materials. The emission centers of the rare earth activators (Eu3+, Tb3+) were found to contribute efficiently to the total luminescence. With their various luminescence chromaticities, these rare earth activated phosphors are promising materials for solid-state lighting applications as well as for X-ray intensifying screens in medical diagnosis, providing the broad band variation of visible RL from blue to red.

  20. Electronic structure of rare-earth doped SrFBiS{sub 2} superconductors from photoemission spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, P.; Lohani, H. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Jha, Rajveer; Awana, V.P.S. [CSIR-National Physical Laboratory, K S Krishnan Marg, New Delhi-110012 (India); Sekhar, B.R., E-mail: sekhar@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India)

    2016-06-15

    Highlights: • Electronic structure study of Rare Earth (Ce and La) doped SrFBiS2 superconductors have been studied using photoemission spectroscopy and band structure calculations. • Rare Earth doping promotes metallicity and the Fermi level is shifted towards conduction band. • An enhanced spectral weight near E{sub F} accompanied by a reduced density of states at higher binding energy occurs for the doped compound. - Abstract: The electronic structure study of the Rare Earth (La, Ce) doped SrFBiS{sub 2} superconductors using valence band photoemission in conjugation with the band structure calculations have been presented. The spectral features shift towards higher binding energy, consistent with the electron doping, for the doped compounds. An enhanced metallicity in addition to the shift in the Fermi level towards the conduction band occurs for the Rare Earth (RE) doped compounds. Further, the degeneracy of bands along X-M direction at valence band maximum (VBM) and conduction band minimum (CBM) is lifted due to RE doping. An enhanced spectral weight near E{sub F} accompanied by a decrease in density of states at higher binding energy occurs for the doped compounds. This unusual spectral weight shift is substantiated by the change in Fermi surface topology and reduced distortion of Bi-S plane for the doped compounds.

  1. Rare earth-doped integrated glass components: modeling and optimization

    DEFF Research Database (Denmark)

    Lumholt, Ole; Bjarklev, Anders Overgaard; Rasmussen, Thomas

    1995-01-01

    For the integrated optic erbium-doped phosphate silica-amplifier, a comprehensive model is presented which includes high-concentration dissipative ion-ion interactions. Based on actual waveguide parameters, the model is seen to reproduce measured gains closely. A rigorous design optimization...... is performed, and the influence of variations in the launched pump power, the core cross section, the waveguide length, the erbium concentration, and the background losses are evaluated. Optimal design proposals are given, and the process reproducibility of the proposed optimal design is examined. Requirements...

  2. Benefit of Rare-Earth "Smart Doping" and Material Nanostructuring for the Next Generation of Er-Doped Fibers.

    Science.gov (United States)

    Savelii, Inna; Bigot, Laurent; Capoen, Bruno; Gonnet, Cedric; Chanéac, Corinne; Burova, Ekaterina; Pastouret, Alain; El-Hamzaoui, Hicham; Bouazaoui, Mohamed

    2017-12-01

    Erbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er (3+)-doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a compromise has to be found between the concentration of Erbium and the glass composition. On the one hand, high concentration of Er (3+) ions helps to reduce the length of the EDF and hence the cumulated attenuation but generally leads to luminescence quenching mechanisms that limit the performances. On the other hand, so as to avoid such quenching effect, glass modifiers like Al (3+) or P (5+) ions are used in the fabrication of commercial EDFs but are not suitable for applications in harsh environment because these glass modifiers are precursors of radiation-induced structural defects and consequently of optical losses. In this work, we investigate the concept of smart doping via material nanostructuring as a way to fabricate more efficient optical devices. This approach aims at optimizing the glass composition of the fiber core in order to use the minimal content of glass modifiers needed to reach the suited level of performances for EDFA. Er (3+)-doped alumina nanoparticles (NPs), as precursor of Er (3+) ions in the preform fabrication process, were used to control the environment of rare-earth ions and their optical properties. Structural and optical characterizations of NP-doped preforms and optical fibers drawn from such preforms demonstrate the interest of this approach for small concentrations of aluminum in comparison to similar glass compositions obtained by a conventional technique.

  3. Benefit of Rare-Earth "Smart Doping" and Material Nanostructuring for the Next Generation of Er-Doped Fibers

    Science.gov (United States)

    Savelii, Inna; Bigot, Laurent; Capoen, Bruno; Gonnet, Cedric; Chanéac, Corinne; Burova, Ekaterina; Pastouret, Alain; El-Hamzaoui, Hicham; Bouazaoui, Mohamed

    2017-03-01

    Erbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er 3+-doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a compromise has to be found between the concentration of Erbium and the glass composition. On the one hand, high concentration of Er 3+ ions helps to reduce the length of the EDF and hence the cumulated attenuation but generally leads to luminescence quenching mechanisms that limit the performances. On the other hand, so as to avoid such quenching effect, glass modifiers like Al 3+ or P 5+ ions are used in the fabrication of commercial EDFs but are not suitable for applications in harsh environment because these glass modifiers are precursors of radiation-induced structural defects and consequently of optical losses. In this work, we investigate the concept of smart doping via material nanostructuring as a way to fabricate more efficient optical devices. This approach aims at optimizing the glass composition of the fiber core in order to use the minimal content of glass modifiers needed to reach the suited level of performances for EDFA. Er 3+-doped alumina nanoparticles (NPs), as precursor of Er 3+ ions in the preform fabrication process, were used to control the environment of rare-earth ions and their optical properties. Structural and optical characterizations of NP-doped preforms and optical fibers drawn from such preforms demonstrate the interest of this approach for small concentrations of aluminum in comparison to similar glass compositions obtained by a conventional technique.

  4. Spectroscopic characterization of manganese-doped alkaline earth ...

    Indian Academy of Sciences (India)

    samples at room temperature using Philips X-ray generator. (Model PW1170) with CuKα radiation (λ=1.5418 ... tution of MgO/CaO/SrO/BaO, suggests increased free space within glass structure and changes in the .... energy decreases with replacement of alkaline earth, shows the structural disorder of the system. Smaller is ...

  5. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction

    OpenAIRE

    Cramer, Alisha J.; Cole, Jacqueline M.; Fitzgerald, Vicky; Honkimaki, Veijo; Roberts, Mark A.; Brennan, Tessa; Martin, Richard A.; Saunders, George A.; Newport, Robert J.

    2013-01-01

    Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3) x(R�2O3)y(P2O 5)1-(x+y), where (R, R�) denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP 5O14. Thereupon, the effects of rare-earth co-dopin...

  6. Photoelectric characteristics of rare earth element Eu-doped MoS2 thin films

    Science.gov (United States)

    Shi, Weilin; Li, Zhichao; Wang, Lin; Wu, Shuyan; Zhang, Gaoning; Meng, Miaofei; Ma, Xiying

    2018-01-01

    We present the influences of rare earth element Eu3+ doping on the photoelectric characteristics of molybdenum disulfide (MoS2) films deposited on p-Si substrates using vapor deposition method. The surface topography, crystalline structure, light absorption, and luminescence properties of Eu3+ doped and undoped MoS2 thin films were investigated in detail. We found that the Eu3+ doped MoS2 films have better crystallinity, and their electron mobility and conductivity are approximately one order of magnitude higher than those of the undoped films. In addition, we observed that the light absorption and photoluminescence intensities of the doped films in the visible light range, they were enhanced by approximately two orders of magnitude than those of the undoped MoS2 films at room temperature. Moreover, we found that the photoelectric response characteristics of the doped MoS2 / Si heterojunction improved significantly. The results show that the Eu3+ doped MoS2 films can be used to fabricate high efficiency luminescent and optoelectronic devices.

  7. Ionoluminescence of trivalent rare-earth-doped strontium barium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Calvo del Castillo, H. [Departamento de Geologia y Geoquimica, Universidad Autonoma de Madrid, Modulo C-VI, Campus de Cantoblanco, 28049 Cantoblanco, Madrid (Spain); Universidad Nacional Automoma de Mexico, Instituto de Fisica, 04510 Ciudad Universitaria, Mexico D.F. (Mexico); Ruvalcaba, J.L. [Universidad Nacional Automoma de Mexico, Instituto de Fisica, 04510 Ciudad Universitaria, Mexico D.F. (Mexico); Bettinelli, M.; Speghini, A. [Dipartimento Scientifico e Tecnologico, Universita di Verona and INSTM, UdR Verona, Ca Vignal, Strada Le Grazie 15, I-37134 Verona (Italy); Barboza Flores, M. [Centro de Investigacion en Fisica, Universidad de Sonora, Hermosillo, Sonora (Mexico); Calderon, T. [Departamento de Geologia y Geoquimica, Universidad Autonoma de Madrid, Modulo C-VI, Campus de Cantoblanco, 28049 Cantoblanco, Madrid (Spain)], E-mail: tomas.calderon@uam.es; Jaque, D.; Garcia Sole, J. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain)

    2008-05-15

    Ionoluminescence spectra for different rare-earth ion (Pr{sup 3+} and Eu{sup 3+})-activated Sr{sub x}Ba{sub 1-x}Nb{sub 2}O{sub 6} strontium barium niobate crystals (x=0.33 and 0.60) have been induced with a 3 MeV proton beam for a variety of beam current intensities (45, 40 and 20 nA). The proton-beam induced luminescent spectra have shown features associated with the presence of the rare-earth ion and some spectral features mostly related to the host crystal, which appear only for high beam current intensities. We have compared the ionoluminescence results to those obtained under UV light excitation (photoluminescence technique) where a direct excitation of the band gap would occur.

  8. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells.

    Science.gov (United States)

    Qiao, Yu; Li, Shuhan; Liu, Wenhui; Ran, Meiqing; Lu, Haifei; Yang, Yingping

    2018-01-15

    Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE) ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research.

  9. Optical Properties of Rare Earth Doped SrS Phosphor: A Review

    Science.gov (United States)

    Khare, Ayush; Mishra, Shubhra; Kshatri, D. S.; Tiwari, Sanjay

    2017-02-01

    Rare earth (RE) doped SrS phosphor has attracted a lot of attention on a wide range of photo-, cathodo-, thermo-, and electroluminescent applications. Upon doping with different RE elements (e.g., Ce, Pr, Eu, Yb), the luminescence from SrS can be varied over the entire visible region by appropriately choosing the composition of the strontium sulfide host. The main applications include flat panel displays and SrS-based powder electroluminescence (EL) for back lights. Sulfide materials known for providing Eu2+ based red emission band and preferred as a color conversion material in white light emitting diodes are discussed. Especially, the applications of RE doped SrS are described in light of their utility as conversion and storage phosphors. The effect of energy level splitting, EL efficiency, post-annealing, milling time, and impurity on luminescence properties for SrS are also discussed.

  10. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Yu Qiao

    2018-01-01

    Full Text Available Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research.

  11. Capillary-force-induced formation of luminescent polystyrene/(rare-earth-doped nanoparticle) hybrid hollow spheres.

    Science.gov (United States)

    Chen, Min; Xie, Lin; Li, Fuyou; Zhou, Shuxue; Wu, Limin

    2010-10-01

    This paper presents a "one-pot" procedure to synthesize polystyrene/(rare-earth-doped nanoparticles) (PS/REDNPs) hybrid hollow spheres via the in situ diffusion of organic core into inorganic shell under strong capillary force. In this approach, when carboxyl-capped PS colloids were deposited by different REDNPs in aqueous medium, such as LaF3:Eu3+, LaF3:Ce3+-Tb3+, and YVO4:Dy3+, PS/REDNPs inorganic-organic hybrid hollow spheres could be directly obtained via the in situ diffusion of core PS chains into the voids between rare-earth-doped nanoparticles through the strong capillary force. Not only is the synthetic procedure versatile and very simple, but also the obtained hybrid hollow spheres are hydrophilic and luminescent and could be directly used in chemical and biological fields.

  12. Rare-earth doped (alpha'/beta')-sialon ceramics

    CERN Document Server

    Gajum, N R

    2001-01-01

    combination of light and heavy rare-earth (Yb-Nd and Gd-Nd), and then pressureless sintered and compared with the single cation materials. Materials in the as sintered state were composed of a high alpha' sialon content with a minor amount of beta' sialon and 12H A1N polytype indicating that the heavy rare-earth (which is the principal alpha' stabilizer) has a dominant effect although EDAX analysis confirmed the presence of both cations (light and heavy) within the alpha' structure. The research also compared, and developed an understanding of, the thermal stability of alpha'-sialon using single Yb or mixed cations. The Yb single cation alpha'/beta' materials exhibited excellent stability over a range of temperature (1200 - 1600 deg C) and for different periods of time up to 168 hrs. The heat treatments result in the crystallisation of the residual phase as a Yb garnet phase which formed at approx 1300 deg C. The mixed cation alpha'/beta' materials showed some alpha'-beta' transformation. The transformation w...

  13. Dosimetric and kinetic parameters of lithium cadmium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    J. Anjaiah

    2014-10-01

    Full Text Available Thermoluminescence (TL characteristics of X-ray irradiated pure and doped with four different rare earth ions (viz., Pr3+, Nd3+, Sm3+ and Eu3+ Li2O–Cdo–B2O3 glasses have been studied in the temperature range 303–573 K; the pure glass has exhibited single TL peak at 466 K. When this glass is doped with different rare earth ions no additional peaks are observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve is found to be maximum for Eu3+ doped glasses. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen's formulae. The possible use of these glasses in radiation dosimetry has been described. The result clearly showed that europium doped cadmium borate glass has a potential to be considered as the thermoluminescence dosimeter.

  14. Synthesis of Rare-Earth Doped and Undoped GaN Nano-Crystallites

    Science.gov (United States)

    El Nadi, Lotfia; Ahmed, Samah; Awaad, M.; Omar, Magdy; Badr, Yehia

    2013-03-01

    Semiconductor nanostructures doped with rare earth ions is a possible way to overcome the limitation of low luminescence efficiency of rare earth ions, providing that the strong confinement of carriers in dots will enhance their recombination in the vicinity of RE ions. Undoped and Eu3+-doped GaN crystallites have been synthesized by the co-precipitation method followed by nitridation reaction at 1100 °C for 2 h, under a continuous flow of NH3 gas. X-ray diffraction patterns (XRD) revealed that the synthesized undoped and Eu3+-doped GaN crystallites are of a single-phase wurtzite structure. The morphology of the samples was examined by field emission scanning electron microscope (FE-SEM) and high resolution transmission electron microscope (HR-TEM), and it was shown that the micron-sized particles are composed of agglomerated nano-crystallites. Under the above band gap excitation, all samples exhibited room-temperature photoluminescence with the characteristic GaN band-edge emission peak centered at 363 nm (˜3.4 eV, FWHM ˜ 10 nm) as well as broad defect-related emission peak centered at about 405 nm. The Eu-doped GaN sample, under below bandgap excitation, exhibited red emission peaks centered at 593 nm and 616 nm corresponding to the 5D0 → 7F1 and 5D0 → 7F2 transitions, respectively, within the 4f shell of Eu3+ ions.

  15. Luminescence quenching in rare-earth-ion-doped Al2O3 lasers and its influence on relaxation oscillation frequency

    NARCIS (Netherlands)

    Agazzi, L.; Bernhardi, Edward; Worhoff, Kerstin; Pollnau, Markus

    The impact of luminescence quenching on rare-earth-ion doped lasers is investigated, and we show that the expression for the relaxation oscillation frequency needs to be modified to take the quenching properly into account.

  16. Cross Relaxation in rare-earth-doped oxyfluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarayana, G.; Weis, Eric M. [Materials Science and Technology Division (MST-7), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lira, A.C. [Unidad Académica Profesional Nezahualcóyotl, Universidad Autónoma del Estado de México, Av. Bordo de Xochiaca s/n, Nezahualcóyotl, Estado de Mexico 57000, México (Mexico); Caldiño, Ulises [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, México D.F. 09340 (Mexico); Williams, Darrick J. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hehlen, Markus P., E-mail: hehlen@lanl.gov [Materials Science and Technology Division (MST-7), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-07-15

    The excited-state relaxation dynamics of Tb{sup 3+}, Sm{sup 3+}, and Eu{sup 3+} doped into a 50SiO{sub 2}–20Al{sub 2}O{sub 3}–10Na{sub 2}O–20LaF{sub 3} (mol%) oxyfluoride glass are studied. Multiphonon relaxation of the primary emitting states in Tb{sup 3+} ({sup 5}D{sub 3} and {sup 5}D{sub 4}), Sm{sup 3+} ({sup 4}G{sub 5/2}), and Eu{sup 3+} ({sup 5}D{sub 0}) was found to be negligible in the present host. The relaxation of Tb{sup 3+} ({sup 5}D{sub 4}) and Eu{sup 3+} ({sup 5}D{sub 0}) is dominated by radiative decay. For Tb{sup 3+} ({sup 5}D{sub 3}) and Sm{sup 3+} ({sup 4}G{sub 5/2}) in contrast, radiative relaxation is in competition with several non-radiative cross-relaxation processes. This competition was found to be particularly pronounced for the {sup 5}D{sub 3} excited state in Tb{sup 3+}, where a 124-fold decrease of the ({sup 5}D{sub 3}→{sup 7}F{sub 5})/({sup 5}D{sub 4}→{sup 7}F{sub 5}) emission intensity ratio and a ∼10-fold shortening of the {sup 5}D{sub 3} lifetime was observed upon increasing the Tb{sup 3+} concentration from 0.01% to 1%. The Tb{sup 3+} concentration dependence of {sup 5}D{sub 3} also points to some degree of ion aggregation in the “as quenched” glasses. A Judd–Ofelt intensity analysis was performed for Sm{sup 3+} and used to estimate the relative magnitude of {sup 4}G{sub 5/2} cross-relaxation processes. Four cross-relaxation processes in particular were identified to account for 92% of the total {sup 4}G{sub 5/2} non-radiative decay, and a 11% quantum efficiency was estimated for the {sup 4}G{sub 5/2} excited state. Non-exponentiality in the {sup 5}D{sub 0} decay of Eu{sup 3+} is evidence for several Eu{sup 3+} coordination environments in the glass host that manifest in different {sup 5}D{sub 0} decay constants because of the hypersensitivity of the {sup 5}D{sub 0}→{sup 7}F{sub 2} transition. -- Highlights: ► Tb{sup 3+}, Sm{sup 3+}, and Eu{sup 3+} were doped into a LaF{sub 3}-rich oxyfluoride glass. ► The

  17. Structural properties of lithium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    Thomazini D.

    2001-01-01

    Full Text Available This paper presents the study on lithium triborate glass (LBO in the system (1-x|3B2O3.Li2O| (xNb2O5 yPr3+ zYb3+ wNd3+ with 0 <= x <= 20 mol% (y, z and w in mol%. The samples were studied by Raman spectroscopy, infrared absorption and differential thermal analysis. Pr3+-doped LBO and Pr3+/Yb3+-doped LBO samples show an increase of the glass transition and crystallization temperatures and a decrease of the fusion temperature associated with the increase of the praseodymium concentration in the LBO matrix. For the Nd3+-doped LBO and Pr3+/Yb3+-doped (LBO+Nb2O5 samples, a decrease of the glass transition temperature of the samples was observed. The increase of the rare earth doping leads to an increase of the difference between the glass transition and the crystallization temperatures. From infrared analysis it was possible to identify all the modes associated to the B-O structure. The NbO6 octahedra was also identified by IR spectroscopy for samples with x=5, 10, 15 and 20 mol% and y=0.05, z=1.1 mol%. Raman spectroscopy shows the presence of boroxol rings, tetrahedral and triangular coordination for boron. For samples containing niobium, the Raman spectra show the vibrational mode associated with the Nb-O bond in the niobium octahedra (NbO6.

  18. Microemulsion synthesis, characterization of highly visible light responsive rare earth-doped Bi2O3.

    Science.gov (United States)

    Wu, Shuxing; Fang, Jianzhang; Xu, Xiaoxin; Liu, Zhang; Zhu, Ximiao; Xu, Weicheng

    2012-01-01

    In this paper, Bi(2)O(3) and rare earth (La, Ce)-doped Bi(2)O(3) visible-light-driven photocatalysts were prepared in a Triton X-100/n-hexanol/cyclohexane/water reverse microemulsion. The resulting materials were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area, photoluminescence spectra (PLS) and UV-Vis diffuse reflectance spectroscopy. The XRD patterns of the as-prepared catalysts calcined at 500 °C exhibited only the characteristic peaks of monoclinic α-Bi(2)O(3). PLS analysis implied that the separation efficiency for electron-hole has been enhanced when Bi(2)O(3) was doped with rare earth. UV-Vis diffuse reflectance spectroscopy measurements presented an extension of light absorption into the visible region. The photocatalytic activity of the samples was evaluated by degradation of methyl orange (MO) and 2,4-dichlorophenol (2,4-DCP). The results displayed that the photocatalytic activity of rare earth-doped Bi(2)O(3) was higher than that of dopant-free Bi(2)O(3). The optimal dopant amount of La or Ce was 1.0 mol%. And the mechanisms of influence on the photocatalytic activity of the catalysts were discussed. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  19. Rare-earth-doped photonic crystals for the development of solid-state optical cryocoolers

    Science.gov (United States)

    Garcia-Adeva, Angel J.; Balda, Rolindes; Fernández, Joaquín

    2009-02-01

    Optical cryocoolers made of luminescent solids are very promising for many applications in the fields of optical telecommunications, aerospace industry, bioimaging, and phototherapy. To the present day, researchers have employed a number of crystal and glass host materials doped with rare-earth ions (Yb3+, Tm3+, and Er3+) to yield anti-Stokes optical refrigeration. In these host materials, the attainable minimum temperature is limited by the average phonon energy of the lattice and the impurity concentration. However, recently Ruan and Kaviany have theoretically demonstrated that the cooling efficiency can be dramatically enhanced when the host material doped with rare-earth ions is ground into a powder made of sub-micron size grains. This is due to two facts: firstly, the phonon spectrum is modified due to finite size of the grains and, secondly, light localization effects increase the photon density, leading to an enhanced absorptivity. In the present work, we propose that using a photonic crystal doped with rare earth ions offers many advantages with regards to getting a larger cooling efficiency at room temperature when compared to standard bulk materials or nano-powders. Indeed, apart to analogous phenomena to the ones predicted in nano-crystalline powders, there is the possibility of directly controlling the spontaneous emission rate of the ions embedded in the structure and, also, the absorption rate in the Stokes side of the absorption band by adequately tuning the density of photonic states, thus obtaining a large improvement in the cooling efficiency.

  20. Rare Earth Doped Silica Optical Fibre Sensors for Dosimetry in Medical and Technical Applications

    Directory of Open Access Journals (Sweden)

    N. Chiodini

    2014-01-01

    Full Text Available Radioluminescence optical fibre sensors are gaining importance since these devices are promising in several applications like high energy physics, particle tracking, real-time monitoring of radiation beams, and radioactive waste. Silica optical fibres play an important role thanks to their high radiation hardness. Moreover, rare earths may be incorporated to optimise the scintillation properties (emission spectrum, decay time according to the particular application. This makes doped silica optical fibres a very versatile tool for the detection of ionizing radiation in many contexts. Among the fields of application of optical fibre sensors, radiation therapy represents a driving force for the research and development of new devices. In this review the recent progresses in the development of rare earth doped silica fibres for dosimetry in the medical field are described. After a general description of advantages and challenges for the use of optical fibre based dosimeter during radiation therapy treatment and diagnostic irradiations, the features of the incorporation of rare earths in the silica matrix in order to prepare radioluminescent optical fibre sensors are presented and discussed. In the last part of this paper, recent results obtained by using cerium, europium, and ytterbium doped silica optical fibres in radiation therapy applications are reviewed.

  1. Lateral color integration on rare-earth-doped GaN electroluminescent thin films

    Science.gov (United States)

    Lee, D. S.; Steckl, A. J.

    2002-03-01

    Lateral color integration has been obtained using GaN thin films doped with Er and Eu. These rare-earth doped GaN (GaN:RE) films were grown on Si (111) substrates by molecular beam epitaxy. Independent red and green emissions have been obtained from side-by-side Er and Eu electroluminescent devices. Photoluminescence and electroluminescence operation show green emissions at 537 and 558 nm from Er-doped GaN and red emission at 621 nm from Eu-doped GaN. Two patterning fabrication techniques have been investigated to obtain lateral integration: (a) use of shadow masks during 400 °C growth of GaN:RE films; (b) photoresist liftoff in conjunction with <100 °C GaN:RE growth. Devices fabricated by the shadow mask method were bright enough to be detected under the ambient light at a bias of 30 V. The GaN:RE films were clear and their surfaces were smooth with nanoscale GaN grains. The root mean square surface roughness was measured to be 5-10 nm.

  2. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng

    2013-04-29

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  3. Crystallization studies on rare-earth co-doped fluorozirconate-based glasses.

    Science.gov (United States)

    Paßlick, C; Johnson, J A; Schweizer, S

    2013-07-01

    This work focuses on the structural changes of barium chloride (BaCl2) nanoparticles in fluorochlorozirconate-based glass ceramics when doped with two different luminescent activators, in this case rare-earth (RE) ions, and thermally processed using a differential scanning calorimeter. In a first step, only europium in its divalent and trivalent oxidation states, Eu(2+) and Eu(3+), is investigated, which shows no significant influence on the crystallization of hexagonal phase BaCl2. However, higher amounts of Eu(2+) increase the activation energy of the phase transition to an orthorhombic crystal structure. In a second step, nucleation and nanocrystal growth are influenced by changing the structural environment of the glasses by co-doping with Eu(2+) and trivalent Gd(3+), Nd(3+), Yb(3+), or Tb(3+), due to the different atomic radii and electro-negativity of the co-dopants.

  4. The Progress of Photoluminescent Properties of Rare-Earth-Ions-Doped Phosphate One-Dimensional Nanocrystals

    Directory of Open Access Journals (Sweden)

    Lixin Yu

    2010-01-01

    Full Text Available One-dimensional (1D nanostructures, such as tubes, wires, rods, and belts, have aroused remarkable attentions over the past decade due to a great deal of potential applications, such as data storage, advanced catalyst, and photoelectronic devices . On the other hand, in comparison with zero-dimensional (0D nanostructures, the space anisotropy of 1D structures provided a better model system to study the dependence of electronic transport, optical and mechanical properties on size confinement and dimensionality. Rare earth (RE compounds, were intensively applied in luminescent and display devices. It is expected that in nanosized RE compounds the luminescent quantum efficiency (QE and display resolution could be improved. In this paper, we systematically reported the research progress of luminescent properties of RE-doped 1D orthophosphate nanocrystal, including the synthesis of 1D nanostructures doped with RE ions, local symmetry of host, electronic transition processes, energy transfer (ET, and so forth.

  5. Phase Transformation and Lattice Parameter Changes of Non-trivalent Rare Earth-Doped YSZ as a Function of Temperature

    Science.gov (United States)

    Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew

    2018-01-01

    To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.

  6. On-chip quantum storage in a rare-earth-doped photonic nanocavity

    Science.gov (United States)

    Zhong, Tian; Kindem, Jonathan M.; Rochman, Jake; Miyazono, Evan; Faraon, Andrei; Ferrier, Alban; Goldner, Philippe

    2016-03-01

    Rare-earth-ion doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical and microwave photons. Here we describe our progress towards a nanophotonic quantum memory based on a rare-earth (Neodymium) doped yttrium orthosilicate (YSO) photonic crystal resonator. The Purcell-enhanced coupling of the 883 nm transitions of Neodymium (Nd3+) ions to the nano-resonator results in increased optical depth, which could in principle facilitate highly efficient photon storage via cavity impedance matching. The atomic frequency comb (AFC) memory protocol can be implemented in the Nd:YSO nano-resonator by efficient optical pumping into the long-lived Zeeman state. Coherent optical signals can be stored and retrieved from the AFC memory. We currently measure a storage efficiency on par with a bulk crystal Nd:YSO memory that is millimeters long. Our results will enable multiplexed on-chip quantum storage and thus quantum repeater devices using rare-earth-ions.

  7. Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings

    Directory of Open Access Journals (Sweden)

    Erik P. Schartner

    2014-11-01

    Full Text Available We report the development of a point temperature sensor, based on monitoring upconversion emission from erbium:ytterbium-doped tellurite coatings on the tips of optical fibres. The dip coating technique allows multiple sensors to be fabricated simultaneously, while confining the temperature-sensitive region to a localised region on the end-face of the fibre. The strong response of the rare earth ions to changing temperature allows a resolution of 0.1–0.3 °C to be recorded over the biologically relevant range of temperatures from 23–39 °C.

  8. Nuclear Magnetic Resonance Studies of Rare Earth co-doped Lanthanum Cuprates

    OpenAIRE

    Grafe, Hans-Joachim

    2005-01-01

    The work described in this thesis uses oxygen NMR to probe the electronic system of rare earth co-doped La_{2-x}Sr_xCuO_4, the prototypical high temperature superconducting cuprate (HTSC). Oxygen NMR turns out to be a powerful tool for this purpose. The nucleus is located directly inside the CuO_2 planes. It has a spin of 5/2 and a quadrupole moment and therefore can probe both, interactions with the magnetic hyperfine field as well as interactions through the electric field gradient of the c...

  9. Thermally induced mode coupling in rare-earth doped fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard; Broeng, Jes

    2012-01-01

    We present a simple semianalytical model of thermally induced mode coupling in multimode rare-earth doped fiber amplifiers. The model predicts that power can be transferred from the fundamental mode to a higher-order mode when the operating power exceeds a certain threshold, and thus provides...... an explanation of recently reported mode instability in such fiber amplifiers under high average-power operation. We apply our model to a simple step-index fiber design, and investigate how the power threshold depends on various design parameters of the fiber....

  10. Rare Earth-doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor

    OpenAIRE

    Lobera González, Maria Pilar; Balaguer Ramirez, Maria; García Fayos, Julio; Serra Alfaro, José Manuel

    2012-01-01

    An intensification process for the selective oxidation of hydrocarbons integrates a catalytic reactor and an oxygen separation membrane. This work presents the study of oxidative dehydrogenation of ethane at 1123 K in a catalytic membrane reactor based on mixed ionic-electronic conducting (MIEC) membranes. The surface of a membrane made of Ba0.5Sr0.5Co0.8Fe0.2O3-d has been activated using different porous catalytic layers based on rare earth-doped cerias (fluorite structure) and the porous ca...

  11. Microlasers based on high-Q rare-earth-doped aluminum oxide resonators on silicon (Conference Presentation)

    Science.gov (United States)

    Bradley, Jonathan D. B.; Su, Zhan; Frankis, Henry C.; Magden, Emir Salih; Li, Nanxi; Byrd, Matthew; Purnawirman, Purnawirman; Shah Hosseini, Ehsan; Adam, Thomas N.; Leake, Gerald; Coolbaugh, Douglas; Watts, Michael R.

    2017-02-01

    One of the key challenges in the field of silicon photonics remains the development of compact integrated light sources. In one approach, rare-earth-doped glass microtoroid and microdisk lasers have been integrated on silicon and exhibit ultra-low thresholds. However, such resonator structures are isolated on the chip surface and require an external fiber to couple light to and from the cavity. Here, we review our recent work on monolithically integrated rare-earth-doped aluminum oxide microcavity lasers on silicon. The microlasers are enabled by a novel high-Q cavity design, which includes a co-integrated silicon nitride bus waveguide and a silicon dioxide trench filled with rare-earth-doped aluminum oxide. In passive (undoped) microresonators we measure internal quality factors as high as 3.8 × 105 at 0.98 µm and 5.7 × 105 at 1.5 µm. In ytterbium, erbium, and thulium-doped microcavities with diameters ranging from 80 to 200 µm we show lasing at 1.0, 1.5 and 1.9 µm, respectively. We observe sub-milliwatt lasing thresholds, approximately 10 times lower than previously demonstrated in monolithic rare-earth-doped lasers on silicon. The entire fabrication process, which includes post-processing deposition of the gain medium, is silicon-compatible and allows for integration with other silicon-based photonic devices. Applications of such rare earth microlasers in communications and sensing and recent design enhancements will be discussed.

  12. Temperature-dependent structures and chemical bonding states of the calcium chlorapatite powders doped with rare-earth-ions

    Science.gov (United States)

    Hong, Kyong-Soo; Yang, Ho-Soon

    2017-02-01

    Calcium chlorapatite powders doped with rare-earth-ions are synthesized by using the solid-state reaction method and sintering at 1,100 °C and 1,300 °C, respectively. This study focuses on the crystal structures and the chemical bonding states of calcium chlorapatite powders for different sintering temperatures, doping elements, and doping concentrations. The characterized physical properties show that the apatite powders exhibit two phases based on the sintering temperatures: the powders sintered at temperatures below 1,100 °C have a hexagonal structure while those sintered at 1,300 °C have a monoclinic structure. That is, the apatite compounds sintered at higher temperatures show a structure with a lower space symmetry. The chemical bonding states of the synthesized powders remain unchanged regardless of the amount of doped rare-earths and the sintering temperature.

  13. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction.

    Science.gov (United States)

    Cramer, Alisha J; Cole, Jacqueline M; FitzGerald, Vicky; Honkimaki, Veijo; Roberts, Mark A; Brennan, Tessa; Martin, Richard A; Saunders, George A; Newport, Robert J

    2013-06-14

    Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)(1-(x+y)), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Q(max) = 28 Å(-1)) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and P[double bond, length as m-dash]O bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials.

  14. High quality factor nanophotonic resonators in bulk rare-earth doped crystals

    CERN Document Server

    Zhong, Tian; Kindem, Jonathan M; Miyazono, Evan; Faraon, Andrei

    2015-01-01

    Numerous bulk crystalline materials exhibit attractive nonlinear and luminescent properties for classical and quantum optical applications. A chip-scale platform for high quality factor optical nanocavities in these materials will enable new optoelectronic devices and quantum light-matter interfaces. In this article, photonic crystal nanobeam resonators fabricated using focused ion beam milling in bulk insulators, such as rare-earth doped yttrium orthosilicate and yttrium vanadate, are demonstrated. Operation in the visible, near infrared, and telecom wavelengths with quality factors up to 27,000 and optical mode volumes close to one cubic wavelength is measured. These devices enable new nanolasers, on-chip quantum optical memories, single photon sources, and non-linear devices at low photon numbers based on rare-earth ions. The techniques are also applicable to other luminescent centers and crystals.

  15. Crystal-field investigations of rare-earth-doped wide band gap semiconductors

    CERN Multimedia

    Muller, S; Wahl, U

    Crystal field investigations play a central role in the studies of rare earth doped semiconductors. Optical stark level spectroscopy and lattice location studies of radioactive rare earth isotopes implanted at ISOLDE have provided important insight into these systems during the last years. It has been shown that despite a major site preference of the probe atoms in the lattice, several defect configurations do exist. These sites are visible in the optical spectra but their origin and nature aren't deducible from these spectra alone. Hyperfine measurements on the other hand should reveal these defect configurations and yield the parameters necessary for a description of the optical properties at the atomic scale. In order to study the crystal field with this alternative approach, we propose a new concept for perturbed $\\gamma\\gamma$-angular correlation (PAC) experiments at ISOLDE based on digital signal processing in contrast to earlier analog setups. The general functionality of the spectrometer is explained ...

  16. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals

    Science.gov (United States)

    Zhong, Tian; Kindem, Jonathan M.; Miyazono, Evan; Faraon, Andrei

    2015-09-01

    Quantum light-matter interfaces connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching and studies of fundamental physics. Rare-earth-ion-doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium rare-earth-ions to photonic nanocavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2-4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled rare-earth ions is performed via photon echoes. Long optical coherence times (T2~100 μs) and small inhomogeneous broadening are measured for the cavity-coupled rare-earth ions, thus demonstrating their potential for on-chip scalable quantum light-matter interfaces.

  17. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles

    Science.gov (United States)

    Townley, Helen E.; Kim, Jeewon; Dobson, Peter J.

    2012-07-01

    Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo.Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal

  18. Hydrothermal Synthesis, Microstructure and Photoluminescence of Eu3+-Doped Mixed Rare Earth Nano-Orthophosphates

    Directory of Open Access Journals (Sweden)

    Yan Bing

    2010-01-01

    Full Text Available Abstract Eu3+-doped mixed rare earth orthophosphates (rare earth = La, Y, Gd have been prepared by hydrothermal technology, whose crystal phase and microstructure both vary with the molar ratio of the mixed rare earth ions. For LaxY1–xPO4: Eu3+, the ion radius distinction between the La3+ and Y3+ is so large that only La0.9Y0.1PO4: Eu3+ shows the pure monoclinic phase. For LaxGd1–xPO4: Eu3+ system, with the increase in the La content, the crystal phase structure of the product changes from the hexagonal phase to the monoclinic phase and the microstructure of them changes from the nanorods to nanowires. Similarly, YxGd1–xPO4: Eu3+, Y0.1Gd0.9PO4: Eu3+ and Y0.5Gd0.5PO4: Eu3+ samples present the pure hexagonal phase and nanorods microstructure, while Y0.9Gd0.1PO4: Eu3+ exhibits the tetragonal phase and nanocubic micromorphology. The photoluminescence behaviors of Eu3+ in these hosts are strongly related to the nature of the host (composition, crystal phase and microstructure.

  19. Room-temperature-grown rare-earth-doped GaN luminescent thin films

    Science.gov (United States)

    Lee, D. S.; Steckl, A. J.

    2001-09-01

    Visible emission has been observed from rare-earth (RE)-doped GaN electroluminescent devices (ELDs) as-grown near room temperature on Si (50-100 °C): red from GaN:Eu, green from GaN:Er, and blue from GaN:Tm. Green emission at 537/558 nm from GaN:Er ELD had a measured brightness of ˜230 cd/m2 at 46 V bias. X-ray diffraction indicates that the low-temperature-grown GaN:Er structure was oriented with the c axis perpendicular to the substrate. Scanning electron and atomic force microscopy indicate that the films had a rough surface and a compact structure consisting of small grains. Electroluminescence intensity of GaN:RE was significantly improved with postgrowth annealing. For GaN:Er films, after 800 °C annealing, the green emission brightness efficiency increased by ˜10×.

  20. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles†

    Science.gov (United States)

    Townley, Helen E.; Kim, Jeewon; Dobson, Peter J.

    2017-01-01

    Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo. PMID:22767269

  1. New generation high-power rare-earth-doped phosphate glass fiber and fiber laser

    Science.gov (United States)

    Wu, Ruikun; Myers, John D.; Myers, Michael J.

    2001-04-01

    High power, high brightness fiber lasers have numerous potential commercial and military applications. Fiber lasers with cladding pump designs represent a new generation of diode pumped configurations that are extremely efficient, have single mode output and may be operated with or without active cooling. Kigre has invented a new family of Er/Yb/Nd phosphate laser glass materials (designated QX) that promise to facilitate a quantum leap in fiber laser technology of this field. The new phosphate glass Rare-Earth doped fiber exhibit many advantages than Silica or Fluoride base fiber, see table.1. Instead of 30 to 50 meters of fused silica with a 50 mm bend radii; Kigre's phosphate glass fiber amplifiers may be designed to be less than 4 meters long .Laser performance and various design parameters, such as the fiber core diameter, NA, inner cladding shape and doping concentration are evaluated. Laser performances was demonstrated for an experimental QX/Er doubled clading fiber commissioned by MIT having 8 micron core, a 240 X 300 micron rectangle shaped inner cladding with 0.4 NA and 500 micron outer clading.. Kigre obtained approximately 2 dB/cm gain from 15cm long fiber under 940nm pumping The same fiber was evaluated by researcher at MIT. They used 975nm pump source. Maximum 270mW output was demonstrated by 30 cm long fiber with Fresnel reflection resonator mirrors. The slope efficiency of absorbed pump power s 47%.

  2. Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium

    Energy Technology Data Exchange (ETDEWEB)

    Page, R.H.; Schaffers, K.I.; Waide, P.A.; Tassano, J.B.; Payne, S.A.; Kruplce, W.F.; Bischel, W.K. [Gemfire Corporation, Palo Alto, CA (United States)

    1997-07-26

    We discuss the upconversion luminescence efficiencies of phosphors that generate red, green, and blue light. The phosphors studied are single crystals and powders co-doped with Er{sup 3+} and Yb{sup 3+}, and with Tm{sup 3+} and Yb{sup 3+}. The Yb ions are pumped near 980 nm; transfers of two or three quanta to the co-doped rare earth ion generate visible luminescence. The main contribution embodied in this work is the quantitative measurement of this upconversion efficiency, based on the use of a calibrated integrating sphere, determination of the fraction of pump light absorbed, and careful control of the pump laser beam profile. The green phosphors are the most efficient, yielding efficiency values as high as 4 %, with the red and blue materials giving 1 - 2 %. Saturation was observed in all cases, suggesting that populations of upconversion steps of the ions are maximized at higher power. Quasi-CW modeling of the intensity- dependent upconversion efficiency was attempted; input data included level lifetimes, transition cross sections, and cross-relaxation rate coefficients. The saturation of the Yb,Er:fluoride media is explained as the pumping of Er{sup 3+} ions into a bottleneck (long-lived state)- the {sup 4}I{sub 13/2} metastable level, making them unavailable for further excitation transfer. 32 refs., 5 figs., 3 tabs.

  3. Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN

    Energy Technology Data Exchange (ETDEWEB)

    Hoemmerich, U.; Nyein, Ei Ei; Lee, D.S.; Heikenfeld, J.; Steckl, A.J.; Zavada, J.M

    2003-12-15

    The emission properties of rare earth (RE)-doped GaN are of significant current interest for applications in full color displays, white lighting technology, and optical communications. We are currently investigating the photoluminescence (PL) properties of RE (Er, Eu, Tm)-doped GaN thin-films prepared by solid-source molecular beam epitaxy. The most intense visible PL under above-gap excitation is observed from GaN:Eu (red: 622 nm) followed by GaN:Er (green: 537 nm, 558 nm), and then GaN:Tm (blue: 479 nm). In this paper, we present spectroscopic results on the Ga-flux dependence of the Er{sup 3+} PL properties from GaN:Er and we report on the identification of different Eu{sup 3+} centers in GaN:Eu through high-resolution PL excitation (PLE) studies. In addition, we observed an enhancement of the blue Tm{sup 3+} PL from AlGaN:Tm compared to GaN:Tm. Intense blue PL from Tm{sup 3+} ions was also obtained from AlN:Tm under below-gap pumping.

  4. Sol-gel-derived hybrid materials multi-doped with rare-earth metal ions

    Science.gov (United States)

    Zelazowska, E.; Rysiakiewicz-Pasek, E.; Borczuch-Laczka, M.; Cholewa-Kowalska, K.

    2012-06-01

    Four different hybrid organic-inorganic materials based on TiO2-SiO2 matrices with organic additives and doped with rare-earth metal ions (III) from the group of europium, cerium, terbium, neodymium, dysprosium and samarium, were synthesized by sol-gel method. Tetraethyl orthosilicate, titanium (IV) isopropoxide and organic compounds, such as butyl acrylate, butyl methacrylate, ethyl acetoacetate, ethylene glycol dimethacrylate, ethyl acetate, propylene carbonate, organic solvents and certain inorganic salts were used in the synthesis. The inorganic part of the sols, which were used in the synthesis of all the hybrid materials, was prepared separately and then the organic parts were added. The materials obtained were aged for three weeks at room temperature and then heated in an electric oven for three hours at temperatures of 80 °C-150 °C. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM/EDX); X-ray diffraction (XRD); Fourier transform infrared spectroscopy (KBr technique); 29Si magic-angle spinning nuclear magnetic resonance; and fluorescence spectroscopy were used for the examination of morphology, microstructure and luminescence properties, respectively. Photoluminescence properties with relatively intense narrow emission lines of Tb, Eu, Dy, Nd, Sm respectively to the RE-ions doping, were observed for all the hybrid materials.

  5. Intermode beating mode-locking technique for a rare-earth-doped fiber pulsed laser.

    Science.gov (United States)

    Luo, Zhengqian; Yang, Runhua; Du, Tuanjie; Ruan, Qiujun; Li, Weiwei; Chen, Nan

    2017-08-01

    In this paper, we report the intermode beating mode-locking of a 2  μm Tm 3+ -doped fiber laser (TDFL) pumped by a 1565 nm continuous-wave multi-longitudinal-mode laser. Because strong intermode beating of the 1565 nm pump source induces the periodic modulation of 2 μm intracavity power, stable mode-locking of the TDFL is successfully established by precisely matching the 2 μm cavity frequency with the intermode-beating frequency of the 1565 nm pump source. The mode-locked laser, without requiring any specific mode-locking element, can stably emit the rectangular nanosecond pulses. The mode-locking operation at the center wavelength of 1980.35 nm has a >61  dB signal-to-noise ratio and a 34.496 MHz repetition rate. Although the preliminary results are not better than those of conventional mode-locking, intermode beating mode-locking in combination with rare-earth-doped fiber lasers could provide a promising and alternative solution for compact, low-cost, and high-performance pulsed laser sources.

  6. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles.

    Science.gov (United States)

    Townley, Helen E; Kim, Jeewon; Dobson, Peter J

    2012-08-21

    Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo.

  7. Structure and photoluminescence of TiO{sub 2} nanocrystals doped and co-doped with N and rare earths (Y{sup 3+}, Pr{sup 3+})

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, P.C., E-mail: carlo.ricci@dsf.unica.it [Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu Km 0,700, 09042 Monserrato (Italy); Carbonaro, C.M.; Geddo Lehmann, A.; Congiu, F.; Puxeddu, B. [Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu Km 0,700, 09042 Monserrato (Italy); Cappelletti, G.; Spadavecchia, F. [Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano (Italy)

    2013-06-05

    Highlights: ► We studied singly and co-doped N, Y and Pr:TiO{sub 2} nanoparticles. ► A mixed anatase-brookite phase with average dimension lower than 10 nm was revealed. ► The nature of defects in the TiO{sub 2} structures depends on the doping elements. ► Bulk and surface defects are related to nitrogen in the TiO{sub 2} matrix. ► Y{sup 3+} ion acts as a surface stabilizer, Pr{sup 3+} generates surface recombination centers. -- Abstract: The structural and optical properties of sol–gel synthesized TiO{sub 2} nanoparticles doped and co-doped with N and rare earth ions (Y{sup 3+} and Pr{sup 3+}) are presented. Crystal structures, phase composition, and crystallite sizes are analyzed by powder X-ray diffraction and Raman spectroscopy. The analysis of intragap excited photoluminescence indicates the formation of radiative recombinations related to different defect centers in the TiO{sub 2} structure, generated by the presence of doping elements. In particular we assign the formation of bulk and surface defects to the presence of nitrogen in the TiO{sub 2} matrix, whereas we observe different effects on the defective TiO{sub 2} structure related to the two rare earths: the presence of Y{sup 3+} ion acts as a stabilizer of the TiO{sub 2} surface whereas the presence of Pr{sup 3+} generates surface recombination centers.

  8. The unusually high Tc in rare-earth-doped single crystalline CaFe2As2

    Science.gov (United States)

    Wei, Fengyan; Lv, Bing; Deng, Liangzi; Meen, James K.; Xue, Yu-Yi; Chu, Ching-Wu

    2014-08-01

    In rare-earth-doped single crystalline CaFe2As2, the mysterious small volume fraction which superconducts up to 49 K, much higher than the bulk Tc ~ 30 s K, has prompted a long search for a hidden variable that could enhance the Tc by more than 30% in iron-based superconductors of the same structure. Here we report a chemical, structural and magnetic study of CaFe2As2 systematically doped with La, Ce, Pr and Nd. Coincident with the high Tc phase, we find extreme magnetic anisotropy, accompanied by an unexpected doping-independent Tc and equally unexpected superparamagnetic clusters associated with As vacancies. These observations lead us to conjecture that the tantalizing Tc enhancement may be associated with naturally occurring chemical interfaces and may thus provide a new paradigm in the search for superconductors with higher Tc.

  9. PHYSICAL AND ELECTRICAL PROPERTIES ENHANCEMENT OF RARE-EARTH DOPED-POTASSIUM SODIUM NIOBATE (KNN: A REVIEW

    Directory of Open Access Journals (Sweden)

    Akmal Mat Harttat Maziati

    2015-06-01

    Full Text Available Alkaline niobate mainly potassium sodium niobate, (KxNa1-x NbO3 (abreviated as KNN has long attracted attention as piezoelectric materials as its high Curie temperature (Tc and piezoelectric properties. The volatility of alkaline element (K, Na is, however detrimental to the stoichiometry of KNN, contributing to the failure to achieve high-density structure and lead to the formation of intrinsic defects. By partially doping of several rare-earth elements, the inherent defects could be improved significantly. Therefore, considerable attempts have been made to develop doped-KNN based ceramic materials with high electrical properties. In this paper, these research activities are reviewed, including dopants type and doping role in KNN perovskite structure.

  10. Influence of rare earth (Nd{sup +3}) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Pranav P., E-mail: drppn1987@gmail.com [Department of Physics, Goa University, Taleigao Plateau, Goa, 403206 (India); Tangsali, R.B. [Department of Physics, Goa University, Taleigao Plateau, Goa, 403206 (India); Meena, S.S.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2017-04-15

    Ultrafine nanopowders of Mn{sub 0.6}Zn{sub 0.4}Fe{sub 2-x}Nd{sub x}O{sub 4} (x = 0, 0.04, 0.06, 0.08, and 0.1) were prepared using combustion method. The influence of Nd{sup +3} doping on structural parameters, morphological characteristics and magnetic properties were investigated. Formation of pure spinel phase was confirmed using X-ray powder diffraction (XRPD). Nd{sup +3} doping in Mn-Zn ferrite samples have shown remarkable influence on all the properties that were under investigation. An increase in lattice constant commensurate with increasing Nd{sup +3} concentrations was observed in the samples. The crystallite size calculated from XRPD data and grain size observed from Transmission Electron Microscope showed a proportionate decrement with increment in rare earth doping. An increase in mass density, X-ray density, particle strain and decrease in porosity were the other effects noticed on the samples as a result of Nd{sup +3} doping. The corresponding tetrahedral, octahedral bond lengths and bond angles estimated from XRPD data have also shown substantial influence of the Nd{sup +3} doping. Magnetic parameters namely saturation magnetization (M{sub S}) and net magnetic moment η{sub B}, estimated using vibrating sample magnetometer (VSM) were found to depend on the Nd{sup +3} doping. Mössbauer spectroscopy was employed to study the magnetic environment of Mössbauer active ions and detection of superparamagnetic behavior in nanocrystalline rare earth ferrite material. The isomer shift values obtained from Mössbauer spectra indicate the presence of Fe{sup +3} ions at tetrahedral site (A-site) and octahedral site (B-site), respectively. - Highlights: • Synthesis of Nd doped Mn-Zn ferrite nanoparticles using combustion method. • Successful doping of Nd{sup +3} at octahedral site in ferrite structure. • Existence of Fe{sup +3} oxidation state at both A-Site and B-site. • Enhanced saturation magnetization due to altered cation distribution by Nd doping

  11. Intense luminescence emission from rare-earth-doped MoO3 nanoplates and lamellar crystals for optoelectronic applications

    Science.gov (United States)

    Vila, M.; Díaz-Guerra, C.; Jerez, D.; Lorenz, K.; Piqueras, J.; Alves, E.

    2014-09-01

    Strong and stable room-temperature photoluminescence (PL) emission is achieved in MoO3 nanoplates and lamellar crystals doped with Er and Eu by ion implantation and subsequent annealing. Micro-Raman and PL spectroscopy reveal that optical activation of the rare earth ions and recovery of the original MoO3 structure are achieved for shorter annealing treatments and for lower temperatures in nanoplates, as compared with lamellar crystals. Er seems to be more readily incorporated into optically active sites in the oxide lattice than Eu. The influence of the dimensionality of the host sample on the characteristics of the PL emission of both rare earth dopants is addressed.

  12. Synthesis and characterization of rare earth doped novel optical materials and their potential applications

    Science.gov (United States)

    Pokhrel, Madhab

    There are many application of photonic materials but selection of photonic materials are always constrained by number of factors such as cost, availability of materials, thermal and chemical stability, toxicity, size and more importantly ease of synthesis and processing along with the efficient emission. For example, quantum dots are efficient emitter but they are significantly toxic, whereas dyes are also efficient emitters but they are chemically unstable. On the other hand, display and LED requires the micron size particles but bio application requires the nano-sized particles. On the other hand, laser gain media requires the ceramics glass or single crystal not the nanoparticles. So, realization of practical optical systems critically depends on suitable materials that offer specific combinations of properties. Solid-state powders such as rare-earth ions doped nano and micron size phosphors are one of the most promising candidates for several photonic applications discussed above. In this dissertation, we investigate the upconversion (UC) fluorescence characteristics of rare earth (RE) doped M2O2S (M = Y, Gd, La) oxysulphide phosphors, for near-infrared to visible UC. Both nano and micron size phosphors were investigated depending on their applications of interest. This oxysulphide phosphor possesses several excellent properties such as chemical stability, low toxicity and can be easily mass produced at low cost. Mainly, Yb3+, Er3+, and Ho3+ were doped in the host lattice, resulting in bright red, green, blue and NIR emissions under 980 nm and 1550 nm excitation at various excitation power densities. Maximum UC quantum yields (QY) up to 6.2 %, 5.8%, and 4.6% were respectively achieved in Yb3+/Er3+ :La2O2S, Y2O2S, and Gd2O 2S. Comparisons have been made with respect to reported most efficient upconverting phosphors beta-NaYF4:20 % Yb/ 2% Er. We believe that present phosphors are the most efficient and lower excitation threshold upconverting phosphors at 980 and

  13. Ultraviolet absorption and excitation spectroscopy of rare-earth-doped glass fibers derived from glassy and crystalline preforms

    Science.gov (United States)

    Dragic, Peter D.; Liu, Yuh-Shiuan; Galvin, Thomas C.; Eden, J. G.

    2012-02-01

    Ultraviolet absorption and laser excitation spectroscopy (LES) measurements are presented for rare-earth-doped optical fibers produced from both glassy and crystalline preforms. Absorption spectra are obtained via broad-spectrum UV LEDs emitting in the 250nm region. LES measurements are obtained utilizing a tunable UV laser source. The tunable laser employed is a frequency-doubled titanium:sapphire laser-pumped optical parametric amplifier (OPA) operating down to a minimum wavelength of about 225nm. Our results indicate a roughly linear relationship between the concentration of oxygen deficiency centers (ODC) and rare-earth content, regardless of the preform type, and the slope of the line is found to vary significantly with the rare earth. Additionally, LES measurements are used to elucidate the energy transfer mechanism from pumping in the UV to emission by the rare-earth. In all cases the fibers are Al codoped and those produced from glassy preforms are manufactured via standard methods. Fibers produced from crystalline preforms start with a pure silica-sleeved rare-earth doped YAG crystal rod that becomes glassy (amorphous) post-draw.

  14. Rare Earth Ion-Doped Upconversion Nanocrystals: Synthesis and Surface Modification

    Directory of Open Access Journals (Sweden)

    Hongjin Chang

    2014-12-01

    Full Text Available The unique luminescent properties exhibited by rare earth ion-doped upconversion nanocrystals (UCNPs, such as long lifetime, narrow emission line, high color purity, and high resistance to photobleaching, have made them widely used in many areas, including but not limited to high-resolution displays, new-generation information technology, optical communication, bioimaging, and therapy. However, the inherent upconversion luminescent properties of UCNPs are influenced by various parameters, including the size, shape, crystal structure, and chemical composition of the UCNPs, and even the chosen synthesis process and the surfactant molecules used. This review will provide a complete summary on the synthesis methods and the surface modification strategies of UCNPs reported so far. Firstly, we summarize the synthesis methodologies developed in the past decades, such as thermal decomposition, thermal coprecipitation, hydro/solvothermal, sol-gel, combustion, and microwave synthesis. In the second part, five main streams of surface modification strategies for converting hydrophobic UCNPs into hydrophilic ones are elaborated. Finally, we consider the likely directions of the future development and challenges of the synthesis and surface modification, such as the large-scale production and actual applications, stability, and so on, of the UCNPs.

  15. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants.

    Science.gov (United States)

    Goodall, Josephine B M; Illsley, Derek; Lines, Robert; Makwana, Neel M; Darr, Jawwad A

    2015-02-09

    In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or modifier) solution with a flow of superheated water (at 450 °C and 24.1 MPa), whereupon a crystalline nanoparticle slurry was rapidly formed. Each composition was collected in series, cleaned, freeze-dried, and then characterized using analytical methods, including powder X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, X-ray photoelectron spectroscopy, and UV-vis spectrophotometry. Photocatalytic activity of the samples toward the decolorization of methylene blue dye was assessed, and the results revealed that transition metal dopants tended to reduce the photoactivity while rare earth ions, in general, increased the photocatalytic activity. In general, low dopant concentrations were more beneficial to having greater photodecolorization in all cases.

  16. Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications

    CERN Document Server

    O’Donnell, Kevin

    2010-01-01

    This book provides a snapshot of recent progress in the field of rare-earth-doped group III-nitride semiconductors, especially GaN, but extending to AlN and the alloys AlGaN, AlInN and InGaN. This material class is currently enjoying an upsurge in interest due to its ideal suitability for both optoelectronic and spintronic applications. The text first introduces the reader to the historical background and the major theoretical challenges presented when 4f electron systems are embedded in a semiconductor matrix. It details the preparation of samples for experimental study, either by in-situ growth or ion implantation/annealing, and describes their microscopic structural characterisation. Optical spectroscopy is a dominant theme, complicated by site multiplicity, whether in homogeneous hosts or in heterostructures such as quantum dots, and enlivened by the abiding fascination of the energy transfer mechanism between the host material and the lumophore. Finally, the rapid progress towards prospective optoelectro...

  17. Emission properties of Ce-doped alkaline earth borate glasses for scintillator applications

    Science.gov (United States)

    Torimoto, Aya; Masai, Hirokazu; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2017-11-01

    We investigate the photoluminescence (PL) and X-ray-induced luminescence properties of 0.1 mol% Ce-doped MO-B2O3 (M = Ca, Sr, and Ba) glasses. We also determine the Ce3+/(Ce3++Ce4+) ratio by X-ray absorption near-edge structure analyses. The emission intensities of PL, X-ray scintillation, and thermally stimulated luminescence (TSL) depend on the host glass composition. The order of the PL intensity from highest to lowest is as follows: Ca-substituted glass, Ba-substituted glass, and Sr-substituted glass. Our results suggest that the optical absorption edge and quantum yield (QY) are influenced by the local coordination state of Ce3+, which, in turn, is likely to be affected by the optical basicity. The order of the X-ray scintillation intensity from highest to lowest is reverse of that of the PL intensity. This is probably because the interaction probability of X-rays with matter depends on the effective atomic number of the material and the effective atomic number has a stronger influence on the scintillation intensity than does the QY. Though the TSL glow curves reveal that the density and energy depth of the trap sites depend on the substituted alkaline earth oxides, we are unable to correlate the electron spin resonance (ESR) spectra with the TSL results. Therefore, it is considered that the ESR active sites are not responsible for the TSL in these systems.

  18. Axion dark matter detection by laser induced fluorescence in rare-earth doped materials.

    Science.gov (United States)

    Braggio, Caterina; Carugno, Giovanni; Chiossi, Federico; Lieto, Alberto Di; Guarise, Marco; Maddaloni, Pasquale; Ortolan, Antonello; Ruoso, Giuseppe; Santamaria, Luigi; Tasseva, Jordanka; Tonelli, Mauro

    2017-11-09

    We present a detection scheme to search for QCD axion dark matter, that is based on a direct interaction between axions and electrons explicitly predicted by DFSZ axion models. The local axion dark matter field shall drive transitions between Zeeman-split atomic levels separated by the axion rest mass energy m a c 2 . Axion-related excitations are then detected with an upconversion scheme involving a pump laser that converts the absorbed axion energy (~hundreds of μeV) to visible or infrared photons, where single photon detection is an established technique. The proposed scheme involves rare-earth ions doped into solid-state crystalline materials, and the optical transitions take place between energy levels of 4f N electron configuration. Beyond discussing theoretical aspects and requirements to achieve a cosmologically relevant sensitivity, especially in terms of spectroscopic material properties, we experimentally investigate backgrounds due to the pump laser at temperatures in the range 1.9 - 4.2 K. Our results rule out excitation of the upper Zeeman component of the ground state by laser-related heating effects, and are of some help in optimizing activated material parameters to suppress the multiphonon-assisted Stokes fluorescence.

  19. Direct quantification of rare earth doped titania nanoparticles in individual human cells

    Science.gov (United States)

    Jeynes, J. C. G.; Jeynes, C.; Palitsin, V.; Townley, H. E.

    2016-07-01

    There are many possible biomedical applications for titania nanoparticles (NPs) doped with rare earth elements (REEs), from dose enhancement and diagnostic imaging in radiotherapy, to biosensing. However, there are concerns that the NPs could disintegrate in the body thus releasing toxic REE ions to undesired locations. As a first step, we investigate how accurately the Ti/REE ratio from the NPs can be measured inside human cells. A quantitative analysis of whole, unsectioned, individual human cells was performed using proton microprobe elemental microscopy. This method is unique in being able to quantitatively analyse all the elements in an unsectioned individual cell with micron resolution, while also scanning large fields of view. We compared the Ti/REE signal inside cells to NPs that were outside the cells, non-specifically absorbed onto the polypropylene substrate. We show that the REE signal in individual cells co-localises with the titanium signal, indicating that the NPs have remained intact. Within the uncertainty of the measurement, there is no difference between the Ti/REE ratio inside and outside the cells. Interestingly, we also show that there is considerable variation in the uptake of the NPs from cell-to-cell, by a factor of more than 10. We conclude that the NPs enter the cells and remain intact. The large heterogeneity in NP concentrations from cell-to-cell should be considered if they are to be used therapeutically.

  20. Improving the Photoelectric Characteristics of MoS2 Thin Films by Doping Rare Earth Element Erbium.

    Science.gov (United States)

    Meng, Miaofei; Ma, Xiying

    2016-12-01

    We investigated the surface morphologies, crystal structures, and optical characteristics of rare earth element erbium (Er)-doped MoS2 (Er: MoS2) thin films fabricated on Si substrates via chemical vapor deposition (CVD). The surface mopography, crystalline structure, light absorption property, and the photoelectronic characteristics of the Er: MoS2 films were studied. The results indicate that doping makes the crystallinity of MoS2 films better than that of the undoped film. Meanwhile, the electron mobility and conductivity of the Er-doped MoS2 films increase about one order of magnitude, and the current-voltage (I-V) and the photoelectric response characteristics of the Er:MoS2/Si heterojunction increase significantly. Moreover, Er-doped MoS2 films exhibit strong light absorption and photoluminescence in the visible light range at room temperature; the intensity is enhanced by about twice that of the undoped film. The results indicate that the doping of MoS2 with Er can significantly improve the photoelectric characteristics and can be used to fabricate highly efficient luminescence and optoelectronic devices.

  1. First-principles prediction of Si-doped Fe carbide as one of the possible constituents of Earth's inner core

    Science.gov (United States)

    Das, Tilak; Chatterjee, Swastika; Ghosh, Sujoy; Saha-Dasgupta, Tanusri

    2017-09-01

    We perform a computational study based on first-principles calculations to investigate the relative stability and elastic properties of the doped and undoped Fe carbide compounds at 200-364 GPa. We find that upon doping a few weight percent of Si impurities at the carbon sites in Fe7C3 carbide phases, the values of Poisson's ratio and density increase while VP, and VS decrease compared to their undoped counterparts. This leads to marked improvement in the agreement of seismic parameters such as P wave and S wave velocity, Poisson's ratio, and density with the Preliminary Reference Earth Model (PREM) data. The agreement with PREM data is found to be better for the orthorhombic phase of iron carbide (o-Fe7C3) compared to hexagonal phase (h-Fe7C3). Our theoretical analysis indicates that Fe carbide containing Si impurities can be a possible constituent of the Earth's inner core. Since the density of undoped Fe7C3 is low compared to that of inner core, as discussed in a recent theoretical study, our proposal of Si-doped Fe7C3 can provide an alternative solution as an important component of the Earth's inner core.

  2. Spintronics: Towards room temperature ferromagnetic devices via manganese and rare earth doped gallium nitride

    Science.gov (United States)

    Luen, Melvyn Oliver

    . Simultaneously, post-growth diffusion of ferromagnetic, rare earth species into GaN template thin films also was investigated. Structural, electrical, optical and magnetic characterization of diffused films grown on sapphire was performed. Optimization of the conditions leading to the first successful diffusion of neodymium into GaN thin films, and the magnetic and optical studies that followed are detailed. A mechanism governing and conditions promoting ferromagnetism in rare earth (RE) doped GaN is proposed. The magnetic relationship between two similar and dissimilar rare earth elements, in a single GaN crystal are investigated. Finally, spin valve and magnetic tunnel junction devices based on the magnetic properties of RE-GaN thin films are investigated.

  3. Potency of (doped) rare earth oxide particles and their constituent metals to inhibit algal growth and induce direct toxic effects.

    Science.gov (United States)

    Joonas, Elise; Aruoja, Villem; Olli, Kalle; Syvertsen-Wiig, Guttorm; Vija, Heiki; Kahru, Anne

    2017-09-01

    Use of rare earth elements (REEs) has increased rapidly in recent decades due to technological advances. It has been accompanied by recurring rare earth element anomalies in water bodies. In this work we (i) studied the effects of eight novel doped and one non-doped rare earth oxide (REO) particles (aimed to be used in solid oxide fuel cells and gas separation membranes) on algae, (ii) quantified the individual adverse effects of the elements that constitute the (doped) REO particles and (iii) attempted to find a discernible pattern to relate REO particle physicochemical characteristics to algal growth inhibitory properties. Green algae Raphidocelis subcapitata (formerly Pseudokirchneriella subcapitata) were used as a test species in two different formats: a standard OECD201 algal growth inhibition assay and the algal viability assay (a 'spot test') that avoids nutrient removal effects. In the 24h 'spot' test that demonstrated direct toxicity, algae were not viable at REE concentrations above 1mgmetal/L. 72-hour algal growth inhibition EC50 values for four REE salts (Ce, Gd, La, Pr) were between 1.2 and 1.4mg/L, whereas the EC50 for REO particles ranged from 1 to 98mg/L. The growth inhibition of REEs was presumably the result of nutrient sequestration from the algal growth medium. The adverse effects of REO particles were at least in part due to the entrapment of algae within particle agglomerates. Adverse effects due to the dissolution of constituent elements from (doped) REO particles and the size or specific surface area of particles were excluded, except for La2NiO4. However, the structure of the particles and/or the varying effects of oxide composition might have played a role in the observed effects. As the production rates of these REO particles are negligible compared to other forms of REEs, there is presumably no acute risk for aquatic unicellular algae. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Polarization dependence of two-photon transition intensities in rare-earth doped crystals

    Energy Technology Data Exchange (ETDEWEB)

    Le Nguyen, An-Dien [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    A polarization dependence technique has been developed as a tool to investigate phonon scattering (PS), electronic Raman scattering (ERS), and two-photon absorption (TPA) transition intensities in vanadate and phosphate crystals. A general theory for the polarization dependence (PD) of two-photon transition intensities has been given. Expressions for the polarization dependent behavior of two-photon transition intensities have been tabulated for the 32 crystallographic point groups. When the wavefunctions for the initial and final states of a rare-earth doped in crystals are known, explicit PD expressions with no unknown parameters can be obtained. A spectroscopic method for measuring and interpreting phonon and ERS intensities has been developed to study PrVO4, NdVO4, ErVO4, and TmVO4 crystals. Relative phonon intensities with the polarization of the incident and scattered light arbitrarily varied were accurately predicted and subsequently used for alignment and calibration in ERS measurements in these systems for the first time. Since ERS and PS intensities generally follow different polarization curves as a function of polar angles, the two can be uniquely identified by comparing their respective polarization behavior. The most crucial application of the technique in ERS spectroscopy is the establishment of a stringent test for the Axe theory. For the first time, the F1/F2 ratio extracted from the experimental fits of the ERS intensities were compared with those predicted by theories which include both the second- and third-order contributions. Relatively good agreement between the fitted values of F1/F2 and the predicted values using the second-order theory has been found.

  5. Evidence for interface superconductivity in rare-earth doped CaFe2As2 single crystals

    Science.gov (United States)

    Lv, Bing; Deng, L. Z.; Wei, F. Y.; Xue, Y. Y.; Chu, C. W.

    2014-03-01

    To unravel to the mysterious non-bulk superconductivity up to 49K observed in rare-earth (R =La, Ce, Pr and Nd) doped CaFe2As2 single-crystals whose Tc is higher than that of any known compounds consisting of one or more of its constituent elements of R, Ca, Fe, and As at ambient or under pressures, systematic magnetic, compositional and structural have carried out on different rare-earth-doped (Ca1-xRx) Fe2As2 samples. We have detected extremely large magnetic anisotropy, doping-level independent Tc, unexpected superparamagnetic clusters associated with As vacancies and their close correlation with the superconducting volume fraction, the existence of mesoscopic-2D structures and Josephson-junction arrays in this system. These observations lead us to conjecture that the Tc enhancement may be associated with naturally occurring chemical interfaces and thus provided evidence for the possible interface-enhanced Tc in naturally-grown single crystals of Fe-based superconductors.

  6. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.

    Science.gov (United States)

    Ganem, Joseph; Bowman, Steven R

    2013-11-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

  7. Rare earth doped SnO2 nanoscaled powders and coatings: enhanced photoluminescence in water and waveguiding properties.

    Science.gov (United States)

    Gonçalves, R R; Messaddeq, Y; Aegerter, M A; Ribeiro, S J L

    2011-03-01

    Luminescent Eu3+ and Er3+ doped SnO2 powders have been prepared by Sn4+ hydrolysis followed by a controlled growth reaction using a particle's surface modifier in order to avoid particles aggregation. The powders so obtained doped with up to 2 mol% rare earth ions are fully redispersable in water at pH > 8 and present the cassiterite structure. Particles size range from 3 to 10 nm as determined by Photon Correlation Spectroscopy. Rare earth ions were found to be essentially incorporated into the cassiterite structure, substituting for Sn4+, for doping concentration smaller than 0.05 mol%. For higher concentration they are also located at the particles surface. The presence of Eu3+ ions at the surface of the particles hinder their growth and has therefore allowed the preparation of new materials consisting of water redispersable powders coated with Eu(3+)-beta diketonate complexes. Enhanced UV excited photoluminescence was observed in water. SnO2 single layers with thickness up to 200 nm and multilayer coatings were spin coated on borosilicate glass substrates from the colloidal suspensions. Waveguiding properties were evaluated by the prism coupling technique. For a 0.3 microm planar waveguide single propagating mode was observed with attenuation coefficient of 3.5 dB/cm at 632.8 nm.

  8. Rare-earth doped nanocomposites enable multiscale targeted short-wave infrared imaging of metastatic breast cancer

    Science.gov (United States)

    Pierce, Mark C.; Higgins, Laura M.; Ganapathy, Vidya; Kantamneni, Harini; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.

    2017-02-01

    We are investigating the ability of targeted rare earth (RE) doped nanocomposites to detect and track micrometastatic breast cancer lesions to distant sites in pre-clinical in vivo models. Functionalizing RE nanocomposites with AMD3100 promotes targeting to CXCR4, a recognized marker for highly metastatic disease. Mice were inoculated with SCP-28 (CXCR4 positive) and 4175 (CXCR4 negative) cell lines. Whole animal in vivo SWIR fluorescence imaging was performed after bioluminescence imaging confirmed tumor burden in the lungs. Line-scanning confocal fluorescence microscopy provided high-resolution imaging of RE nanocomposite uptake and native tissue autofluorescence in ex vivo lung specimens. Co-registered optical coherence tomography imaging allowed assessment of tissue microarchitecture. In conclusion, multiscale optical molecular imaging can be performed in pre-clinical models of metastatic breast cancer, using targeted RE-doped nanocomposites.

  9. Preparation of Ultrahigh Potential Gradient of ZnO Varistors by Rare-Earth Doping and Low-Temperature Sintering

    Directory of Open Access Journals (Sweden)

    Lei Ke

    2013-01-01

    Full Text Available The effects of rare-earth doping and low-temperature sintering on electrical properties of ZnO varistors were investigated. The potential gradient (E1mA of the ZnO varistors increased significantly to 2247.2 V/mm after doping 0.08 mol% of Y2O3 and sintering at 800°C for 2 h. The notable decrease of the grain size with the given experimental conditions was the origin for the increase in E1mA. During the process of high-temperature sintering, both the oxygen at the grain boundary interface and the neutralisation of the ions on the depletion layer were directly reduced, which caused the weight loss and the internal derangement of double Schottky barriers.

  10. Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band.

    Science.gov (United States)

    Xing, P; Chen, G F R; Zhao, X; Ng, D K T; Tan, M C; Tan, D T H

    2017-08-22

    Ring resonators on silicon rich nitride for potential use as rare-earth doped amplifiers pumped at 1310 nm with amplification at telecommunications-band are designed and characterized. The ring resonators are fabricated on 300 nm and 400 nm silicon rich nitride films and characterized at both 1310 nm and 1550 nm. We demonstrate ring resonators exhibiting similar quality factors exceeding 10,000 simultaneously at 1310 nm and 1550 nm. A Dysprosium-Erbium material system exhibiting photoluminescence at 1510 nm when pumped at 1310 nm is experimentally demonstrated. When used together with Dy-Er co-doped particles, these resonators with similar quality factors at 1310 nm and 1550 nm may be used for O-band pumped amplifiers for the telecommunications-band.

  11. The manipulated left-handedness in a rare-earth-ion-doped optical fiber by the incoherent pumping field

    Science.gov (United States)

    Zhao, Shun-Cai; Guo, Hong-Wei; Wei, Xiao-Jing

    2017-10-01

    The left-handedness was demonstrated by the simulation with a three-level quantum system in an Er3+ -dopped ZrF4-BaF2-LaF3- AlF3-NaF (ZBLAFN) optical fiber. And the left-handedness can be regulated by the incoherent pumping field. Our scheme may provide a solid candidate other than the coherent atomic vapor for left-handedness, and may extend the application of the rare-earth-ion-doped optical fiber in metamaterials and of the incoherent pumping light field in quantum optics.

  12. Spectroscopic and neutron detection properties of rare earth and titanium doped LiAlO 2 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, Peter T.; Marcial, José; McCloy, John; McDonald, Benjamin S.; Lynn, Kelvin G.

    2017-10-01

    In this study, LiAlO2 crystals doped with rare-earth elements and Ti were produced by the CZ method and spectroscopic and neutron detection properties were investigated. Photoluminescence revealed no clear luminescent activation of LiAlO2 by the rare-earth dopants though some interesting luminescence was observed from secondary phases within the crystal. Gamma-ray pulse height spectra collected using a 137Cs source exhibited only a Compton edge for the crystals. Neutron modeling using Monte Carlo N-Particle Transport Code revealed most neutrons used in the detection setup are thermalized, and while using natural lithium in the crystal growth, which contains 7.6 % 6Li, a 10 mm Ø by 10 mm sample of LiAlO2 has a 70.7 % intrinsic thermal neutron capture efficiency. Furthermore, the pulse height spectra collected using a 241Am-Be neutron source demonstrated a distinct neutron peak.

  13. Optimization of rare-earth-doped amplifiers for space mission through a hardening-by-system strategy

    Science.gov (United States)

    Ladaci, Ayoub; Girard, Sylvain; Mescia, Luciano; Robin, Thierry; Laurent, Arnaud; Cadier, Benoit; Boutillier, Mathieu; Ouerdane, Youcef; Boukenter, Aziz

    2017-02-01

    Rare-earth doped optical fibers (REDF, Er or Er/Yb-doped) are a key component in optical laser sources (REDFS) and amplifiers (REDFA). The high performances of these fiber-based systems made them as promising solution part of gyroscopes, telecommunication systems… However, REDFs are very sensitive to space radiations, so their degradation limits their integration in long term space missions. To overcome this issue, several studies were carried out and some innovations at the component level were proposed by our group such as the Cerium co-doping or the hydrogen loading of the REDF. More recently we initiated an original coupled simulation/experiment approach to improve the REDFA performances under irradiation by acting at the system level and not only at the component itself. This procedure optimizes the amplifier properties (gain, noise figure) under irradiation through simulation. The optimization of the system is ensured using a PSO (Particle Swarm optimization) algorithm. Using some experimental inputs, such as the Radiation Induced Attenuation (RIA) measurements and the spectroscopic features of the fiber, we demonstrate its efficiency to reproduce the amplifier degradation when exposed to radiations in various experimental configurations. This was done by comparing the obtained simulation results to those of dedicated experiments performed on various REDFA architectures. Our results reveal a good agreement between simulations and experimental data (with <2% error). Finally, exploiting the validated codes, we optimized the REDFA design in order to get the best performances during the space mission and not on-ground only.

  14. GeS2-In2S3-CsI Chalcogenide Glasses Doped with Rare Earth Ions for Near- and Mid-IR Luminescence.

    Science.gov (United States)

    Li, Legang; Bian, Junyi; Jiao, Qing; Liu, Zijun; Dai, Shixun; Lin, Changgui

    2016-11-21

    Chalcogenide glass has been considered as a promising host for the potential laser gain and amplifier media operating in near- and mid-IR spectral region. In this work, the IR luminescence spectra of rare earth ions (Tm(3+), Er(3+), and Dy(3+)) doped 65GeS2-25In2S3-10CsI chalcogenide glasses were measured under the excitation of an 808 nm laser diode. To the best of our knowledge, it firstly provides the luminescence spectra of a full near- and mid-IR spectral range from 1 to 4 μm in rare earth ions doped chalcogenide glasses. The results of absorption spectra, luminescence spectra, and fluorescence decay curves were obtained in these samples with singly-, co- and triply-doping behaviors of Tm(3+), Er(3+), and Dy(3+) ions. In order to search possible efficient IR emissions, the luminescence behavior was investigated specifically with the variation of doping behaviors and dopant ions, especially in the samples co- and triply-doped active ions. The results suggest that favorable near- and mid-IR luminescence of rare earth ions can be further modified in chalcogenide glasses through an elaborated design of doping behavior and optically active ions.

  15. Strong broad green UV-excited photoluminescence in rare earth (RE = Ce, Eu, Dy, Er, Yb) doped barium zirconate

    Energy Technology Data Exchange (ETDEWEB)

    Borja-Urby, R. [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico); Diaz-Torres, L.A., E-mail: ditlacio@cio.mx [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico); Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro, Qro. 76000 (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Ciudad de Mexico, D. F. 07730 (Mexico); Meza, O. [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico)

    2011-10-25

    Highlights: > Trivalent rare earth (RE) substitution on Zr{sup 4+} sites in BaZrO{sub 3} lead to band gap narrowing. > RE substitution lead to enhanced blue-green intrinsic emission of nanocrystalline BaZrO{sub 3} > Blue-green hue of BaZrO3:RE depends on RE dopant and excitation UV wavelength > BaZrO3: Dy{sup 3+} PL chromatic coordinates correspond to pure white color coordinates of CIE 1931 model - Abstract: The wet synthesis hydrothermal method at 100 deg. C was used to elaborate barium zirconate (BaZrO{sub 3}) unpurified with 0.5 mol% of different rare earth ions (RE = Yb, Er, Dy, Eu, Ce). Morphological, structural and UV-photoluminescence properties depend on the substituted rare earth ionic radii. While the crystalline structure of RE doped BaZrO{sub 3} remains as a cubic perovskite for all substituted RE ions, its band gap changes between 4.65 and 4.93 eV. Under 267 nm excitation the intrinsic green photoluminescence of the as synthesized BaZrO{sub 3}: RE samples is considerably improved by the substitution on RE ions. For 1000 deg. C annealed samples, under 267 nm, the photoluminescence is dominated by the intrinsic BZO emission. It is interesting to notice that Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+} doped samples present whitish emissions that might be useful for white light generation under 267 nm excitation. CIE color coordinates are reported for all samples.

  16. Monolithically integrated active waveguides and lasers using rare-earth doped spin-on glass

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Sullivan, C.T.; Vawter, G.A. [and others

    1996-09-01

    This LDRD program No. 3505.230 explored a new approach to monolithic integration of active waveguides and rare-earth solid state lasers directly onto III-V substrates. It involved selectively incorporating rare-earth ions into spin-on glasses (SOGs) that could be solvent cast and then patterned with conventional microelectronic processing. The patterned, rare-earth spin-on glasses (RESOGs) were to be photopumped by laser diodes prefabricated on the wafer and would serve as directly integrated active waveguides and/or rare-earth solid state lasers.

  17. Up-conversion in rare earth-doped silica hollow spheres

    Science.gov (United States)

    Fortes, Luís M.; Li, Yigang; Réfega, Ricardo; Clara Gonçalves, M.

    2012-06-01

    In the present work, Er/Yb co-doped silica hollow spheres are prepared in a two-step process. In a first step, polystyrene-core is silica coated in situ by a modified Stöber sol-gel method and in the second one, the sacrificial polystyrene core is thermally removed. The core-shell and the hollow spheres are characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy (PL). PL measurements show up-conversion phenomena upon excitation at 975 nm, through the emission of blue (˜490 nm), green (˜523 nm and ˜536 nm) and red (˜655 nm) light. The up-conversion phenomena are discussed and modelled. The developed model explains the up-conversion phenomena of Er/Yb co-doped silica hollow spheres, with special agreement for high Yb/Er ratio.

  18. White emission materials from glass doped with rare Earth ions: A review

    Energy Technology Data Exchange (ETDEWEB)

    Yasaka, P.; Kaewkhao, J., E-mail: mink110@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Physics Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, 73000 (Thailand)

    2016-03-11

    Solid State Lighting (SSL) based devices are predicted to play a crucial role in the coming years. Development of W-LED, which have an edge over traditional lighting sources due to their compact size, higher reliability, shock resistance, interesting design possibilities, higher transparency and an extremely long lifetime. Over the fifteen trivalent lanthanide ions, Dy{sup 3+} ions doped glasses are most appropriate for white light generation because of the fact that it exhibits two intense emission bands corresponds to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} (magnetic dipole) and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} (electric dipole) transitions at around 480-500 nm and 580-600 nm pertaining to blue and yellow regions respectively. In this work, the developments of Dy3+ doped in several glass structures for white emitting materials application have reviewed. Properties of Dy{sup 3+} doped in glasses were discussed for use as a solid state lighting materials application.

  19. The effect of surface OH-population on the photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation

    NARCIS (Netherlands)

    Du, P.; Bueno-López, A.; Verbaas, M.; Almeida, A.R.; Makkee, M.; Moulijn, J.A.; Mul, Guido

    2008-01-01

    Commercial TiO2 (P25, from Degussa) was modified with variable amounts of La, Ce, Y, Pr, Sm (generally rare earth (RE)), by thermal treatment of physical mixtures of TiO2 and the nitrates of the various RE. Doping of P25 with RE, combined with calcination at 600 or 800 °C, yields materials with

  20. Design and length optimization of an adiabatic coupler for on-chip vertical integration of rare-earth-doped double tungstate waveguide amplifiers

    NARCIS (Netherlands)

    Mu, Jinfeng; Sefünç, Mustafa; García Blanco, Sonia Maria

    2014-01-01

    The integration of rare-earth doped double tungstate waveguide amplifiers onto passive technology platforms enables the on-chip amplification of very high bit rate signals. In this work, a methodology for the optimized design of vertical adiabatic couplers between a passive Si3N4 waveguide and the

  1. Physical and optical absorption studies of Fe{sup 3+} - ions doped lithium borate glasses containing certain alkaline earths

    Energy Technology Data Exchange (ETDEWEB)

    Bhogi, Ashok [VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, Telangana (India); Kumar, R. Vijaya [School of Physics, University of Hyderabad, Hyderabad, Telangana (India); Kistaiah, P., E-mail: pkistaiah@yahoo.com [Department of Physics, Osmania University, Hyderabad, Telangana (India)

    2016-05-23

    Iron ion doped lithium borate glasses with the composition 15RO-25Li{sub 2}O-59B{sub 2}O{sub 3}-1Fe{sub 2}O{sub 3} (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to {sup 6}A{sub 1g}(S) → 4E{sub g} (G) of Fe{sup 3+} ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties is discussed.

  2. Microwave-Assisted Adsorptive Desulfurization of Model Diesel Fuel Using Synthesized Microporous Rare Earth Metal-Doped Zeolite Y

    Directory of Open Access Journals (Sweden)

    N. Salahudeen

    2015-06-01

    Full Text Available The microwave-assisted adsorptive desulfurization of model fuel (thiophene in n-heptane was investigated using a synthesized rare earth metal-doped zeolite Y (RE Y. Crystallinity of the synthesized zeolite was 89.5%, the silicon/aluminium (Si/Al molar ratio was 5.2, the Brunauer–Emmett–Teller (BET surface area was 980.9 m2/g, and the pore volume and diameter was 0.3494 cm3/g and 1.425 nm, respectively. The results showed that the microwave reactor could be used to enhance the adsorptive desulfurization process with best efficiency of 75% at reaction conditions of 100 °C and 15 minutes. The high desulfurization effect was likely due to the higher efficiency impact of microwave energy in the interaction between sulfur in thiophene and HO-La(OSiAl.

  3. Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide

    Science.gov (United States)

    Li, Jinhuan; Yang, Xia; Yu, Xiaodan; Xu, Leilei; Kang, Wanli; Yan, Wenhua; Gao, Hongfeng; Liu, Zhonghe; Guo, Yihang

    2009-01-01

    Rare-earth oxide-doped titania nanocomposites (RE 3+/TiO 2, where RE = Eu 3+, Pr 3+, Gd 3+, Nd 3+, and Y 3+) were prepared by a one-step sol-gel-solvothermal method. The products exhibited anatase phase structure, mesoporosity, and interesting surface compositions with three oxygen species and two titanium species. The products were used as the photocatalysts to degrade a partially hydrolysis polyacrylamide (HPAM) under UV-light irradiation, a very useful polymer in oil recovery. For comparison, Degussa P25 and as-prepared pure TiO 2 were also tested under the same conditions. The enhanced photocatalytic activity was obtained on as-prepared Eu 3+ (Gd 3+, Pr 3+)/TiO 2 composites, and the reasons were explained. Finally, the degradation pathway of HPAM over the RE 3+/TiO 2 composite was put forward based on the intermediates produced during the photocatalysis procedure.

  4. Optical properties and size distribution of the nanocolloids made of rare-earth ion-doped NaYF4

    Science.gov (United States)

    Patel, Darayas N.; Lewis, Ashley; Wright, Donald M.; Lewis, Danielle; Valentine, Rueben; Valentine, Maucus; Wessley, Dennis; Sarkisov, Sergey; Darwish, Abdalla M.

    2015-03-01

    In this paper we investigate optical properties and size distribution of the nano-colloids made of trivalent rare-earth ion doped fluorides: holmium and ytterbium, thulium and ytterbium, and erbium and ytterbium co-doped NaYF4. These materials were synthesized by using simple co-precipitation synthetic method. The initially prepared micro-crystals had very weak or no visible upconversion fluorescence signals when being pumped with a 980-nm laser. The fluorescence intensity significantly increased after the crystals were annealed at a temperature of 400°C - 600°C undergoing the transition from cubic alpha to hexagonal beta phase of the fluoride host. Nano-colloids of the crystals were made in polar solvents using the laser ablation and ball milling methods. Size analyses of the prepared nano-colloids were conducted using a dynamic light scatterometer and atomic force microscope. The nano-colloids were filled in holey PCFs and their fluorescent properties were studied and the feasibility of new a type of fiber amplifier/laser was evaluated.

  5. Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Janek, Joanna, E-mail: janek.joanna@gmail.com; Sołtys, Marta; Żur, Lidia; Pietrasik, Ewa; Pisarska, Joanna; Pisarski, Wojciech A.

    2016-09-01

    Series of lead-free borate glasses with different oxide modifiers and lanthanide ions were prepared. The effect of oxide modifiers MO (M = Ca, Sr, Ba) on spectroscopic properties of trivalent Ln{sup 3+} (Ln = Eu, Er, Pr) were systematically investigated. Especially, the luminescence spectra of Ln{sup 3+}-doped lead-free borate glasses are presented and discussed in relation to the impact of selective components (CaO, SrO and BaO). Several spectroscopic parameters, such as the fluorescence intensity ratio R/O (Eu{sup 3+}) and measured luminescence lifetimes for the {sup 5}D{sub 0} (Eu{sup 3+}), {sup 4}I{sub 13/2} (Er{sup 3+}) and {sup 1}D{sub 2} (Pr{sup 3+}) excited states of lanthanide ions were analyzed in details. The research proved that spectroscopic properties of trivalent Ln{sup 3+} depend significantly on kind of presence oxide modifiers MO (M = Ca, Sr, Ba) in glass host matrices. - Highlights: • Luminescence of Ln{sup 3+}-doped borate glasses was presented and discussed. • Effect of glass modifiers on spectroscopic properties of rare earths was studied. • Measured luminescence lifetimes of Ln{sup 3+} (Ln = Eu, Er, Pr) were analyzed. • Luminescence intensity ratios R/O (Eu{sup 3+}) were determined.

  6. Robust Visible and Infrared Light Emitting Devices Using Rare-Earth-Doped GaN

    National Research Council Canada - National Science Library

    Steckl, Andrew

    2006-01-01

    Rare earth (RE) dopants (such as Er, Eu, Tm) in the wide bandgap semiconductor (WBGS) GaN are investigated for the fabrication of robust visible and infrared light emitting devices at a variety of wavelengths...

  7. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    Science.gov (United States)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  8. Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Luke B.; Witcher, Jon J.; Troy, Neil; Krol, Denise M. [Department of Applied Science, University of California Davis, Davis, California 95616 (United States); Reis, Signo T.; Brow, Richard K. [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States)

    2012-07-15

    We have investigated waveguide writing in Er-Yb doped zinc polyphosphate glass using a femtosecond laser with a repetition rate of 1 KHz. We find that fabrication of good waveguides requires a glass composition with an O/P ratio of 3.25. The dependence on laser writing parameters including laser fluence, focusing conditions, and scan speed is reported. Waveguide properties together with absorption and emission data indicate that these glasses can be used for the fabrication of compact, high gain amplifying devices.

  9. Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass

    Science.gov (United States)

    Fletcher, Luke B.; Witcher, Jon J.; Troy, Neil; Reis, Signo T.; Brow, Richard K.; Krol, Denise M.

    2012-07-01

    We have investigated waveguide writing in Er-Yb doped zinc polyphosphate glass using a femtosecond laser with a repetition rate of 1 KHz. We find that fabrication of good waveguides requires a glass composition with an O/P ratio of 3.25. The dependence on laser writing parameters including laser fluence, focusing conditions, and scan speed is reported. Waveguide properties together with absorption and emission data indicate that these glasses can be used for the fabrication of compact, high gain amplifying devices.

  10. Ultraslow Light Propagation in an Inhomogeneously Broadened Rare-Earth Ion-Doped Crystal

    Science.gov (United States)

    Baldit, E.; Bencheikh, K.; Monnier, P.; Levenson, J. A.; Rouget, V.

    2005-09-01

    We show that coherent population oscillations effect allows us to burn a narrow spectral hole (26 Hz) within the homogeneous absorption line of the optical transition of an erbium ion-doped crystal. The large dispersion of the index of refraction associated with this hole permits us to achieve a group velocity as low as 2.7m/s with a transmission of 40%. We especially benefit from the inhomogeneous absorption broadening of the ions to tune both the transmission coefficient, from 40% to 90%, and the light group velocity from 2.7m/s to 100m/s.

  11. Advancing radiation balanced lasers (RBLs) in rare-earth (RE)-doped solids

    Energy Technology Data Exchange (ETDEWEB)

    Hehlen, Markus Peter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-21

    These slides cover the following topics: Mid-IR lasers in crystals using two-tone RBL (Single-dopant two-tone RBLs: Tm3+, Er3+, and Co-doped two-tone RBLs: (Yb3+, Nd3+) and (Ho3+, Tm3+); Advanced approaches to RBL crystals (Precursor purification, Micro-pulling-down crystal growth, and Bridgman crystal growth); Advanced approaches to RBL fibers (Materials for RBL glass fibers, Micro-structured fibers for RBL, and Fiber preform synthesis); and finally objectives.

  12. Injection Laser Using Rare Earth Doped GaN Thin Films for Visible and Infrared Applications

    Science.gov (United States)

    2010-05-01

    MBE control software: Crystal V7. Fig 3.3 Spectrum of residual gas analyzer (RGA). Fig 3.4 RHEED pattern on (a) 2d wurtzite and (b) 3d cubic GaN...mixture subflow will help reactant gas of main flow to reach the surface and promote 2D growth but suppress 3D growth. The effect of AlN and GaN buffer...reported by Chu-Kung. 1.3. Rare Earth Elements: Mysterious Lighting Sources Rare earth (RE) elements, also called Lanthanides , include fifteen

  13. Characterization of rare-earth doped Si 3 N4 /SiC micro/nanocomposites

    Directory of Open Access Journals (Sweden)

    Peter Tatarko

    2010-03-01

    Full Text Available Influence of various rare-earth oxide additives (La2O3, Nd2O3, Sm2O3, Y2O3, Yb2O3 and Lu2O3 on the mechanical properties of hot-pressed silicon nitride and silicon nitride/silicon carbide micro/nano-composites has been investigated. The bimodal character of microstructures was observed in all studied materials where elongated β-Si3N4 grains were embedded in the matrix of much finer Si3N4 grains. The fracture toughness values increased with decreasing ionic radius of rare-earth elements. The fracture toughness of composites was always lower than that of monoliths due to their finer Si3N4/SiC microstructures. Similarly, the hardness and bending strength values increased with decreasing ionic radius of rare-earth elements either in monoliths or composites. On the other hand, the positive influence of finer microstructure of the composites on strength was not observed due to the present defects in the form of SiC clusters and non-reacted carbon zones. Wear resistance at room temperature also increased with decreasing ionic radius of rare-earth element. Significantly improved creep resistance was observed in case either of composite materials or materials with smaller radius of RE3+.

  14. Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions

    Czech Academy of Sciences Publication Activity Database

    Kostka, Petr; Zavadil, Jiří; Iovu, M.S.; Ivanova, Z. G.; Furniss, D.; Seddon, A.B.

    2015-01-01

    Roč. 648, NOV 5 (2015), s. 237-243 ISSN 0925-8388 R&D Projects: GA ČR GAP106/12/2384 Institutional support: RVO:67985891 ; RVO:67985882 Keywords : chalcogenide glasses * rare earth ions * low-temperature photoluminescence * optical transmission Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 3.014, year: 2015

  15. Efficient dual-wavelength excitation of Tb3+ emission in rare-earth doped KYF4 cubic nanocrystals dispersed in silica sol-gel matrix

    Science.gov (United States)

    del-Castillo, J.; Yanes, A. C.; Santana-Alonso, A.; Méndez-Ramos, J.

    2014-11-01

    Energy transfer from Ce3+ to Tb3+ ions under UV excitation, giving rise to visible emissions, is investigated in sol-gel derived transparent nano-glass-ceramics containing cubic KYF4 nanocrystals, for different doping concentrations of rare-earth ions. Moreover, visible emissions of Tb3+ are also obtained under near-infrared excitation through energy transfer from Yb3+ ions by means of cooperative up-conversion processes. Thus, Ce3+-Tb3+-Yb3+ doped nano-glass-ceramics can be activated in a dual-wavelength mode yielding efficient blue-green emissions of particular interest in photovoltaic silicon solar cells and white-light emitting diodes.

  16. Electronic Characteristics of Rare Earth Doped GaN Schottky Diodes

    Science.gov (United States)

    2013-03-21

    233U and 235U) and plutonium (239Pu) must fall within the limitations of the detector. These isotopes primarily undergo alpha decay [3, 4], which might...2001). Portal, freight and vehicle monitor performance using scintillating glass fiber detectors for the detection of plutonium in the Illicit...Trafficking Radiation Assessment Program. Journal of Radioanalytical and Nuclear Chemistry , 248, 699–705. [7] McHale, Stephen R. “The Effects of Rare Earth

  17. Study the influence of zinc oxide addition on cobalt doped alkaline earth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, F., E-mail: F.Ahmad378@yahoo.com [Department of Physics, Faculty of Science, Alazhar University (Girls Branch), Nasr City, Cairo (Egypt); Hassan Aly, E. [Department of Physics, Faculty of Science, Ain Shams University, P.O. Box 11566, Abbassia, Cairo (Egypt); Atef, M.; ElOkr, M.M. [Department of Physics, Faculty of Science, Alazhar University, Nasr City, Cairo (Egypt)

    2014-04-01

    Highlights: • The glassy system xZnO–(79.9−x)B{sub 2}O{sub 3}–20BaO–0.1Co{sub 3}O{sub 4} was prepared by a quenching method. • XRD patterns revealed that the amorphous nature of the present glasses matrix. • The results show that Zn{sup 2+} ions occupy both forming and modifying positions. • Optical parameters are reported as a function of ZnO content. - Abstract: The glasses of the composition 79.9B{sub 2}O{sub 3}–20BaO–0.1Co{sub 3}O{sub 4} doped with different concentrations of ZnO (5, 10, 15, 20, 25 and 30 mol%) were prepared using melt quenching technique. Various studies such as XRD, density, theoretical optical basicity, FT-IR and optical absorption have been carried out to study the role of ZnO on the physical and structural properties of the investigated system. Powder X-ray diffraction patterns confirmed the glassy nature of all the glassy samples. The density and molar volume of glassy samples showed opposite behavior to each other. An increment of the theoretical optical basicity with increasing ZnO content, which is due to an increase in the polarizability and a decrease in the single bond strength is observed. FT-IR analysis revealed that an increase in non-bridging oxygen’s (NBO’s) up to ZnO ⩽ 15 mol% and then a decrease at ZnO > 15 mol%. The results indicated that the Zn{sup 2+} ions are likely to occupy network modifier positions at a concentration of ZnO ⩽ 15 mol%. Above which these ions occupy network forming positions. From ultraviolet absorption edges calculations, the optical band gap energy and steepness parameter decrease whilst Urbach energy and refractive index increase by the addition of ZnO up to 15 mol% above which then the behavior follows reversal trend. The values of the crystal field strength and the interelectronic repulsion Racah parameter calculated from the optical transitions energies of cobalt doped glassy samples. All prepared samples exhibit blue color, indicating that mostly Co ions are acted upon

  18. Prospects for rare earth doped GaN lasers on Si

    OpenAIRE

    Steckl, Andrew J.; Park, Jeong Ho; John M. Zavada

    2007-01-01

    The recent surge of interest and research activity in Si-based lasers underscores the potential benefits that full capability in photonics could bring to the Si world. We highlight some of the recent advances in lasing based on emission from rare earth (RE) elements contained in GaN heteroepitaxially grown on Si. This approach has led to the first demonstration of visible lasing on Si. We discuss the current understanding of RE lasing sites in GaN, the intimate relationship between materials ...

  19. Laser refrigeration of rare-earth doped sodium-yttrium-fluoride nanowires

    Science.gov (United States)

    Zhou, Xuezhe; Roder, Paden B.; Smith, Bennett E.; Pauzauskie, Peter J.

    2017-02-01

    Hexagonal sodium yttrium fluoride (β-NaYF4) crystals are currently being studied for a wide range of applications including color displays, solar cells, photocatalysis, and bio-imagβing. β-NaYF4 has also been predicted to be a promising host material for laser refrigeration of solids. However, due to challenges with growing Czochralski β- NaYF4 single-crystals, laser refrigeration of bulk β-NaYF4 has not yet been achieved6. Recently hydrothermal processing has been reported to produce Yb-doped β-NaYF4 nanowires (NWs) that undergo laser refrigeration during single-beam optical trapping experiments in heavy water. The local refrigeration of the individual nanowire is quantified through the analysis of its Brownian motion through the analysis of forward scattered light that is focused onto a quadrant photodiode. The individual β-NaYF4 nanowires show maximum local cooling of 9°C below ambient conditions. Here we present the emission lifetime for the 4S3/2 - 4I15/2 transition for Er(III) ions in Yb/Er-codoped -NaYF4 NW ensembles was measured to be (220 +/- 6) μs using a an electron multiplying charge coupled device (EMCCD) as a detector with high spatial resolution. This lifetime is consistent with values reported in the literature.

  20. Thermoluminescence of double fluorides doped with rare earths; Termoluminiscencia de fluoruros dobles dopados con tierras raras

    Energy Technology Data Exchange (ETDEWEB)

    Azorin N, J.; Sanchez R, A. [UAM-I, 09340 Mexico D.F. (Mexico); Khaidukov, N.M. [Kurnakov Institute of General and Inorganic Chemistry, 119991 Moscow (Russian Federation)

    2004-07-01

    In this work the thermoluminescent characteristics of double fluorides K{sub 2}YF{sub 5}, K{sub 2}GdF{sub 5} and K{sub 2}LuF{sub 5} doped are presented with Tb{sup 3+}, studied in the interval of temperature from 30 to 400 C. The materials that presented better answer to the irradiation with particles beta and with ultraviolet light they were the K{sub 2}YF{sub 5}: Tb (1% at. Tb{sup 3+}) and the K{sub 2}LuF{sub 5}: Tb (1% at. Tb{sup 3+}); while the K{sub 2}YF{sub 5}: Tb to high concentrations (10% and 20% at. Tb{sup 3+}) and the K{sub 2}LuF{sub 5}: Tb (1% at. Tb{sup 3+}) and the K{sub 2}LuF{sub 5}: Tb (1% at. Tb{sup 3+}) they presented an acceptable answer in front of the gamma radiation. The intensity of the Tl answer induced in these materials is a decisive factor to continue studying its dosimetric characteristics, what allows to consider them as the base for the development of potential materials to use them in the dosimetry of beta particles, of the UV light of the gamma radiation using the thermoluminescence method. (Author)

  1. Luminescence properties of rare earth doped metal oxide nanostructures: A case of Eu-ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, D. [School of Basic Sciences, Centurion University of Technology and Management, Odisha-752050 India (India); Acharya, B. S. [Department of Physics, C.V. Raman College of Engineering, Bhubaneswar, Odisha, India-752054 (India); Panda, N. R., E-mail: nihar@iitbbs.ac.in [School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha-751013 India (India)

    2016-05-06

    The present study reports the growth and luminescence properties of Eu doped ZnO nanostructures. The experiment has been carried out by synthesizing the materials by simple wet-chemical method. X-ray diffraction (XRD) studies show expansion of ZnO lattice with the incorporation of Eu ions which has been confirmed from the appearance of Eu{sub 2}O{sub 3} as a minor phase in the XRD pattern. The estimation of crystallite size from XRD results matches closely with the results obtained from transmission electron microscopy. Further, these results show the formation of nanosized Eu-ZnO particles of average size around 60 nm stacked on each other. FTIR studies show the presence of both Zn-O and Eu-O modes in the spectra supporting the results obtained from XRD. The interesting results obtained from photoluminescence (PL) measurements show the presence of both band edge emission in UV region and the defect emissions in violet, blue and green region. The appearance of {sup 5}D{sub 0}→{sup 7}F{sub J} transitions of Eu{sup 3+} ions in red region clearly suggests the possible occurrence of energy transfer between the energy states of ZnO host and Eu{sup 3+} ions.

  2. Synthesis, structural and optical properties of pure and rare-earth ion doped TiO{sub 2} nanowire arrays by a facile hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Bandi, Vengala Rao; Raghavan, Chinnambedu Murugesan; Grandhe, Bhaskar kumar; Kim, Sang Su [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Jang, Kiwan, E-mail: kwjang@changwon.ac.kr [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Shin, Dong-Soo [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Yi, Soung-Soo [Department of Photonics, Silla University, Busan 617-736 (Korea, Republic of); Jeong, Jung-Hyun [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2013-11-29

    Single crystalline pure and rare-earth metal ions (Eu{sup 3+} and Ce{sup 3+}) doped TiO{sub 2} nanowire arrays were prepared on conductive fluorine doped indium tin oxide substrates by a facile hydrothermal method. Initially the conditions and parameters were optimized to prepare the high quality TiO{sub 2} nanowire arrays in the absence of organic additives. The average diameter and length of the TiO{sub 2} nanowire were found to be ∼ 30–50 nm and ∼ 0.5–1.5 μm, respectively. The formations of rutile phase structure in all the samples were confirmed by x-ray diffractometric analysis while the transmission electron microscopy confirms the single crystallinity and the maximum orientation of growth direction along [001] for the as-grown TiO{sub 2} nanowire. The optical properties of all the samples were analyzed using photoluminescence spectroscopy. The photocatalytic properties of the pure and doped TiO{sub 2} were investigated for the decomposition of organic toludine blue-O dye under ultraviolet irradiation. The result demonstrates that the Ce{sup 3+}: TiO{sub 2} decomposed almost 90% of the organic dye within 80 min. - Highlights: • Rare-earth (RE) doped TiO{sub 2} nanowire arrays were prepared by hydrothermal method • RE doping enhanced the growth rate of TiO{sub 2} nanowire arrays • The catalysts used to check their photocatalytic activity by toludine blue-O dye • RE doped TiO2 act as unprecedented photocatalyst for organic dye decomposition.

  3. Structural, electrical and magnetic properties of rare-earth and transition element co-doped bismuth ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vivek, E-mail: vermavivek.neel@gmail.com

    2015-08-25

    Highlights: • Sm-doping increases the symmetry and decreases the second phase formation. • Ferromagnetic, ferroelectric and dielectric properties enhanced with doping. • M–H loops represents weak ferromagnetic (FM) behavior. • A modification in dielectric constant is observed due to doping of Mn, Co and Cr. • Saturation polarization (P{sub s}), remnant polarization (P{sub r}) and coercive field (E{sub c}) increased with doping. - Abstract: Pure and doped multiferroic samples of bismuth ferrites (BFO) were successfully synthesized by the sol–gel technique. Detailed investigations were made on the influence of (Sm and Mn, Co, Cr) co-doping on structural, electrical, ferroelectric and magnetic properties of the BFO. A structural phase transformation from rhombohedral to orthorhombic with co-doping is confirmed through XRD. It is also observed that Sm-doping increases the symmetry and decreases the second phases noticeably. Microstructure investigation using the scanning electron microscope showed a reduction of grain size with doping in BFO. Magnetic hysteresis loops showed that retentivity (Mr), coercivity (Hc) and saturation magnetization (Ms) of the doped samples were improved. Furthermore, the co-doping enhances the dielectric properties as a result of the reduction in the Fe{sup 2+} ions and oxygen vacancies. The room temperature P–E loop study shows that ferroelectric properties are strongly depend on doping.

  4. Structural/surface characterization and catalytic evaluation of rare-earth (Y, Sm and La) doped ceria composite oxides for CH3SH catalytic decomposition

    Science.gov (United States)

    He, Dedong; Chen, Dingkai; Hao, Husheng; Yu, Jie; Liu, Jiangping; Lu, Jichang; Liu, Feng; Wan, Gengping; He, Sufang; Luo, Yongming

    2016-12-01

    A series of rare earth (Y, Sm and La) doped ceria composite oxides and pure CeO2 were synthesized and evaluated by conducting CH3SH catalytic decomposition test. Several characterization studies, including XRD, BET, Raman, H2-TPR, XPS, FT-IR, CO2-TPD and CH3SH-TPD, were undertaken to correlate structural and surface properties of the obtained ceria-based catalysts with their catalytic performance for CH3SH decomposition. More oxygen vacancies and increased basic sites exhibited in the rare earth doped ceria catalysts. Y doped ceria sample (Ce0.75Y0.25O2-δ), with a moderate increase in basic sites, contained more oxygen vacancies. More structural defects and active sites could be provided, and a relatively small amount of sulfur would accumulate, which resulted in better catalytic performance. The developed catalyst presented good catalytic behavior with stability very similar to that of typical zeolite-based catalysts reported previously. However, La doped ceria catalyst (Ce0.75La0.25O2-δ) with the highest alkalinity was not the most active one. More sulfur species would be adsorbed and a large amount of cerium sulfide species (Ce2S3) would accumulate, which caused deactivation of the catalysts. The combined effect of increased oxygen vacancies and alkalinity led to the catalytic stability of Ce0.75Sm0.25O2-δ sample was comparable to that of pure CeO2 catalyst.

  5. Computer modelling of defect structure and rare earth doping in LiCaAlF sub 6 and LiSrAlF sub 6

    CERN Document Server

    Amaral, J B; Valerio, M E G; Jackson, R A

    2003-01-01

    This paper describes a computational study of the mixed metal fluorides LiCaAlF sub 6 and LiSrAlF sub 6 , which have potential technological applications when doped with a range of elements, especially those from the rare earth series. Potentials are derived to represent the structure and properties of the undoped materials, then defect properties are calculated, and finally solution energies for rare earth elements are calculated, enabling preferred dopant sites and charge compensation mechanisms to be predicted.

  6. Ethyl Acetate Abatement on Copper Catalysts Supported on Ceria Doped with Rare Earth Oxides.

    Science.gov (United States)

    Carabineiro, Sónia Alexandra Correia; Konsolakis, Michalis; Marnellos, George Emmanouil-Nontas; Asad, Muhammad Faizan; Soares, Olívia Salomé Gonçalves Pinto; Tavares, Pedro Bandeira; Pereira, Manuel Fernando Ribeiro; Órfão, José Joaquim de Melo; Figueiredo, José Luís

    2016-05-17

    Different lanthanide (Ln)-doped cerium oxides (Ce0.5Ln0.5O1.75, where Ln: Gd, La, Pr, Nd, Sm) were loaded with Cu (20 wt. %) and used as catalysts for the oxidation of ethyl acetate (EtOAc), a common volatile organic compound (VOC). For comparison, both Cu-free (Ce-Ln) and supported Cu (Cu/Ce-Ln) samples were characterized by N₂ adsorption at -196 °C, scanning/transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and temperature programmed reduction in H₂. The following activity sequence, in terms of EtOAc conversion, was found for bare supports: CeO₂ ≈ Ce0.5Pr0.5O1.75 > Ce0.5Sm0.5O1.75 > Ce0.5Gd0.5O1.75 > Ce0.5Nd0.5O1.75 > Ce0.5La0.5O1.75. Cu addition improved the catalytic performance, without affecting the activity order. The best catalytic performance was obtained for Cu/CeO₂ and Cu/Ce0.5Pr0.5O1.75 samples, both achieving complete EtOAc conversion below ca. 290 °C. A strong correlation was revealed between the catalytic performance and the redox properties of the samples, in terms of reducibility and lattice oxygen availability. Νo particular correlation between the VOC oxidation performance and textural characteristics was found. The obtained results can be explained in terms of a Mars-van Krevelen type redox mechanism involving the participation of weakly bound (easily reduced) lattice oxygen and its consequent replenishment by gas phase oxygen.

  7. Why the quest of new rare earth doped phosphors deserves to go on

    Science.gov (United States)

    Moine, B.; Bizarri, G.

    2006-01-01

    The scientific research on phosphors has a long history starting more than 100 years ago. But recently the appearance of new kinds of displays and lighting devices (plasma display, fluorescent lamp without mercury…) induced an increase of the research of new phosphors with better luminous efficiency than those available up to now. It has been shown that the behaviour of "classical" phosphors in a plasma display panel is quite different than in a cathode ray tube and that the vacuum ultraviolet (VUV) excitation process has to be studied with care in order to improve the phosphors efficiency. It is well established now that a good phosphor for electronic or ultraviolet excitation, is not necessarily a good choice for excitation in VUV. This is probably due to the fact that the excitation process is very different in that case. We will illustrate this difference on the well-known LaPO 4:Ce 3+, Tb 3+ phosphor. The penetration depth of the VUV photons is extremely small inducing a large contribution of the surface of the phosphor. We have shown that, for most phosphors, only a few tens of nanometers of the phosphor grain are really useful and we propose a way to realize phosphors powders using less than 20% of doped materials. However the traps of the material play a crucial role in the fluorescence properties due to the fact that autoionization process is likely when dopant ions absorb high energy photons. Fast aging process is one of the main drawbacks of VUV excitation. We demonstrate this effect on BaMgAl 10O 17:Eu 2+, the blue emitting phosphor widely used up to now in Plasma Displays Panels and fluorescent lamps. Low energetic efficiency is another drawback of VUV excitation that can be solved only in the framework of fundamental studies. Quantum cutting emission may be a solution and calls new research to find good phosphors characterized by a high quantum efficiency, a high fluorescence efficiency and an adapted colorimetry.

  8. Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Li Jinhuan [Key Laboratory of Education Ministry for Enhanced Oil Recovery, Daqing Petroleum Institute, Daqing 163318 (China); Yang Xia; Yu Xiaodan; Xu, Leilei [School of Chemistry, Northeast Normal University, Changchun 130024 (China); Kang Wanli [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China) and Enhanced Oil Recovery Research Center, China University of Petroleum, Qingdao 266555 (China)], E-mail: kangwanli@126.com; Yan Wenhua; Gao Hongfeng; Liu Zhonghe [Key Laboratory of Education Ministry for Enhanced Oil Recovery, Daqing Petroleum Institute, Daqing 163318 (China); Guo Yihang [School of Chemistry, Northeast Normal University, Changchun 130024 (China)], E-mail: guoyh@nenu.edu.cn

    2009-01-01

    Rare-earth oxide-doped titania nanocomposites (RE{sup 3+}/TiO{sub 2}, where RE = Eu{sup 3+}, Pr{sup 3+}, Gd{sup 3+}, Nd{sup 3+}, and Y{sup 3+}) were prepared by a one-step sol-gel-solvothermal method. The products exhibited anatase phase structure, mesoporosity, and interesting surface compositions with three oxygen species and two titanium species. The products were used as the photocatalysts to degrade a partially hydrolysis polyacrylamide (HPAM) under UV-light irradiation, a very useful polymer in oil recovery. For comparison, Degussa P25 and as-prepared pure TiO{sub 2} were also tested under the same conditions. The enhanced photocatalytic activity was obtained on as-prepared Eu{sup 3+} (Gd{sup 3+}, Pr{sup 3+})/TiO{sub 2} composites, and the reasons were explained. Finally, the degradation pathway of HPAM over the RE{sup 3+}/TiO{sub 2} composite was put forward based on the intermediates produced during the photocatalysis procedure.

  9. Enhanced blue and green emission in rare-earth-doped GaN electroluminescent devices by optical photopumping

    Science.gov (United States)

    Lee, D. S.; Steckl, A. J.

    2002-09-01

    Electroluminescence (EL) from rare-earth-doped GaN (GaN:RE) EL devices (ELD) emission has been observed to be greatly enhanced by ultraviolet (UV) photopumping. With radiation from a HeCd laser (325 nm) both blue (from GaN:Tm) and green (from GaN:Er) EL brightness have been enhanced up to 2 orders of magnitude, depending on bias conditions. We explain the luminescence increase by the following mechanism: photoelectrons generated by above GaN band-gap excitation are accelerated by the electric field along with electrically injected electrons and both types of carriers contribute to EL emission through RE impact excitation. The EL intensity increases monotonically with increasing applied bias and with photopumping power. The photopumped-induced EL gain is most efficient at relatively low bias, reaching values of 50-100×. This increase in EL emission can be applied to flat panel displays with enhanced brightness, especially blue, and with improved color balance. Other applications include UV indicators and detectors, and infrared emitters.

  10. Thermal effects on light emission in Yb sup 3 sup + -sensitized rare-earth doped optical glasses

    CERN Document Server

    Gouveia, E A; Gouveia-Neto, A S

    2001-01-01

    The temperature effect upon infrared-to-visible frequency upconversion fluorescence emission in off-resonance infrared excited Yb sup 3 sup + -sensitized rare-earth doped optical glasses is theoretically and experimentally investigated. We have examined samples of Er3+/Yb sup 3 sup + -codoped Ga sub 2 S sub 3 :La sub 2 O sub 3 chalcogenide glasses and germanosilicate optical fibers, and Ga2O3:La sub 2 O sub 3 chalcogenide and fluoroindate glasses codoped with Pr sup 3 sup + /Yb sup 3 sup + , excited off-resonance at 1.064 mu m. The experimental results revealed thermal induced enhancement in the visible upconversion emission intensity as the samples temperatures were increased within the range of 20 deg C to 260 deg C. The fluorescence emission enhancement is attributed to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium-sensitizer. A theoretical approach that takes into account a sensitizer temperature dependent effective absorption cross section, which depends u...

  11. Control of the visible emission in the SrZrO3 nano-crystals with the rare earth ion doping.

    Science.gov (United States)

    Kim, Dong Hwan; Kim, Ji Hyun; Chung, Jin Seok; Lee, Yunsang

    2013-11-01

    We investigated the emission property of SrZrO3 nano-crystals (NCs) with the doping of rare earth (RE) ions, Eu3+ and Tm3+, by using 325 nm photo-excitation. SrZrO3 NCs show a sizable violet-blue emission, while the Eu3+ and Tm3+ ions are well known to be good red and blue phosphors, respectively. Combined emissions of the host and the RE ion dopant might suggest a new white luminescent source. The RE ion doped SrZrO3 NCs were initially synthesized by using the combustion method, and then the as-synthesized crystals were annealed at different temperatures from 650 degrees C to 1450 degrees C. The Eu3+-doped SrZrO3 NCs showed the sharp red emission near 600 nm, in addition to a violet-blue emission of the host material in itself. While the red emission is enhanced in the high temperature post-annealing, the blue emission is suppressed in an opposite way. This close relation between the emissions of the host and dopant was observed similarly in the Tm3+-doped NCs. We could control the emission property in the SrZrO3:Eu3+/Tm3+ NCs from blue to red by thermal annealing and RE ion doping.

  12. First-principles prediction of electronic structure and magnetic ordering of rare-earth metals doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.J. [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China); Mi, W.B., E-mail: miwenbo@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China); Wang, X.C. [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300191 (China); Bai, H.L. [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China)

    2014-12-25

    Highlights: • Doping of La and Ce is more energetically favorable than Pr, Nd and Eu doping. • The magnetic ground state of Pr, Nd and Eu doped ZnO display weak AFM. • The Ce doped ZnO displays FM ground states. • n-Type doping were obtained by replacing a Zn with Ce, Pr and Nd in ZnO. - Abstract: The electronic structure and magnetism of RE (RE = La, Ce, Pr, Nd and Eu) doped ZnO are investigated by first-principles calculations. La doping can result in a diamagnetic ground state. The total magnetic moment of a single Ce, Pr, Nd and Eu doped ZnO are 0.92, 1.97, 3.01 and 6.82 μ{sub B} in a 2 × 2 × 2 supercell, respectively, followed by the appearance of spin splitting for initially O p and Zn s, d states at low energy range in the valence band and the localized magnetic influence of RE on ZnO. Doping of La and Ce is more stable than that of Pr, Nd and Eu. The ground states of Pr, Nd and Eu dopants at Zn sites are weakly antiferromagnetic, but the ground state of Ce dopants is ferromagnetic. Meanwhile, n-type doping is observed in Ce, Pr and Nd-doped ZnO systems as the donor states are near the conduction bands.

  13. Thermochemistry of rare earth doped uranium oxides Ln x U 1-x O 2-0.5x+y (Ln = La, Y, Nd)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Navrotsky, Alexandra

    2015-10-01

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10–50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO1.5, UO2 and UO3 in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of LnxU1-xO2-0.5x+y is similar to that of UO2 to UO3 for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U5+, U6+, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements.

  14. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  15. Physical and spectroscopic studies of Cr{sup 3+} doped mixed alkaline earth oxide borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Samdani, E-mail: samdanimohd82@gmail.com [Department of Engineering, Salalah College of Technology, Salalah (Oman); Ramadevudu, G. [Department of Physics, Vasavi College of Engineering, Ibrahimbagh, Hyderabad 500031, Telangana (India); Chary, M. Narasimha; Shareefuddin, Md. [Department of Physics, Osmania University, Hyderabad 500007, Telangana (India)

    2017-01-15

    A series of mixed alkaline earth oxide glasses xMgO-(30-x)BaO-69.8B{sub 2}O{sub 3}-0.2Cr{sub 2}O{sub 3} were prepared and studied using electron paramagnetic resonance (EPR), optical absorption, Raman spectroscopy and photoluminescence experimental techniques. The optical absorption spectra revealed the characteristic octahedral symmetry of Cr{sup 3+}ions through three broad band transitions {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 2g}(F), {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 1g}(F), and {sup 4}A{sub 2g}(F)→ {sup 2}T{sub 1g}(P). The crystal field (Dq) and Racah parameters (B and C), the optical band gap and Urbach energies of the glass samples were also reported along with the physical properties like density and molar volume. In the EPR spectra three resonance signals corresponding to Cr3+ ions were observed. A broad signal with g = 5.110 was observed which belongs to the isolated Cr3+ centers localized in the strongly distorted octahedral (rhombic) sites of the glass network, a narrow signal (g = 1.960) corresponding to the Cr{sup 3+} centers in the weekly distorted (cubic) sites of the glass network, and a third very broad signal (g = 2.210) was also observed corresponding to Cr{sup 3+}- Cr{sup 3+} paired centers coupled by magnetic dipolar interaction. Another resonance signal with effective value g ≈ 4.220 was attributed to Fe{sup 3+} ions impurity. The number of spins (N) participating in the resonance and susceptibility (χ) values at room temperature were reported and their values varied in a non-linear manner with the composition exhibiting mixed oxide effect. The estimated molecular bonding coefficients (α) values indicated stronger ionic contribution. The Raman spectral investigations were carried out. The Photoluminescence spectra bands near 690 and 750 nm correspond to the Cr{sup 3+} centers in high and low field sites respectively. - Highlights: • Spectroscopic studies were made on alkaline earth borate glasses. • Three resonance signals

  16. Structural elucidation and magnetic behavior evaluation of rare earth (La, Nd, Gd, Tb, Dy) doped BaCoNi-X hexagonal nano-sized ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Abdul, E-mail: abdulmajeed2276@gmail.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Raheem, Faseeh ur; Hussain, Altaf; Iqbal, F. [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, Government College University, Lahore 54000 (Pakistan); Akhtar, Majid Niaz [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Shakir, Imran [Deanship of Scientific Research, College of Engineering, King Saud University, PO Box 800, Riyadh 11421 (Saudi Arabia); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2016-06-15

    Rare-earth (RE=La{sup 3+}, Nd{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) doped Ba{sub 2}NiCoRE{sub x}Fe{sub 28−x}O{sub 46} (x=0.25) hexagonal ferrites were synthesized for the first time via micro-emulsion route, which is a fast chemistry route for obtaining nano-sized ferrite powders. These nanomaterials were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), as well as vibrating sample magnetometer (VSM). The XRD analysis exhibited that all the samples crystallized into single X-type hexagonal phase. The crystalline size calculated by Scherrer's formula was found in the range 7–19 nm. The variations in lattice parameters elucidated the incorporation of rare-earth cations in these nanomaterials. FTIR absorption spectra of these X-type ferrites were investigated in the wave number range 500–2400 cm{sup −1.} Each spectrum exhibited absorption bands in the low wave number range, thereby confirming the X-type hexagonal structure. The enhancement in the coercivity was observed with the doping of rare-earth cations. The saturation magnetization was lowered owing to the redistribution of rare-earth cations on the octahedral site (3b{sub VI}). The higher values of coercivity (664–926 Oe) of these nanomaterials suggest their use in longitudinal recording media. - Graphical abstract: Nano-sized rare-earth (RE=La{sup 3+}, Nd{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) doped Ba{sub 2}NiCoRE{sub x}Fe{sub 28−x}O{sub 46} (x=0.25) hexagonal ferrites were synthesized for the first time via micro-emulsion route and the crystallite size was found in the range 7–19 nm. The enhancement in the coercivity was observed with the doping of rare-earth cations. The higher values of coercivity (664–926 Oe) of these nanomaterials suggest their use in longitudinal recording media. - Highlights: • Micro-emulsion route was used to synthesize Ba{sub 2}NiCoRE{sub x}Fe{sub 28−x}O{sub 46} ferrites. • The crystallite size was found

  17. Quantum efficiency of silica-coated rare-earth doped yttrium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes-Vásquez, D., E-mail: dcervant@cnyn.unam.mx [Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, B.C., México (Mexico); Contreras, O.E.; Hirata, G.A. [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, C.P. 22800 Ensenada, B.C., México (Mexico)

    2013-11-15

    The photoluminescent properties of rare earth-activated white-emitting Y{sub 2}SiO{sub 5}:Ce,Tb nanocrystalline phosphor prepared by two different methods, pressure-assisted combustion synthesis and sol–gel, were studied. The synthesized phosphor samples were post-annealed at 1373 K and 1623 K in order to obtain the X1-Y{sub 2}SiO{sub 5} and X2-Y{sub 2}SiO{sub 5} phases, respectively, which were confirmed by X-ray diffraction measurements. Photoluminescence analysis showed the contribution of two blue-emission bands within the 380–450 nm region originating from 5d–4f transitions in Ce{sup 3+} ions and a well-defined green emission of Tb{sup 3+} ions located at 545 nm corresponding to {sup 5}D{sub 4}→{sup 7}F{sub 5} electronic transitions. Thereafter, Y{sub 2}SiO{sub 5}:Ce,Tb powders were coated with colloidal silica in order to investigate the effect of silica coatings on their luminescent properties. Absolute fluorescence quantum efficiency measurements were carefully performed, which revealed an increase of 12% of efficiency in coated compared with bare-Y{sub 2}SiO{sub 5}:Ce,Tb phosphor. -- Highlights: • Y{sub 2}SiO{sub 5}:Ce,Tb phosphor powders were successfully coated with colloidal silica. • Post-annealing treatments improved the quantum efficiency of silica-coated Y{sub 2}SiO{sub 5}:Ce,Tb phosphors. • Absolute fluorescence quantum efficiency measurements showed an increase of 12%.

  18. Toxicity of Nine (Doped) Rare Earth Metal Oxides and Respective Individual Metals to Aquatic Microorganisms Vibrio fischeri and Tetrahymena thermophila.

    Science.gov (United States)

    Kurvet, Imbi; Juganson, Katre; Vija, Heiki; Sihtmäe, Mariliis; Blinova, Irina; Syvertsen-Wiig, Guttorm; Kahru, Anne

    2017-07-05

    Despite the increasing use of rare earth elements (REEs) and oxides (REOs) in various technologies, the information on their ecotoxicological hazard is scarce. Here, the effects of La(3+), Ce(3+), Pr(3+), Nd(3+), Gd(3+), CeO₂, and eight doped REOs to marine bacteria Vibrio fischeri and freshwater protozoa Tetrahymena thermophila were studied in parallel with REO dopant metals (Co(2+), Fe(3+), Mn(2+), Ni(2+), Sr(2+)). The highest concentrations of REOs tested were 100 mg/L with protozoa in deionized water and 500 mg/L with bacteria in 2% NaCl. Although (i) most REOs produced reactive oxygen species; (ii) all studied soluble REEs were toxic to bacteria (half-effective concentration, EC50 3.5-21 mg metal/L; minimal bactericidal concentration, MBC 6.3-63 mg/L) and to protozoa (EC50 28-42 mg/L); and (iii) also some dopant metals (Ni(2+), Fe(3+)) proved toxic (EC50 ≤ 3 mg/L), no toxicity of REOs to protozoa (EC50 > 100 mg/L) and bacteria (EC50 > 500 mg/L; MBC > 500 mg/L) was observed except for La₂NiO₄ (MBC 25 mg/L). According to kinetics of V. fischeri bioluminescence, the toxicity of REEs was triggered by disturbing cellular membrane integrity. Fortunately, as REEs and REOs are currently produced in moderate amounts and form in the environment insoluble salts and/or oxides, they apparently present no harm to aquatic bacteria and protozoa.

  19. Enhanced Electroresponse of Alkaline Earth Metal-Doped Silica/Titania Spheres by Synergetic Effect of Dispersion Stability and Dielectric Property.

    Science.gov (United States)

    Yoon, Chang-Min; Lee, Seungae; Cheong, Oug Jae; Jang, Jyongsik

    2015-09-02

    A series of alkaline earth metal-doped hollow SiO2/TiO2 spheres (EM-HST) are prepared as electrorheological (ER) materials via sonication-mediated etching method with various alkaline earth metal hydroxides as the etchant. The EM-HST spheres are assessed to determine how their hollow interior and metal-doping affects the ER activity. Both the dispersion stability and the dielectric properties of these materials are greatly enhanced by the proposed one-step etching method, which results in significant enhancement of ER activity. These improvements are attributed to increased particle mobility and interfacial polarization originating from the hollow nature of the EM-HST spheres and the effects of EM metal-doping. In particular, Ca-HST-based ER fluid exhibits ER performance which is 7.1-fold and 3.1-fold higher than those of nonhollow core/shell silica/titania (CS/ST) and undoped hollow silica/titania (HST)-based ER fluids, respectively. This study develops a versatile and simple approach to enhancing ER activity through synergetic effects arising from the combination of dispersion stability and the unique dielectric properties of hollow EM-HST spheres. In addition, the multigram scale production described in this experiment can be an excellent advantage for practical and commercial ER application.

  20. The Role of Defect Complexes in the Magneto-Optical Properties of Rare Earth Doped Gallium Nitride

    Science.gov (United States)

    Mitchell, Brandon

    Wide band gap semiconductors doped with rare earth ions (RE) have shown great potential for applications in optoelectronics, photonics, and spintronics. The 1.54mum Erbium (Er) emission has been extensively utilized in optical fiber communications, and Europium (Eu) is commonly used as a red color component for LEDs and fluorescence lamps. For the realization of spintronic-type devices, a dilutely doped semiconductor that exhibits room temperature ferromagnetic behavior would be desirable. Such behavior has been observed in GaN:Er. Furthermore, it was demonstrated that strain may play an important role in the control of this ferromagnetism; however, this requires further investigation. One motivation of this work is the realization of an all solid state white light source monolithically integrated into III/V nitride semiconductor materials, ideally GaN. For this, the current AlGaAs-based LEDs need to be replaced. One approach for achieving efficient red emission from GaN is dilute doping with fluorescent ions. In this regard, Eu has consistently been the most promising candidate as a dopant in the active layer for a red, GaN based, LED due to the sharp 5D0 to 7F2 transitions that result in red emission around 620nm. The success of GaN:Eu as the active layer for a red LED is based on the ability for the Eu ions to be efficiently excited by electron hole pairs. Thus, the processes by which energy is transferred from the host to the Eu ions has been studied. Complications arise, however, from the fact that Eu ions incorporate into multiple center environments, the structures of which are found to have a profound influence on the excitation pathways and efficiencies of the Eu ion. Therefore the nature of Eu incorporation and the resulting luminescence efficiency in GaN has been extensively investigated. By performing a comparative study on GaN:Eu samples grown under a variety of controlled conditions and using a variety of experimental techniques, the majority site has

  1. Enhancement of pump absorption efficiency by bending and twisting of double clad rare earth doped fibers (Conference Presentation)

    Science.gov (United States)

    Koška, Pavel; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Kasik, Ivan; Podrazký, Ondřej

    2017-05-01

    chaotic double-clad fiber amplifier," Opt. Lett., vol. 26, no. 12, pp. 872-874, (2001). [2] Kouznetsov, D., Moloney, J. V., "Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry," J. Opt. Soc. Am. B, vol. 19, no. 6, pp. 1259-1263, June 2002. [3] Li, Y., Jackson, S. D., Fleming, S., "High absorption and low splice loss properties of hexagonal double-clad fiber," IEEE Photonics Technol. Lett., vol 16, no. 11, pp. 2502-2504, Nov. 2004. [4] Ko\\vska, P. and Peterka, P., "Numerical analysis of pump propagation and absorption in specially tailored double-clad rare-earth doped fiber," Optical and Quantum Electronics, vol. 47, no. 9, pp. 3181-3191 (2015). [5] Ko\\vska, P., Peterka, P., and Doya, V., "Numerical modeling of pump absorption in coiled and twisted double-clad fibers," IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 2 (2016). [6] Ko\\vska, P., Peterka, P., Aubrecht, J., Podrazký, O., Todorov, F., Becker, M., Baravets, Y., Honzátko, P., and Kašík, I., "Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers," Opt. Express, vol. 24, no. 1, pp. 102-107 (2016).

  2. Facile fabrication and photoluminescence properties of rare-earth-doped Gd₂O₃ hollow spheres via a sacrificial template method.

    Science.gov (United States)

    Gao, Yu; Zhao, Qian; Fang, Qinghong; Xu, Zhenhe

    2013-08-21

    Rare-earth-doped gadolinium oxide (Gd₂O₃) hollow spheres were successfully fabricated on a large scale by using PS spheres as sacrificed templates and urea as a precipitating agent, which involved the deposition of an inorganic coating Gd(OH)CO3 on the surface of PS spheres and subsequent calcination in the air. Various approaches including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), as well as photoluminescence spectroscopies were used to characterize the samples. The results indicate that the sample is composed of uniform hollow Gd₂O₃ spheres with a mean particle size of about 2.3 μm and these hollow spheres have the mesoporous shell that are composed of a large amount of nanoparticles. The possible mechanism of evolution from PS spheres to the amorphous precursor and to the final hollow Gd₂O₃ spheres have been proposed. The as-obtained samples show strong light emission with different colors corresponding to different Ln³⁺ ions under ultraviolet-visible light and electron-beam excitation. Under 980 nm NIR irradiation, Gd₂O₃:Ln³⁺ (Ln³⁺ = Yb³⁺/Er³⁺, Yb³⁺/Tm³⁺ and Yb³⁺/Ho³⁺) exhibit characteristic up-conversion (UC) emissions of red (Er³⁺, ²H11/2, ⁴S3/2, ⁴F9/2 → ⁴I15/2), blue (Tm³⁺, ¹G₄ → ³H₆) and green (Ho³⁺, ⁵F₄, ⁵S₂ → ⁵I₈), respectively. These merits of multicolor emissions in the visible region endow these kinds of materials with potential applications in the field of light display systems, lasers, optoelectronic devices, and MRI contrast agents.

  3. Crystal growth, characterization and theoretical studies of alkaline earth metal-doped tetrakis(thiourea)nickel(II) chloride

    Science.gov (United States)

    Agilandeshwari, R.; Muthu, K.; Meenatchi, V.; Meena, K.; Rajasekar, M.; Aditya Prasad, A.; Meenakshisundaram, SP.

    2015-02-01

    The influence of Sr(II)-doping on the properties of tetrakis(thiourea)nickel(II) chloride (TTNC) has been described. The reduction in the intensity observed in powder X-ray diffraction of doped specimen and slight shifts in vibrational frequencies of doped specimens confirm the lattice stress as a result of doping. Surface morphological changes due to doping of the Sr(II) are observed by scanning electron microscopy. The incorporation of metal into the host crystal lattice was confirmed by energy dispersive X-ray spectroscopy. Lattice parameters are determined by single crystal XRD analysis. The thermogravimetric and differential thermal analysis studies reveal the purity of the materials and no decomposition is observed up to the melting point. The nonlinear optical properties of the doped and undoped specimens were studied. Theoretical calculations were performed using the Density functional theory (DFT) method with B3LYP/LANL2DZ as the basis set. The molecular geometry and vibrational frequencies of TTNC in the ground state were calculated and the observed structural parameters of TTNC are compared with parameters obtained from single crystal X-ray studies. The atomic charge distributions are obtained by Mulliken charge population analysis. The first-order molecular hyperpolarizability, polarizability and dipole moment were derived.

  4. Structure and optical properties of rare earth doped Y{sub 2}O{sub 3} waveguide films derived by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.; Zhang, W.; Lou, L.; Brioude, A.; Mugnier, J

    2004-06-30

    Pure and rare earth ions doped yttrium oxide (Y{sub 2}O{sub 3}) waveguide films were prepared by a simple sol-gel process and dip-coating technique. Y{sub 2}O{sub 3} were successfully synthesized by hydrolysis of yttrium acetate. The structural evolution of Y{sub 2}O{sub 3} films with annealing temperature was investigated by X-ray diffraction, Fourier transform infrared spectroscopy, waveguide Raman spectroscopy and High-resolution transmission electron microscopy. The propagation loss of Y{sub 2}O{sub 3} thin films at 632.8 nm measured by scattering-detection method is approximately 1.5 dB/cm. The fluorescence of Er{sup 3+} and Eu{sup 3+} doped Y{sub 2}O{sub 3} waveguide thin films were studied under the waveguide configuration. The fluorescence intensities evolution with annealing temperature of Y{sub 2}O{sub 3}:Er{sup 3+} films has been studied and was explained by the multi-phonon non-radiative processes. Our results show that Y{sub 2}O{sub 3} is a good host material for optically active waveguide thin films and sol-gel process is a useful method to derive pure and doped Y{sub 2}O{sub 3} waveguide films.

  5. Thermoelectric properties of rare earth-doped n-type Bi2Se0∙ 3Te2 ...

    Indian Academy of Sciences (India)

    -Type R0.2Bi1.8Se0.3Te2.7 (R = Ce, Y and Sm) nanopowders were synthesized by hydrothermal method and the thermoelectric properties of the bulk samples made by hot-pressing these nanopowders were investigated. The Ce, Y and Sm doping have significant effects on the morphologies of the synthesized ...

  6. Dual function of rare earth doped nano Bi2O3: white light emission and photocatalytic properties.

    Science.gov (United States)

    Dutta, Dimple P; Roy, Mainak; Tyagi, A K

    2012-09-14

    Undoped Bi(2)O(3) and single and double doped Bi(2)O(3) : M (where M = Tb(3+) and Eu(3+)) nanophosphors were synthesized through a simple sonochemical process and characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), EDS, diffuse reflectance (DRS) and photoluminescence (PL) spectrophotometry. The TEM micrographs show that resultant nanoparticles have a rod-like shape. Energy transfer was observed from host to the dopant ions. Characteristic green emissions from Tb(3+) ions and red emissions from Eu(3+) ions were observed. Interestingly, the Commission International de l'Eclairage (CIE) coordinates of the double doped Bi(2)O(3) : Eu(3+)(0.8%) : Tb(3+)(1.2%) nanorods lie in the white light region of the chromaticity diagram and it has a quantum efficiency of 51%. The undoped Bi(2)O(3) showed a band gap of 3.98 eV which is red shifted to 3.81eV in the case of double doped Bi(2)O(3) : Eu(3+)(0.8%) : Tb(3+)(1.2%) nanorods. The photocatalytic activities of undoped nano Bi(2)O(3) and double doped nano Bi(2)O(3) : Eu(3+)(0.8%) : Tb(3+)(1.2%) were evaluated for the degradation of Rhodamine B under UV irradiation of 310 nm. The results showed that Bi(2)O(3) : Eu(3+)(0.8%) : Tb(3+)(1.2%) had better photocatalytic activity compared to undoped nano Bi(2)O(3). The evolution of CO(2) was realized and these results indicated the continuous mineralization of rhodamine B during the photocatalytic process. Thus double doped Bi(2)O(3) : Eu(3+)(0.8%) : Tb(3+)(1.2%) nanorods can be termed as a bifunctional material exhibiting both photocatalytic properties and white light emission.

  7. Structural/surface characterization and catalytic evaluation of rare-earth (Y, Sm and La) doped ceria composite oxides for CH{sub 3}SH catalytic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    He, Dedong; Chen, Dingkai; Hao, Husheng; Yu, Jie; Liu, Jiangping; Lu, Jichang; Liu, Feng [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China); Wan, Gengping [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China); Research Center for Analysis and Measurement, Hainan University, Haikou, 570228 (China); He, Sufang [Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming, 650093 (China); Luo, Yongming, E-mail: environcatalysis222@yahoo.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China)

    2016-12-30

    Highlights: • Ce{sub 0.75}RE{sub 0.25}O{sub 2-δ} (RE = Y, Sm and La) were synthesized by citrate complexation method. • Ce{sub 0.75}Y{sub 0.25}O{sub 2-δ} exhibited the best stability for the decomposition of CH{sub 3}SH. • Cation radius played a key role in determining structure and surface characteristics. • Catalytic behavior depended on synergistic role of oxygen vacancies and basic sites. • Ce{sub 2}S{sub 3} accumulation on the surface was responsible for the deactivation of catalyst. - Abstract: A series of rare earth (Y, Sm and La) doped ceria composite oxides and pure CeO{sub 2} were synthesized and evaluated by conducting CH{sub 3}SH catalytic decomposition test. Several characterization studies, including XRD, BET, Raman, H{sub 2}-TPR, XPS, FT-IR, CO{sub 2}-TPD and CH{sub 3}SH-TPD, were undertaken to correlate structural and surface properties of the obtained ceria-based catalysts with their catalytic performance for CH{sub 3}SH decomposition. More oxygen vacancies and increased basic sites exhibited in the rare earth doped ceria catalysts. Y doped ceria sample (Ce{sub 0.75}Y{sub 0.25}O{sub 2-δ}), with a moderate increase in basic sites, contained more oxygen vacancies. More structural defects and active sites could be provided, and a relatively small amount of sulfur would accumulate, which resulted in better catalytic performance. The developed catalyst presented good catalytic behavior with stability very similar to that of typical zeolite-based catalysts reported previously. However, La doped ceria catalyst (Ce{sub 0.75}La{sub 0.25}O{sub 2-δ}) with the highest alkalinity was not the most active one. More sulfur species would be adsorbed and a large amount of cerium sulfide species (Ce{sub 2}S{sub 3}) would accumulate, which caused deactivation of the catalysts. The combined effect of increased oxygen vacancies and alkalinity led to the catalytic stability of Ce{sub 0.75}Sm{sub 0.25}O{sub 2-δ} sample was comparable to that of pure Ce

  8. Tunable Solid-State Quantum Memory Using Rare-Earth-Ion-Doped Crystal, Nd3(+):GaN

    Science.gov (United States)

    2017-04-26

    than the desired c-plane), which posses differing growth rates and lead to the observed structuring of the periodic sample. Fig. 26 TEM images...interaction between light and the ions in a semiconductor. We investigated the energy level structure of the neodymium (Nd) ions embedded into the...provide a tunable memory. To vary the applied field, we designed and grew a series of Nd-doped GaN p-i-n structures , strain-balanced superlattice

  9. Visible light responsive sulfated rare earth doped TiO(2)@fumed SiO(2) composites with mesoporosity: enhanced photocatalytic activity for methyl orange degradation.

    Science.gov (United States)

    Zhan, Changchao; Chen, Feng; Yang, Jintao; Dai, Daoxing; Cao, Xiaohua; Zhong, Mingqiang

    2014-02-28

    Visible light (VL) responsive mesoporous sulfated rare earth ions (Nd(3+), La(3+), Y(3+)) incorporated TiO2@fumed SiO2 photocatalysts were prepared by sol-gel method with P123 (EO20PO70EO20) as a template. The resultant samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption measurements (BET), UV-vis diffuse reflectance spectroscopy, photoluminescence (PL) spectra, Fourier transform infrared spectroscopy (FTIR) and thermal analyses (TG-DTA). In comparison with nondoped sample, RE-doped samples showed not only an increase in the surface areas and pore volumes, but also an inhibition of titania phase transition from anatase to rutile. Photo-degradation results revealed that RE-doped samples could greatly improve the photocatalytic activity, and the experimental degradation rates of methyl orange (MO) were higher than that catalyzed by undoped samples and Degussa P-25, obeyed the order of Nd(3+)>La(3+)>Y(3+). Nd-doped sample expressed the highest photoactivity and the optimal dosage was 0.25mol%, which resulted in MO degradation rates of 99.8% and 90.05% irradiation under UV for 60min and VL (λ>400nm) for 40h, respectively. The enhanced photocatalytic activity could be attributed to the higher specific area, good crystallinity, strong VL absorption and effective separation of photogenerated electron-hole pairs in the catalyst. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Evaluation of rare earth oxides doping SnO2.(Co1/4,Mn3/4O-based varistor system

    Directory of Open Access Journals (Sweden)

    Alessandro Dibb

    2006-09-01

    Full Text Available The present paper aims to verify the inuence of rare earth oxide such as lanthanum (La2O3 and neodymium (Nd2O3 doping SnO2 + 0.25%CoO + 0.75%MnO2 + 0.05%Ta2O5 system. The analysis focus on microstructural inuence on electrical properties. Microstructural analysis were made by using Transmission Electron Microscopy (TEM at different regions of the samples. From such analysis it was found that La2O3 and Nd2O3 oxides cause heterogeneous segregation and precipitation at grain boundary concerning cobalt and manganese, decreasing the nonohmic electrical properties, as discussed, likely due to the increasing of grain boundary non-active potential barriers.

  11. Atomic-Level Structure Studies of Rare-Earth Doped Sodium Phosphate Glasses Using High Energy X-Ray Diffraction and Complementary Techniques

    Science.gov (United States)

    Amir, Faisal

    The atomic-scale structure of a series of (RE2 O3)x ( Na2O)y ( P2O5)1- x-y glasses (RE = Pr, Nd, Er) where has been characterized by high-energy X-ray diffraction technique (HEXRD). In addition, differential thermal analysis (DTA), Fourier transform infrared (FTIR) spectroscopy, and absorption and emission spectroscopy in visible and near IR ranges have been used as supplementary tools to validate structural features obtained from HEXRD techniques.Structural features such as inter-atomic distances and coordination numbers and their dependence on the concentration of RE 2 O3 have been obtained by analyzing pair distribution functions (PDF) extracted from diffraction data. Coordination numbers for P-O, Na-O, O-O, and P-P were found to be independent of the RE 2 O3 concentration. In contrast, the RE-O coordination number varies between ≈ 8 and 7.2 as the RE2 O3 concentration increases from 0.005 to 0.05. The variation of the bond distance between large rare-earth ions (Pr, Nd) and small rare-earth ion (Er) is approximately 0.2 A, which is attributed to lanthanide contraction. The Na-O coordination number in these glasses was observed to ≈ 5.0 as the RE2 O 3 content increases. The overlapping correlation of RE-O, Na-O, and O-O in the same vicinity makes it difficult to calculate these coordination numbers. DTA measurements were used for the investigation of thermal characteristics of glasses. From these measurements, it is evident that the glass transition temperature increases with increasing the RE2 O3 (RE=Pr, Er) content. FTIR was used to inspect the structural changes of the glasses. The doping of RE 2 O3 (RE=Pr, Er) induces depolymerization of the glasses at the Q3 tetrahedral sites. The forming of the ionic linkages between phosphate chains is attributed to the increase in non-bridging oxygen (NBO). The cross-linkages density (CLD) increases with the RE2 O3 (RE=Pr, Er) concentrations. Absorption spectra for x = 0.01 of Er 3+ and 0.005-0.05 for Nd3+ doped

  12. Spectroscopic and optical properties of Nd{sup 3+} doped fluorine containing alkali and alkaline earth zinc-aluminophosphate optical glasses

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasa Rao, A., E-mail: drsrallam@yahoo.co.i [Department of Physics, K.L. University, Green Fields, Vaddeswaram, 522 502 Guntur (Dt.), A.P. (India); Rupa Venkateswara Rao, B.; Prasad, M.V.V.K.S.; Shanmukha Kumar, J.V. [Department of Physics, K.L. University, Green Fields, Vaddeswaram, 522 502 Guntur (Dt.), A.P. (India); Jayasimhadri, M. [Department of Physics, Changwon National University, 9 Sarimdong, Changwon, Kyongnam 641 773 (Korea, Republic of); Rao, J.L. [Department of Physics, Sri Venkateswara University, Tirupati 517 502, A.P. (India); Chakradhar, R.P.S. [Glass Technology Laboratory, Central Glass and Ceramic Research Institute (CSIR), Kolkata 700 032 (India)

    2009-11-01

    Nd{sup 3+} doped fluorine containing zinc-aluminophosphate glasses have been prepared with alkali and alkaline earth content to understand the effect of network modifiers on radiative process. The physical and optical properties of these glasses have been evaluated. The Judd-Ofelt model for the intensity analysis of induced electric dipole transitions has been applied to the measured oscillator strengths of the absorption bands to determine the three phenomenological intensity parameters OMEGA{sub 2}, OMEGA{sub 4} and OMEGA{sub 6} for each glass. Using these parameters, transition probability (A), total transition probability (A{sub T}), branching ratios (beta{sub R}) radiative life times (tau{sub R}) and integrated cross-section (sigma{sub a}) for the stimulated emission have been theoretically calculated for certain excited Nd{sup 3+} fluorescent levels. From the obtained results the conclusion is made about the possibility of using these glasses as laser material.

  13. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation.

    Science.gov (United States)

    Ma, Jin-Gang; Zhang, Cai-Rong; Gong, Ji-Jun; Wu, You-Zhi; Kou, Sheng-Zhong; Yang, Hua; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan

    2015-08-24

    Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs) to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.

  14. Synergistic effects of ultrasonication and ethanol washing in controlling the stoichiometry, phase-purity and morphology of rare-earth doped ceria nanoparticles.

    Science.gov (United States)

    Singh, Kushal; Kumar, Rishu; Chowdhury, Anirban

    2017-05-01

    Over a period of last thirty years, use of ethanol has been historically reported for obtaining nanopowders with low agglomeration for various oxide systems. In addition to these benefits, we show for the first time that treatments in ethanol medium coupled with an ultrasonication step can impart crucial additional advantages in controlling the phase purity and stoichiometry/composition for such systems. This is an important issue especially for any complex multicationic oxide nanoparticles system and hence we selected one of the most popular catalyst systems of doped-ceria (CeO 2 ) nanoparticles with very high (50%) level of rare-earth (lanthanum) doping for this case study. The effect of an ultrasonication combined ethanol treatment was compared with the other solvent media (pure water and ethanol) without ultrasonication. The underlying mechanism for this process involves lowering the deprotonation rate in ethanol medium which eventually reduces the condensation of the individual metal oxides while the ultrasonication ensures the reproducibility of the synthesis by providing a homogeneous colloidal solution for each washing stages. This novel modification in synthesis of nanoparticles aims to provide meaningful solutions in optimising the phase, composition and morphology of multicationic complex system of nanocrystals. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Rare-earth doped YF{sub 3} nanocrystals embedded in sol-gel silica glass matrix for white light generation

    Energy Technology Data Exchange (ETDEWEB)

    Mendez-Ramos, J. [Departamento Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain); Santana-Alonso, A. [Departamento Fisica Basica, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain); Yanes, A.C., E-mail: ayanesh@ull.e [Departamento Fisica Basica, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain); Castillo, J. del [Departamento Fisica Basica, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain); Rodriguez, V.D. [Departamento Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain)

    2010-12-15

    YF{sub 3} nanocrystals triply-doped with Yb{sup 3+}, Ho{sup 3+} and Tm{sup 3+} ions embedded in amorphous silica matrix have been successfully obtained by heat treatment of precursor sol-gel glasses for the first time to our knowledge and confirmed by X-ray diffraction and luminescence measurements. Simultaneous UV and visible efficient up-conversion emissions, with well-resolved Stark structure, under 980 nm infrared pump are observed, indicating the effective partition of rare-earth ions into a crystalline-like environment of the YF{sub 3} nanocrystals. Corresponding energy transfer mechanisms have been analyzed and overall colour emission has been quantified in terms of standard chromaticity diagram. By an adequate doping level and heat treatment temperature of precursor sol-gel glasses, a bright white colour has been accomplished, close to the standard equal energy white light illumination point, with potential applications in photo-electronic devices and information processing.

  16. Efficient Dual-Modal NIR-to-NIR Emission of Rare Earth Ions Co-doped Nanocrystals for Biological Fluorescence Imaging.

    Science.gov (United States)

    Zhou, Jiajia; Shirahata, Naoto; Sun, Hong-Tao; Ghosh, Batu; Ogawara, Makoto; Teng, Yu; Zhou, Shifeng; Sa Chu, Rong Gui; Fujii, Minoru; Qiu, Jianrong

    2013-02-07

    A novel approach has been developed for the realization of efficient near-infrared to near-infrared (NIR-to-NIR) upconversion and down-shifting emission in nanophosphors. The efficient dual-modal NIR-to-NIR emission is realized in a β-NaGdF4/Nd(3+)@NaGdF4/Tm(3+)-Yb(3+) core-shell nanocrystal by careful control of the identity and concentration of the doped rare earth (RE) ion species and by manipulation of the spatial distributions of these RE ions. The photoluminescence results reveal that the emission efficiency increases at least 2-fold when comparing the materials synthesized in this study with those synthesized through traditional approaches. Hence, these core-shell structured nanocrystals with novel excitation and emission behaviors enable us to obtain tissue fluorescence imaging by detecting the upconverted and down-shifted photoluminescence from Tm(3+) and Nd(3+) ions, respectively. The reported approach thus provides a new route for the realization of high-yield emission from RE ion doped nanocrystals, which could prove to be useful for the design of optical materials containing other optically active centers.

  17. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation

    Directory of Open Access Journals (Sweden)

    Jin-Gang Ma

    2015-08-01

    Full Text Available Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.

  18. Thermoluminescence investigations of sol–gel derived and γ-irradiated rare earth (Eu and Nd) doped YAG nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Kurrey, M.S. [Department of Applied Physics, Government Engineering College, Bilaspur 495006 (India); Tiwari, Ashish, E-mail: ashisht048@gmail.com [Department of Chemistry, Government Lahiri College, Chirimiri 497449 (India); Khokhar, M.S.K. [Department of Rural Technology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495006 (India); Kher, R.S. [Department of Physics, Government E.R.R. PG Science College, Bilaspur 495006 (India); Dhoble, S.J. [Department of Physics, RTM Nagpur University, Nagpur 440033 (India)

    2015-08-15

    Nanocrystalline YAG doped with Eu{sup 3+} and Nd{sup 3+} has been synthesized by a sol–gel technique. The prepared nanophosphors were calcined and characterized by XRD, SEM. The XRD analysis revealed well-defined cubic phase. Electron microscopy showed spherical morphologies with an average size of 15–20 nm. The thermoluminescence (TL) properties of as prepared nanophosphors were investigated after γ-irradiation using {sup 60}Co source at room temperature. It has been found that there is a prominent TL glow peak at 290–295 °C for the as prepared doped samples. The TL glow curve showed variation in TL peak intensity as the concentration of dopant is changed. Kinetic data and trap depth for the synthesized samples were calculated by a peak shape method. It has been found that TL response is nonlinear in the range 0.29–1.16 kGy. This paper discusses about the optimal doping concentration of Eu and Nd in YAG nanophosphors. - Highlights: • TL properties of YAG:Eu{sup 3+}/Nd{sup 3+} nanoparticles were investigated after γ-irradiation. • TL peak intensity and glow curve structure varies with concentration of dopant. • Optimal TL intensity was obtained for YAG:Eu{sub 3.0}. and YAG:Nd{sub 3.0}. • Blue-shift in the TL peaks was observed as the gamma dose is increased for YAG:Eu{sub 5.0}. • TL response was found to be nonlinear in the range 0.29–1.16 kGy.

  19. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    Science.gov (United States)

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Photoemission from In-situ Rare-Earth-Doped GaN Grown by MBE and MOCVD

    Science.gov (United States)

    Steckl, Andrew; Lee, Don; Pan, Ming; Heikenfeld, Jason

    2003-03-01

    of excited RE ions. By appropriately choosing the RE dopant, narrow linewidth emission can be obtained at selected wavelengths from the ultraviolet to the infrared. This represents an interesting multi-color emission alternative to conventional bandgap engineering. The deposition of in-situ doped GaN (and AlxGa1-xN:RE ) layers was carried out by MBE and MOCVD. The MBE growth is performed with solid (effusion) sources for group III (Ga, Al) and RE elements (Er, Eu, Tm) and a N2 gas (plasma) source. The MOCVD growth is carried out with MO sources for group III and RE elements and with a hydride (NH3) for group V. The complex relationship between growth mechanisms and RE emission in the GaN layers is becoming better understood. The study of the effects of RE concentration, growth temperature, and III-V ratio on materials properties and on resulting photoemission has led to different models of the relation between growth and RE-based emission mechanisms for MBE- and MOCVD-grown films.

  1. Elaboration, structural and spectroscopic properties of rare earth-doped yttrium-hafnium sol-gel oxide powders for scintillation applications

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva-Ibanez, M.; Le Luyer, C.; Dujardin, C.; Mugnier, J

    2003-12-15

    Hafnium dioxide (HfO{sub 2}) presents a high crystalline density ({approx}10 g/cm{sup 3}) which makes it attractive for host lattice activated by rare earths (RE) for applications as scintillating materials. The potentiality to prepare Eu{sup 3+} and Tb{sup 3+} activated HfO{sub 2} sol-gel powders, with high scintillation yield, is explored. The powders are heat-treated at 1000 deg. C before analyses. The incorporation of yttrium (Y{sup 3+}) in various concentrations is conducted to vary the lattice phase and to stabilize the trivalent terbium ions. The influence of Y{sup 3+} on the microstructure and then on the scintillation properties of the material is presented. A high concentration of Y{sup 3+} (20 mol%) stabilizes pure HfO{sub 2} tetragonal phase whatever RE (1 mol%) doping. The powders with the highest relative scintillation yield are Eu{sup 3+}:HfO2 without Y{sup 3+} incorporation and crystallized into the monoclinic phase and Y{sup 3+} (20 mol%): Tb{sup 3+}:HfO2 crystallized into the tetragonal phase. Sequential energy transfer process is assumed to explain these results.

  2. Effect of surface related organic vibrational modes in luminescent upconversion dynamics of rare earth ions doped nanoparticles.

    Science.gov (United States)

    Wang, Yu; Smolarek, Szymon; Kong, Xianggui; Buma, Wybren Jan; Brouwer, Albert Manfred; Zhang, Hong

    2010-11-01

    Physical and chemical properties of nanoparticles are known to be subject to the surface factors. For their biological/biomedical applications, typically, surface of the nanoparticles has to be modified which inevitably affects their performance. In this work we have studied the interaction between the surface related organic vibrational modes and the luminescent centers--rare earth ions--in one of the most efficient luminescence upconversion nanosystems--NaYF4. Specifically, the surface quenching centers, the surface related luminescent centers, as well as the role of shell properties, are investigated spectroscopically. Our results demonstrate that the surface related high-frequency vibrational modes can be critical to the spectral properties of the nanosystems once the surface is not well separated from the discrete luminescent centers.

  3. High contrast in vivo bioimaging using multiphoton upconversion in novel rare-earth-doped fluoride upconversion nanoparticles

    Science.gov (United States)

    Chen, Guanying; Yang, Chunhui; Prasad, Paras N.

    2013-02-01

    Upconversion in rare-earth ions is a sequential multiphoton process that efficiently converts two or more low-energy photons, which are generally near infrared (NIR) light, to produce anti-Stokes emission of a higher energy photon (e.g., NIR, visible, ultraviolet) using continuous-wave (cw) diode laser excitation. Here, we show the engineering of novel, efficient, and biocompatible NIRin-to-NIRout upconversion nanoparticles for biomedical imaging with both excitation and emission being within the "optical transparency window" of tissues. The small animal whole-body imaging with exceptional contrast (signal-to-noise ratio of 310) was shown using BALB/c mice intravenously injected with aqueously dispersed nanoparticles. An imaging depth as deep as 3.2-cm was successfully demonstrated using thick animal tissue (pork) under cw laser excitation at 980 nm.

  4. Enhancement of Cerenkov luminescence imaging by dual excitation of Er(3+),Yb(3+)-doped rare-earth microparticles.

    Science.gov (United States)

    Ma, Xiaowei; Kang, Fei; Xu, Feng; Feng, Ailing; Zhao, Ying; Lu, Tianjian; Yang, Weidong; Wang, Zhe; Lin, Min; Wang, Jing

    2013-01-01

    Cerenkov luminescence imaging (CLI) has been successfully utilized in various fields of preclinical studies; however, CLI is challenging due to its weak luminescent intensity and insufficient penetration capability. Here, we report the design and synthesis of a type of rare-earth microparticles (REMPs), which can be dually excited by Cerenkov luminescence (CL) resulting from the decay of radionuclides to enhance CLI in terms of intensity and penetration. Yb(3+)- and Er(3+)- codoped hexagonal NaYF4 hollow microtubes were synthesized via a hydrothermal route. The phase, morphology, and emission spectrum were confirmed for these REMPs by power X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectrophotometry, respectively. A commercial CCD camera equipped with a series of optical filters was employed to quantify the intensity and spectrum of CLI from radionuclides. The enhancement of penetration was investigated by imaging studies of nylon phantoms and nude mouse pseudotumor models. the REMPs could be dually excited by CL at the wavelengths of 520 and 980 nm, and the emission peaks overlaid at 660 nm. This strategy approximately doubled the overall detectable intensity of CLI and extended its maximum penetration in nylon phantoms from 5 to 15 mm. The penetration study in living animals yielded similar results. this study demonstrated that CL can dually excite REMPs and that the overlaid emissions in the range of 660 nm could significantly enhance the penetration and intensity of CL. The proposed enhanced CLI strategy may have promising applications in the future.

  5. Enhancement of Cerenkov luminescence imaging by dual excitation of Er(3+,Yb(3+-doped rare-earth microparticles.

    Directory of Open Access Journals (Sweden)

    Xiaowei Ma

    Full Text Available Cerenkov luminescence imaging (CLI has been successfully utilized in various fields of preclinical studies; however, CLI is challenging due to its weak luminescent intensity and insufficient penetration capability. Here, we report the design and synthesis of a type of rare-earth microparticles (REMPs, which can be dually excited by Cerenkov luminescence (CL resulting from the decay of radionuclides to enhance CLI in terms of intensity and penetration.Yb(3+- and Er(3+- codoped hexagonal NaYF4 hollow microtubes were synthesized via a hydrothermal route. The phase, morphology, and emission spectrum were confirmed for these REMPs by power X-ray diffraction (XRD, scanning electron microscopy (SEM, and spectrophotometry, respectively. A commercial CCD camera equipped with a series of optical filters was employed to quantify the intensity and spectrum of CLI from radionuclides. The enhancement of penetration was investigated by imaging studies of nylon phantoms and nude mouse pseudotumor models.the REMPs could be dually excited by CL at the wavelengths of 520 and 980 nm, and the emission peaks overlaid at 660 nm. This strategy approximately doubled the overall detectable intensity of CLI and extended its maximum penetration in nylon phantoms from 5 to 15 mm. The penetration study in living animals yielded similar results.this study demonstrated that CL can dually excite REMPs and that the overlaid emissions in the range of 660 nm could significantly enhance the penetration and intensity of CL. The proposed enhanced CLI strategy may have promising applications in the future.

  6. Thermochemistry of rare earth doped uranium oxides Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} (Ln = La, Y, Nd)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Navrotsky, Alexandra, E-mail: anavrotsky@ucdavis.edu

    2015-10-15

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10–50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO{sub 1.5}, UO{sub 2} and UO{sub 3} in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} is similar to that of UO{sub 2} to UO{sub 3} for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U{sup 5+}, U{sup 6+}, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements. - Highlights: • We synthesize, characterize Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} solid solutions (Ln = La, Y, Nd). • Formation enthalpies become more exothermic with increasing rare earth content. • Oxidation enthalpy of Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} is similar to that of UO{sub 2} to UO{sub 3}. • Direct calorimetric measurements are in good agreement with free energy data.

  7. Luminescence properties of B{sub 2}O{sub 3}–GeO{sub 2}–Gd{sub 2}O{sub 3} scintillating glass doped with rare-earth and transition-metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xin-Yuan, E-mail: sxy5306@126.com [Department of Physics, Jinggangshan University, Ji’an 343009 (China); Jiang, Da-Guo; Wang, Wen-Feng; Cao, Chun-Yan; Li, Yu-Nong; Zhen, Guo-Tai [Department of Physics, Jinggangshan University, Ji’an 343009 (China); Wang, Hong; Yang, Xin-Xin; Chen, Hao-Hong; Zhang, Zhi-Jun [Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhao, Jing-Tai, E-mail: jtzhao@mail.sic.ac.cn [Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2013-07-11

    Novel B{sub 2}O{sub 3}–GeO{sub 2}–Gd{sub 2}O{sub 3} ternary scintillating glasses doped with 1 mol% rare-earth and transition-metal activators were synthesized by melt-quenching method. Their transmittance, photoluminescence (PL) and X-ray excited luminescence (XEL) spectra were investigated. The results suggest that a high content of Gd{sub 2}O{sub 3} is of significance for designing dense glass with density of 6.0 g/cm{sup 3}. And energy transfer from Gd{sup 3+} to the incorporated activators can be realized in the borogermanate glasses. The emission position and decay time can be efficiently tuned by incorporating various kinds of activators. All results imply the developed borogermanate scintillating glass is potential for scintillating fields. -- Highlights: • Glass-forming region of B{sub 2}O{sub 3}–GeO{sub 2}–Gd{sub 2}O{sub 3} ternary system are determined. • Radioluminescence response from transition-metal doped B{sub 2}O{sub 3}–GeO{sub 2}–Gd{sub 2}O{sub 3} glasses. • Radioluminescence response from rare-earth doped B{sub 2}O{sub 3}–GeO{sub 2}–Gd{sub 2}O{sub 3} glasses. • Emission peak position and decay time can be tuneable by incorporating various activators.

  8. 2.0 μm emission of Ho3+ doped germanosilicate glass sensitized by non-rare-earth ion Bi: A new choice for 2.0 μm laser

    Science.gov (United States)

    Cao, Wenqian; Huang, Feifei; Wang, Tao; Ye, Renguang; Lei, Ruoshan; Tian, Ying; Zhang, Junjie; Xu, Shiqing

    2018-01-01

    Non-rare-earth Bi was firstly used as sensitizer on Ho3+: 2.0 μm emission for its mid-infrared applications in successfully prepared germanosilicate glass under 808 nm excitation. Sensitization mechanism has been analyzed theoretically through matched energy transfer processes based on the measured absorption, fluorescence spectra and calculated luminous parameters. Meanwhile, typical broadband near-infrared (NIR) emission band of Bi ions has also been obtained in present germanosilicate glass, which shifts to a longer wavelength with Ho3+ co-doped owing to the different of Bi-related active centers. X-ray Photoelectron Spectroscopy demonstrated that the addition of Ho3+ lead to the part valence conversion among the mixed-valence state of Bi. All results reveal that Bi/Ho co-doped germanosilicate glass might provide a new choice for 2.0 μm laser applications.

  9. Luminescence and photo-thermally stimulated defects creation processes in PbWO{sub 4} crystals doped with trivalent rare-earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Fabeni, P. [Institute of Applied Physics “N.Carrara” (IFAC) of CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Krasnikov, A.; Kärner, T. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Laguta, V.V.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Pazzi, G.P. [Institute of Applied Physics “N.Carrara” (IFAC) of CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Zazubovich, S., E-mail: svet@fi.tartu.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2013-04-15

    In PbWO{sub 4} crystals, doped with various trivalent rare-earth A{sup 3+} ions (A{sup 3+}: La{sup 3+}, Lu{sup 3+}, Y{sup 3+}, Ce{sup 3+}, Gd{sup 3+}), electron (WO{sub 4}){sup 3−} and {(WO_4)"3"−–A"3"+} centers can be created under UV irradiation not only in the host absorption region but also in the energy range around 3.85 eV (Böhm et al., 1999; Krasnikov et al., 2010). Under excitation in the same energy range, the UV emission peak at 3.05–3.20 eV is observed. In the present work, the origin of this emission is investigated in detail by low-temperature time-resolved luminescence methods. Photo-thermally stimulated creation of (WO{sub 4}){sup 3−} and {(WO_4)"3"−–A"3"+} centers is studied also in PbWO{sub 4}:Mo,A{sup 3+} crystals. Various processes, which could explain both the appearance of the UV emission and the creation of the {(WO_4)"3"−–A"3"+}-type centers under irradiation of PbWO{sub 4}: A{sup 3+} crystals in the 3.85±0.35 eV energy range, are discussed. The radiative and non-radiative decay of the excitons localized near A{sup 3+} ions is considered as the most probable mechanism to explain the observed features. -- Highlights: ► UV emission of PbWO{sub 4}: A{sup 3+} (A{sup 3+}: La{sup 3+}, Lu{sup 3+}, Y{sup 3+}, Ce{sup 3+}, and Gd{sup 3+}) crystals is studied. ► The emission is ascribed to the radiative decay of excitons localized near A{sup 3+} ions. ► The excitons are created at 3.85 eV excitation by a two-step process. ► Non-radiative decay of the excitons leads to the creation of (WO{sub 4}){sup 3−}–A{sup 3+} centers.

  10. Mechanism of luminescent emission in BaY{sub 2}F{sub 8} scintillators doped with rare earths; Mecanismos de emissao luminescente nos cintiladores de BaY{sub 2}F{sub 8} dopado com terras raras

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Ana Carolina de Mello

    2013-07-01

    weak. The combined results obtained with these techniques together with an analysis of X-ray absorption spectroscopy (XAS) and X-rays Excited Optical Luminescence (XEOL) allowed the development of a model for the scintillation mechanism for the rare earth doped BaYF systems. (author)

  11. Vacuum ultraviolet spectroscopic properties of rare earth (RE=Ce,Tb,Eu,Tm,Sm)-doped hexagonal KCaGd(PO4)2 phosphate

    Science.gov (United States)

    Zhang, Z. J.; Yuan, J. L.; Duan, C. J.; Xiong, D. B.; Chen, H. H.; Zhao, J. T.; Zhang, G. B.; Shi, C. S.

    2007-11-01

    Hexagonal KCaGd(PO4)2:RE3+ (RE =Ce,Tb,Eu,Tm,Sm) were synthesized by coprecipitation method and their vacuum ultraviolet-ultraviolet (VUV-UV) spectroscopic properties were investigated. The bands at about 165nm in the VUV excitation spectra are attributed to the host lattice absorptions. For Ce3+-doped samples, the bands at 207, 256, 275, and 320nm are assigned to the 4f-5d transitions of Ce3+ in KCaGd(PO4)2. For Tb3+-doped sample, the bands at 203 and 222nm are related to the 4f-5d spin-allowed transitions. For Eu3+-doped sample, the O2--Eu3+ charge-transfer band (CTB) at 229nm is observed, and the fine emission spectrum of Eu3+ indicates that Eu3+ ions prefer to occupy Gd3+ or Ca2+ sites in the host lattice. For Tm3+- and Sm3+-doped samples, the O2--Tm3+ and O2--Sm3+ CTBs are observed to be at 176 and 186nm, respectively. From the standpoints of the absorption band, color purity, and luminescent intensity, Tb3+-doped KCaGd(PO4)2 is a potential candidate for 172nm excited green plasma display phosphors.

  12. Synthesis and thermoelectric properties of rare earth Yb-doped Ba{sub 8−x}Yb{sub x}Si{sub 30}Ga{sub 16} clathrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lihua, E-mail: lhliu@ustb.edu.cn [University of Science and Technology Beijing, School of Mathematics and Physics, Department of Physics, Beijing 100083 (China); Li, Feng [University of Science and Technology Beijing, School of Mathematics and Physics, Department of Physics, Beijing 100083 (China); Wei, Yuping; Chen, Ning; Bi, Shanli [University of Science and Technology Beijing, School of Materials Science and Engineering, Beijing 100083 (China); Qiu, Hongmei [University of Science and Technology Beijing, School of Mathematics and Physics, Department of Physics, Beijing 100083 (China); Cao, Guohui [University of Science and Technology Beijing, School of Materials Science and Engineering, Beijing 100083 (China); Li, Yang [University of Science and Technology Beijing, School of Mathematics and Physics, Department of Physics, Beijing 100083 (China); University of Puerto Rico at Mayaguez, Department of Engineering Science and Materials, Mayaguez, PR 00681-9044 (United States)

    2014-03-05

    Highlights: • Samples with the chemical formula Ba8−{sub x}Yb{sub x}Si{sub 30}Ga{sub 16} (x = 0, 0.5, 0.7, 1 and 1.5) were prepared. • Some Yb atoms enter the clathrate lattice to replace Ba, while other Yb atoms are oxidized as Yb{sub 2}O{sub 3}. • The thermal conductivity decreases with Yb-doping. • Thermoelectric figure of merit ZT significantly increased. -- Abstract: The potential thermoelectric and magnetic application of clathrate materials with rare-earth doping is the focus of much of the recent research activity in the synthetic material physics and chemistry. A series of clathrate samples with the chemical formula Ba{sub 8−x}Yb{sub x}Si{sub 30}Ga{sub 16} (x = 0, 0.5, 0.7, 1 and 1.5) were prepared by combining arc melting, ball milling and spark plasma sintering (SPS) techniques. X-ray diffraction and scanning electronic microscopy combined with energy-dispersive X-ray spectroscopy (EDS) analysis showed the dominant phase to be the type-I clathrate. Whereas, X-ray structural refinement and EDS analysis indicated that some Yb atoms enter the clathrate lattice to replace Ba at 2a sites, while other Yb atoms are oxidized as Yb{sub 2}O{sub 3} precipitated around grain boundaries. The solid solubility of Yb into clathrate lattice yielded x ∼ 0.3. Comparative analysis between Yb-doped and Yb-free clathrates showed that the thermal conductivity decreases with Yb-doping. Consequently, thermoelectric figure of merit ZT significantly increased.

  13. Photoluminescence properties of rare-earth-doped (Er³⁺,Yb³⁺) Y₂O₃ nanophosphors by a combustion synthesis method.

    Science.gov (United States)

    Kaur, Manmeet; Bisen, D P; Brahme, N; Singh, Prabhjot; Sahu, I P

    2016-05-01

    In this work, we report the synthesis of Y2O3:Er(3+), Y2O3:Yb(3+) and Y2O3:Er(3+),Yb(3+) nanophosphors by the combustion synthesis method using urea as fuel. The doping agents were incorporated in the form of erbium nitrate and ytterbium nitrate. X-Ray diffraction (XRD) patterns revealed that the synthesized particles have a body-centered cubic structure with space group Ia-3. The photoluminescence (PL) properties were investigated after UV and infrared irradiation at room temperature. A strong characteristic emission of Er(3+) and Yb(3+) ions was identified, and the influence of doping concentration on the PL properties was systematically studied. Energy transfer from Yb(3+) to Er(3+) ions was observed in Y2O3 nanophosphors. The obtained result may be useful in potential applications such as bioimaging. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Effects of some rare earth and carbonate-based co-dopants on structural and electrical properties of samarium doped ceria (SDC) electrolytes for solid oxide fuel cells

    Science.gov (United States)

    Anwar, Mustafa; Khan, Zuhair S.; Mustafa, Kamal; Rana, Akmal

    2015-09-01

    In the present study, samarium doped ceria (SDC) and SDC-based composite with the addition of K2CO3 were prepared by co-precipitation route and effects of pH of the solution and calcination temperature on microstructure of SDC and SDC-K2CO3, respectively, were investigated. Furthermore, experimentation was performed to investigate into the ionic conductivity of pure SDC by co-doping with yttrium i.e., YSDC, XRD and SEM studies show that the crystallite size and particle size of SDC increases with the increase in pH. The SEM images of all the samples of SDC synthesized at different pH values showed the irregular shaped and dispersed particles. SDC-K2CO3 was calcined at 600∘C, 700∘C and 800∘C for 4 h and XRD results showed that crystallite size increases while lattice strain, decreases with the increase in calcination temperature and no peaks were detected for K2CO3 as it is present in an amorphous form. The ionic conductivity of the electrolytes increases with the increase in temperature and SDC-K2CO3 shows the highest value of ionic conductivity as compared to SDC and YSDC. Chemical compatibility tests were performed between the co-doped electrolyte and lithiated NiO cathode at high temperature. It revealed that the couple could be used up to the temperature of 700∘C.

  15. Rare-earth Doped GaN - An Innovative Path Toward Area-scalable Solid-state High Energy Lasers Without Thermal Distortion (2nd year)

    Science.gov (United States)

    2010-06-01

    temperature for two Ga fluxes: Ga = 1.5×10–7 torr BEP (blue) and Ga= 3.5×10–7 torr BEP (red). ...........................................4  Figure 4...850–1025 °C, and the Ga flux, measured as beam equivalent pressure ( BEP ), was varied from 9.8×10–6 to 5.6×10–7 torr. The secondary ion mass...temperature for two Ga fluxes: Ga = 1.5×10–7 torr beam equivalent pressure (blue) and Ga= 3.5×10–7 torr BEP (red). 3.2 Optical Studies of Nd Doped

  16. Dual doped graphene oxide for electrochemical sensing of europium ion

    Science.gov (United States)

    Kumar, Sunil; Patra, Santanu; Madhuri, Rashmi; Sharma, Prashant K.

    2017-05-01

    This present work represents a single step hydrothermal method for the preparation of N, and N, S dual doped graphene oxide (GO). First time, a comparative electrochemical study between single dope and dual doped GO was carried out using potassium ferrocyanide as an electro-active probe molecule and found that the dual doped GO has the highest electrocatalytic activity than single doped, due to the presence of two heteroatoms as a doping material. Afterwards, the dual doped GO was successfully applied for the electrochemical detection of a rare earth element i.e. europium, with LOD value of 5.92 μg L-1.

  17. ACTIVE MEDIA: BaY2F8 single crystals doped with rare-earth ions as promising up-conversion media for UV and VUV lasers

    Science.gov (United States)

    Pushkar', A. A.; Uvarova, T. V.; Molchanov, V. N.

    2008-04-01

    BaY2F8 crystals are studied as promising active media for UV and VUV lasers. The up-conversion pumping of rare-earth activators is proposed to solve problems related to the solarisation of the medium and the selection of pump sources. The technology of growing oriented BaY2F8 single crystals is developed and the influence of the crystal orientation on the growth rate and quality of single crystals is determined.

  18. Mid-temperature deep removal of hydrogen sulfide on rare earth (RE = Ce, La, Sm, Gd) doped ZnO supported on KIT-6: Effect of RE dopants and interaction between active phase and support matrix

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu; Zhou, Pin; Zhang, Hongbo; Meng, Xianglong; Li, Juexiu; Sun, Tonghua, E-mail: sunth@sjtu.edu.cn

    2017-06-15

    Highlights: • Various rare earth (RE)-doped ZnO/KIT-6 sorbents were prepared via sol-gel method. • La showed the highest efficiency on promoting ZnO/KIT-6 desulfurization activity. • The morphology of ZnO on KIT-6 played a crucial role for the reactivity. • The most initial factor of improving reactivity by RE was surface chemical property. • Crystallinity, host-guest interaction were also important to ZnO state on support. - Abstract: Rare earth oxides (RE = Ce, La, Sm and Gd) doped ZnO supported on KIT-6 sorbents (RE-ZnO/KIT-6) were synthesized by sol-gel method and their performance for deep removal of H{sub 2}S (bellow 0.1 ppmv) from gas stream at medium temperature was tested. The RE dopants (except Ce) significantly enhance the deep desulfurization capacity of ZnO/KIT-6 sorbent and maintained higher sulfur uptake capacities upon multiple cycles of regeneration by a simple thermal oxidation in 10 v% of O{sub 2} in N{sub 2} atmosphere. The results of SAXS, XRD, N{sub 2} physisorption, TEM, FIIR, and XPS implied that the KIT-6 structure of loading metal oxides remained intact. It was found that RE could hinder the ZnO crystal ripening during calcination resulted in smaller ZnO particles, enhance the interaction of ZnO and silica matrix to improve the dispersion of active phase on KIT-6. Furthermore, by increasing the outlayer electron density of Zn atom and oxygen transfer ability, the synergistic effect considered to be favorable for RE-ZnO/KIT-6 sulfidation. Even though the performance of improving ZnO dispersion was weaker than that of Sm and Gd, La-ZnO/KIT-6 performs the best deep desulfurizers by changing the surface chemical atmosphere for ZnO. Steam in the gas stream inhibited the capture of H{sub 2}S by ZnO in the sorbents, in the case of La-ZnO/KIT-6, the steam content should control as lower as 5 v% to ensure the desulfurization efficiency and precision.

  19. Airplane dopes and doping

    Science.gov (United States)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  20. Preparation and Characterization of Yttrium Hydroxide and Oxide Doped with Rare Earth Ions (Eu3+, Tb3+) Nano One-dimensional

    Science.gov (United States)

    Giang, Lam Thi Kieu; Anh, Tran Kim; Marciniak, Lukasz; Hreniak, Dariusz; Strek, Wieslaw; Lojkowski, Witold; Minh, Le Quoc

    The one-dimensional (1D) crystalline nanostructures of Y(OH)3:Eu/Tb have been synthesized using softemplate method at temperature range of 180 - 200 °C for 24 h. The studies by Field Emission Scanning Electron Microscopy (FESEM) have been determined that the outer and interior hollow diameter of Y(OH)3:Eu/Tb nanotubes was obtained range from 150 to 500 nm and 100 to 300 nm, respectively and of the length up to several micrometers, respectively. The Y2O3:Eu/Tb nanorod/tubes have been obtained from Y(OH)3:Eu/Tb counterparts by crucial annealing. The Xray diffraction (XRD) patterns indicated that the Y(OH)3:Eu/Tb and Y2O3:Eu/Tb nanorods and nanotubes obtained has hexagonal and cubic phase with high crystaline. The luminescence and excitation properties of Y(OH)3:Eu/Tb and Y2O3:Eu/Tb nanorods and nanotubes were investigated in details. It found that crystal form and nanomorphology of Y(OH)3 and Y2O3 have played a great role on the emission properties of the doped Eu3+ ions.

  1. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films.

    Science.gov (United States)

    Zhang, Huairuo; Reaney, Ian M; Marincel, Daniel M; Trolier-McKinstry, Susan; Ramasse, Quentin M; MacLaren, Ian; Findlay, Scott D; Fraleigh, Robert D; Ross, Ian M; Hu, Shunbo; Ren, Wei; Rainforth, W Mark

    2015-08-14

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)(3+) Fe(3+)O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community.

  2. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films

    Science.gov (United States)

    Zhang, Huairuo; Reaney, Ian M.; Marincel, Daniel M.; Trolier-McKinstry, Susan; Ramasse, Quentin M.; MacLaren, Ian; Findlay, Scott D.; Fraleigh, Robert D.; Ross, Ian M.; Hu, Shunbo; Ren, Wei; Mark Rainforth, W.

    2015-08-01

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)3+ Fe3+O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community.

  3. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND ...

    African Journals Online (AJOL)

    2012-06-30

    Jun 30, 2012 ... Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used ... life time for various emission levels of these doped glasses have been determined and reported. ... Among the trivalent RE ions, Er3+ plays an important role in the development of broadband ...

  4. Brillouin Instability in Fiber Lasers Doped By Power | Bouras ...

    African Journals Online (AJOL)

    With the emergence of rare-earth doped fibers, and especially double-clad fibers, there is a renewed interest in Brillouin effect. First of all, the amplification of a continuous signal in a rare-earth doped fiber amplifier can generate high enough intensities to excite Brillouin effect and then to create a backscattered stokes wave.

  5. Doped Nanocrystals

    National Research Council Canada - National Science Library

    David J. Norris; Alexander L. Efros; Steven C. Erwin

    2008-01-01

    The critical role that dopants play in semiconductor devices has stimulated research on the properties and the potential applications of semiconductor nanocrystals, or colloidal quantum dots, doped...

  6. Chemical environment of rare earth ions in Ge{sub 28.125}Ga{sub 6.25}S{sub 65.625} glass-ceramics doped with Dy{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rongping, E-mail: rongping.wang@anu.edu.au; Yan, Kunlun; Luther-Davies, Barry [Centre for Ultrahigh bandwidth Devices for Optical Systems, Laser Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 2600 (Australia); Zhang, Mingjie; Yang, Anping; Zhang, Bin [Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116 (China); Shen, Xiang; Dai, Shixun [Laboratory of Infrared Material and Devices, The Advanced Technology Research Institute, Ningbo University, Ningbo 315211 (China); Yang, Xinyu [Faculty of Chemistry and Material Engineering, Wenzhou University, Wenzhou 325027 (China); Yang, Zhiyong [Centre for Ultrahigh bandwidth Devices for Optical Systems, Laser Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 2600 (Australia); Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116 (China)

    2015-10-19

    We have annealed Ge{sub 28.125}Ga{sub 6.25}S{sub 65.625} glasses doped with 0.5% Dy to create glass-ceramics in order to examine the local chemical environment of the rare earth ions (REI). More than 12 times enhancement of the emission at 2.9 and 3.5 μm was achieved in glass-ceramics produced using prolonged annealing time. Elemental mapping showed clear evidence that Ga{sub 2}S{sub 3} crystalline grains with a size of 50 nm were dispersed in a Ge-S glass matrix in the glass-ceramics, and the REI could only be found near the Ga{sub 2}S{sub 3} crystalline grains. From the unchanged lineshape of the emissions at 2.9 and 3.5 μm and lack of splitting of the absorption peaks, we concluded that the REI were bonded to Ga on the surface of the Ga{sub 2}S{sub 3} crystals.

  7. Analysis of electrical and microstructural characteristics of a ZnO-based varistor doped with rare earth oxide; Analise das caracteristicas microestruturais e eletricas de um varistor a base de ZnO dopado com oxidos de terras raras

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, J.M. de; Dias, R.; Furtado, J.G. de M. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Assuncao, F.C.R. [Pontificia Univ. Catolica do Rio de Janeiro (PUC/Rio), RJ (Brazil)

    2010-07-01

    Varistor is a semiconductor device, used in the protection of electrical systems, characterized to have a high no-linear electric resistance. Its properties are directly dependents of its chemical composition and microstructural characteristics. In this work were analyzed microstructural and electrical characteristics of a ZnO-based varistor doped with rare earth oxide, with chemical composition (mol%) 98,5.ZnO - 0,3.Pr{sub 6}O{sub 11} - 0,2.Dy{sub 2}O{sub 3} - 0,9.Co{sub 2}O{sub 3} - 0,1.Cr{sub 2}O{sub 3}. X-ray diffraction for phase characterization, scanning electron microscopy and energy dispersive X-ray spectroscopy were used for microstructural analysis. Measurement of average grain size and electrical and dielectric characteristics complete the characterization. The results show the formation of biphasic microstructure and with high densification, presenting relevant varistors characteristics but that would need improvements.(author)

  8. Study of amorphous semiconductors doped with rare earths (Gd and Er) and conducting polymers by EPR techniques and magnetic susceptibility; Estudo de semicondutores amorfos dopados com terras raras (Gd e Er) e de polimeros condutores atraves das tecnicas de RPE e susceptibilidade magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Sercheli, Mauricio da Silva

    1999-07-01

    This thesis involves the study of amorphous semiconductors and conducting polymers, which have been characterized by EPR and magnetic susceptibility measurements, and to a lesser extent by Raman spectroscopy and RBS. The semiconductors were studied using thin films of silicon doped with rare earth metals, e.g. erbium and gadolinium, which had their magnetic properties studied. Using these studies we could determine the state of valence of the rare earths as well as their concentrations in the silicon matrix. According to our results, the valence of the rare earth metal ions is 3+, and we were able to conclude that 4f electronic shells could not be used for the calculation of the conducting band in this system. Furthermore, the analysis of the data on the magnetic susceptibility of the Er{sup 3+} ion with cubic crystalline acting field, gave us the opportunity to estimate the overall splitting of their electronic states for the first time. The conducting polymers were studied using samples of poly(3-methylthiophene) doped with ClO{sub 4}{sup -}, which show a phase transition in the range of 230 K to 130 K. The electron paramagnetic resonance also gives important information on the crystallization, doping level and the presence of polarons or bipolarons in conducting polymers. (author)

  9. Magnetic and microwave absorption properties of rare earth ions (Sm{sup 3+}, Er{sup 3+}) doped strontium ferrite and its nanocomposites with polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Juhua, E-mail: luojuhua@163.com [School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051 (China); Xu, Yang; Mao, Hongkai [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-05-01

    M-type strontium ferrite substituted by RE (RE=Sm{sup 3+}, Er{sup 3+}) were prepared via a sol–gel method. Polypyrrole (PPy)/ferrite nanocomposites (with 20 wt% ferrite) were prepared by in situ polymerization method in the presence of ammonium persulfate. Effect of the substituted RE ions on structure, magnetic properties and microwave absorption properties were investigated by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and vector network analyzer. All XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. The crystallite size of synthesized particle is within the range of 22.2–38.1 nm. The structural in character of the composites were investigated with FT-IR analysis. It shows that the ferrite successfully packed by PPy. TEM photographs show that the particle size had grown up to 50–100 nm after coating with PPy. In the magnetization for the PPy/SrSm{sub 0.3}Fe{sub 11.7}O{sub 19} (SrEr{sub 0.3}Fe{sub 11.7}O{sub 19}) composites, the coercivity (H{sub c}) of the composites both increased compared with the undoped composite while the saturation magnetization (M{sub s}) appeared opposite change with different RE ions. Considering the electromagnetic loss and impedance matching comprehensively, the Er-doped ferrite/PPy composite got the better microwave absorption performance with the maximum RL value of −24.01 dB in 13.8 GHz at 3.0 mm. And its width (<−10 dB) has reached 7.2 GHz which has covered the whole Ku band. - Highlights: • The influence of RE ions on the structure of PPy/SrRE{sub 0.3}Fe{sub 11.7}O{sub 19} is discussed. • The influence of RE ions on the magnetic properties of PPy/SrRE{sub 0.3}Fe{sub 11.7}O{sub 19} is discussed. • The influence of RE ions on electromagnetic losses of PPy/SrRE{sub 0.3}Fe{sub 11.7}O{sub 19} is discussed. • PPy/SrEr{sub 0.3}Fe{sub 11.7}O{sub 19} possessed the excellent absorption property.

  10. Fullerene-C60 and crown ether doped on C60 sensors for high sensitive detection of alkali and alkaline earth cations

    Science.gov (United States)

    Zaghmarzi, Fatemeh Alipour; Zahedi, Mansour; Mola, Adeleh; Abedini, Saboora; Arshadi, Sattar; Ahmadzadeh, Saeed; Etminan, Nazanin; Younesi, Omran; Rahmanifar, Elham; Yoosefian, Mehdi

    2017-03-01

    Fullerenes are effective acceptor components with high electron affinity for charge transfer. The significant influences of chemical adsorption of the cations on the electrical sensitivity of pristine C60 and 15-(C2H4O)5/C60 nanocages could be the basis of new generation of electronic sensor design. The density functional theory calculation for alkali and alkaline earth cations detection by pristine C60 and 15-(C2H4O)5/C60 nanocages are considered at B3LYP level of theory with 6-31 G(d) basis set. The quantum theory of atoms in molecules analysis have been performed to understand the nature of intermolecular interactions between the cations and nanocages. Also, the natural bond orbital analysis have been performed to assess the intermolecular interactions in detail. Furthermore, the frontier molecular orbital, energy gap, work function, electronegativity, number of transferred electron (∆N), dipole moment as well as the related chemical hardness and softness are investigated and calculated in this study. The results show that the adsorption of cations (M=Na+, K+, Mg2+ and Ca2+) are exothermic and the binding energy in pristine C60 nanocage and 15-(C2H4O)5/C60 increases with respect to the cations charge. The results also denote a decrease in the energy gap and an increase in the electrical conductivity upon the adsorption process. In order to validate the obtained results, the density of state calculations are employed and presented in the end as well.

  11. Mid-temperature deep removal of hydrogen sulfide on rare earth (RE = Ce, La, Sm, Gd) doped ZnO supported on KIT-6: Effect of RE dopants and interaction between active phase and support matrix

    Science.gov (United States)

    Li, Lu; Zhou, Pin; Zhang, Hongbo; Meng, Xianglong; Li, Juexiu; Sun, Tonghua

    2017-06-01

    Rare earth oxides (RE = Ce, La, Sm and Gd) doped ZnO supported on KIT-6 sorbents (RE-ZnO/KIT-6) were synthesized by sol-gel method and their performance for deep removal of H2S (bellow 0.1 ppmv) from gas stream at medium temperature was tested. The RE dopants (except Ce) significantly enhance the deep desulfurization capacity of ZnO/KIT-6 sorbent and maintained higher sulfur uptake capacities upon multiple cycles of regeneration by a simple thermal oxidation in 10 v% of O2 in N2 atmosphere. The results of SAXS, XRD, N2 physisorption, TEM, FIIR, and XPS implied that the KIT-6 structure of loading metal oxides remained intact. It was found that RE could hinder the ZnO crystal ripening during calcination resulted in smaller ZnO particles, enhance the interaction of ZnO and silica matrix to improve the dispersion of active phase on KIT-6. Furthermore, by increasing the outlayer electron density of Zn atom and oxygen transfer ability, the synergistic effect considered to be favorable for RE-ZnO/KIT-6 sulfidation. Even though the performance of improving ZnO dispersion was weaker than that of Sm and Gd, La-ZnO/KIT-6 performs the best deep desulfurizers by changing the surface chemical atmosphere for ZnO. Steam in the gas stream inhibited the capture of H2S by ZnO in the sorbents, in the case of La-ZnO/KIT-6, the steam content should control as lower as 5 v% to ensure the desulfurization efficiency and precision.

  12. Doping droops.

    Science.gov (United States)

    Chaturvedi, Aditi; Chaturvedi, Harish; Kalra, Juhi; Kalra, Sudhanshu

    2007-01-01

    Drug abuse is a major concern in the athletic world. The misconception among athletes and their coaches is that when an athlete breaks a record it is due to some "magic ingredient" and not because of training, hard work, mental attitude and championship performance. The personal motivation to win in competitive sports has been intensified by national, political, professional and economic incentives. Under this increased pressure athletes have turned to finding this "magic ingredient". Athlete turns to mechanical (exercise, massage), nutritional (vitamins, minerals), pharmacological (medicines) or gene therapies to have an edge over other players. The World Anti-Doping Agency (WADA) has already asked scientists to help find ways to prevent gene therapy from becoming the newest form of doping. The safety of the life of athletes is compromised with all forms of doping techniques, be it a side effect of a drug or a new technique of gene doping.

  13. Luminescence and Gain in Co-Sputtered Al2O3 Erbium-Doped Waveguides

    National Research Council Canada - National Science Library

    Johnson, Klein

    1996-01-01

    Rare earth doping of planar waveguides may potentially yield very compact optical amplifiers, lasers, and amplified spontaneous emission light sources, as well as zero insertion loss waveguide routers...

  14. New Erbium Doped Antimony Glasses for Laser and Glass ...

    African Journals Online (AJOL)

    Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses.

  15. Optical and structural characterization of the pure and doped BaY{sub 2}F{sub 8} with rare earths for application in radiation detectors and scintillators; Caracterizacao optica e estrutural do BaY{sub 2}F{sub 8} puro e dopado com terras raras visando aplicacao em detectores de radiacao e cintiladores

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Ana Carolina Santana de

    2008-07-01

    In this work Barium Yttrium Fluoride (BaY{sub 2}F{sub 8} -BaYF) doped with different concentrations of ions Tb{sup 3+}, Er{sup 3+}, Tm{sup 3+} e Nd{sup 3+} were characterized, aiming the application in radiation detection devices that use the scintillating properties. Two types of samples were produced in the CLA-IPEN-SP, polycrystalline samples, obtained via solid state reaction of BaF{sub 2} and YF{sub 3} under HF atmosphere, and single crystals, obtained via the zone melting method also in a HF atmosphere. The samples were characterized using the following experimental techniques: X-ray powder diffraction, Radioluminescence (RL), Optical Absorption and Dispersive X-ray Absorption Spectroscopy (DXAS). The X-ray diffraction pattern showed the presence of the phase BaY{sub 2}F{sub 8} and a small amount of the phase Ba{sub 4}Y{sub 3}F{sub 17} in the polycrystalline pure and Tb{sup 3+}doped samples. The other samples showed only the desired BaY{sub 2}F{sub 8} phase. The radioluminescence measurements of the doped BaYF, when irradiated with X-rays, showed emission peaks in energies that are characteristics of the 4f-4f transitions of rare earths. The RL of the samples with 2 mol por cent and 3 mold of Tb{sup 3+}showed quite intense peaks with a maximum emission peak at 545 nm. The Tm{sup 3+}doped BYF showed that the scintillation efficiency is not directly proportional to the doping level, and the highest RL emission were obtained for the polycrystalline samples doped with 1 mol por cent, showing a maximum peak intensity at 456 nm (the blue region of the visible spectrum). All samples showed a phosphorescent decay time of the order of seconds. Single crystals of BaYF doped with 2 mol por cent of Er{sup 3+}, in addition to one of the highest phosphorescence time, presents a quite strong Rl in the green region of the spectra. The radiation damage was evaluated by the optical absorption techniques and the results showed that the formation of the absorption bands can be

  16. Photo darkening of rare earth doped silica

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    2011-01-01

    The photo darkening (PD) absorption spectra from unseeded amplifier operation (by 915 nm pumping) of ytterbium/aluminum and codoped silica fibers is after prolonged operation observed to develop a characteristic line at 2.6 eV (477 nm). This line is proposed to be due to inter center excitation t...

  17. Observation of frequency doubling in tantalum doped silica fibres

    Science.gov (United States)

    Driscoll, T. J.; Lawandy, N. M.; Killian, A.; Rienhart, L.; Morse, T. F.

    1991-01-01

    Second harmonic conversion efficients of 3 x 0,0001 in tantalum-doped silica fibers prepared by the seeding technique are reported. A series of experiments were conducted to characterize the frequency doubling in this fiber and to compare the results to the behavior observed in germanosilicate and rare earth-doped aluminosilicate fibers.

  18. Copper doped borate dosimeters revisited

    Energy Technology Data Exchange (ETDEWEB)

    Alajerami, Y.S.M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine (Country Unknown); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Oncology Treatment Centre, Sultan Ismail Hospital, 81100 Johor Bahru (Malaysia); Ghoshal, S.K. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Bradley, D.A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mhareb, M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saleh, M.A. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); National Atomic Energy Commission (NATEC), Sana' a (Yemen)

    2014-11-15

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu{sup +} and Cu{sup ++}) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu{sup +} ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated

  19. A new theory of doped manganites exhibiting colossal ...

    Indian Academy of Sciences (India)

    Rare earth manganites doped with alkaline earths, namely Re1-AMnO3, exhibit colossal magnetoresistance, metal insulator transitions, competing magnetic, orbital and charge ordering, and many other interesting but poorly understood phenomena. In this article I outline our recent theory based on the idea that in the ...

  20. Earth\\'s Mass Variability

    CERN Document Server

    Mawad, Ramy

    2014-01-01

    The perturbation of the Earth caused by variability of mass of Earth as additional reason with gravity of celestial bodies and shape of the Earth. The Earth eating and collecting matters from space and loss or eject matters to space through its flying in the space around the Sun. The source of the rising in the global sea level is not closed in global warming and icebergs, but the outer space is the additional important source for this rising. The Earth eats waters from space in unknown mechanism. The mass of the Earth become greater in November i.e. before transit apoapsis two months, and become latter in February i.e. after transit apoapsis to two months.

  1. Analysis of broadband near-infrared emission in ABCO4 and ABC3O7 crystals (A=Sr, Ba; B=La, Gd; C=Al, Ga) doped with rare earth and transition metals

    Science.gov (United States)

    Ryba-Romanowski, Witold

    1997-11-01

    Overview of basic spectroscopic properties of several crystals belonging to two wide families of compounds is presented. Both the families form tetragonal crystals with layered structure and show certain structural disorder resulting from random distribution of divalent A atoms and trivalent B atoms. After presenting some details concerning the crystal growth and structural investigation, the nature of activator sites in the matrices is discussed. Then, the emission spectra as well as relaxation dynamics of Nd3+, Yb3+, and Tm3+ are analyzed. After that, the basic spectroscopic features of chromium doped crystals are given. In conclusion, suitability of the crystals for the design of tunable lasers is discussed.

  2. Earth materials and earth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K; Shankland, T. [and others

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  3. Yb-doped polarizing fiber

    Science.gov (United States)

    Gillooly, A.; Webb, A. S.; Favero, F. C.; Bouchan, T.; Cooper, L. J.; Read, D.; Hill, M.

    2017-02-01

    An ytterbium (Yb) doped polarizing fiber is demonstrated. The fiber offers the opportunity to build all-fiber lasers with single polarization output and without the need for free-space polarizing components. Traditional single polarization fiber lasers utilize polarization-maintaining (PM) gain fiber with a single polarization stimulation signal. Whilst this results in an approximation to a single polarization laser, the spontaneous emission from the unstimulated polarization state limits the polarization extinction ratio (PER). The PER is further limited as the stimulated signal is prone to crosstalk. Furthermore, controlling amplitude modulation of the stimulated signal is critical for maximizing the peak power of an optical pulse, particularly for high energy lasers. If light is allowed to leak in to the unstimulated axis it will travel at a different velocity to the stimulated axis and can cross-couple back into the signal axis, creating an interference effect which leads to amplitude modulation on the signal pulse. Single-polarization Yb-doped fiber ensures that light on the fast axis is constantly attenuated; ensuring that light on the unstimulated axis cannot propagate and thus cannot degrade the PER or create amplitude modulation. In this paper we report on, to the best of our knowledge, the first demonstration of a single polarization Yb-doped bowtie optical fiber manufactured using a combination of Modified Chemical Vapor Deposition (MCVD) and rare-earth solution doping technology. The fiber has a single-polarization window of 80nm at the operating wavelength of 1060nm and a PER of >18dB. The fabrication and characterization of the fiber is reported.

  4. Doping in competition or doping in sport?

    Science.gov (United States)

    Lippi, Giuseppe; Franchini, Massimo; Guidi, Gian Cesare

    2008-01-01

    Since ancient times, competitive athletes have been familiar with the use of ergogenic aids and they will probably continue to use unfair and harmful substances in future, because their inclination to victory, along with the mirage of glory and money, will probably overcome health and legal risks. We searched PubMed using the term doping over the period 1990 to the present day. We also included non-English journals. By literature searching, it emerges that the phenomenon of doping is complex and multifaceted. It involves a number of causes and factors that do not originate solely in the athletic field, making universality its main feature. It is in fact observed in all ages and levels of competition, and it concerns all sports, even the most unpredictable. The high number of athletes testing positive for anti-doping controls attests that the current strategy might be analytically adequate to unmask most (but not all) doping practices, but it is probably ineffective to prevent athletes to dope and modify this upsetting trend. Growing points As doping parallels the use of medications, food supplements, alcohol and social drugs, a reinforced preventive policy is advisable. The current anti-doping policy should be replaced with a more efficient and practical strategy to identify and monitor abnormal and harmful deviations of the biochemical and haematological profiles.

  5. Nanocrystalline Mg-doped Zinc Oxide Scintillator for UV detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA uses detectors for a broad range of wavelengths from UV to gamma for applications in astrophysics, earth science, heliophysics, and planetary science. Mg-doped...

  6. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  7. Doping control in sport

    DEFF Research Database (Denmark)

    Overbye, Marie Birch

    2016-01-01

    Doping testing is a key component enforced by anti-doping authorities to detect and deter doping in sport. Policy is developed to protect athletes' right to participate in doping-free sport; and testing is a key tool to secure this right. Accordingly, athletes' responses to anti-doping efforts.......e., the efforts of stakeholders involved in testing) in their own sport both nationally and worldwide. Moreover, it seeks to identify whether specific factors such as previous experience of testing and perceived proximity of doping have an impact on athletes' perceptions of the testing system. The study comprises...... a web-based questionnaire (N = 645; response rate 43%) and uses qualitative findings to elaborate on and explain quantitative results. Results showed that two-thirds of the athletes reported the national testing programme in their sport to be appropriate. A majority of the athletes who had an opinion...

  8. Polarization induced doped transistor

    Science.gov (United States)

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  9. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    Directory of Open Access Journals (Sweden)

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  10. Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light

    Science.gov (United States)

    Ueda, Jumpei; Kuroishi, Keisuke; Tanabe, Setsuhisa

    2014-03-01

    We have developed bright persistent phosphors of Ce3+-Cr3+-doped Y3Al5-xGaxO12 (x = 2.5, 3, 3.5) ceramics with green luminescence (Ce3+:5d→4f) via blue-light excitation. The persistent luminance value 5 min after ceasing blue-light excitation for the Ce3+-Cr3+-doped Y3Al2Ga3O12 sample is approximately 3900 times higher than that for a Ce3+-doped Y3Al2Ga3O12 sample and better than that from compact SrAl2O4:Eu2+-Dy3+ powders. The results are consequences of efficient carrier trap formation and effective excitation of the interior of the translucent ceramic samples. A series of Ce3+-Cr3+-doped garnet materials is the best candidate for the persistent phosphor under white-light emitting diode (LED) illumination consisting of blue LEDs and visible phosphors.

  11. To dope or not to dope

    DEFF Research Database (Denmark)

    Overbye, Marie Birch; Knudsen, Mette Lykke; Pfister, Gertrud Ursula

    2013-01-01

    tAim: This study aims to examine the circumstances which athletes say affect their (hypothetical) consid-erations of whether to dope or not and explore the differences between athletes of different gender, ageand sport type.Methods: 645 elite athletes (mean age: 22.12; response rate: 43%) represe......tAim: This study aims to examine the circumstances which athletes say affect their (hypothetical) consid-erations of whether to dope or not and explore the differences between athletes of different gender, ageand sport type.Methods: 645 elite athletes (mean age: 22.12; response rate: 43......%) representing 40 sports completed aweb-based questionnaire. Participants were asked to imagine themselves in a situation in which theyhad to decide whether to dope or not to dope and then evaluate how different circumstances would affecttheir decisions.Results: Multiple circumstances had an effect on athletes......’ hypothetical decisions. The most effective deter-rents were related to legal and social sanctions, side-effects and moral considerations. Female athletesand younger athletes evaluated more reasons as deterrents than older, male athletes. When confrontedwith incentives to dope, the type of sport was often...

  12. BRILLOUIN INSTABILITY IN FIBER LASERS DOPED BY POWER ...

    African Journals Online (AJOL)

    30 juin 2012 ... continuous signal in a rare-earth doped fiber amplifier can generate high enough intensities to excite Brillouin ... Such back-reflection is detrimental for amplifier applications and consequently it has been studied .... le paramètre de dichroïsme du pompage. β est le paramètre de saturation croisée.Γ est le.

  13. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND ...

    African Journals Online (AJOL)

    2012-06-30

    Jun 30, 2012 ... glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the ..... Chemistry of Rare Earth. 1998, 25. [2] Chen Y. J., Huang Y. D., Huang M. L., Chen R. P., Luo Z. D. Opt. Mater. 2004, 25,. 271. Transition λmax. Ar (s-1).

  14. Structured doping of upconversion nanosystems for biological applications

    NARCIS (Netherlands)

    Wang, Y.

    2011-01-01

    Nanodeeltjes met daarin zeldzame aardmetaal-ionen (in het Engels aangeduid als rare earth ions doped upconversion nanoparticles (UCNPs)) hebben de unieke eigenschap dat ze laag-energetisch licht, in het nabij-infrarode deel van het spectrum, kunnen omzetten in hoger-energetisch licht in het

  15. [Doping and sports].

    Science.gov (United States)

    Lippi, G; Guidi, G

    1999-09-01

    Doping is widely known as the use of banned substances and practices by athletes in an attempt to improve sporting performances. The term doping likely derives from "dope", an ancient expression referred to a primitive alcoholic drink that was used as a stimulant in South African ceremonial dances; gradually, the term was extended and finally adopted his current significance. There are at least two essential reasons to support the fight against doping: the potential harmful effects on athletes and the depth corruption of the fair competition. An exhaustive list of banned substances and methods has been drawn by the International Olympic Committee and further accepted by other International Sport Authorities and Federations. This list, regularly updated, is basically divided into doping substances (stimulants, narcotic analgesics, anabolic agents, diuretics, peptide and glycoprotein hormones and analogues), doping methods (blood doping, pharmacological, chemical and physical manipulation) and drugs subjected to certain restrictions (alcohol, marijuana, local anesthetics, corticosteroids and beta-blockers). Although there might be some medical conditions, which could legitimate the need of these substances or methods, there is no place for their use in sport. Thus, an athlete's consume of any of these substances or methods will result in disqualification. Aim of the present review is to provide a synthetic description of both the desirable effects and the potentially harmful consequences of the use of some of the major doping substances and methods.

  16. Ab-initio calculation of magnetic properties of Gd-doped ZnGeN2

    Science.gov (United States)

    Rufinus, J.

    2011-04-01

    The current interest in the field of semiconductor spintronics is mostly focused on transition metal-doped and rare-earth metal-doped binary materials. Recently, however, the explorations of metal-doped ternary semiconductors have gained attention due to experimental confirmations of possible high transition temperature in chalcopyrite compounds. Since the chalcopyrites are ternary materials, there are possibilities of having ferromagnetic or antiferromagnetic configurations, depending on which metal site was substituted by the dopant. Mn-doped ZnGeN2, for example, was found to be antiferromagmetic for MnZn and ferromagnetic for MnGe. A density functional theory study is performed on Gd-doped ternary material ZnGeN2. Our results show Gd-doped ZnGeN2 to be ferromagnetic, independent of the substitution sites. The formation of half-metallic ferromagnetism is possible in this type of material.

  17. Analysis on insulator–metal transition in yttrium doped LSMO from ...

    Indian Academy of Sciences (India)

    and a versatile tool called maximum entropy method (MEM) were used for structural and profile refinement. The charge density in the unit ... was found to occur when 20% of La/Sr atoms were replaced by yttrium. The changes in the charge ... Rare-earth manganites doped with alkaline-earth metals are important materials of ...

  18. Estudo da sinterização da zircônia dopada com óxidos de terras raras a 5 GPa de pressão Sintering of rare earth-doped zirconia under 5 GPa pressure

    Directory of Open Access Journals (Sweden)

    C. Kuranaga

    2005-06-01

    Full Text Available A zircônia (ZrO2 tem mostrado grande destaque entre as cerâmicas avançadas, atraindo muito o interesse de pesquisadores em seus vários campos de atuação. A zircônia apresenta elevada resistência quando na fase tetragonal, mas a fase estável a temperatura ambiente é a monoclínica, sendo necessário o uso de estabilizantes para a fase tetragonal. Neste trabalho propomos a sinterização rápida da zircônia parcialmente estabilizada com óxidos de terras raras (ZrO2-OTR, mediante o emprego da alta pressão de 5 GPa. As condições de sinterização realizadas neste trabalho são inovadoras, haja visto que utilizou-se de tecnologia alternativa para processar a ZrO2-OTR, chamada de altas temperaturas e altas pressões (HPHT. Foi utilizada uma pressão de 5 GPa, temperaturas de 1100, 1200 e 1300 ºC nos tempos de 2 e 5 min. O melhor resultado foi obtido nas amostras sinterizadas a 5 GPa/1300 ºC/5 min, onde apresentaram microdureza média de 488,73 kgf/mm², para uma tenacidade à fratura de 5,33 MPa.m½, as quais apresentaram densidade da ordem de 97,88% da teórica, e 88% em volume de fase tetragonal retida à temperatura ambiente.Zirconia (ZrO2 has shown great projection among the advanced ceramics, attracting the interest of researchers in its various fields of application. Tetragonal zirconia presents high mechanical strength, but the room temperature stable phase is the monoclinic, being necessary the use of stabilizers for obtaining the tetragonal phase. In this work the rapid sintering of zirconia partially stabilized with rare earth oxides (ZrO2-OTR, via 5 GPa high pressure is proposed. The sintering conditions employed in this work are innovative, due to the use of an alternative technology to process ZrO2-OTR, so called high temperature - high pressure (HPHT. A pressure of 5 GPa and temperatures of 1100, 1200 and 1300 ºC for times of 2 and 5 min were used. The best results were obtained for samples sintered at 5 GPa at 1300 º

  19. The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications

    Science.gov (United States)

    Wu, Ming-Chung; Chen, Wei-Cheng; Chan, Shun-Hsiang; Su, Wei-Fang

    2018-01-01

    Perovskite solar cell is a novel photovoltaic technology with the superior progress in efficiency and the simple solution processes. Develop lead-free or lead-reduced perovskite materials is a significant concern for high-performance perovskite solar cell. Among the alkaline earth metals, the Sr2+ and Ba2+ are suitable for Pb2+ replacement in perovskite film due to fitting Goldschmidt's tolerance factor. In this study, we adopted Ba-doped and Sr-doped perovskite structured materials with different doping levels, including 1.0, 5.0, and 10.0 mol%, to prepare perovskite solar cells. Both Ba-doped and Sr-doped perovskite structured materials have a related tendency in absorption behavior and surface morphology. At 10.0 mol% doping level, the power conversion efficiency (PCE) of Sr-doped perovskite solar cells is only ∼0.5%, but the PCE of Ba-doped perovskite solar cells can be achieved to ∼9.7%. Ba-doped perovskite solar cells showed the acceptable photovoltaic characteristics than Sr-doped perovskite solar cells. Ba dopant can partially replace the amount of lead in the perovskite solar cells, and it could be a potential candidate in the field of lead-free or lead-reduced perovskite energy materials.

  20. Aluminum Doped Parahydrogen Solids

    National Research Council Canada - National Science Library

    Fajardo, Mario

    2001-01-01

    ...) solids doped with large (- 1 %) concentrations of Al atoms. We incorporated into our apparatus a commercially available effusive Al atom source capable of delivering Al atom fluxes in excess of 10(exp 17...

  1. Spectroscopic identification of rare earth elements in phosphate glass

    Science.gov (United States)

    Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.

    2018-01-01

    In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV–VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.

  2. Systematic hardness measurements on some rare earth garnet ...

    Indian Academy of Sciences (India)

    Unknown

    microwave and magnetic bubble devices. When doped with Nd, some of the rare earth garnets act as excellent laser hosts. Their photoemission spectra are ..... Grants Commission, New Delhi, for financial support by way of an emeritus fellowship. References. Chin G Y 1975a Deformation of ceramic materials (New York:.

  3. Inverted opal luminescent Ce-doped silica glasses

    Directory of Open Access Journals (Sweden)

    R. Scotti

    2006-01-01

    Full Text Available Inverted opal Ce-doped silica glasses (Ce : Si molar ratio 1 ⋅ 10−3 were prepared by a sol-gel method using opals of latex microspheres as templates. The rare earth is homogeneously dispersed in silica host matrix, as evidenced by the absence of segregated CeO2, instead present in monolithic Ce-doped SG with the same cerium content. This suggests that the nanometric dimensions of bridges and junctions of the host matrix in the inverted opal structures favor the RE distribution avoiding the possible segregation of CeO2.

  4. Sanctions for doping in sport

    Directory of Open Access Journals (Sweden)

    Mandarić Sanja

    2014-01-01

    Full Text Available Top-level sport imposes new and more demanding physical and psychological pressures, and the desire for competing, winning and selfassertion leads athletes into temptation to use prohibited substances in order to achieve the best possible results. Regardless of the fact that the adverse consequences of prohibited substances are well-known, prestige and the need to dominate sports arenas have led to their use in sports. Doping is one of the biggest issues in sport today, and the fight against it is a strategic objective on both global and national levels. World Anti-Doping Agency, the International Olympic Committee, international sports federations, national anti-doping agencies, national sports federations, as well as governments and their repressive apparatuses are all involved in the fight against doping in sport. This paper points to a different etymology and phenomenology of doping, the beginnings of doping in sport, sports doping scandals as well as the most important international instruments regulating this issue. Also, there is a special reference in this paper to the criminal and misdemeanor sanctions for doping in sport. In Serbia doping in sport is prohibited by the Law on Prevention of Doping in Sports which came into force in 2005 and which prescribes the measures and activities aimed at prevention of doping in sport. In this context, the law provides for the following three criminal offenses: use of doping substances, facilitating the use of doping substances, and unauthorized production and putting on traffic of doping substances. In addition, aiming at curbing the abuse of doping this law also provides for two violations. More frequent and repetitive doping scandals indicate that doping despite long-standing sanctions is still present in sports, which suggests that sanctions alone have not given satisfactory results so far.

  5. Spectroscopic properties of highly Nd-doped lead phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Novais, A.L.F. [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil); Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Guedes, I. [Departamento de Física, Universidade Federal do Ceará, Campus do PICI, Caixa Postal 6030, 60455-760 Fortaleza, CE (Brazil); Vermelho, M.V.D., E-mail: vermelho@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil)

    2015-11-05

    The spectroscopic characteristics of highly Nd{sup 3+}-doped lead phosphate glasses (xNd:Pb{sub 3}(PO{sub 4}){sub 2}) have been investigated. The X-ray spectra show that the matrices are glassy up to 25 wt% of Nd{sup 3+} doping. From the Judd–Ofelt analysis we observe that while the Ω{sub (2)} parameter remains constant indicating that the 4f{sup N} and 4f{sup N−1}5 d{sup 1} configurations are not affected by the Nd{sup 3+} doping, the behavior of both Ω{sub (4)} and Ω{sub (6)} changes for 15 wt% of Nd{sup 3+} doping. The reduction of the Ω{sub (6)} parameter is related to the increase of the covalence bonding between the ligands and the Nd{sup 3+} ions. At this particular concentration, the radiative lifetime has a four-fold enhancement. Such behaviors are likely to be related to a modification in the glass structure for high Nd{sup 3+} concentrations. - Graphical abstract: Highly doped lead-phosphate glass matrix, with nominal concentration of up to 25 wt%, maintain the spectroscopic properties without deterioration. The analysis concerning the point of view of Nd{sup 3+} ions showed that high concentrations only affects the rare earth electronic charge density distribution. - Highlights: • Spectroscopic characterization of Nd{sub 2}O{sub 3} highly doped lead phosphate glasses. • Phosphate glass doped with Nd{sup 3+} for applications in photonic devices. • Judd–Ofelt analysis in phosphate glasses doped with Neodymium.

  6. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, BaAl2O4:Eu2+, Dy3+ Phosphors

    Directory of Open Access Journals (Sweden)

    Qidi Xie

    2017-10-01

    Full Text Available (Sr, Ca, BaAl2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, CaAl2O4:Eu2+,Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, BaAl2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED. Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(InN near UV chips.

  7. Active mode-locking via pump modulation in a Tm-doped fiber laser

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-10-01

    Full Text Available We propose and experimentally realize a new class of actively mode-locking technique using pump modulation for rare-earth doped fiber lasers. A Tm-doped fiber laser at 2 μm is mode-locked using the proposed active mode-locking via pump modulation technique. Low-threshold continuous-wave mode-locking is achieved with a transform-limited pulse width of 4.4 ps, a spectral bandwidth of 0.9 nm, and a repetition rate of 12.9 MHz. Second-harmonic mode-locking is also demonstrated by simply driving the pump current at an appropriate frequency. More importantly, we believe that this technique can be applied to mode-lock other rare-earth doped fiber laser systems such as erbium- and ytterbium-doped fiber lasers.

  8. Active mode-locking via pump modulation in a Tm-doped fiber laser

    Science.gov (United States)

    Wang, Yu; Set, Sze Y.; Yamashita, Shinji

    2016-10-01

    We propose and experimentally realize a new class of actively mode-locking technique using pump modulation for rare-earth doped fiber lasers. A Tm-doped fiber laser at 2 μm is mode-locked using the proposed active mode-locking via pump modulation technique. Low-threshold continuous-wave mode-locking is achieved with a transform-limited pulse width of 4.4 ps, a spectral bandwidth of 0.9 nm, and a repetition rate of 12.9 MHz. Second-harmonic mode-locking is also demonstrated by simply driving the pump current at an appropriate frequency. More importantly, we believe that this technique can be applied to mode-lock other rare-earth doped fiber laser systems such as erbium- and ytterbium-doped fiber lasers.

  9. Synthesis of Mn-doped CeO2 nanorods and their application as ...

    Indian Academy of Sciences (India)

    1·22, the resistance changes from 375·3 to 2·7M as the relative humidity (RH) increases from 25 to 90%, indicating promising applications of the Mn-doped CeO2 nanorods in environmental monitoring. Keywords. Mn-doped CeO2; nanorods; humidity sensitivity. 1. Introduction. It is well known that rare earth oxides have ...

  10. Luminescence of devitrificated non-doped and Eu,Dy and Tm doped wollastonite crystal in glass; Luminescence de cristaux de devitrivication de wollastonite dans des verres non dopes et dopes en Eu,Dy et Tm

    Energy Technology Data Exchange (ETDEWEB)

    El Marraki, A.; Schvoerer, M.; Bechtel, F. [Univ. Michel de Montaigne-Bordeaux 3, Pessac (France). Centre de Recherche en Phys. Appliquee a l' Archeologie

    2000-10-16

    Wollastonite crystals (CaSiO{sub 3}), ''pure'' or doped with rare earth ions, were grown by a devitrification process of a ternary SiO{sub 2}-Na{sub 2}O-CaO glass. The nature of point defects in these crystals was studied. Concerning the non-doped crystals, two trap centers were revealed by thermoluminescence (TL) and identified by electron spin resonance (ESR) using preheating experiments: one is a hole center HC{sub 1} and the other one an electron center whose main characteristic feature is g = 2.0020. Cathodoluminescence (CL) studies showed an important emission band considered as intrinsic. As for the doped crystals (Eu, Dy, Tm), most CL emission bands were identified. With TL, it is shown that Eu acts in wollastonite crystals as an electron trap and also as an emission centre. (orig.)

  11. Luminescent properties of Mn{sup 2+} doped apatite nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranadh, K.; Rao, M. C., E-mail: raomc72@gmail.com [Department of Physics, Andhra Loyola College, Vijayawada-520 008 (India); Ravikumar, R. V. S. S. N. [Department of Physics, Acharya Nagarjuna University, Guntur-522 510 (India)

    2016-05-06

    Nanophosphors have been extensively investigated during the last decade due to their various high-performance application potential such as lamp industry, radiation dosimetry, X-ray imaging and colour display. The synthesis of inorganic nanophosphors using both ionizing radiation (IR) or UV light represents very promising technological field. Alkaline earth nanophosphors gathered a lot of attention in past decades because they are considered to be excellent host materials. Transition-metal oxides are well known luminescent emitters in the visible spectral region. Mn{sup 2+} doped calcium-lithium hydroxyapatite (CLHA) nanophosphors were prepared by mechanochemical synthesis. The prepared samples were characterized by photoluminescence studies. Photoluminescence spectra of Mn{sup 2+} doped CLHA nanophosphors exhibited green and strong orange emission bands at 534, 577 nm respectively under the excitation wavelength of 365 nm. The CIE chromaticity coordinates were also calculated from emission spectra for Mn{sup 2+} doped CLHA nanophosphors.

  12. Luminescent properties of Mn2+ doped apatite nanophosphors

    Science.gov (United States)

    Ravindranadh, K.; Ravikumar, R. V. S. S. N.; Rao, M. C.

    2016-05-01

    Nanophosphors have been extensively investigated during the last decade due to their various high-performance application potential such as lamp industry, radiation dosimetry, X-ray imaging and colour display. The synthesis of inorganic nanophosphors using both ionizing radiation (IR) or UV light represents very promising technological field. Alkaline earth nanophosphors gathered a lot of attention in past decades because they are considered to be excellent host materials. Transition-metal oxides are well known luminescent emitters in the visible spectral region. Mn2+ doped calcium-lithium hydroxyapatite (CLHA) nanophosphors were prepared by mechanochemical synthesis. The prepared samples were characterized by photoluminescence studies. Photoluminescence spectra of Mn2+ doped CLHA nanophosphors exhibited green and strong orange emission bands at 534, 577 nm respectively under the excitation wavelength of 365 nm. The CIE chromaticity coordinates were also calculated from emission spectra for Mn2+ doped CLHA nanophosphors.

  13. Superconductivity above 30 K in alkali-metal-doped hydrocarbon.

    Science.gov (United States)

    Xue, Mianqi; Cao, Tingbing; Wang, Duming; Wu, Yue; Yang, Huaixin; Dong, Xiaoli; He, Junbao; Li, Fengwang; Chen, G F

    2012-01-01

    The recent discovery of superconductivity with a transition temperature (T(c)) at 18 K in K(x)picene has extended the possibility of high-T(c) superconductors in organic materials. Previous experience based on similar hydrocarbons, like alkali-metal doped phenanthrene, suggested that even higher transition temperatures might be achieved in alkali-metals or alkali-earth-metals doped such polycyclic-aromatic-hydrocarbons (PAHs), a large family of molecules composed of fused benzene rings. Here we report the discovery of high-T(c) superconductivity at 33 K in K-doped 1,2:8,9-dibenzopentacene (C(30)H(18)). To our best knowledge, it is higher than any T(c) reported previously for an organic superconductor under ambient pressure. This finding provides an indication that superconductivity at much higher temperature may be possible in such PAHs system and is worthy of further exploration.

  14. Optical Properties of Nd Doped Rare Earth Vanadates (Preprint)

    Science.gov (United States)

    2010-07-01

    1997) 31. M. F. Reid and F. S. Richardson, “Electric dipole intensity parameters for lanthanide 4f- 4f transitions”, J. Chem. Phys., 79, 5735-42 (1983...32. M. F. Reid, J. J. Dallara, and F. S. Richardson, “Comparison of calculated an dexperimental 4f-4f intensity parameters for lanthanide ...GdVO4 vs. Temperature, Visible spectrum Figure 3d . Extraordinary Refractive Index of GdVO4 vs. Temperature, NIR spectrum Figure 4a. Ordinary

  15. Upconversion studies in rare earth ions-doped lanthanide materials

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... Home; Journals; Pramana – Journal of Physics; Volume 82; Issue 2 ... Department of Ceramic Engineering, IIT-BHU, Varanasi 221 005, India; Department of Applied Physics, Indian School of Mines, Dhanbad 826 004, India; Lasers and Spectroscopy Laboratory, Department of Physics, Banaras Hindu ...

  16. Photo darkening in Rare earth doped silica: Model and Experiment

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    2011-01-01

    A model for photo darkening based on chemical bond formation is presented. The formation process, color center spectral response and bleaching is discussed and model predictions is found to follow high power fiber laser operation......A model for photo darkening based on chemical bond formation is presented. The formation process, color center spectral response and bleaching is discussed and model predictions is found to follow high power fiber laser operation...

  17. Radiation defects in oxide crystals doped with rare earth ions

    NARCIS (Netherlands)

    Matkovskii, A; Durygin, A; Suchocki, A; Sugak, D; Wallrafen, F; Vakiv, M

    1999-01-01

    The nature of stable and transient color centers in Y3Al5O12, Gd3Ca5O12, YAlO3 and LiNbO3 crystals is studied. The color centers are created by various types of irradiation. The effect of irradiation on crystal optical properties in visible and ultraviolet range is presented.

  18. Rare-Earth Doped Photonic Crystal Fibre Lasers and Amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.

    2005-01-01

    In this thesis, a theoretical and numerical study of the use of rare-earthdoped photonic crystal fibres as optical amplifiers and lasers, has been performed. Photonic crystal fibres or microstructured optical fibres is a new kind of optical fibre in which the cladding region typically consist....... Their novel properties allow for design of optical fibre amplifiers and fibre lasers with superior performance, compared to solutions based on conventional fibres. The primary applications considered are high efficiency fibre amplifiers based on index guiding photonic crystal fibres, and cladding pumped...

  19. Plasma synthesis of rare earth doped integrated optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Raoux, S.; Anders, S.; Yu, K.M.; Brown, I.G. [Lawrence Berkeley Lab., CA (United States); Ivanov, I.C. [Charles Evans & Associates, Redwood City, CA (United States)

    1995-03-01

    We describe a novel means for the production of optically active planar waveguides. The makes use of a low energy plasma deposition. Cathodic-arc-produced metal plasmas the metallic components of the films and gases are added to form compound films. Here we discuss the synthesis of Al{sub 2{minus}x}ER{sub x}O{sub 3} thin films. The erbium concentration (x) can vary from 0 to 100% and the thickness of the film can be from Angstroms to microns. In such material, at high active center concentration (x=l% to 20%), erbium ions give rise to room temperature 1.53{mu}m emission which has minimum loss in silica-based optical fibers. With this technique, multilayer integrated planar waveguide structures can be grown, such as Al{sub 2}O{sub 3}/Al{sub 2{minus}x}Er{sub x}O{sub 3}/Al{sub 2}O{sub 3}/Si, for example.

  20. Monolithic Rare Earth Doped PTR Glass Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of airborne and spaceborne laser systems dictates a number of extremely challenging requirements for such fine optical devices. These requirements...

  1. Laser ceramics with rare-earth-doped anisotropic materials.

    Science.gov (United States)

    Akiyama, Jun; Sato, Yoichi; Taira, Takunori

    2010-11-01

    The fabrication of laser-grade anisotropic ceramics by a conventional sintering process is not possible owing to optical scattering at randomly oriented grain boundaries. In this Letter, we report the first (to our knowledge) realization of transparent anisotropic ceramics by using a new crystal orientation process based on large magnetic anisotropy induced by 4f electrons. By slip casting in a 1.4 T magnetic field and subsequent heat treatments, we could successfully fabricate laser-grade calcium fluorapatite ceramics with a loss coefficient of 1.5 cm(-1).

  2. Photo darkening in Rare earth doped silica: Model and Experiment

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    2011-01-01

    A model for photo darkening based on chemical bond formation is presented. The formation process, color center spectral response and bleaching is discussed and model predictions is found to follow high power fiber laser operation...

  3. [Asthma drugs and doping].

    Science.gov (United States)

    Pillard, F; Rolland, Y; Rivière, D

    1999-11-01

    Some drugs regularly used in the treatment of asthma (beta-agonists and corticosteroids) are registered on the list of drugs forbidden in sport, because they have a doping action. To avoid penalizing asthmatic sportsmen, some beta-agonists (Salbutamol, Salmeterol, Terbutaline) and corticosteroids are allowed only in inhaled form, with written notification from the prescribing physician, a pneumologist or the team doctor. Considering the increase of doping with increasing involvement of physicians, good and up to date notions about the current rules of prescription in asthmatic sportsmen are needed.

  4. Spectroscopic signature of phosphate crystallization in Erbium-doped optical fibre preforms

    CERN Document Server

    Peretti, Romain; Jacquier, Bernard; Blanc, Wilfried; Dussardier, Bernard; 10.1016/j.optmat.2011.01.005

    2011-01-01

    In rare-earth-doped silica optical fibres, the homogeneous distribution of amplifying ions and part of their spectroscopic properties are usually improved by adding selected elements, such as phosphorus or aluminum, as structural modifier. In erbium ion (Er3+) doped fibres, phosphorus preferentially coordinates to Er3+ ions to form regular cages around it. However, the crystalline structures described in literature never gave particular spectroscopic signature. In this article, we report emission and excitation spectra of Er3+ in a transparent phosphorus-doped silica fibre preform. The observed line features observed at room and low temperature are attributed to ErPO4 crystallites.

  5. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  6. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...

  7. doped stable clusters a

    Indian Academy of Sciences (India)

    ABHIJIT DUTTA

    2018-01-30

    ., showed that Ru-doped. Rh6 cluster is a better catalyst for the activation of methanol compared to pure Rh6. It may be noted that methanol activation occurs via O–H bond dissociation rather than C–H bond.25 Rhodium nano ...

  8. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the ...

  9. Doped zinc oxide microspheres

    Science.gov (United States)

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  10. BLOOD DOPING AND RISKS

    Directory of Open Access Journals (Sweden)

    Goran Vasić

    2015-05-01

    Full Text Available Doping is the way in which athletes misuse of chemicals and other types of medical interventions (eg, blood replacement, try to get ahead in the results of other athletes or their performance at the expense of their own health. The aim of this work is the analysis of blood doping and the display of negative consequences that this way of increasing capabilities brings. Method: The methodological work is done descriptively. Results: Even in 1972 at the Stockholm Institute for gymnastics and sport, first Dr. Bjorn Ekblom started having blood doping. Taken from the blood, athletes through centifuge separating red blood cells from blood plasma, which is after a month of storage in the fridge, every athlete back into the bloodstream. Tests aerobic capacity thereafter showed that the concerned athletes can run longer on average for 25% of the treadmill than before. Discussion: Blood doping carries with it serious risks, excessive amount of red cells “thickens the blood,” increased hematocrit, which reduces the heart’s ability to pump blood to the periphery. All this makes it difficult for blood to flow through blood vessels, and there is a great danger that comes to a halt in the circulation, which can cause cardiac arrest, stroke, pulmonary edema, and other complications that can be fatal.

  11. Temperature sensing characteristics of tapered Tm3+-doped fiber amplifiers

    Science.gov (United States)

    Sanchez-Lara, R.; E Ceballos-Herrera, D.; Vazquez-Avila, J. L.; de la Cruz-May, L.; Martinez-Pinon, F.; Alvarez-Chavez, J. A.

    2017-08-01

    We numerically analyze the temperature response of a tapered Tm3+-doped fiber amplifier. The analysis includes a redefinition of the coupled pump and signal propagation equations in order to introduce different longitudinal shapes of the tapered doped fiber and the temperature dependence of the absorption and emission cross sections of the Tm3+ ions under different pump schemes. It was found that the temperature sensitivity of the normalized amplified signal was 2  ×  10-3/°C for 1 W of pump power and 3 m of doped fiber length, using a parabolic taper in a co-propagating pump scheme. This sensitivity can be increased by at least 5 times if we adjust the design parameters of the fiber amplifier using fiber lengths shorter than 1 m and pump powers lower than 300 mW. Our results contribute with new information for the development and optimization of tapered fiber amplifiers doped with other rare earths, and novel designs for doped-fiber temperature sensors.

  12. A high energy x-ray diffraction investigation of sodium phosphate glasses doped with less than 5 mol% praseodymium oxides

    Science.gov (United States)

    Zhang, Kailing

    Rare earth phosphate glasses (REPGs) are excellent materials for high energy (103 - 106 J) / high peak power ( 1012 - 1015 W) lasers. Previous work of the rare earth doped sodium phosphate glasses with compositions (R 2O3)x(Na2O)y(P2O 5)1-x-y where R= Nd, Eu and Dy, 0.04 doped sodium phosphate glasses with even lower praseodymium oxide concentrations, (Pr2O 3)x(Na2O)yP2O5) 1-x-y , where 0.005 atomic-scale structure of the rare-earth doped sodium phosphate glass samples. Structural features such as inter-atomic distances, coordination numbers and their dependence on the concentration of the rare earth oxides were gained from analyzing pair distribution functions extracted from diffraction data.

  13. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  14. Doping Induced Solubility Control

    Science.gov (United States)

    Jacobs, Ian Edward

    Polymeric semiconductors are promising class of materials, which combine many of the electrical properties of inorganic semiconductors with the mechanical flexibility and chemical processability of organic materials. Semiconducting polymers can be deposited from solution over large areas at low cost, and may find applications in displays, photovoltaics, and sensor arrays. Unfortunately, these materials are generally mutually soluble with other organics, preventing solution-based deposition of complex patterned structures using standard photolithographic techniques. Here, we present an entirely new method for patterning conductive polymers utilizing a change in polymer solubility upon p-type doping. Many polymer : molecular dopant systems, including the extensively studied system poly-(3-hexylthiophene) : 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (P3HT : F4TCNQ), are rendered insoluble in a wide range solvents by p-type doping at only a few mol%. By sequentially doping and dedoping films, polymer solubility can be switched on an off at will. We find that doped films can be easily prepared in a two-step process, by first coating the polymer (P3HT), then exposing the film to an orthogonal solvent containing the dopant (F4TCNQ). Dedoping is achieved by means of a chemical reaction that deactivates F4TCNQ, allowing it to be removed by an orthogonal solvent in a single step. This process allows for fully quantitative dedoping, in some cases leaving films with an even lower free carrier density than as cast films by removing intrinsic p-type defects. In addition, we have also identified a photochemical reaction between F4TCNQ and solvents such as tetrahydrofuran (THF), which similarly yields a non-doping product. By immersing films in THF and exposing them to light, this reaction allows for direct, optical patterning of P3HT films. Using laser scanning confocal microscopy (LSCM), we demonstrate direct write topographic patterning of arbitrary structures with in

  15. Structural and optical characteristics of Ce, Nd, Gd, and Dy-doped Al2O3 thin films

    Science.gov (United States)

    Varpe, Ashwini S.; Deshpande, Mrinalini D.

    2017-07-01

    We present the optical properties of rare earth (RE)-doped Al_2O_3 thin films and discuss their possible use in applications like gate dielectric material and in coating industry. Aluminum oxide films doped with RE elements such as Ce, Nd, Gd, and Dy are synthesized on glass substrate using ultrasonic spray pyrolysis technique at 400°C. The concentration of rare earth element is varied from 0.5 to 5 mol% in 0.1 M solution of Al2O3. The X-ray diffraction analysis indicates that the thin films deposited with and without rare earth doping have an amorphous structure. Further, the optical properties of RE-doped Al2O3 thin films are studied by using UV-visible spectroscopy and photoluminescence measurement. The band gap is found to be 4.06 eV for Al2O3 thin film. A small blue shift is seen in the optical spectra of RE-doped samples as compared to undoped Al2O3 film. Dielectric constant of alumina thin film increases with doping of Gd and Dy while it decreases with Ce and Nd doping. Concentration quenching effects are observed in the photoluminescence spectra of Ce, Nd, Gd, and Dy-doped Al_2O_3 films. Among all these RE-doped Al2O3 thin films, Gd and Dy-doped Al2O3 films exhibit a potential for the construction of dielectric gate in transistors or as a coating material in the semiconductor industry.

  16. ERYTHROPOIETIN AS DOPING AGENT

    Directory of Open Access Journals (Sweden)

    Nina Đukanović

    2012-09-01

    Full Text Available Doping is the use of prohibited substances and/or methods that improve the abilities of athletes. Erythropoietin (EPO, the kidney hormone, belongs to a group of substances that are classified as blood doping, and it can be found on the list of banned substances from 1990. year. Its application leads to an increase in the number of red blood cells, which enables better supply of oxygen, and thus improve the aerobic performance of athletes. Because of that, EPO is very popular in sports where the endurance is predominantly required like a marathon, cycling, triathlon, nordic skiing. Erythropoietin can cause some adverse events, primarily to increase blood viscosity, which is associated with a higher risk of various thromboembolic complications. In detection of EPO use two groups of tests are available, through a urine sample (direct method and blood sample (indirect method.

  17. High index contrast potassium double tungstate waveguides towards efficient rare-earth ion amplification on-chip

    NARCIS (Netherlands)

    Sefünç, Mustafa; Segerink, Franciscus B.; García Blanco, Sonia Maria

    2015-01-01

    Rare-earth ion doped KY(WO4)2 amplifiers are proposed to be a good candidate for many future applications by benefiting from the excellent gain characteristics of rare-earth ions, namely high bit rate amplification (

  18. Doping and Public Health

    DEFF Research Database (Denmark)

    Christiansen, Ask Vest

    rad av världens främsta idrottsvetare och dopningsexperter hade mött upp för att presentera papers till en intresserad och engagerad publik. Temat för konferensen var "Doping and Public Health", och den aspekten behandlades också; dock tolkade flera presentatörer temat på sina egna vis, och hela...

  19. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  20. EarthKAM

    Data.gov (United States)

    National Aeronautics and Space Administration — Sponsored by NASA, EarthKAM (Earth Knowledge Acquired by Middle School Students) is an educational outreach program allowing middle school students to take pictures...

  1. Doped Chiral Polymer Metamaterials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  2. Alkali metal and alkali earth metal gadolinium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  3. Spectral properties of thulium doped optical fibers for fiber lasers around 2 micrometers

    Science.gov (United States)

    Kamrádek, M.; Aubrecht, J.; Peterka, P.; Podrazký, O.; Honzátko, P.; Cajzl, J.; Mrázek, J.; Kubeček, V.; Kašik, I.

    2017-05-01

    Silica optical fibers doped with rare-earth elements are key components of high-power fiber lasers operating in near-infrared region up to 2.1 μm. In this contribution we deal with preparation and optical characterization of silica-based optical preforms and fibers doped with thulium for fiber lasers operating around 2 μm. A set of fibers with thulium concentration ranges 1000-5000 ppm was prepared by the MCVD solution doping method and characterized. A decrease of fluorescence lifetime of thulium from 487 μs to 378 μs was observed with increasing rare-earth concentration in fiber core. This phenomenon can be explained by energy transfer between ions and ion clustering. Fabricated fibers were suitable for use in fiber lasers.

  4. Monolithic erbium- and ytterbium-doped microring lasers on silicon chips.

    Science.gov (United States)

    Bradley, Jonathan D B; Hosseini, Ehsan Shah; Purnawirman; Su, Zhan; Adam, Thomas N; Leake, Gerald; Coolbaugh, Douglas; Watts, Michael R

    2014-05-19

    We demonstrate monolithic 160-µm-diameter rare-earth-doped microring lasers using silicon-compatible methods. Pump light injection and laser output coupling are achieved via an integrated silicon nitride waveguide. We measure internal quality factors of up to 3.8 × 105 at 980 nm and 5.7 × 105 at 1550 nm in undoped microrings. In erbium- and ytterbium-doped microrings we observe single-mode 1.5-µm and 1.0-µm laser emission with slope efficiencies of 0.3 and 8.4%, respectively. Their small footprints, tens of microwatts output powers and sub-milliwatt thresholds introduce such rare-earth-doped microlasers as scalable light sources for silicon-based microphotonic devices and systems.

  5. Charge carrier trapping processes in lanthanide doped La-, Gd-, Y-, and LuPO4

    NARCIS (Netherlands)

    Lyu, T.; Dorenbos, P.

    2017-01-01

    Various methods for deliberate design electron and hole trapping materials are explored with a study on double lanthanide doped rare earth ortho phosphates. Cerium acts as recombination center while lanthanide codopants as electron trapping centers in LaPO4:0.005Ce3+,0.005Ln3+. The electron trap

  6. Effect of Doping and Pressure on Magnetism and Lattice Structure of Fe-Based Superconductors

    Science.gov (United States)

    2010-04-14

    effect as hole doping (sub- stituting Ba by K). However, later it was found that pressure and/or strain can lead to essentially the same effect12,13...even better, Sr) by a rare earth like La or Yb seems to be chemically natural (cf. superconducting cuprates or colossal magnetoresistance manganites

  7. Properties of poly(vinyl alcohol)–borax gel doped with neodymium ...

    Indian Academy of Sciences (India)

    Abstract. Neodymium and praseodymium ions, singly and in combination, have been doped into a poly(vinyl alcohol)–borax matrix. X-ray diffraction shows structural correlations from 2 to 6 Е and 15 Е, while small angle neutron scattering indicates that the rare-earth ions do not affect the nanoscale structures of the gels.

  8. Effect of Er doping on the superconducting properties of porous MgB 2

    Indian Academy of Sciences (India)

    Mg1−Er)B2, where = 0.00, 0.03 and 0.05, in order to investigate the effect of rare-earth (RE) element Er on the structural and electromagnetic properties of porous MgB2. The Er-doped samples result in small grain size structure compared ...

  9. co-doped zinc oxide

    Indian Academy of Sciences (India)

    and TEM analyses indicated the presence of nanocrystal- lites aggregated in different shape particles. The band gap decreases in the case of the doped ZnO samples. Regarding the doped samples, the highest average visible transmittance of 89% and the lowest resistivity of 6.7 × 10−3 cm. PL spectra of the nanopowder ...

  10. Fitness Doping and Body Management

    DEFF Research Database (Denmark)

    Thualagant, Nicole

    This PhD thesis examines in a first paper the conceptualization of fitness doping and its current limitations. Based on a review of studies on bodywork and fitness doping it is emphasised that the definition of doping does not provide insights into bodywork of both men and women. Moreover......, it is argued that the social and a cultural context are missing in the many epidemiological studies on the prevalence of doping. The second paper explores the difficulties of implementing an anti-doping policy, which was originally formulated in an elite sport context, in a fitness context and more......-based fitness centres. Based on a survey in ten Danish club-based fitness centres and on narratives from semi-structured interviews, it is highlighted that the objectives of bodywork differ according to the users’ age and gender. Two different ways of investing in the body are explored in the paper, namely...

  11. Chaotic dynamics in erbium-doped fiber ring lasers

    Science.gov (United States)

    Abarbanel, Henry D. I.; Kennel, Matthew B.; Buhl, Michael; Tureman Lewis, Clifford

    1999-09-01

    Chaotically oscillating rare-earth-doped fiber ring lasers (DFRLs) may provide an attractive way to exploit the broad bandwidth available in an optical communications system. Recent theoretical and experimental investigations have successfully shown techniques to modulate information onto the wide-band chaotic oscillations, transmit that signal along an optical fiber, and demodulate the information at the receiver. We develop a theoretical model of a DFRL and discuss an efficient numerical simulation which includes intrinsic linear and nonlinear induced birefringence, both transverse polarizations, group velocity dispersion, and a finite gain bandwidth. We analyze first a configuration with a single loop of optical fiber containing the doped fiber amplifier, and then, as suggested by Roy and VanWiggeren, we investigate a system with two rings of optical fiber-one made of passive fiber alone. The typical round-trip time for the passive optical ring connecting the erbium-doped amplifier to itself is 200 ns, so ~105 round-trips are required to see the slow effects of the population inversion dynamics in this laser system. Over this large number of round-trips, physical effects like GVD and the Kerr nonlinearity, which may appear small at our frequencies and laser powers via conventional estimates, may accumulate and dominate the dynamics. We demonstrate from our model that chaotic oscillations of the ring laser with parameters relevant to erbium-doped fibers arises from the nonlinear Kerr effect and not from interplay between the atomic population inversion and radiation dynamics.

  12. Role Models on Dope

    DEFF Research Database (Denmark)

    Christiansen, Ask Vest; Gleaves, John

    2014-01-01

    Compared to football-players cyclists are virtuous role models. Yes, Lance Armstrong, Michael Rasmussen and other riders have doped, and because of this they have received the predicate as the most immoral athletes in the sporting world. But if morality is not only a question of whether a person...... has enhanced his or hers performances by the use of various drugs (and lied about it), but also is about human beings’ relations and interactions, then cycling isn’t as depraved as we like to tell each other. Football is much worse....

  13. Doped semiconductor nanocrystal junctions

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Ł.; Mélin, T., E-mail: thierry.melin@isen.iemn.univ-lille1.fr [Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS-UMR8520, Avenue Poincaré, F-59652 Villeneuve d’Ascq (France); Nguyen-Tran, T.; Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces, CNRS-UMR7647, Ecole Polytechnique, F-91128 Palaiseau (France)

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  14. Superconducting doped topological materials

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi, E-mail: sasaki@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mizushima, Takeshi, E-mail: mizushima@mp.es.osaka-u.ac.jp [Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Department of Physics, Okayama University, Okayama 700-8530 (Japan)

    2015-07-15

    Highlights: • Studies on both normal- and SC-state properties of doped topological materials. • Odd-parity pairing systems with the time-reversal-invariance. • Robust superconductivity in the presence of nonmagnetic impurity scattering. • We propose experiments to identify the existence of Majorana fermions in these SCs. - Abstract: Recently, the search for Majorana fermions (MFs) has become one of the most important and exciting issues in condensed matter physics since such an exotic quasiparticle is expected to potentially give rise to unprecedented quantum phenomena whose functional properties will be used to develop future quantum technology. Theoretically, the MFs may reside in various types of topological superconductor materials that is characterized by the topologically protected gapless surface state which are essentially an Andreev bound state. Superconducting doped topological insulators and topological crystalline insulators are promising candidates to harbor the MFs. In this review, we discuss recent progress and understanding on the research of MFs based on time-reversal-invariant superconducting topological materials to deepen our understanding and have a better outlook on both the search for and realization of MFs in these systems. We also discuss some advantages of these bulk systems to realize MFs including remarkable superconducting robustness against nonmagnetic impurities.

  15. Modification of Co/Cu nanoferrites properties via Gd3+/Er3+doping

    Science.gov (United States)

    Ateia, Ebtesam E.; Soliman, Fatma S.

    2017-05-01

    Pure nanoparticles of the rare earth-substituted cobalt and copper ferrites with general formula Me Gd0.025 Er0.05 Fe1.925 O4 (Me = Co, Cu) were prepared by the chemical citrate method. X-ray diffraction, field emission scanning electron microscopy, BET analysis are utilized to study the effect of rare earth substitution and its impact on the physical properties of the investigated samples. Rare earth-doped cobalt shows type IV isotherm suggesting mesopore structure with its hysteresis loop. The estimated crystallite sizes are found in the range of 21.49 and 36.11 nm for the doped Co and Cu samples, respectively. The magnetic properties of rare earth-substituted cobalt and copper ferrites showed a definite hysteresis loop at room temperature. An increase in coercivity and a decrease in saturation magnetization were detected. This can be explained in view of weaker nature of the Re3+-Fe3+ interaction compared to Fe3+-Fe3+ interaction. Greater than 1.13-fold increase in coercivity (Hc = 2184 Oe) was observed in doped cobalt nanoferrite samples compared to copper (Hc = 1936 Oe). It was found that the decreasing in temperature leads to great improvement in the magnetic properties of the investigated samples. As the magnetic recording performance of the magnetic samples is improved for well-crystallized samples with nano-structural, the effect of rare earth substitution seems to be particularly valuable in this regard.

  16. Rare earth point defects in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, S.

    2007-12-14

    In this work we investigate rare earth doped GaN, by means of theoretical simulations. The huge unit cells necessary to model the experimental system, where dilute amount of rare earth ions are used, are handled with the charge self consistent density-functional based-tight binding (SCC-DFTB) calculational scheme. The method has been extended to include LDA+U and simplified self interaction corrected (SIC)-like potentials for the simulation of systems with localised and strongly correlated electrons. A set of tight-binding parameters has been created to model the interaction of GaN with some dopants, including a selection of lanthanide ions interesting due to their optical or magnetic properties (Pr, Eu, Gd, Er and Tm). The f-electrons were treated as valence electrons. A qualitatively correct description of the band gap is crucial for the simulation of rare earth doped GaN, because the luminescence intensity of the implanted samples depends on the size of the host band gap and because the rare earths could introduce charge transition levels near the conduction band. In this work these levels are calculated with the Slater-Janak (SJ) transition state model, which allows an approximate calculation of the charge transition levels by analysing the Kohn-Sham eigenvalues of the DFT. (orig.)

  17. Earth and ocean modeling

    Science.gov (United States)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  18. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  19. Thinking the earth

    NARCIS (Netherlands)

    Blok, Vincent

    2016-01-01

    Quentin Meillassoux's call for realism is a call for a new interest in the Earth as un-correlated being in philosophy. Unlike Meillassoux, Martin Heidegger has not been criticized for being a correlationist. To the contrary, his concept of the Earth has to be understood as un-correlated being, as it

  20. Nanocrystal doped matrixes

    Science.gov (United States)

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  1. Combination of emission channeling, photoluminescence and Mossbauer spectroscopy to identify rare earth defect complexes in semiconductors

    CERN Document Server

    Dalmer, M; Restle, M; Stötzler, A; Hofsäss, H C; Ronning, C R; Moodley, M K; Bharuth-Ram, K

    1999-01-01

    Implanted radioactive /sup 167/Tm//sup 167/Er and /sup 169/Yb//sup 169/Tm impurities in Si and GaN were studied with emission channeling and photoluminescence spectroscopy. The effect of co-doping with oxygen on the rare earth (RE) lattice sites and their luminescence behavior was investigated. Tm and Yb occupy near-tetrahedral sites in Si and substitutional sites in GaN after room temperature implantation and annealing. O-RE complexes are formed upon co-doping with O resulting in modified luminescence signals. RE impurities remain substitutional in O-doped GaN, but are displaced from tetrahedral sites in O-doped Si. We discuss the feasibility of Mossbauer studies using /sup 151/Eu, /sup 169/Tm and /sup 161/Dy to determine the RE valence state and to identify RE defect complexes. (25 refs).

  2. Solid Earth: Introduction

    Science.gov (United States)

    Rummel, R.

    1991-10-01

    The principles of the solid Earth program are introduced. When considering the study of solid Earth from space, satellites are used as beacons, inertial references, free fall probes and carrying platforms. The phenomenon measured by these satellites and the processes which can be studied as a result of these measurements are tabulated. The NASA solid Earth program focusses on research into surface kinematics, Earth rotation, land, ice, and ocean monitoring. The ESA solid Earth program identifies as its priority the Aristoteles mission for determining the gravity and magnetic field globally, with high spatial resolution and high accuracy. The Aristoteles mission characteristics and goals are listed. The benefits of the improved gravity information that will be provided by this mission are highlighted. This information will help in the following research: geodesy, orbit mechanics, geodynamics, oceanography, climate sea level, and the atmosphere.

  3. Thermoluminescence dosimetric characteristics of thulium doped ZnB{sub 2}O{sub 4} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Annalakshmi, O. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Jose, M.T., E-mail: mtj@igcar.gov.in [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Madhusoodanan, U. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Subramanian, J. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India); Venkatraman, B. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amarendra, G. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mandal, A.B. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India)

    2014-02-15

    Polycrystalline powder samples of rare earth doped Zinc borates were synthesized by high temperature solid state diffusion technique. Dosimetric characteristics of the phosphor like thermoluminescence glow curve, TL emission spectra, dose–response, fading studies, reproducibility and reusability studies were carried out on the synthesized phosphors. Among the different rare earth doped phosphors, thulium doped zinc borate was found to have a higher sensitivity. Hence detailed dosimetric characteristics of this phosphor were carried out. It is observed that the dose–response is linear from 10 mGy to 10{sup 3} Gy in this phosphor. EPR measurements were carried out on unirradiated, gamma irradiated and annealed phosphors to identify the defect centers responsible for thermoluminescence. A TL model is proposed based on the EPR studies in these materials. Kinetic parameters were evaluated for the dosimetric peaks using various methods. The experimental results show that this phosphor can have potential applications in radiation dosimetry applications. -- Highlights: • Polycrystalline powder samples of rare earth doped zinc borates were synthesized. • Thulium was observed to be the most efficient dopant in ZnB{sub 2}O{sub 4} lattice. • TL intensity of the dosimetric peak is around 20 times that of TLD-100. • Based on EPR studies a TL mechanism is proposed in zinc borate. • Deconvolution of the glow curve carried out.

  4. Epitaxial Silicon Doped With Antimony

    Science.gov (United States)

    Huffman, James E.; Halleck, Bradley L.

    1996-01-01

    High-purity epitaxial silicon doped with antimony made by chemical vapor deposition, using antimony pentachloride (SbCI5) as source of dopant and SiH4, SiCI2H2, or another conventional source of silicon. High purity achieved in layers of arbitrary thickness. Epitaxial silicon doped with antimony needed to fabricate impurity-band-conduction photodetectors operating at wavelengths from 2.5 to 40 micrometers.

  5. TOXICOLOGICAL ENDPOINTS OF DOPING SUBSTANCES

    OpenAIRE

    BASARAN, A. Ahmet

    2017-01-01

    Athletes and non athletes weighlifters have tried to gain an unfairadvantage through the use doping substances since ancient times. Dopingsubstances although enhance sports performance, represent a risk to the healthof individuals and violate the sprit of competition. The use of prohibitedperformance enhancing drugs (PED’s) or methods to improve results incompetitive sports is referred as doping. Among the PED’s used areandrogenic-anabolic steroids (AASs), diuretics and masking agents, narkot...

  6. Doped graphene as a superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, Hamze, E-mail: hamze.mousavi@gmail.co [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2010-06-28

    We study s-wave superconductivity state in doped graphene within the extended attractive Hubbard model and BCS theory. We use the Green's function approach and coherent potential approximation. We obtain critical temperature of graphene, T{sub c}, as a function of the impurity concentration, c, as well as impurity strength, {delta}. The results show that when c and {delta}, are increased, T{sub c} remains finite and doped graphene can be a superconductor.

  7. Antimony-doped Tin(II) Sulfide Thin Films

    OpenAIRE

    Chakraborty, Rupak; Kim, Sang Bok; Heald, Steven; Buonassisi, Tonio; Gordon, Roy Gerald; Sinsermsuksakul, Prasert

    2012-01-01

    Thin-film solar cells made from earth-abundant, inexpensive, and nontoxic materials are needed to replace the current technologies whose widespread use is limited by their use of scarce, costly, and toxic elements. Tin monosulfide (SnS) is a promising candidate for making absorber layers in scalable, inexpensive, and nontoxic solar cells. SnS has always been observed to be a p-type semiconductor. Doping SnS to form an n-type semiconductor would permit the construction of solar cells with p-n ...

  8. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    Science.gov (United States)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  9. Laser action in Eu-doped GaN thin-film cavity at room temperature

    Science.gov (United States)

    Park, J. H.; Steckl, A. J.

    2004-11-01

    Rare-earth-based lasing action in GaN is demonstrated. Room-temperature stimulated emission (SE) was obtained at 620 nm from an optical cavity formed by growing in situ Eu-doped GaN thin films on sapphire substrates. The SE threshold for optical pumping of a ˜1 at. % Eu-doped GaN sample was ˜10kW/cm2. The SE threshold was accompanied by reductions in the emission linewidth and lifetime. A modal gain of ˜43cm-1 and a modal loss of ˜20cm-1 were obtained.

  10. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  11. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  12. Earth before life.

    Science.gov (United States)

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  13. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  14. The Earth's Magnetic Interior

    CERN Document Server

    Petrovsky, Eduard; Harinarayana, T; Herrero-Bervera, Emilio

    2011-01-01

    This volume combines review and solicited contributions, related to scientific studies of Division I of IAGA presented recently at its Scientific Assembly in Sopron in 2009. The book is aimed at intermediate to advanced readers dealing with the Earth's magnetic field generation, its historical records in rocks and geological formations - including links to geodynamics and magnetic dating, with magnetic carriers in earth materials, electromagnetic induction and conductivity studies of the Earth interior with environmental applications of rock magnetism and electromagnetism. The aim of the book

  15. Earliest life on earth

    CERN Document Server

    Golding, Suzanne D

    2010-01-01

    This volume integrates the latest findings on earliest life forms, identified and characterized in some of the oldest rocks on Earth. It places emphasis on the integration of analytical methods with observational techniques and experimental simulations.

  16. Earth retaining structures manual

    Science.gov (United States)

    2009-10-29

    The objectives of this policy are to obtain statewide uniformity, establish standard : procedures and delineate responsibility for the preparation and review of plans, : design and construction control of earth retaining structures. In addition, it i...

  17. Gambling with the earth

    CERN Multimedia

    Muir, H

    2000-01-01

    The probability that dangerous Earth-devouring particles will be born at a new accelerator in the US may be tiny, but scientists have played down the devastating potential costs in their risk assessments according to a physicist (1 page).

  18. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  19. EARTH ISLAND PROJECT NEWS

    National Research Council Canada - National Science Library

    2008-01-01

      The section features Earth Island's Dolphin Safe tuna . label (asking readers to look for tuna cans without the Dolphin Safe label and alert us so we can have the cans removed from store shelves...

  20. The Earth's rotation problem

    Science.gov (United States)

    Brumberg, V. A.; Ivanova, T. V.

    2008-09-01

    The aim of the present paper is to find the trigonometric solution of the equations of the Earth's rotation around its centre of mass in the form of polynomial trigonometric series (Poisson series) without secular and mixed therms. For that the techniques of the General Planetary Theory (GPT) ( Brumberg, 1995) and the Poisson Series Processor (PSP) (Ivanova, 1995) are used. The GPT allows to reduce the equations of the translatory motion of the major planets and the Moon and the equations of the Earth's rotation in Euler parameters to the secular system describing the evolution of the planetary and lunar orbits (independent of the Earth's rotation) and the evolution of the Earth's rotation (depending on the planetary and lunar evolution).

  1. Whole-Earth Decompression Dynamics

    OpenAIRE

    Herndon, J. Marvin

    2005-01-01

    The principles of Whole-Earth Decompression Dynamics are disclosed leading to a new way to interpret whole-Earth dynamics. Whole-Earth Decompression Dynamics incorporates elements of and unifies the two seemingly divergent dominant theories of continential displacement, plate tectonics theory and Earth expansion theory. Whole-Earth decompression is the consequence of Earth formation from within a Jupiter-like protoplanet with subsequent loss of gases and ices and concomitant rebounding. The i...

  2. Luminescence Studies of Eu3+ Doped Calcium Bromofluoride Phosphor

    Directory of Open Access Journals (Sweden)

    Jagjeet Kaur

    2013-01-01

    Full Text Available The present paper reports photoluminescence (PL and thermoluminescence (TL properties of rare earth-doped calcium bromo-fluoride phosphor. The europium (Eu3+ was used as rare earth dopant. The phosphor was prepared by Solid state reaction method (conventional method. The PL emission spectrum of the prepared phosphor shows intense peaks in the red region at 611 nm for 5D0→7F2 transitions, and the PL excitation spectra show a broad band located around 220–400 nm for the emission wavelength fixed at 470 nm. The TL studies were carried out after irradiating the phosphor by UV rays with different exposure time. The glow peak shows second-order kinetics. The present phosphor can act as host for red light emission in display devices.

  3. Cu-Doped-CdS/In-Doped-CdS Cosensitized Quantum Dot Solar Cells

    Directory of Open Access Journals (Sweden)

    Lin Li

    2014-01-01

    Full Text Available Cu-doped-CdS and In-doped-CdS cosensitized (Cu-doped-CdS/In-doped-CdS quantum dot solar cells (QDSCs are introduced here. Different cosensitized sequences, doping ratios, and the thickness (SILAR cycles of Cu-doped-CdS and In-doped-CdS are discussed. Compared with undoped CdS QDSCs, the short circuit current density, UV-Vis absorption spectra, IPCE (monochromatic incident photon-to-electron conversion, open circuit voltage, and so on are all improved. The photoelectric conversion efficiency has obviously improved from 0.71% to 1.28%.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Seung Hwangbo. Articles written in Bulletin of Materials Science. Volume 34 Issue 5 August 2011 pp 1059-1062. Cost-effective electrostatic-sprayed SrAl2O4:Eu phosphor coatings by using salted sol–gel derived solution · Kyu-Seog Hwang Bo-An Kang Sung-Dai Kim Seung ...

  5. Doping a jeho etická dimenze

    OpenAIRE

    Vlk, Aleš

    2008-01-01

    Title of Dissertation: Doping and Its Ethical Dimension Aims: To work up general information about doping, doping resources and methods and their influence over the human organism, to think of the reasons, why people use forbidden supportive resources in sport, to judge the problem ofdoping in sport in term of ehtical and moral aspects, to evaluate the impacts of doping on trustworthiness ofthe athlete and the sport as a whole. Methods: The dissertation has a theoretic character and uses qual...

  6. [Xenon: From rare gaz to doping product].

    Science.gov (United States)

    Tassel, Camille; Le Daré, Brendan; Morel, Isabelle; Gicquel, Thomas

    2016-04-01

    Doping is defined as the use of processes or substances to artificially increase physical or mental performance. Xenon is a noble gas used as an anesthetic and recently as a doping agent. Xenon is neuroprotective as an antagonist of NMDA glutamate receptors. Xenon stimulates the synthesis of erythropoietin (EPO) by increase of hypoxia inducible factor (HIF). Xenon would be a new doping product, maintaining doping methods ahead of detection. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Optimal Safety EarthingEarth Electrode Sizing Using A ...

    African Journals Online (AJOL)

    In this paper a deterministic approach in the sizing of earth electrode using the permissible touch voltage criteria is presented. The deterministic approach is effectively applied in the sizing of the length of earth rod required for the safe earthing of residential and facility buildings. This approach ensures that the earthing ...

  8. Acoustic investigations on PbO–Al2O3–B2O3 glasses doped with ...

    Indian Academy of Sciences (India)

    Abstract. Elastic moduli (, ), Poisson's ratio (), microhardness () and some thermodynamical parameters such as Debye temperature (), diffusion constant (), latent heat of melting ( ) etc of PbO–Al2O3–B2O3 glasses doped with rare earth ions viz. Pr3+, Nd3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Er3+ and Yb3+, ...

  9. Metal–insulator transition in electron-doped Ba1−xLaxMnO3 ...

    Indian Academy of Sciences (India)

    Colossal magnetoresistance; metal–insulator transition; electron-doped. Ba1−x Lax MnO3. PACS Nos 71.30.+h; 72.25.-b; 75.30.Vn. 1. Introduction. Lanthanum and rare-earth manganites have drawn considerable interest recently, because they exhibit M–I transition and colossal magnetoresistivity (CMR) behavior [1–4].

  10. Magnetic and optical properties of electrospun hollow nanofibers of SnO2 doped with Ce-ion

    Science.gov (United States)

    Mohanapriya, P.; Pradeepkumar, R.; Victor Jaya, N.; Natarajan, T. S.

    2014-07-01

    Cerium doped SnO2 hollow nanofibers were synthesized by electrospinning. High resolution scanning electron microscope (HRSEM) and transmission electron microscopy (TEM) analysis showed hollow nanofibers with diameters around ˜200 nm. The optimized substitution of Ce ion into SnO2 lattices happened above 6 mol. % doping as confirmed by Powder X-ray diffraction (XRD) studies. Optical band gap was decreased by the doping confirming the direct energy transfer between f-electrons of rare earth ion and the SnO2 conduction or valence band. The compound also exhibited room temperature ferromagnetism with the saturation magnetization of 19 × 10-5 emu/g at 6 mol. %. This study demonstrates the Ce doped SnO2 hollow nanofibers for applications in magneto-optoelectronic devices.

  11. Photoluminescent properties of Eu3+ and Dy3+ ions doped MgGa2O4 phosphors

    Science.gov (United States)

    Liu, Hai; Yu, Lixin; Li, Fuhai

    2013-02-01

    Several concentrations Eu3+-doped and Dy3+-doped MgGa2O4 phosphors were prepared successfully by two-step firing synthesis. The sintered samples were characterized by means of X-ray diffraction (XRD) and fluorescence spectrophotometer. Little amount of rare earth doped will not change the host matrix structure and the maximum of the emission or excitation intensity of these phosphors will decrease as the concentration increasing for concentration quenching. The emissions of Eu3+ caused by the transitions of 5D0→7Fj (j=0, 1, 2, 3, 4) were observed. And there are three groups of emission at 480 nm, 575 nm and 665 nm occurring at the spectrum of Dy3+ ions, which shows that MgGa2O4 phosphors doped with nanostructures ions have the potentiality to be applied for white LEDs applications.

  12. Rare earth ion controlled crystallization of mica glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Garai, Mrinmoy; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in

    2016-09-05

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO{sub 2}, Nd{sub 2}O{sub 3}, Sm{sub 2}O{sub 3} and Gd{sub 2}O{sub 3} doped K{sub 2}O−MgO−B{sub 2}O{sub 3}−Al{sub 2}O{sub 3}−SiO{sub 2}−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm{sup −3}) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T{sub g}) and crystallization temperature (T{sub c}). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg{sub 3}(AlSi{sub 3}O{sub 10})F{sub 2} by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10{sup −6}/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque

  13. Tunable erbium-doped microbubble laser fabricated by sol-gel coating

    CERN Document Server

    Yang, Yong; Kasumie, Sho; Xu, Linhua; Ward, Jonathan; Yang, Lan; Chormaic, Síle Nic

    2016-01-01

    In this work, we show that the application of a sol-gel coating renders a microbubble whispering gallery resonator into an active device. During the fabrication of the resonator, a thin layer of erbium-doped sol-gel is applied to a tapered microcapillary, then a microbubble with a wall thickness of 1.3 $\\mu$m is formed with the rare earth diffused into its walls. The doped microbubble is pumped at 980 nm and lasing in the emission band of the Er$^{3+}$ ions with a wavelength of 1535 nm is observed. The laser wavelength can be tuned by aerostatic pressure tuning of the whispering gallery modes of the microbubble. Up to 240 pm tuning is observed with 2 bar of applied pressure. It is shown that the doped microbubble could be used as a compact, tunable laser source. The lasing microbubble can also be used to improve sensing capabilities in optofluidic sensing applications.

  14. Modeling of Mid-IR Amplifier Based on an Erbium-Doped Chalcogenide Microsphere

    Directory of Open Access Journals (Sweden)

    P. Bia

    2012-01-01

    Full Text Available An optical amplifier based on a tapered fiber and an Er3+-doped chalcogenide microsphere is designed and optimized. A dedicated 3D numerical model, which exploits the coupled mode theory and the rate equations, is used. The main transitions among the erbium energy levels, the amplified spontaneous emission, and the most important secondary transitions pertaining to the ion-ion interactions have been considered. Both the pump and signal beams are efficiently injected and obtained by a suitable design of the taper angle and the fiber-microsphere gap. Moreover, a good overlapping between the optical signals and the rare-earth-doped region is also obtained. In order to evaluate the amplifier performance in reduced computational time, the doped area is partitioned in sectors. The obtained simulation results highlight that a high-efficiency midinfrared amplification can be obtained by using a quite small microsphere.

  15. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  16. The Sun and Earth

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  17. Earth - Moon Conjunction

    Science.gov (United States)

    1992-01-01

    On December 16, 1992, 8 days after its encounter with Earth, the Galileo spacecraft looked back from a distance of about 6.2 million kilometers (3.9 million miles) to capture this remarkable view of the Moon in orbit about Earth. The composite photograph was constructed from images taken through visible (violet, red) and near-infrared (1.0-micron) filters. The Moon is in the foreground; its orbital path is from left to right. Brightly colored Earth contrasts strongly with the Moon, which reacts only about one-third as much sunlight as our world. To improve the visibility of both bodies, contrast and color have been computer enhanced. At the bottom of Earth's disk, Antarctica is visible through clouds. The Moon's far side can also be seen. The shadowy indentation in the Moon's dawn terminator--the boundary between its dark and lit sides--is the South Pole-Aitken Basin, one of the largest and oldest lunar impact features. This feature was studied extensively by Galileo during the first Earth flyby in December 1990.

  18. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M

    2014-01-01

    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  19. Google Earth and Map Projections

    Directory of Open Access Journals (Sweden)

    Nedjeljko Frančula

    2010-06-01

    Full Text Available By starting Google Earth, the screen shows Earth from a great distance, e.g. from a satellite rotating around the Earth (Fig. 1. The graticule is drawn by using the Grid function from the View menu. Google Earth is a virtual globe which can be rotated in all directions using a mouse.

  20. Extrinsic doping in silicon revisited

    KAUST Repository

    Schwingenschlögl, Udo

    2010-06-17

    Both n-type and p-type doping of silicon is at odds with the charge transfer predicted by Pauling electronegativities and can only be reconciled if we no longer regarding dopant species as isolated atoms but rather consider them as clusters consisting of the dopant and its four nearest neighbor silicon atoms. The process that gives rise to n-type and p-type effects is the charge redistribution that occurs between the dopant and its neighbors, as we illustrate here using electronic structure calculations. This view point is able to explain why conventional substitutional n-type doping of carbon has been so difficult.

  1. Electronegativity and doping in semiconductors

    KAUST Repository

    Schwingenschlögl, Udo

    2012-08-23

    Charge transfer predicted by standard models is at odds with Pauling’s electronegativities but can be reconciled by the introduction of a cluster formation model [Schwingenschlögl et al., Appl. Phys. Lett. 96, 242107 (2010)]. Using electronic structure calculations, we investigate p- and n-type doping in silicon and diamond in order to facilitate comparison as C has a higher electronegativity compared to Si. All doping conditions considered can be explained in the framework of the cluster formation model. The implications for codoping strategies and dopant-defect interactions are discussed.

  2. Dagik Earth and IUGONET

    Science.gov (United States)

    Ebisawa, K.; Koyama, Y.; Saito, A.; Sakamoto, S.; Ishii, M.; Kumano, Y.; Hazumi, Y.

    2015-09-01

    In this paper we introduce two independent projects in progress in Japan. Dagik Earth is a visualization project of the Earth and planets on a spherical screen using only a standard PC and a projector. Surface images of the Earth or planets (or whatever having spherical shape) in the equirectangular (plate carre) projection are projected on a spherical screen in the orthographic projection. As a result, the spherical screen becomes a virtual digital globe, which can be rotated using mouse or remote controller. Inter-university Upper atmosphere Global Observation NETwork (IUGONET) is a collaboration of five Japanese institutes to build a comprehensive database system for the metadata of the upper-atmospheric data taken by these institutes. We explain the IUGONET metadata database and iUgonet Data Analysis Software (UDAS) for upper atmospheric research.

  3. Better Than Earth

    Science.gov (United States)

    Heller, René

    2015-01-01

    Do we inhabit the best of all possible worlds? German mathematician Gottfried Leibniz thought so, writing in 1710 that our planet, warts and all, must be the most optimal one imaginable. Leibniz's idea was roundly scorned as unscientific wishful thinking, most notably by French author Voltaire in his magnum opus, Candide. Yet Leibniz might find sympathy from at least one group of scientists - the astronomers who have for decades treated Earth as a golden standard as they search for worlds beyond our own solar system. Because earthlings still know of just one living world - our own - it makes some sense to use Earth as a template in the search for life elsewhere, such as in the most Earth-like regions of Mars or Jupiter's watery moon Europa. Now, however, discoveries of potentially habitable planets orbiting stars other than our sun - exoplanets, that is - are challenging that geocentric approach.

  4. The Ethics of Doping and Anti-Doping

    DEFF Research Database (Denmark)

    Møller, Verner

    – is at heart nothing less than a battle to save sport from itself, located on the fault-line between the will to purity and the will to win. Drawing on extensive and detailed case studies of doping in sport, and using a highly original blend of conceptual ideas from philosophy and sociology, Møller strongly...

  5. How Big is Earth?

    Science.gov (United States)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  6. Plasmon-Assisted Efficiency Enhancement of Eu3+-Doped Tellurite Glass-Covered Solar Cells

    Science.gov (United States)

    Lima, Bismarck C.; Gómez-Malagón, L. A.; Gomes, A. S. L.; Garcia, J. A. M.; Kassab, L. R. P.

    2017-12-01

    Rare-earth-doped tellurite glass containing metallic nanoparticles can be exploited to manage the solar spectrum in order to increase solar cell efficiency. It is therefore possible to modify the incident solar spectrum profile to the spectrum that optimizes the solar cell recombination process by covering the solar cell with plasmonic luminescent downshifting layers. With this approach, the losses due to thermalization are minimized and the efficiency is increased. Due to the down-conversion process that couples the plasmon resonance of the metallic nanoparticles and the rare-earth electronic energy levels, it is possible to convert photons from the ultraviolet region to the visible and near-band-gap region of the semiconductor. It is demonstrated here that plasmon-assisted efficiency enhancements of 14.0% and 34.5% can be obtained for commercial Si and GaP solar cells, respectively, covered with Eu3+-doped TeO2-ZnO glass containing silver nanoparticles.

  7. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  8. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  9. Heteroatom-Doped Carbon Materials for Electrocatalysis.

    Science.gov (United States)

    Asefa, Tewodros; Huang, Xiaoxi

    2017-08-10

    Fuel cells, water electrolyzers, and metal-air batteries are important energy systems that have started to play some roles in our renewable energy landscapes. However, despite much research works carried out on them, they have not yet found large-scale applications, mainly due to the unavailability of sustainable catalysts that can catalyze the reactions employed in them. Currently, noble metal-based materials are the ones that are commonly used as catalysts in most commercial fuel cells, electrolyzers, and metal-air batteries. Hence, there has been considerable research efforts worldwide to find alternative noble metal-free and metal-free catalysts composed of inexpensive, earth-abundant elements for use in the catalytic reactions employed in these energy systems. In this concept paper, a brief introduction on catalysis in renewable energy systems, followed by the recent efforts to develop sustainable, heteroatom-doped carbon and non-noble metal-based electrocatalysts, the challenges to unravel their structure-catalytic activity relationships, and the authors' perspectives on these topics and materials, are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Photoluminescence of monocrystalline and stain-etched porous silicon doped with high temperature annealed europium

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Lemus, R; Montesdeoca-Santana, A; Gonzalez-Diaz, B; Diaz-Herrera, B; Hernandez-Rodriguez, C; Jimenez-Rodriguez, E [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida AstrofIsico Francisco Sanchez, 2. 38206 La Laguna, Tenerife (Spain); Velazquez, J J, E-mail: rglemus@ull.es [Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez, 2. 38206 La Laguna, Tenerife (Spain)

    2011-08-24

    In this work, for the first time, the photoluminescent emission and excitation spectra of non-textured layers and stain-etched porous silicon layers (PSLs) doped with high temperature annealed europium (Eu) are evaluated. The PSLs are evaluated as a host for rare earth ions and as an antireflection coating. The applied doping process, which consists in a simple impregnation method followed by a high-temperature annealing step, is compatible with the standard processes in the fabrication of solar cells. The results show down-shifting processes with a maximum photoluminescent intensity at 615 nm, related to the transition {sup 5}D{sub 0} {yields} {sup 7}F{sub 2}. Different initial concentrations of Eu(NO{sub 3}){sub 3} are evaluated to study the influence of the rare earth concentration on the photoluminescent intensity. The chemical composition and the morphology of Eu-doped PSLs are examined by means of x-ray dispersion spectroscopy, Fourier-transform infrared spectroscopy and scanning electron microscopy. These Eu-doped layers are considered to be applied as energy converters in silicon-based third generation solar cells.

  11. Resonance electronic Raman scattering in rare earth crystals

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.M.

    1988-11-10

    The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce/sup 3 +/(4f/sup 1/) in single crystals of LuPO/sub 4/ and Er/sup 3 +/(4f/sup 11/) in single crystals of ErPO/sub 4/. 134 refs., 92 figs., 33 tabs.

  12. Small hole polarons in rare-earth titanates

    Energy Technology Data Exchange (ETDEWEB)

    Bjaalie, L.; Moetakef, P.; Cain, T. A.; Janotti, A.; Himmetoglu, B.; Stemmer, S.; Van de Walle, C. G. [Materials Department, University of California Santa Barbara, California 91306-5050 (United States); Ouellette, D. G.; Allen, S. J. [Department of Physics, University of California, Santa Barbara, California 91306-5050 (United States)

    2015-06-08

    We investigate the behavior of hole polarons in rare-earth titanates by combining optical conductivity measurements with first-principles hybrid density functional calculations. Sr-doped GdTiO{sub 3} (Gd{sub 1−x}Sr{sub x}TiO{sub 3}) was grown by molecular beam epitaxy. We show that a feature in the optical conductivity that was previously identified with the Mott-Hubbard gap is actually associated with the excitation of a small polaron. The assignment is based on an excellent match between the experimental spectra and first-principles calculations for polaron excitation mechanisms.

  13. Structural and optical characteristics of Ce, Nd, Gd, and Dy-doped ...

    Indian Academy of Sciences (India)

    2017-06-19

    Jun 19, 2017 ... Aluminum oxide films doped with RE elements such as Ce, Nd, Gd, and Dy are synthesized on glass substrate using ultrasonic spray pyrolysis technique at 400 ∘ C. The concentration of rare earth element is varied from 0.5 to 5 mol% in 0.1 M solution of A l 2 O 3 . The X-ray diffraction analysis indicates that ...

  14. Energy Transfer Process of Eu3+ Ions Doped in Tellurite Glass

    Science.gov (United States)

    Hong, Tran Thi; Dung, Phan Tien; Quang, Vu Xuan

    2016-05-01

    Tellurite glass doped with different concentrations of Eu3+ ions has been prepared by the conventional melting process. Photoluminescence, Raman spectra, phonon side-band spectra, and Judd-Ofelt analysis were carried out. Some spectroscopic parameters were estimated to predict the luminescence efficiency of the materials. The energy transfer between the rare-earth ions was observed, and a model for its cross-relaxation was proposed and quantitatively estimated. The charged intrinsic defects in the form of nonbridging oxygen (NBO) were determined, and the energy transfer between NBO and rare-earth ions observed. The energy-transfer-induced Eu3+ photoluminescence enhancement in tellurite glass is studied.

  15. Impurity doping processes in silicon

    CERN Document Server

    Wang, FFY

    1981-01-01

    This book introduces to non-experts several important processes of impurity doping in silicon and goes on to discuss the methods of determination of the concentration of dopants in silicon. The conventional method used is the discussion process, but, since it has been sufficiently covered in many texts, this work describes the double-diffusion method.

  16. Steroid profiling in doping analysis

    NARCIS (Netherlands)

    Kerkhof, Daniël Henri van de

    2001-01-01

    Profiling androgens in urine samples is used in doping analysis for the detection of abused steroids of endogenous origin. These profiling techniques were originally developed for the analysis of testosterone, mostly by means of the ratio of testosterone to epitestosterone (T/E ratio). A study was

  17. GENES IN SPORT AND DOPING

    Science.gov (United States)

    Kaliszewski, P.; Majorczyk, E.; Zembroń-Łacny, A.

    2013-01-01

    Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation, erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes’ genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes’ genotyping and gene doping possibilities, including their development and detection techniques. PMID:24744482

  18. GENES IN SPORT AND DOPING

    Directory of Open Access Journals (Sweden)

    Andrzej Pokrywka

    2013-06-01

    Full Text Available Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes’ genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes’ genotyping and gene doping possibilities, including their development and detection techniques.

  19. DIORAMA Earth Terrain Model

    Energy Technology Data Exchange (ETDEWEB)

    Werley, Kenneth Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-10

    When simulating near-surface nuclear detonations, the terrain of the Earth can have an effect on the observed outputs. The critical parameter is called the “height of burst”. In order to model the effect of terrain on the simulations we have incorporated data from multiple sources to give 9 km resolution data with global coverage.

  20. "Galileo Calling Earth..."

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  1. Bones of the Earth

    Science.gov (United States)

    Correa, Jose Miguel

    2014-01-01

    The film "Bones of the Earth" (Riglin, Cunninham & Correa, 2014) is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective…

  2. Earth's City Lights

    Science.gov (United States)

    2002-01-01

    This image of Earth's city lights was created with data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Originally designed to view clouds by moonlight, the OLS is also used to map the locations of permanent lights on the Earth's surface. The brightest areas of the Earth are the most urbanized, but not necessarily the most populated. (Compare western Europe with China and India.) Cities tend to grow along coastlines and transportation networks. Even without the underlying map, the outlines of many continents would still be visible. The United States interstate highway system appears as a lattice connecting the brighter dots of city centers. In Russia, the Trans-Siberian railroad is a thin line stretching from Moscow through the center of Asia to Vladivostok. The Nile River, from the Aswan Dam to the Mediterranean Sea, is another bright thread through an otherwise dark region. Even more than 100 years after the invention of the electric light, some regions remain thinly populated and unlit. Antarctica is entirely dark. The interior jungles of Africa and South America are mostly dark, but lights are beginning to appear there. Deserts in Africa, Arabia, Australia, Mongolia, and the United States are poorly lit as well (except along the coast), along with the boreal forests of Canada and Russia, and the great mountains of the Himalaya. The Earth Observatory article Bright Lights, Big City describes how NASA scientists use city light data to map urbanization. Image by Craig Mayhew and Robert Simmon, NASA GSFC, based on DMSP data

  3. The Earth's Changing Climate

    Indian Academy of Sciences (India)

    wavelength range between 0.2 and 4.0 microns (p,m). ... from the earth is in the long wavelength range from 4.0 to 80/-Lm. .... turing industry. But, it is removed from the atmosphere by the photosynthesis of plants. The largest reservoirs of carbon are in the deep oceans. Some of this reaches the atmosphere when waters.

  4. Modeling Earth's Climate

    Science.gov (United States)

    Pallant, Amy; Lee, Hee-Sun; Pryputniewicz, Sara

    2012-01-01

    Systems thinking suggests that one can best understand a complex system by studying the interrelationships of its component parts rather than looking at the individual parts in isolation. With ongoing concern about the effects of climate change, using innovative materials to help students understand how Earth's systems connect with each other is…

  5. Understanding Earth's Albedo Effect

    Science.gov (United States)

    Fidler, Chuck

    2012-01-01

    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  6. How life shaped Earth.

    Science.gov (United States)

    Gross, Michael

    2015-10-05

    Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet.

  7. Earth's Reflection: Albedo

    Science.gov (United States)

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  8. Google Earth Science

    Science.gov (United States)

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  9. Between Earth and Sky

    DEFF Research Database (Denmark)

    Carter, Adrian

    2009-01-01

    to rescue architecture from the sterile impasse of late-modernism. In his works the basic elements of lived space become present: the earth, the sky and the `between` of human existence." Jørn Utzon's architecture ranges from the modest to the monumental; from the Kingo courtyard houses, the finest...

  10. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  11. Striking the Right Balance : Effectiveness of Anti-Doping Policies

    NARCIS (Netherlands)

    de Hon, O.M.

    2016-01-01

    Doping, and anti-doping, is in the news on a continuous basis. At the core of these stories and discussions is the question how effective anti-doping policies are to curb the use of doping in sports. Anti-doping policies are based on ethical values, a juridical framework, laboratory analyses,

  12. Alkaline and alkaline earth metal phosphate halides and phosphors

    Science.gov (United States)

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  13. Visualizing Earth Materials

    Science.gov (United States)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  14. Earth Science Multimedia Theater

    Science.gov (United States)

    Hasler, A. F.

    1998-01-01

    The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites

  15. Investigated electronic structure and magnetic ordering of rare earth impurities (Eu, Gd) in ZnO

    Science.gov (United States)

    Benosman, F.; Dridi, Z.; Al-Douri, Y.; Bouhafs, B.

    2016-09-01

    First-principles calculations of the electronic structure of substitutional rare earth (RE) impurity (Eu and Gd) in wurtzite ZnO have been performed using density functional theory within a Hubbard potential correction to the RE 4f states. For Eu-doped ZnO, the magnetic coupling between Eu ions in the nearest neighbor sites is ferromagnetic (FM). The room temperature (RT) ferromagnetism (FM) can be enhanced by an appropriate hole doping into the sample. The ZnO:Gd is found to favor the antiferromagnetic (AFM) phase. The FM can be achieved by high electron doping. The native defects effect (VO, VZn) on the FM is also studied. The oxygen vacancies seem to play an important role in the generation of the FM in both ZnO:Eu and ZnO:Gd, which is in good agreement with recent experimental results.

  16. Inaugeral lecture - Meteorite impacts on Earth and on the Earth ...

    African Journals Online (AJOL)

    There is some controversial evidence for the theory that the first life on Earth itself may have been transported here on meteorites from Mars. The possibility of a major meteorite impact on Earth in the near future emphasizes the dramatic nature of these recent discoveries, which are having deep impacts in the Earth sciences ...

  17. Towards earth AntineutRino TomograpHy (EARTH)

    NARCIS (Netherlands)

    De Meijer, R. J.; Smit, F. D.; Brooks, F. D.; Fearick, R. W.; Wortche, H. J.; Mantovani, F.

    2006-01-01

    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection.

  18. Phaethon Near Earth

    Science.gov (United States)

    Jewitt, David

    2017-08-01

    Planet-crossing asteroid (3200) Phaethon, source of the Geminid meteoroid stream, will pass close to Earth in December 2017. Observations with HST are proposed to image debris ejected from this object at 1 AU heliocentric distance, to estimate the ejection velocities as the Earth passes through the orbit plane, and to estimate the dust production rate for comparison with the rates needed to sustain the Geminid stream in steady-state. These measurements will help determine the mechanism behind the ejection of the Geminids, a long-standing puzzle. While the release of micron-sized particles (probably by thermal fracture) has been recorded at Phaethon's perihelion (0.14 AU), mass loss has never been detected otherwise, raising the puzzle of the ejection mechanism and duration. The close approach (0.07 AU) on December 17 gives a once-in-a-lifetime opportunity to observe Phaethon at high sensitivity with a resolution of a few kilometers.

  19. Marketing Earth science education

    Science.gov (United States)

    Snieder, Roel; Spiers, Chris

    In the 1990s, the Department of Earth Sciences at Utrecht University in the Netherlands was struggling with a declining influx of students. For years, the department had been active in promoting its program, but this was insufficient to stem the decline in interest. To remedy the problem, the school's Earth science faculty carried out, with the help of consultants, a qualitative evaluation of its promotional activities. The faculty feared that their own image of the department might be in conflict with the image held by others; prospective students, in particular. The consultants interviewed secondary school students, parents, teachers, and study advisors in secondary schools. This article is a report on the results of this evaluation.

  20. Life Before Earth

    CERN Document Server

    Sharov, Alexei A

    2013-01-01

    An extrapolation of the genetic complexity of organisms to earlier times suggests that life began before the Earth was formed. Life may have started from systems with single heritable elements that are functionally equivalent to a nucleotide. The genetic complexity, roughly measured by the number of non-redundant functional nucleotides, is expected to have grown exponentially due to several positive feedback factors: gene cooperation, duplication of genes with their subsequent specialization, and emergence of novel functional niches associated with existing genes. Linear regression of genetic complexity on a log scale extrapolated back to just one base pair suggests the time of the origin of life 9.7 billion years ago. This cosmic time scale for the evolution of life has important consequences: life took ca. 5 billion years to reach the complexity of bacteria; the environments in which life originated and evolved to the prokaryote stage may have been quite different from those envisaged on Earth; there was no...

  1. Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping

    National Research Council Canada - National Science Library

    Shi, Qiang; Wang, Changzheng; Li, Shuhong; Wang, Qingru; Zhang, Bingyuan; Wang, Wenjun; Zhang, Junying; Zhu, Hailing

    2014-01-01

    .... The effects of the additional doping with Li ions on the crystal structure, particle morphology, and luminescence properties of Ce-doped ZnO were investigated by X-ray diffraction, scanning electron...

  2. Photosynthesis and early Earth.

    Science.gov (United States)

    Shih, Patrick M

    2015-10-05

    Life has been built on the evolution and innovation of microbial metabolisms. Even with our scant understanding of the full diversity of microbial life, it is clear that microbes have become integral components of the biogeochemical cycles that drive our planet. The antiquity of life further suggests that various microbial metabolisms have been core and essential to global elemental cycling for a majority of Earth's history. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Earth Abides Arsenic Biotransformations

    OpenAIRE

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-01-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology ...

  4. Superhydrophobic diatomaceous earth

    Science.gov (United States)

    Simpson, John T [Clinton, TN; D& #x27; Urso, Brian R [Clinton, TN

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  5. Life Before Earth

    OpenAIRE

    Sharov, Alexei A; Gordon, Richard

    2013-01-01

    An extrapolation of the genetic complexity of organisms to earlier times suggests that life began before the Earth was formed. Life may have started from systems with single heritable elements that are functionally equivalent to a nucleotide. The genetic complexity, roughly measured by the number of non-redundant functional nucleotides, is expected to have grown exponentially due to several positive feedback factors: gene cooperation, duplication of genes with their subsequent specialization,...

  6. Testing MOND on Earth

    CERN Document Server

    Ignatiev, A Yu

    2014-01-01

    MOND is one of the most popular alternatives to Dark Matter (DM). While efforts to directly detect DM in laboratories have been steadily pursued over the years, the proposed Earth-based tests of MOND are still in their infancy. Some proposals recently appeared in the literature are briefly reviewed, and it is argued that collaborative efforts of theorists and experimenters are needed to move forward in this exciting new area. Possible future directions are outlined.

  7. Luminescence properties of pure and doped CaSO4 nanorods irradiated by 15 MeV e-beam

    Science.gov (United States)

    Salah, Numan; Alharbi, Najlaa D.; Enani, Mohammad A.

    2014-01-01

    Calcium sulfate (CaSO4) doped with proper activators is a highly sensitive phosphor used in different fields mainly for radiation dosimetry, lighting and display applications. In this work pure and doped nanorods of CaSO4 were produced by the co-precipitation technique. Samples from this material doped with Ag, Cu, Dy, Eu and Tb were exposed to different doses of 15 MeV e-beam and studied for their thermoluminesence (TL) and photoluminescence (PL) properties. Color center formation leading to PL emissions were investigated before and after e-beam irradiation. The samples doped with rare earths elements (i.e. Dy, Eu and Tb) were observed to have thinner nanorods than the other samples and have higher absorption in the UV region. The Ag and Tb doped samples have poor TL response to e-beam, while those activated by Cu, Dy and Eu have strong glow peaks at around 123 °C. Quite linear response curves in the whole studied exposures i.e. 0.1-100 Gy were also observed in Cu and Dy doped samples. The PL results show that pure CaSO4 nanorods have active color centers without irradiation, which could be enriched/modified by these impurities mainly rare earths and further enhanced by e-beam irradiation. Eu3+ → Eu2+ conversion is clearly observed in Eu doped sample after e-beam irradiation. These results show that these nanorods might be useful in lighting and display devices development.

  8. Earth's heat budget: Clairvoyant geoneutrinos

    Science.gov (United States)

    Korenaga, Jun

    2011-09-01

    The quantity of heat generated by radioactive decay in Earth's interior is controversial. Measurements of geoneutrinos emitted from the mantle during this decay indicate that this source contributes only about half of Earth's total outgoing heat flux.

  9. Physics: clairvoyant of the Earth

    Science.gov (United States)

    Haworth, R. T.

    1991-05-01

    The Earth is a vibrant body whose structure and dynamics can be investigated by geophysics. Earth movements not only constitute a hazard, but over many millenia have contributed to the development and location of our natural resources.

  10. Mirador - Earth Surface and Interior

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. The goal of the Earth Surface and Interior focus area is to assess, mitigate and forecast the natural hazards that affect...

  11. Sun, Earth and Sky

    CERN Document Server

    Lang, Kenneth R

    2006-01-01

    This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun’s inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun’s outer atmosphere is heated to a million degrees, and just where the Sun’s continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore p...

  12. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.

    2011-02-01

    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  13. Afganistan and rare earths

    Directory of Open Access Journals (Sweden)

    Emilian M. Dobrescu

    2013-05-01

    Full Text Available On our planet, over a quarter of new technologies for the economic production of industrial goods, are using rare earths, which are also called critical minerals and industries that rely on these precious items being worth of an estimated nearly five trillion dollars, or 5 percent of world gross domestic product. In the near future, competition will increase for the control of rare earth minerals embedded in high-tech products. Rare minerals are in the twenty-first century what oil accounted for in the twentieth century and coal in the nineteenth century: the engine of a new industrial revolution. Future energy will be produced increasingly by more sophisticated technological equipment based not just on steel and concrete, but incorporating significant quantities of metals and rare earths. Widespread application of these technologies will result in an exponential increase in demand for such minerals, and what is worrying is that minerals of this type are almost nowhere to be found in Europe and in other industrialized countries in the world, such as U.S. and Japan, but only in some Asian countries, like China and Afghanistan.

  14. DFT study of Al doped armchair SWCNTs

    Energy Technology Data Exchange (ETDEWEB)

    Dhiman, Shobhna, E-mail: s-dhiman@hotmail.com [Department of Applied Science, PEC, University of Technology, Chandigarh -160012 (India); Rani, Anita [Guru Nanak College for Girls, Sri Muktsar Sahib, Punjab-152026 (India); Kumar, Ranjan; Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh-160014 (India)

    2016-05-23

    Electronic properties of endohedrally doped armchair single-walled carbon nanotubes (SWCNTs) with a chain of six Al atoms have been studied using ab-initio density functional theory. We investigate the binding energy/atom, ionization potential, electron Affinity and Homo-Lumo gap of doped armchair SWNTs from (4,4) to (6,6) with two ends open. BE/dopant atom and ionization potential is maximum for (6, 6) doped armchair carbon nanotube; suggest that it is more stable than (4, 4) and (5, 5) doped tubes. HOMO - LUMO gap of Al doped arm chair carbon nanotubes decreases linearly with the increase in diameter of the tube. This shows that confinement induce a strong effect on electronic properties of doped tubes. These combined systems can be used for future nano electronics. The ab–initio calculations were performed with SIESTA code using generalized gradient approximation (GGA).

  15. Upconversion improvement in KLaF4:Yb3+/Er3+ nanoparticles by doping Al3+ ions

    Science.gov (United States)

    Zhou, Haifang; Wang, Xiechun; Lai, Yunfeng; Cheng, Shuying; Zheng, Qiao; Yu, Jinlin

    2017-10-01

    Rare-earth ion-doped upconversion (UC) materials show great potential applications in optical and optoelectronic devices due to their novel optical properties. In this work, hexagonal KLaF4:Yb3+/Er3+ nanoparticles (NPs) were successfully synthesized by a hydrothermal method, and remarkably enhanced upconversion luminescence in green and red emission bands in KLaF4:Yb3+/Er3+ NPs has been achieved by doping Al3+ ions under 980 nm excitation. Compared to the aluminum-free KLaF4:Yb3+/Er3+ NPs sample, the UC fluorescence intensities of the green and red emissions of NPs doped with 10 at.% Al3+ ions were significantly enhanced by 5.9 and 7.3 times, respectively. Longer lifetimes of the doped samples were observed for the 4S3/2 state and 4F9/2 state. The underlying reason for the UC enhancement by doping Al3+ ions was mainly ascribed to distortion of the local symmetry around Er3+ ions and adsorption reduction of organic ligands on the surface of NPs. In addition, the influence of doping Al3+ ions on the structure and morphology of the NPs samples was also discussed.

  16. Main modern problems of doping in sport

    Directory of Open Access Journals (Sweden)

    Rudenko V.P.

    2014-04-01

    Full Text Available Purpose : to identify and substantiate medico-biological, psychological and social problems of doping in sport. Material: Theoretical study is based on analysis of more than 50 scientific and methodical literatures. Results : it was shown that doping is one of the serious problems of modern sport and society in general. Defines important questions regarding anti-doping rules and the anti-doping control in sport. Installed the use of performance enhancing drugs in professional sports for children and youth. Given the promising solutions to the problems of doping in Ukraine. Conclusions: Among the problems of modern sport is becoming increasingly important issue of doping. It is an extremely complex because it involves the interrelated medical, legal, political, moral, organizational, social and pedagogical aspects. Socio-pedagogical factors of anti-doping policy in sports scientists comprehensively still not addressed. Certain aspects of anti-doping policy presented in scientific papers, which can be divided into two groups. The first group of papers is devoted to doping in sport as a social event. The second group of papers devoted to the problems of doping control. Today there is a need and objective preconditions for the development and adoption of a General concept, which would be generalized numerical amount of data received and served as a basis for developing an effective anti-doping control at the expense of improvement of legislative and normative-legal base and infrastructure of the anti-doping policy in Ukraine, which should be brought in line with modern international standards.

  17. Doping, sundhed og fair konkurrencer

    DEFF Research Database (Denmark)

    Møller, Verner; Christiansen, Ask Vest

    Doping er blevet et nøgleord i reportagerne fra international sport. Atleternes præstationer kan først godkendes, når de har afgivet en negativ dopingprøve. Den omfattende kontrol retfærdiggøres som det, der skal sikre fair konkurrencer og en sund sport. Men har man egentlig begreb om det, man vil...

  18. An extended x-ray absorption fine structure study of rare-earth phosphate glasses near the metaphosphate composition

    OpenAIRE

    Anderson, Ruth; Brennan, Tessa; Cole, Jacqueline M.; Mountjoy, Gavin; Pickup, David M.; Newport, Robert J.; Saunders, George A.

    1999-01-01

    A variable-temperature (79, 145, and 293 K) extended x-ray absorption fine structure study, using rare-earth L-III absorption edges, is reported for phosphate glasses doped with rare-earth elements (R, where R = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er) with compositions close to metaphosphate, R(PO3)(3). The results yield nearest-neighbor R-O distances that demonstrate the lanthanide contraction in a glassy matrix and an R-O coordination intermediate between 6 and 7 for ran-earth ions ...

  19. Rare Earth Element Partition Coefficients from Enstatite/Melt Synthesis Experiments

    Science.gov (United States)

    Schwandt, Craig S.; McKay, Gordon A.

    1997-01-01

    Enstatite (En(80)Fs(19)Wo(01)) was synthesized from a hypersthene normative basaltic melt doped at the same time with La, Ce, Nd, Sm, Eu, Dy, Er, Yb and Lu. The rare earth element concentrations were measured in both the basaltic glass and the enstatite. Rare earth element concentrations in the glass were determined by electron microprobe analysis with uncertainties less than two percent relative. Rare earth element concentrations in enstatite were determined by secondary ion mass spectrometry with uncertainties less than five percent relative. The resulting rare earth element partition signature for enstatite is similar to previous calculated and composite low-Ca pigeonite signatures, but is better defined and differs in several details. The partition coefficients are consistent with crystal structural constraints.

  20. Study on preparation and characterization of MOF based lanthanide doped luminescent coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Binh, Nguyen Thanh; Tien, Dinh Manh; Giang, Lam Thi Kieu; Khuyen, Hoang Thi; Huong, Nguyen Thanh; Huong, Tran Thu; Lam, Tran Dai, E-mail: lamtd@ims.vast.ac.vn

    2014-02-14

    Coordination polymers (metal–organic frameworks or MOFs) offer the opportunity for fine-tuning the luminescence behavior because of the possibility to entrap in the network pores molecules that can influence the lanthanide (Ln) emission. In this study, Zn (II) and polycarboxylate based MOFs were first pre-formed by solvothermal method, then considered as host-matrix for in situ doping of low-input concentration of Eu{sup 3+} and Tb{sup 3+} (two most commonly used lanthanides in life science assays), and afterwards lanthanide doped luminescent materials were synthesized. Different characterizations (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-Dispersive Spectroscopy (EDS)) were carried out to confirm accordingly MOF's crystallinity, the structure and chemical composition. The study on luminescent properties of the material has revealed an efficient energy transfer from the ligand excited states to the Eu{sup 3+} and Tb{sup 3+} f-excited states. With quite low input concentrations (8–15%) of doped rare earth ions, these complexes displayed intense emissions at room temperature and proved to be good candidates for red and green emitter luminescent materials. Generally, this design concept can be extended for the preparation of other rare earth coordination polymers. - Highlights: • Synthesis of luminescent materials MOF-5/RE (RE = Eu, Tb) by solvothermal method with in situ doping of Eu{sup 3+} and Tb{sup 3+}. • MOF-5/RE with ordered structure gives strong luminescence spectra. • The design concept can be extended for the preparation of other rare earth coordination polymers.

  1. Facile preparation method for rare earth phosphate hollow spheres and their photoluminescence properties.

    Science.gov (United States)

    Guan, Mingyun; Tao, Feifei; Sun, Jianhua; Xu, Zheng

    2008-08-05

    We have developed a template-free hydrothermal method of constructing rare earth phosphate hollow spheres using H(6)P(4)O(13) as the PO(4) (3-) source. The mechanism of hollow spheres formation was proposed on the basis of Ostwald ripening. The resulting hollow spheres, especially with the aid of doping of other lanthanide cations, exhibit emission spanning the whole UV-visible wavelength range.

  2. On general Earth's rotation theory

    Science.gov (United States)

    Brumberg, V.; Ivanova, T.

    2009-09-01

    This paper dealing with the general problem of the rigid-body rotation of the three-axial Earth represents a straightforward extension of (Brumberg and Ivanova, 2007) where the simplified Poisson equations of rotation of the axially symmetrical Earth have been considered. The aim of the present paper is to reduce the equations of the translatory motion of the major planets and the Moon and the equations of the Earth's rotation around its centre of mass to the secular system describing the evolution of the planetary and lunar orbits (independent of the Earth's rotation) and the evolution of the Earth's rotation (depending on the planetary and lunar evolution).

  3. Stovetop Earth Pecan Pie

    Science.gov (United States)

    Robin, C. M.

    2005-12-01

    Many fluid mechanical experiments with direct applications to Earth Science are performed with sugary syrups using conceptually straightforward procedures. Corn syrup has indeed proven to be a godsend for those studying convection and related non-linear phenomena. In addition, however, it gives experimentalists a deep physical intuition for the interior workings of hot planets. The basic concepts behind plate tectonics and mantle convection are not difficult; indeed, although they may not be aware of it, most students probably have a basic intuitive understanding of fluid mechanics gained in their daily life. However, the large size and long time scale of geophysical processes may be quite intimidating to young students. Even a simple geophysical experiment requires a complicated array of coolers, heaters and measuring and recording equipment. It is of interest to introduce students to the geodynamical concepts that can be visualized in a high-tech lab using familiar processes and equipment. Using a homemade apparatus and grocery store supplies, I propose using a 'Stove-top Earth pecan pie' to introduce simple geodynamic concepts to middle- and high-school students. The initially cold syrup heats up and the pecans begin to float (continent formation), the syrup begins to convect (mantle convection), and convection slows down after the heat is removed (secular cooling). Even Wilson cycles can be simulated by moving the pan to one side or the other of the stovetop or heating element. The activity formally introduces students to convection and its application to the earth, and makes them think about plate motion, heat transfer, scaling, and experimental procedures. As an added bonus, they can eat their experiments after recess!

  4. The Solid Earth

    Science.gov (United States)

    Fowler, C. M. R.

    2005-02-01

    The second edition of this acclaimed textbook has been brought fully up-to-date to reflect the latest advances in geophysical research. It is designed for students in introductory geophysics courses who have a general background in the physical sciences, including introductory calculus. New to this edition are a section of color plates and separate sections on the earth's mantle and core. The book also contains an extensive glossary of terms, and includes numerous exercises for which solutions are available to instructors from solutions@cambridge.org. First Edition Hb (1990): 0-521-37025-6 First Edition Pb (1990): 0-521-38590-3

  5. Bones of the Earth

    Directory of Open Access Journals (Sweden)

    Jose Miguel Correa

    2014-06-01

    Full Text Available The film Bones of the Earth (Riglin, Cunninham & Correa, 2014 is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective creation is built. A sense of community, on-going inquiry, connections and social commitment inform the creative process. As a result, the video’s nearly five intense minutes are a metaphor for the search for personal meaning, connection with nature and intersubjective positioning in a world that undergoes constant change.

  6. Solid Earth: The priorities

    Science.gov (United States)

    Paquet, P.

    1991-10-01

    The European Space Agency's strategy concerning the solid Earth program is reviewed. Improvement of current knowledge of the global geopotential fields, both gravity and magnetic, was stressed as the highest priority. It was agreed that the objectives and goals of the planned Aristoteles mission correspond to this priority, and the need to realize this part of the program was stated. The interdisciplinary links of the program were identified, and it was decided that this program could make substantial contributions to research of oceans, climate and global change, atmosphere, ice and land surfaces.

  7. Recent progress on doped ZnO nanostructures for visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Morasae; Zirak, Mohammad [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Naseri, Amene [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of); Khorashadizade, Elham [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Moshfegh, Alireza Z., E-mail: moshfegh@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of)

    2016-04-30

    Global environmental pollution and energy supply demand have been regarded as important concerns in recent years. Metal oxide semiconductor photocatalysts is a promising approach to apply environmental remediation as well as fuel generation from water splitting and carbon dioxide reduction. ZnO nanostructures have been shown promising photocatalytic activities due to their non-toxic, inexpensive, and highly efficient nature. However, its wide band gap hinders photo-excitation for practical photocatalytic applications under solar light as an abundant, clean and safe energy source. To overcome this barrier, many strategies have been developed in the last decade to apply ZnO nanostructured photocatalysts under visible light. In this review, we have classified different approaches to activate ZnO as a photocatalyst in visible-light spectrum. Utilization of various nonmetals, transition metals and rare-earth metals for doping in ZnO crystal lattice to create visible-light-responsive doped ZnO photocatalysts is discussed. Generation of localized energy levels within the gap in doped ZnO nanostructures has played an important role in effective photocatalytic reaction under visible-light irradiation. The effect of dopant type, ionic size and its concentration on the crystal structure, electronic property and morphology of doped ZnO with a narrower band gap is reviewed systematically. Finally, a comparative study is performed to evaluate two classes of metals and nonmetals as useful dopants for ZnO nanostructured photocatalysts under visible light. - Highlights: • Metals and nonmetals used as a dopant to shift ZnO band gap toward visible-light. • Modification of electronic structure played a crucial role in doped ZnO activity. • Correlation between dopant's characteristics and ZnO visible activity was reviewed. • Photo-degradation of doped ZnO was studied and compared for different dopants.

  8. Effects of Doping on the Performance of CuMnOx Catalyst for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Subhashish Dey

    2017-10-01

    Full Text Available The rare earth-doped CuMnOx catalysts were prepared by co-precipitation method. The CuMnOx catalyst was doped with (1.5 wt.% CeOx, (1.0 wt.% AgOx, and (0.5 wt.% of AuOx by the dry deposition method. After the precipitation, filtration, and washing process, drying the sample at 110 oC for 16 hr in an oven and calcined at 300 oC temperature for 2 h in the furnace at stagnant air calcination condition. The influence of doping on the structural properties of the catalyst has enhanced the activity of the catalyst for CO oxidation. The doping of noble metals was not affected the crystal structure of the CuMnOx catalyst but changed the planar spacing, adsorption performance, and reaction performance. The catalysts were characterized by Brunauer-Emmett-Teller (BET surface are, Scanning Electron Microscope Energy Dispersive X-ray (SEM-EDX, X-Ray Diffraction (XRD, and Fourier Transform Infra Red (FTIR techniques.  The results showed that doping metal oxides (AgOx, AuOx, and CeOx into CuMnOx catalyst can enhance the CO adsorption ability of the catalyst which was confirmed by different types of characterization technique. Copyright © 2017 BCREC Group. All rights reserved Received: 9th January 2017; Revised: 18th March 2017; Accepted: 9th April 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Dey, S., Dhal, G.C., Prasad, R., Mohan, D. (2017. Effects of Doping on the Performance of CuMnOx Catalyst for CO Oxidation. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 370-383 (doi:10.9767/bcrec.12.3.901.370-383

  9. Synchronization of chaotic oscillations in doped fiber ring lasers

    CERN Document Server

    Lewis, C T; Kennel, M B; Buhl, M; Illing, L; Lewis, Clifford Tureman; Abarbanel, Henry D I; Kennel, Matthew B; Buhl, Michael; Illing, Lucas

    1999-01-01

    We investigate synchronization and subsequently communication using chaotic rare-earth-doped fiber ring lasers, represented by a physically realistic model. The lasers are coupled by transmitting a fraction c of the circulating electric field in the transmitter and injecting it into the optical cavity of the receiver. We then analyze a coupling strategy which relies on modulation of the intensity of the light alone. This avoids problems associated with the polarization and phase of the laser light. We study synchronization as a function of the coupling strength and see excellent convergence, even with small coupling constants. We prove that in an open-loop configuration (c=1) synchronization is guaranteed due to the particular structure of our equations and of the injection method we use for these coupled laser systems. We also analyze the generalized synchronization of these model lasers when there is parameter mismatch between the transmitter and the receiver. We then address communicating information betwe...

  10. Chloride, bromide and iodide scintillators with europium doping

    Science.gov (United States)

    Zhuravleva, Mariya; Yang, Kan

    2014-08-26

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  11. Earth's surface heat flux

    Directory of Open Access Journals (Sweden)

    J. H. Davies

    2010-02-01

    Full Text Available We present a revised estimate of Earth's surface heat flux that is based upon a heat flow data-set with 38 347 measurements, which is 55% more than used in previous estimates. Our methodology, like others, accounts for hydrothermal circulation in young oceanic crust by utilising a half-space cooling approximation. For the rest of Earth's surface, we estimate the average heat flow for different geologic domains as defined by global digital geology maps; and then produce the global estimate by multiplying it by the total global area of that geologic domain. The averaging is done on a polygon set which results from an intersection of a 1 degree equal area grid with the original geology polygons; this minimises the adverse influence of clustering. These operations and estimates are derived accurately using methodologies from Geographical Information Science. We consider the virtually un-sampled Antarctica separately and also make a small correction for hot-spots in young oceanic lithosphere. A range of analyses is presented. These, combined with statistical estimates of the error, provide a measure of robustness. Our final preferred estimate is 47±2 TW, which is greater than previous estimates.

  12. Diatomaceous Earths - Natural Insecticides

    Directory of Open Access Journals (Sweden)

    Zlatko Korunić

    2013-01-01

    Full Text Available The regulatory issues for diatomaceous earth (DE cover three fields: consumer safety,worker safety, and proof of efficacy against pests. For consumer safety, regulatory issuesare similar to those for other additives, and a principal benefit of DEs is their removal bynormal processing methods. For worker safety, regulatory issues are similar to those forother dusts, such as lime. The proof of potential insecticide values of DE may be assessedby using the analysis of physical and chemical properties of DE and its effect on grainproperties and the proof of efficacy may be regulated by bioassay of standard design.Integrated pest management (IPM, a knowledge-based system, is rapidly providing aframework to reduce dependence on synthetic chemical pesticides. The main principleof post-harvest IPM is to prevent problems rather than to react to them. The specificcurative measures using synthetic pesticides should be applied only when infestationoccurs. DE and enhanced diatomaceous earth (EDE formulations hold significant promiseto increase the effectiveness and broaden the adoption of IPM strategies, thereby reducingthe need for synthetic pesticides. By incorporating DE in an effective IPM program,grain is protected against infestation, loss caused by insects is prevented and grain qualityis maintained until the grain is processed. Cases study data on the use of DE for commodityand structural treatment show that DE is already a practical alternative to syntheticpesticides in some applications.

  13. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    Science.gov (United States)

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  14. School, Earth and Imagination

    Science.gov (United States)

    Merlini, Anna; Grieco, Giovanni; Oneta, Cristina

    2015-04-01

    Geology needs to be explained and narrated to the people, focusing on the goal of making that big change of mindset that will allow individuals and the entire community to tune into the timing and the ways in which the Earth evolves. In order to achieve these important goals it is necessary to educate children from an early age so that they learn to live an environmentally friendly life. With the project "School, Earth and imagination" we introduce, with a fun and new way, notions and topics in geological and environmental sciences in schools at all levels with the final goal of improving both knowledge and sensibility for these topics into the community. Through this project we start from the children (kindergarten and primary school, ages between 3 and 8 years) because they are the foundation of our society, and without foundations nothing can be built. The "School, Earth and imagination" project wants to give the children a real opportunity to approach reality and in general the surrounding environment, for the first time even before the traditional scholastic experience, with a scientific point of view, experimenting some basic physical concepts like temperature, weight, hardness and so on directly through their body. The project is structured and developed in modules that provide a high flexibility in order to meet needs and requirements of different schools in different situations. Each module is part of the journey of Mariolino, a character that represents a very curious child who introduces basic concepts associating them to geological processes. The Journey of Mariolino, as each module, follows an insistent scheme that starts from the presentation of the problem, follows with its discussion through direct questions and ends with experimentation of the hypotheses that children have proposed to validate the solution of the problem. Each module is independent and never ends without giving children a solution and is always structured with a practical activity

  15. Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level

    NARCIS (Netherlands)

    Zhao, J.; Sun, Y.; Kong, X.; Tian, L.; Wang, Y.; Tu, L.; Zhang, H.

    2008-01-01

    Strong red upconversion luminescence of rare-earth ions doped in nanocrystals is desirable for the biological/biomedical applications. In this paper, we describe the great enhancement of red upconversion emission (F-4(9/2) -> I-4(15/2) transition of Er3+ ion) in NaYF4:Yb3+, Er3+ nanocrystals at low

  16. Moral entrepreneurship and doping cultures in sport

    NARCIS (Netherlands)

    Stokvis, R.

    2003-01-01

    In this article, the fight against doping has been analyzed as an ongoing process of social definition. It is dependent on the development of power relations within and outside the world of sport. To analyze these dependencies, I identified a variety of important doping cultures in sport and studied

  17. Phosphorous Doping of Nanostructured Crystalline Silicon

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Steckel, André

    with phosphorous (POCl3) in the temperature range 850-1000oC for 15 and 20 min, respectively. Sheet resistance measurements show slight differences in doping density between planar, KOH pyramidal and bSi structures. bSi samples have lower sheet resistance, pointing to higher doping density presumably due...

  18. Electronic properties of magnetically doped nanotubes

    Indian Academy of Sciences (India)

    Unknown

    body of publications since their discovery in 1991 (Iijima. 1991). Recent experimental (Lee et al 1997; Rao et al. 1997; Grigorian et al 1998a, b) and theoretical (Miya- moto et al 1995; Esfarjani et al 1999) studies on doping nanotubes focused on doping by alkali metal or halogene elements as electron donors or acceptors, ...

  19. Ultratough single crystal boron-doped diamond

    Science.gov (United States)

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  20. Heteroatom doped graphene in photocatalysis: A review

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Lutfi Kurnianditia; Ong, Wee-Jun [Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor (Malaysia); Chang, Wei Sea [Mechanical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor (Malaysia); Chai, Siang-Piao, E-mail: chai.siang.piao@monash.edu [Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor (Malaysia)

    2015-12-15

    Graphical abstract: - Highlights: • Doping graphene with foreign atoms extends its function in the photocatalyst system. • Chemically doped graphene improved the electrical conductivity. • Chemically doped graphene outperform conventional rGO as a semiconductor support. • Chemically doped graphene cause bandgap opening and formation of catalytic sites. • Chemically doped graphene can behave as functional standalone photocatalyst. - Abstract: Photocatalysis has been a focus of great attention due to its useful environmental applications such as eliminating hazardous pollutants and generating sustainable energy. Coincidentally, graphene, a 2D allotrope of carbon, has also infiltrated many research fields due to its outstanding properties – photocatalysis being no exception. As of recent, there has been growing research focus on heteroatom (O, N, B, P and S) doping of graphene and its emergent application opportunities. In this study, rather than the familiar graphene as the electron transfer medium that is normally integrated in a photocatalyst system, we contrarily explore the implication of heteroatom doped graphene and the underlying mechanism behind their advantageous uses in photocatalysis. This review surveys the literature and highlights recent progress and challenges in the development of chemically doped graphene in the photocatalysis scene. It is desired that this review will promote awareness and encourage further investigations for the development in this budding research area.

  1. Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity

    Science.gov (United States)

    Wieg, A. T.; Kodera, Y.; Wang, Z.; Imai, T.; Dames, C.; Garay, J. E.

    2012-09-01

    Thermal management continues to be one of the major challenges in the development of high powered light sources such as solid state lasers. In particular, the relatively low thermal conductivity of standard photoluminescent (PL) materials limits the overall power output and/or duty cycle. We present a method based on current activated pressure assisted densification for the fabrication of high thermal conductivity PL materials: rare earth doped polycrystalline bulk aluminum nitride. Specifically, the ceramics are translucent and are doped with Tb3+, allowing for emission in the visible. Remarkably, the ceramics have a room temperature thermal conductivity of 94 W/(m K) which is almost seven times higher than that of the state of the art host material, Nd-doped yttrium aluminum garnet. These light emitting properties coupled with very high thermal conductivity should enable the development of a wide variety of more powerful light sources.

  2. Photo-luminescent properties of a green or red emitting Tb3+ or Eu3+ doped calcium magnesium silicate phosphors

    Science.gov (United States)

    Onani, Martin O.; Dejene, Francis B.

    2014-04-01

    This study describes green-emitting Tb3+ or red-emitting Eu3+ doped calcium magnesium silicate phosphors by ultraviolet excitation at 335 nm. The rare earth activated amorphous calcium silicate was prepared by a solution-combustion process at 600 °C for 5-10 min. The Ca2MgSi2O7 prepared using urea and ammonium nitrate has a tetragonal crystal structure. The resulting Tb3+-doped phosphor emitted green light centered at 544 nm. The optimum excitation wavelength within the range 300-400 nm was 335 nm. The intensity and emitting wavelength of the Eu3+ doped samples can be controlled by annealing in a reducing or oxidizing environment, allowing light to be emitted as green or red. When the reducing environment is optimized, the emission spectrum of Ca2MgSi2O7:Eu2+ is a broad band at 497 nm.

  3. Synthesis and Characterization of Eu3+-Doped CdS Quantum Dots by a Single-Step Aqueous Method.

    Science.gov (United States)

    Zhou, Chunyan; Song, Jiahui; Zhang, Xinguo; Sun, Lu; Zhou, Liya; Huang, Ni; Gan, Yufei; Chen, Mengyang; Zhang, Wei

    2016-04-01

    Eu3+-doped CdS quantum dots (QDs) are successfully synthesized through a straightforward single-pot process in aqueous solution using thioglycolic acid as the capping ligand. The structure, shape, and spectral properties of the QDs are investigated. The obtained CdS:Eu3+ QDs exhibit cubic structures with good crystallinity and approximately sphere-like shapes about 4 nm in diameter. The CdS QDs manifest a broadband emission peak at 600 nm and enhanced Photoluminescence (PL) emission intensity after doping with Eu3+ ions. Given the strong PL intensity and good chromaticity of the sulfide-based QDs, they have potential use in doping rare-earth ions.

  4. Color tunable ZnO nanorods by Eu and Tb co-doping for optoelectronic applications

    Science.gov (United States)

    Pal, Partha P.; Manam, J.

    2014-07-01

    Eu/Tb co-doped ZnO nanorods were prepared by co-precipitation method and the effect of Eu-Tb co-doping was studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy, Fourier transform infrared spectroscopy (FTIR), UV-Vis-NIR diffuse reflectance (DR) and photoluminescence (PL) spectroscopy. The XRD pattern shows typical peak pattern for pure hexagonal wurtzite structure to match with the JCPDS data. The samples are found to be consisting of nanorods of diameter 20-30 nm as revealed by the TEM image. The FTIR pattern confirms the formation of the compounds. The DR study was carried to show the variation of absorption edge and the variation in band gap values, which showed the crystal size effect in the co-doped sample of different rare-earth ratios. The room temperature PL study shows bright emission spectra for the samples with different rare-earth ratios. It shows a very good energy transfer from Tb to Eu ions. The energy transfer mechanism and color tunability were discussed thoroughly.

  5. Doping effect on the physical properties of Ca10Pt3As8(Fe2As2)5 single crystals

    Science.gov (United States)

    Pan, Jiayun; Karki, Amar; Plummer, E. W.; Jin, Rongying

    2017-12-01

    Ca10Pt3As8(Fe2As2)5 is a unique parent compound for superconductivity, which consists of both semiconducting Pt3As8 and metallic FeAs layers. We report the observation of superconductivity induced via chemical doping in either Ca site using rare-earth (RE) elements (RE  =  La, Gd) or Fe site using Pt. The interlayer distance and the normal-state physical properties of the doped system change correspondingly. The coupled changes include (1) superconducting transition temperature T c increases with increasing both doping concentration and interlayer distance, (2) our T c value is higher than previously reported maximum value for Pt doping in the Fe site, (3) both the normal-state in-plane resistivity and out-of-plane resistivity change from non-metallic to metallic behavior with increasing doping concentration and T c, and (4) the transverse in-plane magnetoresistance (MRab) changes from linear-field dependence to quadratic behavior upon increasing T c. For La-doped compound with the highest T c (~35 K), upper critical fields (Hc2ab , Hc2c ), coherence lengths (ξ ab, ξ c), and in-plane penetration depth (λ ab) are estimated. We discuss the relationship between chemical doping, interlayer distance, and physical properties in this system.

  6. [Cardiovascular alterations associated with doping].

    Science.gov (United States)

    Thieme, D; Büttner, A

    2015-05-01

    Doping -the abuse of anabolic-androgenic steroids in particular- is widespread in amateur and recreational sports and does not solely represent a problem of professional sports. Excessive overdose of anabolic steroids is well documented in bodybuilding or powerlifting leading to significant side effects. Cardiovascular damages are most relevant next to adverse endocrine effects.Clinical cases as well as forensic investigations of fatalities or steroid consumption in connection with trafficking of doping agents provide only anecdotal evidence of correlations between side effects and substance abuse. Analytical verification and self-declarations of steroid users have repeatedly confirmed the presumption of weekly dosages between 300 and 2000 mg, extra to the fact that co-administration of therapeutics to treat side-effects represent a routine procedure. Beside the most frequent use of medications used to treat erectile dysfunction or estrogenic side-effects, a substantial number of antihypertensive drugs of various classes, i.e. beta-blockers, diuretics, angiotensin II receptor antagonists, calcium channel blockers, as well as ACE inhibitors were recently confiscated in relevant doping cases. The presumptive correlation between misuse of anabolic steroids and self-treatment of cardiovascular side effects was explicitly confirmed by detailed user statements.Two representative fatalities of bodybuilders were introduced to outline characteristic, often lethal side effects of excessive steroid abuse. Moreover, illustrative autopsy findings of steroid acne, thrombotic occlusion of Ramus interventricularis anterior and signs of cardiac infarctions are presented.A potential steroid abuse should be carefully considered in cases of medical consultations of patients exhibiting apparent constitutional modifications and corresponding adverse effects. Moreover, common self-medications -as frequently applied by steroid consumers- should be taken into therapeutic considerations.

  7. Marijuana as doping in sports.

    Science.gov (United States)

    Campos, Daniel R; Yonamine, Mauricio; de Moraes Moreau, Regina L

    2003-01-01

    A high incidence of positive cases for cannabinoids, in analyses for doping control in sports, has been observed since the International Olympic Committee (IOC) included them in the 1989 list of prohibited drugs under the title of classes of prohibited substances in certain circumstances. Where the rules of sports federations so provide, tests are conducted for marijuana, hashish or any other cannabis product exposure by means of urinalysis of 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid (carboxy-THC) the main metabolite of delta-9-tetrahydrocannabinol (THC). Concentrations >15 ng/mL (cut-off value) in confirmatory analytical procedures are considered doping. Cannabis is an illicit drug in several countries and has received much attention in the media for its potential therapeutic uses and the efforts to legalise its use. Studies have demonstrated that the use of cannabinoids can reduce anxiety, but it does not have ergogenic potential in sports activities. An increase in heart rate and blood pressure, decline of cardiac output and reduced psychomotor activity are some of the pharmacological effects of THC that will determine a decrease in athletic performance. An ergolytic activity of cannabis products has been observed in athletes of several different sport categories. In Brazil, analyses for doping control in sports, performed in our laboratories, have detected positive cases for carboxy-THC in urine samples of soccer, volleyball, cycling and other athletes. It is our intention to discuss in this article some points that may discourage individuals from using cannabis products during sports activities, even in the so-called permitted circumstances defined by the IOC and some sports federations.

  8. Revisiting the optimized doping ratio in core/shell nanostructured upconversion particles.

    Science.gov (United States)

    Shen, Bin; Cheng, Shengming; Gu, Yuyang; Ni, Danrui; Gao, Yilin; Su, Qianqian; Feng, Wei; Li, Fuyou

    2017-02-02

    The development of rare-earth doped upconversion nanoparticles (RE-UCNPs) in various applications is fuelling the demand for nanoparticles with highly enhanced upconversion luminescence (UCL). Although the core/shell structure is proved to enhance the UCL effectively, there is still plenty of room to further improve the UCL by optimizing the doping ratio of the materials. In this article, a general strategy is demonstrated to achieve highly-enhanced visible UCL in core/shell nanostructured NaREF4 by increasing the doping ratio of Yb(3+) in the core region. The energy transfer from RE-UCNPs to surface quenching sites through Yb(3+)-Yb(3+) energy migration is demonstrated to be the main reason for restricting the doping ratio of Yb(3+). Notable UCL enhancement (ca. 15 times) of core/shell structured α-NaYF4:Yb,Er@CaF2 nanoparticles is observed by increasing the concentration of Yb(3+) to 98 mol%. The highly-enhanced visible UCL signal is used to guide the lymphatic vessel resection with the naked eye.

  9. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band

    Science.gov (United States)

    Firstov, Sergei V.; Alyshev, Sergey V.; Riumkin, Konstantin E.; Khopin, Vladimir F.; Guryanov, Alexey N.; Melkumov, Mikhail A.; Dianov, Evgeny M.

    2016-01-01

    It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems (“capacity crunch”) because the operation of the EDFA is limited to a spectral region of 1530–1610 nm. It will require a search for new technologies and, in this respect, the development of optical amplifiers for new spectral regions can be a promising approach. Most of fiber-optic amplifiers are created using rare-earth-doped materials. As a result, wide bands in shorter (1150–1530 nm) and longer wavelength (1600–1750 nm) regions with respect to the gain band of Er-doped fibers are still uncovered. Here we report on the development of a novel fiber amplifier operating in a spectral region of 1640–1770 nm pumped by commercially available laser diodes at 1550 nm. This amplifier was realized using bismuth-doped high-germania silicate fibers fabricated by MCVD technique. PMID:27357592

  10. Luminescence of trivalent samarium ions in silver and tin co-doped aluminophosphate glass

    Science.gov (United States)

    Jiménez, José A.; Lysenko, Sergiy; Liu, Huimin; Sendova, Mariana

    2011-06-01

    This work presents the spectroscopic properties of trivalent samarium ions in a melt-quenched aluminophosphate glass containing silver and tin. Addition of 4 mol% of each Ag 2O and SnO into the glass system with 2 mol% Sm 2O 3 results in Sm 3+ ions luminescence under non-resonant UV excitation owing to energy transfer from single silver ions and/or twofold-coordinated Sn centers. Assessment of luminescence spectra and decay dynamics suggest the energy transfer mechanism to be essentially of the resonant radiative type. Moreover, a connection between the luminescent and structural properties of the rare-earth doped glass system was demonstrated. Raman spectroscopy characterization revealed that no significant variation in the glass matrix is induced by Sm 3+ doping at the concentration employed. A comparison was made with a structural study performed on the Eu 3+ doped system (containing 2 mol% Eu 2O 3 along with 4 mol% of each Ag 2O and SnO) where the radiative energy transfer mechanism was previously established. The data appears consistent regarding the lack of variation in glass structure upon the Eu 3+ and Sm 3+ doping in connection with the dominance of the radiative transfer in the matrix. Thermal treatment of the material leads to precipitation of Ag nanoparticles of a broad size range inside the dielectric as observed by transmission electron microspcopy. Assessment of 4G 5/2 excited state decay in Sm 3+ ions shows no influence from the silver particles.

  11. Enhanced luminescence of ZnO:RE{sup 3+} (RE=Eu, Tb) nanorods by Li{sup +} doping and calculations of kinetic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Partha P., E-mail: phys.ppal@gmail.com; Manam, J.

    2014-01-15

    Lithium co-doped ZnO:Eu{sup 3+} and ZnO:Tb{sup 3+} nanophosphors were prepared by co-precipitation method and the effect of Li{sup +} co-doping was systematically studied by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-Vis-NIR reflectance, Photoluminescence (PL) spectroscopy and Thermoluminescence (TL) studies. XRD pattern shows typical peak pattern for hexagonal wurtzite structure and matches JCPDS card no. 79-0206. A shift of the (1 0 1) peak towards the lower angle in Li{sup +} co-doped samples can be observed showing the increase of lattice constant for the incorporation of Li{sup +} ions in the lattice sites. The present samples are found to be consisting of nanorods of diameter 60–90 nm as revealed by the SEM image. The FTIR pattern shows the enhancement of peak intensity for the ZnO in the Li{sup +} co-doped samples. The diffuse reflectance study shows red shift of the absorption edges in Li{sup +} co-doped ZnO:Eu{sup 3+} and Li{sup +} co-doped ZnO:Tb{sup 3+}. PL study reveals that a very small amount of Li{sup +} is very effective for charge compensation and for producing lattice defect to enhance the rare-earth related emissions, whereas a little excess of Li{sup +} brings oxygen vacancies, which leads to luminescence quenching. The prominent peaks of the TL glow curves of Li{sup +} co-doped ZnO:RE{sup 3+} samples are found to be increased than that of ordinary ZnO:RE{sup 3+} samples. The peaks are also shifted towards the lower temperature from the peaks of ZnO:RE{sup 3+} due to the Li{sup +} co-doping. The TL glow curves of the Li{sup +} co-doped ZnO:RE{sup 3+} samples are found to obey first order kinetics. The samples are found to be very useful in thermoluminescence dosimetry. -- Highlights: • Effect of Li{sup +} co-doping on ZnO:RE{sup 3+}(RE=Eu,Tb) nanorods were studied. • Formation of nanorods confirmed by SEM and TEM image. • No major change in XRD peak pattern on Li

  12. One Day on Earth

    CERN Multimedia

    2011-01-01

    In collaboration with the CineGlobe Film Festival, the One Day on Earth global film project invites you to share your story of scientific inspiration, scientific endeavors and technological advancement on 11 November 2011 (11.11.11).   Technology in the 21st century continuously inspires us to re-imagine the world. From outer-space to cyberspace, new ideas that we hope will improve the lives of future generations keep us in a state of change. However, these new technologies may alter the nature of our shared existence in ways not yet known. On 11.11.11, we invite you to record the exciting ways that science is a part of your life, together with people around the world who will be documenting their lives on this day of global creation. See www.onedayonearth.org for details on how to participate.

  13. Telephony Earth Station

    Science.gov (United States)

    Morris, Adrian J.; Kay, Stan

    The Telephony Earth Station (TES), a digital full-mesh SCPC (single channel per carrier) system designed for satellite voice and data transmission is described. As compared to companded FM, the advanced speech compression and forward error correction techniques used by TES better achieve the quality, power, and bandwidth ideal for each application. In addition, the TES offers a fully demand-assigned voice call setup, handles point-to-point data channels, supports a variety of signaling schemes, and does not require any separate pilot receivers at the station, while keeping costs low through innovative technology and packaging. The TES can be used for both C-band and Ku-band (domestic or international) applications, and is configurable either as an VSAT (very small aperture terminal) using an SSPA, or as a larger station depending on the capacity requirements. A centralized DAMA processor and network manager is implemented using a workstation.

  14. Earth System Environmental Literacy

    Science.gov (United States)

    Lowman, Margaret

    If every citizen could read the above quote and understand its underlying ecological concepts, economic challenges, social services, and spiritual heritage, then it is likely that sustainability education would be achieved. The notion of a tree and its ecosystem services illustrate sustainability in the simplest yet most robust sense. To plant and grow a tree, economists struggle with volatile currencies; ecologists juggle development and conservation; religious leaders advocate stewardship; and social scientists examine equity in a world of declining resources. Sustainability education requires an integrated approach between ecology, risk analyses, economics, social sciences, biological sciences, political sciences, languages, biotechnology, physical sciences, health sciences, and religion. All these practitioners (and many others) contribute to sustainability education, an emerging discipline that requires an interdisciplinary synthesis of knowledge, translated into practice, to insure the future of life on Earth.

  15. Cosmic rays and Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  16. The earth and the moon

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    The moon is the only body in the solar system outside of the Earth that has been visited by humans. More than 440 pounds of lunar material are brought by NASA and Soviet space missions to Earth for study. The information gleaned about the moon from this relatively small pile of rocks is mind-boggling and stands as the greatest proof that Martian planetary science would be greatly enhanced by returning samples to Earth. Compositional studies of lunar rocks show that the moon and the Earth are made of similar material, and because lunar material has not been reworked through erosion and plate te

  17. GaAs MESFET with lateral non-uniform doping

    Science.gov (United States)

    Wang, Y. C.; Bahrami, M.

    1983-01-01

    An analytical model of the GaAs MESFET with arbitrary non-uniform doping is presented. Numerical results for linear lateral doping profile are given as a special case. Theoretical considerations predict that better device linearity and improved F(T) can be obtained by using linear lateral doping when doping density increases from source to drain.

  18. The importance of cooling of urine samples for doping analysis

    NARCIS (Netherlands)

    Kuenen, J.G.; Konings, W.N.

    2009-01-01

    Storing and transporting of urine samples for doping analysis, as performed by the anti-doping organizations associated with the World Anti-Doping Agency, does not include a specific protocol for cooled transport from the place of urine sampling to the doping laboratory, although low cost cooling

  19. The importance of cooling of urine samples for doping analysis

    NARCIS (Netherlands)

    Kuenen, J. Gijs; Konings, Wil N.

    Storing and transporting of urine samples for doping analysis, as performed by the anti-doping organizations associated with the World Anti-Doping Agency, does not include a specific protocol for cooled transport from the place of urine sampling to the doping laboratory, although low cost cooling

  20. Healing the Earth - Earth observation supporting international environmental conventions

    Science.gov (United States)

    Arino, Olivier; Fernandez-Prieto, Diego; Volden, Espen

    2006-11-01

    ESA is building long-term relationships with several user communities that can benefit from the Agency's Earth observation programmes. Since 2000, ESA has been working in close collaboration on three international environmental conventions. Here we see how its Earth observation activities are benefiting these conventions.

  1. Radical-assisted chemical doping for chemically derived graphene

    Science.gov (United States)

    Ishikawa, Ryousuke; Ko, Pil Ju; Bando, Masashi; Kurokawa, Yasuyoshi; Sandhu, Adarsh; Konagai, Makoto

    2013-12-01

    Carrier doping of graphene is one of the most challenging issues that needs to be solved to enable its use in various applications. We developed a carrier doping method using radical-assisted conjugated organic molecules in the liquid phase and demonstrated all-wet fabrication process of doped graphene films without any vacuum process. Charge transfer interaction between graphene and dopant molecules was directly investigated by spectroscopic studies. The resistivity of the doped graphene films was drastically decreased by two orders of magnitude. The resistivity was improved by not only carrier doping but the improvement in adhesion of doped graphene flakes. First-principles calculation supported the model of our doping mechanism.

  2. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view......, and that the longitude of the satellite position is significant to the model output. The results also show that the calculated albedo is generally lower than it would be expected based only on the reflectivity data....

  3. Effect of rare Earth ions on the properties of composites composed of ethylene vinyl acetate copolymer and layered double hydroxides.

    Directory of Open Access Journals (Sweden)

    Lili Wang

    Full Text Available BACKGROUND: The study on the rare earth (RE-doped layered double hydroxides (LDHs has received considerable attention due to their potential applications in catalysts. However, the use of RE-doped LDHs as polymer halogen-free flame retardants was seldom investigated. Furthermore, the effect of rare earth elements on the hydrophobicity of LDHs materials and the compatibility of LDHs/polymer composite has seldom been reported. METHODOLOGY/PRINCIPAL FINDINGS: The stearate sodium surface modified Ni-containing LDHs and RE-doped Ni-containing LDHs were rapidly synthesized by a coprecipitation method coupled with the microwave hydrothermal treatment. The influences of trace amounts of rare earth ions La, Ce and Nd on the amount of water molecules, the crystallinity, the morphology, the hydrophobicity of modified Ni-containing LDHs and the adsorption of modifier in the surface of LDHs were investigated by TGA, XRD, TEM, contact angle and IR, respectively. Moreover, the effects of the rare earth ions on the interfacial compatibility, the flame retardancy and the mechanical properties of ethylene vinyl acetate copolymer (EVA/LDHs composites were also explored in detail. CONCLUSIONS/SIGNIFICANCE: S-Ni₀.₁MgAl-La displayed more uniform dispersion and better interfacial compatibility in EVA matrix compared with other LDHs. Furthermore, the S-Ni₀.₁MgAl-La/EVA composite showed the best fire retardancy and mechanical properties in all composites.

  4. Optical characterization of zinc lithium bismuth borate glasses doped with Tb3+ for novel applications

    Science.gov (United States)

    Mallikarjuna, K.; Reddy, M. Bhushana; Moulika, G.; Reddy, B. Naveen Kumar; Ramanaiah, R.; Dhoble, S. J.; Reddy, B. Sudhakar

    2017-05-01

    Rare-earth (Tb3+) ions doped zinc lithium bismuth borate (ZLiBiB) glasses have been prepared by melt quenching method. From the FTIR spectrum, the functional groups have been identified. From the measurements of X-ray diffraction (XRD), differential scanning calorimeter (DSC) profiles of these glasses have been carried out. In case of Tb3+:ZLiBiB glasses emission transitions such as 5D4→ 7F6 (489 nm), 5D4→ 7F5 (545 nm), 5D4→ 7F4 (584 nm) and 5D4→ 7F3 (622 nm) have been identified. Among these, the transition at 542 nm has shown a bright green emission. The emission mechanism of Tb3+ doped ZLiBiB glasses has been explained in terms of energy level diagram.

  5. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers; Etat de l`art des lasers a fibre, etude d`un laser a fibre dopee ytterbium et spectroscopie laser de fibres dopees

    Energy Technology Data Exchange (ETDEWEB)

    Magne, S.

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs.

  6. The influence of index-depressions in core-pumped Yb-doped large pitch fibers.

    Science.gov (United States)

    Jansen, Florian; Stutzki, Fabian; Otto, Hans-Jürgen; Baumgartl, Martin; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2010-12-20

    Rare-earth doped photonic crystal fibers rely ideally on an index matching of the doped core to the surrounding glass to work properly. Obtaining a perfect index matching is technologically very challenging, and fiber manufacturers opt for targeting an index depression instead, which still ensures the influence of the photonic structure on the light propagation. In this paper the analysis of the influence of this core index depression on the higher-order mode discrimination and on the beam quality of the fundamental mode of different designs of core-pumped active large pitch photonic crystal fibers is discussed. The most promising design is evaluated in terms of mode area scaling with a view to mode field diameters above 100 µm. Detailed requirements on the accuracy of the core index matching are deduced.

  7. Influence of Fe, Ni, and Cu Doping on the Photocatalytic Efficiency of ZnS: Implications for Prebiotic Chemistry

    CERN Document Server

    Wang, Wei

    2016-01-01

    The mineral sphalerite (ZnS) is a typical constituent at the periphery of submarine hydrothermal deposits on Earth. It has been frequently suggested to have played an important role in the prebiotic chemistry due to its prominent photocatalytic activity. Nevertheless, the need for {\\lambda} 450 nm light irradiation, the photocatalyst Zn1-xCuxS can drive the reduction of fumaric acid to produce succinic acid. Given the existence of this doped semiconductor in the hydrothermal vents on early Earth and its capability to utilize both UV and visible light, ZnS might have participated more efficiently than ever estimated in the prebiotic chemical evolution.

  8. IR-doped ruthenium oxide catalyst for oxygen evolution

    Science.gov (United States)

    Valdez, Thomas I. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2012-01-01

    A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.

  9. Empathic and Self-Regulatory Processes Governing Doping Behavior

    Directory of Open Access Journals (Sweden)

    Ian D. Boardley

    2017-09-01

    Full Text Available Evidence associating doping behavior with moral disengagement (MD has accumulated over recent years. However, to date, research examining links between MD and doping has not considered key theoretically grounded influences and outcomes of MD. As such, there is a need for quantitative research in relevant populations that purposefully examines the explanatory pathways through which MD is thought to operate. Toward this end, the current study examined a conceptually grounded model of doping behavior that incorporated empathy, doping self-regulatory efficacy (SRE, doping MD, anticipated guilt and self-reported doping/doping susceptibility. Participants were specifically recruited to represent four key physical-activity contexts and consisted of team- (n = 195 and individual- (n = 169 sport athletes and hardcore- (n = 125 and corporate- (n = 121 gym exercisers representing both genders (nmale = 371; nfemale = 239; self-reported lifetime prevalence of doping across the sample was 13.6%. Each participant completed questionnaires assessing the aforementioned variables. Structural equation modeling indicated strong support for all study hypotheses. Specifically, we established: (a empathy and doping SRE negatively predicted reported doping; (b the predictive effects of empathy and doping SRE on reported doping were mediated by doping MD and anticipated guilt; (c doping MD positively predicted reported doping; (d the predictive effects of doping MD on reported doping were partially mediated by anticipated guilt. Substituting self-reported doping for doping susceptibility, multisample analyses then demonstrated these predictive effects were largely invariant between males and females and across the four physical-activity contexts represented. These findings extend current knowledge on a number of levels, and in doing so aid our understanding of key psychosocial processes that may govern doping behavior across key physical-activity contexts.

  10. Heterogeneity of an earth

    Science.gov (United States)

    Litvinova, T.; Petrova, A.

    2009-04-01

    The study of magnetic anomaly field structure of the Barents Sea water area along seismic and extended profiles intersecting known fields is carried out. Geomagnetic and density sections down to 40 km depth are constructed. This allowed the estimation of heterogeneities of the Barents Sea water area deep structure. The analysis of geomagnetic and density sections along extended profiles showed the confinedness of oil-and-gas bearing provinces to deep permeable zones characterized by reduced magnetic and density features. Based on the analysis of permeable zones, regional diagnostic features similar to those obtained earlier in oil-and-gas bearing provinces in other regions, for example, in Timan-Pechora, Volga-Urals and Siberian, as well as in the Northern and Norwegian seas water areas, are revealed. The analysis of magnetic and gravity fields over the region area allowed the delineation of weakened zones as intersection areas of weakly magnetic areals with reduced density. Within the Barents Sea water area, permeable areas with lenticular-laminated structure of the upper and lower Earth's crust containing weakly magnetic areals with reduced rock density within the depth range of 8-12 and 15-20 km are revealed. Such ratio of magnetic and density heterogeneities in the Earth's crust is characteristic for zones with proved oil-and-gas content in the European part of the Atlantic Ocean water area. North Kildin field on 1 AR profile is confined to a trough with thick weakly magnetic stratum discontinuously traced to a depth of 6-10 km. At a depth of approximately 15 km, a lens of weakly magnetic and porous formations is observed. Ludlov field in the North Barents trough is confined to a zone of weakly magnetic rocks with reduced density traced to a depth of 8-9 km. Deeper, at Н=15 km, a lenticular areal of weakly magnetic formations with reduced density is observed. The profile transecting the Stockman field shows that it is located in the central part of a permeable

  11. FIFA's approach to doping in football

    Science.gov (United States)

    Dvorak, J; Graf‐Baumann, T; D'Hooghe, M; Kirkendall, D; Taennler, H; Saugy, M

    2006-01-01

    Background and objectives FIFA's anti‐doping strategy relies on education and prevention. A worldwide network of physicians guarantees doping control procedures that are straightforward and leave no place for cheating. FIFA actively acknowledges its responsibility to protect players from harm and ensure equal chances for all competitors by stringent doping control regulations, data collection of positive samples, support of research, and collaboration with other organisations. This article aims to outline FIFA's approach to doping in football. Method Description of FIFA's doping control regulations and procedures, statistical analysis of FIFA database on doping control, and comparison with data obtained by WADA accredited laboratories as for 2004. Results Data on positive doping samples per substance and confederation/nation documented at the FIFA medical office from 1994 to 2005 are provided. According to the FIFA database, the incidence of positive cases over the past 11 years was 0.12%, with about 0.42% in 2004 (based on the assumption of 20 750 samples per year) and 0.37% in 2005. Especially important in this regard is the extremely low incidence of the true performance enhancing drugs such as anabolic steroids and stimulants. However, there is a need for more consistent data collection and cross checks among international anti‐doping agencies as well as for further studies on specific substances, methods, and procedures. With regard to general health impairments in players, FIFA suggests that principles of occupational medicine should be considered and treatment with banned substances for purely medical reasons should be permitted to enable players to carry out their profession. At the same time, a firm stand has to be taken against suppression of symptoms by medication with the aim of meeting the ever increasing demands on football players. Conclusion Incidence of doping in football seems to be low, but much closer collaboration and further

  12. Ce-doped titania nanoparticles: The effects of doped amount and calcination temperature on photocatalytic activity

    Science.gov (United States)

    Shi, Jianwen; Zou, Yajun; Ma, Dandan

    2017-01-01

    A series of Ce-doped TiO2 nanoparticles with different doped amount and calcination temperature were prepared by sol-gel method. These obtained samples were characterized with X-ray diffraction (XRD), transmission electron microscope (TEM) and ultraviolet-visible diffuse reflectance spectra (DRS), and their photocatalytic activities were evaluated by the photocatalytic degradation of methyl orange. Results showed that Ce doping inhibits the growth of crystal size and the phase transformation from anatase to rutile, leads to lattice distortion and expansion of TiO2. Furthermore, Ce doping brings the red-shift of absorption profile and the increase of photons absorption in the range of 400-600 nm. Photocatalytic degradation of methyl orange shows that Ce doping improves the photocatalytic activity of TiO2. The optimal doped amount is 0.05 mol% and the optimal calcined temperature is 600 °C for the maximum photocatalytic degradation efficiency in our experiment.

  13. Polar Misunderstandings: Earth's Dynamic Dynamo

    Science.gov (United States)

    DiSpezio, Michael A.

    2011-01-01

    This article discusses the movement of Earth's north and south poles. The Earth's poles may be a bit more complex and dynamic than what many students and teachers believe. With better understanding, offer them up as a rich landscape for higher-level critical analysis and subject integration. Possible curriculum tie-ins include magnets, Earth…

  14. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  15. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  16. Teaching Waves with Google Earth

    Science.gov (United States)

    Logiurato, Fabrizio

    2012-01-01

    Google Earth is a huge source of interesting illustrations of various natural phenomena. It can represent a valuable tool for science education, not only for teaching geography and geology, but also physics. Here we suggest that Google Earth can be used for introducing in an attractive way the physics of waves. (Contains 9 figures.)

  17. Structural and magnetic properties of yttrium and lanthanum-doped Ni-Co and Ni-Co-Zn spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Stergiou, Charalampos, E-mail: stergiou@cperi.certh.gr [Laboratory of Inorganic Materials, Centre for Research and Technology-Hellas, 57001, Thermi (Greece); Litsardakis, George, E-mail: lits@eng.auth.gr [Laboratory of Materials for Electrotechnics, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece)

    2014-11-05

    Rare earth doping of Co-rich spinel ferrites is investigated through the preparation of two groups of polycrystalline Ni-Co and Ni-Co-Zn ferrites, where Fe is partly substituted by Y and La. The characterization of the sintered ferrites by means of X-ray powder diffraction and Rietveld profile analysis, indicates the subtle expansion of the spinel unit cell and the cation redistribution in the doped ferrites in order to accommodate the incorporation of Y and La in the lattice. The impurity traces, detected only in the Ni-Co-Zn group, is ascribed to the Zn population in the tetrahedral A-sites impeding the cation transfer. Moreover, the examined microstructure of the doped Ni-Co samples comprises enlarged and more homogeneous grains, whereas grain growth is moderated in the doped Ni-Co-Zn ferrites. The discussed characteristics of the crystal and magnetic structure along with the morphological aspects define the impact of Y and La doping on the static magnetic properties of Ni-Co and Ni-Co-Zn ferrites, saturation magnetization MS and coercivity HC, which were extracted from the respective hysteresis loops.

  18. X-ray magnetic circular dichroism study of Dy-doped Bi2Te3 topological insulator thin films

    Science.gov (United States)

    Figueroa, A. I.; Baker, A. A.; Harrison, S. E.; Kummer, K.; van der Laan, G.; Hesjedal, T.

    2017-01-01

    Magnetic doping of topological insulators (TIs) is crucial for unlocking novel quantum phenomena, paving the way for spintronics applications. Recently, we have shown that doping with rare earth ions introduces large magnetic moments and allows for high doping concentrations without the loss of crystal quality, however no long range magnetic order was observed. In Dy-doped Bi2Te3 we found a band gap opening above a critical doping concentration, despite the paramagnetic bulk behavior. Here, we present a surface-sensitive x-ray magnetic circular dichroism (XMCD) study of an in situ cleaved film in the cleanest possible environment. The Dy M4,5 absorption spectra measured with circularly polarized x-rays are fitted using multiplet calculations to obtain the effective magnetic moment. Arrott-Noakes plots, measured by the Dy M5 XMCD as a function of field at low temperatures, give a negative transition temperature. The evaporation of a ferromagnetic Co thin film did not introduce ferromagnetic ordering of the Dy dopants either; instead a lowering of the transition temperature was observed, pointing towards an antiferromagnetic ordering scenario. This result shows that there is a competition between the magnetic exchange interaction and the Zeeman interaction. The latter favors the Co and Dy magnetic moments to be both aligned along the direction of the applied magnetic field, while the exchange interaction is minimized if the Dy and Co atoms are antiferromagnetically coupled, as in zero applied field.

  19. Photoluminescence study of Sm{sup 3+}–Yb{sup 3+}co-doped tellurite glass embedding silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Reza Dousti, M., E-mail: mrdousti@ifsc.usp.br [Laboratório de Espectroscopia de Materiais Funcionais (LEMAF), Instituto de Fisica de São Carlos, Universidade de São Paulo, Av. Trabalhador So-carlense 400, São Carlos, SP 13566-590 (Brazil); Department of Physics, Tehran-North Branch, Islamic Azad University Tehran (Iran, Islamic Republic of); Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Amjad, R.J. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Hosseinian S, R.; Salehi, M.; Sahar, M.R. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)

    2015-03-15

    We report on the upconversion emission of Sm{sup 3+} ions doped tellurite glass in the presence of Yb{sup 3+} ions and silver nanoparticles. The enhancement of infrared-to-visible upconversion emissions is achieved under 980 nm excitation wavelength and attributed to the high absorption cross section of Yb{sup 3+} ions and an efficient energy transfer to Sm{sup 3+} ions. Further enhancements are attributed to the plasmonic effect via metallic nanoparticles resulting in the large localized field around rare earth ions. However, under excitation at 406 nm, the addition of Yb{sup 3+} content and heat-treated silver nanoparticles quench the luminescence of Sm{sup 3+} ions likely due to quantum cutting and plasmonic diluent effects, respectively. - Highlights: • Sm{sup 3+} tellurite glasses co-doped with Yb{sup 3+} ions and tri-doped with Yb{sup 3+}:Ag NPs were prepared. • In first step, Yb{sup 3+} ions enhanced the upconversion emissions of Sm{sup 3+} doped samples. • In second step, Ag NPs further enhanced the upconversion emissions in tri-doped glasses. • Finally, the quench in luminescence under 406 nm excitation is observed and discussed.

  20. Phase transformations upon doping in WO3

    Science.gov (United States)

    Wang, Wennie; Janotti, Anderson; Van de Walle, Chris G.

    2017-06-01

    High levels of doping in WO3 have been experimentally observed to lead to structural transformation towards higher symmetry phases. We explore the structural phase diagram with charge doping through first-principles methods based on hybrid density functional theory, as a function of doping the room-temperature monoclinic phase transitions to the orthorhombic, tetragonal, and finally cubic phase. Based on a decomposition of energies into electronic and strain contributions, we attribute the transformation to a gain in energy resulting from a lowering of the conduction band on an absolute energy scale.

  1. Alternative medicine and doping in sports

    Directory of Open Access Journals (Sweden)

    Benjamin Koh

    2012-01-01

    Full Text Available Athletes are high achievers who may seek creative or unconventional methods to improve performance. The literature indicates that athletes are among the heaviest users of complementary and alternative medicine (CAM and thus may pioneer population trends in CAM use. Unlike non-athletes, athletes may use CAM not just for prevention, treatment or rehabilitation from illness or injuries, but also for performance enhancement. Assuming that athletes’ creative use of anything unconventional is aimed at “legally” improving performance, CAM may be used because it is perceived as more “natural” and erroneously assumed as not potentially doping. This failure to recognise CAMs as pharmacological agents puts athletes at risk of inadvertent doping.The general position of the World Anti-Doping Authority (WADA is one of strict liability, an application of the legal proposition that ignorance is no excuse and the ultimate responsibility is on the athlete to ensure at all times whatever is swallowed, injected or applied to the athlete is both safe and legal for use. This means that a violation occurs whether or not the athlete intentionally or unintentionally, knowingly or unknowingly, used a prohibited substance/method or was negligent or otherwise at fault. Athletes are therefore expected to understand not only what is prohibited, but also what might potentially cause an inadvertent doping violation. Yet, as will be discussed, athlete knowledge on doping is deficient and WADA itself sometimes changes its position on prohibited methods or substances. The situation is further confounded by the conflicting stance of anti-doping experts in the media. These highly publicised disagreements may further portray inconsistencies in anti-doping guidelines and suggest to athletes that what is considered doping is dependent on the dominant political zeitgeist. Taken together, athletes may believe that unless a specific and explicit ruling is made, guidelines are

  2. Gas Immersion Laser Doping for superconducting nanodevices

    Energy Technology Data Exchange (ETDEWEB)

    Chiodi, F. [Institut d’Electronique Fondamentale, CNRS-Université Paris-Sud, F-91405 Orsay (France); Grockowiak, A. [Institut Néel, CNRS, BP 166, F-38042 Grenoble (France); CEA, INAC, UMR-E9001/UJF, LATEQS, 17 Rue des Martyrs, F-38054 Grenoble (France); Duvauchelle, J.E. [CEA, INAC, UMR-E9001/UJF, LATEQS, 17 Rue des Martyrs, F-38054 Grenoble (France); Fossard, F. [Institut d’Electronique Fondamentale, CNRS-Université Paris-Sud, F-91405 Orsay (France); Lefloch, F. [CEA, INAC, UMR-E9001/UJF, LATEQS, 17 Rue des Martyrs, F-38054 Grenoble (France); Klein, T. [Institut Néel, CNRS, BP 166, F-38042 Grenoble (France); Marcenat, C. [CEA, INAC, UMR-E9001/UJF, LATEQS, 17 Rue des Martyrs, F-38054 Grenoble (France); Institut Néel, CNRS, BP 166, F-38042 Grenoble (France); Débarre, D. [Institut d’Electronique Fondamentale, CNRS-Université Paris-Sud, F-91405 Orsay (France)

    2014-05-01

    We have conceived and fabricated Superconductor/Normal metal/Superconductor Josephson junctions made entirely of boron doped Silicon. We have used Gas Immersion Laser Doping to fabricate SN bilayers with good ohmic interfaces and well controlled concentration and doping depth. Standard fabrication processes, optimised for silicon, were employed to nanostructure the bilayers without affecting their transport properties. The junctions thus fabricated are proximity superconducting and show well understood I–V characteristics. This research opens the road to all-silicon, non-dissipative, Josephson Field Effect Transistors.

  3. Alternative medicine and doping in sports.

    Science.gov (United States)

    Koh, Benjamin; Freeman, Lynne; Zaslawski, Christopher

    2012-01-01

    Athletes are high achievers who may seek creative or unconventional methods to improve performance. The literature indicates that athletes are among the heaviest users of complementary and alternative medicine (CAM) and thus may pioneer population trends in CAM use. Unlike non-athletes, athletes may use CAM not just for prevention, treatment or rehabilitation from illness or injuries, but also for performance enhancement. Assuming that athletes' creative use of anything unconventional is aimed at "legally" improving performance, CAM may be used because it is perceived as more "natural" and erroneously assumed as not potentially doping. This failure to recognise CAMs as pharmacological agents puts athletes at risk of inadvertent doping.The general position of the World Anti-Doping Authority (WADA) is one of strict liability, an application of the legal proposition that ignorance is no excuse and the ultimate responsibility is on the athlete to ensure at all times whatever is swallowed, injected or applied to the athlete is both safe and legal for use. This means that a violation occurs whether or not the athlete intentionally or unintentionally, knowingly or unknowingly, used a prohibited substance/method or was negligent or otherwise at fault. Athletes are therefore expected to understand not only what is prohibited, but also what might potentially cause an inadvertent doping violation. Yet, as will be discussed, athlete knowledge on doping is deficient and WADA itself sometimes changes its position on prohibited methods or substances. The situation is further confounded by the conflicting stance of anti-doping experts in the media. These highly publicised disagreements may further portray inconsistencies in anti-doping guidelines and suggest to athletes that what is considered doping is dependent on the dominant political zeitgeist. Taken together, athletes may believe that unless a specific and explicit ruling is made, guidelines are open to interpretation

  4. Our sustainable Earth

    Energy Technology Data Exchange (ETDEWEB)

    Orbach, Raymond L, E-mail: orbach@energy.utexas.edu [Director Energy Institute, Cockrell Family Regents Chair in Engineering, University of Texas at Austin, Flawn Academic Center, FAC 428, 2 West Mall C2400, Austin, TX 78712 (United States)

    2011-11-15

    Recent evidence demonstrates that the Earth has been warming monotonically since 1980. Transient to equilibrium temperature changes take centuries to develop, as oceans are slow to respond to atmospheric temperature changes. Atmospheric CO{sub 2} concentrations, from ice core and observatory measurements, display consistent increases from historical averages, beginning in about 1880, and can be associated with the industrial revolution. The climactic consequences of this human dominated increase in atmospheric CO{sub 2} define a geologic epoch that has been termed the 'Anthropocene.' The issue is whether this is a short term, relatively minor change in global climate, or an extreme deviation that lasts for thousands of years. Eight 'myths' that posit the former are examined in light of known data. The analysis strongly suggests the latter. In order to stabilize global temperatures, sharp reductions in CO{sub 2} emissions are required: an 80% reduction beginning in 2050. Two examples of economically sustainable CO{sub 2} emission reduction demonstrate that technological innovation has the potential to maintain our standard of living while stabilizing global temperatures.

  5. Geodetic Earth Observation

    Science.gov (United States)

    Rothacher, Markus

    2017-04-01

    Mankind is constantly threatened by a variety of natural disasters and global change phenomena. In order to be able to better predict and assess these catastrophic and disastrous events a continuous observation and monitoring of the causative Earth processes is a necessity. These processes may happen in time scales from extremely short (earthquakes, volcano eruptions, land slides, ...) to very long (melting of ice sheets, sea level change, plate tectonics, ...). Appropriate monitoring and early warning systems must allow, therefore, the detection and quantification of catastrophic events in (near) real-time on the one hand and the reliable identification of barely noticeable, but crucial long-term trends (e.g., sea level rise) on the other hand. The Global Geodetic Observing System (GGOS), established by the International Association of Geodesy (IAG) in 2003, already now contributes in a multitude of ways to meet this challenge, e.g., by providing a highly accurate and stable global reference frame, without which the measurement of a sea level rise of 2-3 mm/y would not be possible; by measuring displacements in near real-time and deformations over decades that offer valuable clues to plate tectonics, earthquake processes, tsunamis, volcanos, land slides, and glaciers dynamics; by observing the mass loss of ice sheets with gravity satellite missions; and by estimating essential variables such as the amount of water vapor in the troposphere relevant for weather predictions and climate and the content of free electrons in the ionosphere crucial for space weather.

  6. Optical properties of pure and Ce{sup 3+} doped gadolinium gallium garnet crystals and epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Syvorotka, I.I. [Scientific Research Company “Carat”, 202 Stryjska Street, Lviv 79031 (Ukraine); Sugak, D. [Scientific Research Company “Carat”, 202 Stryjska Street, Lviv 79031 (Ukraine); Lviv Polytechnic National University, 12, S. Bandera Street, Lviv, 79013 (Ukraine); Wierzbicka, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Wittlin, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Cardinal Stefan Wyszyński University in Warsaw, ul. Dewajtis 5, 01-815 Warsaw (Poland); Przybylińska, H. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Barzowska, J. [Institute of Experimental Physics, Gdańsk University, ul. Wita Stwosza 57, Gdańsk (Poland); Barcz, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of Electron Technology, Al. Lotników 32/46, 02-668 Warsaw (Poland); Berkowski, M.; Domagała, J. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Mahlik, S.; Grinberg, M. [Institute of Experimental Physics, Gdańsk University, ul. Wita Stwosza 57, Gdańsk (Poland); Ma, Chong-Geng [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); and others

    2015-08-15

    Results of X-ray diffraction and low temperature optical absorption measurements of cerium doped gadolinium gallium garnet single crystals and epitaxial layers are reported. In the region of intra-configurational 4f–4f transitions the spectra of the bulk crystals exhibit the signatures of several different Ce{sup 3+} related centers. Apart from the dominant center, associated with Ce substituting gadolinium, at least three other centers are found, some of them attributed to the so-called antisite locations of rare-earth ions in the garnet host, i.e., in the Ga positions. X-ray diffraction data prove lattice expansion of bulk GGG crystals due to the presence of rare-earth antisites. The concentration of the additional Ce-related centers in epitaxial layers is much lower than in the bulk crystals. However, the Ce-doped layers incorporate a large amount of Pb from flux, which is the most probable source of nonradiative quenching of Ce luminescence, not observed in crystals grown by the Czochralski method. - Highlights: • Ce{sup 3+} multicenters found in Gadolinium Gallium Garnet crystals and epitaxial layers. • High quality epitaxial layers of pure and Ce-doped GGG were grown. • Luminescence quenching of Ce{sup 3+} by Pb ions from flux detected in GGG epitaxial layers. • X-ray diffraction allows measuring the amount of the rare-earth antisites in GGG.

  7. Rotation of a Moonless Earth

    Science.gov (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  8. Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Baojiang [College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin (China); Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People' s Republic of China, Heilongjiang University, Harbin (China); Tian Chungui; Wang Lei; Sun Li; Chen Chen; Nong Xiaozhen [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People' s Republic of China, Heilongjiang University, Harbin (China); Qiao Yingjie, E-mail: qiaoyingjie@hrbeu.edu.cn [College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin (China); Fu Honggang, E-mail: fuhg@vip.sina.com [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People' s Republic of China, Heilongjiang University, Harbin (China)

    2012-02-01

    In this work, we developed a concentrated ammonia-assisted hydrothermal method to obtain N-doped graphene sheets by simultaneous N-doping and reduction of graphene oxide (GO) sheets. The effects of hydrothermal temperature on the surface chemistry and the structure of N-doped graphene sheets were also investigated. X-ray photoelectron spectroscopy (XPS) study of N-doped graphene reveals that the highest doping level of 7.2% N is achieved at 180 Degree-Sign C for 12 h. N binding configurations of sample consist of pyridine N, quaternary N, and pyridine-N oxides. N doping is accompanied by the reduction of GO with decreases in oxygen levels from 34.8% in GO down to 8.5% in that of N-doped graphene. Meanwhile, the sample exhibits excellent N-doped thermal stability. Electrical measurements demonstrate that products have higher capacitive performance than that of pure graphene, the maximum specific capacitance of 144.6 F/g can be obtained which ascribe the pseudocapacitive effect from the N-doping. The samples also show excellent long-term cycle stability of capacitive performance.

  9. Fourteen Times the Earth

    Science.gov (United States)

    2004-08-01

    ESO HARPS Instrument Discovers Smallest Ever Extra-Solar Planet Summary A European team of astronomers [1] has discovered the lightest known planet orbiting a star other than the sun (an "exoplanet"). The new exoplanet orbits the bright star mu Arae located in the southern constellation of the Altar. It is the second planet discovered around this star and completes a full revolution in 9.5 days. With a mass of only 14 times the mass of the Earth, the new planet lies at the threshold of the largest possible rocky planets, making it a possible super Earth-like object. Uranus, the smallest of the giant planets of the Solar System has a similar mass. However Uranus and the new exoplanet differ so much by their distance from the host star that their formation and structure are likely to be very different. This discovery was made possible by the unprecedented accuracy of the HARPS spectrograph on ESO's 3.6-m telescope at La Silla, which allows radial velocities to be measured with a precision better than 1 m/s. It is another clear demonstration of the European leadership in the field of exoplanet research. PR Photo 25a/04: The HARPS Spectrograph and the 3.6m Telescope PR Photo 25b/04: Observed Velocity Variation of mu Arae (3.6m/HARPS, 1.2m Swiss/CORALIE, AAT/UCLES) PR Photo 25c/04: Velocity Variation of mu Arae Observed by HARPS (3.6m/HARPS) PR Photo 25d/04: "Velocity Curve" of mu Arae A unique planet hunting machine ESO PR Photo 25a/04 ESO PR Photo 25a/04 The HARPS Spectrograph and the 3.6m Telescope [Preview - JPEG: 602 x 400 pix - 211k] [Normal - JPEG: 1202 x 800 pix - 645k] Caption: ESO PR Photo 25a/04 represents a montage of the HARPS spectrograph and the 3.6m telescope at La Silla. The upper left shows the dome of the telescope, while the upper right illustrates the telescope itself. The HARPS spectrograph is shown in the lower image during laboratory tests. The vacuum tank is open so that some of the high-precision components inside can be seen. Since the first

  10. Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction

    Science.gov (United States)

    Li, Ruchun; Yang, Linjing; Xiong, Tanli; Wu, Yisheng; Cao, Lindie; Yuan, Dingsheng; Zhou, Weijia

    2017-07-01

    Highly active and earth-abundant catalysts for hydrogen evolution reaction (HER) play a crucial in the development of efficient water splitting to produce hydrogen fuel. Here, we reported a simple, facile and effective strategy to fabricate N-doped molybdenum sulfide (N-doped MoS2) as noble metal-free catalysts for HER. Compared with pure MoS2, the obtained N-doped MoS2 catalyst revealed enhanced HER performance with low overpotential of -168 mV (-10 mA cm-2), small Tafel slope of 40.5 mV dec-1 and excellent stability. The superior HER activity may originate from both the exposed Mo active sites due to S defects and the optimized electron density state of S atoms by N doping. More importantly, due to its simple synthesis method, earth-abundant catalysts and high catalytic activity, the N-doped MoS2 will become a promising HER catalysts for water splitting.

  11. Erbium Doped Fiber Optic Gravimeter

    Science.gov (United States)

    Pérez-Sánchez, G. G.; Pérez-Torres, J. R.; Flores-Bravo, J. A.; Álvarez-Chávez, J. A.; Martínez-Piñón, F.

    2017-01-01

    Gravimeters are devices that can be used in a wide range of applications, such as mining, seismology, geodesy, archeology, geophysics and many others. These devices have great sensibility, which makes them susceptible to external vibrations like electromagnetic waves. There are several technologies regarding gravimeters that are of use in industrial metrology. Optical fiber is immune to electromagnetic interference, and together with long period gratings can form high sensibility sensors of small size, offering advantages over other systems with different technologies. This paper shows the development of an optical fiber gravimeter doped with Erbium that was characterized optically for loads going from 1 to 10 kg in a bandwidth between 1590nm to 1960nm, displaying a weight linear response against power. Later on this paper, the experimental results show that the previous described behavior can be modeled as characteristic function of the sensor.

  12. Piezoresistive boron doped diamond nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha V.; Wang, Xinpeng

    2017-07-04

    A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.

  13. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  14. Screening dynamics in doped titanates

    Energy Technology Data Exchange (ETDEWEB)

    Rubensson, J.E.; Luening, J.; Eisebitt, S. [Forschungszentrum Juelich (Germany)] [and others

    1997-04-01

    The time scale for carrier relaxation in semiconductors is on the same order of magnitude as the life time of shallow core hole states (a few femtoseconds). Resonant Inelastic soft X-ray scattering (RIXS) which involves (virtual) excitations of core levels consequently contains information about the time development of the electronic structure on this time scale. In many cases one can treat the scattering in an absorption (SXA) followed-by-emission (SXE) picture, where simply the rates for various processes can be compared with the intermediate core hole state decay rate as an internal {open_quotes}clock{close_quotes}. By variation of x (0 < x < 1) in La{sub x}Sr{sub 1{minus}x}TiO{sub 3}, the amount of Ti d electrons in the system can be controlled. SrTiO{sub 3} (x=0) is an insulator with an empty Ti d band. With increasing x, electrons are doped into the Ti d-band, and LaTiO{sub 3} (x=1) is a Mott Hubbard insulator with a Ti 3d{sup 1} configuration. In this work the authors demonstrate that the rate for Ti 2p core hole screening in La{sub x}Sr{sub 1{minus}x}TiO{sub 3} is doping dependent. The screening rate increases with the availability of Ti 3d electrons, and they estimate it to be 3.8 x 10{sup 13}/sec in La{sub 0.05}Sr{sub 0.95}TiO{sub 3}.

  15. A first principles study of Nd doped cubic LaAlO{sub 3} perovskite: mBJ+U study

    Energy Technology Data Exchange (ETDEWEB)

    Sandeep, E-mail: sndp.chettri@gmail.com [Dept. of Physics, Mizoram University, Aizawl 796004 (India); Rai, D.P. [Dept. of Physics, Pachhunga University College, Aizawl, Mizoram 796001 (India); Shankar, A. [Department of Physics, University of North Bengal, Darjeeling 734013 (India); Ghimire, M.P. [Condensed Matter Physics Research Center, Butwal-13, Rupandehi, Lumbini (Nepal); Khenata, R. [Laboratoire de Physique Quantique et de Modlisation Mathmatique (LPQ3M), Dpartement de Technologie, Universit de Mascara, 29000 Mascara (Algeria); Thapa, R.K. [Dept. of Physics, Mizoram University, Aizawl 796004 (India)

    2016-11-01

    The structural, electronic and magnetic properties of Nd-doped Rare earth aluminate, La{sub 1−x}Nd{sub x}AlO{sub 3} (x=0–100%) are studied using the full potential linearized augmented plane-wave (FP-LAPW) method within the density functional theory. The effects of Nd substitution in LaAlO{sub 3} are studied using super-cell calculations. The electronic structures were computed using modified Beck Johnson (mBJ) potential based approximation with the inclusion of Coulomb energy (U) for Nd-4f state electrons. The La{sub 1−x}Nd{sub x}AlO{sub 3} may possess half metallic behavior on Nd doping with finite density of states at E{sub F}. The direct and indirect band gaps were studied as a function of Nd concentration in LaAlO{sub 3}. The calculated magnetic moments in La{sub 1−x}Nd{sub x}AlO{sub 3} were found to arise mainly from the Nd-4f state electrons. A probable half-metallic nature is suggested for these systems with supportive integral magnetic moments and high spin polarized electronic structures in these doped cases at E{sub F}. The controlled decrease in band gap with increase in concentration of Nd doping is a suitable technique for harnessing useful spintronic and magnetic devices. - Highlights: • Electronic and magnetic properties of La{sub 1−x}Nd{sub x}AlO{sub 3} to study the effect of doping (x=0%, 25%, 50%, 75% and 100%) is carried out using DFT. • Theoretically calculated U was used in the mBJ+U approximation in order to stress accuracy in band-gap determination along with electron correlation effects in rare earth ions. • A high DOS at E{sub F} for certain doping concentrations in one spin channel with insulting DOS in the other channel supported their probable use as spintronic devices. • The change in doping concentration was found suitable for rare earth aluminates for desirable properties through band-gap tuning.

  16. Chemical earth models

    Science.gov (United States)

    Javoy, Marc

    1999-10-01

    This article presents a critical review of method, concepts and prejudices used bv modelists of the Earth's chemical composition over approximate the last fifty years and of the resulting compositions. Brief descriptions are given of admitted accretion mechanisms, of the starting materials most often considered and of the major parameters and recurrent concepts: 'reduced" state, mantle homogeneity vs heterogeneity, 'low pressure' core formation, 'great impact', refractory, lithophile, siderophile, compatible, incompatible character of elements, depleted and degassed mantle, Urey ratio, as well as the description of a commonly-used instrument, possibly harmful to Iogic, the famous Ockham's razor. Differences between models are now restricted to the lower mantle composition:the 'primary' (before crust differentiation) upper mentle varies little from model to model and the idea of a 10-15% combined Si-O-S concentration as representing the necessary light elements in the core is gaining more and more ground. The dominant type of model derives more or less directly from the CI cabonaceous composition by complete devolatilization and reduction. Its mantle is homogeneous and convecting mainly in a one-level mode, in accordence with dominant geophysicists' views but in rather strong disagreement with geochemical data and models which insist on the strong decoupling between lower and upper mantle. Its low Si excess is generally supposed to have been absorbed by the core, whereas its high refractory lithophile element (RLE) content creates mass balance problems relative to presently observed mantle and crust concentrations. The alternative type is a two-lavel mantle with a Si and Fe-rich, RLE-poor, lower mantle, previously based mainly on seismic and mineral physics data, and now also on geochemical and cosmochemical arguments.

  17. Experiencing Earth's inaudible symphony

    Science.gov (United States)

    Marlton, Graeme; Charlton-Perez, Andrew; Harrison, Giles; Robson, Juliet

    2017-04-01

    Everyday the human body is exposed to thousands of different sounds; smartphones, music, cars and overhead aircraft to name a few. There are some sounds however which we cannot hear as they are below our range of hearing, sound at this level is known as infrasound and is of very low frequency. Such examples of infrasound are the sounds made by glaciers and volcanos, distant mining activities and the sound of the ocean. These sounds are emitted by these sources constantly all over the world and are recorded at infrasound stations, thus providing a recording of Earth's inaudible symphony. The aim of this collaboration between artists and scientists is to create a proof of concept immersive experience in which members of the public are invited to experience and understand infrasound. Participants will sit in an installation and be shown images of natural infrasound sources whilst their seat is vibrated at with an amplitude modulated version of the original infrasound wave. To further enhance the experience, subwoofers will play the same amplitude modulated soundwave to place the feeling of the infrasound wave passing through the installation. Amplitude modulation is performed so that a vibration is played at a frequency that can be felt by the human body but its amplitude varies at the frequency of the infrasound wave. The aim of the project is to see how humans perceive sounds that can't be heard and many did not know were there. The second part of the project is educational in which that this installation can be used to educate the general public about infrasound and its scientific uses. A simple demonstration for this session could be the playing of amplitude modulated infrasound wave that can be heard as opposed to felt as the transport of an installation at this is not possible and the associated imagery.

  18. Magnetic doping of a thiolated gold superatom

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Deen [ORNL; Whetten, Robert L [Georgia Institute of Technology

    2009-01-01

    The Au{sub 25}(SR){sub 18}{sup -} cluster is a new member in the superatom family which features a centered icosahedral shell (Au{sub 13}) protected by six RS(AuSR){sub 2} motifs (RS? being an alkylthiolate group). Here we show that this superatom can be magnetically doped by replacing the center Au atom with Cr, Mn, or Fe. We find that Cr- and Mn-doped clusters have an optimized magnetic moment of 5 Bohr magnetons while the Fe-doped cluster has an optimized magnetic moment of 3 Bohr magnetons. Although the dopant atom's local magnetic moment makes a major contribution to the total moment, the icosahedral Au{sub 12} shell is also found to be significantly magnetized. Our work here provides a scenario of magnetic doping of a metal-cluster superatom which is protected by ligands and made by wet chemistry.

  19. Semiconducting behavior of substitutionally doped bilayer graphene

    Science.gov (United States)

    Mousavi, Hamze; Khodadadi, Jabbar; Grabowski, Marek

    2018-02-01

    In the framework of the Green's functions approach, random tight-binding model and using the coherent potential approximation, electronic characteristics of the bilayer graphene are investigated by exploring various forms of substitutional doping of a single or both layers of the system by either boron and (or) nitrogen atoms. The results for displacement of the Fermi level resemble the behavior of acceptor or donor doping in a conventional semiconductor, dependent on the impurity type and concentration. The particular pattern of doping of just one layer with one impurity type is most efficient for opening a gap within the energy bands which could be tuned directly by impurity concentration. Doping both layers at the same time, each with one impurity type, leads to an anomaly whereby the gap decreases with increasing impurity concentration.

  20. The psychology behind doping in sport.

    Science.gov (United States)

    Ehrnborg, Christer; Rosén, Thord

    2009-08-01

    Drugs and methods to improve physical performance among athletes have been used since the beginning of sport history, but the use of performance enhancing drugs has not always been regarded as cheating. In short, the motives for doping are improving and maintaining physical functioning, coping with the social/psychological pressures and striving for social and psychological goals, including economic benefits. Factors such as, "doping dilemma", "win at all costs", cost versus benefit, and the specificity of some specific doping agents, also play major roles. It seems that action on the athletes' attitude about the achievement of physical improvement and creating effective methods to reveal the drug abuse, are two main ways in winning the struggle against doping.