WorldWideScience

Sample records for earthquake sequence california

  1. Conditional Probabilities of Large Earthquake Sequences in California from the Physics-based Rupture Simulator RSQSim

    Science.gov (United States)

    Gilchrist, J. J.; Jordan, T. H.; Shaw, B. E.; Milner, K. R.; Richards-Dinger, K. B.; Dieterich, J. H.

    2017-12-01

    Within the SCEC Collaboratory for Interseismic Simulation and Modeling (CISM), we are developing physics-based forecasting models for earthquake ruptures in California. We employ the 3D boundary element code RSQSim (Rate-State Earthquake Simulator of Dieterich & Richards-Dinger, 2010) to generate synthetic catalogs with tens of millions of events that span up to a million years each. This code models rupture nucleation by rate- and state-dependent friction and Coulomb stress transfer in complex, fully interacting fault systems. The Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault and deformation models are used to specify the fault geometry and long-term slip rates. We have employed the Blue Waters supercomputer to generate long catalogs of simulated California seismicity from which we calculate the forecasting statistics for large events. We have performed probabilistic seismic hazard analysis with RSQSim catalogs that were calibrated with system-wide parameters and found a remarkably good agreement with UCERF3 (Milner et al., this meeting). We build on this analysis, comparing the conditional probabilities of sequences of large events from RSQSim and UCERF3. In making these comparisons, we consider the epistemic uncertainties associated with the RSQSim parameters (e.g., rate- and state-frictional parameters), as well as the effects of model-tuning (e.g., adjusting the RSQSim parameters to match UCERF3 recurrence rates). The comparisons illustrate how physics-based rupture simulators might assist forecasters in understanding the short-term hazards of large aftershocks and multi-event sequences associated with complex, multi-fault ruptures.

  2. Detailed observations of California foreshock sequences: Implications for the earthquake initiation process

    Science.gov (United States)

    Dodge, D.A.; Beroza, G.C.; Ellsworth, W.L.

    1996-01-01

    We find that foreshocks provide clear evidence for an extended nucleation process before some earthquakes. In this study, we examine in detail the evolution of six California foreshock sequences, the 1986 Mount Lewis (ML, = 5.5), the 1986 Chalfant (ML = 6.4), the. 1986 Stone Canyon (ML = 4.7), the 1990 Upland (ML = 5.2), the 1992 Joshua Tree (MW= 6.1), and the 1992 Landers (MW = 7.3) sequence. Typically, uncertainties in hypocentral parameters are too large to establish the geometry of foreshock sequences and hence to understand their evolution. However, the similarity of location and focal mechanisms for the events in these sequences leads to similar foreshock waveforms that we cross correlate to obtain extremely accurate relative locations. We use these results to identify small-scale fault zone structures that could influence nucleation and to determine the stress evolution leading up to the mainshock. In general, these foreshock sequences are not compatible with a cascading failure nucleation model in which the foreshocks all occur on a single fault plane and trigger the mainshock by static stress transfer. Instead, the foreshocks seem to concentrate near structural discontinuities in the fault and may themselves be a product of an aseismic nucleation process. Fault zone heterogeneity may also be important in controlling the number of foreshocks, i.e., the stronger the heterogeneity, the greater the number of foreshocks. The size of the nucleation region, as measured by the extent of the foreshock sequence, appears to scale with mainshock moment in the same manner as determined independently by measurements of the seismic nucleation phase. We also find evidence for slip localization as predicted by some models of earthquake nucleation. Copyright 1996 by the American Geophysical Union.

  3. Accessing northern California earthquake data via Internet

    Science.gov (United States)

    Romanowicz, Barbara; Neuhauser, Douglas; Bogaert, Barbara; Oppenheimer, David

    The Northern California Earthquake Data Center (NCEDC) provides easy access to central and northern California digital earthquake data. It is located at the University of California, Berkeley, and is operated jointly with the U.S. Geological Survey (USGS) in Menlo Park, Calif., and funded by the University of California and the National Earthquake Hazard Reduction Program. It has been accessible to users in the scientific community through Internet since mid-1992.The data center provides an on-line archive for parametric and waveform data from two regional networks: the Northern California Seismic Network (NCSN) operated by the USGS and the Berkeley Digital Seismic Network (BDSN) operated by the Seismographic Station at the University of California, Berkeley.

  4. The 2010 M w 7.2 El Mayor-Cucapah Earthquake Sequence, Baja California, Mexico and Southernmost California, USA: Active Seismotectonics along the Mexican Pacific Margin

    Science.gov (United States)

    Hauksson, Egill; Stock, Joann; Hutton, Kate; Yang, Wenzheng; Vidal-Villegas, J. Antonio; Kanamori, Hiroo

    2011-08-01

    The El Mayor-Cucapah earthquake sequence started with a few foreshocks in March 2010, and a second sequence of 15 foreshocks of M > 2 (up to M4.4) that occurred during the 24 h preceding the mainshock. The foreshocks occurred along a north-south trend near the mainshock epicenter. The M w 7.2 mainshock on April 4 exhibited complex faulting, possibly starting with a ~M6 normal faulting event, followed ~15 s later by the main event, which included simultaneous normal and right-lateral strike-slip faulting. The aftershock zone extends for 120 km from the south end of the Elsinore fault zone north of the US-Mexico border almost to the northern tip of the Gulf of California. The waveform-relocated aftershocks form two abutting clusters, each about 50 km long, as well as a 10 km north-south aftershock zone just north of the epicenter of the mainshock. Even though the Baja California data are included, the magnitude of completeness and the hypocentral errors increase gradually with distance south of the international border. The spatial distribution of large aftershocks is asymmetric with five M5+ aftershocks located to the south of the mainshock, and only one M5.7 aftershock, but numerous smaller aftershocks to the north. Further, the northwest aftershock cluster exhibits complex faulting on both northwest and northeast planes. Thus, the aftershocks also express a complex pattern of stress release along strike. The overall rate of decay of the aftershocks is similar to the rate of decay of a generic California aftershock sequence. In addition, some triggered seismicity was recorded along the Elsinore and San Jacinto faults to the north, but significant northward migration of aftershocks has not occurred. The synthesis of the El Mayor-Cucapah sequence reveals transtensional regional tectonics, including the westward growth of the Mexicali Valley and the transfer of Pacific-North America plate motion from the Gulf of California in the south into the southernmost San

  5. Aftershocks and triggered events of the Great 1906 California earthquake

    Science.gov (United States)

    Meltzner, A.J.; Wald, D.J.

    2003-01-01

    The San Andreas fault is the longest fault in California and one of the longest strike-slip faults in the world, yet little is known about the aftershocks following the most recent great event on the San Andreas, the Mw 7.8 San Francisco earthquake on 18 April 1906. We conducted a study to locate and to estimate magnitudes for the largest aftershocks and triggered events of this earthquake. We examined existing catalogs and historical documents for the period April 1906 to December 1907, compiling data on the first 20 months of the aftershock sequence. We grouped felt reports temporally and assigned modified Mercalli intensities for the larger events based on the descriptions judged to be the most reliable. For onshore and near-shore events, a grid-search algorithm (derived from empirical analysis of modern earthquakes) was used to find the epicentral location and magnitude most consistent with the assigned intensities. For one event identified as far offshore, the event's intensity distribution was compared with those of modern events, in order to contrain the event's location and magnitude. The largest aftershock within the study period, an M ???6.7 event, occurred ???100 km west of Eureka on 23 April 1906. Although not within our study period, another M ???6.7 aftershock occurred near Cape Mendocino on 28 October 1909. Other significant aftershocks included an M ???5.6 event near San Juan Bautista on 17 May 1906 and an M ???6.3 event near Shelter Cove on 11 August 1907. An M ???4.9 aftershock occurred on the creeping segment of the San Andreas fault (southeast of the mainshock rupture) on 6 July 1906. The 1906 San Francisco earthquake also triggered events in southern California (including separate events in or near the Imperial Valley, the Pomona Valley, and Santa Monica Bay), in western Nevada, in southern central Oregon, and in western Arizona, all within 2 days of the mainshock. Of these trigerred events, the largest were an M ???6.1 earthquake near Brawley

  6. Foreshocks and aftershocks of the Great 1857 California earthquake

    Science.gov (United States)

    Meltzner, A.J.; Wald, D.J.

    1999-01-01

    The San Andreas fault is the longest fault in California and one of the longest strike-slip faults anywhere in the world, yet we know little about many aspects of its behavior before, during, and after large earthquakes. We conducted a study to locate and to estimate magnitudes for the largest foreshocks and aftershocks of the 1857 M 7.9 Fort Tejon earthquake on the central and southern segments of the fault. We began by searching archived first-hand accounts from 1857 through 1862, by grouping felt reports temporally, and by assigning modified Mercalli intensities to each site. We then used a modified form of the grid-search algorithm of Bakum and Wentworth, derived from empirical analysis of modern earthquakes, to find the location and magnitude most consistent with the assigned intensities for each of the largest events. The result confirms a conclusion of Sieh that at least two foreshocks ('dawn' and 'sunrise') located on or near the Parkfield segment of the San Andreas fault preceded the mainshock. We estimate their magnitudes to be M ~ 6.1 and M ~ 5.6, respectively. The aftershock rate was below average but within one standard deviation of the number of aftershocks expected based on statistics of modern southern California mainshock-aftershock sequences. The aftershocks included two significant events during the first eight days of the sequence, with magnitudes M ~ 6.25 and M ~ 6.7, near the southern half of the rupture; later aftershocks included a M ~ 6 event near San Bernardino in December 1858 and a M ~ 6.3 event near the Parkfield segment in April 1860. From earthquake logs at Fort Tejon, we conclude that the aftershock sequence lasted a minimum of 3.75 years.

  7. Changes in state of stress on the southern san andreas fault resulting from the california earthquake sequence of april to june 1992.

    Science.gov (United States)

    Jaumé, S C; Sykes, L R

    1992-11-20

    The April to June 1992 Landers earthquake sequence in southern California modified the state of stress along nearby segments of the San Andreas fault, causing a 50-kilometer segment of the fault to move significantly closer to failure where it passes through a compressional bend near San Gorgonio Pass. The decrease in compressive normal stress may also have reduced fluid pressures along that fault segment. As pressures are reequilibrated by diffusion, that fault segment should move closer to failure with time. That fault segment and another to the southeast probably have not ruptured in a great earthquake in about 300 years.

  8. Earthquakes and faults in southern California (1970-2010)

    Science.gov (United States)

    Sleeter, Benjamin M.; Calzia, James P.; Walter, Stephen R.

    2012-01-01

    The map depicts both active and inactive faults and earthquakes magnitude 1.5 to 7.3 in southern California (1970–2010). The bathymetry was generated from digital files from the California Department of Fish And Game, Marine Region, Coastal Bathymetry Project. Elevation data are from the U.S. Geological Survey National Elevation Database. Landsat satellite image is from fourteen Landsat 5 Thematic Mapper scenes collected between 2009 and 2010. Fault data are reproduced with permission from 2006 California Geological Survey and U.S. Geological Survey data. The earthquake data are from the U.S. Geological Survey National Earthquake Information Center.

  9. Hotspots, Lifelines, and the Safrr Haywired Earthquake Sequence

    Science.gov (United States)

    Ratliff, J. L.; Porter, K.

    2014-12-01

    Though California has experienced many large earthquakes (San Francisco, 1906; Loma Prieta, 1989; Northridge, 1994), the San Francisco Bay Area has not had a damaging earthquake for 25 years. Earthquake risk and surging reliance on smartphones and the Internet to handle everyday tasks raise the question: is an increasingly technology-reliant Bay Area prepared for potential infrastructure impacts caused by a major earthquake? How will a major earthquake on the Hayward Fault affect lifelines (roads, power, water, communication, etc.)? The U.S. Geological Survey Science Application for Risk Reduction (SAFRR) program's Haywired disaster scenario, a hypothetical two-year earthquake sequence triggered by a M7.05 mainshock on the Hayward Fault, addresses these and other questions. We explore four geographic aspects of lifeline damage from earthquakes: (1) geographic lifeline concentrations, (2) areas where lifelines pass through high shaking or potential ground-failure zones, (3) areas with diminished lifeline service demand due to severe building damage, and (4) areas with increased lifeline service demand due to displaced residents and businesses. Potential mainshock lifeline vulnerability and spatial demand changes will be discerned by superimposing earthquake shaking, liquefaction probability, and landslide probability damage thresholds with lifeline concentrations and with large-capacity shelters. Intersecting high hazard levels and lifeline clusters represent potential lifeline susceptibility hotspots. We will also analyze possible temporal vulnerability and demand changes using an aftershock shaking threshold. The results of this analysis will inform regional lifeline resilience initiatives and response and recovery planning, as well as reveal potential redundancies and weaknesses for Bay Area lifelines. Identified spatial and temporal hotspots can provide stakeholders with a reference for possible systemic vulnerability resulting from an earthquake sequence.

  10. The October 1992 Parkfield, California, earthquake prediction

    Science.gov (United States)

    Langbein, J.

    1992-01-01

    A magnitude 4.7 earthquake occurred near Parkfield, California, on October 20, 992, at 05:28 UTC (October 19 at 10:28 p.m. local or Pacific Daylight Time).This moderate shock, interpreted as the potential foreshock of a damaging earthquake on the San Andreas fault, triggered long-standing federal, state and local government plans to issue a public warning of an imminent magnitude 6 earthquake near Parkfield. Although the predicted earthquake did not take place, sophisticated suites of instruments deployed as part of the Parkfield Earthquake Prediction Experiment recorded valuable data associated with an unusual series of events. this article describes the geological aspects of these events, which occurred near Parkfield in October 1992. The accompnaying article, an edited version of a press conference b Richard Andrews, the Director of the California Office of Emergency Service (OES), describes governmental response to the prediction.   

  11. THE GREAT SOUTHERN CALIFORNIA SHAKEOUT: Earthquake Science for 22 Million People

    Science.gov (United States)

    Jones, L.; Cox, D.; Perry, S.; Hudnut, K.; Benthien, M.; Bwarie, J.; Vinci, M.; Buchanan, M.; Long, K.; Sinha, S.; Collins, L.

    2008-12-01

    Earthquake science is being communicated to and used by the 22 million residents of southern California to improve resiliency to future earthquakes through the Great Southern California ShakeOut. The ShakeOut began when the USGS partnered with the California Geological Survey, Southern California Earthquake Center and many other organizations to bring 300 scientists and engineers together to formulate a comprehensive description of a plausible major earthquake, released in May 2008, as the ShakeOut Scenario, a description of the impacts and consequences of a M7.8 earthquake on the Southern San Andreas Fault (USGS OFR2008-1150). The Great Southern California ShakeOut was a week of special events featuring the largest earthquake drill in United States history. The ShakeOut drill occurred in houses, businesses, and public spaces throughout southern California at 10AM on November 13, 2008, when southern Californians were asked to pretend that the M7.8 scenario earthquake had occurred and to practice actions that could reduce the impact on their lives. Residents, organizations, schools and businesses registered to participate in the drill through www.shakeout.org where they could get accessible information about the scenario earthquake and share ideas for better reparation. As of September 8, 2008, over 2.7 million confirmed participants had been registered. The primary message of the ShakeOut is that what we do now, before a big earthquake, will determine what our lives will be like after. The goal of the ShakeOut has been to change the culture of earthquake preparedness in southern California, making earthquakes a reality that are regularly discussed. This implements the sociological finding that 'milling,' discussing a problem with loved ones, is a prerequisite to taking action. ShakeOut milling is taking place at all levels from individuals and families, to corporations and governments. Actions taken as a result of the ShakeOut include the adoption of earthquake

  12. Building the Southern California Earthquake Center

    Science.gov (United States)

    Jordan, T. H.; Henyey, T.; McRaney, J. K.

    2004-12-01

    Kei Aki was the founding director of the Southern California Earthquake Center (SCEC), a multi-institutional collaboration formed in 1991 as a Science and Technology Center (STC) under the National Science Foundation (NSF) and the U. S. Geological Survey (USGS). Aki and his colleagues articulated a system-level vision for the Center: investigations by disciplinary working groups would be woven together into a "Master Model" for Southern California. In this presentation, we will outline how the Master-Model concept has evolved and how SCEC's structure has adapted to meet scientific challenges of system-level earthquake science. In its first decade, SCEC conducted two regional imaging experiments (LARSE I & II); published the "Phase-N" reports on (1) the Landers earthquake, (2) a new earthquake rupture forecast for Southern California, and (3) new models for seismic attenuation and site effects; it developed two prototype "Community Models" (the Crustal Motion Map and Community Velocity Model) and, perhaps most important, sustained a long-term, multi-institutional, interdisciplinary collaboration. The latter fostered pioneering numerical simulations of earthquake ruptures, fault interactions, and wave propagation. These accomplishments provided the impetus for a successful proposal in 2000 to reestablish SCEC as a "stand alone" center under NSF/USGS auspices. SCEC remains consistent with the founders' vision: it continues to advance seismic hazard analysis through a system-level synthesis that is based on community models and an ever expanding array of information technology. SCEC now represents a fully articulated "collaboratory" for earthquake science, and many of its features are extensible to other active-fault systems and other system-level collaborations. We will discuss the implications of the SCEC experience for EarthScope, the USGS's program in seismic hazard analysis, NSF's nascent Cyberinfrastructure Initiative, and other large collaboratory programs.

  13. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    Science.gov (United States)

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  14. UCERF3: A new earthquake forecast for California's complex fault system

    Science.gov (United States)

    Field, Edward H.; ,

    2015-01-01

    With innovations, fresh data, and lessons learned from recent earthquakes, scientists have developed a new earthquake forecast model for California, a region under constant threat from potentially damaging events. The new model, referred to as the third Uniform California Earthquake Rupture Forecast, or "UCERF" (http://www.WGCEP.org/UCERF3), provides authoritative estimates of the magnitude, location, and likelihood of earthquake fault rupture throughout the state. Overall the results confirm previous findings, but with some significant changes because of model improvements. For example, compared to the previous forecast (Uniform California Earthquake Rupture Forecast 2), the likelihood of moderate-sized earthquakes (magnitude 6.5 to 7.5) is lower, whereas that of larger events is higher. This is because of the inclusion of multifault ruptures, where earthquakes are no longer confined to separate, individual faults, but can occasionally rupture multiple faults simultaneously. The public-safety implications of this and other model improvements depend on several factors, including site location and type of structure (for example, family dwelling compared to a long-span bridge). Building codes, earthquake insurance products, emergency plans, and other risk-mitigation efforts will be updated accordingly. This model also serves as a reminder that damaging earthquakes are inevitable for California. Fortunately, there are many simple steps residents can take to protect lives and property.

  15. Long Period Earthquakes Beneath California's Young and Restless Volcanoes

    Science.gov (United States)

    Pitt, A. M.; Dawson, P. B.; Shelly, D. R.; Hill, D. P.; Mangan, M.

    2013-12-01

    The newly established USGS California Volcano Observatory has the broad responsibility of monitoring and assessing hazards at California's potentially threatening volcanoes, most notably Mount Shasta, Medicine Lake, Clear Lake Volcanic Field, and Lassen Volcanic Center in northern California; and Long Valley Caldera, Mammoth Mountain, and Mono-Inyo Craters in east-central California. Volcanic eruptions occur in California about as frequently as the largest San Andreas Fault Zone earthquakes-more than ten eruptions have occurred in the last 1,000 years, most recently at Lassen Peak (1666 C.E. and 1914-1917 C.E.) and Mono-Inyo Craters (c. 1700 C.E.). The Long Valley region (Long Valley caldera and Mammoth Mountain) underwent several episodes of heightened unrest over the last three decades, including intense swarms of volcano-tectonic (VT) earthquakes, rapid caldera uplift, and hazardous CO2 emissions. Both Medicine Lake and Lassen are subsiding at appreciable rates, and along with Clear Lake, Long Valley Caldera, and Mammoth Mountain, sporadically experience long period (LP) earthquakes related to migration of magmatic or hydrothermal fluids. Worldwide, the last two decades have shown the importance of tracking LP earthquakes beneath young volcanic systems, as they often provide indication of impending unrest or eruption. Herein we document the occurrence of LP earthquakes at several of California's young volcanoes, updating a previous study published in Pitt et al., 2002, SRL. All events were detected and located using data from stations within the Northern California Seismic Network (NCSN). Event detection was spatially and temporally uneven across the NCSN in the 1980s and 1990s, but additional stations, adoption of the Earthworm processing system, and heightened vigilance by seismologists have improved the catalog over the last decade. LP earthquakes are now relatively well-recorded under Lassen (~150 events since 2000), Clear Lake (~60 events), Mammoth Mountain

  16. Modified Mercalli intensities for some recent California earthquakes and historic San Francisco Bay Region earthquakes

    Science.gov (United States)

    Bakun, William H.

    1998-01-01

    Modified Mercalli Intensity (MMI) data for recent California earthquakes were used by Bakun and Wentworth (1997) to develop a strategy for bounding the location and moment magnitude M of earthquakes from MMI observations only. Bakun (Bull. Seismol. Soc. Amer., submitted) used the Bakun and Wentworth (1997) strategy to analyze 19th century and early 20th century San Francisco Bay Region earthquakes. The MMI data and site corrections used in these studies are listed in this Open-file Report. 

  17. Keeping the History in Historical Seismology: The 1872 Owens Valley, California Earthquake

    International Nuclear Information System (INIS)

    Hough, Susan E.

    2008-01-01

    The importance of historical earthquakes is being increasingly recognized. Careful investigations of key pre-instrumental earthquakes can provide critical information and insights for not only seismic hazard assessment but also for earthquake science. In recent years, with the explosive growth in computational sophistication in Earth sciences, researchers have developed increasingly sophisticated methods to analyze macroseismic data quantitatively. These methodological developments can be extremely useful to exploit fully the temporally and spatially rich information source that seismic intensities often represent. For example, the exhaustive and painstaking investigations done by Ambraseys and his colleagues of early Himalayan earthquakes provides information that can be used to map out site response in the Ganges basin. In any investigation of macroseismic data, however, one must stay mindful that intensity values are not data but rather interpretations. The results of any subsequent analysis, regardless of the degree of sophistication of the methodology, will be only as reliable as the interpretations of available accounts - and only as complete as the research done to ferret out, and in many cases translate, these accounts. When intensities are assigned without an appreciation of historical setting and context, seemingly careful subsequent analysis can yield grossly inaccurate results. As a case study, I report here on the results of a recent investigation of the 1872 Owen's Valley, California earthquake. Careful consideration of macroseismic observations reveals that this event was probably larger than the great San Francisco earthquake of 1906, and possibly the largest historical earthquake in California. The results suggest that some large earthquakes in California will generate significantly larger ground motions than San Andreas fault events of comparable magnitude

  18. FORESHOCKS AND TIME-DEPENDENT EARTHQUAKE HAZARD ASSESSMENT IN SOUTHERN CALIFORNIA.

    Science.gov (United States)

    Jones, Lucile M.

    1985-01-01

    The probability that an earthquake in southern California (M greater than equivalent to 3. 0) will be followed by an earthquake of larger magnitude within 5 days and 10 km (i. e. , will be a foreshock) is 6 plus or minus 0. 5 per cent (1 S. D. ), and is not significantly dependent on the magnitude of the possible foreshock between M equals 3 and M equals 5. The probability that an earthquake will be followed by an M greater than equivalent to 5. 0 main shock, however, increases with magnitude of the foreshock from less than 1 per cent at M greater than equivalent to 3 to 6. 5 plus or minus 2. 5 per cent (1 S. D. ) at M greater than equivalent to 5. The main shock will most likely occur in the first hour after the foreshock, and the probability that a main shock will occur in the first hour decreases with elapsed time from the occurrence of the possible foreshock by approximately the inverse of time. Thus, the occurrence of an earthquake of M greater than equivalent to 3. 0 in southern California increases the earthquake hazard within a small space-time window several orders of magnitude above the normal background level.

  19. The 2008 Wells, Nevada earthquake sequence: Source constraints using calibrated multiple event relocation and InSAR

    Science.gov (United States)

    Nealy, Jennifer; Benz, Harley M.; Hayes, Gavin; Berman, Eric; Barnhart, William

    2017-01-01

    The 2008 Wells, NV earthquake represents the largest domestic event in the conterminous U.S. outside of California since the October 1983 Borah Peak earthquake in southern Idaho. We present an improved catalog, magnitude complete to 1.6, of the foreshock-aftershock sequence, supplementing the current U.S. Geological Survey (USGS) Preliminary Determination of Epicenters (PDE) catalog with 1,928 well-located events. In order to create this catalog, both subspace and kurtosis detectors are used to obtain an initial set of earthquakes and associated locations. The latter are then calibrated through the implementation of the hypocentroidal decomposition method and relocated using the BayesLoc relocation technique. We additionally perform a finite fault slip analysis of the mainshock using InSAR observations. By combining the relocated sequence with the finite fault analysis, we show that the aftershocks occur primarily updip and along the southwestern edge of the zone of maximum slip. The aftershock locations illuminate areas of post-mainshock strain increase; aftershock depths, ranging from 5 to 16 km, are consistent with InSAR imaging, which shows that the Wells earthquake was a buried source with no observable near-surface offset.

  20. Stress triggering and the Canterbury earthquake sequence

    Science.gov (United States)

    Steacy, Sandy; Jiménez, Abigail; Holden, Caroline

    2014-01-01

    The Canterbury earthquake sequence, which includes the devastating Christchurch event of 2011 February, has to date led to losses of around 40 billion NZ dollars. The location and severity of the earthquakes was a surprise to most inhabitants as the seismic hazard model was dominated by an expected Mw > 8 earthquake on the Alpine fault and an Mw 7.5 earthquake on the Porters Pass fault, 150 and 80 km to the west of Christchurch. The sequence to date has included an Mw = 7.1 earthquake and 3 Mw ≥ 5.9 events which migrated from west to east. Here we investigate whether the later events are consistent with stress triggering and whether a simple stress map produced shortly after the first earthquake would have accurately indicated the regions where the subsequent activity occurred. We find that 100 per cent of M > 5.5 earthquakes occurred in positive stress areas computed using a slip model for the first event that was available within 10 d of its occurrence. We further find that the stress changes at the starting points of major slip patches of post-Darfield main events are consistent with triggering although this is not always true at the hypocentral locations. Our results suggest that Coulomb stress changes contributed to the evolution of the Canterbury sequence and we note additional areas of increased stress in the Christchurch region and on the Porters Pass fault.

  1. Deterministic Earthquake Hazard Assessment by Public Agencies in California

    Science.gov (United States)

    Mualchin, L.

    2005-12-01

    Even in its short recorded history, California has experienced a number of damaging earthquakes that have resulted in new codes and other legislation for public safety. In particular, the 1971 San Fernando earthquake produced some of the most lasting results such as the Hospital Safety Act, the Strong Motion Instrumentation Program, the Alquist-Priolo Special Studies Zone Act, and the California Department of Transportation (Caltrans') fault-based deterministic seismic hazard (DSH) map. The latter product provides values for earthquake ground motions based on Maximum Credible Earthquakes (MCEs), defined as the largest earthquakes that can reasonably be expected on faults in the current tectonic regime. For surface fault rupture displacement hazards, detailed study of the same faults apply. Originally, hospital, dam, and other critical facilities used seismic design criteria based on deterministic seismic hazard analyses (DSHA). However, probabilistic methods grew and took hold by introducing earthquake design criteria based on time factors and quantifying "uncertainties", by procedures such as logic trees. These probabilistic seismic hazard analyses (PSHA) ignored the DSH approach. Some agencies were influenced to adopt only the PSHA method. However, deficiencies in the PSHA method are becoming recognized, and the use of the method is now becoming a focus of strong debate. Caltrans is in the process of producing the fourth edition of its DSH map. The reason for preferring the DSH method is that Caltrans believes it is more realistic than the probabilistic method for assessing earthquake hazards that may affect critical facilities, and is the best available method for insuring public safety. Its time-invariant values help to produce robust design criteria that are soundly based on physical evidence. And it is the method for which there is the least opportunity for unwelcome surprises.

  2. Clustered and transient earthquake sequences in mid-continents

    Science.gov (United States)

    Liu, M.; Stein, S. A.; Wang, H.; Luo, G.

    2012-12-01

    Earthquakes result from sudden release of strain energy on faults. On plate boundary faults, strain energy is constantly accumulating from steady and relatively rapid relative plate motion, so large earthquakes continue to occur so long as motion continues on the boundary. In contrast, such steady accumulation of stain energy does not occur on faults in mid-continents, because the far-field tectonic loading is not steadily distributed between faults, and because stress perturbations from complex fault interactions and other stress triggers can be significant relative to the slow tectonic stressing. Consequently, mid-continental earthquakes are often temporally clustered and transient, and spatially migrating. This behavior is well illustrated by large earthquakes in North China in the past two millennia, during which no single large earthquakes repeated on the same fault segments, but moment release between large fault systems was complementary. Slow tectonic loading in mid-continents also causes long aftershock sequences. We show that the recent small earthquakes in the Tangshan region of North China are aftershocks of the 1976 Tangshan earthquake (M 7.5), rather than indicators of a new phase of seismic activity in North China, as many fear. Understanding the transient behavior of mid-continental earthquakes has important implications for assessing earthquake hazards. The sequence of large earthquakes in the New Madrid Seismic Zone (NMSZ) in central US, which includes a cluster of M~7 events in 1811-1812 and perhaps a few similar ones in the past millennium, is likely a transient process, releasing previously accumulated elastic strain on recently activated faults. If so, this earthquake sequence will eventually end. Using simple analysis and numerical modeling, we show that the large NMSZ earthquakes may be ending now or in the near future.

  3. Post-Earthquake Traffic Capacity of Modern Bridges in California

    Science.gov (United States)

    2010-03-01

    Evaluation of the capacity of a bridge to carry self-weight and traffic loads after an earthquake is essential for a : safe and timely re-opening of the bridge. In California, modern highway bridges designed using the Caltrans : Seismic Design Criter...

  4. Preparing a population for an earthquake like Chi-Chi: The Great Southern California ShakeOut

    Science.gov (United States)

    Jones, Lucile M.; ,

    2009-01-01

    The Great Southern California ShakeOut was a week of special events featuring the largest earthquake drill in United States history. On November 13, 2008, over 5 million southern Californians pretended that a magnitude-7.8 earthquake had occurred and practiced actions that could reduce its impact on their lives. The primary message of the ShakeOut is that what we do now, before a big earthquake, will determine what our lives will be like after. The drill was based on a scenario of the impacts and consequences of such an earthquake on the Southern San Andreas Fault, developed by over 300 experts led by the U.S. Geological Survey in partnership with the California Geological Survey, the Southern California Earthquake Center, Earthquake Engineering Research Institute, lifeline operators, emergency services and many other organizations. The ShakeOut campaign was designed and implemented by earthquake scientists, emergency managers, sociologists, art designers and community participants. The means of communication were developed using results from sociological research on what encouraged people to take action. This was structured around four objectives: 1) consistent messages – people are more inclined to believe something when they hear the same thing from multiple sources; 2) visual reinforcement – people are more inclined to do something they see other people doing; 3) encourage “milling” or discussing contemplated action – people need to discuss an action with others they care about before committing to undertaking it; and 4) focus on concrete actions – people are more likely to prepare for a set of concrete consequences of a particular hazard than for an abstract concept of risk. The goals of the ShakeOut were established in Spring 2008 and were: 1) to register 5 million people to participate in the drill; 2) to change the culture of earthquake preparedness in southern California; and 3) to reduce earthquake losses in southern California. All of these

  5. Do earthquakes exhibit self-organized criticality?

    International Nuclear Information System (INIS)

    Yang Xiaosong; Ma Jin; Du Shuming

    2004-01-01

    If earthquakes are phenomena of self-organized criticality (SOC), statistical characteristics of the earthquake time series should be invariant after the sequence of events in an earthquake catalog are randomly rearranged. In this Letter we argue that earthquakes are unlikely phenomena of SOC because our analysis of the Southern California Earthquake Catalog shows that the first-return-time probability P M (T) is apparently changed after the time series is rearranged. This suggests that the SOC theory should not be used to oppose the efforts of earthquake prediction

  6. Products and Services Available from the Southern California Earthquake Data Center (SCEDC) and the Southern California Seismic Network (SCSN)

    Science.gov (United States)

    Yu, E.; Bhaskaran, A.; Chen, S.; Chowdhury, F. R.; Meisenhelter, S.; Hutton, K.; Given, D.; Hauksson, E.; Clayton, R. W.

    2010-12-01

    Currently the SCEDC archives continuous and triggered data from nearly 5000 data channels from 425 SCSN recorded stations, processing and archiving an average of 12,000 earthquakes each year. The SCEDC provides public access to these earthquake parametric and waveform data through its website www.data.scec.org and through client applications such as STP and DHI. This poster will describe the most significant developments at the SCEDC in the past year. Updated hardware: ● The SCEDC has more than doubled its waveform file storage capacity by migrating to 2 TB disks. New data holdings: ● Waveform data: Beginning Jan 1, 2010 the SCEDC began continuously archiving all high-sample-rate strong-motion channels. All seismic channels recorded by SCSN are now continuously archived and available at SCEDC. ● Portable data from El Mayor Cucapah 7.2 sequence: Seismic waveforms from portable stations installed by researchers (contributed by Elizabeth Cochran, Jamie Steidl, and Octavio Lazaro-Mancilla) have been added to the archive and are accessible through STP either as continuous data or associated with events in the SCEDC earthquake catalog. This additional data will help SCSN analysts and researchers improve event locations from the sequence. ● Real time GPS solutions from El Mayor Cucapah 7.2 event: Three component 1Hz seismograms of California Real Time Network (CRTN) GPS stations, from the April 4, 2010, magnitude 7.2 El Mayor-Cucapah earthquake are available in SAC format at the SCEDC. These time series were created by Brendan Crowell, Yehuda Bock, the project PI, and Mindy Squibb at SOPAC using data from the CRTN. The El Mayor-Cucapah earthquake demonstrated definitively the power of real-time high-rate GPS data: they measure dynamic displacements directly, they do not clip and they are also able to detect the permanent (coseismic) surface deformation. ● Triggered data from the Quake Catcher Network (QCN) and Community Seismic Network (CSN): The SCEDC in

  7. Fixed recurrence and slip models better predict earthquake behavior than the time- and slip-predictable models 1: repeating earthquakes

    Science.gov (United States)

    Rubinstein, Justin L.; Ellsworth, William L.; Chen, Kate Huihsuan; Uchida, Naoki

    2012-01-01

    The behavior of individual events in repeating earthquake sequences in California, Taiwan and Japan is better predicted by a model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. Given that repeating earthquakes are highly regular in both inter-event time and seismic moment, the time- and slip-predictable models seem ideally suited to explain their behavior. Taken together with evidence from the companion manuscript that shows similar results for laboratory experiments we conclude that the short-term predictions of the time- and slip-predictable models should be rejected in favor of earthquake models that assume either fixed slip or fixed recurrence interval. This implies that the elastic rebound model underlying the time- and slip-predictable models offers no additional value in describing earthquake behavior in an event-to-event sense, but its value in a long-term sense cannot be determined. These models likely fail because they rely on assumptions that oversimplify the earthquake cycle. We note that the time and slip of these events is predicted quite well by fixed slip and fixed recurrence models, so in some sense they are time- and slip-predictable. While fixed recurrence and slip models better predict repeating earthquake behavior than the time- and slip-predictable models, we observe a correlation between slip and the preceding recurrence time for many repeating earthquake sequences in Parkfield, California. This correlation is not found in other regions, and the sequences with the correlative slip-predictable behavior are not distinguishable from nearby earthquake sequences that do not exhibit this behavior.

  8. Comprehensive analysis of earthquake source spectra in southern California

    OpenAIRE

    Shearer, Peter M.; Prieto, Germán A.; Hauksson, Egill

    2006-01-01

    We compute and analyze P wave spectra from earthquakes in southern California between 1989 and 2001 using a method that isolates source-, receiver-, and path-dependent terms. We correct observed source spectra for attenuation using both fixed and spatially varying empirical Green's function methods. Estimated Brune-type stress drops for over 60,000 M_L = 1.5 to 3.1 earthquakes range from 0.2 to 20 MPa with no dependence on moment or local b value. Median computed stress drop increases with de...

  9. Characterizing potentially induced earthquake rate changes in the Brawley Seismic Zone, southern California

    Science.gov (United States)

    Llenos, Andrea L.; Michael, Andrew J.

    2016-01-01

    The Brawley seismic zone (BSZ), in the Salton trough of southern California, has a history of earthquake swarms and geothermal energy exploitation. Some earthquake rate changes may have been induced by fluid extraction and injection activity at local geothermal fields, particularly at the North Brawley Geothermal Field (NBGF) and at the Salton Sea Geothermal Field (SSGF). We explore this issue by examining earthquake rate changes and interevent distance distributions in these fields. In Oklahoma and Arkansas, where considerable wastewater injection occurs, increases in background seismicity rate and aftershock productivity and decreases in interevent distance were indicative of fluid‐injection‐induced seismicity. Here, we test if similar changes occur that may be associated with fluid injection and extraction in geothermal areas. We use stochastic epidemic‐type aftershock sequence models to detect changes in the underlying seismogenic processes, shown by statistically significant changes in the model parameters. The most robust model changes in the SSGF roughly occur when large changes in net fluid production occur, but a similar correlation is not seen in the NBGF. Also, although both background seismicity rate and aftershock productivity increased for fluid‐injection‐induced earthquake rate changes in Oklahoma and Arkansas, the background rate increases significantly in the BSZ only, roughly corresponding with net fluid production rate increases. Moreover, in both fields the interevent spacing does not change significantly during active energy projects. This suggests that, although geothermal field activities in a tectonically active region may not significantly change the physics of earthquake interactions, earthquake rates may still be driven by fluid injection or extraction rates, particularly in the SSGF.

  10. Fluid-faulting interactions: Fracture-mesh and fault-valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm

    Science.gov (United States)

    Shelly, David R.; Taira, Taka’aki; Prejean, Stephanie; Hill, David P.; Dreger, Douglas S.

    2015-01-01

    Faulting and fluid transport in the subsurface are highly coupled processes, which may manifest seismically as earthquake swarms. A swarm in February 2014 beneath densely monitored Mammoth Mountain, California, provides an opportunity to witness these interactions in high resolution. Toward this goal, we employ massive waveform-correlation-based event detection and relative relocation, which quadruples the swarm catalog to more than 6000 earthquakes and produces high-precision locations even for very small events. The swarm's main seismic zone forms a distributed fracture mesh, with individual faults activated in short earthquake bursts. The largest event of the sequence, M 3.1, apparently acted as a fault valve and was followed by a distinct wave of earthquakes propagating ~1 km westward from the updip edge of rupture, 1–2 h later. Late in the swarm, multiple small, shallower subsidiary faults activated with pronounced hypocenter migration, suggesting that a broader fluid pressure pulse propagated through the subsurface.

  11. The 2007 Nazko, British Columbia, earthquake sequence: Injection of magma deep in the crust beneath the Anahim volcanic belt

    Science.gov (United States)

    Cassidy, J.F.; Balfour, N.; Hickson, C.; Kao, H.; White, Rickie; Caplan-Auerbach, J.; Mazzotti, S.; Rogers, Gary C.; Al-Khoubbi, I.; Bird, A.L.; Esteban, L.; Kelman, M.; Hutchinson, J.; McCormack, D.

    2011-01-01

    On 9 October 2007, an unusual sequence of earthquakes began in central British Columbia about 20 km west of the Nazko cone, the most recent (circa 7200 yr) volcanic center in the Anahim volcanic belt. Within 25 hr, eight earthquakes of magnitude 2.3-2.9 occurred in a region where no earthquakes had previously been recorded. During the next three weeks, more than 800 microearthquakes were located (and many more detected), most at a depth of 25-31 km and within a radius of about 5 km. After about two months, almost all activity ceased. The clear P- and S-wave arrivals indicated that these were high-frequency (volcanic-tectonic) earthquakes and the b value of 1.9 that we calculated is anomalous for crustal earthquakes but consistent with volcanic-related events. Analysis of receiver functions at a station immediately above the seismicity indicated a Moho near 30 km depth. Precise relocation of the seismicity using a double-difference method suggested a horizontal migration at the rate of about 0:5 km=d, with almost all events within the lowermost crust. Neither harmonic tremor nor long-period events were observed; however, some spasmodic bursts were recorded and determined to be colocated with the earthquake hypocenters. These observations are all very similar to a deep earthquake sequence recorded beneath Lake Tahoe, California, in 2003-2004. Based on these remarkable similarities, we interpret the Nazko sequence as an indication of an injection of magma into the lower crust beneath the Anahim volcanic belt. This magma injection fractures rock, producing high-frequency, volcanic-tectonic earthquakes and spasmodic bursts.

  12. Comparison of aftershock sequences between 1975 Haicheng earthquake and 1976 Tangshan earthquake

    Science.gov (United States)

    Liu, B.

    2017-12-01

    The 1975 ML 7.3 Haicheng earthquake and the 1976 ML 7.8 Tangshan earthquake occurred in the same tectonic unit. There are significant differences in spatial-temporal distribution, number of aftershocks and time duration for the aftershock sequence followed by these two main shocks. As we all know, aftershocks could be triggered by the regional seismicity change derived from the main shock, which was caused by the Coulomb stress perturbation. Based on the rate- and state- dependent friction law, we quantitative estimated the possible aftershock time duration with a combination of seismicity data, and compared the results from different approaches. The results indicate that, aftershock time durations from the Tangshan main shock is several times of that form the Haicheng main shock. This can be explained by the significant relationship between aftershock time duration and earthquake nucleation history, normal stressand shear stress loading rateon the fault. In fact the obvious difference of earthquake nucleation history from these two main shocks is the foreshocks. 1975 Haicheng earthquake has clear and long foreshocks, while 1976 Tangshan earthquake did not have clear foreshocks. In that case, abundant foreshocks may mean a long and active nucleation process that may have changed (weakened) the rocks in the source regions, so they should have a shorter aftershock sequences for the reason that stress in weak rocks decay faster.

  13. Self-potential variations preceding earthquakes in central california

    International Nuclear Information System (INIS)

    Corwin, R.F.; Morrison, H.G.

    1977-01-01

    Two earthquakes in central California were preceded by anomalous variations in the horizontal electric field (self-potential) of the earth. The first variation was an anomaly of 90 mV amplitude across electrode dipoles of 630 and 640 m, which began 55 days before an earthquake of M=5, located 37 km NW of the dipoles. The second variation had an amplitude of 4 mV across a 300 m dipole, and began 110 hours before an event of M=2.4 located on the San Andreas fault, 2.5 km from the dipole. Streaming potentials generated by the flow of groundwater into a dilatant zone are proposed as a possible mechanism for the observed variations

  14. A spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3‐ETAS): Toward an operational earthquake forecast

    Science.gov (United States)

    Field, Edward; Milner, Kevin R.; Hardebeck, Jeanne L.; Page, Morgan T.; van der Elst, Nicholas; Jordan, Thomas H.; Michael, Andrew J.; Shaw, Bruce E.; Werner, Maximillan J.

    2017-01-01

    We, the ongoing Working Group on California Earthquake Probabilities, present a spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3), with the goal being to represent aftershocks, induced seismicity, and otherwise triggered events as a potential basis for operational earthquake forecasting (OEF). Specifically, we add an epidemic‐type aftershock sequence (ETAS) component to the previously published time‐independent and long‐term time‐dependent forecasts. This combined model, referred to as UCERF3‐ETAS, collectively represents a relaxation of segmentation assumptions, the inclusion of multifault ruptures, an elastic‐rebound model for fault‐based ruptures, and a state‐of‐the‐art spatiotemporal clustering component. It also represents an attempt to merge fault‐based forecasts with statistical seismology models, such that information on fault proximity, activity rate, and time since last event are considered in OEF. We describe several unanticipated challenges that were encountered, including a need for elastic rebound and characteristic magnitude–frequency distributions (MFDs) on faults, both of which are required to get realistic triggering behavior. UCERF3‐ETAS produces synthetic catalogs of M≥2.5 events, conditioned on any prior M≥2.5 events that are input to the model. We evaluate results with respect to both long‐term (1000 year) simulations as well as for 10‐year time periods following a variety of hypothetical scenario mainshocks. Although the results are very plausible, they are not always consistent with the simple notion that triggering probabilities should be greater if a mainshock is located near a fault. Important factors include whether the MFD near faults includes a significant characteristic earthquake component, as well as whether large triggered events can nucleate from within the rupture zone of the mainshock. Because UCERF3‐ETAS has many sources of uncertainty, as

  15. EFFECTS OF THE 1983 COALINGA, CALIFORNIA, EARTHQUAKE ONCREEP ALONG THE SAN ADREAS FAULT.

    Science.gov (United States)

    Mavko, Gerald M.; Schulz, Sandra; Brown, Beth D.

    1985-01-01

    The M//L approximately equals 6. 5 earthquake that occurred near Coalinga, California, on May 2, 1983 induced changes in near-surface fault slip along the San Andreas fault. Coseismic steps were observed by creepmeters along a 200-km section of the San Andreas. some of the larger aftershocks induced additional steps, both right-lateral and left-lateral, and in general the sequence disrupted observed creep at several sites from preseismic long-term patterns. Static dislocation models can approximately explain the magnitudes and distribution of the larger coseismic steps on May 2. The smaller, more distant steps appear to be the abrupt release of accumulated slip, triggered by the coseismic strain changes, but independent of the strain change amplitudes.

  16. History of Modern Earthquake Hazard Mapping and Assessment in California Using a Deterministic or Scenario Approach

    Science.gov (United States)

    Mualchin, Lalliana

    2011-03-01

    Modern earthquake ground motion hazard mapping in California began following the 1971 San Fernando earthquake in the Los Angeles metropolitan area of southern California. Earthquake hazard assessment followed a traditional approach, later called Deterministic Seismic Hazard Analysis (DSHA) in order to distinguish it from the newer Probabilistic Seismic Hazard Analysis (PSHA). In DSHA, seismic hazard in the event of the Maximum Credible Earthquake (MCE) magnitude from each of the known seismogenic faults within and near the state are assessed. The likely occurrence of the MCE has been assumed qualitatively by using late Quaternary and younger faults that are presumed to be seismogenic, but not when or within what time intervals MCE may occur. MCE is the largest or upper-bound potential earthquake in moment magnitude, and it supersedes and automatically considers all other possible earthquakes on that fault. That moment magnitude is used for estimating ground motions by applying it to empirical attenuation relationships, and for calculating ground motions as in neo-DSHA (Z uccolo et al., 2008). The first deterministic California earthquake hazard map was published in 1974 by the California Division of Mines and Geology (CDMG) which has been called the California Geological Survey (CGS) since 2002, using the best available fault information and ground motion attenuation relationships at that time. The California Department of Transportation (Caltrans) later assumed responsibility for printing the refined and updated peak acceleration contour maps which were heavily utilized by geologists, seismologists, and engineers for many years. Some engineers involved in the siting process of large important projects, for example, dams and nuclear power plants, continued to challenge the map(s). The second edition map was completed in 1985 incorporating more faults, improving MCE's estimation method, and using new ground motion attenuation relationships from the latest published

  17. [Engineering aspects of seismic behavior of health-care facilities: lessons from California earthquakes].

    Science.gov (United States)

    Rutenberg, A

    1995-03-15

    The construction of health-care facilities is similar to that of other buildings. Yet the need to function immediately after an earthquake, the helplessness of the many patients and the high and continuous occupancy of these buildings, require that special attention be paid to their seismic performance. Here the lessons from the California experience are invaluable. In this paper the behavior of California hospitals during destructive earthquakes is briefly described. Adequate structural design and execution, and securing of nonstructural elements are required to ensure both safety of occupants, and practically uninterrupted functioning of equipment, mechanical and electrical services and other vital systems. Criteria for post-earthquake functioning are listed. In view of the hazards to Israeli hospitals, in particular those located along the Jordan Valley and the Arava, a program for the seismic evaluation of medical facilities should be initiated. This evaluation should consider the hazards from nonstructural elements, the safety of equipment and systems, and their ability to function after a severe earthquake. It should not merely concentrate on safety-related structural behavior.

  18. Uncertainties in Earthquake Loss Analysis: A Case Study From Southern California

    Science.gov (United States)

    Mahdyiar, M.; Guin, J.

    2005-12-01

    Probabilistic earthquake hazard and loss analyses play important roles in many areas of risk management, including earthquake related public policy and insurance ratemaking. Rigorous loss estimation for portfolios of properties is difficult since there are various types of uncertainties in all aspects of modeling and analysis. It is the objective of this study to investigate the sensitivity of earthquake loss estimation to uncertainties in regional seismicity, earthquake source parameters, ground motions, and sites' spatial correlation on typical property portfolios in Southern California. Southern California is an attractive region for such a study because it has a large population concentration exposed to significant levels of seismic hazard. During the last decade, there have been several comprehensive studies of most regional faults and seismogenic sources. There have also been detailed studies on regional ground motion attenuations and regional and local site responses to ground motions. This information has been used by engineering seismologists to conduct regional seismic hazard and risk analysis on a routine basis. However, one of the more difficult tasks in such studies is the proper incorporation of uncertainties in the analysis. From the hazard side, there are uncertainties in the magnitudes, rates and mechanisms of the seismic sources and local site conditions and ground motion site amplifications. From the vulnerability side, there are considerable uncertainties in estimating the state of damage of buildings under different earthquake ground motions. From an analytical side, there are challenges in capturing the spatial correlation of ground motions and building damage, and integrating thousands of loss distribution curves with different degrees of correlation. In this paper we propose to address some of these issues by conducting loss analyses of a typical small portfolio in southern California, taking into consideration various source and ground

  19. Earthquake potential in California-Nevada implied by correlation of strain rate and seismicity

    Science.gov (United States)

    Zeng, Yuehua; Petersen, Mark D.; Shen, Zheng-Kang

    2018-01-01

    Rock mechanics studies and dynamic earthquake simulations show that patterns of seismicity evolve with time through (1) accumulation phase, (2) localization phase, and (3) rupture phase. We observe a similar pattern of changes in seismicity during the past century across California and Nevada. To quantify these changes, we correlate GPS strain rates with seismicity. Earthquakes of M > 6.5 are collocated with regions of highest strain rates. By contrast, smaller magnitude earthquakes of M ≥ 4 show clear spatiotemporal changes. From 1933 to the late 1980s, earthquakes of M ≥ 4 were more diffused and broadly distributed in both high and low strain rate regions (accumulation phase). From the late 1980s to 2016, earthquakes were more concentrated within the high strain rate areas focused on the major fault strands (localization phase). In the same time period, the rate of M > 6.5 events also increased significantly in the high strain rate areas. The strong correlation between current strain rate and the later period of seismicity indicates that seismicity is closely related to the strain rate. The spatial patterns suggest that before the late 1980s, the strain rate field was also broadly distributed because of the stress shadows from previous large earthquakes. As the deformation field evolved out of the shadow in the late 1980s, strain has refocused on the major fault systems and we are entering a period of increased risk for large earthquakes in California.

  20. Hydrothermal response to a volcano-tectonic earthquake swarm, Lassen, California

    Science.gov (United States)

    Ingebritsen, Steven E.; Shelly, David R.; Hsieh, Paul A.; Clor, Laura; P.H. Seward,; Evans, William C.

    2015-01-01

    The increasing capability of seismic, geodetic, and hydrothermal observation networks allows recognition of volcanic unrest that could previously have gone undetected, creating an imperative to diagnose and interpret unrest episodes. A November 2014 earthquake swarm near Lassen Volcanic National Park, California, which included the largest earthquake in the area in more than 60 years, was accompanied by a rarely observed outburst of hydrothermal fluids. Although the earthquake swarm likely reflects upward migration of endogenous H2O-CO2 fluids in the source region, there is no evidence that such fluids emerged at the surface. Instead, shaking from the modest sized (moment magnitude 3.85) but proximal earthquake caused near-vent permeability increases that triggered increased outflow of hydrothermal fluids already present and equilibrated in a local hydrothermal aquifer. Long-term, multiparametric monitoring at Lassen and other well-instrumented volcanoes enhances interpretation of unrest and can provide a basis for detailed physical modeling.

  1. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    Science.gov (United States)

    McNamara, D. E.; Yeck, W. L.; Barnhart, W. D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, A.; Hough, S. E.; Benz, H. M.; Earle, P. S.

    2017-09-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard. Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10-15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  2. Injuries and Traumatic Psychological Exposures Associated with the South Napa Earthquake - California, 2014.

    Science.gov (United States)

    Attfield, Kathleen R; Dobson, Christine B; Henn, Jennifer B; Acosta, Meileen; Smorodinsky, Svetlana; Wilken, Jason A; Barreau, Tracy; Schreiber, Merritt; Windham, Gayle C; Materna, Barbara L; Roisman, Rachel

    2015-09-11

    On August 24, 2014, at 3:20 a.m., a magnitude 6.0 earthquake struck California, with its epicenter in Napa County (1). The earthquake was the largest to affect the San Francisco Bay area in 25 years and caused significant damage in Napa and Solano counties, including widespread power outages, five residential fires, and damage to roadways, waterlines, and 1,600 buildings (2). Two deaths resulted (2). On August 25, Napa County Public Health asked the California Department of Public Health (CDPH) for assistance in assessing postdisaster health effects, including earthquake-related injuries and effects on mental health. On September 23, Solano County Public Health requested similar assistance. A household-level Community Assessment for Public Health Emergency Response (CASPER) was conducted for these counties in two cities (Napa, 3 weeks after the earthquake, and Vallejo, 6 weeks after the earthquake). Among households reporting injuries, a substantial proportion (48% in Napa and 37% in western Vallejo) reported that the injuries occurred during the cleanup period, suggesting that increased messaging on safety precautions after a disaster might be needed. One fifth of respondents overall (27% in Napa and 9% in western Vallejo) reported one or more traumatic psychological exposures in their households. These findings were used by Napa County Mental Health to guide immediate-term mental health resource allocations and to conduct public training sessions and education campaigns to support persons with mental health risks following the earthquake. In addition, to promote community resilience and future earthquake preparedness, Napa County Public Health subsequently conducted community events on the earthquake anniversary and provided outreach workers with psychological first aid training.

  3. On the reported ionospheric precursor of the 1999 Hector Mine, California earthquake

    Science.gov (United States)

    Thomas, Jeremy N.; Love, Jeffrey J.; Komjathy, Attila; Verkhoglyadova, Olga P.; Butala, Mark; Rivera, Nicholas

    2012-01-01

    Using Global Positioning System (GPS) data from sites near the 16 Oct. 1999 Hector Mine, California earthquake, Pulinets et al. (2007) identified anomalous changes in the ionospheric total electron content (TEC) starting one week prior to the earthquake. Pulinets (2007) suggested that precursory phenomena of this type could be useful for predicting earthquakes. On the other hand, and in a separate analysis, Afraimovich et al. (2004) concluded that TEC variations near the epicenter were controlled by solar and geomagnetic activity that were unrelated to the earthquake. In an investigation of these very different results, we examine TEC time series of long duration from GPS stations near and far from the epicenter of the Hector Mine earthquake, and long before and long after the earthquake. While we can reproduce the essential time series results of Pulinets et al., we find that the signal they identify as anomalous is not actually anomalous. Instead, it is just part of normal global-scale TEC variation. We conclude that the TEC anomaly reported by Pulinets et al. is unrelated to the Hector Mine earthquake.

  4. Long Aftershock Sequences within Continents and Implications for Earthquake Hazard Assessment

    Science.gov (United States)

    Stein, S. A.; Liu, M.

    2014-12-01

    Recent seismicity in the Tangshan region in North China has prompted concern about a repetition of the 1976 M7.8 earthquake that destroyed the city, killing more than 242,000 people. However, the decay of seismicity there implies that the recent earthquakes are probably aftershocks of the 1976 event. This 37-year sequence is an example of the phenomenon that aftershock sequences within continents are often significantly longer than the typical 10 years at plate boundaries. The long sequence of aftershocks in continents is consistent with a simple friction-based model predicting that the length of aftershock sequences varies inversely with the rate at which faults are loaded. Hence the slowly-deforming continents tend to have aftershock sequences significantly longer than at rapidly-loaded plate boundaries. This effect has two consequences for hazard assessment. First, within the heavily populated continents that are typically within plate interiors, assessments of earthquake hazards rely significantly on the assumption that the locations of small earthquakes shown by the short historical record reflect continuing deformation that will cause future large earthquakes. This assumption would lead to overestimation of the hazard in presently active areas and underestimation elsewhere, if some of these small events are aftershocks. Second, successful attempts to remove aftershocks from catalogs used for hazard assessment would underestimate the hazard, because much of the hazard is due to the aftershocks, and the declustering algorithms implicitly assume short aftershock sequences and thus do not remove long-duration ones.

  5. Liquefaction-induced lateral spreading in Oceano, California, during the 2003 San Simeon Earthquake

    Science.gov (United States)

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.; Di Alessandro, Carola; Boatwright, John; Tinsley, John C.; Sell, Russell W.; Rosenberg, Lewis I.

    2004-01-01

    The December 22, 2003, San Simeon, California, (M6.5) earthquake caused damage to houses, road surfaces, and underground utilities in Oceano, California. The community of Oceano is approximately 50 miles (80 km) from the earthquake epicenter. Damage at this distance from a M6.5 earthquake is unusual. To understand the causes of this damage, the U.S. Geological Survey conducted extensive subsurface exploration and monitoring of aftershocks in the months after the earthquake. The investigation included 37 seismic cone penetration tests, 5 soil borings, and aftershock monitoring from January 28 to March 7, 2004. The USGS investigation identified two earthquake hazards in Oceano that explain the San Simeon earthquake damage?site amplification and liquefaction. Site amplification is a phenomenon observed in many earthquakes where the strength of the shaking increases abnormally in areas where the seismic-wave velocity of shallow geologic layers is low. As a result, earthquake shaking is felt more strongly than in surrounding areas without similar geologic conditions. Site amplification in Oceano is indicated by the physical properties of the geologic layers beneath Oceano and was confirmed by monitoring aftershocks. Liquefaction, which is also commonly observed during earthquakes, is a phenomenon where saturated sands lose their strength during an earthquake and become fluid-like and mobile. As a result, the ground may undergo large permanent displacements that can damage underground utilities and well-built surface structures. The type of displacement of major concern associated with liquefaction is lateral spreading because it involves displacement of large blocks of ground down gentle slopes or towards stream channels. The USGS investigation indicates that the shallow geologic units beneath Oceano are very susceptible to liquefaction. They include young sand dunes and clean sandy artificial fill that was used to bury and convert marshes into developable lots. Most of

  6. Relocation and Seismogenic Structure of the 1998 Zhangbei-Shangyi Earthquake Sequence

    Science.gov (United States)

    Yang, Z.

    2002-05-01

    An earthquake of magnitude 6.2 occurred in the Zhangbei-Shangyi region in the northern China on January 10, 1998. The earthquake was about 180km to the northwest of the Beijing City and was felt at Beijing. This earthquake is the largest event since the 1976 great Tangshan earthquake of magnitude 7.8 in the northern China. Historically seismicity in the Zhangbei-Shangyi region was very low. In the epicentral area no active fault constituting the seismogenic geological features capable of generating moderate earthquakes like this earthquake has been found before the earthquake. Nor surface faulting has been observed after the earthquake. Field geological investigation after the earthquake found two conjugate surface features trending NNE-NE and NNW-WNW. Because of the geometry of the seismic network the hypocentral distribution of the Zhangbei-Shangyi earthquake sequence given by routine location exhibited no any preferable orientation feature. In this study the Zhangbei-Shangyi earthquake and its aftershocks with magnitude equal or lager than 3.0 were relocated using both the master event relative relocation algorithm and the double-difference earthquake relocation algorithm (Waldhauser, 2000). Both algorithms gave consistent results within accuracy limits. The epicenter of the main shock was 41.15­aN and 114.46­aE, which was located 4km apart from the macro-epicenter of this event. The focal depth of the main shock was 15 km. The epicenters of aftershocks of this earthquake sequence distribute in a nearly vertical plane and its vicinity with orientation N20­aE. The results of relocation for the Zhangbei-Shangyi earthquake sequence clearly indicate that the seismogenic structure of this event is a N20­aE striking fault with right-lateral reverse slip, and that the occurrence of the Zhangbei-Shangyi earthquake is tectonically driven by the horizontal and oriented ENE compression stress, same as that of the stress field in northern China.

  7. 2017 Valparaíso earthquake sequence and the megathrust patchwork of central Chile

    NARCIS (Netherlands)

    Nealy, Jennifer L.; Herman, Matthew W.; Moore, Ginevra L.; Hayes, Gavin P.; Benz, Harley M.; Bergman, Eric A.; Barrientos, Sergio E.

    2017-01-01

    In April 2017, a sequence of earthquakes offshore Valparaíso, Chile, raised concerns of a potential megathrust earthquake in the near future. The largest event in the 2017 sequence was a M6.9 on 24 April, seemingly colocated with the last great-sized earthquake in the region—a M8.0 in March 1985.

  8. Archiving and Distributing Seismic Data at the Southern California Earthquake Data Center (SCEDC)

    Science.gov (United States)

    Appel, V. L.

    2002-12-01

    The Southern California Earthquake Data Center (SCEDC) archives and provides public access to earthquake parametric and waveform data gathered by the Southern California Seismic Network and since January 1, 2001, the TriNet seismic network, southern California's earthquake monitoring network. The parametric data in the archive includes earthquake locations, magnitudes, moment-tensor solutions and phase picks. The SCEDC waveform archive prior to TriNet consists primarily of short-period, 100-samples-per-second waveforms from the SCSN. The addition of the TriNet array added continuous recordings of 155 broadband stations (20 samples per second or less), and triggered seismograms from 200 accelerometers and 200 short-period instruments. Since the Data Center and TriNet use the same Oracle database system, new earthquake data are available to the seismological community in near real-time. Primary access to the database and waveforms is through the Seismogram Transfer Program (STP) interface. The interface enables users to search the database for earthquake information, phase picks, and continuous and triggered waveform data. Output is available in SAC, miniSEED, and other formats. Both the raw counts format (V0) and the gain-corrected format (V1) of COSMOS (Consortium of Organizations for Strong-Motion Observation Systems) are now supported by STP. EQQuest is an interface to prepackaged waveform data sets for select earthquakes in Southern California stored at the SCEDC. Waveform data for large-magnitude events have been prepared and new data sets will be available for download in near real-time following major events. The parametric data from 1981 to present has been loaded into the Oracle 9.2.0.1 database system and the waveforms for that time period have been converted to mSEED format and are accessible through the STP interface. The DISC optical-disk system (the "jukebox") that currently serves as the mass-storage for the SCEDC is in the process of being replaced

  9. Impact of a Large San Andreas Fault Earthquake on Tall Buildings in Southern California

    Science.gov (United States)

    Krishnan, S.; Ji, C.; Komatitsch, D.; Tromp, J.

    2004-12-01

    In 1857, an earthquake of magnitude 7.9 occurred on the San Andreas fault, starting at Parkfield and rupturing in a southeasterly direction for more than 300~km. Such a unilateral rupture produces significant directivity toward the San Fernando and Los Angeles basins. The strong shaking in the basins due to this earthquake would have had a significant long-period content (2--8~s). If such motions were to happen today, they could have a serious impact on tall buildings in Southern California. In order to study the effects of large San Andreas fault earthquakes on tall buildings in Southern California, we use the finite source of the magnitude 7.9 2001 Denali fault earthquake in Alaska and map it onto the San Andreas fault with the rupture originating at Parkfield and proceeding southward over a distance of 290~km. Using the SPECFEM3D spectral element seismic wave propagation code, we simulate a Denali-like earthquake on the San Andreas fault and compute ground motions at sites located on a grid with a 2.5--5.0~km spacing in the greater Southern California region. We subsequently analyze 3D structural models of an existing tall steel building designed in 1984 as well as one designed according to the current building code (Uniform Building Code, 1997) subjected to the computed ground motion. We use a sophisticated nonlinear building analysis program, FRAME3D, that has the ability to simulate damage in buildings due to three-component ground motion. We summarize the performance of these structural models on contour maps of carefully selected structural performance indices. This study could benefit the city in laying out emergency response strategies in the event of an earthquake on the San Andreas fault, in undertaking appropriate retrofit measures for tall buildings, and in formulating zoning regulations for new construction. In addition, the study would provide risk data associated with existing and new construction to insurance companies, real estate developers, and

  10. Triggered surface slips in southern California associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, earthquake

    Science.gov (United States)

    Rymer, Michael J.; Treiman, Jerome A.; Kendrick, Katherine J.; Lienkaemper, James J.; Weldon, Ray J.; Bilham, Roger; Wei, Meng; Fielding, Eric J.; Hernandez, Janis L.; Olson, Brian P.E.; Irvine, Pamela J.; Knepprath, Nichole; Sickler, Robert R.; Tong, Xiaopeng; Siem, Martin E.

    2011-01-01

    The April 4, 2010 (Mw7.2), El Mayor-Cucapah, Baja California, Mexico, earthquake is the strongest earthquake to shake the Salton Trough area since the 1992 (Mw7.3) Landers earthquake. Similar to the Landers event, ground-surface fracturing occurred on multiple faults in the trough. However, the 2010 event triggered surface slip on more faults in the central Salton Trough than previous earthquakes, including multiple faults in the Yuha Desert area, the southwestern section of the Salton Trough. In the central Salton Trough, surface fracturing occurred along the southern San Andreas, Coyote Creek, Superstition Hills, Wienert, Kalin, and Imperial Faults and along the Brawley Fault Zone, all of which are known to have slipped in historical time, either in primary (tectonic) slip and/or in triggered slip. Surface slip in association with the El Mayor-Cucapah earthquake is at least the eighth time in the past 42 years that a local or regional earthquake has triggered slip along faults in the central Salton Trough. In the southwestern part of the Salton Trough, surface fractures (triggered slip) occurred in a broad area of the Yuha Desert. This is the first time that triggered slip has been observed in the southwestern Salton Trough.

  11. An ongoing earthquake sequence near Dhaka, Bangladesh, from regional recordings

    Science.gov (United States)

    Howe, M.; Mondal, D. R.; Akhter, S. H.; Kim, W.; Seeber, L.; Steckler, M. S.

    2013-12-01

    Earthquakes in and around the syntaxial region between the continent-continent collision of the Himalayan arc and oceanic subduction of the Sunda arc result primarily from the convergence of India and Eurasia-Sunda plates along two fronts. The northern front, the convergence of the Indian and Eurasian plates, has produced the Himalayas. The eastern front, the convergence of the Indian and Sunda plates, ranges from ocean-continent subduction at the Andaman Arc and Burma Arc, and transitions to continent-continent collision to the north at the Assam Syntaxis in northeast India. The India-Sunda convergence at the Burma Arc is extremely oblique. The boundary-normal convergence rate is ~17 mm/yr while the boundary-parallel rate is ~45 mm/yr including the well-known Sagaing strike-slip fault, which accommodates about half the shear component. This heterogeneous tectonic setting produces multiple earthquake sources that need to be considered when assessing seismic hazard and risk in this region. The largest earthquakes, just as in other subduction systems, are expected to be interplate events that occur on the low-angle megathrusts, such as the Mw 9.2 2004 Sumatra-Andaman earthquake and the 1762 earthquake along the Arakan margin. These earthquakes are known to produce large damage over vast areas, but since they account for large fault motions they are relatively rare. The majority of current seismicity in the study area is intraplate. Most of the seismicity associated with the Burma Arc subduction system is in the down-going slab, including the shallow-dipping part below the megathrust flooring the accretionary wedge. The strike of the wedge is ~N-S and Dhaka lies at its outer limit. One particular source relevant to seismic risk in Dhaka is illuminated by a multi-year sequence of earthquakes in Bangladesh less than 100 km southeast of Dhaka. The population in Dhaka (now at least 15 million) has been increasing dramatically due to rapid urbanization. The vulnerability

  12. The Bergshamra earthquake sequence of December 23, 1979

    International Nuclear Information System (INIS)

    Kulhanek, O.; John, N.; Meyer, K.; Eck, T. van; Wahlstroem, R.

    1980-08-01

    On December 23, 1979 an earthquake sequence occurred near Bergshamra-Roslagen, Sweden, about 50 km northeast of Stockholm. The main shock, which has been assigned a magnitude Msub(L)=3.2, has been followed, with a 3 minute delay, by a shock of magnitude Msub(L)=2.6 and, with additional 21-minute delay, by a third shock of magnitude Msub(L)=2.0. Whereas the main shock was recorded by almost all Finnish, Norwegian and Swedish permanent stations, the whole sequence has been observed only at UPP (Δ=68 km). A six-week field survey in the epicentral area revealed a number of small aftershocks located close to the main shock. The Bergshamra sequence took place in a zone of very low seismicity in eastern central Sweden and for Swedish earthquakes at unusual shallow depth. Since the epicentre lies less than 100 km from a nuclear power plant in Forsmark, the sequence received publicity which was not in proportion to the size of the shock. At his occasion, some rather strange explanations of the shock emerged. (Auth.)

  13. Periodic, chaotic, and doubled earthquake recurrence intervals on the deep San Andreas fault.

    Science.gov (United States)

    Shelly, David R

    2010-06-11

    Earthquake recurrence histories may provide clues to the timing of future events, but long intervals between large events obscure full recurrence variability. In contrast, small earthquakes occur frequently, and recurrence intervals are quantifiable on a much shorter time scale. In this work, I examine an 8.5-year sequence of more than 900 recurring low-frequency earthquake bursts composing tremor beneath the San Andreas fault near Parkfield, California. These events exhibit tightly clustered recurrence intervals that, at times, oscillate between approximately 3 and approximately 6 days, but the patterns sometimes change abruptly. Although the environments of large and low-frequency earthquakes are different, these observations suggest that similar complexity might underlie sequences of large earthquakes.

  14. Periodic, chaotic, and doubled earthquake recurrence intervals on the deep San Andreas Fault

    Science.gov (United States)

    Shelly, David R.

    2010-01-01

    Earthquake recurrence histories may provide clues to the timing of future events, but long intervals between large events obscure full recurrence variability. In contrast, small earthquakes occur frequently, and recurrence intervals are quantifiable on a much shorter time scale. In this work, I examine an 8.5-year sequence of more than 900 recurring low-frequency earthquake bursts composing tremor beneath the San Andreas fault near Parkfield, California. These events exhibit tightly clustered recurrence intervals that, at times, oscillate between ~3 and ~6 days, but the patterns sometimes change abruptly. Although the environments of large and low-frequency earthquakes are different, these observations suggest that similar complexity might underlie sequences of large earthquakes.

  15. Numerical Simulation of Stress evolution and earthquake sequence of the Tibetan Plateau

    Science.gov (United States)

    Dong, Peiyu; Hu, Caibo; Shi, Yaolin

    2015-04-01

    The India-Eurasia's collision produces N-S compression and results in large thrust fault in the southern edge of the Tibetan Plateau. Differential eastern flow of the lower crust of the plateau leads to large strike-slip faults and normal faults within the plateau. From 1904 to 2014, more than 30 earthquakes of Mw > 6.5 occurred sequentially in this distinctive tectonic environment. How did the stresses evolve during the last 110 years, how did the earthquakes interact with each other? Can this knowledge help us to forecast the future seismic hazards? In this essay, we tried to simulate the evolution of the stress field and the earthquake sequence in the Tibetan plateau within the last 110 years with a 2-D finite element model. Given an initial state of stress, the boundary condition was constrained by the present-day GPS observation, which was assumed as a constant rate during the 110 years. We calculated stress evolution year by year, and earthquake would occur if stress exceed the crustal strength. Stress changes due to each large earthquake in the sequence was calculated and contributed to the stress evolution. A key issue is the choice of initial stress state of the modeling, which is actually unknown. Usually, in the study of earthquake triggering, people assume the initial stress is zero, and only calculate the stress changes by large earthquakes - the Coulomb failure stress changes (Δ CFS). To some extent, this simplified method is a powerful tool because it can reveal which fault or which part of a fault becomes more risky or safer relatively. Nonetheless, it has not utilized all information available to us. The earthquake sequence reveals, though far from complete, some information about the stress state in the region. If the entire region is close to a self-organized critical or subcritical state, earthquake stress drop provides an estimate of lower limit of initial state. For locations no earthquakes occurred during the period, initial stress has to be

  16. The 2007 Mentawai earthquake sequence on the Sumatra megathrust

    Science.gov (United States)

    Konca, A.; Avouac, J.; Sladen, A.; Meltzner, A. J.; Kositsky, A. P.; Sieh, K.; Fang, P.; Li, Z.; Galetzka, J.; Genrich, J.; Chlieh, M.; Natawidjaja, D. H.; Bock, Y.; Fielding, E. J.; Helmberger, D. V.

    2008-12-01

    The Sumatra Megathrust has recently produced a flurry of large interplate earthquakes starting with the giant Mw 9.15, Aceh earthquake of 2004. All of these earthquakes occurred within the area monitored by the Sumatra Geodetic Array (SuGAr), which provided exceptional records of near-field co-seismic and postseismic ground displacements. The most recent of these major earthquakes, an Mw 8.4 earthquake and an Mw 7.9 earthquake twelve hours later, occurred in the Mentawai islands area where devastating historical earthquakes had happened in 1797 and 1833. The 2007 earthquake sequence provides an exceptional opportunity to understand the variability of the earthquakes along megathrusts and their relation to interseismic coupling. The InSAR, GPS and teleseismic modeling shows that 2007 earthquakes ruptured a fraction of the strongly coupled Mentawai patch of the megathrust, which is also only a fraction of the 1833 rupture area. It also released a much smaller moment than the one released in 1833, or than the deficit of moment that has accumulated since. Both earthquakes of 2007 consist of 2 sub-events which are 50 to 100 km apart from each other. On the other hand, the northernmost slip patch of 8.4 and southern slip patch of 7.9 earthquakes abut each other, but they ruptured 12 hours apart. Sunda megathrust earthquakes of recent years include a rupture of a strongly coupled patch that closely mimics a prior rupture of that patch and which is well correlated with the interseismic coupling pattern (Nias-Simeulue section), as well as a rupture sequence of a strongly coupled patch that differs substantially in the details from its most recent predecessors (Mentawai section). We conclude that (1) seismic asperities are probably persistent features which arise form heterogeneous strain build up in the interseismic period; and (2) the same portion of a megathrust can rupture in different ways depending on whether asperities break as isolated events or cooperate to produce

  17. A 30-year history of earthquake crisis communication in California and lessons for the future

    Science.gov (United States)

    Jones, L.

    2015-12-01

    The first statement from the US Geological Survey to the California Office of Emergency Services quantifying the probability of a possible future earthquake was made in October 1985 about the probability (approximately 5%) that a M4.7 earthquake located directly beneath the Coronado Bay Bridge in San Diego would be a foreshock to a larger earthquake. In the next 30 years, publication of aftershock advisories have become routine and formal statements about the probability of a larger event have been developed in collaboration with the California Earthquake Prediction Evaluation Council (CEPEC) and sent to CalOES more than a dozen times. Most of these were subsequently released to the public. These communications have spanned a variety of approaches, with and without quantification of the probabilities, and using different ways to express the spatial extent and the magnitude distribution of possible future events. The USGS is re-examining its approach to aftershock probability statements and to operational earthquake forecasting with the goal of creating pre-vetted automated statements that can be released quickly after significant earthquakes. All of the previous formal advisories were written during the earthquake crisis. The time to create and release a statement became shorter with experience from the first public advisory (to the 1988 Lake Elsman earthquake) that was released 18 hours after the triggering event, but was never completed in less than 2 hours. As was done for the Parkfield experiment, the process will be reviewed by CEPEC and NEPEC (National Earthquake Prediction Evaluation Council) so the statements can be sent to the public automatically. This talk will review the advisories, the variations in wording and the public response and compare this with social science research about successful crisis communication, to create recommendations for future advisories

  18. Triggered seismicity and deformation between the Landers, California, and Little Skull Mountain, Nevada, earthquakes

    Science.gov (United States)

    Bodin, Paul; Gomberg, Joan

    1994-01-01

    This article presents evidence for the channeling of strain energy released by the Ms = 7.4 Landers, California, earthquake within the eastern California shear zone (ECSZ). We document an increase in seismicity levels during the 22-hr period starting with the Landers earthquake and culminating 22 hr later with the Ms = 5.4 Little Skull Mountain (LSM), Nevada, earthquake. We evaluate the completeness of regional seismicity catalogs during this period and find that the continuity of post-Landers strain release within the ECSZ is even more pronounced than is evident from the catalog data. We hypothesize that regional-scale connectivity of faults within the ECSZ and LSM region is a critical ingredient in the unprecedented scale and distribution of remotely triggered earthquakes and geodetically manifest strain changes that followed the Landers earthquake. The viability of static strain changes as triggering agents is tested using numerical models. Modeling results illustrate that regional-scale fault connectivity can increase the static strain changes by approximately an order of magnitude at distances of at least 280 km, the distance between the Landers and LSM epicenters. This is possible for models that include both a network of connected faults that slip “sympathetically” and realistic levels of tectonic prestrain. Alternatively, if dynamic strains are a more significant triggering agent than static strains, ECSZ structure may still be important in determining the distribution of triggered seismic and aseismic deformation.

  19. The 2016 Kumamoto earthquake sequence.

    Science.gov (United States)

    Kato, Aitaro; Nakamura, Kouji; Hiyama, Yohei

    2016-01-01

    Beginning in April 2016, a series of shallow, moderate to large earthquakes with associated strong aftershocks struck the Kumamoto area of Kyushu, SW Japan. An M j 7.3 mainshock occurred on 16 April 2016, close to the epicenter of an M j 6.5 foreshock that occurred about 28 hours earlier. The intense seismicity released the accumulated elastic energy by right-lateral strike slip, mainly along two known, active faults. The mainshock rupture propagated along multiple fault segments with different geometries. The faulting style is reasonably consistent with regional deformation observed on geologic timescales and with the stress field estimated from seismic observations. One striking feature of this sequence is intense seismic activity, including a dynamically triggered earthquake in the Oita region. Following the mainshock rupture, postseismic deformation has been observed, as well as expansion of the seismicity front toward the southwest and northwest.

  20. The 2016 Kumamoto earthquake sequence

    Science.gov (United States)

    KATO, Aitaro; NAKAMURA, Kouji; HIYAMA, Yohei

    2016-01-01

    Beginning in April 2016, a series of shallow, moderate to large earthquakes with associated strong aftershocks struck the Kumamoto area of Kyushu, SW Japan. An Mj 7.3 mainshock occurred on 16 April 2016, close to the epicenter of an Mj 6.5 foreshock that occurred about 28 hours earlier. The intense seismicity released the accumulated elastic energy by right-lateral strike slip, mainly along two known, active faults. The mainshock rupture propagated along multiple fault segments with different geometries. The faulting style is reasonably consistent with regional deformation observed on geologic timescales and with the stress field estimated from seismic observations. One striking feature of this sequence is intense seismic activity, including a dynamically triggered earthquake in the Oita region. Following the mainshock rupture, postseismic deformation has been observed, as well as expansion of the seismicity front toward the southwest and northwest. PMID:27725474

  1. Rupture processes of the 2013-2014 Minab earthquake sequence, Iran

    Science.gov (United States)

    Kintner, Jonas A.; Ammon, Charles J.; Cleveland, K. Michael; Herman, Matthew

    2018-06-01

    We constrain epicentroid locations, magnitudes and depths of moderate-magnitude earthquakes in the 2013-2014 Minab sequence using surface-wave cross-correlations, surface-wave spectra and teleseismic body-wave modelling. We estimate precise relative locations of 54 Mw ≥ 3.8 earthquakes using 48 409 teleseismic, intermediate-period Rayleigh and Love-wave cross-correlation measurements. To reduce significant regional biases in our relative locations, we shift the relative locations to align the Mw 6.2 main-shock centroid to a location derived from an independent InSAR fault model. Our relocations suggest that the events lie along a roughly east-west trend that is consistent with the faulting geometry in the GCMT catalogue. The results support previous studies that suggest the sequence consists of left-lateral strain release, but better defines the main-shock fault length and shows that most of the Mw ≥ 5.0 aftershocks occurred on one or two similarly oriented structures. We also show that aftershock activity migrated westwards along strike, away from the main shock, suggesting that Coulomb stress transfer played a role in the fault failure. We estimate the magnitudes of the relocated events using surface-wave cross-correlation amplitudes and find good agreement with the GCMT moment magnitudes for the larger events and underestimation of small-event size by catalogue MS. In addition to clarifying details of the Minab sequence, the results demonstrate that even in tectonically complex regions, relative relocation using teleseismic surface waves greatly improves the precision of relative earthquake epicentroid locations and can facilitate detailed tectonic analyses of remote earthquake sequences.

  2. Centrality in earthquake multiplex networks

    Science.gov (United States)

    Lotfi, Nastaran; Darooneh, Amir Hossein; Rodrigues, Francisco A.

    2018-06-01

    Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.

  3. A prototype operational earthquake loss model for California based on UCERF3-ETAS – A first look at valuation

    Science.gov (United States)

    Field, Edward; Porter, Keith; Milner, Kevn

    2017-01-01

    We present a prototype operational loss model based on UCERF3-ETAS, which is the third Uniform California Earthquake Rupture Forecast with an Epidemic Type Aftershock Sequence (ETAS) component. As such, UCERF3-ETAS represents the first earthquake forecast to relax fault segmentation assumptions and to include multi-fault ruptures, elastic-rebound, and spatiotemporal clustering, all of which seem important for generating realistic and useful aftershock statistics. UCERF3-ETAS is nevertheless an approximation of the system, however, so usefulness will vary and potential value needs to be ascertained in the context of each application. We examine this question with respect to statewide loss estimates, exemplifying how risk can be elevated by orders of magnitude due to triggered events following various scenario earthquakes. Two important considerations are the probability gains, relative to loss likelihoods in the absence of main shocks, and the rapid decay of gains with time. Significant uncertainties and model limitations remain, so we hope this paper will inspire similar analyses with respect to other risk metrics to help ascertain whether operationalization of UCERF3-ETAS would be worth the considerable resources required.

  4. Radiated Seismic Energy of Earthquakes in the South-Central Region of the Gulf of California, Mexico

    Science.gov (United States)

    Castro, Raúl R.; Mendoza-Camberos, Antonio; Pérez-Vertti, Arturo

    2018-05-01

    We estimated the radiated seismic energy (ES) of 65 earthquakes located in the south-central region of the Gulf of California. Most of these events occurred along active transform faults that define the Pacific-North America plate boundary and have magnitudes between M3.3 and M5.9. We corrected the spectral records for attenuation using nonparametric S-wave attenuation functions determined with the whole data set. The path effects were isolated from the seismic source using a spectral inversion. We computed radiated seismic energy of the earthquakes by integrating the square velocity source spectrum and estimated their apparent stresses. We found that most events have apparent stress between 3 × 10-4 and 3 MPa. Model independent estimates of the ratio between seismic energy and moment (ES/M0) indicates that this ratio is independent of earthquake size. We conclude that in general the apparent stress is low (σa < 3 MPa) in the south-central and southern Gulf of California.

  5. The HayWired Earthquake Scenario—Earthquake Hazards

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  6. Frequency-Dependent Tidal Triggering of Low Frequency Earthquakes Near Parkfield, California

    Science.gov (United States)

    Xue, L.; Burgmann, R.; Shelly, D. R.

    2017-12-01

    The effect of small periodic stress perturbations on earthquake generation is not clear, however, the rate of low-frequency earthquakes (LFEs) near Parkfield, California has been found to be strongly correlated with solid earth tides. Laboratory experiments and theoretical analyses show that the period of imposed forcing and source properties affect the sensitivity to triggering and the phase relation of the peak seismicity rate and the periodic stress, but frequency-dependent triggering has not been quantitatively explored in the field. Tidal forcing acts over a wide range of frequencies, therefore the sensitivity to tidal triggering of LFEs provides a good probe to the physical mechanisms affecting earthquake generation. In this study, we consider the tidal triggering of LFEs near Parkfield, California since 2001. We find the LFEs rate is correlated with tidal shear stress, normal stress rate and shear stress rate. The occurrence of LFEs can also be independently modulated by groups of tidal constituents at semi-diurnal, diurnal and fortnightly frequencies. The strength of the response of LFEs to the different tidal constituents varies between LFE families. Each LFE family has an optimal triggering frequency, which does not appear to be depth dependent or systematically related to other known properties. This suggests the period of the applied forcing plays an important role in the triggering process, and the interaction of periods of loading history and source region properties, such as friction, effective normal stress and pore fluid pressure, produces the observed frequency-dependent tidal triggering of LFEs.

  7. Products and Services Available from the Southern California Earthquake Data Center (SCEDC) and the Southern California Seismic Network (SCSN)

    Science.gov (United States)

    Chen, S. E.; Yu, E.; Bhaskaran, A.; Chowdhury, F. R.; Meisenhelter, S.; Hutton, K.; Given, D.; Hauksson, E.; Clayton, R. W.

    2011-12-01

    Currently, the SCEDC archives continuous and triggered data from nearly 8400 data channels from 425 SCSN recorded stations, processing and archiving an average of 6.4 TB of continuous waveforms and 12,000 earthquakes each year. The SCEDC provides public access to these earthquake parametric and waveform data through its website www.data.scec.org and through client applications such as STP and DHI. This poster will describe the most significant developments at the SCEDC during 2011. New website design: ? The SCEDC has revamped its website. The changes make it easier for users to search the archive, discover updates and new content. These changes also improve our ability to manage and update the site. New data holdings: ? Post processing on El Mayor Cucapah 7.2 sequence continues. To date there have been 11847 events reviewed. Updates are available in the earthquake catalog immediately. ? A double difference catalog (Hauksson et. al 2011) spanning 1981 to 6/30/11 will be available for download at www.data.scec.org and available via STP. ? A focal mechanism catalog determined by Yang et al. 2011 is available for distribution at www.data.scec.org. ? Waveforms from Southern California NetQuake stations are now being stored in the SCEDC archive and available via STP as event associated waveforms. Amplitudes from these stations are also being stored in the archive and used by ShakeMap. ? As part of a NASA/AIST project in collaboration with JPL and SIO, the SCEDC will receive real time 1 sps streams of GPS displacement solutions from the California Real Time Network (http://sopac.ucsd.edu/projects/realtime; Genrich and Bock, 2006, J. Geophys. Res.). These channels will be archived at the SCEDC as miniSEED waveforms, which then can be distributed to the user community via applications such as STP. Improvements in the user tool STP: ? STP sac output now includes picks from the SCSN. New archival methods: ? The SCEDC is exploring the feasibility of archiving and distributing

  8. Multifractal Omori law for earthquake triggering: new tests on the California, Japan and worldwide catalogues

    Science.gov (United States)

    Ouillon, G.; Sornette, D.; Ribeiro, E.

    2009-07-01

    The Multifractal Stress-Activated model is a statistical model of triggered seismicity based on mechanical and thermodynamic principles. It predicts that, above a triggering magnitude cut-off M0, the exponent p of the Omori law for the time decay of the rate of aftershocks is a linear increasing function p(M) = a0M + b0 of the main shock magnitude M. We previously reported empirical support for this prediction, using the Southern California Earthquake Center (SCEC) catalogue. Here, we confirm this observation using an updated, longer version of the same catalogue, as well as new methods to estimate p. One of this methods is the newly defined Scaling Function Analysis (SFA), adapted from the wavelet transform. This method is able to measure a mathematical singularity (hence a p-value), erasing the possible regular part of a time-series. The SFA also proves particularly efficient to reveal the coexistence and superposition of several types of relaxation laws (typical Omori sequences and short-lived swarms sequences) which can be mixed within the same catalogue. Another new method consists in monitoring the largest aftershock magnitude observed in successive time intervals, and thus shortcuts the problem of missing events with small magnitudes in aftershock catalogues. The same methods are used on data from the worldwide Harvard Centroid Moment Tensor (CMT) catalogue and show results compatible with those of Southern California. For the Japan Meteorological Agency (JMA) catalogue, we still observe a linear dependence of p on M, but with a smaller slope. The SFA shows however that results for this catalogue may be biased by numerous swarm sequences, despite our efforts to remove them before the analysis.

  9. Web Services and Other Enhancements at the Northern California Earthquake Data Center

    Science.gov (United States)

    Neuhauser, D. S.; Zuzlewski, S.; Allen, R. M.

    2012-12-01

    The Northern California Earthquake Data Center (NCEDC) provides data archive and distribution services for seismological and geophysical data sets that encompass northern California. The NCEDC is enhancing its ability to deliver rapid information through Web Services. NCEDC Web Services use well-established web server and client protocols and REST software architecture to allow users to easily make queries using web browsers or simple program interfaces and to receive the requested data in real-time rather than through batch or email-based requests. Data are returned to the user in the appropriate format such as XML, RESP, or MiniSEED depending on the service, and are compatible with the equivalent IRIS DMC web services. The NCEDC is currently providing the following Web Services: (1) Station inventory and channel response information delivered in StationXML format, (2) Channel response information delivered in RESP format, (3) Time series availability delivered in text and XML formats, (4) Single channel and bulk data request delivered in MiniSEED format. The NCEDC is also developing a rich Earthquake Catalog Web Service to allow users to query earthquake catalogs based on selection parameters such as time, location or geographic region, magnitude, depth, azimuthal gap, and rms. It will return (in QuakeML format) user-specified results that can include simple earthquake parameters, as well as observations such as phase arrivals, codas, amplitudes, and computed parameters such as first motion mechanisms, moment tensors, and rupture length. The NCEDC will work with both IRIS and the International Federation of Digital Seismograph Networks (FDSN) to define a uniform set of web service specifications that can be implemented by multiple data centers to provide users with a common data interface across data centers. The NCEDC now hosts earthquake catalogs and waveforms from the US Department of Energy (DOE) Enhanced Geothermal Systems (EGS) monitoring networks. These

  10. Source characteristics of the Fairview, OK, earthquake sequence and its relationship to industrial activities

    Science.gov (United States)

    Yeck, W. L.; Weingarten, M.; Benz, H.; McNamara, D. E.; Herrmann, R. B.; Rubinstein, J. L.; Earle, P. S.; Bergman, E.

    2016-12-01

    We characterize the spatio-temporal patterns of seismicity surrounding the February 13, 2016, Mw 5.1 Fairview, Oklahoma earthquake. This earthquake sequence accounts for the largest moment release in the central and eastern US since the November 06, 2011 Mw 5.6 Prague, OK earthquake sequence. To improve the location accuracy of the sequence and measure near-source ground motions, the United States Geological Survey (USGS) deployed eight seismometers and accelerometers in the epicentral region. With the added depth control from these stations, we show that earthquakes primarily occur in the Precambrian basement, at depths of 6-10 km below sea level. The Mw 5.1 mainshock, the largest event in the cluster, locates near the base of the seismicity. Relocated aftershocks delineate a partially unmapped, 14-km-long fault segment that strikes approximately N40°E, partially bridging the gap between previously mapped basement faults to the southwest and northeast. Gas production and hydraulic fracking data from the region show no evidence that either of these activities correlates spatio-temporally with the Fairview sequence. Instead, we suggest that a series of high-rate, Arbuckle injection wells (> 300,000 bbls/month) 8-25 km northeast of this sequence pressurized the reservoir in the far field. Regional injection into the Arbuckle formation increased 7-fold in the 24 months before the initiation of the sequence with some wells operating at rates greater than 1 million barrels per month. Seismicity in the proximity of the high-rate wells is diffuse whilst the energetic Fairview sequence occurs more than 15 km from this region. Our observations point to the critical role pre-existing geologic structures play in the occurrence of large induced earthquakes. This study demonstrates the need for a better understanding of the role of far-field pressurization. High-quality data sets such as this facilitate the USGS mission to improve earthquake hazard identification, especially

  11. The Mw=8.8 Maule earthquake aftershock sequence, event catalog and locations

    Science.gov (United States)

    Meltzer, A.; Benz, H.; Brown, L.; Russo, R. M.; Beck, S. L.; Roecker, S. W.

    2011-12-01

    The aftershock sequence of the Mw=8.8 Maule earthquake off the coast of Chile in February 2010 is one of the most well-recorded aftershock sequences from a great megathrust earthquake. Immediately following the Maule earthquake, teams of geophysicists from Chile, France, Germany, Great Britain and the United States coordinated resources to capture aftershocks and other seismic signals associated with this significant earthquake. In total, 91 broadband, 48 short period, and 25 accelerometers stations were deployed above the rupture zone of the main shock from 33-38.5°S and from the coast to the Andean range front. In order to integrate these data into a unified catalog, the USGS National Earthquake Information Center develop procedures to use their real-time seismic monitoring system (Bulletin Hydra) to detect, associate, location and compute earthquake source parameters from these stations. As a first step in the process, the USGS has built a seismic catalog of all M3.5 or larger earthquakes for the time period of the main aftershock deployment from March 2010-October 2010. The catalog includes earthquake locations, magnitudes (Ml, Mb, Mb_BB, Ms, Ms_BB, Ms_VX, Mc), associated phase readings and regional moment tensor solutions for most of the M4 or larger events. Also included in the catalog are teleseismic phases and amplitude measures and body-wave MT and CMT solutions for the larger events, typically M5.5 and larger. Tuning of automated detection and association parameters should allow a complete catalog of events to approximately M2.5 or larger for that dataset of more than 164 stations. We characterize the aftershock sequence in terms of magnitude, frequency, and location over time. Using the catalog locations and travel times as a starting point we use double difference techniques to investigate relative locations and earthquake clustering. In addition, phase data from candidate ground truth events and modeling of surface waves can be used to calibrate the

  12. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    1997-01-01

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial Valley earthquake in California (U .S .A.). The results of the study indicate that while all three approaches can successfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  13. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modelling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial valley earthquake in California (USA). The results of the study indicate that while all three approaches can succesfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  14. Characterizing Aftershock Sequences of the Recent Strong Earthquakes in Central Italy

    Science.gov (United States)

    Kossobokov, Vladimir G.; Nekrasova, Anastasia K.

    2017-10-01

    The recent strong earthquakes in Central Italy allow for a comparative analysis of their aftershocks from the viewpoint of the Unified Scaling Law for Earthquakes, USLE, which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. In particular, we consider aftershocks as a sequence of avalanches in self-organized system of blocks-and-faults of the Earth lithosphere, each aftershock series characterized with the distribution of the USLE control parameter, η. We found the existence, in a long-term, of different, intermittent levels of rather steady seismic activity characterized with a near constant value of η, which switch, in mid-term, at times of transition associated with catastrophic events. On such a transition, seismic activity may follow different scenarios with inter-event time scaling of different kind, including constant, logarithmic, power law, exponential rise/decay or a mixture of those as observed in the case of the ongoing one associated with the three strong earthquakes in 2016. Evidently, our results do not support the presence of universality of seismic energy release, while providing constraints on modelling seismic sequences for earthquake physicists and supplying decision makers with information for improving local seismic hazard assessments.

  15. The Loma Prieta, California, Earthquake of October 17, 1989: Strong Ground Motion and Ground Failure

    Science.gov (United States)

    Coordinated by Holzer, Thomas L.

    1992-01-01

    Professional Paper 1551 describes the effects at the land surface caused by the Loma Prieta earthquake. These effects: include the pattern and characteristics of strong ground shaking, liquefaction of both floodplain deposits along the Pajaro and Salinas Rivers in the Monterey Bay region and sandy artificial fills along the margins of San Francisco Bay, landslides in the epicentral region, and increased stream flow. Some significant findings and their impacts were: * Strong shaking that was amplified by a factor of about two by soft soils caused damage at up to 100 kilometers (60 miles) from the epicenter. * Instrumental recordings of the ground shaking have been used to improve how building codes consider site amplification effects from soft soils. * Liquefaction at 134 locations caused $99.2 million of the total earthquake loss of $5.9 billion. Liquefaction of floodplain deposits and sandy artificial fills was similar in nature to that which occurred in the 1906 San Francisco earthquake and indicated that many areas remain susceptible to liquefaction damage in the San Francisco and Monterey Bay regions. * Landslides caused $30 million in earthquake losses, damaging at least 200 residences. Many landslides showed evidence of movement in previous earthquakes. * Recognition of the similarities between liquefaction and landslides in 1906 and 1989 and research in intervening years that established methodologies to map liquefaction and landslide hazards prompted the California legislature to pass in 1990 the Seismic Hazards Mapping Act that required the California Geological Survey to delineate regulatory zones of areas potentially susceptible to these hazards. * The earthquake caused the flow of many streams in the epicentral region to increase. Effects were noted up to 88 km from the epicenter. * Post-earthquake studies of the Marina District of San Francisco provide perhaps the most comprehensive case history of earthquake effects at a specific site developed for

  16. Earthquake Swarm Along the San Andreas Fault near Palmdale, Southern California, 1976 to 1977.

    Science.gov (United States)

    McNally, K C; Kanamori, H; Pechmann, J C; Fuis, G

    1978-09-01

    Between November 1976 and November 1977 a swarm of small earthquakes (local magnitude foreshock sequences, such as tight clustering of hypocenters and time-dependent rotations of stress axes inferred from focal mechanisms. However, because of our present lack of understanding of the processes that precede earthquake faulting, the implications of the swarm for future large earthquakes on the San Andreas fault are unknown.

  17. Revisiting the Canterbury earthquake sequence after the 14 February 2016 Mw 5.7 event

    NARCIS (Netherlands)

    Herman, Matthew W.; Furlong, Kevin P.

    2016-01-01

    On 14 February 2016, an Mw 5.7 (GNS Science moment magnitude) earthquake ruptured offshore east of Christchurch, New Zealand. This earthquake occurred in an area that had previously experienced significant seismicity from 2010 to 2012 during the Canterbury earthquake sequence, starting with the 2010

  18. Evaluation of Real-Time Performance of the Virtual Seismologist Earthquake Early Warning Algorithm in Switzerland and California

    Science.gov (United States)

    Behr, Y.; Cua, G. B.; Clinton, J. F.; Heaton, T. H.

    2012-12-01

    The Virtual Seismologist (VS) method is a Bayesian approach to regional network-based earthquake early warning (EEW) originally formulated by Cua and Heaton (2007). Implementation of VS into real-time EEW codes has been an on-going effort of the Swiss Seismological Service at ETH Zürich since 2006, with support from ETH Zürich, various European projects, and the United States Geological Survey (USGS). VS is one of three EEW algorithms - the other two being ElarmS (Allen and Kanamori, 2003) and On-Site (Wu and Kanamori, 2005; Boese et al., 2008) algorithms - that form the basis of the California Integrated Seismic Network (CISN) ShakeAlert system, a USGS-funded prototype end-to-end EEW system that could potentially be implemented in California. In Europe, VS is currently operating as a real-time test system in Switzerland. As part of the on-going EU project REAKT (Strategies and Tools for Real-Time Earthquake Risk Reduction), VS will be installed and tested at other European networks. VS has been running in real-time on stations of the Southern California Seismic Network (SCSN) since July 2008, and on stations of the Berkeley Digital Seismic Network (BDSN) and the USGS Menlo Park strong motion network in northern California since February 2009. In Switzerland, VS has been running in real-time on stations monitored by the Swiss Seismological Service (including stations from Austria, France, Germany, and Italy) since 2010. We present summaries of the real-time performance of VS in Switzerland and California over the past two and three years respectively. The empirical relationships used by VS to estimate magnitudes and ground motion, originally derived from southern California data, are demonstrated to perform well in northern California and Switzerland. Implementation in real-time and off-line testing in Europe will potentially be extended to southern Italy, western Greece, Istanbul, Romania, and Iceland. Integration of the VS algorithm into both the CISN Advanced

  19. Abundant aftershock sequence of the 2015 Mw7.5 Hindu Kush intermediate-depth earthquake

    Science.gov (United States)

    Li, Chenyu; Peng, Zhigang; Yao, Dongdong; Guo, Hao; Zhan, Zhongwen; Zhang, Haijiang

    2018-05-01

    The 2015 Mw7.5 Hindu Kush earthquake occurred at a depth of 213 km beneath the Hindu Kush region of Afghanistan. While many early aftershocks were missing from the global earthquake catalogues, this sequence was recorded continuously by eight broad-band stations within 500 km. Here we use a waveform matching technique to systematically detect earthquakes around the main shock. More than 3000 events are detected within 35 d after the main shock, as compared with 42 listed in the Advanced National Seismic System catalogue (or 196 in the International Seismological Centre catalogue). The aftershock sequence generally follows the Omori's law with a decay constant p = 0.92. We also apply the recently developed double-pair double-difference technique to relocate all detected aftershocks. Most of them are located to the west of the hypocentre of the main shock, consistent with the westward propagation of the main-shock rupture. The aftershocks outline a nearly vertical southward dipping plane, which matches well with one of the nodal planes of the main shock. We conclude that the aftershock sequence of this intermediate-depth earthquake shares many similarities with those for shallow earthquakes and infer that there are some common mechanisms responsible for shallow and intermediate-depth earthquakes.

  20. Characterization of Aftershock Sequences from Large Strike-Slip Earthquakes Along Geometrically Complex Faults

    Science.gov (United States)

    Sexton, E.; Thomas, A.; Delbridge, B. G.

    2017-12-01

    Large earthquakes often exhibit complex slip distributions and occur along non-planar fault geometries, resulting in variable stress changes throughout the region of the fault hosting aftershocks. To better discern the role of geometric discontinuities on aftershock sequences, we compare areas of enhanced and reduced Coulomb failure stress and mean stress for systematic differences in the time dependence and productivity of these aftershock sequences. In strike-slip faults, releasing structures, including stepovers and bends, experience an increase in both Coulomb failure stress and mean stress during an earthquake, promoting fluid diffusion into the region and further failure. Conversely, Coulomb failure stress and mean stress decrease in restraining bends and stepovers in strike-slip faults, and fluids diffuse away from these areas, discouraging failure. We examine spatial differences in seismicity patterns along structurally complex strike-slip faults which have hosted large earthquakes, such as the 1992 Mw 7.3 Landers, the 2010 Mw 7.2 El-Mayor Cucapah, the 2014 Mw 6.0 South Napa, and the 2016 Mw 7.0 Kumamoto events. We characterize the behavior of these aftershock sequences with the Epidemic Type Aftershock-Sequence Model (ETAS). In this statistical model, the total occurrence rate of aftershocks induced by an earthquake is λ(t) = λ_0 + \\sum_{i:t_i

  1. [Comment on “Should Memphis build for California's earthquakes?”] from S.E. Hough

    Science.gov (United States)

    Hough, Susan E.

    The recent article by Seth Stein, Joseph Tomasello, and Andrew Newman raised thought-provoking questions about one of the most vexing open issues in hazard assessment in the United States: the hazard posed by ostensibly infrequent, large, mid-continental earthquakes. Many of the technical issues raised by this article are addressed by A. D. Frankel in the accompanying comment. I concur with this, and will only address and/or elaborate on a few additional issues here: (1) Detailed paleoseismic investigations have shown that the New Madrid region experienced sequences of large earthquakes around 900 and 1450 A.D.in addition to the historic events in 1811-1812. With a repeat time on the order of 400-500 years, these cannot be considered infrequent events. Paleoseismic investigations also reveal evidence that the prehistoric “events” were also sequences of two to three large earthquakes with a similar overall distribution of liquefaction in the greater New Madrid region as produced by the 1811-1812 sequence [Tuttle et al., 2002]. And if, as evidence suggests, the zone produces characteristic earthquakes, one will not see a commensurate rate of moderate events, as would be the case if seismicity followed the Gutenburg-Richter distribution.

  2. The Napa (California, US) earthquake of 24 August 2014 (10.24 UT) Magnitude = 6.0

    International Nuclear Information System (INIS)

    Scotti, Oona

    2014-01-01

    This publication briefly presents the characteristics of an earthquake which occurred in California in August 2014, indicates some data recorded by local seismic stations, and gives a brief overview of human and economic damages. It analyses the geological location of the earthquake, recalls previous events and outlines the local seismic risk. After having noticed that there was no consequence for the closest nuclear power station (300 km away), it indicates lessons learned in terms of seismic event about a crack, in order to better assess the risk of surface failure

  3. Breaking barriers and halting rupture: the 2016 Amatrice-Visso-Castelluccio earthquake sequence, central Italy

    Science.gov (United States)

    Gregory, L. C.; Walters, R. J.; Wedmore, L. N. J.; Craig, T. J.; McCaffrey, K. J. W.; Wilkinson, M. W.; Livio, F.; Michetti, A.; Goodall, H.; Li, Z.; Chen, J.; De Martini, P. M.

    2017-12-01

    In 2016 the Central Italian Apennines was struck by a sequence of normal faulting earthquakes that ruptured in three separate events on the 24th August (Mw 6.2), the 26th Oct (Mw 6.1), and the 30th Oct (Mw 6.6). We reveal the complex nature of the individual events and the time-evolution of the sequence using multiple datasets. We will present an overview of the results from field geology, satellite geodesy, GNSS (including low-cost short baseline installations), and terrestrial laser scanning (TLS). Sequences of earthquakes of mid to high magnitude 6 are common in historical and seismological records in Italy and other similar tectonic settings globally. Multi-fault rupture during these sequences can occur in seconds, as in the M 6.9 1980 Irpinia earthquake, or can span days, months, or years (e.g. the 1703 Norcia-L'Aquila sequence). It is critical to determine why the causative faults in the 2016 sequence did not rupture simultaneously, and how this relates to fault segmentation and structural barriers. This is the first sequence of this kind to be observed using modern geodetic techniques, and only with all of the datasets combined can we begin to understand how and why the sequence evolved in time and space. We show that earthquake rupture both broke through structural barriers that were thought to exist, but was also inhibited by a previously unknown structure. We will also discuss the logistical challenges in generating datasets on the time-evolving sequence, and show how rapid response and international collaboration within the Open EMERGEO Working Group was critical for gaining a complete picture of the ongoing activity.

  4. Hospital compliance with a state unfunded mandate: the case of California's Earthquake Safety Law.

    Science.gov (United States)

    McCue, Michael J; Thompson, Jon M

    2012-01-01

    Abstract In recent years, community hospitals have experienced heightened regulation with many unfunded mandates. The authors assessed the market, organizational, operational, and financial characteristics of general acute care hospitals in California that have a main acute care hospital building that is noncompliant with state requirements and at risk of major structural collapse from earthquakes. Using California hospital data from 2007 to 2009, and employing logistic regression analysis, the authors found that hospitals having buildings that are at the highest risk of collapse are located in larger population markets, possess smaller market share, have a higher percentage of Medicaid patients, and have less liquidity.

  5. The Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT) Internship Program

    Science.gov (United States)

    Perry, S.; Jordan, T.

    2006-12-01

    Our undergraduate research program, SCEC/UseIT, an NSF Research Experience for Undergraduates site, provides software for earthquake researchers and educators, movies for outreach, and ways to strengthen the technical career pipeline. SCEC/UseIT motivates diverse undergraduates towards science and engineering careers through team-based research in the exciting field of earthquake information technology. UseIT provides the cross-training in computer science/information technology (CS/IT) and geoscience needed to make fundamental progress in earthquake system science. Our high and increasing participation of women and minority students is crucial given the nation"s precipitous enrollment declines in CS/IT undergraduate degree programs, especially among women. UseIT also casts a "wider, farther" recruitment net that targets scholars interested in creative work but not traditionally attracted to summer science internships. Since 2002, SCEC/UseIT has challenged 79 students in three dozen majors from as many schools with difficult, real-world problems that require collaborative, interdisciplinary solutions. Interns design and engineer open-source software, creating increasingly sophisticated visualization tools (see "SCEC-VDO," session IN11), which are employed by SCEC researchers, in new curricula at the University of Southern California, and by outreach specialists who make animated movies for the public and the media. SCEC-VDO would be a valuable tool for research-oriented professional development programs.

  6. GPS Time Series Analysis of Southern California Associated with the 2010 M7.2 El Mayor/Cucapah Earthquake

    Science.gov (United States)

    Granat, Robert; Donnellan, Andrea

    2011-01-01

    The Magnitude 7.2 El-Mayor/Cucapah earthquake the occurred in Mexico on April 4, 2012 was well instrumented with continuous GPS stations in California. Large Offsets were observed at the GPS stations as a result of deformation from the earthquake providing information about the co-seismic fault slip as well as fault slip from large aftershocks. Information can also be obtained from the position time series at each station.

  7. Response and recovery lessons from the 2010-2011 earthquake sequence in Canterbury, New Zealand

    Science.gov (United States)

    Pierepiekarz, Mark; Johnston, David; Berryman, Kelvin; Hare, John; Gomberg, Joan S.; Williams, Robert A.; Weaver, Craig S.

    2014-01-01

    The impacts and opportunities that result when low-probability moderate earthquakes strike an urban area similar to many throughout the US were vividly conveyed in a one-day workshop in which social and Earth scientists, public officials, engineers, and an emergency manager shared their experiences of the earthquake sequence that struck the city of Christchurch and surrounding Canterbury region of New Zealand in 2010-2011. Without question, the earthquake sequence has had unprecedented impacts in all spheres on New Zealand society, locally to nationally--10% of the country's population was directly impacted and losses total 8-10% of their GDP. The following paragraphs present a few lessons from Christchurch.

  8. Preliminary Results on Earthquake Recurrence Intervals, Rupture Segmentation, and Potential Earthquake Moment Magnitudes along the Tahoe-Sierra Frontal Fault Zone, Lake Tahoe, California

    Science.gov (United States)

    Howle, J.; Bawden, G. W.; Schweickert, R. A.; Hunter, L. E.; Rose, R.

    2012-12-01

    Utilizing high-resolution bare-earth LiDAR topography, field observations, and earlier results of Howle et al. (2012), we estimate latest Pleistocene/Holocene earthquake-recurrence intervals, propose scenarios for earthquake-rupture segmentation, and estimate potential earthquake moment magnitudes for the Tahoe-Sierra frontal fault zone (TSFFZ), west of Lake Tahoe, California. We have developed a new technique to estimate the vertical separation for the most recent and the previous ground-rupturing earthquakes at five sites along the Echo Peak and Mt. Tallac segments of the TSFFZ. At these sites are fault scarps with two bevels separated by an inflection point (compound fault scarps), indicating that the cumulative vertical separation (VS) across the scarp resulted from two events. This technique, modified from the modeling methods of Howle et al. (2012), uses the far-field plunge of the best-fit footwall vector and the fault-scarp morphology from high-resolution LiDAR profiles to estimate the per-event VS. From this data, we conclude that the adjacent and overlapping Echo Peak and Mt. Tallac segments have ruptured coseismically twice during the Holocene. The right-stepping, en echelon range-front segments of the TSFFZ show progressively greater VS rates and shorter earthquake-recurrence intervals from southeast to northwest. Our preliminary estimates suggest latest Pleistocene/ Holocene earthquake-recurrence intervals of 4.8±0.9x103 years for a coseismic rupture of the Echo Peak and Mt. Tallac segments, located at the southeastern end of the TSFFZ. For the Rubicon Peak segment, northwest of the Echo Peak and Mt. Tallac segments, our preliminary estimate of the maximum earthquake-recurrence interval is 2.8±1.0x103 years, based on data from two sites. The correspondence between high VS rates and short recurrence intervals suggests that earthquake sequences along the TSFFZ may initiate in the northwest part of the zone and then occur to the southeast with a lower

  9. Web Services and Data Enhancements at the Northern California Earthquake Data Center

    Science.gov (United States)

    Neuhauser, D. S.; Zuzlewski, S.; Lombard, P. N.; Allen, R. M.

    2013-12-01

    The Northern California Earthquake Data Center (NCEDC) provides data archive and distribution services for seismological and geophysical data sets that encompass northern California. The NCEDC is enhancing its ability to deliver rapid information through Web Services. NCEDC Web Services use well-established web server and client protocols and REST software architecture to allow users to easily make queries using web browsers or simple program interfaces and to receive the requested data in real-time rather than through batch or email-based requests. Data are returned to the user in the appropriate format such as XML, RESP, simple text, or MiniSEED depending on the service and selected output format. The NCEDC offers the following web services that are compliant with the International Federation of Digital Seismograph Networks (FDSN) web services specifications: (1) fdsn-dataselect: time series data delivered in MiniSEED format, (2) fdsn-station: station and channel metadata and time series availability delivered in StationXML format, (3) fdsn-event: earthquake event information delivered in QuakeML format. In addition, the NCEDC offers the the following IRIS-compatible web services: (1) sacpz: provide channel gains, poles, and zeros in SAC format, (2) resp: provide channel response information in RESP format, (3) dataless: provide station and channel metadata in Dataless SEED format. The NCEDC is also developing a web service to deliver timeseries from pre-assembled event waveform gathers. The NCEDC has waveform gathers for ~750,000 northern and central California events from 1984 to the present, many of which were created by the USGS NCSN prior to the establishment of the joint NCSS (Northern California Seismic System). We are currently adding waveforms to these older event gathers with time series from the UCB networks and other networks with waveforms archived at the NCEDC, and ensuring that the waveform for each channel in the event gathers have the highest

  10. Interaction of the san jacinto and san andreas fault zones, southern california: triggered earthquake migration and coupled recurrence intervals.

    Science.gov (United States)

    Sanders, C O

    1993-05-14

    Two lines of evidence suggest that large earthquakes that occur on either the San Jacinto fault zone (SJFZ) or the San Andreas fault zone (SAFZ) may be triggered by large earthquakes that occur on the other. First, the great 1857 Fort Tejon earthquake in the SAFZ seems to have triggered a progressive sequence of earthquakes in the SJFZ. These earthquakes occurred at times and locations that are consistent with triggering by a strain pulse that propagated southeastward at a rate of 1.7 kilometers per year along the SJFZ after the 1857 earthquake. Second, the similarity in average recurrence intervals in the SJFZ (about 150 years) and in the Mojave segment of the SAFZ (132 years) suggests that large earthquakes in the northern SJFZ may stimulate the relatively frequent major earthquakes on the Mojave segment. Analysis of historic earthquake occurrence in the SJFZ suggests little likelihood of extended quiescence between earthquake sequences.

  11. Precursory slow-slip loaded the 2009 L'Aquila earthquake sequence

    Science.gov (United States)

    Borghi, A.; Aoudia, A.; Javed, F.; Barzaghi, R.

    2016-05-01

    Slow-slip events (SSEs) are common at subduction zone faults where large mega earthquakes occur. We report here that one of the best-recorded moderate size continental earthquake, the 2009 April 6 moment magnitude (Mw) 6.3 L'Aquila (Italy) earthquake, was preceded by a 5.9 Mw SSE that originated from the decollement beneath the reactivated normal faulting system. The SSE is identified from a rigorous analysis of continuous GPS stations and occurred on the 12 February and lasted for almost two weeks. It coincided with a burst in the foreshock activity with small repeating earthquakes migrating towards the main-shock hypocentre as well as with a change in the elastic properties of rocks in the fault region. The SSE has caused substantial stress loading at seismogenic depths where the magnitude 4.0 foreshock and Mw 6.3 main shock nucleated. This stress loading is also spatially correlated with the lateral extent of the aftershock sequence.

  12. Unusual downhole and surface free-field records near the Carquinez Strait bridges during the 24 August 2014 Mw6.0 South Napa, California earthquake

    Science.gov (United States)

    Çelebi, Mehmet; Ghahari, S. Farid; Taciroglu, Ertugrul

    2015-01-01

    This paper reports the results of Part A of a study of the recorded strong-motion accelerations at the well-instrumented network of the two side-by-side parallel bridges over the Carquinez Strait during the 24 August 2014 (Mw6.0 ) South Napa, Calif. earthquake that occurred at 03:20:44 PDT with epicentral coordinates 38.22N, 122.31W. (http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2014/20140824.php, last accessed on October 17, 2014). Both bridges and two boreholes were instrumented by the California Strong motion Instrumentation Program (CSMIP) of California Geological Survey (CGS) (Shakal et al., 2014). A comprehensive comparison of several ground motion prediction equations as they relate to recorded ground motions of the earthquake is provided by Baltay and Boatright (2015).

  13. Dual megathrust slip behaviors of the 2014 Iquique earthquake sequence

    Science.gov (United States)

    Meng, Lingsen; Huang, Hui; Bürgmann, Roland; Ampuero, Jean Paul; Strader, Anne

    2015-02-01

    The transition between seismic rupture and aseismic creep is of central interest to better understand the mechanics of subduction processes. A Mw 8.2 earthquake occurred on April 1st, 2014 in the Iquique seismic gap of northern Chile. This event was preceded by a long foreshock sequence including a 2-week-long migration of seismicity initiated by a Mw 6.7 earthquake. Repeating earthquakes were found among the foreshock sequence that migrated towards the mainshock hypocenter, suggesting a large-scale slow-slip event on the megathrust preceding the mainshock. The variations of the recurrence times of the repeating earthquakes highlight the diverse seismic and aseismic slip behaviors on different megathrust segments. The repeaters that were active only before the mainshock recurred more often and were distributed in areas of substantial coseismic slip, while repeaters that occurred both before and after the mainshock were in the area complementary to the mainshock rupture. The spatiotemporal distribution of the repeating earthquakes illustrates the essential role of propagating aseismic slip leading up to the mainshock and illuminates the distribution of postseismic afterslip. Various finite fault models indicate that the largest coseismic slip generally occurred down-dip from the foreshock activity and the mainshock hypocenter. Source imaging by teleseismic back-projection indicates an initial down-dip propagation stage followed by a rupture-expansion stage. In the first stage, the finite fault models show an emergent onset of moment rate at low frequency ( 0.5 Hz). This indicates frequency-dependent manifestations of seismic radiation in the low-stress foreshock region. In the second stage, the rupture expands in rich bursts along the rim of a semi-elliptical region with episodes of re-ruptures, suggesting delayed failure of asperities. The high-frequency rupture remains within an area of local high trench-parallel gravity anomaly (TPGA), suggesting the presence of

  14. Strain Anomalies during an Earthquake Sequence in the South Iceland Seismic Zone

    Science.gov (United States)

    Arnadottir, T.; Haines, A. J.; Geirsson, H.; Hreinsdottir, S.

    2017-12-01

    The South Iceland Seismic Zone (SISZ) accommodates E-W translation due to oblique spreading between the North American/Hreppar microplate and Eurasian plate, in South Iceland. Strain is released in the SISZ during earthquake sequences that last days to years, at average intervals of 80-100 years. The SISZ is currently in the midst of an earthquake sequence that started with two M6.5 earthquakes in June 2000, and continued with two M6 earthquakes in May 2008. Estimates of geometric strain accumulation, and seismic strain release in these events indicate that they released at most only half of the strain accumulated since the last earthquake cycle in 1896-1912. Annual GPS campaigns and continuous measurements during 2001-2015 were used to calculate station velocities and strain rates from a new method using the vertical derivatives of horizontal stress (VDoHS). This new method allows higher resolution of strain rates than other (older) approaches, as the strain rates are estimated by integrating VDoHS rates obtained by inversion rather than differentiating interpolated GPS velocities. Estimating the strain rates for eight 1-2 year intervals indicates temporal and spatial variation of strain rates in the SISZ. In addition to earthquake faulting, the strain rates in the SISZ are influenced by anthropogenic signals due to geothermal exploitation, and magma movements in neighboring volcanoes - Hekla and Eyjafjallajökull. Subtle signals of post-seismic strain rate changes are seen following the June 2000 M6.5 main shocks, but interestingly, much larger strain rate variations are observed after the two May 2008 M6 main shocks. A prominent strain anomaly is evident in the epicentral area prior to the May 2008 earthquake sequence. The strain signal persists over at least 4 years in the epicentral area, leading up to the M6 main shocks. The strain is primarily extension in ESE-WNW direction (sub-parallel to the direction of plate spreading), but overall shear across the N

  15. The 2016 Mihoub (north-central Algeria) earthquake sequence: Seismological and tectonic aspects

    Science.gov (United States)

    Khelif, M. F.; Yelles-Chaouche, A.; Benaissa, Z.; Semmane, F.; Beldjoudi, H.; Haned, A.; Issaadi, A.; Chami, A.; Chimouni, R.; Harbi, A.; Maouche, S.; Dabbouz, G.; Aidi, C.; Kherroubi, A.

    2018-06-01

    On 28 May 2016 at 23:54 (UTC), an Mw5.4 earthquake occurred in Mihoub village, Algeria, 60 km southeast of Algiers. This earthquake was the largest event in a sequence recorded from 10 April to 15 July 2016. In addition to the permanent national network, a temporary network was installed in the epicentral region after this shock. Recorded event locations allow us to give a general overview of the sequence and reveal the existence of two main fault segments. The first segment, on which the first event in the sequence was located, is near-vertical and trends E-W. The second fault plane, on which the largest event of the sequence was located, dips to the southeast and strikes NE-SW. A total of 46 well-constrained focal mechanisms were calculated. The events located on the E-W-striking fault segment show mainly right-lateral strike-slip (strike N70°E, dip 77° to the SSE, rake 150°). The events located on the NE-SW-striking segment show mainly reverse faulting (strike N60°E, dip 70° to the SE, rake 130°). We calculated the static stress change caused by the first event (Md4.9) of the sequence; the result shows that the fault plane of the largest event in the sequence (Mw5.4) and most of the aftershocks occurred within an area of increased Coulomb stress. Moreover, using the focal mechanisms calculated in this work, we estimated the orientations of the main axes of the local stress tensor ellipsoid. The results confirm previous findings that the general stress field in this area shows orientations aligned NNW-SSE to NW-SE. The 2016 Mihoub earthquake sequence study thus improves our understanding of seismic hazard in north-central Algeria.

  16. Responses of a tall building in Los Angeles, California as inferred from local and distant earthquakes

    Science.gov (United States)

    Çelebi, Mehmet; Hasan Ulusoy,; Nori Nakata,

    2016-01-01

    Increasing inventory of tall buildings in the United States and elsewhere may be subjected to motions generated by near and far seismic sources that cause long-period effects. Multiple sets of records that exhibited such effects were retrieved from tall buildings in Tokyo and Osaka ~ 350 km and 770 km from the epicenter of the 2011 Tohoku earthquake. In California, very few tall buildings have been instrumented. An instrumented 52-story building in downtown Los Angeles recorded seven local and distant earthquakes. Spectral and system identification methods exhibit significant low frequencies of interest (~0.17 Hz, 0.56 Hz and 1.05 Hz). These frequencies compare well with those computed by transfer functions; however, small variations are observed between the significant low frequencies for each of the seven earthquakes. The torsional and translational frequencies are very close and are coupled. Beating effect is observed in at least two of the seven earthquake data.

  17. The 2006-2007 Kuril Islands great earthquake sequence

    Science.gov (United States)

    Lay, T.; Kanamori, H.; Ammon, C.J.; Hutko, Alexander R.; Furlong, K.; Rivera, L.

    2009-01-01

    The southwestern half of a ???500 km long seismic gap in the central Kuril Island arc subduction zone experienced two great earthquakes with extensive preshock and aftershock sequences in late 2006 to early 2007. The nature of seismic coupling in the gap had been uncertain due to the limited historical record of prior large events and the presence of distinctive upper plate, trench and outer rise structures relative to adjacent regions along the arc that have experienced repeated great interplate earthquakes in the last few centuries. The intraplate region seaward of the seismic gap had several shallow compressional events during the preceding decades (notably an MS 7.2 event on 16 March 1963), leading to speculation that the interplate fault was seismically coupled. This issue was partly resolved by failure of the shallow portion of the interplate megathrust in an MW = 8.3 thrust event on 15 November 2006. This event ruptured ???250 km along the seismic gap, just northeast of the great 1963 Kuril Island (Mw = 8.5) earthquake rupture zone. Within minutes of the thrust event, intense earthquake activity commenced beneath the outer wall of the trench seaward of the interplate rupture, with the larger events having normal-faulting mechanisms. An unusual double band of interplate and intraplate aftershocks developed. On 13 January 2007, an MW = 8.1 extensional earthquake ruptured within the Pacific plate beneath the seaward edge of the Kuril trench. This event is the third largest normal-faulting earthquake seaward of a subduction zone on record, and its rupture zone extended to at least 33 km depth and paralleled most of the length of the 2006 rupture. The 13 January 2007 event produced stronger shaking in Japan than the larger thrust event, as a consequence of higher short-period energy radiation from the source. The great event aftershock sequences were dominated by the expected faulting geometries; thrust faulting for the 2006 rupture zone, and normal faulting for

  18. Spatial-temporal variation of low-frequency earthquake bursts near Parkfield, California

    Science.gov (United States)

    Wu, Chunquan; Guyer, Robert; Shelly, David R.; Trugman, D.; Frank, William; Gomberg, Joan S.; Johnson, P.

    2015-01-01

    Tectonic tremor (TT) and low-frequency earthquakes (LFEs) have been found in the deeper crust of various tectonic environments globally in the last decade. The spatial-temporal behaviour of LFEs provides insight into deep fault zone processes. In this study, we examine recurrence times from a 12-yr catalogue of 88 LFE families with ∼730 000 LFEs in the vicinity of the Parkfield section of the San Andreas Fault (SAF) in central California. We apply an automatic burst detection algorithm to the LFE recurrence times to identify the clustering behaviour of LFEs (LFE bursts) in each family. We find that the burst behaviours in the northern and southern LFE groups differ. Generally, the northern group has longer burst duration but fewer LFEs per burst, while the southern group has shorter burst duration but more LFEs per burst. The southern group LFE bursts are generally more correlated than the northern group, suggesting more coherent deep fault slip and relatively simpler deep fault structure beneath the locked section of SAF. We also found that the 2004 Parkfield earthquake clearly increased the number of LFEs per burst and average burst duration for both the northern and the southern groups, with a relatively larger effect on the northern group. This could be due to the weakness of northern part of the fault, or the northwesterly rupture direction of the Parkfield earthquake.

  19. Seismotectonics of the 2014 Chiang Rai, Thailand, earthquake sequence

    Science.gov (United States)

    Pananont, P.; Herman, M. W.; Pornsopin, P.; Furlong, K. P.; Habangkaem, S.; Waldhauser, F.; Wongwai, W.; Limpisawad, S.; Warnitchai, P.; Kosuwan, S.; Wechbunthung, B.

    2017-08-01

    On 5 May 2014, a Mw 6.2 strike-slip earthquake occurred in the Mae Lao region of Chiang Rai province in Thailand. This earthquake took place in a region of known faults and caused substantial damage and injuries, although the region had been previously identified as having a relatively low earthquake hazard. Detailed field reconnaissance and deployment of a dense, temporary, network of broadband seismometers allowed details of the damage and its relationship to seismicity to be analyzed. The aftershock sequence associated with this main shock occurs on two well-defined trends, reflecting the two potential fault planes in earthquake mechanisms for the main shock and the majority of the aftershocks. The damage area was relatively large for an event of this magnitude, but building damage was largely limited to the primary rupture region, while liquefaction and other ground failure are spatially associated with the rupture area and along regional rivers. Stress modeling, combined with the time series and pattern of aftershock activity, leads us to propose that slip near the northern termination of the main shock rupture continued slightly onto a conjugate fault, helping to trigger the distinct pattern of two discrete, conjugate trends of aftershock activity that mirror the kinematics of the main shock fault mechanism.

  20. Identification and characterization of earthquake clusters: a comparative analysis for selected sequences in Italy

    Science.gov (United States)

    Peresan, Antonella; Gentili, Stefania

    2017-04-01

    Identification and statistical characterization of seismic clusters may provide useful insights about the features of seismic energy release and their relation to physical properties of the crust within a given region. Moreover, a number of studies based on spatio-temporal analysis of main-shocks occurrence require preliminary declustering of the earthquake catalogs. Since various methods, relying on different physical/statistical assumptions, may lead to diverse classifications of earthquakes into main events and related events, we aim to investigate the classification differences among different declustering techniques. Accordingly, a formal selection and comparative analysis of earthquake clusters is carried out for the most relevant earthquakes in North-Eastern Italy, as reported in the local OGS-CRS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics since 1977. The comparison is then extended to selected earthquake sequences associated with a different seismotectonic setting, namely to events that occurred in the region struck by the recent Central Italy destructive earthquakes, making use of INGV data. Various techniques, ranging from classical space-time windows methods to ad hoc manual identification of aftershocks, are applied for detection of earthquake clusters. In particular, a statistical method based on nearest-neighbor distances of events in space-time-energy domain, is considered. Results from clusters identification by the nearest-neighbor method turn out quite robust with respect to the time span of the input catalogue, as well as to minimum magnitude cutoff. The identified clusters for the largest events reported in North-Eastern Italy since 1977 are well consistent with those reported in earlier studies, which were aimed at detailed manual aftershocks identification. The study shows that the data-driven approach, based on the nearest-neighbor distances, can be satisfactorily applied to decompose the seismic

  1. Earthquake prediction in California using regression algorithms and cloud-based big data infrastructure

    Science.gov (United States)

    Asencio-Cortés, G.; Morales-Esteban, A.; Shang, X.; Martínez-Álvarez, F.

    2018-06-01

    Earthquake magnitude prediction is a challenging problem that has been widely studied during the last decades. Statistical, geophysical and machine learning approaches can be found in literature, with no particularly satisfactory results. In recent years, powerful computational techniques to analyze big data have emerged, making possible the analysis of massive datasets. These new methods make use of physical resources like cloud based architectures. California is known for being one of the regions with highest seismic activity in the world and many data are available. In this work, the use of several regression algorithms combined with ensemble learning is explored in the context of big data (1 GB catalog is used), in order to predict earthquakes magnitude within the next seven days. Apache Spark framework, H2 O library in R language and Amazon cloud infrastructure were been used, reporting very promising results.

  2. A record of large earthquakes during the past two millennia on the southern Green Valley Fault, California

    Science.gov (United States)

    Lienkaemper, James J.; Baldwin, John N.; Turner, Robert; Sickler, Robert R.; Brown, Johnathan

    2013-01-01

    We document evidence for surface-rupturing earthquakes (events) at two trench sites on the southern Green Valley fault, California (SGVF). The 75-80-km long dextral SGVF creeps ~1-4 mm/yr. We identify stratigraphic horizons disrupted by upward-flowering shears and in-filled fissures unlikely to have formed from creep alone. The Mason Rd site exhibits four events from ~1013 CE to the Present. The Lopes Ranch site (LR, 12 km to the south) exhibits three events from 18 BCE to Present including the most recent event (MRE), 1610 ±52 yr CE (1σ) and a two-event interval (18 BCE-238 CE) isolated by a millennium of low deposition. Using Oxcal to model the timing of the 4-event earthquake sequence from radiocarbon data and the LR MRE yields a mean recurrence interval (RI or μ) of 199 ±82 yr (1σ) and ±35 yr (standard error of the mean), the first based on geologic data. The time since the most recent earthquake (open window since MRE) is 402 yr ±52 yr, well past μ~200 yr. The shape of the probability density function (pdf) of the average RI from Oxcal resembles a Brownian Passage Time (BPT) pdf (i.e., rather than normal) that permits rarer longer ruptures potentially involving the Berryessa and Hunting Creek sections of the northernmost GVF. The model coefficient of variation (cv, σ/μ) is 0.41, but a larger value (cv ~0.6) fits better when using BPT. A BPT pdf with μ of 250 yr and cv of 0.6 yields 30-yr rupture probabilities of 20-25% versus a Poisson probability of 11-17%.

  3. Simulating Earthquakes for Science and Society: Earthquake Visualizations Ideal for use in Science Communication and Education

    Science.gov (United States)

    de Groot, R.

    2008-12-01

    The Southern California Earthquake Center (SCEC) has been developing groundbreaking computer modeling capabilities for studying earthquakes. These visualizations were initially shared within the scientific community but have recently gained visibility via television news coverage in Southern California. Computers have opened up a whole new world for scientists working with large data sets, and students can benefit from the same opportunities (Libarkin & Brick, 2002). For example, The Great Southern California ShakeOut was based on a potential magnitude 7.8 earthquake on the southern San Andreas fault. The visualization created for the ShakeOut was a key scientific and communication tool for the earthquake drill. This presentation will also feature SCEC Virtual Display of Objects visualization software developed by SCEC Undergraduate Studies in Earthquake Information Technology interns. According to Gordin and Pea (1995), theoretically visualization should make science accessible, provide means for authentic inquiry, and lay the groundwork to understand and critique scientific issues. This presentation will discuss how the new SCEC visualizations and other earthquake imagery achieve these results, how they fit within the context of major themes and study areas in science communication, and how the efficacy of these tools can be improved.

  4. Uniform California earthquake rupture forecast, version 3 (UCERF3): the time-independent model

    Science.gov (United States)

    Field, Edward H.; Biasi, Glenn P.; Bird, Peter; Dawson, Timothy E.; Felzer, Karen R.; Jackson, David D.; Johnson, Kaj M.; Jordan, Thomas H.; Madden, Christopher; Michael, Andrew J.; Milner, Kevin R.; Page, Morgan T.; Parsons, Thomas; Powers, Peter M.; Shaw, Bruce E.; Thatcher, Wayne R.; Weldon, Ray J.; Zeng, Yuehua; ,

    2013-01-01

    In this report we present the time-independent component of the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3), which provides authoritative estimates of the magnitude, location, and time-averaged frequency of potentially damaging earthquakes in California. The primary achievements have been to relax fault segmentation assumptions and to include multifault ruptures, both limitations of the previous model (UCERF2). The rates of all earthquakes are solved for simultaneously, and from a broader range of data, using a system-level "grand inversion" that is both conceptually simple and extensible. The inverse problem is large and underdetermined, so a range of models is sampled using an efficient simulated annealing algorithm. The approach is more derivative than prescriptive (for example, magnitude-frequency distributions are no longer assumed), so new analysis tools were developed for exploring solutions. Epistemic uncertainties were also accounted for using 1,440 alternative logic tree branches, necessitating access to supercomputers. The most influential uncertainties include alternative deformation models (fault slip rates), a new smoothed seismicity algorithm, alternative values for the total rate of M≥5 events, and different scaling relationships, virtually all of which are new. As a notable first, three deformation models are based on kinematically consistent inversions of geodetic and geologic data, also providing slip-rate constraints on faults previously excluded because of lack of geologic data. The grand inversion constitutes a system-level framework for testing hypotheses and balancing the influence of different experts. For example, we demonstrate serious challenges with the Gutenberg-Richter hypothesis for individual faults. UCERF3 is still an approximation of the system, however, and the range of models is limited (for example, constrained to stay close to UCERF2). Nevertheless, UCERF3 removes the apparent UCERF2 overprediction of

  5. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  6. Accounting for orphaned aftershocks in the earthquake background rate

    Science.gov (United States)

    Van Der Elst, Nicholas

    2017-01-01

    Aftershocks often occur within cascades of triggered seismicity in which each generation of aftershocks triggers an additional generation, and so on. The rate of earthquakes in any particular generation follows Omori's law, going approximately as 1/t. This function decays rapidly, but is heavy-tailed, and aftershock sequences may persist for long times at a rate that is difficult to discriminate from background. It is likely that some apparently spontaneous earthquakes in the observational catalogue are orphaned aftershocks of long-past main shocks. To assess the relative proportion of orphaned aftershocks in the apparent background rate, I develop an extension of the ETAS model that explicitly includes the expected contribution of orphaned aftershocks to the apparent background rate. Applying this model to California, I find that the apparent background rate can be almost entirely attributed to orphaned aftershocks, depending on the assumed duration of an aftershock sequence. This implies an earthquake cascade with a branching ratio (the average number of directly triggered aftershocks per main shock) of nearly unity. In physical terms, this implies that very few earthquakes are completely isolated from the perturbing effects of other earthquakes within the fault system. Accounting for orphaned aftershocks in the ETAS model gives more accurate estimates of the true background rate, and more realistic expectations for long-term seismicity patterns.

  7. Earthquake Triggering in the September 2017 Mexican Earthquake Sequence

    Science.gov (United States)

    Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.

    2017-12-01

    Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress

  8. 1/f and the Earthquake Problem: Scaling constraints that facilitate operational earthquake forecasting

    Science.gov (United States)

    yoder, M. R.; Rundle, J. B.; Turcotte, D. L.

    2012-12-01

    The difficulty of forecasting earthquakes can fundamentally be attributed to the self-similar, or "1/f", nature of seismic sequences. Specifically, the rate of occurrence of earthquakes is inversely proportional to their magnitude m, or more accurately to their scalar moment M. With respect to this "1/f problem," it can be argued that catalog selection (or equivalently, determining catalog constraints) constitutes the most significant challenge to seismicity based earthquake forecasting. Here, we address and introduce a potential solution to this most daunting problem. Specifically, we introduce a framework to constrain, or partition, an earthquake catalog (a study region) in order to resolve local seismicity. In particular, we combine Gutenberg-Richter (GR), rupture length, and Omori scaling with various empirical measurements to relate the size (spatial and temporal extents) of a study area (or bins within a study area) to the local earthquake magnitude potential - the magnitude of earthquake the region is expected to experience. From this, we introduce a new type of time dependent hazard map for which the tuning parameter space is nearly fully constrained. In a similar fashion, by combining various scaling relations and also by incorporating finite extents (rupture length, area, and duration) as constraints, we develop a method to estimate the Omori (temporal) and spatial aftershock decay parameters as a function of the parent earthquake's magnitude m. From this formulation, we develop an ETAS type model that overcomes many point-source limitations of contemporary ETAS. These models demonstrate promise with respect to earthquake forecasting applications. Moreover, the methods employed suggest a general framework whereby earthquake and other complex-system, 1/f type, problems can be constrained from scaling relations and finite extents.; Record-breaking hazard map of southern California, 2012-08-06. "Warm" colors indicate local acceleration (elevated hazard

  9. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.; Mai, Paul Martin; Schorlemmer, Danijel

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data

  10. Spatial Evaluation and Verification of Earthquake Simulators

    Science.gov (United States)

    Wilson, John Max; Yoder, Mark R.; Rundle, John B.; Turcotte, Donald L.; Schultz, Kasey W.

    2017-06-01

    In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed m>6.0 earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.

  11. Effects of November 8, 1980 earthquake on Humboldt Bay Power Plant and Eureka, California area. Reconnaissance report 13 Nov-14 Nov 80

    International Nuclear Information System (INIS)

    Herring, K.S.; Rooney, V.; Chokshi, N.C.

    1981-06-01

    On November 8, 1980, an earthquake of a reported surface wave magnitude of 7.0 occurred off the coast of California, west of Eureka and the Humboldt Bay Power Plant. Three NRC staff members visited the site the following week to survey any damage associated with the earthquake, with the objective of using collected data to assist the NRR staff in ongoing seismic evaluations of older operating nuclear power plant facilities. This report contains their observations. They concluded that the effects of the earthquake on Humboldt Bay Power Plant Unit 3 were minimal and did not endanger the health and safety of the public. They recommended that improvements be made to seismic recording equipment and that generic preparation for future post-earthquake reconnaissance trips be made before the actual occurrence of earthquakes

  12. The Accidental Spokesperson - Science Communication during the 2010-2011 Christchurch, NZ Earthquake Sequence

    Science.gov (United States)

    Furlong, K. P.

    2015-12-01

    Beginning September 4, 2010, with a Mw 7.1 earthquake, a multi-year earthquake sequence changed life in Canterbury NZ. Information communicated by a core group of university-based earthquake scientists provided accessible information to the general public, the press, and policy makers. Although at the start of this prolonged sequence, no one anticipated its longevity nor its impact, this initial (and largest) event did catalyze a demand from the public and policy makers for information and led to some important lessons in how to communicate science to a broad audience as an event unfolds and when it is personally important to the general public. Earthquakes are neither new nor rare to New Zealand, but the Christchurch area was seen as likely suffering only from the far-field effects of a major earthquake on the Alpine Fault or Marlborough fault system. Policy makers had planned and expected that another city such as Wellington would be where they would need to respond. As a visiting faculty at the University of Canterbury, with expertise in earthquake science, I was entrained and engaged in the response - both the scientific and communication aspects. It soon became clear that formal press releases and statements from government ministries and agencies did little to address the questions and uncertainties that the public, the press, and even the policy makers had. Rather, a series of public lectures, broad ranging discussions with the media (both print and radio/television), and OpEd pieces provided by this small group of earthquake focused faculty at the University of Canterbury provided the background information, best estimates of what could occur in the future, and why Earth was acting as it was. This filled a critical gap in science information going to the public, and helped build a level of trust in the public that became critically needed after the situation escalated with subsequent damaging events through early-mid 2011, and onward.

  13. Recent Achievements of the Collaboratory for the Study of Earthquake Predictability

    Science.gov (United States)

    Jackson, D. D.; Liukis, M.; Werner, M. J.; Schorlemmer, D.; Yu, J.; Maechling, P. J.; Zechar, J. D.; Jordan, T. H.

    2015-12-01

    Maria Liukis, SCEC, USC; Maximilian Werner, University of Bristol; Danijel Schorlemmer, GFZ Potsdam; John Yu, SCEC, USC; Philip Maechling, SCEC, USC; Jeremy Zechar, Swiss Seismological Service, ETH; Thomas H. Jordan, SCEC, USC, and the CSEP Working Group The Collaboratory for the Study of Earthquake Predictability (CSEP) supports a global program to conduct prospective earthquake forecasting experiments. CSEP testing centers are now operational in California, New Zealand, Japan, China, and Europe with 435 models under evaluation. The California testing center, operated by SCEC, has been operational since Sept 1, 2007, and currently hosts 30-minute, 1-day, 3-month, 1-year and 5-year forecasts, both alarm-based and probabilistic, for California, the Western Pacific, and worldwide. We have reduced testing latency, implemented prototype evaluation of M8 forecasts, and are currently developing formats and procedures to evaluate externally-hosted forecasts and predictions. These efforts are related to CSEP support of the USGS program in operational earthquake forecasting and a DHS project to register and test external forecast procedures from experts outside seismology. A retrospective experiment for the 2010-2012 Canterbury earthquake sequence has been completed, and the results indicate that some physics-based and hybrid models outperform purely statistical (e.g., ETAS) models. The experiment also demonstrates the power of the CSEP cyberinfrastructure for retrospective testing. Our current development includes evaluation strategies that increase computational efficiency for high-resolution global experiments, such as the evaluation of the Global Earthquake Activity Rate (GEAR) model. We describe the open-source CSEP software that is available to researchers as they develop their forecast models (http://northridge.usc.edu/trac/csep/wiki/MiniCSEP). We also discuss applications of CSEP infrastructure to geodetic transient detection and how CSEP procedures are being

  14. Automatic analysis of the 2015 Gorkha earthquake aftershock sequence.

    Science.gov (United States)

    Baillard, C.; Lyon-Caen, H.; Bollinger, L.; Rietbrock, A.; Letort, J.; Adhikari, L. B.

    2016-12-01

    The Mw 7.8 Gorkha earthquake, that partially ruptured the Main Himalayan Thrust North of Kathmandu on the 25th April 2015, was the largest and most catastrophic earthquake striking Nepal since the great M8.4 1934 earthquake. This mainshock was followed by multiple aftershocks, among them, two notable events that occurred on the 12th May with magnitudes of 7.3 Mw and 6.3 Mw. Due to these recent events it became essential for the authorities and for the scientific community to better evaluate the seismic risk in the region through a detailed analysis of the earthquake catalog, amongst others, the spatio-temporal distribution of the Gorkha aftershock sequence. Here we complement this first study by doing a microseismic study using seismic data coming from the eastern part of the Nepalese Seismological Center network associated to one broadband station in Everest. Our primary goal is to deliver an accurate catalog of the aftershock sequence. Due to the exceptional number of events detected we performed an automatic picking/locating procedure which can be splitted in 4 steps: 1) Coarse picking of the onsets using a classical STA/LTA picker, 2) phase association of picked onsets to detect and declare seismic events, 3) Kurtosis pick refinement around theoretical arrival times to increase picking and location accuracy and, 4) local magnitude calculation based amplitude of waveforms. This procedure is time efficient ( 1 sec/event), reduces considerably the location uncertainties ( 2 to 5 km errors) and increases the number of events detected compared to manual processing. Indeed, the automatic detection rate is 10 times higher than the manual detection rate. By comparing to the USGS catalog we were able to give a new attenuation law to compute local magnitudes in the region. A detailed analysis of the seismicity shows a clear migration toward the east of the region and a sudden decrease of seismicity 100 km east of Kathmandu which may reveal the presence of a tectonic

  15. Multifractal analysis of 2001 Mw 7 . 7 Bhuj earthquake sequence in Gujarat, Western India

    Science.gov (United States)

    Aggarwal, Sandeep Kumar; Pastén, Denisse; Khan, Prosanta Kumar

    2017-12-01

    The 2001 Mw 7 . 7 Bhuj mainshock seismic sequence in the Kachchh area, occurring during 2001 to 2012, has been analyzed using mono-fractal and multi-fractal dimension spectrum analysis technique. This region was characterized by frequent moderate shocks of Mw ≥ 5 . 0 for more than a decade since the occurrence of 2001 Bhuj earthquake. The present study is therefore important for precursory analysis using this sequence. The selected long-sequence has been investigated first time for completeness magnitude Mc 3.0 using the maximum curvature method. Multi-fractal Dq spectrum (Dq ∼ q) analysis was carried out using effective window-length of 200 earthquakes with a moving window of 20 events overlapped by 180 events. The robustness of the analysis has been tested by considering the magnitude completeness correction term of 0.2 to Mc 3.0 as Mc 3.2 and we have tested the error in the calculus of Dq for each magnitude threshold. On the other hand, the stability of the analysis has been investigated down to the minimum magnitude of Mw ≥ 2 . 6 in the sequence. The analysis shows the multi-fractal dimension spectrum Dq decreases with increasing of clustering of events with time before a moderate magnitude earthquake in the sequence, which alternatively accounts for non-randomness in the spatial distribution of epicenters and its self-organized criticality. Similar behavior is ubiquitous elsewhere around the globe, and warns for proximity of a damaging seismic event in an area. OS: Please confirm math roman or italics in abs.

  16. Conceptualizing ¬the Abstractions of Earthquakes Through an Instructional Sequence Using SeisMac and the Rapid Earthquake Viewer

    Science.gov (United States)

    Taber, J.; Hubenthal, M.; Wysession, M.

    2007-12-01

    Newsworthy earthquakes provide an engaging hook for students in Earth science classes, particularly when discussing their effects on people and the landscape. However, engaging students in an analysis of earthquakes that extends beyond death and damage, is frequently hampered by the abstraction of recorded ground motion data in the form of raw seismograms and the inability of most students to personally relate to ground accelerations. To overcome these challenges, an educational sequence has been developed using two software tools: SeisMac by Daniel Griscom, and the Rapid Earthquake Viewer (REV) developed by the University of South Carolina in collaboration with IRIS and DLESE. This sequence presents a unique opportunity for Earth Science teachers to "create" foundational experiences for students as they construction a framework of understanding of abstract concepts. The first activity is designed to introduce the concept of a three-component seismogram and to directly address the very abstract nature of seismograms through a kinesthetic experience. Students first learn to take the pulse of their classroom through a guided exploration of SeisMac, which displays the output of the laptop's built-in Sudden Motion Sensor (a 3-component accelerometer). This exploration allows students to view a 3-component seismogram as they move or tap the laptop and encourages them to propose and carry out experiments to explain the meaning of the 3-component seismogram. Once completed students are then asked to apply this new knowledge to a real 3-component seismogram printed from REV. Next the activity guides students through the process of identifying P and S waves and using SeisMac to connect the physical motion of the laptop to the "wiggles" they see on the SeisMac display and then comparing those to the "wiggles" they see on their seismogram. At this point students are more fully prepared to engage in an S-P location exercise such as those included in many state standards

  17. Earthquake outlook for the San Francisco Bay region 2014–2043

    Science.gov (United States)

    Aagaard, Brad T.; Blair, James Luke; Boatwright, John; Garcia, Susan H.; Harris, Ruth A.; Michael, Andrew J.; Schwartz, David P.; DiLeo, Jeanne S.; Jacques, Kate; Donlin, Carolyn

    2016-06-13

    Using information from recent earthquakes, improved mapping of active faults, and a new model for estimating earthquake probabilities, the 2014 Working Group on California Earthquake Probabilities updated the 30-year earthquake forecast for California. They concluded that there is a 72 percent probability (or likelihood) of at least one earthquake of magnitude 6.7 or greater striking somewhere in the San Francisco Bay region before 2043. Earthquakes this large are capable of causing widespread damage; therefore, communities in the region should take simple steps to help reduce injuries, damage, and disruption, as well as accelerate recovery from these earthquakes.

  18. Reply to “Comment on “Should Memphis build for California's earthquakes?” From A.D. Frankel”

    Science.gov (United States)

    Stein, Seth; Tomasello, Joseph; Newman, Andrew

    Carl Sagan observed that “extraordinary claims require extraordinary evidence.” In our view, A.D. Frankel's arguments (see accompanying Comment piece) do not reach the level required to demonstrate the counter-intuitive propositions that the earthquake hazard in the New Madrid Seismic Zone (NMSZ) is comparable to that in coastal California, and that buildings should be built to similar standards.This interchange is the latest in an ongoing debate beginning with Newman et al.'s [1999a] recommendation, based on analysis of Global Positioning System and earthquake data, that Frankel et al.'s [1996] estimate of California-level seismic hazard for the NMSZ should be reduced. Most points at issue, except for those related to the costs and benefits of the proposed new International Building Code 2000, have already been argued at length by both sides in the literature [e.g.,Schweig et al., 1999; Newman et al., 1999b, 2001; Cramer, 2001]. Hence,rather than rehash these points, we will try here to provide readers not enmeshed in this morass with an overview of the primary differences between our view and that of Frankel.

  19. Analysis of Earthquake Source Spectra in Salton Trough

    Science.gov (United States)

    Chen, X.; Shearer, P. M.

    2009-12-01

    Previous studies of the source spectra of small earthquakes in southern California show that average Brune-type stress drops vary among different regions, with particularly low stress drops observed in the Salton Trough (Shearer et al., 2006). The Salton Trough marks the southern end of the San Andreas Fault and is prone to earthquake swarms, some of which are driven by aseismic creep events (Lohman and McGuire, 2007). In order to learn the stress state and understand the physical mechanisms of swarms and slow slip events, we analyze the source spectra of earthquakes in this region. We obtain Southern California Seismic Network (SCSN) waveforms for earthquakes from 1977 to 2009 archived at the Southern California Earthquake Center (SCEC) data center, which includes over 17,000 events. After resampling the data to a uniform 100 Hz sample rate, we compute spectra for both signal and noise windows for each seismogram, and select traces with a P-wave signal-to-noise ratio greater than 5 between 5 Hz and 15 Hz. Using selected displacement spectra, we isolate the source spectra from station terms and path effects using an empirical Green’s function approach. From the corrected source spectra, we compute corner frequencies and estimate moments and stress drops. Finally we analyze spatial and temporal variations in stress drop in the Salton Trough and compare them with studies of swarms and creep events to assess the evolution of faulting and stress in the region. References: Lohman, R. B., and J. J. McGuire (2007), Earthquake swarms driven by aseismic creep in the Salton Trough, California, J. Geophys. Res., 112, B04405, doi:10.1029/2006JB004596 Shearer, P. M., G. A. Prieto, and E. Hauksson (2006), Comprehensive analysis of earthquake source spectra in southern California, J. Geophys. Res., 111, B06303, doi:10.1029/2005JB003979.

  20. Spatial and Temporal Stress Drop Variations of the 2011 Tohoku Earthquake Sequence

    Science.gov (United States)

    Miyake, H.

    2013-12-01

    The 2011 Tohoku earthquake sequence consists of foreshocks, mainshock, aftershocks, and repeating earthquakes. To quantify spatial and temporal stress drop variations is important for understanding M9-class megathrust earthquakes. Variability and spatial and temporal pattern of stress drop is a basic information for rupture dynamics as well as useful to source modeling. As pointed in the ground motion prediction equations by Campbell and Bozorgnia [2008, Earthquake Spectra], mainshock-aftershock pairs often provide significant decrease of stress drop. We here focus strong motion records before and after the Tohoku earthquake, and analyze source spectral ratios considering azimuth- and distance dependency [Miyake et al., 2001, GRL]. Due to the limitation of station locations on land, spatial and temporal stress drop variations are estimated by adjusting shifts from the omega-squared source spectral model. The adjustment is based on the stochastic Green's function simulations of source spectra considering azimuth- and distance dependency. We assumed the same Green's functions for event pairs for each station, both the propagation path and site amplification effects are cancelled out. Precise studies of spatial and temporal stress drop variations have been performed [e.g., Allmann and Shearer, 2007, JGR], this study targets the relations between stress drop vs. progression of slow slip prior to the Tohoku earthquake by Kato et al. [2012, Science] and plate structures. Acknowledgement: This study is partly supported by ERI Joint Research (2013-B-05). We used the JMA unified earthquake catalogue and K-NET, KiK-net, and F-net data provided by NIED.

  1. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults.

    Science.gov (United States)

    McGuire, Jeffrey J; Boettcher, Margaret S; Jordan, Thomas H

    2005-03-24

    East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominantly aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion.

  2. Earthquake Education in Prime Time

    Science.gov (United States)

    de Groot, R.; Abbott, P.; Benthien, M.

    2004-12-01

    Since 2001, the Southern California Earthquake Center (SCEC) has collaborated on several video production projects that feature important topics related to earthquake science, engineering, and preparedness. These projects have also fostered many fruitful and sustained partnerships with a variety of organizations that have a stake in hazard education and preparedness. The Seismic Sleuths educational video first appeared in the spring season 2001 on Discovery Channel's Assignment Discovery. Seismic Sleuths is based on a highly successful curriculum package developed jointly by the American Geophysical Union and The Department of Homeland Security Federal Emergency Management Agency. The California Earthquake Authority (CEA) and the Institute for Business and Home Safety supported the video project. Summer Productions, a company with a reputation for quality science programming, produced the Seismic Sleuths program in close partnership with scientists, engineers, and preparedness experts. The program has aired on the National Geographic Channel as recently as Fall 2004. Currently, SCEC is collaborating with Pat Abbott, a geology professor at San Diego State University (SDSU) on the video project Written In Stone: Earthquake Country - Los Angeles. Partners on this project include the California Seismic Safety Commission, SDSU, SCEC, CEA, and the Insurance Information Network of California. This video incorporates live-action demonstrations, vivid animations, and a compelling host (Abbott) to tell the story about earthquakes in the Los Angeles region. The Written in Stone team has also developed a comprehensive educator package that includes the video, maps, lesson plans, and other supporting materials. We will present the process that facilitates the creation of visually effective, factually accurate, and entertaining video programs. We acknowledge the need to have a broad understanding of the literature related to communication, media studies, science education, and

  3. The Non-Regularity of Earthquake Recurrence in California: Lessons From Long Paleoseismic Records in Simple vs Complex Fault Regions (Invited)

    Science.gov (United States)

    Rockwell, T. K.

    2010-12-01

    A long paleoseismic record at Hog Lake on the central San Jacinto fault (SJF) in southern California documents evidence for 18 surface ruptures in the past 3.8-4 ka. This yields a long-term recurrence interval of about 210 years, consistent with its slip rate of ~16 mm/yr and field observations of 3-4 m of displacement per event. However, during the past 3800 years, the fault has switched from a quasi-periodic mode of earthquake production, during which the recurrence interval is similar to the long-term average, to clustered behavior with the inter-event periods as short as a few decades. There are also some periods as long as 450 years during which there were no surface ruptures, and these periods are commonly followed by one to several closely-timed ruptures. The coefficient of variation (CV) for the timing of these earthquakes is about 0.6 for the past 4000 years (17 intervals). Similar behavior has been observed on the San Andreas Fault (SAF) south of the Transverse Ranges where clusters of earthquakes have been followed by periods of lower seismic production, and the CV is as high as 0.7 for some portions of the fault. In contrast, the central North Anatolian Fault (NAF) in Turkey, which ruptured in 1944, appears to have produced ruptures with similar displacement at fairly regular intervals for the past 1600 years. With a CV of 0.16 for timing, and close to 0.1 for displacement, the 1944 rupture segment near Gerede appears to have been both periodic and characteristic. The SJF and SAF are part of a broad plate boundary system with multiple parallel strands with significant slip rates. Additional faults lay to the east (Eastern California shear zone) and west (faults of the LA basin and southern California Borderland), which makes the southern SAF system a complex and broad plate boundary zone. In comparison, the 1944 rupture section of the NAF is simple, straight and highly localized, which contrasts with the complex system of parallel faults in southern

  4. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California

    Science.gov (United States)

    Taira, Taka’aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes. PMID:29326977

  5. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California.

    Science.gov (United States)

    Taira, Taka'aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes.

  6. Identifying Active Faults by Improving Earthquake Locations with InSAR Data and Bayesian Estimation: The 2004 Tabuk (Saudi Arabia) Earthquake Sequence

    KAUST Repository

    Xu, Wenbin

    2015-02-03

    A sequence of shallow earthquakes of magnitudes ≤5.1 took place in 2004 on the eastern flank of the Red Sea rift, near the city of Tabuk in northwestern Saudi Arabia. The earthquakes could not be well located due to the sparse distribution of seismic stations in the region, making it difficult to associate the activity with one of the many mapped faults in the area and thus to improve the assessment of seismic hazard in the region. We used Interferometric Synthetic Aperture Radar (InSAR) data from the European Space Agency’s Envisat and ERS‐2 satellites to improve the location and source parameters of the largest event of the sequence (Mw 5.1), which occurred on 22 June 2004. The mainshock caused a small but distinct ∼2.7  cm displacement signal in the InSAR data, which reveals where the earthquake took place and shows that seismic reports mislocated it by 3–16 km. With Bayesian estimation, we modeled the InSAR data using a finite‐fault model in a homogeneous elastic half‐space and found the mainshock activated a normal fault, roughly 70 km southeast of the city of Tabuk. The southwest‐dipping fault has a strike that is roughly parallel to the Red Sea rift, and we estimate the centroid depth of the earthquake to be ∼3.2  km. Projection of the fault model uncertainties to the surface indicates that one of the west‐dipping normal faults located in the area and oriented parallel to the Red Sea is a likely source for the mainshock. The results demonstrate how InSAR can be used to improve locations of moderate‐size earthquakes and thus to identify currently active faults.

  7. Identifying Active Faults by Improving Earthquake Locations with InSAR Data and Bayesian Estimation: The 2004 Tabuk (Saudi Arabia) Earthquake Sequence

    KAUST Repository

    Xu, Wenbin; Dutta, Rishabh; Jonsson, Sigurjon

    2015-01-01

    A sequence of shallow earthquakes of magnitudes ≤5.1 took place in 2004 on the eastern flank of the Red Sea rift, near the city of Tabuk in northwestern Saudi Arabia. The earthquakes could not be well located due to the sparse distribution of seismic stations in the region, making it difficult to associate the activity with one of the many mapped faults in the area and thus to improve the assessment of seismic hazard in the region. We used Interferometric Synthetic Aperture Radar (InSAR) data from the European Space Agency’s Envisat and ERS‐2 satellites to improve the location and source parameters of the largest event of the sequence (Mw 5.1), which occurred on 22 June 2004. The mainshock caused a small but distinct ∼2.7  cm displacement signal in the InSAR data, which reveals where the earthquake took place and shows that seismic reports mislocated it by 3–16 km. With Bayesian estimation, we modeled the InSAR data using a finite‐fault model in a homogeneous elastic half‐space and found the mainshock activated a normal fault, roughly 70 km southeast of the city of Tabuk. The southwest‐dipping fault has a strike that is roughly parallel to the Red Sea rift, and we estimate the centroid depth of the earthquake to be ∼3.2  km. Projection of the fault model uncertainties to the surface indicates that one of the west‐dipping normal faults located in the area and oriented parallel to the Red Sea is a likely source for the mainshock. The results demonstrate how InSAR can be used to improve locations of moderate‐size earthquakes and thus to identify currently active faults.

  8. The smart cluster method. Adaptive earthquake cluster identification and analysis in strong seismic regions

    Science.gov (United States)

    Schaefer, Andreas M.; Daniell, James E.; Wenzel, Friedemann

    2017-07-01

    Earthquake clustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation for probabilistic seismic hazard assessment. This study introduces the Smart Cluster Method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal cluster identification. It utilises the magnitude-dependent spatio-temporal earthquake density to adjust the search properties, subsequently analyses the identified clusters to determine directional variation and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010-2011 Darfield-Christchurch sequence, a reclassification procedure is applied to disassemble subsequent ruptures using near-field searches, nearest neighbour classification and temporal splitting. The method is capable of identifying and classifying earthquake clusters in space and time. It has been tested and validated using earthquake data from California and New Zealand. A total of more than 1500 clusters have been found in both regions since 1980 with M m i n = 2.0. Utilising the knowledge of cluster classification, the method has been adjusted to provide an earthquake declustering algorithm, which has been compared to existing methods. Its performance is comparable to established methodologies. The analysis of earthquake clustering statistics lead to various new and updated correlation functions, e.g. for ratios between mainshock and strongest aftershock and general aftershock activity metrics.

  9. 20 cool facts about the New Madrid Seismic Zone-Commemorating the bicentennial of the New Madrid earthquake sequence, December 1811-February 1812 [poster

    Science.gov (United States)

    Williams, R.A.; McCallister, N.S.; Dart, R.L.

    2011-01-01

    This poster summarizes a few of the more significant facts about the series of large earthquakes that struck the New Madrid seismic zone of southeastern Missouri, northeastern Arkansas, and adjacent parts of Tennessee and Kentucky from December 1811 to February 1812. Three earthquakes in this sequence had a magnitude (M) of 7.0 or greater. The first earthquake occurred on December 16, 1811, at 2:15 a.m.; the second on January 23, 1812, at 9 a.m.; and the third on February 7, 1812, at 3:45 a.m. These three earthquakes were among the largest to strike North America since European settlement. The mainshocks were followed by many hundreds of aftershocks that occurred over the next decade. Many of the aftershocks were major earthquakes themselves. The area that was strongly shaken by the three main shocks was 2-3 times as large as the strongly shaken area of the 1964 M9.2 Alaskan earthquake and 10 times as large as that of the 1906 M7.8 San Francisco earthquake. Geologic studies show that the 1811-1812 sequence was not an isolated event in the New Madrid region. The 1811-1812 New Madrid earthquake sequence was preceded by at least two other similar sequences in about A.D. 1450 and A.D. 900. Research also indicates that other large earthquakes have occurred in the region surrounding the main New Madrid seismicity trends in the past 5,000 years or so.

  10. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 1, Main report

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-11-01

    Since 1982, there has been a major effort expended to evaluate the susceptibility of nuclear Power plant equipment to failure and significant damage during seismic events. This was done by making use of data on the performance of electrical and mechanical equipment in conventional power plants and other similar industrial facilities during strong motion earthquakes. This report is intended as an extension of the seismic experience data collection effort and a compilation of experience data specific to power plant piping and supports designed and constructed US power piping code requirements which have experienced strong motion earthquakes. Eight damaging (Richter Magnitude 7.7 to 5.5) California earthquakes and their effects on 8 power generating facilities in use natural gas and California were reviewed. All of these facilities were visited and evaluated. Seven fossel-fueled (dual use natural gas and oil) and one nuclear fueled plants consisting of a total of 36 individual boiler or reactor units were investigated. Peak horizontal ground accelerations that either had been recorded on site at these facilities or were considered applicable to these power plants on the basis of nearby recordings ranged between 0.20g and 0.5lg with strong motion durations which varied from 3.5 to 15 seconds. Most US nuclear power plants are designed for a safe shutdown earthquake peak ground acceleration equal to 0.20g or less with strong motion durations which vary from 10 to 15 seconds

  11. Broadband records of earthquakes in deep gold mines and a comparison with results from SAFOD, California

    Science.gov (United States)

    McGarr, Arthur F.; Boettcher, M.; Fletcher, Jon Peter B.; Sell, Russell; Johnston, Malcolm J.; Durrheim, R.; Spottiswoode, S.; Milev, A.

    2009-01-01

    For one week during September 2007, we deployed a temporary network of field recorders and accelerometers at four sites within two deep, seismically active mines. The ground-motion data, recorded at 200 samples/sec, are well suited to determining source and ground-motion parameters for the mining-induced earthquakes within and adjacent to our network. Four earthquakes with magnitudes close to 2 were recorded with high signal/noise at all four sites. Analysis of seismic moments and peak velocities, in conjunction with the results of laboratory stick-slip friction experiments, were used to estimate source processes that are key to understanding source physics and to assessing underground seismic hazard. The maximum displacements on the rupture surfaces can be estimated from the parameter , where  is the peak ground velocity at a given recording site, and R is the hypocentral distance. For each earthquake, the maximum slip and seismic moment can be combined with results from laboratory friction experiments to estimate the maximum slip rate within the rupture zone. Analysis of the four M 2 earthquakes recorded during our deployment and one of special interest recorded by the in-mine seismic network in 2004 revealed maximum slips ranging from 4 to 27 mm and maximum slip rates from 1.1 to 6.3 m/sec. Applying the same analyses to an M 2.1 earthquake within a cluster of repeating earthquakes near the San Andreas Fault Observatory at Depth site, California, yielded similar results for maximum slip and slip rate, 14 mm and 4.0 m/sec.

  12. Analysis of the 2005-2016 Earthquake Sequence in Northern Iran Using the Visibility Graph Method

    Science.gov (United States)

    Khoshnevis, Naeem; Taborda, Ricardo; Azizzadeh-Roodpish, Shima; Telesca, Luciano

    2017-11-01

    We present an analysis of the seismicity of northern Iran in the period between 2005 and 2016 using a recently introduced method based on concepts of graph theory. The method relies on the inter-event visibility defined in terms of a connectivity degree parameter, k, which is correlated with the earthquake magnitude, M. Previous studies show that the slope m of the line fitting the k- M plot by the least squares method also observes a relationship with the b value from the Gutenberg-Richter law, thus rendering the graph analysis useful to examine the seismicity of a region. These correlations seem to hold for the analysis of relatively small sequences of earthquakes, offering the possibility of studying seismicity parameters in time. We apply this approach to the case of the seismicity of northern Iran, using an earthquake catalog for the tectonic seismic regions of Azerbaijan, Alborz, and Kopeh Dagh. We use results drawn for this region with the visibility graph approach in combination with results from other similar studies to further improve the universal relationship between m and b, and show that the visibility graph approach can be considered as a valid alternative for analyzing regional seismicity properties and earthquake sequences.

  13. The Preliminary Study of the 4 March 2010 Mw 6.3 Jiasian, Taiwan Earthquake Sequence

    Directory of Open Access Journals (Sweden)

    Hsin-Hua Huang

    2011-01-01

    Full Text Available On 4 March 2010, an inland Mw 6.3 earthquake occurred near the town of Jiasian in Kaohsiung County, Taiwan causing large ground shaking and extensive damage. In this study, we integrate the records from the Central Weather Bureau Seismic Network (CWBSN and Taiwan Strong Motion Instrumentation Program (TSMIP to obtain the relocated earthquake sequence and its first-motion focal mechanisms. This dataset offers us precise and reliable results which suggest a focal depth of 23 km and a possible fault plane of strike 313¢X, dip 41¢X, and rake 42¢X for the Jiasian earthquake. This fault plane significantly differs from the N-S striking Chaochou Fault (CCF as well as the principal trend of Taiwan orogenic belt, and should be an undiscovered fault in southern Taiwan. The relocated Jiasian earthquake sequence initiating from the 23-km-deep mainshock and terminating at around 10 km in depth also indicates it is a blind fault. Peak ground acceleration (PGA and peak ground velocity (PGV recorded by the TSMIP stations reveal a distinct NW-SE-shape pattern from the epicenter area toward the Chiayi region, likely due to the directivity and site effects. Such phenomena should be considered for future regional hazard assessments.

  14. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-11-01

    Volume 2 of the ''Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems'' contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included

  15. Site Effects Study In Athens (greece) Using The 7th September 1999 Earthquake Aftershock Sequence

    Science.gov (United States)

    Serpetsidaki, A.; Sokos, E.

    On 7 September 1999 at 11:56:50 GMT, an earthquake of Mw=5.9 occurred at Athens capital of Greece. The epicenter was located in the Northwest area of Parnitha Moun- tain at 18km distance from the city centre. This earthquake was one of the most de- structive in Greece during the modern times. The intensity of the earthquake reached IX in the Northwest territories of the city and caused the death of 143 people and seri- ous structural damage in many buildings. On the 13th of September the Seismological Laboratory of Patras University, installed a seismic network of 30 stations in order to observe the evolution of the aftershock sequence. This temporary seismic network remained in the area of Attika for 50 days and recorded a significant part of the af- tershock sequence. In this paper we use the high quality recordings of this network to investigate the influence of the surface geology to the seismic motion, on sites within the epicentral area, which suffered the most during this earthquake. We applied the horizontal-to-vertical (H/V) spectral ratio method on noise and on earthquake records and the obtained results exhibit very good agreement. Finally we compare the results with the geological conditions of the study area and the damage distribution. Most of the obtained amplification levels were low with an exemption in the site of Ano Liosia were a significant amount of damage was observed and the results indicate that the earthquake motion was amplified four times. Based on the above we conclude that the damages in the city of Athens were due to source effects rather than site effects.

  16. One Basin, One Stress Regime, One Orientation of Seismogenic Basement Faults, Variable Spatio-Temporal Slip Histories: Lessons from Fort Worth Basin Induced Earthquake Sequences

    Science.gov (United States)

    DeShon, H. R.; Brudzinski, M.; Frohlich, C.; Hayward, C.; Jeong, S.; Hornbach, M. J.; Magnani, M. B.; Ogwari, P.; Quinones, L.; Scales, M. M.; Stump, B. W.; Sufri, O.; Walter, J. I.

    2017-12-01

    Since October 2008, the Fort Worth basin in north Texas has experienced over 30 magnitude (M) 3.0+ earthquakes, including one M4.0. Five named earthquake sequences have been recorded by local seismic networks: DFW Airport, Cleburne-Johnson County, Azle, Irving-Dallas, and Venus-Johnson County. Earthquakes have occurred on northeast (NE)-southwest (SW) trending Precambrian basement faults and within the overlying Ellenburger limestone unit used for wastewater disposal. Focal mechanisms indicate primarily normal faulting, and stress inversions indicate maximum regional horizontal stress strikes 20-30° NE. The seismogenic sections of the faults in either the basement or within the Ellenburger appear optimally oriented for failure within the modern stress regime. Stress drop estimates range from 10 to 75 bars, with little variability between and within the named sequences, and the values are consistent with intraplate earthquake stress drops in natural tectonic settings. However, the spatio-temporal history of each sequence relative to wastewater injection data varies. The May 2015 M4.0 Venus earthquake, for example, is only the largest of what is nearly 10 years of earthquake activity on a single fault structure. Here, maximum earthquake size has increased with time and exhibits a log-linear relationship to cumulative injected volume from 5 nearby wells. At the DFW airport, where the causative well was shut-in within a few months of the initial earthquakes and soon after the well began operation, we document migration away from the injector on the same fault for nearly 6 km sporadically over 5 years. The Irving-Dallas and Azle sequences, like DFW airport, appear to have started rather abruptly with just a few small magnitude earthquakes in the weeks or months preceding the significant set of magnitude 3.5+ earthquakes associated with each sequence. There are no nearby (<10 km) injection operations to the Irving-Dallas sequence and the Azle linked wells operated for

  17. Earthquake swarms and the semidiurnal solid earth tide

    Energy Technology Data Exchange (ETDEWEB)

    Klein, F W

    1976-01-01

    Several correlations between peak earthquake activity during swarms and the phase and stress orientation of the calculated solid earth tide are described. The events correlating with the tide are clusters of swarm earthquakes. Swarm clusters from many sequences recorded over several years are used. Significant tidal correlations (which have less than a 5% chance of being observed if earthquakes were random) are found in the Reykjanes Peninsula in Iceland, the central Mid-Atlantic Ridge, the Imperial Valley and northern Gulf of California, and larger (m/sub b/ greater than or equal to 5.0) aftershocks of the 1965 Rat Islands earthquake. In addition, sets of larger single earthquakes on Atlantic and north-east Pacific fracture zones are significantly correlated with the calculated solid tide. No tidal correlation, however, could be found for the Matsushiro Japan swarm of 1965 to 1967. The earthquake-tide correlations other than those of the Reykjanes Peninsula and Mid-Atlantic Ridge can be interpreted as triggering caused by enhancement of the tectonic stress by tidal stress, i.e. the alignment of fault and tidal principal stresses. All tidal correlations except in the Aleutians are associated with oceanic rifts or their landward extensions. If lithospheric plates are decoupled at active rifts, then tidal stresses channeled along the lithospheric stress guide may be concentrated at ridge-type plate boundaries. Tidal triggering of earthquakes at rifts may reflect this possible amplification of tidal strains in the weakened lithosphere at ridges. 25 figures, 2 tables.

  18. Seismotectonic framework of the 2010 February 27 Mw 8.8 Maule, Chile earthquake sequence

    Science.gov (United States)

    Hayes, Gavin P.; Bergman, Eric; Johnson, Kendra J.; Benz, Harley M.; Brown, Lucy; Meltzer, Anne S.

    2013-01-01

    After the 2010 Mw 8.8 Maule earthquake, an international collaboration involving teams and instruments from Chile, the US, the UK, France and Germany established the International Maule Aftershock Deployment temporary network over the source region of the event to facilitate detailed, open-access studies of the aftershock sequence. Using data from the first 9-months of this deployment, we have analyzed the detailed spatial distribution of over 2500 well-recorded aftershocks. All earthquakes have been relocated using a hypocentral decomposition algorithm to study the details of and uncertainties in both their relative and absolute locations. We have computed regional moment tensor solutions for the largest of these events to produce a catalogue of 465 mechanisms, and have used all of these data to study the spatial distribution of the aftershock sequence with respect to the Chilean megathrust. We refine models of co-seismic slip distribution of the Maule earthquake, and show how small changes in fault geometries assumed in teleseismic finite fault modelling significantly improve fits to regional GPS data, implying that the accuracy of rapid teleseismic fault models can be substantially improved by consideration of existing fault geometry model databases. We interpret all of these data in an integrated seismotectonic framework for the Maule earthquake rupture and its aftershock sequence, and discuss the relationships between co-seismic rupture and aftershock distributions. While the majority of aftershocks are interplate thrust events located away from regions of maximum co-seismic slip, interesting clusters of aftershocks are identified in the lower plate at both ends of the main shock rupture, implying internal deformation of the slab in response to large slip on the plate boundary interface. We also perform Coulomb stress transfer calculations to compare aftershock locations and mechanisms to static stress changes following the Maule rupture. Without the

  19. The ShakeOut Earthquake Scenario - A Story That Southern Californians Are Writing

    Science.gov (United States)

    Perry, Suzanne; Cox, Dale; Jones, Lucile; Bernknopf, Richard; Goltz, James; Hudnut, Kenneth; Mileti, Dennis; Ponti, Daniel; Porter, Keith; Reichle, Michael; Seligson, Hope; Shoaf, Kimberley; Treiman, Jerry; Wein, Anne

    2008-01-01

    The question is not if but when southern California will be hit by a major earthquake - one so damaging that it will permanently change lives and livelihoods in the region. How severe the changes will be depends on the actions that individuals, schools, businesses, organizations, communities, and governments take to get ready. To help prepare for this event, scientists of the U.S. Geological Survey (USGS) have changed the way that earthquake scenarios are done, uniting a multidisciplinary team that spans an unprecedented number of specialties. The team includes the California Geological Survey, Southern California Earthquake Center, and nearly 200 other partners in government, academia, emergency response, and industry, working to understand the long-term impacts of an enormous earthquake on the complicated social and economic interactions that sustain southern California society. This project, the ShakeOut Scenario, has applied the best current scientific understanding to identify what can be done now to avoid an earthquake catastrophe. More information on the science behind this project will be available in The ShakeOut Scenario (USGS Open-File Report 2008-1150; http://pubs.usgs.gov/of/2008/1150/). The 'what if?' earthquake modeled in the ShakeOut Scenario is a magnitude 7.8 on the southern San Andreas Fault. Geologists selected the details of this hypothetical earthquake by considering the amount of stored strain on that part of the fault with the greatest risk of imminent rupture. From this, seismologists and computer scientists modeled the ground shaking that would occur in this earthquake. Engineers and other professionals used the shaking to produce a realistic picture of this earthquake's damage to buildings, roads, pipelines, and other infrastructure. From these damages, social scientists projected casualties, emergency response, and the impact of the scenario earthquake on southern California's economy and society. The earthquake, its damages, and

  20. Scenario earthquake hazards for the Long Valley Caldera-Mono Lake area, east-central California (ver. 2.0, January 2018)

    Science.gov (United States)

    Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.

    2014-06-30

    As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and also for preparing emergency response plans.The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault Zone to the east of the study area.In this report, an earthquake scenario is intended to depict the potential consequences of significant earthquakes. A scenario earthquake is not necessarily the largest or most damaging earthquake possible on a recognized fault. Rather it is both large enough and likely enough that emergency planners should consider it in regional emergency response plans. In particular, the ground motion predicted for a given scenario earthquake does not represent a full probabilistic hazard assessment, and thus it does not provide the basis for hazard zoning and earthquake-resistant building design.Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM). Alternatives

  1. The Road to Total Earthquake Safety

    Science.gov (United States)

    Frohlich, Cliff

    Cinna Lomnitz is possibly the most distinguished earthquake seismologist in all of Central and South America. Among many other credentials, Lomnitz has personally experienced the shaking and devastation that accompanied no fewer than five major earthquakes—Chile, 1939; Kern County, California, 1952; Chile, 1960; Caracas,Venezuela, 1967; and Mexico City, 1985. Thus he clearly has much to teach someone like myself, who has never even actually felt a real earthquake.What is this slim book? The Road to Total Earthquake Safety summarizes Lomnitz's May 1999 presentation at the Seventh Mallet-Milne Lecture, sponsored by the Society for Earthquake and Civil Engineering Dynamics. His arguments are motivated by the damage that occurred in three earthquakes—Mexico City, 1985; Loma Prieta, California, 1989; and Kobe, Japan, 1995. All three quakes occurred in regions where earthquakes are common. Yet in all three some of the worst damage occurred in structures located a significant distance from the epicenter and engineered specifically to resist earthquakes. Some of the damage also indicated that the structures failed because they had experienced considerable rotational or twisting motion. Clearly, Lomnitz argues, there must be fundamental flaws in the usually accepted models explaining how earthquakes generate strong motions, and how we should design resistant structures.

  2. Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT): Towards the Next Generation of Internship

    Science.gov (United States)

    Perry, S.; Benthien, M.; Jordan, T. H.

    2005-12-01

    The SCEC/UseIT internship program is training the next generation of earthquake scientist, with methods that can be adapted to other disciplines. UseIT interns work collaboratively, in multi-disciplinary teams, conducting computer science research that is needed by earthquake scientists. Since 2002, the UseIT program has welcomed 64 students, in some two dozen majors, at all class levels, from schools around the nation. Each summer''s work is posed as a ``Grand Challenge.'' The students then organize themselves into project teams, decide how to proceed, and pool their diverse talents and backgrounds. They have traditional mentors, who provide advice and encouragement, but they also mentor one another, and this has proved to be a powerful relationship. Most begin with fear that their Grand Challenge is impossible, and end with excitement and pride about what they have accomplished. The 22 UseIT interns in summer, 2005, were primarily computer science and engineering majors, with others in geology, mathematics, English, digital media design, physics, history, and cinema. The 2005 Grand Challenge was to "build an earthquake monitoring system" to aid scientists who must visualize rapidly evolving earthquake sequences and convey information to emergency personnel and the public. Most UseIT interns were engaged in software engineering, bringing new datasets and functionality to SCEC-VDO (Virtual Display of Objects), a 3D visualization software that was prototyped by interns last year, using Java3D and an extensible, plug-in architecture based on the Eclipse Integrated Development Environment. Other UseIT interns used SCEC-VDO to make animated movies, and experimented with imagery in order to communicate concepts and events in earthquake science. One movie-making project included the creation of an assessment to test the effectiveness of the movie''s educational message. Finally, one intern created an interactive, multimedia presentation of the UseIT program.

  3. Long‐term time‐dependent probabilities for the third Uniform California Earthquake Rupture Forecast (UCERF3)

    Science.gov (United States)

    Field, Edward; Biasi, Glenn P.; Bird, Peter; Dawson, Timothy E.; Felzer, Karen R.; Jackson, David A.; Johnson, Kaj M.; Jordan, Thomas H.; Madden, Christopher; Michael, Andrew J.; Milner, Kevin; Page, Morgan T.; Parsons, Thomas E.; Powers, Peter; Shaw, Bruce E.; Thatcher, Wayne R.; Weldon, Ray J.; Zeng, Yuehua

    2015-01-01

    The 2014 Working Group on California Earthquake Probabilities (WGCEP 2014) presents time-dependent earthquake probabilities for the third Uniform California Earthquake Rupture Forecast (UCERF3). Building on the UCERF3 time-independent model, published previously, renewal models are utilized to represent elastic-rebound-implied probabilities. A new methodology has been developed that solves applicability issues in the previous approach for un-segmented models. The new methodology also supports magnitude-dependent aperiodicity and accounts for the historic open interval on faults that lack a date-of-last-event constraint. Epistemic uncertainties are represented with a logic tree, producing 5,760 different forecasts. Results for a variety of evaluation metrics are presented, including logic-tree sensitivity analyses and comparisons to the previous model (UCERF2). For 30-year M≥6.7 probabilities, the most significant changes from UCERF2 are a threefold increase on the Calaveras fault and a threefold decrease on the San Jacinto fault. Such changes are due mostly to differences in the time-independent models (e.g., fault slip rates), with relaxation of segmentation and inclusion of multi-fault ruptures being particularly influential. In fact, some UCERF2 faults were simply too long to produce M 6.7 sized events given the segmentation assumptions in that study. Probability model differences are also influential, with the implied gains (relative to a Poisson model) being generally higher in UCERF3. Accounting for the historic open interval is one reason. Another is an effective 27% increase in the total elastic-rebound-model weight. The exact factors influencing differences between UCERF2 and UCERF3, as well as the relative importance of logic-tree branches, vary throughout the region, and depend on the evaluation metric of interest. For example, M≥6.7 probabilities may not be a good proxy for other hazard or loss measures. This sensitivity, coupled with the

  4. Static stress transfer during the 2002 Nenana Mountain-Denali Fault, Alaska, earthquake sequence

    Science.gov (United States)

    Anderson, G.; Ji, C.

    2003-01-01

    On 23 October 2002, the Mw 6.7 Nenana Mountain earthquake occurred in central Alaska. It was followed on 3 November 2002 by the Mw 7.9 Denali Fault mainshock, the largest strike-slip earthquake to occur in North America during the past 150 years. We have modeled static Coulomb stress transfer effects during this sequence. We find that the Nenana Mountain foreshock transferred 30-50 kPa of Coulomb stress to the hypocentral region of the Denali Fault mainshock, encouraging its occurrence. We also find that the two main earthquakes together transferred more than 400 kPa of Coulomb stress to the Cross Creek segment of the Totschunda fault system and to the Denali fault southeast of the mainshock rupture, and up to 80 kPa to the Denali fault west of the Nenana Mountain rupture. Other major faults in the region experienced much smaller static Coulomb stress changes.

  5. Fluid-driven normal faulting earthquake sequences in the Taiwan orogen

    Science.gov (United States)

    Wang, Ling-hua; Rau, Ruey-Juin; Lee, En-Jui

    2017-04-01

    Seismicity in the Central Range of Taiwan shows normal faulting mechanisms with T-axes directing NE, subparallel to the strike of the mountain belt. We analyze earthquake sequences occurred within 2012-2015 in the Nanshan area of northern Taiwan which indicating swarm behavior and migration characteristics. We select events larger than 2.0 from Central Weather Bureau catalog and use the double-difference relocation program hypoDD with waveform cross-correlation in the Nanshan area. We obtained a final count of 1406 (95%) relocated earthquakes. Moreover, we compute focal mechanisms using USGS program HASH by P-wave first motion and S/P ratio picking and 114 fault plane solutions with M 3.0-5.87 were determined. To test for fluid diffusion, we model seismicity using the equation of Shapiro et al. (1997) by fitting earthquake diffusing rate D during the migration period. According to the relocation result, seismicity in the Taiwan orogenic belt present mostly N25E orientation parallel to the mountain belt with the same direction of the tension axis. In addition, another seismic fracture depicted by seismicity rotated 35 degree counterclockwise to the NW direction. Nearly all focal mechanisms are normal fault type. In the Nanshan area, events show N10W distribution with a focal depth range from 5-12 km and illustrate fault plane dipping about 45-60 degree to SW. Three months before the M 5.87 mainshock which occurred in March, 2013, there were some foreshock events occurred in the shallow part of the fault plane of the mainshock. Half a year following the mainshock, earthquakes migrated to the north and south, respectively with processes matched the diffusion model at a rate of 0.2-0.6 m2/s. This migration pattern and diffusion rate offer an evidence of 'fluid-driven' process in the fault zone. We also find the upward migration of earthquakes in the mainshock source region. These phenomena are likely caused by the opening of the permeable conduit due to the M 5

  6. A comparison among observations and earthquake simulator results for the allcal2 California fault model

    Science.gov (United States)

    Tullis, Terry. E.; Richards-Dinger, Keith B.; Barall, Michael; Dieterich, James H.; Field, Edward H.; Heien, Eric M.; Kellogg, Louise; Pollitz, Fred F.; Rundle, John B.; Sachs, Michael K.; Turcotte, Donald L.; Ward, Steven N.; Yikilmaz, M. Burak

    2012-01-01

    In order to understand earthquake hazards we would ideally have a statistical description of earthquakes for tens of thousands of years. Unfortunately the ∼100‐year instrumental, several 100‐year historical, and few 1000‐year paleoseismological records are woefully inadequate to provide a statistically significant record. Physics‐based earthquake simulators can generate arbitrarily long histories of earthquakes; thus they can provide a statistically meaningful history of simulated earthquakes. The question is, how realistic are these simulated histories? This purpose of this paper is to begin to answer that question. We compare the results between different simulators and with information that is known from the limited instrumental, historic, and paleoseismological data.As expected, the results from all the simulators show that the observational record is too short to properly represent the system behavior; therefore, although tests of the simulators against the limited observations are necessary, they are not a sufficient test of the simulators’ realism. The simulators appear to pass this necessary test. In addition, the physics‐based simulators show similar behavior even though there are large differences in the methodology. This suggests that they represent realistic behavior. Different assumptions concerning the constitutive properties of the faults do result in enhanced capabilities of some simulators. However, it appears that the similar behavior of the different simulators may result from the fault‐system geometry, slip rates, and assumed strength drops, along with the shared physics of stress transfer.This paper describes the results of running four earthquake simulators that are described elsewhere in this issue of Seismological Research Letters. The simulators ALLCAL (Ward, 2012), VIRTCAL (Sachs et al., 2012), RSQSim (Richards‐Dinger and Dieterich, 2012), and ViscoSim (Pollitz, 2012) were run on our most recent all‐California fault

  7. Pre-earthquake multiparameter analysis of the 2016 Amatrice-Norcia (Central Italy) seismic sequence: a case study for the application of the SAFE project concepts

    Science.gov (United States)

    De Santis, A.

    2017-12-01

    The SAFE (Swarm for Earthquake study) project (funded by European Space Agency in the framework "STSE Swarm+Innovation", 2014-2016) aimed at applying the new approach of geosystemics to the analysis of Swarm satellite (ESA) electromagnetic data for investigating the preparatory phase of earthquakes. We present in this talk the case study of the most recent seismic sequence in Italy. First a M6 earthquake on 24 August 2016 and then a M6.5 earthquake on 30 October 2016 shocked almost in the same region of Central Italy causing about 300 deaths in total (mostly on 24 August), with a revival of other significant seismicity on January 2017. Analysing both geophysical and climatological satellite and ground data preceding the major earthquakes of the sequence we present results that confirm a complex solid earth-atmosphere coupling in the preparation phase of the whole sequence.

  8. The USGS Earthquake Notification Service (ENS): Customizable notifications of earthquakes around the globe

    Science.gov (United States)

    Wald, Lisa A.; Wald, David J.; Schwarz, Stan; Presgrave, Bruce; Earle, Paul S.; Martinez, Eric; Oppenheimer, David

    2008-01-01

    At the beginning of 2006, the U.S. Geological Survey (USGS) Earthquake Hazards Program (EHP) introduced a new automated Earthquake Notification Service (ENS) to take the place of the National Earthquake Information Center (NEIC) "Bigquake" system and the various other individual EHP e-mail list-servers for separate regions in the United States. These included northern California, southern California, and the central and eastern United States. ENS is a "one-stop shopping" system that allows Internet users to subscribe to flexible and customizable notifications for earthquakes anywhere in the world. The customization capability allows users to define the what (magnitude threshold), the when (day and night thresholds), and the where (specific regions) for their notifications. Customization is achieved by employing a per-user based request profile, allowing the notifications to be tailored for each individual's requirements. Such earthquake-parameter-specific custom delivery was not possible with simple e-mail list-servers. Now that event and user profiles are in a structured query language (SQL) database, additional flexibility is possible. At the time of this writing, ENS had more than 114,000 subscribers, with more than 200,000 separate user profiles. On a typical day, more than 188,000 messages get sent to a variety of widely distributed users for a wide range of earthquake locations and magnitudes. The purpose of this article is to describe how ENS works, highlight the features it offers, and summarize plans for future developments.

  9. Investigating on the Differences between Triggered and Background Seismicity in Italy and Southern California.

    Science.gov (United States)

    Stallone, A.; Marzocchi, W.

    2017-12-01

    Earthquake occurrence may be approximated by a multidimensional Poisson clustering process, where each point of the Poisson process is replaced by a cluster of points, the latter corresponding to the well-known aftershock sequence (triggered events). Earthquake clusters and their parents are assumed to occur according to a Poisson process at a constant temporal rate proportional to the tectonic strain rate, while events within a cluster are modeled as generations of dependent events reproduced by a branching process. Although the occurrence of such space-time clusters is a general feature in different tectonic settings, seismic sequences seem to have marked differences from region to region: one example, among many others, is that seismic sequences of moderate magnitude in Italian Apennines seem to last longer than similar seismic sequences in California. In this work we investigate on the existence of possible differences in the earthquake clustering process in these two areas. At first, we separate the triggered and background components of seismicity in the Italian and Southern California seismic catalog. Then we study the space-time domain of the triggered earthquakes with the aim to identify possible variations in the triggering properties across the two regions. In the second part of the work we focus our attention on the characteristics of the background seismicity in both seismic catalogs. The assumption of time stationarity of the background seismicity (which includes both cluster parents and isolated events) is still under debate. Some authors suggest that the independent component of seismicity could undergo transient perturbations at various time scales due to different physical mechanisms, such as, for example, viscoelastic relaxation, presence of fluids, non-stationary plate motion, etc, whose impact may depend on the tectonic setting. Here we test if the background seismicity in the two regions can be satisfactorily described by the time

  10. Romanian crustal earthquake sequences: evidence for space and time clustering in correlation with seismic source properties

    International Nuclear Information System (INIS)

    Popescu, E.; Popa, M.; Radulian, M.

    2002-01-01

    The study of seismic sequences is important from both scientific point of view, and its socio-economical impact on human society. In this paper we analyze the crustal earthquake sequences in correlation with the seismogenic zones delimited on the Romanian territory using geological and tectonic information available. We consider on one hand the sequences typical for the Carpathians foreland region (Ramnicu Sarat, Vrancioaia and Sinaia seismic zones), which are associated with the Vrancea subduction process and, on the other hand the sequences typical for the contact between the Pannonian Basin and Carpathians orogen (Banat seismic zone). To analyze the seismicity and source properties, we applied the fractal statistics and relative methods such as spectral ratio and deconvolution with the empirical Green's functions. On the basis of the retrieved source parameters for small and moderate size events the scaling relations for the characteristic properties of the seismic source are estimated. The scaling and earthquake clustering properties are correlated with the geological and rheological properties of the studied seismic areas. (authors)

  11. Earthquakes-Rattling the Earth's Plumbing System

    Science.gov (United States)

    Sneed, Michelle; Galloway, Devin L.; Cunningham, William L.

    2003-01-01

    Hydrogeologic responses to earthquakes have been known for decades, and have occurred both close to, and thousands of miles from earthquake epicenters. Water wells have become turbid, dry or begun flowing, discharge of springs and ground water to streams has increased and new springs have formed, and well and surface-water quality have become degraded as a result of earthquakes. Earthquakes affect our Earth’s intricate plumbing system—whether you live near the notoriously active San Andreas Fault in California, or far from active faults in Florida, an earthquake near or far can affect you and the water resources you depend on.

  12. Proceedings of the 11th United States-Japan natural resources panel for earthquake research, Napa Valley, California, November 16–18, 2016

    Science.gov (United States)

    Detweiler, Shane; Pollitz, Fred

    2017-10-18

    The UJNR Panel on Earthquake Research promotes advanced research toward a more fundamental understanding of the earthquake process and hazard estimation. The Eleventh Joint meeting was extremely beneficial in furthering cooperation and deepening understanding of problems common to both Japan and the United States.The meeting included productive exchanges of information on approaches to systematic observation and modeling of earthquake processes. Regarding the earthquake and tsunami of March 2011 off the Pacific coast of Tohoku and the 2016 Kumamoto earthquake sequence, the Panel recognizes that further efforts are necessary to achieve our common goal of reducing earthquake risk through close collaboration and focused discussions at the 12th UJNR meeting.

  13. The California Hazards Institute

    Science.gov (United States)

    Rundle, J. B.; Kellogg, L. H.; Turcotte, D. L.

    2006-12-01

    California's abundant resources are linked with its natural hazards. Earthquakes, landslides, wildfires, floods, tsunamis, volcanic eruptions, severe storms, fires, and droughts afflict the state regularly. These events have the potential to become great disasters, like the San Francisco earthquake and fire of 1906, that overwhelm the capacity of society to respond. At such times, the fabric of civic life is frayed, political leadership is tested, economic losses can dwarf available resources, and full recovery can take decades. A patchwork of Federal, state and local programs are in place to address individual hazards, but California lacks effective coordination to forecast, prevent, prepare for, mitigate, respond to, and recover from, the harmful effects of natural disasters. Moreover, we do not know enough about the frequency, size, time, or locations where they may strike, nor about how the natural environment and man-made structures would respond. As California's population grows and becomes more interdependent, even moderate events have the potential to trigger catastrophes. Natural hazards need not become natural disasters if they are addressed proactively and effectively, rather than reactively. The University of California, with 10 campuses distributed across the state, has world-class faculty and students engaged in research and education in all fields of direct relevance to hazards. For that reason, the UC can become a world leader in anticipating and managing natural hazards in order to prevent loss of life and property and degradation of environmental quality. The University of California, Office of the President, has therefore established a new system-wide Multicampus Research Project, the California Hazards Institute (CHI), as a mechanism to research innovative, effective solutions for California. The CHI will build on the rich intellectual capital and expertise of the Golden State to provide the best available science, knowledge and tools for

  14. The induced earthquake sequence related to the St. Gallen deep geothermal project (Switzerland): Fault reactivation and fluid interactions imaged by microseismicity

    Science.gov (United States)

    Diehl, T.; Kraft, T.; Kissling, E.; Wiemer, S.

    2017-09-01

    In July 2013, a sequence of more than 340 earthquakes was induced by reservoir stimulations and well-control procedures following a gas kick at a deep geothermal drilling project close to the city of St. Gallen, Switzerland. The sequence culminated in an ML 3.5 earthquake, which was felt within 10-15 km from the epicenter. High-quality earthquake locations and 3-D reflection seismic data acquired in the St. Gallen project provide a unique data set, which allows high-resolution studies of earthquake triggering related to the injection of fluids into macroscopic fault zones. In this study, we present a high-precision earthquake catalog of the induced sequence. Absolute locations are constrained by a coupled hypocenter-velocity inversion, and subsequent double-difference relocations image the geometry of the ML 3.5 rupture and resolve the spatiotemporal evolution of seismicity. A joint interpretation of earthquake and seismic data shows that the majority of the seismicity occurred in the pre-Mesozoic basement, hundreds of meters below the borehole and the targeted Mesozoic sequence. We propose a hydraulic connectivity between the reactivated fault and the borehole, likely through faults mapped by seismic data. Despite the excellent quality of the seismic data, the association of seismicity with mapped faults remains ambiguous. In summary, our results document that the actual hydraulic properties of a fault system and hydraulic connections between its fault segments are complex and may not be predictable upfront. Incomplete knowledge of fault structures and stress heterogeneities within highly complex fault systems additionally challenge the degree of predictability of induced seismicity related to underground fluid injections.

  15. Tilt Precursors before Earthquakes on the San Andreas Fault, California.

    Science.gov (United States)

    Johnston, M J; Mortensen, C E

    1974-12-13

    An array of 14 biaxial shallow-borehole tiltmeters (at 1O(-7) radian sensitivity) has been installed along 85 kilometers of the San Andreas fault during the past year. Earthquake-related changes in tilt have been simultaneously observed on up to four independent instruments. At earthquake distances greater than 10 earthquake source dimensions, there are few clear indications of tilt change. For the four instruments with the longest records (> 10 months), 26 earthquakes have occurred since July 1973 with at least one instrument closer than 10 source dimensions and 8 earthquakes with more than one instrument within that distance. Precursors in tilt direction have been observed before more than 10 earthquakes or groups of earthquakes, and no similar effect has yet been seen without the occurrence of an earthquake.

  16. California quake assessed

    Science.gov (United States)

    Wuethrich, Bernice

    On January 17, at 4:31 A.M., a 6.6 magnitude earthquake hit the Los Angeles area, crippling much of the local infrastructure and claiming 51 lives. Members of the Southern California Earthquake Network, a consortium of scientists at universities and the United States Geological Survey (USGS), entered a controlled crisis mode. Network scientists, including David Wald, Susan Hough, Kerry Sieh, and a half dozen others went into the field to gather information on the earthquake, which apparently ruptured an unmapped fault.

  17. Kinematics of the 2015 San Ramon, California earthquake swarm: Implications for fault zone structure and driving mechanisms

    Science.gov (United States)

    Xue, Lian; Bürgmann, Roland; Shelly, David R.; Johnson, Christopher W.; Taira, Taka'aki

    2018-05-01

    Earthquake swarms represent a sudden increase in seismicity that may indicate a heterogeneous fault-zone, the involvement of crustal fluids and/or slow fault slip. Swarms sometimes precede major earthquake ruptures. An earthquake swarm occurred in October 2015 near San Ramon, California in an extensional right step-over region between the northern Calaveras Fault and the Concord-Mt. Diablo fault zone, which has hosted ten major swarms since 1970. The 2015 San Ramon swarm is examined here from 11 October through 18 November using template matching analysis. The relocated seismicity catalog contains ∼4000 events with magnitudes between - 0.2

  18. Foreshock occurrence before large earthquakes

    Science.gov (United States)

    Reasenberg, P.A.

    1999-01-01

    Rates of foreshock occurrence involving shallow M ??? 6 and M ??? 7 mainshocks and M ??? 5 foreshocks were measured in two worldwide catalogs over ???20-year intervals. The overall rates observed are similar to ones measured in previous worldwide and regional studies when they are normalized for the ranges of magnitude difference they each span. The observed worldwide rates were compared to a generic model of earthquake clustering based on patterns of small and moderate aftershocks in California. The aftershock model was extended to the case of moderate foreshocks preceding large mainshocks. Overall, the observed worldwide foreshock rates exceed the extended California generic model by a factor of ???2. Significant differences in foreshock rate were found among subsets of earthquakes defined by their focal mechanism and tectonic region, with the rate before thrust events higher and the rate before strike-slip events lower than the worldwide average. Among the thrust events, a large majority, composed of events located in shallow subduction zones, had a high foreshock rate, while a minority, located in continental thrust belts, had a low rate. These differences may explain why previous surveys have found low foreshock rates among thrust events in California (especially southern California), while the worldwide observations suggests the opposite: California, lacking an active subduction zone in most of its territory, and including a region of mountain-building thrusts in the south, reflects the low rate apparently typical for continental thrusts, while the worldwide observations, dominated by shallow subduction zone events, are foreshock-rich. If this is so, then the California generic model may significantly underestimate the conditional probability for a very large (M ??? 8) earthquake following a potential (M ??? 7) foreshock in Cascadia. The magnitude differences among the identified foreshock-mainshock pairs in the Harvard catalog are consistent with a uniform

  19. Potential Effects of a Scenario Earthquake on the Economy of Southern California: Labor Market Exposure and Sensitivity Analysis to a Magnitude 7.8 Earthquake

    Science.gov (United States)

    Sherrouse, Benson C.; Hester, David J.; Wein, Anne M.

    2008-01-01

    The Multi-Hazards Demonstration Project (MHDP) is a collaboration between the U.S. Geological Survey (USGS) and various partners from the public and private sectors and academia, meant to improve Southern California's resiliency to natural hazards (Jones and others, 2007). In support of the MHDP objectives, the ShakeOut Scenario was developed. It describes a magnitude 7.8 (M7.8) earthquake along the southernmost 300 kilometers (200 miles) of the San Andreas Fault, identified by geoscientists as a plausible event that will cause moderate to strong shaking over much of the eight-county (Imperial, Kern, Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Ventura) Southern California region. This report contains an exposure and sensitivity analysis of economic Super Sectors in terms of labor and employment statistics. Exposure is measured as the absolute counts of labor market variables anticipated to experience each level of Instrumental Intensity (a proxy measure of damage). Sensitivity is the percentage of the exposure of each Super Sector to each Instrumental Intensity level. The analysis concerns the direct effect of the scenario earthquake on economic sectors and provides a baseline for the indirect and interactive analysis of an input-output model of the regional economy. The analysis is inspired by the Bureau of Labor Statistics (BLS) report that analyzed the labor market losses (exposure) of a M6.9 earthquake on the Hayward fault by overlaying geocoded labor market data on Instrumental Intensity values. The method used here is influenced by the ZIP-code-level data provided by the California Employment Development Department (CA EDD), which requires the assignment of Instrumental Intensities to ZIP codes. The ZIP-code-level labor market data includes the number of business establishments, employees, and quarterly payroll categorized by the North American Industry Classification System. According to the analysis results, nearly 225,000 business

  20. The 2012 Ferrara seismic sequence: Regional crustal structure, earthquake sources, and seismic hazard

    Science.gov (United States)

    Malagnini, Luca; Herrmann, Robert B.; Munafò, Irene; Buttinelli, Mauro; Anselmi, Mario; Akinci, Aybige; Boschi, E.

    2012-10-01

    Inadequate seismic design codes can be dangerous, particularly when they underestimate the true hazard. In this study we use data from a sequence of moderate-sized earthquakes in northeast Italy to validate and test a regional wave propagation model which, in turn, is used to understand some weaknesses of the current design spectra. Our velocity model, while regionalized and somewhat ad hoc, is consistent with geophysical observations and the local geology. In the 0.02-0.1 Hz band, this model is validated by using it to calculate moment tensor solutions of 20 earthquakes (5.6 ≥ MW ≥ 3.2) in the 2012 Ferrara, Italy, seismic sequence. The seismic spectra observed for the relatively small main shock significantly exceeded the design spectra to be used in the area for critical structures. Observations and synthetics reveal that the ground motions are dominated by long-duration surface waves, which, apparently, the design codes do not adequately anticipate. In light of our results, the present seismic hazard assessment in the entire Pianura Padana, including the city of Milan, needs to be re-evaluated.

  1. Investigation of an Unusually Shallow Earthquake Sequence in Mogul, NV from a Discrimination Perspective

    Science.gov (United States)

    2014-08-31

    the fault area that was active in the foreshock sequence. For this source dimension, a stress drop of 17.5 MPa was estimated, which is about 25% of...described by Anderson et al. (2009). Our relocation of the largest earthquake places the hypocenter 2.7 km below the surface. The foreshocks and...occurred after a sequence of foreshocks initiated on February 29, 56 days before the main shock (Figures 2 and 3). The triangular-shaped bounds for

  2. Earthquake early Warning ShakeAlert system: West coast wide production prototype

    Science.gov (United States)

    Kohler, Monica D.; Cochran, Elizabeth S.; Given, Douglas; Guiwits, Stephen; Neuhauser, Doug; Hensen, Ivan; Hartog, Renate; Bodin, Paul; Kress, Victor; Thompson, Stephen; Felizardo, Claude; Brody, Jeff; Bhadha, Rayo; Schwarz, Stan

    2017-01-01

    Earthquake early warning (EEW) is an application of seismological science that can give people, as well as mechanical and electrical systems, up to tens of seconds to take protective actions before peak earthquake shaking arrives at a location. Since 2006, the U.S. Geological Survey has been working in collaboration with several partners to develop EEW for the United States. The goal is to create and operate an EEW system, called ShakeAlert, for the highest risk areas of the United States, starting with the West Coast states of California, Oregon, and Washington. In early 2016, the Production Prototype v.1.0 was established for California; then, in early 2017, v.1.2 was established for the West Coast, with earthquake notifications being distributed to a group of beta users in California, Oregon, and Washington. The new ShakeAlert Production Prototype was an outgrowth from an earlier demonstration EEW system that began sending test notifications to selected users in California in January 2012. ShakeAlert leverages the considerable physical, technical, and organizational earthquake monitoring infrastructure of the Advanced National Seismic System, a nationwide federation of cooperating seismic networks. When fully implemented, the ShakeAlert system may reduce damage and injury caused by large earthquakes, improve the nation’s resilience, and speed recovery.

  3. Strong motions observed by K-NET and KiK-net during the 2016 Kumamoto earthquake sequence

    Science.gov (United States)

    Suzuki, Wataru; Aoi, Shin; Kunugi, Takashi; Kubo, Hisahiko; Morikawa, Nobuyuki; Nakamura, Hiromitsu; Kimura, Takeshi; Fujiwara, Hiroyuki

    2017-01-01

    The nationwide strong-motion seismograph network of K-NET and KiK-net in Japan successfully recorded the strong ground motions of the 2016 Kumamoto earthquake sequence, which show the several notable characteristics. For the first large earthquake with a JMA magnitude of 6.5 (21:26, April 14, 2016, JST), the large strong motions are concentrated near the epicenter and the strong-motion attenuations are well predicted by the empirical relation for crustal earthquakes with a moment magnitude of 6.1. For the largest earthquake of the sequence with a JMA magnitude of 7.3 (01:25, April 16, 2016, JST), the large peak ground accelerations and velocities extend from the epicentral area to the northeast direction. The attenuation feature of peak ground accelerations generally follows the empirical relation, whereas that for velocities deviates from the empirical relation for stations with the epicentral distance of greater than 200 km, which can be attributed to the large Love wave having a dominant period around 10 s. The large accelerations were observed at stations even in Oita region, more than 70 km northeast from the epicenter. They are attributed to the local induced earthquake in Oita region, whose moment magnitude is estimated to be 5.5 by matching the amplitudes of the corresponding phases with the empirical attenuation relation. The real-time strong-motion observation has a potential for contributing to the mitigation of the ongoing earthquake disasters. We test a methodology to forecast the regions to be exposed to the large shaking in real time, which has been developed based on the fact that the neighboring stations are already shaken, for the largest event of the Kumamoto earthquakes, and demonstrate that it is simple but effective to quickly make warning. We also shows that the interpolation of the strong motions in real time is feasible, which will be utilized for the real-time forecast of ground motions based on the observed shakings.[Figure not available

  4. Moment-ration imaging of seismic regions for earthquake prediction

    Science.gov (United States)

    Lomnitz, Cinna

    1993-10-01

    An algorithm for predicting large earthquakes is proposed. The reciprocal ratio (mri) of the residual seismic moment to the total moment release in a region is used for imaging seismic moment precursors. Peaks in mri predict recent major earthquakes, including the 1985 Michoacan, 1985 central Chile, and 1992 Eureka, California earthquakes.

  5. Where was the 1898 Mare Island Earthquake? Insights from the 2014 South Napa Earthquake

    Science.gov (United States)

    Hough, S. E.

    2014-12-01

    The 2014 South Napa earthquake provides an opportunity to reconsider the Mare Island earthquake of 31 March 1898, which caused severe damage to buildings at a Navy yard on the island. Revising archival accounts of the 1898 earthquake, I estimate a lower intensity magnitude, 5.8, than the value in the current Uniform California Earthquake Rupture Forecast (UCERF) catalog (6.4). However, I note that intensity magnitude can differ from Mw by upwards of half a unit depending on stress drop, which for a historical earthquake is unknowable. In the aftermath of the 2014 earthquake, there has been speculation that apparently severe effects on Mare Island in 1898 were due to the vulnerability of local structures. No surface rupture has ever been identified from the 1898 event, which is commonly associated with the Hayward-Rodgers Creek fault system, some 10 km west of Mare Island (e.g., Parsons et al., 2003). Reconsideration of detailed archival accounts of the 1898 earthquake, together with a comparison of the intensity distributions for the two earthquakes, points to genuinely severe, likely near-field ground motions on Mare Island. The 2014 earthquake did cause significant damage to older brick buildings on Mare Island, but the level of damage does not match the severity of documented damage in 1898. The high intensity files for the two earthquakes are more over spatially shifted, with the centroid of the 2014 distribution near the town of Napa and that of the 1898 distribution near Mare Island, east of the Hayward-Rodgers Creek system. I conclude that the 1898 Mare Island earthquake was centered on or near Mare Island, possibly involving rupture of one or both strands of the Franklin fault, a low-slip-rate fault sub-parallel to the Rodgers Creek fault to the west and the West Napa fault to the east. I estimate Mw5.8 assuming an average stress drop; data are also consistent with Mw6.4 if stress drop was a factor of ≈3 lower than average for California earthquakes. I

  6. Rupture Speed and Dynamic Frictional Processes for the 1995 ML4.1 Shacheng, Hebei, China, Earthquake Sequence

    Science.gov (United States)

    Liu, B.; Shi, B.

    2010-12-01

    An earthquake with ML4.1 occurred at Shacheng, Hebei, China, on July 20, 1995, followed by 28 aftershocks with 0.9≤ML≤4.0 (Chen et al, 2005). According to ZÚÑIGA (1993), for the 1995 ML4.1 Shacheng earthquake sequence, the main shock is corresponding to undershoot, while aftershocks should match overshoot. With the suggestion that the dynamic rupture processes of the overshoot aftershocks could be related to the crack (sub-fault) extension inside the main fault. After main shock, the local stresses concentration inside the fault may play a dominant role in sustain the crack extending. Therefore, the main energy dissipation mechanism should be the aftershocks fracturing process associated with the crack extending. We derived minimum radiation energy criterion (MREC) following variational principle (Kanamori and Rivera, 2004)(ES/M0')min≧[3M0/(ɛπμR3)](v/β)3, where ES and M0' are radiated energy and seismic moment gained from observation, μ is the modulus of fault rigidity, ɛ is the parameter of ɛ=M0'/M0,M0 is seismic moment and R is rupture size on the fault, v and β are rupture speed and S-wave speed. From II and III crack extending model, we attempt to reconcile a uniform expression for calculate seismic radiation efficiency ηG, which can be used to restrict the upper limit efficiency and avoid the non-physics phenomenon that radiation efficiency is larger than 1. In ML 4.1 Shacheng earthquake sequence, the rupture speed of the main shock was about 0.86 of S-wave speed β according to MREC, closing to the Rayleigh wave speed, while the rupture speeds of the remained 28 aftershocks ranged from 0.05β to 0.55β. The rupture speed was 0.9β, and most of the aftershocks are no more than 0.35β using II and III crack extending model. In addition, the seismic radiation efficiencies for this earthquake sequence were: for the most aftershocks, the radiation efficiencies were less than 10%, inferring a low seismic efficiency, whereas the radiation efficiency

  7. Foreshock occurrence rates before large earthquakes worldwide

    Science.gov (United States)

    Reasenberg, P.A.

    1999-01-01

    Global rates of foreshock occurrence involving shallow M ??? 6 and M ??? 7 mainshocks and M ??? 5 foreshocks were measured, using earthquakes listed in the Harvard CMT catalog for the period 1978-1996. These rates are similar to rates ones measured in previous worldwide and regional studies when they are normalized for the ranges of magnitude difference they each span. The observed worldwide rates were compared to a generic model of earthquake clustering, which is based on patterns of small and moderate aftershocks in California, and were found to exceed the California model by a factor of approximately 2. Significant differences in foreshock rate were found among subsets of earthquakes defined by their focal mechanism and tectonic region, with the rate before thrust events higher and the rate before strike-slip events lower than the worldwide average. Among the thrust events a large majority, composed of events located in shallow subduction zones, registered a high foreshock rate, while a minority, located in continental thrust belts, measured a low rate. These differences may explain why previous surveys have revealed low foreshock rates among thrust events in California (especially southern California), while the worldwide observations suggest the opposite: California, lacking an active subduction zone in most of its territory, and including a region of mountain-building thrusts in the south, reflects the low rate apparently typical for continental thrusts, while the worldwide observations, dominated by shallow subduction zone events, are foreshock-rich.

  8. 3-D P- and S-wave velocity structure and low-frequency earthquake locations in the Parkfield, California region

    Science.gov (United States)

    Zeng, Xiangfang; Thurber, Clifford H.; Shelly, David R.; Harrington, Rebecca M.; Cochran, Elizabeth S.; Bennington, Ninfa L.; Peterson, Dana; Guo, Bin; McClement, Kara

    2016-01-01

    To refine the 3-D seismic velocity model in the greater Parkfield, California region, a new data set including regular earthquakes, shots, quarry blasts and low-frequency earthquakes (LFEs) was assembled. Hundreds of traces of each LFE family at two temporary arrays were stacked with time–frequency domain phase weighted stacking method to improve signal-to-noise ratio. We extend our model resolution to lower crustal depth with LFE data. Our result images not only previously identified features but also low velocity zones (LVZs) in the area around the LFEs and the lower crust beneath the southern Rinconada Fault. The former LVZ is consistent with high fluid pressure that can account for several aspects of LFE behaviour. The latter LVZ is consistent with a high conductivity zone in magnetotelluric studies. A new Vs model was developed with S picks that were obtained with a new autopicker. At shallow depth, the low Vs areas underlie the strongest shaking areas in the 2004 Parkfield earthquake. We relocate LFE families and analyse the location uncertainties with the NonLinLoc and tomoDD codes. The two methods yield similar results.

  9. Earthquakes and faults in the San Francisco Bay area (1970-2003)

    Science.gov (United States)

    Sleeter, Benjamin M.; Calzia, James P.; Walter, Stephen R.; Wong, Florence L.; Saucedo, George J.

    2004-01-01

    The map depicts both active and inactive faults and earthquakes magnitude 1.5 to 7.0 in the greater San Francisco Bay area. Twenty-two earthquakes magnitude 5.0 and greater are indicated on the map and listed chronologically in an accompanying table. The data are compiled from records from 1970-2003. The bathymetry was generated from a digital version of NOAA maps and hydrogeographic data for San Francisco Bay. Elevation data are from the USGS National Elevation Database. Landsat satellite image is from seven Landsat 7 Enhanced Thematic Mapper Plus scenes. Fault data are reproduced with permission from the California Geological Survey. The earthquake data are from the Northern California Earthquake Catalog.

  10. Constraining the Long-Term Average of Earthquake Recurrence Intervals From Paleo- and Historic Earthquakes by Assimilating Information From Instrumental Seismicity

    Science.gov (United States)

    Zoeller, G.

    2017-12-01

    Paleo- and historic earthquakes are the most important source of information for the estimationof long-term recurrence intervals in fault zones, because sequences of paleoearthquakes cover more than one seismic cycle. On the other hand, these events are often rare, dating uncertainties are enormous and the problem of missing or misinterpreted events leads to additional problems. Taking these shortcomings into account, long-term recurrence intervals are usually unstable as long as no additional information are included. In the present study, we assume that the time to the next major earthquake depends on the rate of small and intermediate events between the large ones in terms of a ``clock-change'' model that leads to a Brownian Passage Time distribution for recurrence intervals. We take advantage of an earlier finding that the aperiodicity of this distribution can be related to the Gutenberg-Richter-b-value, which is usually around one and can be estimated easily from instrumental seismicity in the region under consideration. This allows to reduce the uncertainties in the estimation of the mean recurrence interval significantly, especially for short paleoearthquake sequences and high dating uncertainties. We present illustrative case studies from Southern California and compare the method with the commonly used approach of exponentially distributed recurrence times assuming a stationary Poisson process.

  11. Numerical modeling of block structure dynamics: Application to the Vrancea region and study of earthquakes sequences in the synthetic catalogs

    International Nuclear Information System (INIS)

    Soloviev, A.A.; Vorobieva, I.A.

    1995-08-01

    A seismically active region is represented as a system of absolutely rigid blocks divided by infinitely thin plane faults. The interaction of the blocks along the fault planes and with the underlying medium is viscous-elastic. The system of blocks moves as a consequence of prescribed motion of boundary blocks and the underlying medium. When for some part of a fault plane the stress surpasses a certain strength level a stress-drop (''a failure'') occurs. It can cause a failure for other parts of fault planes. The failures are considered as earthquakes. As a result of the numerical simulation a synthetic earthquake catalogue is produced. This procedure is applied for numerical modeling of dynamics of the block structure approximating the tectonic structure of the Vrancea region. By numerical experiments the values of the model parameters were obtained which supplied the synthetic earthquake catalog with the space distribution of epicenters close to the real distribution of the earthquake epicenters in the Vrancea region. The frequency-magnitude relations (Gutenberg-Richter curves) obtained for the synthetic and real catalogs have some common features. The sequences of earthquakes arising in the model are studied for some artificial structures. It is found that ''foreshocks'', ''main shocks'', and ''aftershocks'' could be detected among earthquakes forming the sequences. The features of aftershocks, foreshocks, and catalogs of main shocks are analysed. (author). 5 refs, 12 figs, 16 tabs

  12. Finding positives after disaster: Insights from nurses following the 2010-2011 Canterbury, NZ earthquake sequence.

    Science.gov (United States)

    Johal, Sarbjit S; Mounsey, Zoe R

    2015-11-01

    This paper identifies positive aspects of nurse experiences during the Canterbury 2010-2011 earthquake sequence and subsequent recovery process. Qualitative semi-structured interviews were undertaken with 11 nurses from the Christchurch area to explore the challenges faced by the nurses during and following the earthquakes. The interviews took place three years after the start of the earthquake experience to enable exploration of the longer term recovery process. The interview transcripts were analysed and coded using a grounded theory approach. The data analysis identified that despite the many challenges faced by the nurses during and following the earthquakes they were able to identify positives from their experience. A number of themes were identified that are related to posttraumatic growth, including; improvement in relationships with others, change in perspective/values, changed views of self and acknowledgement of the value of the experience. The research indicates that nurses were able to identify positive aspects of their experiences of the earthquakes and recovery process, suggesting that both positive and negative impacts on wellbeing can co-exist. These insights have value for employers designing support processes following disasters as focusing on positive elements could enhance nurse wellbeing during stressful times. Copyright © 2015 College of Emergency Nursing Australasia Ltd. Published by Elsevier Ltd. All rights reserved.

  13. Statistical short-term earthquake prediction.

    Science.gov (United States)

    Kagan, Y Y; Knopoff, L

    1987-06-19

    A statistical procedure, derived from a theoretical model of fracture growth, is used to identify a foreshock sequence while it is in progress. As a predictor, the procedure reduces the average uncertainty in the rate of occurrence for a future strong earthquake by a factor of more than 1000 when compared with the Poisson rate of occurrence. About one-third of all main shocks with local magnitude greater than or equal to 4.0 in central California can be predicted in this way, starting from a 7-year database that has a lower magnitude cut off of 1.5. The time scale of such predictions is of the order of a few hours to a few days for foreshocks in the magnitude range from 2.0 to 5.0.

  14. Comparison of four moderate-size earthquakes in southern California using seismology and InSAR

    Science.gov (United States)

    Mellors, R.J.; Magistrale, H.; Earle, P.; Cogbill, A.H.

    2004-01-01

    Source parameters determined from interferometric synthetic aperture radar (InSAR) measurements and from seismic data are compared from four moderate-size (less than M 6) earthquakes in southern California. The goal is to verify approximate detection capabilities of InSAR, assess differences in the results, and test how the two results can be reconciled. First, we calculated the expected surface deformation from all earthquakes greater than magnitude 4 in areas with available InSAR data (347 events). A search for deformation from the events in the interferograms yielded four possible events with magnitudes less than 6. The search for deformation was based on a visual inspection as well as cross-correlation in two dimensions between the measured signal and the expected signal. A grid-search algorithm was then used to estimate focal mechanism and depth from the InSAR data. The results were compared with locations and focal mechanisms from published catalogs. An independent relocation using seismic data was also performed. The seismic locations fell within the area of the expected rupture zone for the three events that show clear surface deformation. Therefore, the technique shows the capability to resolve locations with high accuracy and is applicable worldwide. The depths determined by InSAR agree with well-constrained seismic locations determined in a 3D velocity model. Depth control for well-imaged shallow events using InSAR data is good, and better than the seismic constraints in some cases. A major difficulty for InSAR analysis is the poor temporal coverage of InSAR data, which may make it impossible to distinguish deformation due to different earthquakes at the same location.

  15. The role of INGVterremoti blog in information management during the earthquake sequence in central Italy

    Directory of Open Access Journals (Sweden)

    Maurizio Pignone

    2017-01-01

    Full Text Available In this paper, we describe the role the INGVterremoti blog in information management during the first part of the earthquake sequence in central Italy (August 24 to September 30. In the last four years, we have been working on the INGVterremoti blog in order to provide quick updates on the ongoing seismic activity in Italy and in-depth scientific information. These include articles on specific historical earthquakes, seismic hazard, geological interpretations, source models from different type of data, effects at the surface, and so on. We have delivered information in quasi-real-time also about all the recent magnitude M≥4.0 earthquakes in Italy, the strongest events in the Mediterranean and in the world. During the 2016 central Italy, the INGVterremoti blog has continuously released information about seismic sequences with three types of posts: i updates on the ongoing seismic activity; ii reports on the activities carried out by the INGV teams in the field and any other working groups; iii in-depth scientific articles describing some specific analysis and results. All the blog posts have been shared automatically and in real time on the other social media of the INGVterremoti platform, also to counter the bad information and to fight rumors. These include Facebook, Twitter and INGVterremoti App on IOS and Android. As well, both the main INGV home page (http://www.ingv.it and the INGV earthquake portal (http://terremoti.ingv.it have published the contents of the blog on dedicated pages that were fed automatically. The work done day by day on the INGVterremoti blog has been coordinated with the INGV Press Office that has written several press releases based on the contents of the blog. Since August 24, 53 articles were published on the blog they have had more than 1.9 million views and 1 million visitors. The peak in the number of views, which was more than 800,000 in a single day, was registered on August 24, 2016, following the M 6

  16. Earthquake and ambient vibration monitoring of the steel-frame UCLA factor building

    Science.gov (United States)

    Kohler, M.D.; Davis, P.M.; Safak, E.

    2005-01-01

    Dynamic property measurements of the moment-resisting steel-frame University of California, Los Angeles, Factor building are being made to assess how forces are distributed over the building. Fourier amplitude spectra have been calculated from several intervals of ambient vibrations, a 24-hour period of strong winds, and from the 28 March 2003 Encino, California (ML = 2.9), the 3 September 2002 Yorba Linda, California (ML = 4.7), and the 3 November 2002 Central Alaska (Mw = 7.9) earthquakes. Measurements made from the ambient vibration records show that the first-mode frequency of horizontal vibration is between 0.55 and 0.6 Hz. The second horizontal mode has a frequency between 1.6 and 1.9 Hz. In contrast, the first-mode frequencies measured from earthquake data are about 0.05 to 0.1 Hz lower than those corresponding to ambient vibration recordings indicating softening of the soil-structure system as amplitudes become larger. The frequencies revert to pre-earthquake levels within five minutes of the Yorba Linda earthquake. Shaking due to strong winds that occurred during the Encino earthquake dominates the frequency decrease, which correlates in time with the duration of the strong winds. The first shear wave recorded from the Encino and Yorba Linda earthquakes takes about 0.4 sec to travel up the 17-story building. ?? 2005, Earthquake Engineering Research Institute.

  17. Web-Based Real Time Earthquake Forecasting and Personal Risk Management

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2012-12-01

    Earthquake forecasts have been computed by a variety of countries and economies world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. One example is the Working Group on California Earthquake Probabilities that has been responsible for the official California earthquake forecast since 1988. However, in a time of increasingly severe global financial constraints, we are now moving inexorably towards personal risk management, wherein mitigating risk is becoming the responsibility of individual members of the public. Under these circumstances, open access to a variety of web-based tools, utilities and information is a necessity. Here we describe a web-based system that has been operational since 2009 at www.openhazards.com and www.quakesim.org. Models for earthquake physics and forecasting require input data, along with model parameters. The models we consider are the Natural Time Weibull (NTW) model for regional earthquake forecasting, together with models for activation and quiescence. These models use small earthquakes ('seismicity-based models") to forecast the occurrence of large earthquakes, either through varying rates of small earthquake activity, or via an accumulation of this activity over time. These approaches use data-mining algorithms combined with the ANSS earthquake catalog. The basic idea is to compute large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Each of these approaches has computational challenges associated with computing forecast information in real time. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we show that real-time forecasting is possible at a grid scale of 0.1o. We have analyzed the performance of these models using Reliability/Attributes and standard Receiver Operating Characteristic (ROC) tests. We show how the Reliability and

  18. A 100-year average recurrence interval for the san andreas fault at wrightwood, california.

    Science.gov (United States)

    Fumal, T E; Schwartz, D P; Pezzopane, S K; Weldon, R J

    1993-01-08

    Evidence for five large earthquakes during the past five centuries along the San Andreas fault zone 70 kilometers northeast of Los Angeles, California, indicates that the average recurrence interval and the temporal variability are significantly smaller than previously thought. Rapid sedimentation during the past 5000 years in a 150-meter-wide structural depression has produced a greater than 21-meter-thick sequence of debris flow and stream deposits interbedded with more than 50 datable peat layers. Fault scarps, colluvial wedges, fissure infills, upward termination of ruptures, and tilted and folded deposits above listric faults provide evidence for large earthquakes that occurred in A.D. 1857, 1812, and about 1700, 1610, and 1470.

  19. A methodology for analyzing precursors to earthquake-initiated and fire-initiated accident sequences

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Lambert, H.E.; Apostolakis, G.

    1998-04-01

    This report covers work to develop a methodology for analyzing precursors to both earthquake-initiated and fire-initiated accidents at commercial nuclear power plants. Currently, the U.S. Nuclear Regulatory Commission sponsors a large ongoing project, the Accident Sequence Precursor project, to analyze the safety significance of other types of accident precursors, such as those arising from internally-initiated transients and pipe breaks, but earthquakes and fires are not within the current scope. The results of this project are that: (1) an overall step-by-step methodology has been developed for precursors to both fire-initiated and seismic-initiated potential accidents; (2) some stylized case-study examples are provided to demonstrate how the fully-developed methodology works in practice, and (3) a generic seismic-fragility date base for equipment is provided for use in seismic-precursors analyses. 44 refs., 23 figs., 16 tabs

  20. Prediction of accident sequence probabilities in a nuclear power plant due to earthquake events

    International Nuclear Information System (INIS)

    Hudson, J.M.; Collins, J.D.

    1980-01-01

    This paper presents a methodology to predict accident probabilities in nuclear power plants subject to earthquakes. The resulting computer program accesses response data to compute component failure probabilities using fragility functions. Using logical failure definitions for systems, and the calculated component failure probabilities, initiating event and safety system failure probabilities are synthesized. The incorporation of accident sequence expressions allows the calculation of terminal event probabilities. Accident sequences, with their occurrence probabilities, are finally coupled to a specific release category. A unique aspect of the methodology is an analytical procedure for calculating top event probabilities based on the correlated failure of primary events

  1. Long-term earthquake forecasts based on the epidemic-type aftershock sequence (ETAS model for short-term clustering

    Directory of Open Access Journals (Sweden)

    Jiancang Zhuang

    2012-07-01

    Full Text Available Based on the ETAS (epidemic-type aftershock sequence model, which is used for describing the features of short-term clustering of earthquake occurrence, this paper presents some theories and techniques related to evaluating the probability distribution of the maximum magnitude in a given space-time window, where the Gutenberg-Richter law for earthquake magnitude distribution cannot be directly applied. It is seen that the distribution of the maximum magnitude in a given space-time volume is determined in the longterm by the background seismicity rate and the magnitude distribution of the largest events in each earthquake cluster. The techniques introduced were applied to the seismicity in the Japan region in the period from 1926 to 2009. It was found that the regions most likely to have big earthquakes are along the Tohoku (northeastern Japan Arc and the Kuril Arc, both with much higher probabilities than the offshore Nankai and Tokai regions.

  2. Using regional moment tensors to constrain the kinematics and stress evolution of the 2010–2013 Canterbury earthquake sequence, South Island, New Zealand

    Science.gov (United States)

    Herman, Matthew W.; Herrmann, Robert B.; Benz, Harley M.; Furlong, Kevin P.

    2014-01-01

    On September 3, 2010, a MW 7.0 (U.S. Geological Survey moment magnitude) earthquake ruptured across the Canterbury Plains in South Island, New Zealand. Since then, New Zealand GNS Science has recorded over 10,000 aftershocks ML 2.0 and larger, including three destructive ~ MW 6.0 earthquakes near Christchurch. We treat the Canterbury earthquake sequence as an intraplate earthquake sequence, and compare its kinematics to an Andersonian model for fault slip in a uniform stress field. We determined moment magnitudes and double couple solutions for 150 earthquakes having MW 3.7 and larger through the use of a waveform inversion technique using data from broadband seismic stations on South Island, New Zealand. The majority (126) of these double couple solutions have strike-slip focal mechanisms, with right-lateral slip on ENE fault planes or equivalently left-lateral slip on SSE fault planes. The remaining focal mechanisms indicate reverse faulting, except for two normal faulting events. The strike-slip segments have compatible orientations for slip in a stress field with a horizontal σ1 oriented ~ N115°E, and horizontal σ3. The preference for right lateral strike-slip earthquakes suggests that these structures are inherited from previous stages of deformation. Reverse slip is interpreted to have occurred on previously existing structures in regions with an absence of existing structures optimally oriented for strike-slip deformation. Despite the variations in slip direction and faulting style, most aftershocks had nearly the same P-axis orientation, consistent with the regional σ1. There is no evidence for significant changes in these stress orientations throughout the Canterbury earthquake sequence.

  3. Seasonal water storage, stress modulation and California seismicity

    Science.gov (United States)

    Johnson, C. W.; Burgmann, R.; Fu, Y.

    2017-12-01

    Establishing what controls the timing of earthquakes is fundamental to understanding the nature of the earthquake cycle and critical to determining time-dependent earthquake hazard. Seasonal loading provides a natural laboratory to explore the crustal response to a quantifiable transient force. In California, the accumulation of winter snowpack in the Sierra Nevada, surface water in lakes and reservoirs, and groundwater in sedimentary basins follow the annual cycle of wet winters and dry summers. The surface loads resulting from the seasonal changes in water storage produce elastic deformation of the Earth's crust. We used 9 years of global positioning system (GPS) vertical deformation time series to constrain models of monthly hydrospheric loading and the resulting stress changes on fault planes of small earthquakes. Previous studies posit that temperature, atmospheric pressure, or hydrologic changes may strain the lithosphere and promote additional earthquakes above background levels. Depending on fault geometry, the addition or removal of water increases the Coulomb failure stress. The largest stress amplitudes are occurring on dipping reverse faults in the Coast Ranges and along the eastern Sierra Nevada range front. We analyze 9 years of M≥2.0 earthquakes with known focal mechanisms in northern and central California to resolve fault-normal and fault-shear stresses for the focal geometry. Our results reveal 10% more earthquakes occurring during slip-encouraging fault-shear stress conditions and suggest that earthquake populations are modulated at periods of natural loading cycles, which promote failure by stress changes on the order of 1-5 kPa. We infer that California seismicity rates are modestly modulated by natural hydrological loading cycles.

  4. Safety and survival in an earthquake

    Science.gov (United States)

    ,

    1969-01-01

    Many earth scientists in this country and abroad are focusing their studies on the search for means of predicting impending earthquakes, but, as yet, an accurate prediction of the time and place of such an event cannot be made. From past experience, however, one can assume that earthquakes will continue to harass mankind and that they will occur most frequently in the areas where they have been relatively common in the past. In the United States, earthquakes can be expected to occur most frequently in the western states, particularly in Alaska, California, Washington, Oregon, Nevada, Utah, and Montana. The danger, however, is not confined to any one part of the country; major earthquakes have occurred at widely scattered locations.

  5. Reflections on Communicating Science during the Canterbury Earthquake Sequence of 2010-2011, New Zealand

    Science.gov (United States)

    Wein, A. M.; Berryman, K. R.; Jolly, G. E.; Brackley, H. L.; Gledhill, K. R.

    2015-12-01

    The 2010-2011 Canterbury Earthquake Sequence began with the 4th September 2010 Darfield earthquake (Mw 7.1). Perhaps because there were no deaths, the mood of the city and the government was that high standards of earthquake engineering in New Zealand protected us, and there was a confident attitude to response and recovery. The demand for science and engineering information was of interest but not seen as crucial to policy, business or the public. The 22nd February 2011 Christchurch earthquake (Mw 6.2) changed all that; there was a significant death toll and many injuries. There was widespread collapse of older unreinforced and two relatively modern multi-storey buildings, and major disruption to infrastructure. The contrast in the interest and relevance of the science could not have been greater compared to 5 months previously. Magnitude 5+ aftershocks over a 20 month period resulted in confusion, stress, an inability to define a recovery trajectory, major concerns about whether insurers and reinsurers would continue to provide cover, very high levels of media interest from New Zealand and around the world, and high levels of political risk. As the aftershocks continued there was widespread speculation as to what the future held. During the sequence, the science and engineering sector sought to coordinate and offer timely and integrated advice. However, other than GeoNet, the national geophysical monitoring network, there were few resources devoted to communication, with the result that it was almost always reactive. With hindsight we have identified the need to resource information gathering and synthesis, execute strategic assessments of stakeholder needs, undertake proactive communication, and develop specific information packages for the diversity of users. Overall this means substantially increased resources. Planning is now underway for the science sector to adopt the New Zealand standardised CIMS (Coordinated Incident Management System) structure for

  6. New insights on co- and post-seismic deformation and slip behavior associated with the Mw7.8 2016 Pedernales, Ecuador earthquake and its aftershock sequence

    Science.gov (United States)

    Soto-Cordero, L.; Nealy, J. L.; Meltzer, A.; Agurto-Detzel, H.; Alvarado, A. P.; Beck, S. L.; Benz, H.; Bergman, E. A.; Charvis, P.; Font, Y.; Hayes, G. P.; Hernandez, S.; Hoskins, M.; Leon Rios, S.; Lynner, C.; Regnier, M. M.; Rietbrock, A.; Stachnik, J. C.; Yeck, W. L.

    2017-12-01

    On April 16, 2016, a Mw7.8 earthquake, associated with oblique subduction of the Nazca Plate under South America, ruptured a segment approximately 130x100km in the region north of the intersection of the Carnegie ridge with the Ecuador subduction zone. The rupture coincides with the rupture area of the Mw7.8 1942 earthquake. To characterize the aftershock sequence, we analyze seismic data recorded by 30 stations from April 17, 2016 to May 8, 2017; 11 stations belong to Ecuador's national network and 19 are part of a PASSCAL temporary deployment. We apply a kurtosis detector to obtain automatic P- and S-wave picks. Earthquake locations, magnitudes, and regional moment tensors are obtained using the U.S. Geological Survey National Earthquake Information Center (NEIC) processing system. We also determine calibrated relocations using the Hypocentroidal Decomposition approach for a subset of events for which we combine phase readings from local and temporary PASSCAL stations with regional and teleseismic phase readings from the NEIC. In contrast with other earthquake relocation approaches, this method evaluates absolute location uncertainties for each event in the cluster, which allows us to more confidently assess the relationships between mainshock slip and aftershock activity. We find the aftershock sequence is characterized by a series of event clusters that predominantly surround the main rupture patches. However, the aftershocks extend beyond the mainshock rupture area, covering a region approximately 250x100km. Aftershocks north of the 2016 rupture fall in the rupture area of the Mw7.7 1958 earthquake. The southernmost region of elevated seismicity occurs south of a region of low coupling where the Carnegie ridge meets the subduction zone. The characterization of this sequence allows a detailed spatial and temporal analysis of the rupture processes, stress patterns and slip behavior during this earthquake sequence in Ecuador subduction zone.

  7. Collective properties of injection-induced earthquake sequences: 1. Model description and directivity bias

    Science.gov (United States)

    Dempsey, David; Suckale, Jenny

    2016-05-01

    Induced seismicity is of increasing concern for oil and gas, geothermal, and carbon sequestration operations, with several M > 5 events triggered in recent years. Modeling plays an important role in understanding the causes of this seismicity and in constraining seismic hazard. Here we study the collective properties of induced earthquake sequences and the physics underpinning them. In this first paper of a two-part series, we focus on the directivity ratio, which quantifies whether fault rupture is dominated by one (unilateral) or two (bilateral) propagating fronts. In a second paper, we focus on the spatiotemporal and magnitude-frequency distributions of induced seismicity. We develop a model that couples a fracture mechanics description of 1-D fault rupture with fractal stress heterogeneity and the evolving pore pressure distribution around an injection well that triggers earthquakes. The extent of fault rupture is calculated from the equations of motion for two tips of an expanding crack centered at the earthquake hypocenter. Under tectonic loading conditions, our model exhibits a preference for unilateral rupture and a normal distribution of hypocenter locations, two features that are consistent with seismological observations. On the other hand, catalogs of induced events when injection occurs directly onto a fault exhibit a bias toward ruptures that propagate toward the injection well. This bias is due to relatively favorable conditions for rupture that exist within the high-pressure plume. The strength of the directivity bias depends on a number of factors including the style of pressure buildup, the proximity of the fault to failure and event magnitude. For injection off a fault that triggers earthquakes, the modeled directivity bias is small and may be too weak for practical detection. For two hypothetical injection scenarios, we estimate the number of earthquake observations required to detect directivity bias.

  8. Geologic Inheritance and Earthquake Rupture Processes: The 1905 M ≥ 8 Tsetserleg-Bulnay Strike-Slip Earthquake Sequence, Mongolia

    Science.gov (United States)

    Choi, Jin-Hyuck; Klinger, Yann; Ferry, Matthieu; Ritz, Jean-François; Kurtz, Robin; Rizza, Magali; Bollinger, Laurent; Davaasambuu, Battogtokh; Tsend-Ayush, Nyambayar; Demberel, Sodnomsambuu

    2018-02-01

    In 1905, 14 days apart, two M 8 continental strike-slip earthquakes, the Tsetserleg and Bulnay earthquakes, occurred on the Bulnay fault system, in Mongolia. Together, they ruptured four individual faults, with a total length of 676 km. Using submetric optical satellite images "Pleiades" with ground resolution of 0.5 m, complemented by field observation, we mapped in detail the entire surface rupture associated with this earthquake sequence. Surface rupture along the main Bulnay fault is 388 km in length, striking nearly E-W. The rupture is formed by a series of fault segments that are 29 km long on average, separated by geometric discontinuities. Although there is a difference of about 2 m in the average slip between the western and eastern parts of the Bulnay rupture, along-fault slip variations are overall limited, resulting in a smooth slip distribution, except for local slip deficit at segment boundaries. We show that damage, including short branches and secondary faulting, associated with the rupture propagation, occurred significantly more often along the western part of the Bulnay rupture, while the eastern part of the rupture appears more localized and thus possibly structurally simpler. Eventually, the difference of slip between the western and eastern parts of the rupture is attributed to this difference of rupture localization, associated at first order with a lateral change in the local geology. Damage associated to rupture branching appears to be located asymmetrically along the extensional side of the strike-slip rupture and shows a strong dependence on structural geologic inheritance.

  9. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  10. Calculation of earthquake rupture histories using a hybrid global search algorithm: Application to the 1992 Landers, California, earthquake

    Science.gov (United States)

    Hartzell, S.; Liu, P.

    1996-01-01

    A method is presented for the simultaneous calculation of slip amplitudes and rupture times for a finite fault using a hybrid global search algorithm. The method we use combines simulated annealing with the downhill simplex method to produce a more efficient search algorithm then either of the two constituent parts. This formulation has advantages over traditional iterative or linearized approaches to the problem because it is able to escape local minima in its search through model space for the global optimum. We apply this global search method to the calculation of the rupture history for the Landers, California, earthquake. The rupture is modeled using three separate finite-fault planes to represent the three main fault segments that failed during this earthquake. Both the slip amplitude and the time of slip are calculated for a grid work of subfaults. The data used consist of digital, teleseismic P and SH body waves. Long-period, broadband, and short-period records are utilized to obtain a wideband characterization of the source. The results of the global search inversion are compared with a more traditional linear-least-squares inversion for only slip amplitudes. We use a multi-time-window linear analysis to relax the constraints on rupture time and rise time in the least-squares inversion. Both inversions produce similar slip distributions, although the linear-least-squares solution has a 10% larger moment (7.3 ?? 1026 dyne-cm compared with 6.6 ?? 1026 dyne-cm). Both inversions fit the data equally well and point out the importance of (1) using a parameterization with sufficient spatial and temporal flexibility to encompass likely complexities in the rupture process, (2) including suitable physically based constraints on the inversion to reduce instabilities in the solution, and (3) focusing on those robust rupture characteristics that rise above the details of the parameterization and data set.

  11. The Al Hoceima earthquake sequence of 1994, 2004 and 2016: Stress transfer and poroelasticity in the Rif and Alboran Sea region

    Science.gov (United States)

    Kariche, J.; Meghraoui, M.; Timoulali, Y.; Cetin, E.; Toussaint, R.

    2018-01-01

    The 2016 January 25 earthquake (Mw 6.3) follows in sequence from the1994 May 26 earthquake (Mw 6.0) and the 2004 February 24 earthquake (Mw 6.4) in the Rif Mountains and Alboran Sea. The earlier two seismic events which were destructive took place on inland conjugate faults, and the third event occurred on an offshore fault. These earthquake sequences occurred within a period of 22 yr at ˜25 km distance and 11-16-km depth. The three events have similar strike-slip focal mechanism solutions with NNE-SSW trending left-lateral faulting for the 1994 and 2016 events and NW-SE trending right-lateral faulting for the 2004 event. This shallow seismic sequence offers the possibility (i) to model the change in Coulomb Failure Function (ΔCFF with low μ΄ including the pore pressure change) and understand fault-rupture interaction, and (ii) to analyse the effect of pore fluid on the rupture mechanism, and infer the clock-time advance. The variation of static stress change has a direct impact on the main shock, aftershocks and related positive lobes of the 2004 earthquake rupture with a stress change increase of 0.7-1.1 bar. Similarly, the 2004 main shock and aftershocks indicate loading zones with a stress change (>0.25 bar) that includes the 2016 earthquake rupture. The tectonic loading of 19-24 nanostrain yr-1 obtained from the seismicity catalogue of Morocco is comparable to the 5.0 × 1017 N.m yr-1 seismic strain release in the Rif Mountains. The seismic sequence is apparently controlled by the poroelastic properties of the seismogenic layer that depend on the undrained and drained fluid conditions. The short interseismic period between main shocks and higher rate of aftershocks with relatively large magnitudes (4 stress-rate ranges between 461 and 582 Pa yr-1 with a ΔCFF of 0.2-1.1 bar. The computed clock-time advance reaches 239 ± 22 yr in agreement with the ˜10 yr delay between main shocks. The calculated static stress change of 0.9-1.3 bar, under pore

  12. Comparisons of Source Characteristics between Recent Inland Crustal Earthquake Sequences inside and outside of Niigata-Kobe Tectonic Zone, Japan

    Science.gov (United States)

    Somei, K.; Asano, K.; Iwata, T.; Miyakoshi, K.

    2012-12-01

    After the 1995 Kobe earthquake, many M7-class inland earthquakes occurred in Japan. Some of those events (e.g., the 2004 Chuetsu earthquake) occurred in a tectonic zone which is characterized as a high strain rate zone by the GPS observation (Sagiya et al., 2000) or dense distribution of active faults. That belt-like zone along the coast in Japan Sea side of Tohoku and Chubu districts, and north of Kinki district, is called as the Niigata-Kobe tectonic zone (NKTZ, Sagiya et al, 2000). We investigate seismic scaling relationship for recent inland crustal earthquake sequences in Japan and compare source characteristics between events occurring inside and outside of NKTZ. We used S-wave coda part for estimating source spectra. Source spectral ratio is obtained by S-wave coda spectral ratio between the records of large and small events occurring close to each other from nation-wide strong motion network (K-NET and KiK-net) and broad-band seismic network (F-net) to remove propagation-path and site effects. We carefully examined the commonality of the decay of coda envelopes between event-pair records and modeled the observed spectral ratio by the source spectral ratio function with assuming omega-square source model for large and small events. We estimated the corner frequencies and seismic moment (ratio) from those modeled spectral ratio function. We determined Brune's stress drops of 356 events (Mw: 3.1-6.9) in ten earthquake sequences occurring in NKTZ and six sequences occurring outside of NKTZ. Most of source spectra obey omega-square source spectra. There is no obvious systematic difference between stress drops of events in NKTZ zone and others. We may conclude that the systematic tendency of seismic source scaling of the events occurred inside and outside of NKTZ does not exist and the average source scaling relationship can be effective for inland crustal earthquakes. Acknowledgements: Waveform data were provided from K-NET, KiK-net and F-net operated by

  13. Dynamic Earthquake Triggering on Seismogenic Faults in Oklahoma

    Science.gov (United States)

    Qin, Y.; Chen, X.; Peng, Z.; Aiken, C.

    2016-12-01

    Regions with high pore pressure are generally more susceptible to dynamic triggering from transient stress change caused by surface wave of distant earthquakes. The stress threshold from triggering studies can help understand the stress state of seismogenic faults. The recent dramatic seismicity increase in central US provides a rich database for assessing dynamic triggering phenomena. We begin our study by conducting a systematic analysis of dynamic triggering for the continental U.S using ANSS catalog (with magnitude of completeness Mc=3) from 49 global mainshocks (Ms>6.5, depth1kPa). We calculate β value for each 1° by 1° bins in 30 days before and 10 days after the mainshock. To identify regions that experience triggering from a distant mainshock, we generate a stacked map using β≥2 - which represents significant seismicity rate increase. As expected, the geothermal and volcanic fields in California show clear response to distant earthquakes. We also note areas in Oklahoma and north Texas show enhanced triggering, where wastewater-injection induced seismicity are occurring. Next we focus on Oklahoma and use a local catalog from Oklahoma Geological Survey with lower completeness threshold Mc to calculate the beta map in 0.2° by 0.2° bins for each selected mainshock to obtain finer spatial resolutions of the triggering behavior. For those grids with β larger than 2.0, we use waveforms from nearby stations to search for triggered events. The April 2015 M7.8 Nepal earthquake causes a statistically significant increase of local seismicity (β=3.5) in the Woodward area (west Oklahoma) during an on-going earthquake sequence. By visually examining the surface wave from the nearest station, we identify 3 larger local events, and 10 additional smaller events with weaker but discernable amplitude. Preliminary analysis shows that the triggering is related to Rayleigh wave, which would cause dilatational or shear stress changes along the strike direction of

  14. 3-D Dynamic rupture simulation for the 2016 Kumamoto, Japan, earthquake sequence: Foreshocks and M6 dynamically triggered event

    Science.gov (United States)

    Ando, R.; Aoki, Y.; Uchide, T.; Imanishi, K.; Matsumoto, S.; Nishimura, T.

    2016-12-01

    A couple of interesting earthquake rupture phenomena were observed associated with the sequence of the 2016 Kumamoto, Japan, earthquake sequence. The sequence includes the April 15, 2016, Mw 7.0, mainshock, which was preceded by multiple M6-class foreshock. The mainshock mainly broke the Futagawa fault segment striking NE-SW direction extending over 50km, and it further triggered a M6-class earthquake beyond the distance more than 50km to the northeast (Uchide et al., 2016, submitted), where an active volcano is situated. Compiling the data of seismic analysis and InSAR, we presumed this dynamic triggering event occurred on an active fault known as Yufuin fault (Ando et al., 2016, JPGU general assembly). It is also reported that the coseismic slip was significantly large at a shallow portion of Futagawa Fault near Aso volcano. Since the seismogenic depth becomes significantly shallower in these two areas, we presume the geothermal anomaly play a role as well as the elasto-dynamic processes associated with the coseismic rupture. In this study, we conducted a set of fully dynamic simulations of the earthquake rupture process by assuming the inferred 3D fault geometry and the regional stress field obtained referring the stress tensor inversion. As a result, we showed that the dynamic rupture process was mainly controlled by the irregularity of the fault geometry subjected to the gently varying regional stress field. The foreshocks ruptures have been arrested at the juncture of the branch faults. We also show that the dynamic triggering of M-6 class earthquakes occurred along the Yufuin fault segment (located 50 km NE) because of the strong stress transient up to a few hundreds of kPa due to the rupture directivity effect of the M-7 event. It is also shown that the geothermal condition may lead to the susceptible condition of the dynamic triggering by considering the plastic shear zone on the down dip extension of the Yufuin segment, situated in the vicinity of an

  15. Earthquake evaluation of a substation network

    International Nuclear Information System (INIS)

    Matsuda, E.N.; Savage, W.U.; Williams, K.K.; Laguens, G.C.

    1991-01-01

    The impact of the occurrence of a large, damaging earthquake on a regional electric power system is a function of the geographical distribution of strong shaking, the vulnerability of various types of electric equipment located within the affected region, and operational resources available to maintain or restore electric system functionality. Experience from numerous worldwide earthquake occurrences has shown that seismic damage to high-voltage substation equipment is typically the reason for post-earthquake loss of electric service. In this paper, the authors develop and apply a methodology to analyze earthquake impacts on Pacific Gas and Electric Company's (PG and E's) high-voltage electric substation network in central and northern California. The authors' objectives are to identify and prioritize ways to reduce the potential impact of future earthquakes on our electric system, refine PG and E's earthquake preparedness and response plans to be more realistic, and optimize seismic criteria for future equipment purchases for the electric system

  16. The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty

    Science.gov (United States)

    Duputel, Zacharie; Jiang, Junle; Jolivet, Romain; Simons, Mark; Rivera, Luis; Ampuero, Jean-Paul; Riel, Bryan; Owen, Susan E; Moore, Angelyn W; Samsonov, Sergey V; Ortega Culaciati, Francisco; Minson, Sarah E.

    2016-01-01

    The subduction zone in northern Chile is a well-identified seismic gap that last ruptured in 1877. On 1 April 2014, this region was struck by a large earthquake following a two week long series of foreshocks. This study combines a wide range of observations, including geodetic, tsunami, and seismic data, to produce a reliable kinematic slip model of the Mw=8.1 main shock and a static slip model of the Mw=7.7 aftershock. We use a novel Bayesian modeling approach that accounts for uncertainty in the Green's functions, both static and dynamic, while avoiding nonphysical regularization. The results reveal a sharp slip zone, more compact than previously thought, located downdip of the foreshock sequence and updip of high-frequency sources inferred by back-projection analysis. Both the main shock and the Mw=7.7 aftershock did not rupture to the trench and left most of the seismic gap unbroken, leaving the possibility of a future large earthquake in the region.

  17. Earthquake Early Warning: A Prospective User's Perspective (Invited)

    Science.gov (United States)

    Nishenko, S. P.; Savage, W. U.; Johnson, T.

    2009-12-01

    With more than 25 million people at risk from high hazard faults in California alone, Earthquake Early Warning (EEW) presents a promising public safety and emergency response tool. EEW represents the real-time end of an earthquake information spectrum which also includes near real-time notifications of earthquake location, magnitude, and shaking levels; as well as geographic information system (GIS)-based products for compiling and visually displaying processed earthquake data such as ShakeMap and ShakeCast. Improvements to and increased multi-national implementation of EEW have stimulated interest in how such information products could be used in the future. Lifeline organizations, consisting of utilities and transportation systems, can use both onsite and regional EEW information as part of their risk management and public safety programs. Regional EEW information can provide improved situational awareness to system operators before automatic system protection devices activate, and allow trained personnel to take precautionary measures. On-site EEW is used for earthquake-actuated automatic gas shutoff valves, triggered garage door openers at fire stations, system controls, etc. While there is no public policy framework for preemptive, precautionary electricity or gas service shutdowns by utilities in the United States, gas shut-off devices are being required at the building owner level by some local governments. In the transportation sector, high-speed rail systems have already demonstrated the ‘proof of concept’ for EEW in several countries, and more EEW systems are being installed. Recently the Bay Area Rapid Transit District (BART) began collaborating with the California Integrated Seismic Network (CISN) and others to assess the potential benefits of EEW technology to mass transit operations and emergency response in the San Francisco Bay region. A key issue in this assessment is that significant earthquakes are likely to occur close to or within the BART

  18. Modeling earthquake sequences along the Manila subduction zone: Effects of three-dimensional fault geometry

    Science.gov (United States)

    Yu, Hongyu; Liu, Yajing; Yang, Hongfeng; Ning, Jieyuan

    2018-05-01

    To assess the potential of catastrophic megathrust earthquakes (MW > 8) along the Manila Trench, the eastern boundary of the South China Sea, we incorporate a 3D non-planar fault geometry in the framework of rate-state friction to simulate earthquake rupture sequences along the fault segment between 15°N-19°N of northern Luzon. Our simulation results demonstrate that the first-order fault geometry heterogeneity, the transitional-segment (possibly related to the subducting Scarborough seamount chain) connecting the steeper south segment and the flatter north segment, controls earthquake rupture behaviors. The strong along-strike curvature at the transitional-segment typically leads to partial ruptures of MW 8.3 and MW 7.8 along the southern and northern segments respectively. The entire fault occasionally ruptures in MW 8.8 events when the cumulative stress in the transitional-segment is sufficiently high to overcome the geometrical inhibition. Fault shear stress evolution, represented by the S-ratio, is clearly modulated by the width of seismogenic zone (W). At a constant plate convergence rate, a larger W indicates on average lower interseismic stress loading rate and longer rupture recurrence period, and could slow down or sometimes stop ruptures that initiated from a narrower portion. Moreover, the modeled interseismic slip rate before whole-fault rupture events is comparable with the coupling state that was inferred from the interplate seismicity distribution, suggesting the Manila trench could potentially rupture in a M8+ earthquake.

  19. Stress diffusion along the san andreas fault at parkfield, california.

    Science.gov (United States)

    Malin, P E; Alvarez, M G

    1992-05-15

    Beginning in January 1990, the epicenters of microearthquakes associated with a 12-month increase in seismicity near Parkfield, California, moved northwest to southeast along the San Andreas fault. During this sequence of events, the locally variable rate of cumulative seismic moment increased. This increase implies a local increase in fault slip. These data suggest that a southeastwardly diffusing stress front propagated along the San Andreas fault at a speed of 30 to 50 kilometers per year. Evidently, this front did not load the Parkfield asperities fast enough to produce a moderate earthquake; however, a future front might do so.

  20. Quasi-periodic recurrence of large earthquakes on the southern San Andreas fault

    Science.gov (United States)

    Scharer, Katherine M.; Biasi, Glenn P.; Weldon, Ray J.; Fumal, Tom E.

    2010-01-01

    It has been 153 yr since the last large earthquake on the southern San Andreas fault (California, United States), but the average interseismic interval is only ~100 yr. If the recurrence of large earthquakes is periodic, rather than random or clustered, the length of this period is notable and would generally increase the risk estimated in probabilistic seismic hazard analyses. Unfortunately, robust characterization of a distribution describing earthquake recurrence on a single fault is limited by the brevity of most earthquake records. Here we use statistical tests on a 3000 yr combined record of 29 ground-rupturing earthquakes from Wrightwood, California. We show that earthquake recurrence there is more regular than expected from a Poisson distribution and is not clustered, leading us to conclude that recurrence is quasi-periodic. The observation of unimodal time dependence is persistent across an observationally based sensitivity analysis that critically examines alternative interpretations of the geologic record. The results support formal forecast efforts that use renewal models to estimate probabilities of future earthquakes on the southern San Andreas fault. Only four intervals (15%) from the record are longer than the present open interval, highlighting the current hazard posed by this fault.

  1. COMPARING SEA LEVEL RESPONSE AT MONTEREY, CALIFORNIA FROM THE 1989 LOMA PRIETA EARTHQUAKE AND THE 1964 GREAT ALASKAN EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    L. C. Breaker

    2009-01-01

    Full Text Available Two of the largest earthquakes to affect water levels in Monterey Bay in recent years were the Loma Prieta Earthquake (LPE of 1989 with a moment magnitude of 6.9, and the Great Alaskan Earthquake (GAE of 1964 with a moment magnitude of 9.2. In this study, we compare the sea level response of these events with a primary focus on their frequency content and how the bay affected it, itself. Singular Spectrum Analysis (SSA was employed to extract the primary frequencies associated with each event. It is not clear how or exactly where the tsunami associated with the LPE was generated, but it occurred inside the bay and most likely began to take on the characteristics of a seiche by the time it reached the tide gauge in Monterey Harbor. Results of the SSA decomposition revealed two primary periods of oscillation, 9-10 minutes, and 31-32 minutes. The first oscillation is in agreement with the range of periods for the expected natural oscillations of Monterey Harbor, and the second oscillation is consistent with a bay-wide oscillation or seiche mode. SSA decomposition of the GAE revealed several sequences of oscillations all with a period of approximately 37 minutes, which corresponds to the predicted, and previously observed, transverse mode of oscillation for Monterey Bay. In this case, it appears that this tsunami produced quarter-wave resonance within the bay consistent with its seiche-like response. Overall, the sea level responses to the LPE and GAE differed greatly, not only because of the large difference in their magnitudes but also because the driving force in one case occurred inside the bay (LPE, and in the second, outside the bay (GAE. As a result, different modes of oscillation were excited.

  2. Characterization of earthquake-induced ground motion from the L'Aquila seismic sequence of 2009, Italy

    Science.gov (United States)

    Malagnini, Luca; Akinci, Aybige; Mayeda, Kevin; Munafo', Irene; Herrmann, Robert B.; Mercuri, Alessia

    2011-01-01

    Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data [peak ground acceleration (PGA), peak ground velocity (PGV) and spectral acceleration (SA)] gathered during the Mw 6.15 L'Aquila earthquake (2009 April 6, 01:32 UTC). The L'Aquila main shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12 777 high-quality, high-gain waveforms with excellent S/N ratios (4259 vertical and 8518 horizontal time histories). Seismograms were selected from the recordings of 170 foreshocks and aftershocks of the sequence (the complete set of all earthquakes with ML≥ 3.0, from 2008 October 1 to 2010 May 10). All waveforms were downloaded from the ISIDe web page (), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L'Aquila sequence (2.8 ≤Mw≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-1998 recently described by Malagnini (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ˜80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.

  3. Creating a Global Building Inventory for Earthquake Loss Assessment and Risk Management

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.

    2008-01-01

    contribution of building stock, its relative vulnerability, and distribution are vital components for determining the extent of casualties during an earthquake. It is evident from large deadly historical earthquakes that the distribution of vulnerable structures and their occupancy level during an earthquake control the severity of human losses. For example, though the number of strong earthquakes in California is comparable to that of Iran, the total earthquake-related casualties in California during the last 100 years are dramatically lower than the casualties from several individual Iranian earthquakes. The relatively low casualties count in California is attributed mainly to the fact that more than 90 percent of the building stock in California is made of wood and is designed to withstand moderate to large earthquakes (Kircher, Seligson and others, 2006). In contrast, the 80 percent adobe and or non-engineered masonry building stock with poor lateral load resisting systems in Iran succumbs even for moderate levels of ground shaking. Consequently, the heavy death toll for the 2003 Bam, Iran earthquake, which claimed 31,828 lives (Ghafory-Ashtiany and Mousavi, 2005), is directly attributable to such poorly resistant construction, and future events will produce comparable losses unless practices change. Similarly, multistory, precast-concrete framed buildings caused heavy casualties in the 1988 Spitak, Armenia earthquake (Bertero, 1989); weaker masonry and reinforced-concrete framed construction designed for gravity loads with soft first stories dominated losses in the Bhuj, India earthquake of 2001 (Madabhushi and Haigh, 2005); and adobe and weak masonry dwellings in Peru controlled the death toll in the Peru earthquake of 2007 (Taucer, J. and others, 2007). Spence (2007) after conducting a brief survey of most lethal earthquakes since 1960 found that building collapses remains a major cause of earthquake mortality and unreinforced masonry buildings are one of the mos

  4. Earthquake-induced water-level fluctuations at Yucca Mountain, Nevada, June 1992

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1993-01-01

    This report presents earthquake-induced water-level and fluid-pressure data for wells in the Yucca Mountain area, Nevada, during June 1992. Three earthquakes occurred which caused significant water-level and fluid-pressure responses in wells. Wells USW H-5 and USW H-6 are continuously monitored to detect short-term responses caused by earthquakes. Two wells, monitored hourly, had significant, longer-term responses in water level following the earthquakes. On June 28, 1992, a 7.5-magnitude earthquake occurred near Landers, California causing an estimated maximum water-level change of 90 centimeters in well USW H-5. Three hours later a 6.6-magnitude earthquake occurred near Big Bear Lake, California; the maximum water-level fluctuation was 20 centimeters in well USW H-5. A 5.6-magnitude earthquake occurred at Little Skull Mountain, Nevada, on June 29, approximately 23 kilometers from Yucca Mountain. The maximum estimated short-term water-level fluctuation from the Little Skull Mountain earthquake was 40 centimeters in well USW H-5. The water level in well UE-25p number-sign 1, monitored hourly, decreased approximately 50 centimeters over 3 days following the Little Skull Mountain earthquake. The water level in UE-25p number-sign 1 returned to pre-earthquake levels in approximately 6 months. The water level in the lower interval of well USW H-3 increased 28 centimeters following the Little Skull Mountain earthquake. The Landers and Little Skull Mountain earthquakes caused responses in 17 intervals of 14 hourly monitored wells, however, most responses were small and of short duration. For several days following the major earthquakes, many smaller magnitude aftershocks occurred causing measurable responses in the continuously monitored wells

  5. Evolution in the lineament patterns associated to strong earthquakes revealed by satellite observations

    Science.gov (United States)

    Soto-Pinto, C. A.; Arellano-Baeza, A. A.; Ouzounov, D. P.

    2011-12-01

    We study the temporal evolution of the stress patterns in the crust by using high-resolution (10-300 m) satellite images from MODIS and ASTER satellite sensors. We are able to detect some changes in density and orientation of lineaments preceding earthquake events. A lineament is generally defined as a straight or a somewhat curved feature in the landscape visible in a satellite image as an aligned sequence of pixels of a contrasting intensity compared to the background. The system of lineaments extracted from the satellite images is not identical to the geological lineaments; nevertheless, it generally reflects the structure of the faults and fractures in the Earth's crust. Our analysis has shown that the system of lineaments is very dynamical, and the significant number of lineaments appeared approximately one month before an earthquake, while one month after the earthquake the lineament configuration returned to its initial state. These features were not observed in the test areas that are free of any seismic activity in that period (null hypothesis). We have designed a computational prototype capable to detect lineament evolution and to utilize both ASTER and MODIS satellite L1/L2. We will demonstrate the first successful test results for several Mw> 5 earthquakes in Chile, Peru, China, and California (USA).

  6. Studies of earthquakes stress drops, seismic scattering, and dynamic triggering in North America

    Science.gov (United States)

    Escudero Ayala, Christian Rene

    I use the Relative Source Time Function (RSTF) method to determine the source properties of earthquakes within southeastern Alaska-northwestern Canada in a first part of the project, and earthquakes within the Denali fault in a second part. I deconvolve a small event P-arrival signal from a larger event by the following method: select arrivals with a tapered cosine window, fast fourier transform to obtain the spectrum, apply water level deconvolution technique, and bandpass filter before inverse transforming the result to obtain the RSTF. I compare the source processes of earthquakes within the area to determine stress drop differences to determine their relation with the tectonic setting of the earthquakes location. Results show an consistency with previous results, stress drop independent of moment implying self-similarity, correlation of stress drop with tectonic regime, stress drop independent of depth, stress drop depends of focal mechanism where strike-slip present larger stress drops, and decreasing stress drop as function of time. I determine seismic wave attenuation in the central western United States using coda waves. I select approximately 40 moderate earthquakes (magnitude between 5.5 and 6.5) located alocated along the California-Baja California, California-Nevada, Eastern Idaho, Gulf of California, Hebgen Lake, Montana, Nevada, New Mexico, off coast of Northern California, off coast of Oregon, southern California, southern Illinois, Vancouver Island, Washington, and Wyoming regions. These events were recorded by the EarthScope transportable array (TA) network from 2005 to 2009. We obtain the data from the Incorporated Research Institutions for Seismology (IRIS). In this study we implement a method based on the assumption that coda waves are single backscattered waves from randomly distributed heterogeneities to calculate the coda Q. The frequencies studied lie between 1 and 15 Hz. The scattering attenuation is calculated for frequency bands centered

  7. Rapid finite-fault inversions in Southern California using Cybershake Green's functions

    Science.gov (United States)

    Thio, H. K.; Polet, J.

    2017-12-01

    We have developed a system for rapid finite fault inversion for intermediate and large Southern California earthquakes using local, regional and teleseismic seismic waveforms as well as geodetic data. For modeling the local seismic data, we use 3D Green's functions from the Cybershake project, which were made available to us courtesy of the Southern California Earthquake Center (SCEC). The use of 3D Green's functions allows us to extend the inversion to higher frequency waveform data and smaller magnitude earthquakes, in addition to achieving improved solutions in general. The ultimate aim of this work is to develop the ability to provide high quality finite fault models within a few hours after any damaging earthquake in Southern California, so that they may be used as input to various post-earthquake assessment tools such as ShakeMap, as well as by the scientific community and other interested parties. Additionally, a systematic determination of finite fault models has value as a resource for scientific studies on detailed earthquake processes, such as rupture dynamics and scaling relations. We are using an established least-squares finite fault inversion method that has been applied extensively both on large as well as smaller regional earthquakes, in conjunction with the 3D Green's functions, where available, as well as 1D Green's functions for areas for which the Cybershake library has not yet been developed. We are carrying out validation and calibration of this system using significant earthquakes that have occurred in the region over the last two decades, spanning a range of locations and magnitudes (5.4 and higher).

  8. Deformation from the 1989 Loma Prieta earthquake near the southwest margin of the Santa Clara Valley, California

    Science.gov (United States)

    Schmidt, Kevin M.; Ellen, Stephen D.; Peterson, David M.

    2014-01-01

    Damage to pavement and near-surface utility pipes, caused by the 17 October 1989, Loma Prieta earthquake, provides evidence for ground deformation in a 663 km2 area near the southwest margin of the Santa Clara Valley, California (USA). A total of 1427 damage sites, collected from more than 30 sources, are concentrated in four zones, three of which lie near previously mapped faults. In one of these zones, the channel lining of Los Gatos Creek, a 2-km-long concrete strip trending perpendicular to regional geologic structure, was broken by thrusts that were concentrated in two belts, each several tens of meters wide, separated by more than 300 m of relatively undeformed concrete.

  9. New fault picture points toward San Francisco Bay area earthquakes

    Science.gov (United States)

    Kerr, R. A.

    1989-01-01

    Recent earthquakes and a new way of looking at faults suggest that damaging earthquakes are closing in on the San Francisco area. Earthquakes Awareness Week 1989 in northern California started off with a bang on Monday, 3 April, when a magnitude 4.8 earthquake struck 15 kilometers northeast of San Jose. The relatively small shock-its primary damage was the shattering of an air-control tower window-got the immediate attention of three U.S Geological Survey seismologists in Menlo Park near San Francisco. David Oppenheimer, William Bakun, and Allan Lindh had forecast a nearby earthquake in a just completed report, and this, they thought, might be it. 

  10. Adaptively smoothed seismicity earthquake forecasts for Italy

    Directory of Open Access Journals (Sweden)

    Yan Y. Kagan

    2010-11-01

    Full Text Available We present a model for estimation of the probabilities of future earthquakes of magnitudes m ≥ 4.95 in Italy. This model is a modified version of that proposed for California, USA, by Helmstetter et al. [2007] and Werner et al. [2010a], and it approximates seismicity using a spatially heterogeneous, temporally homogeneous Poisson point process. The temporal, spatial and magnitude dimensions are entirely decoupled. Magnitudes are independently and identically distributed according to a tapered Gutenberg-Richter magnitude distribution. We have estimated the spatial distribution of future seismicity by smoothing the locations of past earthquakes listed in two Italian catalogs: a short instrumental catalog, and a longer instrumental and historic catalog. The bandwidth of the adaptive spatial kernel is estimated by optimizing the predictive power of the kernel estimate of the spatial earthquake density in retrospective forecasts. When available and reliable, we used small earthquakes of m ≥ 2.95 to reveal active fault structures and 29 probable future epicenters. By calibrating the model with these two catalogs of different durations to create two forecasts, we intend to quantify the loss (or gain of predictability incurred when only a short, but recent, data record is available. Both forecasts were scaled to five and ten years, and have been submitted to the Italian prospective forecasting experiment of the global Collaboratory for the Study of Earthquake Predictability (CSEP. An earlier forecast from the model was submitted by Helmstetter et al. [2007] to the Regional Earthquake Likelihood Model (RELM experiment in California, and with more than half of the five-year experimental period over, the forecast has performed better than the others.

  11. The Landers earthquake; preliminary instrumental results

    Science.gov (United States)

    Jones, L.; Mori, J.; Hauksson, E.

    1992-01-01

    Early on the morning of June 28, 1992, millions of people in southern California were awakened by the largest earthquake to occur in the western United States in the past 40 yrs. At 4:58 a.m PDT (local time), faulting associated with the magnitude 7.3 earthquake broke through to earth's surface near the town of Landers, California. the surface rupture then propagated 70km (45 mi) to the north and northwest along a band of faults passing through the middle of the Mojave Desert. Fortunately, the strongest shaking occurred in uninhabited regions of the Mojave Desert. Still one child was killed in Yucca Valley, and about 400 people were injured in the surrounding area. the desert communities of Landers, Yucca Valley, and Joshua Tree in San Bernardino Country suffered considerable damage to buildings and roads. Damage to water and power lines caused problems in many areas. 

  12. Parallel Earthquake Simulations on Large-Scale Multicore Supercomputers

    KAUST Repository

    Wu, Xingfu

    2011-01-01

    Earthquakes are one of the most destructive natural hazards on our planet Earth. Hugh earthquakes striking offshore may cause devastating tsunamis, as evidenced by the 11 March 2011 Japan (moment magnitude Mw9.0) and the 26 December 2004 Sumatra (Mw9.1) earthquakes. Earthquake prediction (in terms of the precise time, place, and magnitude of a coming earthquake) is arguably unfeasible in the foreseeable future. To mitigate seismic hazards from future earthquakes in earthquake-prone areas, such as California and Japan, scientists have been using numerical simulations to study earthquake rupture propagation along faults and seismic wave propagation in the surrounding media on ever-advancing modern computers over past several decades. In particular, ground motion simulations for past and future (possible) significant earthquakes have been performed to understand factors that affect ground shaking in populated areas, and to provide ground shaking characteristics and synthetic seismograms for emergency preparation and design of earthquake-resistant structures. These simulation results can guide the development of more rational seismic provisions for leading to safer, more efficient, and economical50pt]Please provide V. Taylor author e-mail ID. structures in earthquake-prone regions.

  13. Electrical resistivity variations associated with earthquakes on the san andreas fault.

    Science.gov (United States)

    Mazzella, A; Morrison, H F

    1974-09-06

    A 24 percent precursory change in apparent electrical resistivity was observed before a magnitude 3.9 earthquake of strike-slip nature on the San Andreas fault in central California. The experimental configuration and numerical calculations suggest that the change is associated with a volume at depth rather than some near-surface phenomenon. The character and duration of the precursor period agree well with those of other earthquake studies and support a dilatant earthquake mechanism model.

  14. Seismic experience in power and industrial facilities as it relates to small magnitude earthquakes

    International Nuclear Information System (INIS)

    Swan, S.W.; Horstman, N.G.

    1987-01-01

    The data base on the performance of power and industrial facilities in small magnitude earthquakes (M = 4.0 - 5.5) is potentially very large. In California alone many earthquakes in this magnitude range occur every year, often near industrial areas. In 1986 for example, in northern California alone, there were 76 earthquakes between Richter magnitude 4.0 and 5.5. Experience has shown that the effects of small magnitude earthquakes are seldom significant to well-engineered facilities. (The term well-engineered is here defined to include most modern industrial installations, as well as power plants and substations.) Therefore detailed investigations of small magnitude earthquakes are normally not considered worthwhile. The purpose of this paper is to review the tendency toward seismic damage of equipment installations representative of nuclear power plant safety systems. Estimates are made of the thresholds of seismic damage to certain types of equipment in terms of conventional means of measuring the damage potential of an earthquake. The objective is to define thresholds of damage that can be correlated with Richter magnitude. In this manner an earthquake magnitude might be chosen below which damage to nuclear plant safety systems is not considered credible

  15. Earthquakes: Risk, Monitoring, Notification, and Research

    Science.gov (United States)

    2008-06-19

    States are as much as 30% lower for certain types of ground motion, called long-period seismic waves, which affect taller , multistory buildings. Ground...jump between connected faults. Earthquakes that occur along the Sierra Madre Fault in southern California, for example, could trigger a series of

  16. The Loma Prieta, California, Earthquake of October 17, 1989: Societal Response

    Science.gov (United States)

    Coordinated by Mileti, Dennis S.

    1993-01-01

    Professional Paper 1553 describes how people and organizations responded to the earthquake and how the earthquake impacted people and society. The investigations evaluate the tools available to the research community to measure the nature, extent, and causes of damage and losses. They describe human behavior during and immediately after the earthquake and how citizens participated in emergency response. They review the challenges confronted by police and fire departments and disruptions to transbay transportations systems. And they survey the challenges of post-earthquake recovery. Some significant findings were: * Loma Prieta provided the first test of ATC-20, the red, yellow, and green tagging of buildings. It successful application has led to widespread use in other disasters including the September 11, 2001, New York City terrorist incident. * Most people responded calmly and without panic to the earthquake and acted to get themselves to a safe location. * Actions by people to help alleviate emergency conditions were proportional to the level of need at the community level. * Some solutions caused problems of their own. The police perimeter around the Cypress Viaduct isolated businesses from their customers leading to a loss of business and the evacuation of employees from those businesses hindered the movement of supplies to the disaster scene. * Emergency transbay ferry service was established 6 days after the earthquake, but required constant revision of service contracts and schedules. * The Loma Prieta earthquake produced minimal disruption to the regional economy. The total economic disruption resulted in maximum losses to the Gross Regional Product of $725 million in 1 month and $2.9 billion in 2 months, but 80% of the loss was recovered during the first 6 months of 1990. Approximately 7,100 workers were laid off.

  17. Identified EM Earthquake Precursors

    Science.gov (United States)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for

  18. Earthquake statistics, spatiotemporal distribution of foci and source mechanisms - a key to understanding of the West Bohemia/Vogtland earthquake swarms

    Science.gov (United States)

    Horálek, Josef; Čermáková, Hana; Fischer, Tomáš

    2016-04-01

    Earthquake swarms are sequences of numerous events closely clustered in space and time and do not have a single dominant mainshock. A few of the largest events in a swarm reach similar magnitudes and usually occur throughout the course of the earthquake sequence. These attributes differentiate earthquake swarms from ordinary mainshock-aftershock sequences. Earthquake swarms occur worldwide, in diverse geological units. The swarms typically accompany volcanic activity at margins of the tectonic plate but also occur in intracontinental areas where strain from tectonic-plate movement is small. The origin of earthquake swarms is still unclear. The swarms typically occur at the plate margins but also in intracontinental areas. West Bohemia-Vogtland represents one of the most active intraplate earthquake-swarm areas in Europe. It is characterised by a frequent reoccurrence of ML 2.8 swarm events are located in a few dense clusters which implies step by step rupturing of one or a few asperities during the individual swarms. The source mechanism patters (moment-tensor description, MT) of the individual swarms indicate several families of the mechanisms, which fit well geometry of respective fault segments. MTs of the most events signify pure shears except for the 1997-swarm events the MTs of which indicates a combine sources including both shear and tensile components. The origin of earthquake swarms is still unclear. Nevertheless, we infer that the individual earthquake swarms in West Bohemia-Vogtland are mixture of the mainshock-aftershock sequences which correspond to step by step rupturing of one or a few asperities. The swarms occur on short fault segments with heterogeneous stress and strength, which may be affected by pressurized crustal fluids reducing normal component of the tectonic stress and lower friction. This way critically loaded faults are brought to failure and the swarm activity is driven by the differential local stress.

  19. Earthquakes in Action: Incorporating Multimedia, Internet Resources, Large-scale Seismic Data, and 3-D Visualizations into Innovative Activities and Research Projects for Today's High School Students

    Science.gov (United States)

    Smith-Konter, B.; Jacobs, A.; Lawrence, K.; Kilb, D.

    2006-12-01

    ://siovizcenter.ucsd.edu/workshop). In addition to daily lecture and lab exercises, COSMOS students also conduct a mini-research project of their choice that uses data ranging from the 2004 Parkfield Earthquake, to Southern California seismicity, to global seismicity. Students collect seismic data from the Internet and evaluate earthquake locations, magnitudes, temporal sequence of seismic activity, active fault planes, and plate tectonic boundaries using research quality techniques. Students are given the opportunity to build 3-D visualizations of their research data sets and archive these at the SIO Visualization Center's online library, which is globally accessible to students, teachers, researchers, and the general public (http://www.siovizcenter.ucsd.edu/library.php). These student- generated visualizations have become a practical resource for not only students and teachers, but also geophysical researchers that use the visual objects as research tools to better explore and understand their data. Through Earthquakes in Action, we offer both the tools for scientific exploration and the thrills of scientific discovery, providing students with valuable knowledge, novel research experience, and a unique sense of scientific contribution.

  20. Parallel Earthquake Simulations on Large-Scale Multicore Supercomputers

    KAUST Repository

    Wu, Xingfu; Duan, Benchun; Taylor, Valerie

    2011-01-01

    , such as California and Japan, scientists have been using numerical simulations to study earthquake rupture propagation along faults and seismic wave propagation in the surrounding media on ever-advancing modern computers over past several decades. In particular

  1. Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Lifelines

    Science.gov (United States)

    Schiff, Anshel J.

    1998-01-01

    To the general public who had their televisions tuned to watch the World Series, the 1989 Loma Prieta earthquake was a lifelines earthquake. It was the images seen around the world of the collapsed Cypress Street viaduct, with the frantic and heroic efforts to pull survivors from the structure that was billowing smoke; the collapsed section of the San Francisco-Oakland Bay Bridge and subsequent home video of a car plunging off the open span; and the spectacular fire in the Marina District of San Francisco fed by a broken gasline. To many of the residents of the San Francisco Bay region, the relation of lifelines to the earthquake was characterized by sitting in the dark because of power outage, the inability to make telephone calls because of network congestion, and the slow and snarled traffic. Had the public been aware of the actions of the engineers and tradespeople working for the utilities and other lifeline organizations on the emergency response and restoration of lifelines, the lifeline characteristics of this earthquake would have been even more significant. Unobserved by the public were the warlike devastation in several electrical-power substations, the 13 miles of gas-distribution lines that had to be replaced in several communities, and the more than 1,200 leaks and breaks in water mains and service connections that had to be excavated and repaired. Like the 1971 San Fernando, Calif., earthquake, which was a seminal event for activity to improve the earthquake performance of lifelines, the 1989 Loma Prieta earthquake demonstrated that the tasks of preparing lifelines in 'earthquake country' were incomplete-indeed, new lessons had to be learned.

  2. Estimated airborne release of plutonium from the 102 Building at the General Electric Vallecitos Nuclear Center, Vallecitos, California, as a result of postulated damage from severe wind and earthquake hazard

    International Nuclear Information System (INIS)

    Mishima, J.; Ayer, J.E.; Hays, I.D.

    1980-12-01

    This report estimates the potential airborne releases of plutonium as a consequence of various severities of earthquake and wind hazard postulated for the 102 Building at the General Electric Vallecitos Nuclear Center in California. The releases are based on damage scenarios developed by other specialists. The hazard severities presented range up to a nominal velocity of 230 mph for wind hazard and are in excess of 0.8 g linear acceleration for earthquakes. The consequences of thrust faulting are considered. The approaches and factors used to estimate the releases are discussed. Release estimates range from 0.003 to 3 g Pu

  3. Earthquake experience suggests new approach to seismic criteria

    International Nuclear Information System (INIS)

    Knox, R.

    1983-01-01

    Progress in seismic qualification of nuclear power plants as reviewed at the 4th Pacific Basin Nuclear Conference in Vancouver, September 1983, is discussed. The lack of experience of earthquakes in existing nuclear plants can be compensated by the growing experience of actual earthquake effects in conventional power plants and similar installations. A survey of the effects on four power stations, with a total of twenty generating units, in the area strongly shaken by the San Fernando earthquake in California in 1971 is reported. The Canadian approach to seismic qualification, international criteria, Canadian/Korean experience, safety related equipment, the Tadotsu test facility and seismic tests are discussed. (U.K.)

  4. Correlation of pre-earthquake electromagnetic signals with laboratory and field rock experiments

    Directory of Open Access Journals (Sweden)

    T. Bleier

    2010-09-01

    Full Text Available Analysis of the 2007 M5.4 Alum Rock earthquake near San José California showed that magnetic pulsations were present in large numbers and with significant amplitudes during the 2 week period leading up the event. These pulsations were 1–30 s in duration, had unusual polarities (many with only positive or only negative polarities versus both polarities, and were different than other pulsations observed over 2 years of data in that the pulse sequence was sustained over a 2 week period prior to the quake, and then disappeared shortly after the quake. A search for the underlying physics process that might explain these pulses was was undertaken, and one theory (Freund, 2002 demonstrated that charge carriers were released when various types of rocks were stressed in a laboratory environment. It was also significant that the observed charge carrier generation was transient, and resulted in pulsating current patterns. In an attempt to determine if this phenomenon occurred outside of the laboratory environment, the authors scaled up the physics experiment from a relatively small rock sample in a dry laboratory setting, to a large 7 metric tonne boulder comprised of Yosemite granite. This boulder was located in a natural, humid (above ground setting at Bass Lake, Ca. The boulder was instrumented with two Zonge Engineering, Model ANT4 induction type magnetometers, two Trifield Air Ion Counters, a surface charge detector, a geophone, a Bruker Model EM27 Fourier Transform Infra Red (FTIR spectrometer with Sterling cycle cooler, and various temperature sensors. The boulder was stressed over about 8 h using expanding concrete (Bustartm, until it fractured into three major pieces. The recorded data showed surface charge build up, magnetic pulsations, impulsive air conductivity changes, and acoustical cues starting about 5 h before the boulder actually broke. These magnetic and air conductivity pulse signatures resembled both the laboratory

  5. Characterizing spatial heterogeneity based on the b-value and fractal analyses of the 2015 Nepal earthquake sequence

    Science.gov (United States)

    Nampally, Subhadra; Padhy, Simanchal; Dimri, Vijay P.

    2018-01-01

    The nature of spatial distribution of heterogeneities in the source area of the 2015 Nepal earthquake is characterized based on the seismic b-value and fractal analysis of its aftershocks. The earthquake size distribution of aftershocks gives a b-value of 1.11 ± 0.08, possibly representing the highly heterogeneous and low stress state of the region. The aftershocks exhibit a fractal structure characterized by a spectrum of generalized dimensions, Dq varying from D2 = 1.66 to D22 = 0.11. The existence of a fractal structure suggests that the spatial distribution of aftershocks is not a random phenomenon, but it self-organizes into a critical state, exhibiting a scale-independent structure governed by a power-law scaling, where a small perturbation in stress is sufficient enough to trigger aftershocks. In order to obtain the bias in fractal dimensions resulting from finite data size, we compared the multifractal spectrum for the real data and random simulations. On comparison, we found that the lower limit of bias in D2 is 0.44. The similarity in their multifractal spectra suggests the lack of long-range correlation in the data, with an only weakly multifractal or a monofractal with a single correlation dimension D2 characterizing the data. The minimum number of events required for a multifractal process with an acceptable error is discussed. We also tested for a possible correlation between changes in D2 and energy released during the earthquakes. The values of D2 rise during the two largest earthquakes (M > 7.0) in the sequence. The b- and D2 values are related by D2 = 1.45 b that corresponds to the intermediate to large earthquakes. Our results provide useful constraints on the spatial distribution of b- and D2-values, which are useful for seismic hazard assessment in the aftershock area of a large earthquake.

  6. The 2015 Fillmore earthquake swarm and possible crustal deformation mechanisms near the bottom of the eastern Ventura Basin, California

    Science.gov (United States)

    Hauksson, Egill; Andrews, Jennifer; Plesch, Andreas; Shaw, John H.; Shelly, David R.

    2016-01-01

    The 2015 Fillmore swarm occurred about 6 km west of the city of Fillmore in Ventura, California, and was located beneath the eastern part of the actively subsiding Ventura basin at depths from 11.8 to 13.8 km, similar to two previous swarms in the area. Template‐matching event detection showed that it started on 5 July 2015 at 2:21 UTC with an M∼1.0 earthquake. The swarm exhibited unusual episodic spatial and temporal migrations and unusual diversity in the nodal planes of the focal mechanisms as compared to the simple hypocenter‐defined plane. It was also noteworthy because it consisted of >1400 events of M≥0.0, with M 2.8 being the largest event. We suggest that fluids released by metamorphic dehydration processes, migration of fluids along a detachment zone, and cascading asperity failures caused this prolific earthquake swarm, but other mechanisms (such as simple mainshock–aftershock stress triggering or a regional aseismic creep event) are less likely. Dilatant strengthening may be a mechanism that causes the temporal decay of the swarm as pore‐pressure drop increased the effective normal stress, and counteracted the instability driving the swarm.

  7. Earthquake simulations with time-dependent nucleation and long-range interactions

    Directory of Open Access Journals (Sweden)

    J. H. Dieterich

    1995-01-01

    Full Text Available A model for rapid simulation of earthquake sequences is introduced which incorporates long-range elastic interactions among fault elements and time-dependent earthquake nucleation inferred from experimentally derived rate- and state-dependent fault constitutive properties. The model consists of a planar two-dimensional fault surface which is periodic in both the x- and y-directions. Elastic interactions among fault elements are represented by an array of elastic dislocations. Approximate solutions for earthquake nucleation and dynamics of earthquake slip are introduced which permit computations to proceed in steps that are determined by the transitions from one sliding state to the next. The transition-driven time stepping and avoidance of systems of simultaneous equations permit rapid simulation of large sequences of earthquake events on computers of modest capacity, while preserving characteristics of the nucleation and rupture propagation processes evident in more detailed models. Earthquakes simulated with this model reproduce many of the observed spatial and temporal characteristics of clustering phenomena including foreshock and aftershock sequences. Clustering arises because the time dependence of the nucleation process is highly sensitive to stress perturbations caused by nearby earthquakes. Rate of earthquake activity following a prior earthquake decays according to Omori's aftershock decay law and falls off with distance.

  8. Fault healing and earthquake spectra from stick slip sequences in the laboratory and on active faults

    Science.gov (United States)

    McLaskey, G. C.; Glaser, S. D.; Thomas, A.; Burgmann, R.

    2011-12-01

    Repeating earthquake sequences (RES) are thought to occur on isolated patches of a fault that fail in repeated stick-slip fashion. RES enable researchers to study the effect of variations in earthquake recurrence time and the relationship between fault healing and earthquake generation. Fault healing is thought to be the physical process responsible for the 'state' variable in widely used rate- and state-dependent friction equations. We analyze RES created in laboratory stick slip experiments on a direct shear apparatus instrumented with an array of very high frequency (1KHz - 1MHz) displacement sensors. Tests are conducted on the model material polymethylmethacrylate (PMMA). While frictional properties of this glassy polymer can be characterized with the rate- and state- dependent friction laws, the rate of healing in PMMA is higher than room temperature rock. Our experiments show that in addition to a modest increase in fault strength and stress drop with increasing healing time, there are distinct spectral changes in the recorded laboratory earthquakes. Using the impact of a tiny sphere on the surface of the test specimen as a known source calibration function, we are able to remove the instrument and apparatus response from recorded signals so that the source spectrum of the laboratory earthquakes can be accurately estimated. The rupture of a fault that was allowed to heal produces a laboratory earthquake with increased high frequency content compared to one produced by a fault which has had less time to heal. These laboratory results are supported by observations of RES on the Calaveras and San Andreas faults, which show similar spectral changes when recurrence time is perturbed by a nearby large earthquake. Healing is typically attributed to a creep-like relaxation of the material which causes the true area of contact of interacting asperity populations to increase with time in a quasi-logarithmic way. The increase in high frequency seismicity shown here

  9. What Can Sounds Tell Us About Earthquake Interactions?

    Science.gov (United States)

    Aiken, C.; Peng, Z.

    2012-12-01

    It is important not only for seismologists but also for educators to effectively convey information about earthquakes and the influences earthquakes can have on each other. Recent studies using auditory display [e.g. Kilb et al., 2012; Peng et al. 2012] have depicted catastrophic earthquakes and the effects large earthquakes can have on other parts of the world. Auditory display of earthquakes, which combines static images with time-compressed sound of recorded seismic data, is a new approach to disseminating information to a general audience about earthquakes and earthquake interactions. Earthquake interactions are influential to understanding the underlying physics of earthquakes and other seismic phenomena such as tremors in addition to their source characteristics (e.g. frequency contents, amplitudes). Earthquake interactions can include, for example, a large, shallow earthquake followed by increased seismicity around the mainshock rupture (i.e. aftershocks) or even a large earthquake triggering earthquakes or tremors several hundreds to thousands of kilometers away [Hill and Prejean, 2007; Peng and Gomberg, 2010]. We use standard tools like MATLAB, QuickTime Pro, and Python to produce animations that illustrate earthquake interactions. Our efforts are focused on producing animations that depict cross-section (side) views of tremors triggered along the San Andreas Fault by distant earthquakes, as well as map (bird's eye) views of mainshock-aftershock sequences such as the 2011/08/23 Mw5.8 Virginia earthquake sequence. These examples of earthquake interactions include sonifying earthquake and tremor catalogs as musical notes (e.g. piano keys) as well as audifying seismic data using time-compression. Our overall goal is to use auditory display to invigorate a general interest in earthquake seismology that leads to the understanding of how earthquakes occur, how earthquakes influence one another as well as tremors, and what the musical properties of these

  10. Potential Effects of a Scenario Earthquake on the Economy of Southern California: Baseline County-Level Migration Characteristics and Trends 1995-2000 and 2001-2010

    Science.gov (United States)

    Sherrouse, Benson C.; Hester, David J.

    2008-01-01

    The Multi-Hazards Demonstration Project (MHDP) is a collaboration between the U.S. Geological Survey (USGS) and various partners from the public and private sectors and academia, meant to improve Southern California's resiliency to natural hazards. In support of the MHDP objectives, the ShakeOut Scenario was developed. It describes a magnitude 7.8 earthquake along the southernmost 300 kilometers (200 miles) of the San Andreas Fault, identified by geoscientists as a plausible event that will cause moderate to strong shaking over much of the eight-county (Imperial, Kern, Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Ventura) Southern California region. This report uses historical, estimated, and projected population data from several Federal and State data sources to estimate baseline characteristics and trends of the region's population migration (that is, changes in a person's place of residence over time). The analysis characterizes migration by various demographic, economic, family, and household variables for the period 1995-2000. It also uses existing estimates (beginning in 2001) of the three components of population change - births, deaths, and migration - to extrapolate near-term projections of county-level migration trends through 2010. The 2010 date was chosen to provide baseline projections corresponding to a two-year recovery period following the November 2008 date that was selected for the occurrence of the ShakeOut Scenario earthquake. The baseline characteristics and projections shall assist with evaluating the effects of inflow and outflow migration trends for alternative futures in which the simulated M7.8 earthquake either does or does not occur and the impact of the event on housing and jobs, as well as community composition and regional economy changes based on dispersion of intellectual, physical, economic, and cultural capital.

  11. Memory effect in M ≥ 7 earthquakes of Taiwan

    Science.gov (United States)

    Wang, Jeen-Hwa

    2014-07-01

    The M ≥ 7 earthquakes that occurred in the Taiwan region during 1906-2006 are taken to study the possibility of memory effect existing in the sequence of those large earthquakes. Those events are all mainshocks. The fluctuation analysis technique is applied to analyze two sequences in terms of earthquake magnitude and inter-event time represented in the natural time domain. For both magnitude and inter-event time, the calculations are made for three data sets, i.e., the original order data, the reverse-order data, and that of the mean values. Calculated results show that the exponents of scaling law of fluctuation versus window length are less than 0.5 for the sequences of both magnitude and inter-event time data. In addition, the phase portraits of two sequent magnitudes and two sequent inter-event times are also applied to explore if large (or small) earthquakes are followed by large (or small) events. Results lead to a negative answer. Together with all types of information in study, we make a conclusion that the earthquake sequence in study is short-term corrected and thus the short-term memory effect would be operative.

  12. Evaluating spatial and temporal relationships between an earthquake cluster near Entiat, central Washington, and the large December 1872 Entiat earthquake

    Science.gov (United States)

    Brocher, Thomas M.; Blakely, Richard J.; Sherrod, Brian

    2017-01-01

    We investigate spatial and temporal relations between an ongoing and prolific seismicity cluster in central Washington, near Entiat, and the 14 December 1872 Entiat earthquake, the largest historic crustal earthquake in Washington. A fault scarp produced by the 1872 earthquake lies within the Entiat cluster; the locations and areas of both the cluster and the estimated 1872 rupture surface are comparable. Seismic intensities and the 1–2 m of coseismic displacement suggest a magnitude range between 6.5 and 7.0 for the 1872 earthquake. Aftershock forecast models for (1) the first several hours following the 1872 earthquake, (2) the largest felt earthquakes from 1900 to 1974, and (3) the seismicity within the Entiat cluster from 1976 through 2016 are also consistent with this magnitude range. Based on this aftershock modeling, most of the current seismicity in the Entiat cluster could represent aftershocks of the 1872 earthquake. Other earthquakes, especially those with long recurrence intervals, have long‐lived aftershock sequences, including the Mw">MwMw 7.5 1891 Nobi earthquake in Japan, with aftershocks continuing 100 yrs after the mainshock. Although we do not rule out ongoing tectonic deformation in this region, a long‐lived aftershock sequence can account for these observations.

  13. The 2014 update to the National Seismic Hazard Model in California

    Science.gov (United States)

    Powers, Peter; Field, Edward H.

    2015-01-01

    The 2014 update to the U. S. Geological Survey National Seismic Hazard Model in California introduces a new earthquake rate model and new ground motion models (GMMs) that give rise to numerous changes to seismic hazard throughout the state. The updated earthquake rate model is the third version of the Uniform California Earthquake Rupture Forecast (UCERF3), wherein the rates of all ruptures are determined via a self-consistent inverse methodology. This approach accommodates multifault ruptures and reduces the overprediction of moderate earthquake rates exhibited by the previous model (UCERF2). UCERF3 introduces new faults, changes to slip or moment rates on existing faults, and adaptively smoothed gridded seismicity source models, all of which contribute to significant changes in hazard. New GMMs increase ground motion near large strike-slip faults and reduce hazard over dip-slip faults. The addition of very large strike-slip ruptures and decreased reverse fault rupture rates in UCERF3 further enhances these effects.

  14. Future Earth: Reducing Loss By Automating Response to Earthquake Shaking

    Science.gov (United States)

    Allen, R. M.

    2014-12-01

    Earthquakes pose a significant threat to society in the U.S. and around the world. The risk is easily forgotten given the infrequent recurrence of major damaging events, yet the likelihood of a major earthquake in California in the next 30 years is greater than 99%. As our societal infrastructure becomes ever more interconnected, the potential impacts of these future events are difficult to predict. Yet, the same inter-connected infrastructure also allows us to rapidly detect earthquakes as they begin, and provide seconds, tens or seconds, or a few minutes warning. A demonstration earthquake early warning system is now operating in California and is being expanded to the west coast (www.ShakeAlert.org). In recent earthquakes in the Los Angeles region, alerts were generated that could have provided warning to the vast majority of Los Angelinos who experienced the shaking. Efforts are underway to build a public system. Smartphone technology will be used not only to issue that alerts, but could also be used to collect data, and improve the warnings. The MyShake project at UC Berkeley is currently testing an app that attempts to turn millions of smartphones into earthquake-detectors. As our development of the technology continues, we can anticipate ever-more automated response to earthquake alerts. Already, the BART system in the San Francisco Bay Area automatically stops trains based on the alerts. In the future, elevators will stop, machinery will pause, hazardous materials will be isolated, and self-driving cars will pull-over to the side of the road. In this presentation we will review the current status of the earthquake early warning system in the US. We will illustrate how smartphones can contribute to the system. Finally, we will review applications of the information to reduce future losses.

  15. Lessons learned from the 1994 Northridge Earthquake

    International Nuclear Information System (INIS)

    Eli, M.W.; Sommer, S.C.

    1995-01-01

    Southern California has a history of major earthquakes and also has one of the largest metropolitan areas in the United States. The 1994 Northridge Earthquake challenged the industrial facilities and lifetime infrastructure in the northern Los Angeles (LA) area. Lawrence Livermore National Laboratory (LLNL) sent a team of engineers to conduct an earthquake damage investigation in the Northridge area, on a project funded jointly by the United States Nuclear Regulatory Commission (USNRC) and the United States Department of Energy (USDOE). Many of the structures, systems, and components (SSCs) and lifelines that suffered damage are similar to those found in nuclear power plants and in USDOE facilities. Lessons learned from these experiences can have some applicability at commercial nuclear power plants

  16. Whole genome sequencing of Mycobacterium bovis to obtain molecular fingerprints in human and cattle isolates from Baja California, Mexico.

    Science.gov (United States)

    Sandoval-Azuara, Sarai Estrella; Muñiz-Salazar, Raquel; Perea-Jacobo, Ricardo; Robbe-Austerman, Suelee; Perera-Ortiz, Alejandro; López-Valencia, Gilberto; Bravo, Doris M; Sanchez-Flores, Alejandro; Miranda-Guzmán, Daniela; Flores-López, Carlos Alberto; Zenteno-Cuevas, Roberto; Laniado-Laborín, Rafael; de la Cruz, Fabiola Lafarga; Stuber, Tod P

    2017-10-01

    To determine genetic diversity by comparing the whole genome sequences of cattle and human Mycobacterium bovis isolates from Baja California. A whole genome sequencing strategy was used to obtain the molecular fingerprints of 172 isolates of M. bovis obtained from Baja California, Mexico; 155 isolates were from cattle and 17 isolates were from humans. Spoligotypes were characterized in silico and single nucleotide polymorphism (SNP) differences between the isolates were evaluated. A total of 12 M. bovis spoligotype patterns were identified in cattle and humans. Two predominant spoligotypes patterns were seen in both cattle and humans: SB0145 and SB1040. The SB0145 spoligotype represented 59% of cattle isolates (n=91) and 65% of human isolates (n=11), while the SB1040 spoligotype represented 30% of cattle isolates (n=47) and 30% of human isolates (n=5). When evaluating SNP differences, the human isolates were intimately intertwined with the cattle isolates. All isolates from humans had spoligotype patterns that matched those observed in the cattle isolates, and all human isolates shared common ancestors with cattle in Baja California based on SNP analysis. This suggests that most human tuberculosis caused by M. bovis in Baja California is derived from M. bovis circulating in Baja California cattle. These results reinforce the importance of bovine tuberculosis surveillance and control in this region. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Complete genomic sequences of two salmonella enterica subsp. enterica serogroup C2 (O:6,8) strains from central California

    Science.gov (United States)

    Salmonella enteric subsp. enterica strains RM11060, serotype 6,8:d:-, and RM11065, serotype 6,8:-:e,n,z15, were isolated from environmental sampling in Central California in 2009. We report the complete genome sequences and annotation of these two strains. These genomic sequences are distinct and wi...

  18. Acceleration and volumetric strain generated by the Parkfield 2004 earthquake on the GEOS strong-motion array near Parkfield, California

    Science.gov (United States)

    Borcherdt, Rodger D.; Johnston, Malcolm J.S.; Dietel, Christopher; Glassmoyer, Gary; Myren, Doug; Stephens, Christopher

    2004-01-01

    An integrated array of 11 General Earthquake Observation System (GEOS) stations installed near Parkfield, CA provided on scale broad-band, wide-dynamic measurements of acceleration and volumetric strain of the Parkfield earthquake (M 6.0) of September 28, 2004. Three component measurements of acceleration were obtained at each of the stations. Measurements of collocated acceleration and volumetric strain were obtained at four of the stations. Measurements of velocity at most sites were on scale only for the initial P-wave arrival. When considered in the context of the extensive set of strong-motion recordings obtained on more than 40 analog stations by the California Strong-Motion Instrumentation Program (Shakal, et al., 2004 http://www.quake.ca.gov/cisn-edc) and those on the dense array of Spudich, et al, (1988), these recordings provide an unprecedented document of the nature of the near source strong motion generated by a M 6.0 earthquake. The data set reported herein provides the most extensive set of near field broad band wide dynamic range measurements of acceleration and volumetric strain for an earthquake as large as M 6 of which the authors are aware. As a result considerable interest has been expressed in these data. This report is intended to describe the data and facilitate its use to resolve a number of scientific and engineering questions concerning earthquake rupture processes and resultant near field motions and strains. This report provides a description of the array, its scientific objectives and the strong-motion recordings obtained of the main shock. The report provides copies of the uncorrected and corrected data. Copies of the inferred velocities, displacements, and Psuedo velocity response spectra are provided. Digital versions of these recordings are accessible with information available through the internet at several locations: the National Strong-Motion Program web site (http://agram.wr.usgs.gov/), the COSMOS Virtual Data Center Web site

  19. Slip rate on the San Diego trough fault zone, inner California Borderland, and the 1986 Oceanside earthquake swarm revisited

    Science.gov (United States)

    Ryan, Holly F.; Conrad, James E.; Paull, C.K.; McGann, Mary

    2012-01-01

    The San Diego trough fault zone (SDTFZ) is part of a 90-km-wide zone of faults within the inner California Borderland that accommodates motion between the Pacific and North American plates. Along with most faults offshore southern California, the slip rate and paleoseismic history of the SDTFZ are unknown. We present new seismic reflection data that show that the fault zone steps across a 5-km-wide stepover to continue for an additional 60 km north of its previously mapped extent. The 1986 Oceanside earthquake swarm is located within the 20-km-long restraining stepover. Farther north, at the latitude of Santa Catalina Island, the SDTFZ bends 20° to the west and may be linked via a complex zone of folds with the San Pedro basin fault zone (SPBFZ). In a cooperative program between the U.S. Geological Survey (USGS) and the Monterey Bay Aquarium Research Institute (MBARI), we measure and date the coseismic offset of a submarine channel that intersects the fault zone near the SDTFZ–SPBFZ junction. We estimate a horizontal slip rate of about 1:5 0:3 mm=yr over the past 12,270 yr.

  20. Earthquake Forecasting Methodology Catalogue - A collection and comparison of the state-of-the-art in earthquake forecasting and prediction methodologies

    Science.gov (United States)

    Schaefer, Andreas; Daniell, James; Wenzel, Friedemann

    2015-04-01

    Earthquake forecasting and prediction has been one of the key struggles of modern geosciences for the last few decades. A large number of approaches for various time periods have been developed for different locations around the world. A categorization and review of more than 20 of new and old methods was undertaken to develop a state-of-the-art catalogue in forecasting algorithms and methodologies. The different methods have been categorised into time-independent, time-dependent and hybrid methods, from which the last group represents methods where additional data than just historical earthquake statistics have been used. It is necessary to categorize in such a way between pure statistical approaches where historical earthquake data represents the only direct data source and also between algorithms which incorporate further information e.g. spatial data of fault distributions or which incorporate physical models like static triggering to indicate future earthquakes. Furthermore, the location of application has been taken into account to identify methods which can be applied e.g. in active tectonic regions like California or in less active continental regions. In general, most of the methods cover well-known high-seismicity regions like Italy, Japan or California. Many more elements have been reviewed, including the application of established theories and methods e.g. for the determination of the completeness magnitude or whether the modified Omori law was used or not. Target temporal scales are identified as well as the publication history. All these different aspects have been reviewed and catalogued to provide an easy-to-use tool for the development of earthquake forecasting algorithms and to get an overview in the state-of-the-art.

  1. The East Aegean Sea strong earthquake sequence of October–November 2005: lessons learned for earthquake prediction from foreshocks

    Directory of Open Access Journals (Sweden)

    G. A. Papadopoulos

    2006-01-01

    Full Text Available The seismic sequence of October–November 2005 in the Samos area, East Aegean Sea, was studied with the aim to show how it is possible to establish criteria for (a the rapid recognition of both the ongoing foreshock activity and the mainshock, and (b the rapid discrimination between the foreshock and aftershock phases of activity. It has been shown that before the mainshock of 20 October 2005, foreshock activity is not recognizable in the standard earthquake catalogue. However, a detailed examination of the records in the SMG station, which is the closest to the activated area, revealed that hundreds of small shocks not listed in the standard catalogue were recorded in the time interval from 12 October 2005 up to 21 November 2005. The production of reliable relations between seismic signal duration and duration magnitude for earthquakes included in the standard catalogue, made it possible to use signal durations in SMG records and to determine duration magnitudes for 2054 small shocks not included in the standard catalogue. In this way a new catalogue with magnitude determination for 3027 events was obtained while the standard catalogue contains 1025 events. At least 55 of them occurred from 12 October 2005 up to the occurrence of the two strong foreshocks of 17 October 2005. This implies that foreshock activity developed a few days before the strong shocks of 17 October 2005 but it escaped recognition by the routine procedure of seismic analysis. The onset of the foreshock phase of activity is recognizable by the significant increase of the mean seismicity rate which increased exponentially with time. According to the least-squares approach the b-value of the magnitude-frequency relation dropped significantly during the foreshock activity with respect to the b-value prevailing in the declustered background seismicity. However, the maximum likelihood approach does not indicate such a drop of b. The b-value found for the aftershocks that

  2. Real-time earthquake monitoring: Early warning and rapid response

    Science.gov (United States)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  3. Measuring Aseismic Slip through Characteristically Repeating Earthquakes at the Mendocino Triple Junction, Northern California

    Science.gov (United States)

    Materna, K.; Taira, T.; Burgmann, R.

    2016-12-01

    The Mendocino Triple Junction (MTJ), at the transition point between the San Andreas fault system, the Mendocino Transform Fault, and the Cascadia Subduction Zone, undergoes rapid tectonic deformation and produces more large (M>6.0) earthquakes than any region in California. Most of the active faults of the triple junction are located offshore, making it difficult to characterize both seismic slip and aseismic creep. In this work, we study aseismic creep rates near the MTJ using characteristically repeating earthquakes (CREs) as indicators of creep rate. CREs are generally interpreted as repeated failures of the same seismic patch within an otherwise creeping fault zone; as a consequence, the magnitude and recurrence time of the CREs can be used to determine a fault's creep rate through empirically calibrated scaling relations. Using seismic data from 2010-2016, we identify CREs as recorded by an array of eight 100-Hz PBO borehole seismometers deployed in the Cape Mendocino area. For each event pair with epicenters less than 30 km apart, we compute the cross-spectral coherence of 20 seconds of data starting one second before the P-wave arrival. We then select pairs with high coherence in an appropriate frequency band, which is determined uniquely for each event pair based on event magnitude, station distance, and signal-to-noise ratio. The most similar events (with median coherence above 0.95 at two or more stations) are selected as CREs and then grouped into CRE families, and each family is used to infer a local creep rate. On the Mendocino Transform Fault, we find relatively high creep rates of >5 cm/year that increase closer to the Gorda Ridge. Closer to shore and to the MTJ itself, we find many families of repeaters on and off the transform fault with highly variable creep rates, indicative of the complex deformation that takes place there.

  4. Utility of temporary aftershock warning system in the immediate aftermath of large damaging earthquakes

    International Nuclear Information System (INIS)

    Harben, P.E.; Jarpe, S.P.; Hunter, S.; Johnston, C.A.

    1993-01-01

    An aftershock warning system (AWS) is a real-time warning system that is deployed immediately after a large damaging earthquake in the epicentral region of the main shock. The primary purpose of such a system is to warn rescue teams and workers within damaged structures of imminent destructive shaking. The authors have examined the utility of such a system (1) by evaluating historical data, and (2) by developing and testing a prototype system during the 1992 Landers, California, aftershock sequence. Analyzing historical data is important in determining when and where damaging aftershocks are likely to occur and the probable usefulness of an AWS in a particular region. As part of this study, they analyzed the spatial and temporal distribution of large (magnitude >5.0) aftershocks from earthquakes with magnitudes >6.0 that took place between 1942 and 1991 in California and Nevada. They found that one-quarter of these large aftershocks occurred from 2 days-2 months after the main event, nearly one-half occurred within the first two days of the main event, and greater than one-half occurred within 20 km of the main shock's epicenter. They also reviewed a case study of the 1985 Mexico City earthquake, which showed that an AWS could have given Mexico City a warning of ∼60 sec before the magnitude 7.6 aftershock that occurred 36 hr. after the main event. They deployed a four-station prototype AWS near Landers after a magnitude 7.4 earthquake occurred on June 28, 1992. The aftershock data, collected from July 3-10, showed that the aftershocks in the vicinity of the four stations varied in magnitude from 3.0-4.4. Using a two-station detection criterion to minimize false alarms, this AWS reliably discriminated between smaller and larger aftershocks within 3 sec of the origin time of the events. This prototype could have provided 6 sec of warning to Palm Springs and 20 sec of warning to San Bernardino of aftershocks occurring in the main-shock epicentral region

  5. Diagnosis of Fatal Human Case of St. Louis Encephalitis Virus Infection by Metagenomic Sequencing, California, 2016.

    Science.gov (United States)

    Chiu, Charles Y; Coffey, Lark L; Murkey, Jamie; Symmes, Kelly; Sample, Hannah A; Wilson, Michael R; Naccache, Samia N; Arevalo, Shaun; Somasekar, Sneha; Federman, Scot; Stryke, Doug; Vespa, Paul; Schiller, Gary; Messenger, Sharon; Humphries, Romney; Miller, Steve; Klausner, Jeffrey D

    2017-10-01

    We used unbiased metagenomic next-generation sequencing to diagnose a fatal case of meningoencephalitis caused by St. Louis encephalitis virus in a patient from California in September 2016. This case is associated with the recent 2015-2016 reemergence of this virus in the southwestern United States.

  6. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    Directory of Open Access Journals (Sweden)

    C. H. Nelson

    2012-11-01

    Full Text Available We summarize the importance of great earthquakes (Mw ≳ 8 for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1 radiometric dating (14C method, and (2 relative dating, using hemipelagic sediment thickness and sedimentation rates (H method. The H method provides (1 the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2 the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia or very close (San Andreas to the early window for another great earthquake.

    On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km than on passive margins (~1000 km. The great earthquakes along the Cascadia and northern California margins

  7. Post-earthquake building safety inspection: Lessons from the Canterbury, New Zealand, earthquakes

    Science.gov (United States)

    Marshall, J.; Jaiswal, Kishor; Gould, N.; Turner, F.; Lizundia, B.; Barnes, J.

    2013-01-01

    The authors discuss some of the unique aspects and lessons of the New Zealand post-earthquake building safety inspection program that was implemented following the Canterbury earthquake sequence of 2010–2011. The post-event safety assessment program was one of the largest and longest programs undertaken in recent times anywhere in the world. The effort engaged hundreds of engineering professionals throughout the country, and also sought expertise from outside, to perform post-earthquake structural safety inspections of more than 100,000 buildings in the city of Christchurch and the surrounding suburbs. While the building safety inspection procedure implemented was analogous to the ATC 20 program in the United States, many modifications were proposed and implemented in order to assess the large number of buildings that were subjected to strong and variable shaking during a period of two years. This note discusses some of the key aspects of the post-earthquake building safety inspection program and summarizes important lessons that can improve future earthquake response.

  8. A change in fault-plane orientation between foreshocks and aftershocks of the Galway Lake earthquake, ML = 5.2, 1975, Mojave desert, California

    Science.gov (United States)

    Fuis, G.S.; Lindh, A.G.

    1979-01-01

    /pcsp, are observed, and these changes accompany the changes in P/SV. Observations for the Galway Lake earthquake are similar to observations for the Oroville, California, earthquake (ML = 5.7) of August 1, 1975, and the Brianes Hills, California, earthquake (ML = 4.3) of January 8, 1977 (Lindh et al., Science Vol. 201, pp. 56-59). A change in fault-plane orientation between foreshocks and aftershocks may be understandable in terms of early en-echelon cracking (foreshocks) giving way to shear on the main fault plane (main shock plus aftershocks). Recent laboratory data (Byerlee et al., Tectonophysics, Vol. 44, pp. 161-171) tend to support this view. ?? 1979.

  9. The pathway to earthquake early warning in the US

    Science.gov (United States)

    Allen, R. M.; Given, D. D.; Heaton, T. H.; Vidale, J. E.; West Coast Earthquake Early Warning Development Team

    2013-05-01

    The development of earthquake early warning capabilities in the United States is now accelerating and expanding as the technical capability to provide warning is demonstrated and additional funding resources are making it possible to expand the current testing region to the entire west coast (California, Oregon and Washington). Over the course of the next two years we plan to build a prototype system that will provide a blueprint for a full public system in the US. California currently has a demonstrations warning system, ShakeAlert, that provides alerts to a group of test users from the public and private sector. These include biotech companies, technology companies, the entertainment industry, the transportation sector, and the emergency planning and response community. Most groups are currently in an evaluation mode, receiving the alerts and developing protocols for future response. The Bay Area Rapid Transit (BART) system is the one group who has now implemented an automated response to the warning system. BART now stops trains when an earthquake of sufficient size is detected. Research and development also continues to develop improved early warning algorithms to better predict the distribution of shaking in large earthquakes when the finiteness of the source becomes important. The algorithms under development include the use of both seismic and GPS instrumentation and integration with existing point source algorithms. At the same time, initial testing and development of algorithms in and for the Pacific Northwest is underway. In this presentation we will review the current status of the systems, highlight the new research developments, and lay out a pathway to a full public system for the US west coast. The research and development described is ongoing at Caltech, UC Berkeley, University of Washington, ETH Zurich, Southern California Earthquake Center, and the US Geological Survey, and is funded by the Gordon and Betty Moore Foundation and the US Geological

  10. Analyses of Mitogenome Sequences Revealed that Asian Citrus Psyllids (Diaphorina citri) from California Were Related to Those from Florida.

    Science.gov (United States)

    Wu, Fengnian; Kumagai, Luci; Cen, Yijing; Chen, Jianchi; Wallis, Christopher M; Polek, MaryLou; Jiang, Hongyan; Zheng, Zheng; Liang, Guangwen; Deng, Xiaoling

    2017-08-31

    Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) transmits "Candidatus Liberibacter asiaticus" (CLas), an unculturable alpha-proteobacterium associated with citrus Huanglongbing (HLB). CLas has recently been found in California. Understanding ACP population diversity is necessary for HLB regulatory practices aimed at reducing CLas spread. In this study, two circular ACP mitogenome sequences from California (mt-CApsy, ~15,027 bp) and Florida (mt-FLpsy, ~15,012 bp), USA, were acquired. Each mitogenome contained 13 protein coding genes, 2 ribosomal RNA and 22 transfer RNA genes, and a control region varying in sizes. The Californian mt-CApsy was identical to the Floridian mt-FLpsy, but different from the mitogenome (mt-GDpsy) of Guangdong, China, in 50 single nucleotide polymorphisms (SNPs). Further analyses were performed on sequences in cox1 and trnAsn regions with 100 ACPs, SNPs in nad1-nad4-nad5 locus through PCR with 252 ACP samples. All results showed the presence of a Chinese ACP cluster (CAC) and an American ACP cluster (AAC). We proposed that ACP in California was likely not introduced from China based on our current ACP collection but somewhere in America. However, more studies with ACP samples from around the world are needed. ACP mitogenome sequence analyses will facilitate ACP population research.

  11. Coping with earthquakes induced by fluid injection

    Science.gov (United States)

    McGarr, Arthur F.; Bekins, Barbara; Burkardt, Nina; Dewey, James W.; Earle, Paul S.; Ellsworth, William L.; Ge, Shemin; Hickman, Stephen H.; Holland, Austin F.; Majer, Ernest; Rubinstein, Justin L.; Sheehan, Anne

    2015-01-01

    Large areas of the United States long considered geologically stable with little or no detected seismicity have recently become seismically active. The increase in earthquake activity began in the mid-continent starting in 2001 (1) and has continued to rise. In 2014, the rate of occurrence of earthquakes with magnitudes (M) of 3 and greater in Oklahoma exceeded that in California (see the figure). This elevated activity includes larger earthquakes, several with M > 5, that have caused significant damage (2, 3). To a large extent, the increasing rate of earthquakes in the mid-continent is due to fluid-injection activities used in modern energy production (1, 4, 5). We explore potential avenues for mitigating effects of induced seismicity. Although the United States is our focus here, Canada, China, the UK, and others confront similar problems associated with oil and gas production, whereas quakes induced by geothermal activities affect Switzerland, Germany, and others.

  12. Extreme value statistics and thermodynamics of earthquakes. Large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lavenda, B. [Camerino Univ., Camerino, MC (Italy); Cipollone, E. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). National Centre for Research on Thermodynamics

    2000-06-01

    A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershocks sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Frechet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions show that self-similar power laws are transformed into non scaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Frechet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same catalogue of Chinese earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Frechet distribution. Earthquake temperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  13. Imaging 2015 Mw 7.8 Gorkha Earthquake and Its Aftershock Sequence Combining Multiple Calibrated Global Seismic Arrays

    Science.gov (United States)

    LI, B.; Ghosh, A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha earthquake provides a good opportunity to study the tectonics and earthquake hazards in the Himalayas, one of the most seismically active plate boundaries. Details of the seismicity patterns and associated structures in the Himalayas are poorly understood mainly due to limited instrumentation. Here, we apply a back-projection method to study the mainshock rupture and the following aftershock sequence using four large aperture global seismic arrays. All the arrays show eastward rupture propagation of about 130 km and reveal similar evolution of seismic energy radiation, with strong high-frequency energy burst about 50 km north of Kathmandu. Each single array, however, is typically limited by large azimuthal gap, low resolution, and artifacts due to unmodeled velocity structures. Therefore, we use a self-consistent empirical calibration method to combine four different arrays to image the Gorkha event. It greatly improves the resolution, can better track rupture and reveal details that cannot be resolved by any individual array. In addition, we also use the same arrays at teleseismic distances and apply a back-projection technique to detect and locate the aftershocks immediately following the Gorkha earthquake. We detect about 2.5 times the aftershocks recorded by the Advance National Seismic System comprehensive earthquake catalog during the 19 days following the mainshock. The aftershocks detected by the arrays show an east-west trend in general, with majority of the aftershocks located at the eastern part of the rupture patch and surrounding the rupture zone of the largest Mw 7.3 aftershock. Overall spatiotemporal aftershock pattern agrees well with global catalog, with our catalog showing more details relative to the standard global catalog. The improved aftershock catalog enables us to better study the aftershock dynamics, stress evolution in this region. Moreover, rapid and better imaging of aftershock distribution may aid rapid response

  14. Foreshocks and aftershocks locations of the 2014 Pisagua, N. Chile earthquake: history of a megathrust earthquake nucleation

    Science.gov (United States)

    Fuenzalida Velasco, Amaya; Rietbrock, Andreas; Tavera, Hernando; Ryder, Isabelle; Ruiz, Sergio; Thomas, Reece; De Angelis, Silvio; Bondoux, Francis

    2015-04-01

    The April 2014 Mw 8.1 Pisagua earthquake occurred in the Northern Chile seismic gap: a region of the South American subduction zone lying between Arica city and the Mejillones Peninsula. It is believed that this part of the subduction zone has not experienced a large earthquake since 1877. Thanks to the identification of this seismic gap, the north of Chile was well instrumented before the Pisagua earthquake, including the Integrated Plate boundary Observatory Chile (IPOC) network and the Chilean local network installed by the Centro Sismologico Nacional (CSN). These instruments were able to record the full foreshock and aftershock sequences, allowing a unique opportunity to study the nucleation process of large megathrust earthquakes. To improve azimuthal coverage of the Pisagua seismic sequence, after the earthquake, in collaboration with the Instituto Geofisico del Peru (IGP) we installed a temporary seismic network in south of Peru. The network comprised 12 short-period stations located in the coastal area between Moquegua and Tacna and they were operative from 1st May 2014. We also installed three stations on the slopes of the Ticsiani volcano to monitor any possible change in volcanic activity following the Pisagua earthquake. In this work we analysed the continuous seismic data recorded by CSN and IPOC networks from 1 March to 30 June to obtain the catalogue of the sequence, including foreshocks and aftershocks. Using an automatic algorithm based in STA/LTA we obtained the picks for P and S waves. Association in time and space defined the events and computed an initial location using Hypo71 and the 1D local velocity model. More than 11,000 events were identified with this method for the whole period, but we selected the best resolved events that include more than 7 observed arrivals with at least 2 S picks of them, to relocate these events using NonLinLoc software. For the main events of the sequence we carefully estimate event locations and we obtained

  15. Recovering from the ShakeOut earthquake

    Science.gov (United States)

    Wein, Anne; Johnson, Laurie; Bernknopf, Richard

    2011-01-01

    Recovery from an earthquake like the M7.8 ShakeOut Scenario will be a major endeavor taking many years to complete. Hundreds of Southern California municipalities will be affected; most lack recovery plans or previous disaster experience. To support recovery planning this paper 1) extends the regional ShakeOut Scenario analysis into the recovery period using a recovery model, 2) localizes analyses to identify longer-term impacts and issues in two communities, and 3) considers the regional context of local recovery.Key community insights about preparing for post-disaster recovery include the need to: geographically diversify city procurement; set earthquake mitigation priorities for critical infrastructure (e.g., airport), plan to replace mobile homes with earthquake safety measures, consider post-earthquake redevelopment opportunities ahead of time, and develop post-disaster recovery management and governance structures. This work also showed that communities with minor damages are still sensitive to regional infrastructure damages and their potential long-term impacts on community recovery. This highlights the importance of community and infrastructure resilience strategies as well.

  16. Geodetic Imaging for Rapid Assessment of Earthquakes: Airborne Laser Scanning (ALS)

    Science.gov (United States)

    Carter, W. E.; Shrestha, R. L.; Glennie, C. L.; Sartori, M.; Fernandez-Diaz, J.; National CenterAirborne Laser Mapping Operational Center

    2010-12-01

    To the residents of an area struck by a strong earthquake quantitative information on damage to the infrastructure, and its attendant impact on relief and recovery efforts, is urgent and of primary concern. To earth scientists a strong earthquake offers an opportunity to learn more about earthquake mechanisms, and to compare their models with the real world, in hopes of one day being able to accurately predict the precise locations, magnitudes, and times of large (and potentially disastrous) earthquakes. Airborne laser scanning (also referred to as airborne LiDAR or Airborne Laser Swath Mapping) is particularly well suited for rapid assessment of earthquakes, both for immediately estimating the damage to infrastructure and for providing information for the scientific study of earthquakes. ALS observations collected at low altitude (500—1000m) from a relatively slow (70—100m/sec) aircraft can provide dense (5—15 points/m2) sets of surface features (buildings, vegetation, ground), extending over hundreds of square kilometers with turn around times of several hours to a few days. The actual response time to any given event depends on several factors, including such bureaucratic issues as approval of funds, export license formalities, and clearance to fly over the area to be mapped, and operational factors such as the deployment of the aircraft and ground teams may also take a number of days for remote locations. Of course the need for immediate mapping of earthquake damage generally is not as urgent in remote regions with less infrastructure and few inhabitants. During August 16-19, 2010 the National Center for Airborne Laser Mapping (NCALM) mapped the area affected by the magnitude 7.2 El Mayor-Cucapah Earthquake (Northern Baja California Earthquake), which occurred on April 4, 2010, and was felt throughout southern California, Arizona, Nevada, and Baja California North, Mexico. From initial ground observations the fault rupture appeared to extend 75 km

  17. Along-strike variations in fault frictional properties along the San Andreas Fault near Cholame, California from joint earthquake and low-frequency earthquake relocations

    Science.gov (United States)

    Harrington, Rebecca M.; Cochran, Elizabeth S.; Griffiths, Emily M.; Zeng, Xiangfang; Thurber, Clifford H.

    2016-01-01

    Recent observations of low‐frequency earthquakes (LFEs) and tectonic tremor along the Parkfield–Cholame segment of the San Andreas fault suggest slow‐slip earthquakes occur in a transition zone between the shallow fault, which accommodates slip by a combination of aseismic creep and earthquakes (fault, which accommodates slip by stable sliding (>35  km depth). However, the spatial relationship between shallow earthquakes and LFEs remains unclear. Here, we present precise relocations of 34 earthquakes and 34 LFEs recorded during a temporary deployment of 13 broadband seismic stations from May 2010 to July 2011. We use the temporary array waveform data, along with data from permanent seismic stations and a new high‐resolution 3D velocity model, to illuminate the fine‐scale details of the seismicity distribution near Cholame and the relation to the distribution of LFEs. The depth of the boundary between earthquakes and LFE hypocenters changes along strike and roughly follows the 350°C isotherm, suggesting frictional behavior may be, in part, thermally controlled. We observe no overlap in the depth of earthquakes and LFEs, with an ∼5  km separation between the deepest earthquakes and shallowest LFEs. In addition, clustering in the relocated seismicity near the 2004 Mw 6.0 Parkfield earthquake hypocenter and near the northern boundary of the 1857 Mw 7.8 Fort Tejon rupture may highlight areas of frictional heterogeneities on the fault where earthquakes tend to nucleate.

  18. Genome Sequences of Two Pseudomonas syringae pv. tomato Race 1 Strains, Isolated from Tomato Fields in California

    OpenAIRE

    Thapa, Shree P.; Coaker, Gitta

    2016-01-01

    Pseudomonas syringae pv. tomato race 1 strains have evolved to overcome genetic resistance in tomato. Here, we present the draft genome sequences of two race 1 P.?syringae pv. tomato strains, A9 and 407, isolated from diseased tomato plants in California.

  19. The role of post-earthquake structural safety in pre-earthquake retrof in decision: guidelines and applications

    International Nuclear Information System (INIS)

    Bazzurro, P.; Telleen, K.; Maffei, J.; Yin, J.; Cornell, C.A.

    2009-01-01

    Critical structures such as hospitals, police stations, local administrative office buildings, and critical lifeline facilities, are expected to be operational immediately after earthquakes. Any rational decision about whether these structures are strong enough to meet this goal or whether pre-empitive retrofitting is needed cannot be made without an explicit consideration of post-earthquake safety and functionality with respect to aftershocks. Advanced Seismic Assessment Guidelines offer improvement over previous methods for seismic evaluation of buildings where post-earthquake safety and usability is a concern. This new method allows engineers to evaluate the like hood that a structure may have restricted access or no access after an earthquake. The building performance is measured in terms of the post-earthquake occupancy classifications Green Tag, Yellow Tag, and Red Tag, defining these performance levels quantitatively, based on the structure's remaining capacity to withstand aftershocks. These color-coded placards that constitute an established practice in US could be replaced by the standard results of inspections (A to E) performed by the Italian Dept. of Civil Protection after an event. The article also shows some applications of these Guidelines to buildings of the largest utility company in California, Pacific Gas and Electric Company (PGE). [it

  20. The SAFRR Tsunami Scenario: Improving Resilience for California from a Plausible M9 Earthquake near the Alaska Peninsula

    Science.gov (United States)

    Ross, S.; Jones, L.; Wilson, R. I.; Bahng, B.; Barberopoulou, A.; Borrero, J. C.; Brosnan, D.; Bwarie, J.; Geist, E. L.; Johnson, L.; Kirby, S. H.; Knight, W.; Long, K.; Lynett, P. J.; Miller, K.; Mortensen, C. E.; Nicolsky, D.; Oglesby, D. D.; Perry, S. C.; Plumlee, G. S.; Porter, K. A.; Real, C. R.; Ryan, K. J.; Suleimani, E.; Thio, H. K.; Titov, V.; Wein, A. M.; Whitmore, P.; Wood, N. J.

    2013-12-01

    The SAFRR Tsunami Scenario models a hypothetical but plausible tsunami, created by an Mw9.1 earthquake occurring offshore from the Alaskan peninsula, and its impacts on the California coast. We present the likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental impacts, social vulnerability, emergency management, and policy implications for California associated with the tsunami scenario. The intended users are those who must make mitigation decisions before and rapid decisions during future tsunamis. Around a half million people would be present in the scenario's inundation area in residences, businesses, public venues, parks and beaches. Evacuation would likely be ordered for the State of California's maximum mapped tsunami inundation zone, evacuating an additional quarter million people from residences and businesses. Some island and peninsula communities would face particular evacuation challenges because of limited access options and short warning time, caused by the distance between Alaska and California. Evacuations may also be a challenge for certain dependent-care populations. One third of the boats in California's marinas could be damaged or sunk, costing at least 700 million in repairs to boats and docks, and potentially much more to address serious issues due to sediment transport and environmental contamination. Fires would likely start at many sites where fuel and petrochemicals are stored in ports and marinas. Tsunami surges and bores may travel several miles inland up coastal rivers. Debris clean-up and recovery of inundated and damaged areas will take days, months, or years depending on the severity of impacts and the available resources for recovery. The Ports of Los Angeles and Long Beach (POLA/LB) would be shut down for a miniμm of two days due to strong currents. Inundation of dry land in the ports would result in 100 million damages to cargo and additional

  1. Dynamics of delayed triggering in multi-segmented foreshock sequence: Evidence from the 2016 Kumamoto, Japan, earthquake

    Science.gov (United States)

    Arai, H.; Ando, R.; Aoki, Y.

    2017-12-01

    The 2016 Kumamoto earthquake sequence hit the SW Japan, from April 14th to 16th and its sequence includes two M6-class foreshocks and the main shock (Mw 7.0). Importantly, the detailed surface displacement caused solely by the two foreshocks could be captured by a SAR observation isolated from the mainshock deformation. The foreshocks ruptured the previously mapped Hinagu fault and their hypocentral locations and the aftershock distribution indicates the involvement of two different subparallel faults. Therefore we assumed that the 1st and the 2nd foreshocks respectively ruptured each of the subparallel faults (faults A and B). One of the interesting points of this earthquake is that the two major foreshocks had a temporal gap of 2.5 hours even though the fault A and B are quite close by each other. This suggests that the stress perturbation due to the 1st foreshock is not large enough to trigger the 2nd one right away but that it's large enough to bring about the following earthquake after a delay time.We aim to reproduce the foreshock sequence such as rupture jumping over the subparallel faults by using dynamic rupture simulations. We employed a spatiotemporal-boundary integral equation method accelerated by the Fast Domain Partitioning Method (Ando, 2016, GJI) since this method allows us to construct a complex fault geometry in 3D media. Our model has two faults and a free ground surface. We conducted rupture simulation with various sets of parameters to identify the optimal condition describing the observation.Our simulation results are roughly categorized into 3 cases with regard to the criticality for the rupture jumping. The case 1 (supercritical case) shows the fault A and B ruptured consecutively without any temporal gap. In the case 2 (nearly critical), the rupture on the fault B started with a temporal gap after the fault A finished rupturing, which is what we expected as a reproduction. In the case 3 (subcritical), only the fault A ruptured and its

  2. Surface deformation associated with the November 23, 1977, Caucete, Argentina, earthquake sequence

    Science.gov (United States)

    Kadinsky-Cade, K.; Reilinger, R.; Isacks, B.

    1985-01-01

    The 1977 Caucete (San Juan) earthquake considered in the present paper occurred near the Sierra Pie de Palo in the Sierras Pampeanas tectonic province of western Argentina. In the study reported, coseismic surface deformation is combined with seismic observations (main shock and aftershocks, both teleseismic and local data) to place constraints on the geometry and slip of the main fault responsible for the 1977 earthquake. The implications of the 1977 event for long-term crustal shortening and earthquake recurrence rates in this region are also discussed. It is concluded that the 1977 Caucete earthquake was accompanied by more than 1 m of vertical uplift.

  3. Deeper penetration of large earthquakes on seismically quiescent faults.

    Science.gov (United States)

    Jiang, Junle; Lapusta, Nadia

    2016-06-10

    Why many major strike-slip faults known to have had large earthquakes are silent in the interseismic period is a long-standing enigma. One would expect small earthquakes to occur at least at the bottom of the seismogenic zone, where deeper aseismic deformation concentrates loading. We suggest that the absence of such concentrated microseismicity indicates deep rupture past the seismogenic zone in previous large earthquakes. We support this conclusion with numerical simulations of fault behavior and observations of recent major events. Our modeling implies that the 1857 Fort Tejon earthquake on the San Andreas Fault in Southern California penetrated below the seismogenic zone by at least 3 to 5 kilometers. Our findings suggest that such deeper ruptures may occur on other major fault segments, potentially increasing the associated seismic hazard. Copyright © 2016, American Association for the Advancement of Science.

  4. Short- and Long-Term Earthquake Forecasts Based on Statistical Models

    Science.gov (United States)

    Console, Rodolfo; Taroni, Matteo; Murru, Maura; Falcone, Giuseppe; Marzocchi, Warner

    2017-04-01

    The epidemic-type aftershock sequences (ETAS) models have been experimentally used to forecast the space-time earthquake occurrence rate during the sequence that followed the 2009 L'Aquila earthquake and for the 2012 Emilia earthquake sequence. These forecasts represented the two first pioneering attempts to check the feasibility of providing operational earthquake forecasting (OEF) in Italy. After the 2009 L'Aquila earthquake the Italian Department of Civil Protection nominated an International Commission on Earthquake Forecasting (ICEF) for the development of the first official OEF in Italy that was implemented for testing purposes by the newly established "Centro di Pericolosità Sismica" (CPS, the seismic Hazard Center) at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). According to the ICEF guidelines, the system is open, transparent, reproducible and testable. The scientific information delivered by OEF-Italy is shaped in different formats according to the interested stakeholders, such as scientists, national and regional authorities, and the general public. The communication to people is certainly the most challenging issue, and careful pilot tests are necessary to check the effectiveness of the communication strategy, before opening the information to the public. With regard to long-term time-dependent earthquake forecast, the application of a newly developed simulation algorithm to Calabria region provided typical features in time, space and magnitude behaviour of the seismicity, which can be compared with those of the real observations. These features include long-term pseudo-periodicity and clustering of strong earthquakes, and a realistic earthquake magnitude distribution departing from the Gutenberg-Richter distribution in the moderate and higher magnitude range.

  5. Holocene slip rates along the San Andreas Fault System in the San Gorgonio Pass and implications for large earthquakes in southern California

    Science.gov (United States)

    Heermance, Richard V.; Yule, Doug

    2017-06-01

    The San Gorgonio Pass (SGP) in southern California contains a 40 km long region of structural complexity where the San Andreas Fault (SAF) bifurcates into a series of oblique-slip faults with unknown slip history. We combine new 10Be exposure ages (Qt4: 8600 (+2100, -2200) and Qt3: 5700 (+1400, -1900) years B.P.) and a radiocarbon age (1260 ± 60 years B.P.) from late Holocene terraces with scarp displacement of these surfaces to document a Holocene slip rate of 5.7 (+2.7, -1.5) mm/yr combined across two faults. Our preferred slip rate is 37-49% of the average slip rates along the SAF outside the SGP (i.e., Coachella Valley and San Bernardino sections) and implies that strain is transferred off the SAF in this area. Earthquakes here most likely occur in very large, throughgoing SAF events at a lower recurrence than elsewhere on the SAF, so that only approximately one third of SAF ruptures penetrate or originate in the pass.Plain Language SummaryHow large are earthquakes on the southern San Andreas Fault? The answer to this question depends on whether or not the earthquake is contained only along individual fault sections, such as the Coachella Valley section north of Palm Springs, or the rupture crosses multiple sections including the area through the San Gorgonio Pass. We have determined the age and offset of faulted stream deposits within the San Gorgonio Pass to document slip rates of these faults over the last 10,000 years. Our results indicate a long-term slip rate of 6 mm/yr, which is almost 1/2 of the rates east and west of this area. These new rates, combined with faulted geomorphic surfaces, imply that large magnitude earthquakes must occasionally rupture a 300 km length of the San Andreas Fault from the Salton Sea to the Mojave Desert. Although many ( 65%) earthquakes along the southern San Andreas Fault likely do not rupture through the pass, our new results suggest that large >Mw 7.5 earthquakes are possible on the southern San Andreas Fault and likely

  6. Echo-sounding method aids earthquake hazard studies

    Science.gov (United States)

    ,

    1995-01-01

    Dramatic examples of catastrophic damage from an earthquake occurred in 1989, when the M 7.1 Lorna Prieta rocked the San Francisco Bay area, and in 1994, when the M 6.6 Northridge earthquake jolted southern California. The surprising amount and distribution of damage to private property and infrastructure emphasizes the importance of seismic-hazard research in urbanized areas, where the potential for damage and loss of life is greatest. During April 1995, a group of scientists from the U.S. Geological Survey and the University of Tennessee, using an echo-sounding method described below, is collecting data in San Antonio Park, California, to examine the Monte Vista fault which runs through this park. The Monte Vista fault in this vicinity shows evidence of movement within the last 10,000 years or so. The data will give them a "picture" of the subsurface rock deformation near this fault. The data will also be used to help locate a trench that will be dug across the fault by scientists from William Lettis & Associates.

  7. Natural Time and Nowcasting Earthquakes: Are Large Global Earthquakes Temporally Clustered?

    Science.gov (United States)

    Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L.

    2018-02-01

    The objective of this paper is to analyze the temporal clustering of large global earthquakes with respect to natural time, or interevent count, as opposed to regular clock time. To do this, we use two techniques: (1) nowcasting, a new method of statistically classifying seismicity and seismic risk, and (2) time series analysis of interevent counts. We chose the sequences of M_{λ } ≥ 7.0 and M_{λ } ≥ 8.0 earthquakes from the global centroid moment tensor (CMT) catalog from 2004 to 2016 for analysis. A significant number of these earthquakes will be aftershocks of the largest events, but no satisfactory method of declustering the aftershocks in clock time is available. A major advantage of using natural time is that it eliminates the need for declustering aftershocks. The event count we utilize is the number of small earthquakes that occur between large earthquakes. The small earthquake magnitude is chosen to be as small as possible, such that the catalog is still complete based on the Gutenberg-Richter statistics. For the CMT catalog, starting in 2004, we found the completeness magnitude to be M_{σ } ≥ 5.1. For the nowcasting method, the cumulative probability distribution of these interevent counts is obtained. We quantify the distribution using the exponent, β, of the best fitting Weibull distribution; β = 1 for a random (exponential) distribution. We considered 197 earthquakes with M_{λ } ≥ 7.0 and found β = 0.83 ± 0.08. We considered 15 earthquakes with M_{λ } ≥ 8.0, but this number was considered too small to generate a meaningful distribution. For comparison, we generated synthetic catalogs of earthquakes that occur randomly with the Gutenberg-Richter frequency-magnitude statistics. We considered a synthetic catalog of 1.97 × 10^5 M_{λ } ≥ 7.0 earthquakes and found β = 0.99 ± 0.01. The random catalog converted to natural time was also random. We then generated 1.5 × 10^4 synthetic catalogs with 197 M_{λ } ≥ 7.0 in each catalog and

  8. Earthquake Resilient Bridge Columns Utilizing Damage Resistant Hybrid Fiber Reinforced Concrete

    OpenAIRE

    Trono, William Dean

    2014-01-01

    Modern reinforced concrete bridges are designed to avoid collapse and to prevent loss of life during earthquakes. To meet these objectives, bridge columns are typically detailed to form ductile plastic hinges when large displacements occur. California seismic design criteria acknowledges that damage such as concrete cover spalling and reinforcing bar yielding may occur in columns during a design-level earthquake. The seismic resilience of bridge columns can be improved through the use of a da...

  9. What Can We Learn from a Simple Physics-Based Earthquake Simulator?

    Science.gov (United States)

    Artale Harris, Pietro; Marzocchi, Warner; Melini, Daniele

    2018-03-01

    Physics-based earthquake simulators are becoming a popular tool to investigate on the earthquake occurrence process. So far, the development of earthquake simulators is commonly led by the approach "the more physics, the better". However, this approach may hamper the comprehension of the outcomes of the simulator; in fact, within complex models, it may be difficult to understand which physical parameters are the most relevant to the features of the seismic catalog at which we are interested. For this reason, here, we take an opposite approach and analyze the behavior of a purposely simple earthquake simulator applied to a set of California faults. The idea is that a simple simulator may be more informative than a complex one for some specific scientific objectives, because it is more understandable. Our earthquake simulator has three main components: the first one is a realistic tectonic setting, i.e., a fault data set of California; the second is the application of quantitative laws for earthquake generation on each single fault, and the last is the fault interaction modeling through the Coulomb Failure Function. The analysis of this simple simulator shows that: (1) the short-term clustering can be reproduced by a set of faults with an almost periodic behavior, which interact according to a Coulomb failure function model; (2) a long-term behavior showing supercycles of the seismic activity exists only in a markedly deterministic framework, and quickly disappears introducing a small degree of stochasticity on the recurrence of earthquakes on a fault; (3) faults that are strongly coupled in terms of Coulomb failure function model are synchronized in time only in a marked deterministic framework, and as before, such a synchronization disappears introducing a small degree of stochasticity on the recurrence of earthquakes on a fault. Overall, the results show that even in a simple and perfectly known earthquake occurrence world, introducing a small degree of

  10. Stability and uncertainty of finite-fault slip inversions: Application to the 2004 Parkfield, California, earthquake

    Science.gov (United States)

    Hartzell, S.; Liu, P.; Mendoza, C.; Ji, C.; Larson, K.M.

    2007-01-01

    The 2004 Parkfield, California, earthquake is used to investigate stability and uncertainty aspects of the finite-fault slip inversion problem with different a priori model assumptions. We utilize records from 54 strong ground motion stations and 13 continuous, 1-Hz sampled, geodetic instruments. Two inversion procedures are compared: a linear least-squares subfault-based methodology and a nonlinear global search algorithm. These two methods encompass a wide range of the different approaches that have been used to solve the finite-fault slip inversion problem. For the Parkfield earthquake and the inversion of velocity or displacement waveforms, near-surface related site response (top 100 m, frequencies above 1 Hz) is shown to not significantly affect the solution. Results are also insensitive to selection of slip rate functions with similar duration and to subfault size if proper stabilizing constraints are used. The linear and nonlinear formulations yield consistent results when the same limitations in model parameters are in place and the same inversion norm is used. However, the solution is sensitive to the choice of inversion norm, the bounds on model parameters, such as rake and rupture velocity, and the size of the model fault plane. The geodetic data set for Parkfield gives a slip distribution different from that of the strong-motion data, which may be due to the spatial limitation of the geodetic stations and the bandlimited nature of the strong-motion data. Cross validation and the bootstrap method are used to set limits on the upper bound for rupture velocity and to derive mean slip models and standard deviations in model parameters. This analysis shows that slip on the northwestern half of the Parkfield rupture plane from the inversion of strong-motion data is model dependent and has a greater uncertainty than slip near the hypocenter.

  11. The 2016 Kumamoto Earthquakes: Cascading Geological Hazards and Compounding Risks

    Directory of Open Access Journals (Sweden)

    Katsuichiro Goda

    2016-08-01

    Full Text Available A sequence of two strike-slip earthquakes occurred on 14 and 16 April 2016 in the intraplate region of Kyushu Island, Japan, apart from subduction zones, and caused significant damage and disruption to the Kumamoto region. The analyses of regional seismic catalog and available strong motion recordings reveal striking characteristics of the events, such as migrating seismicity, earthquake surface rupture, and major foreshock-mainshock earthquake sequences. To gain valuable lessons from the events, a UK Earthquake Engineering Field Investigation Team (EEFIT was dispatched to Kumamoto, and earthquake damage surveys were conducted to relate observed earthquake characteristics to building and infrastructure damage caused by the earthquakes. The lessons learnt from the reconnaissance mission have important implications on current seismic design practice regarding the required seismic resistance of structures under multiple shocks and the seismic design of infrastructure subject to large ground deformation. The observations also highlight the consequences of cascading geological hazards on community resilience. To share the gathered damage data widely, geo-tagged photos are organized using Google Earth and the kmz file is made publicly available.

  12. Operational Earthquake Forecasting: Proposed Guidelines for Implementation (Invited)

    Science.gov (United States)

    Jordan, T. H.

    2010-12-01

    The goal of operational earthquake forecasting (OEF) is to provide the public with authoritative information about how seismic hazards are changing with time. During periods of high seismic activity, short-term earthquake forecasts based on empirical statistical models can attain nominal probability gains in excess of 100 relative to the long-term forecasts used in probabilistic seismic hazard analysis (PSHA). Prospective experiments are underway by the Collaboratory for the Study of Earthquake Predictability (CSEP) to evaluate the reliability and skill of these seismicity-based forecasts in a variety of tectonic environments. How such information should be used for civil protection is by no means clear, because even with hundredfold increases, the probabilities of large earthquakes typically remain small, rarely exceeding a few percent over forecasting intervals of days or weeks. Civil protection agencies have been understandably cautious in implementing formal procedures for OEF in this sort of “low-probability environment.” Nevertheless, the need to move more quickly towards OEF has been underscored by recent experiences, such as the 2009 L’Aquila earthquake sequence and other seismic crises in which an anxious public has been confused by informal, inconsistent earthquake forecasts. Whether scientists like it or not, rising public expectations for real-time information, accelerated by the use of social media, will require civil protection agencies to develop sources of authoritative information about the short-term earthquake probabilities. In this presentation, I will discuss guidelines for the implementation of OEF informed by my experience on the California Earthquake Prediction Evaluation Council, convened by CalEMA, and the International Commission on Earthquake Forecasting, convened by the Italian government following the L’Aquila disaster. (a) Public sources of information on short-term probabilities should be authoritative, scientific, open, and

  13. Seismogeodesy of the 2014 Mw6.1 Napa earthquake, California: Rapid response and modeling of fast rupture on a dipping strike-slip fault

    Science.gov (United States)

    Melgar, Diego; Geng, Jianghui; Crowell, Brendan W.; Haase, Jennifer S.; Bock, Yehuda; Hammond, William C.; Allen, Richard M.

    2015-07-01

    Real-time high-rate geodetic data have been shown to be useful for rapid earthquake response systems during medium to large events. The 2014 Mw6.1 Napa, California earthquake is important because it provides an opportunity to study an event at the lower threshold of what can be detected with GPS. We show the results of GPS-only earthquake source products such as peak ground displacement magnitude scaling, centroid moment tensor (CMT) solution, and static slip inversion. We also highlight the retrospective real-time combination of GPS and strong motion data to produce seismogeodetic waveforms that have higher precision and longer period information than GPS-only or seismic-only measurements of ground motion. We show their utility for rapid kinematic slip inversion and conclude that it would have been possible, with current real-time infrastructure, to determine the basic features of the earthquake source. We supplement the analysis with strong motion data collected close to the source to obtain an improved postevent image of the source process. The model reveals unilateral fast propagation of slip to the north of the hypocenter with a delayed onset of shallow slip. The source model suggests that the multiple strands of observed surface rupture are controlled by the shallow soft sediments of Napa Valley and do not necessarily represent the intersection of the main faulting surface and the free surface. We conclude that the main dislocation plane is westward dipping and should intersect the surface to the east, either where the easternmost strand of surface rupture is observed or at the location where the West Napa fault has been mapped in the past.

  14. Detecting Faults in Southern California using Computer-Vision Techniques and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Interferometry

    Science.gov (United States)

    Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.

    2013-12-01

    Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can

  15. Site response, shallow shear-wave velocity, and damage in Los Gatos, California, from the 1989 Loma Prieta earthquake

    Science.gov (United States)

    Hartzell, S.; Carver, D.; Williams, R.A.

    2001-01-01

    Aftershock records of the 1989 Loma Prieta earthquake are used to calculate site response in the frequency band of 0.5-10 Hz at 24 locations in Los Gatos, California, on the edge of the Santa Clara Valley. Two different methods are used: spectral ratios relative to a reference site on rock and a source/site spectral inversion method. These two methods complement each other and give consistent results. Site amplification factors are compared with surficial geology, thickness of alluvium, shallow shear-wave velocity measurements, and ground deformation and structural damage resulting from the Loma Prieta earthquake. Higher values of site amplification are seen on Quaternary alluvium compared with older Miocene and Cretaceous units of Monterey and Franciscan Formation. However, other more detailed correlations with surficial geology are not evident. A complex pattern of alluvial sediment thickness, caused by crosscutting thrust faults, is interpreted as contributing to the variability in site response and the presence of spectral resonance peaks between 2 and 7 Hz at some sites. Within the range of our field measurements, there is a correlation between lower average shear-wave velocity of the top 30 m and 50% higher values of site amplification. An area of residential homes thrown from their foundations correlates with high site response. This damage may also have been aggravated by local ground deformation. Severe damage to commercial buildings in the business district, however, is attributed to poor masonry construction.

  16. The Manchester earthquake swarm of October 2002

    Science.gov (United States)

    Baptie, B.; Ottemoeller, L.

    2003-04-01

    An earthquake sequence started in the Greater Manchester area of the United Kingdom on October 19, 2002. This has continued to the time of writing and has consisted of more than 100 discrete earthquakes. Three temporary seismograph stations were installed to supplement existing permanent stations and to better understand the relationship between the seismicity and local geology. Due to the urban location, these were experienced by a large number of people. The largest event on October 21 had a magnitude ML 3.9. The activity appears to be an earthquake swarm, since there is no clear distinction between a main shock and aftershocks. However, most of the energy during the sequence was actually released in two earthquakes separated by a few seconds in time, on October 21 at 11:42. Other examples of swarm activity in the UK include Comrie (1788-1801, 1839-46), Glenalmond (1970-72), Doune (1997) and Blackford (1997-98, 2000-01) in central Scotland, Constantine (1981, 1986, 1992-4) in Cornwall, and Johnstonbridge (mid1980s) and Dumfries (1991,1999). The clustering of these events in time and space does suggest that there is a causal relationship between the events of the sequence. Joint hypocenter determination was used to simultaneously locate the swarm earthquakes, determine station corrections and improve the relative locations. It seems likely that all events in the sequence originate from a relatively small source volume. This is supported by the similarities in source mechanism and waveform signals between the various events. Focal depths were found to be very shallow and of the order of about 2-3 km. Source mechanisms determined for the largest of the events show strike-slip solutions along either northeast-southwest or northwest-southeast striking fault planes. The surface expression of faults in the epicentral area is generally northwest-southeast, suggesting that this is the more likely fault plane.

  17. Evaluation of Seismic Hazards at California Department of Transportation (CALTRANS)Structures

    Science.gov (United States)

    Merriam, M. K.

    2005-12-01

    The California Department of Transportation (CALTRANS) has responsibility for design, construction, and maintenance of approximately 12,000 state bridges. CALTRANS also provides oversight for similar activities for 12,200 bridges owned by local agencies throughout the state. California is subjected to a M6 or greater seismic event every few years. Recent earthquakes include the 1971 Mw6.6 San Fernando earthquake which struck north of Los Angeles and prompted engineers to begin retrofitting existing bridges and re-examine the way bridges are detailed to improve their response to earthquakes, the 1989 Mw6.9 Loma Prieta earthquake which destroyed the Cypress Freeway and damaged the San Francisco-Oakland Bay Bridge, and the 1994 Mw6.7 Northridge earthquake in the Los Angeles area which heavily damaged four major freeways. Since CALTRANS' seismic performance goal is to ensure life-safety needs are met for the traveling public during an earthquake, estimating earthquake magnitude, peak bedrock acceleration, and determining if special seismic considerationsare needed at specific bridge sites are critical. CALTRANS is currently developing a fourth generation seismic hazard map to be used for estimating these parameters. A deterministic approach has been used to develop this map. Late-Quaternary-age faults are defined as the expected seismic sources. Caltrans requires site-specific studies to determine potential for liquefaction, seismically induced landslides, and surface fault rupture. If potential for one of these seismic hazards exists, the hazard is mitigated by avoidance, removal, or accommodated through design. The action taken, while complying with the Department's "no collapse" requirement, depends upon many factors, including cost.

  18. The accommodation of relative motion at depth on the San Andreas fault system in California

    Science.gov (United States)

    Prescott, W. H.; Nur, A.

    1981-01-01

    Plate motion below the seismogenic layer along the San Andreas fault system in California is assumed to form by aseismic slip along a deeper extension of the fault or may result from lateral distribution of deformation below the seismogenic layer. The shallow depth of California earthquakes, the depth of the coseismic slip during the 1906 San Francisco earthquake, and the presence of widely separated parallel faults indicate that relative motion is distributed below the seismogenic zone, occurring by inelastic flow rather than by aseismic slip on discrete fault planes.

  19. Collaboratory for the Study of Earthquake Predictability

    Science.gov (United States)

    Schorlemmer, D.; Jordan, T. H.; Zechar, J. D.; Gerstenberger, M. C.; Wiemer, S.; Maechling, P. J.

    2006-12-01

    Earthquake prediction is one of the most difficult problems in physical science and, owing to its societal implications, one of the most controversial. The study of earthquake predictability has been impeded by the lack of an adequate experimental infrastructure---the capability to conduct scientific prediction experiments under rigorous, controlled conditions and evaluate them using accepted criteria specified in advance. To remedy this deficiency, the Southern California Earthquake Center (SCEC) is working with its international partners, which include the European Union (through the Swiss Seismological Service) and New Zealand (through GNS Science), to develop a virtual, distributed laboratory with a cyberinfrastructure adequate to support a global program of research on earthquake predictability. This Collaboratory for the Study of Earthquake Predictability (CSEP) will extend the testing activities of SCEC's Working Group on Regional Earthquake Likelihood Models, from which we will present first results. CSEP will support rigorous procedures for registering prediction experiments on regional and global scales, community-endorsed standards for assessing probability-based and alarm-based predictions, access to authorized data sets and monitoring products from designated natural laboratories, and software to allow researchers to participate in prediction experiments. CSEP will encourage research on earthquake predictability by supporting an environment for scientific prediction experiments that allows the predictive skill of proposed algorithms to be rigorously compared with standardized reference methods and data sets. It will thereby reduce the controversies surrounding earthquake prediction, and it will allow the results of prediction experiments to be communicated to the scientific community, governmental agencies, and the general public in an appropriate research context.

  20. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    Science.gov (United States)

    Nelson, C. H.; Gutiérrez Pastor, J.; Goldfinger, C.; Escutia, C.

    2012-11-01

    We summarize the importance of great earthquakes (Mw ≳ 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1) radiometric dating (14C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The H method provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia) or very close (San Andreas) to the early window for another great earthquake. On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs) are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km) than on passive margins (~1000 km). The great earthquakes along the Cascadia and northern California margins cause seismic strengthening of the sediment, which

  1. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault.

    Science.gov (United States)

    Zielke, Olaf; Arrowsmith, J Ramón; Grant Ludwig, Lisa; Akçiz, Sinan O

    2010-02-26

    The moment magnitude (Mw) 7.9 Fort Tejon earthquake of 1857, with a approximately 350-kilometer-long surface rupture, was the most recent major earthquake along the south-central San Andreas Fault, California. Based on previous measurements of its surface slip distribution, rupture along the approximately 60-kilometer-long Carrizo segment was thought to control the recurrence of 1857-like earthquakes. New high-resolution topographic data show that the average slip along the Carrizo segment during the 1857 event was 5.3 +/- 1.4 meters, eliminating the core assumption for a linkage between Carrizo segment rupture and recurrence of major earthquakes along the south-central San Andreas Fault. Earthquake slip along the Carrizo segment may recur in earthquake clusters with cumulative slip of approximately 5 meters.

  2. Experimental study of structural response to earthquakes

    International Nuclear Information System (INIS)

    Clough, R.W.; Bertero, V.V.; Bouwkamp, J.G.; Popov, E.P.

    1975-01-01

    The objectives, methods, and some of the principal results obtained from experimental studies of the behavior of structures subjected to earthquakes are described. Although such investigations are being conducted in many laboratories throughout the world, the information presented deals specifically with projects being carried out at the Earthquake Engineering Research Center (EERC) of the University of California, Berkeley. A primary purpose of these investigations is to obtain detailed information on the inelastic response mechanisms in typical structural systems so that the experimentally observed performance can be compared with computer generated analytical predictions. Only by such comparisons can the mathematical models used in dynamic nonlinear analyses be verified and improved. Two experimental procedures for investigating earthquake structural response are discussed: the earthquake simulator facility which subjects the base of the test structure to acceleration histories similar to those recorded in actual earthquakes, and systems of hydraulic rams which impose specified displacement histories on the test components, equivalent to motions developed in structures subjected to actual'quakes. The general concept and performance of the 20ft square EERC earthquake simulator is described, and the testing of a two story concrete frame building is outlined. Correlation of the experimental results with analytical predictions demonstrates that satisfactory agreement can be obtained only if the mathematical model incorporates a stiffness deterioration mechanism which simulates the cracking and other damage suffered by the structure

  3. FIELD SURVEY REPORT OF TSUNAMI EFFECTS CAUSED BY THE AUGUST 2012 OFFSHORE EL SALAVADOR EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    Francisco Gavidia-Medina

    2015-10-01

    Full Text Available This report describes the field survey of the western zone of El Salvador conducted by an international group of scientists and engineers following the earthquake and tsunami of 27 August 2012 (04:37 UTC, 26 August 10:37 pm local time. The earthquake generated a tsunami with a maximum height of ~ 6 m causing inundation of up to 300 m inland along a 40 km section of coastline in eastern El Salvador. * (Note: Presentation from the 6th International Tsunami Symposium of Tsunami Society International in Costa Rica in Sept. 2014 - based on the Field Survey Report of the tsunami effects caused by the August 2012 Earthquake which were compiled in a report by Jose C. Borrero of the University of California Tsunami Research Center. Contributors to that report and field survey participants included Hermann M. Fritz of the Georgia Institute of Technology, Francisco Gavidia-Medina, Jeniffer Larreynaga-Murcia, Rodolfo Torres-Cornejo, Manuel Diaz-Flores and Fabio Alvarad: of the Ministerio de Medio Ambiente y Recursos Naturales de El Salvador (MARN, Norwin Acosta: of the Instituto Nicaragüense de Estudios Territoriales( INOTER, Julie Leonard of the Office of Foreign Disaster Assistance (USAID, OFDA, Nic Arcos of the International Tsunami Information Center (ITIC and Diego Arcas of the Pacific Marine Environmental Laboratory (NOAA – PMEL The figures of this paper are from the report compiled by Jose C. Borrero and are numbered out of sequence out of sequence from the compiled joint report. The quality of figures 2.2, 2.3 and 2.4 is rather poor and the reader is referred to the original report, as shown in the references.

  4. The 2013 Crete (Hellenic Arc) Earthquake Sequence

    Science.gov (United States)

    Karakostas, V. G.; Papadimitriou, E. E.; Vallianatos, F.

    2014-12-01

    The western Hellenic Arc is a well known place of active interplate deformation, where the convergence motion vector is perpendicular to the subduction front. On 12 October 2013 this area was hit by a strong (Mw=6.7) earthquake, occurred on a thrust fault onto the coupled part of the overriding and descending plates, with the compression axis being oriented in the direction of plate convergence. This was the first strong (M>6.0) event to have occurred onto this segment of the descending slab, which has accommodated the largest (M8.3) known earthquake in the Mediterranean area, and to be recorded by the Hellenic Unified Seismological Network (HUSN) that has been considerably improved in the last five years. The first 2-days relocated seismicity shows activation of the upper part of the descending slab, downdip of the plate interface and forming a relatively narrow aftershock area on map view. The less densely visited by aftershocks area, where the main shock is also encompassed, is considered as the high-slip area along the downdip portion of the subducting plane. Dense concentration of the intraslab aftershocks are probably due to the increase of static stress generated by the main shock. A spectacular feature of the aftershock activity concerns the lateral extension of the slipped area, which appears very sharply defined. This provides evidence on localized coupling and aseismically creeping areas, explaining the low coupling ratio in the Hellenic Arc, as it derives from comparison between relative plate motion and seismic energy release. Elucidating the issue of how far the associated large-slip zone might be extended along the plate interface during the main rupture is crucial in assessing future earthquake hazards from subduction events in the study area. This research has been co-funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project.

  5. Economic consequences of earthquakes: bridging research and practice with HayWired

    Science.gov (United States)

    Wein, A. M.; Kroll, C.

    2016-12-01

    The U.S. Geological Survey partners with organizations and experts to develop multiple hazard scenarios. The HayWired earthquake scenario refers to a rupture of the Hayward fault in the Bay Area of California and addresses the potential chaos related to interconnectedness at many levels: the fault afterslip and aftershocks, interdependencies of lifelines, wired/wireless technology, communities at risk, and ripple effects throughout today's digital economy. The scenario is intended for diverse audiences. HayWired analyses translate earthquake hazards (surface rupture, ground shaking, liquefaction, landslides) into physical engineering and environmental health impacts, and into societal consequences. Damages to life and property and lifeline service disruptions are direct causes of business interruption. Economic models are used to estimate the economic impacts and resilience in the regional economy. The objective of the economic analysis is to inform policy discourse about economic resilience at all three levels of the economy: macro, meso, and micro. Stakeholders include businesses, economic development, and community leaders. Previous scenario analyses indicate the size of an event: large earthquakes and large winter storms are both "big ones" for California. They motivate actions to reduce the losses from fire following earthquake and water supply outages. They show the effect that resilience can have on reducing economic losses. Evaluators find that stakeholders learned the most about the economic consequences.

  6. Data Delivery Latency Improvements And First Steps Towards The Distributed Computing Of The Caltech/USGS Southern California Seismic Network Earthquake Early Warning System

    Science.gov (United States)

    Stubailo, I.; Watkins, M.; Devora, A.; Bhadha, R. J.; Hauksson, E.; Thomas, V. I.

    2016-12-01

    The USGS/Caltech Southern California Seismic Network (SCSN) is a modern digital ground motion seismic network. It develops and maintains Earthquake Early Warning (EEW) data collection and delivery systems in southern California as well as real-time EEW algorithms. Recently, Behr et al., SRL, 2016 analyzed data from several regional seismic networks deployed around the globe. They showed that the SCSN was the network with the smallest data communication delays or latency. Since then, we have reduced further the telemetry delays for many of the 330 current sites. The latency has been reduced on average from 2-6 sec to 0.4 seconds by tuning the datalogger parameters and/or deploying software upgrades. Recognizing the latency data as one of the crucial parameters in EEW, we have started archiving the per-packet latencies in mseed format for all the participating sites in a similar way it is traditionally done for the seismic waveform data. The archived latency values enable us to understand and document long-term changes in performance of the telemetry links. We can also retroactively investigate how latent the waveform data were during a specific event or during a specific time period. In addition the near-real time latency values are useful for monitoring and displaying the real-time station latency, in particular to compare different telemetry technologies. A future step to reduce the latency is to deploy the algorithms on the dataloggers at the seismic stations and transmit either the final solutions or intermediate parameters to a central processing center. To implement this approach, we are developing a stand-alone version of the OnSite algorithm to run on the dataloggers in the field. This will increase the resiliency of the SCSN to potential telemetry restrictions in the immediate aftermath of a large earthquake, either by allowing local alarming by the single station, or permitting transmission of lightweight parametric information rather than continuous

  7. Sun, Moon and Earthquakes

    Science.gov (United States)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  8. Possibility of the real-time dynamic strain field monitoring deduced from GNSS data: case study of the 2016 Kumamoto earthquake sequence

    Science.gov (United States)

    Ohta, Y.; Ohzono, M.; Takahashi, H.; Kawamoto, S.; Hino, R.

    2017-12-01

    A large and destructive earthquake (Mjma 7.3) occurred on April 15, 2016 in Kumamoto region, southwestern Japan. This earthquake was accompanied approximately 32 s later by an M 6 earthquake in central Oita region, which hypocenter located 80 km northeast from the hypocenter of the mainshock of the Kumamoto earthquake. This triggered earthquake also had the many aftershocks in and around the Oita region. It is important to understand how to occur such chain-reacted earthquake sequences. We used the 1Hz dual-frequency phase and range data from GEONET in Kyushu island. The data were processed using GIPSY-OASIS (version 6.4). We adopoted kinematic PPP strategy for the coordinate estimation. The reference GPS satellite orbit and 5 s clock information were obtained using the CODE product. We also applied simple sidereal filter technique for the estimated time series. Based on the obtained 1Hz GNSS time series, we estimated the areal strain and principle strain field using the method of the Shen et al. (1996). For the assessment of the dynamic strain, firstly we calculated the averaged absolute value of areal strain field between 60-85s after the origin time of the mainshock of the Kumamoto earthquake which was used as the "reference" static strain field. Secondly, we estimated the absolute value of areal strain in each time step. Finally, we calculated the strain ratio in each time step relative to the "reference". Based on this procedure, we can extract the spatial and temporal characteristic of the dynamic strain in each time step. Extracted strain ratio clearly shows the spatial and temporal dynamic strain characteristic. When an attention is paid to a region of triggered Oita earthquake, the timing of maximum dynamic strain ratio in the epicenter just corresponds to the origin time of the triggered event. It strongly suggested that the large dynamic strain may trigger the Oita event. The epicenter of the triggered earthquake located within the geothermal region. In

  9. Prediction of maximum earthquake intensities for the San Francisco Bay region

    Science.gov (United States)

    Borcherdt, Roger D.; Gibbs, James F.

    1975-01-01

    The intensity data for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the empirical relation derived between 1906 intensities and distance perpendicular to the fault for 917 sites underlain by rocks of the Franciscan Formation is: Intensity = 2.69 - 1.90 log (Distance) (km). For sites on other geologic units intensity increments, derived with respect to this empirical relation, correlate strongly with the Average Horizontal Spectral Amplifications (AHSA) determined from 99 three-component recordings of ground motion generated by nuclear explosions in Nevada. The resulting empirical relation is: Intensity Increment = 0.27 +2.70 log (AHSA), and average intensity increments for the various geologic units are -0.29 for granite, 0.19 for Franciscan Formation, 0.64 for the Great Valley Sequence, 0.82 for Santa Clara Formation, 1.34 for alluvium, 2.43 for bay mud. The maximum intensity map predicted from these empirical relations delineates areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hazard fault.

  10. Prediction of maximum earthquake intensities for the San Francisco Bay region

    Energy Technology Data Exchange (ETDEWEB)

    Borcherdt, R.D.; Gibbs, J.F.

    1975-01-01

    The intensity data for the California earthquake of Apr 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the empirical relation derived between 1906 intensities and distance perpendicular to the fault for 917 sites underlain by rocks of the Franciscan formation is intensity = 2.69 - 1.90 log (distance) (km). For sites on other geologic units, intensity increments, derived with respect to this empirical relation, correlate strongly with the average horizontal spectral amplifications (AHSA) determined from 99 three-component recordings of ground motion generated by nuclear explosions in Nevada. The resulting empirical relation is intensity increment = 0.27 + 2.70 log (AHSA), and average intensity increments for the various geologic units are -0.29 for granite, 0.19 for Franciscan formation, 0.64 for the Great Valley sequence, 0.82 for Santa Clara formation, 1.34 for alluvium, and 2.43 for bay mud. The maximum intensity map predicted from these empirical relations delineates areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hayward fault.

  11. Earthquake geology and paleoseismology of major strands of the San Andreas fault system: Chapter 38

    Science.gov (United States)

    Rockwell, Thomas; Scharer, Katherine M.; Dawson, Timothy E.

    2016-01-01

    The San Andreas fault system in California is one of the best-studied faults in the world, both in terms of the long-term geologic history and paleoseismic study of past surface ruptures. In this paper, we focus on the Quaternary to historic data that have been collected from the major strands of the San Andreas fault system, both on the San Andreas Fault itself, and the major subparallel strands that comprise the plate boundary, including the Calaveras-Hayward- Rogers Creek-Maacama fault zone and the Concord-Green Valley-Bartlett Springs fault zone in northern California, and the San Jacinto and Elsinore faults in southern California. The majority of the relative motion between the Pacific and North American lithospheric plates is accommodated by these faults, with the San Andreas slipping at about 34 mm/yr in central California, decreasing to about 20 mm/yr in northern California north of its juncture with the Calaveras and Concord faults. The Calaveras-Hayward-Rogers Creek-Maacama fault zone exhibits a slip rate of 10-15 mm/yr, whereas the rate along the Concord-Green Valley-Bartlett Springs fault zone is lower at about 5 mm/yr. In southern California, the San Andreas exhibits a slip rate of about 35 mm/yr along the Mojave section, decreasing to as low as 10-15 mm/yr along its juncture with the San Jacinto fault, and about 20 mm/yr in the Coachella Valley. The San Jacinto and Elsinore fault zones exhibit rates of about 15 and 5 mm/yr, respectively. The average recurrence interval for surface-rupturing earthquakes along individual elements of the San Andreas fault system range from 100-500 years and is consistent with slip rate at those sites: higher slip rates produce more frequent or larger earthquakes. There is also evidence of short-term variations in strain release (slip rate) along various fault sections, as expressed as “flurries” or clusters of earthquakes as well as periods of relatively fewer surface ruptures in these relatively short records. This

  12. Genome and Transcriptome Sequencing of the Ostreid herpesvirus 1 From Tomales Bay, California

    Science.gov (United States)

    Burge, C. A.; Langevin, S.; Closek, C. J.; Roberts, S. B.; Friedman, C. S.

    2016-02-01

    Mass mortalities of larval and seed bivalve molluscs attributed to the Ostreid herpesvirus 1 (OsHV-1) occur globally. OsHV-1 was fully sequenced and characterized as a member of the Family Malacoherpesviridae. Multiple strains of OsHV-1 exist and may vary in virulence, i.e. OsHV-1 µvar. For most global variants of OsHV-1, sequence data is limited to PCR-based sequencing of segments, including two recent genomes. In the United States, OsHV-1 is limited to detection in adjacent embayments in California, Tomales and Drakes bays. Limited DNA sequence data of OsHV-1 infecting oysters in Tomales Bay indicates the virus detected in Tomales Bay is similar but not identical to any one global variant of OsHV-1. In order to better understand both strain variation and virulence of OsHV-1 infecting oysters in Tomales Bay, we used genomic and transcriptomic sequencing. Meta-genomic sequencing (Illumina MiSeq) was conducted from infected oysters (n=4 per year) collected in 2003, 2007, and 2014, where full OsHV-1 genome sequences and low overall microbial diversity were achieved from highly infected oysters. Increased microbial diversity was detected in three of four samples sequenced from 2003, where qPCR based genome copy numbers of OsHV-1 were lower. Expression analysis (SOLiD RNA sequencing) of OsHV-1 genes expressed in oyster larvae at 24 hours post exposure revealed a nearly complete transcriptome, with several highly expressed genes, which are similar to recent transcriptomic analyses of other OsHV-1 variants. Taken together, our results indicate that genome and transcriptome sequencing may be powerful tools in understanding both strain variation and virulence of non-culturable marine viruses.

  13. Spatiotemporal Analysis of the Foreshock-Mainshock-Aftershock Sequence of the 6 July 2017 M5.8 Lincoln, Montana Earthquake

    Science.gov (United States)

    McMahon, N. D.; Stickney, M.; Aster, R. C.; Yeck, W.; Martens, H. R.; Benz, H.

    2017-12-01

    On 6 July 2017, a Mw 5.8 earthquake occurred 11 km southeast of Lincoln, Montana. The event was widely-felt from Edmonton, Alberta, Canada (750 km north), Seattle, Washington (800 km west), the Idaho/Utah and Idaho/Nevada borders (550 km south), and Rapid City, South Dakota (750 km east). This is the largest earthquake to occur in the state since the 1959 M 7.3 Hebgen Lake event 250 km to the southeast. In the three weeks following the 6 July 2017 Mw 5.8 main shock, the U.S. Geological Survey and Montana Bureau of Mines and Geology located more than 300 aftershocks. Preliminary observations show most of these aftershocks form a short NNE zone that suggests that the main shock may have slipped on a NNE left-lateral fault. A smaller number of aftershocks extend along a longer WNW-trending zone. These faults are part of the Lewis and Clark line, a prominent zone of Middle Proterozoic to Holocene age strike-slip, dip slip, and oblique slip faulting trending 400 km east-southeast from northern Idaho to east of Helena, Montana, and terminating southeast of this earthquake. We use identified aftershock waveforms as templates to examine the data from 1 June 2017 through 27 July 2017 with cross-correlation techniques on nearby permanent and temporary seismic stations deployed shortly after the mainshock to identify foreshocks and additional small aftershocks. Locating these events allows us to study subsurface geology, map fault structures, and provide insight on the spatial and temporal evolution of the earthquake sequence, which may continue to produce aftershocks for years. Other notable earthquakes in the region include a damaging M 6.6 earthquake 100 km to the south in June 1925, M 6.2 and M 6.0 earthquakes near Helena, Montana in October 1935 that caused significant damage and four fatalities, and a M 5.6 earthquake 170 km to the south in July 2005 that caused minor damage in Dillon and the surrounding region. We hope this work not only allows us to map the involved

  14. Extreme value statistics and thermodynamics of earthquakes: large earthquakes

    Directory of Open Access Journals (Sweden)

    B. H. Lavenda

    2000-06-01

    Full Text Available A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershock sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Fréchet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions shows that self-similar power laws are transformed into nonscaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Fréchet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same Catalogue of Chinese Earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Fréchet distribution. Earthquaketemperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  15. ShakeAlert—An earthquake early warning system for the United States west coast

    Science.gov (United States)

    Burkett, Erin R.; Given, Douglas D.; Jones, Lucile M.

    2014-08-29

    Earthquake early warning systems use earthquake science and the technology of monitoring systems to alert devices and people when shaking waves generated by an earthquake are expected to arrive at their location. The seconds to minutes of advance warning can allow people and systems to take actions to protect life and property from destructive shaking. The U.S. Geological Survey (USGS), in collaboration with several partners, has been working to develop an early warning system for the United States. ShakeAlert, a system currently under development, is designed to cover the West Coast States of California, Oregon, and Washington.

  16. GPS Monitoring of Surface Change During and Following the Fortuitous Occurrence of the M(sub w) = 7.3 Landers Earthquake in our Network

    Science.gov (United States)

    Miller, M. Meghan

    1998-01-01

    Accomplishments: (1) Continues GPS monitoring of surface change during and following the fortuitous occurrence of the M(sub w) = 7.3 Landers earthquake in our network, in order to characterize earthquake dynamics and accelerated activity of related faults as far as 100's of kilometers along strike. (2) Integrates the geodetic constraints into consistent kinematic descriptions of the deformation field that can in turn be used to characterize the processes that drive geodynamics, including seismic cycle dynamics. In 1991, we installed and occupied a high precision GPS geodetic network to measure transform-related deformation that is partitioned from the Pacific - North America plate boundary northeastward through the Mojave Desert, via the Eastern California shear zone to the Walker Lane. The onset of the M(sub w) = 7.3 June 28, 1992, Landers, California, earthquake sequence within this network poses unique opportunities for continued monitoring of regional surface deformation related to the culmination of a major seismic cycle, characterization of the dynamic behavior of continental lithosphere during the seismic sequence, and post-seismic transient deformation. During the last year, we have reprocessed all three previous epochs for which JPL fiducial free point positioning products available and are queued for the remaining needed products, completed two field campaigns monitoring approx. 20 sites (October 1995 and September 1996), begun modeling by development of a finite element mesh based on network station locations, and developed manuscripts dealing with both the Landers-related transient deformation at the latitude of Lone Pine and the velocity field of the whole experiment. We are currently deploying a 1997 observation campaign (June 1997). We use GPS geodetic studies to characterize deformation in the Mojave Desert region and related structural domains to the north, and geophysical modeling of lithospheric behavior. The modeling is constrained by our

  17. The 2012 Strike-slip Earthquake Sequence in Black Sea and its Link to the Caucasus Collision Zone

    Science.gov (United States)

    Tseng, T. L.; Hsu, C. H.; Legendre, C. P.; Jian, P. R.; Huang, B. S.; Karakhanian, A.; Chen, C. W.

    2016-12-01

    The Black Sea formed as a back-arc basin in Late Cretaceous to Paleogene with lots of extensional features. However, the Black Sea is now tectonically stable and absent of notable earthquakes except for the coastal region. In this study we invert regional waveforms of a new seismic array to constrain the focal mechanisms and depths of the 2012/12/23 earthquake sequence occurred in northeastern Black Sea basin that can provide unique estimates on the stress field in the region. The results show that the focal mechanisms for the main shock and 5 larger aftershocks are all strike-slip faulting and resembling with each other. The main rupture fall along the vertical dipping, NW-SE trending sinistral fault indicated by the lineation of most aftershocks. The fault strike and aftershock distribution are both consistent with the Shatsky Ridge, which is continental in nature but large normal faults was created by previous subsidence. The occurrence of 2012 earthquakes can be re-activated, as strike-slip, on one of the pre-existing normal fault cutting at depth nearly 20-30 km in the extended crust. Some of the aftershocks, including a larger one occurred 5 days later, are distributed toward NE direction 20 km away from main fault zone. Those events might be triggered by the main shock along a conjugate fault, which is surprisingly at the extension of proposed transform fault perpendicular to the rift axis of eastern Black Sea Basin. The focal mechanisms also indicate that the maximum compression in northeast Black Sea is at E-W direction, completely different from the N-S compression in the Caucasus and East Turkey controlled by Arabia-Eurasia collision. The origin of E-W maximum compression is probably the same as the secondary stress inferred from earthquakes in Racha region of the Greater Caucasus.

  18. Report on the 2010 Chilean earthquake and tsunami response

    Science.gov (United States)

    ,

    2011-01-01

    In July 2010, in an effort to reduce future catastrophic natural disaster losses for California, the American Red Cross coordinated and sent a delegation of 20 multidisciplinary experts on earthquake response and recovery to Chile. The primary goal was to understand how the Chilean society and relevant organizations responded to the magnitude 8.8 Maule earthquake that struck the region on February 27, 2010, as well as how an application of these lessons could better prepare California communities, response partners and state emergency partners for a comparable situation. Similarities in building codes, socioeconomic conditions, and broad extent of the strong shaking make the Chilean earthquake a very close analog to the impact of future great earthquakes on California. To withstand and recover from natural and human-caused disasters, it is essential for citizens and communities to work together to anticipate threats, limit effects, and rapidly restore functionality after a crisis. The delegation was hosted by the Chilean Red Cross and received extensive briefings from both national and local Red Cross officials. During nine days in Chile, the delegation also met with officials at the national, regional, and local government levels. Technical briefings were received from the President’s Emergency Committee, emergency managers from ONEMI (comparable to FEMA), structural engineers, a seismologist, hospital administrators, firefighters, and the United Nations team in Chile. Cities visited include Santiago, Talca, Constitución, Concepción, Talcahuano, Tumbes, and Cauquenes. The American Red Cross Multidisciplinary Team consisted of subject matter experts, who carried out special investigations in five Teams on the (1) science and engineering findings, (2) medical services, (3) emergency services, (4) volunteer management, and (5) executive and management issues (see appendix A for a full list of participants and their titles and teams). While developing this

  19. Assessing Cat Flea Microbiomes in Northern and Southern California by 16S rRNA Next-Generation Sequencing.

    Science.gov (United States)

    Vasconcelos, Elton J R; Billeter, Sarah A; Jett, Lindsey A; Meinersmann, Richard J; Barr, Margaret C; Diniz, Pedro P V P; Oakley, Brian B

    2018-06-12

    Flea-borne diseases (FBDs) impact both human and animal health worldwide. Because adult fleas are obligately hematophagous and can harbor potential pathogens, fleas act as ectoparasites of vertebrates, as well as zoonotic disease vectors. Cat fleas (Ctenocephalides felis) are important vectors of two zoonotic bacterial genera listed as priority pathogens by the National Institute of Allergy and Infectious Diseases (NIAID-USA): Bartonella spp. and Rickettsia spp., causative agents of bartonelloses and rickettsioses, respectively. In this study, we introduce the first microbiome analysis of C. felis samples from California, determining the presence and abundance of relevant pathogenic genera by characterizing the cat flea microbiome through 16S rRNA next-generation sequencing (16S-NGS). Samples from both northern (NoCal) and southern (SoCal) California were assessed to expand current knowledge regarding FBDs in the state. We identified Rickettsia and Bartonella, as well as the endosymbiont Wolbachia, as the most abundant genera, followed by less abundant taxa. In comparison to our previous study screening Californian cat fleas for rickettsiae using PCR/digestion/sequencing of the ompB gene, the 16S-NGS approach applied herein showed a 95% level of agreement in detecting Rickettsia spp. There was no overall difference in microbiome diversity between NoCal and SoCal samples. Bacterial taxa identified by 16S-NGS in this study may help to improve epidemiological investigations, pathogen surveillance efforts, and clinical diagnostics of FBDs in California and elsewhere.

  20. Seismic quiescence before the 2016 Mw 6.0 Amatrice earthquake, central Italy

    Science.gov (United States)

    Di Giovambattista, R.; Gentili, S.; Peresan, A.

    2017-12-01

    Seismic quiescence before major worldwide earthquakes has been reported by many authors. We have analyzed the seismicity preceding the last damaging 2016-2017 seismic sequence occurred in central Italy, and we have characterized the temporal and spatial extension of the foregoing seismic quiescence. The multiple mainshock sequence (24/08/2016, Mw 6.0; 26/10/2016 Mw 5.4 and 5.9; 30/10/2016, Mw 6.5), which occurred in central Italy, caused the death of nearly 300 people and widespread destruction of entire villages. The Mw 6.5 earthquake was the most powerful recorded in Italy since the 1980 M 6.9 Irpinia earthquake. The Region-Time-Length (RTL) method has been used to quantitatively analyze the seismic quiescence preceding the first Mw 6.0 Amatrice mainshock. This analysis was performed using the earthquake catalogue maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) declustered using a novel statistical approach, which is based on the "nearest-neighbor" distances between pairs of earthquakes in the space-time-energy domain. A well-evident quiescence that preceded the sequence was detected. The quiescence extended throughout a broad region north of the epicenter. The largest event of the sequence and its aftershocks covered most of the quiescence region, except for a small area to the west. The quiescence started from the beginning of September 2015 and lasted for approximately 1 year, up to the Amatrice mainshock. The results obtained have been compared with those of previous seismic sequences occurred in Italy. A similar analysis applied to the 1997-1998, Mw 5.7 Umbria-Marche earthquakes located at the northern termination of the Amatrice sequence, showed a decrease in RTL corresponding to a seismic quiescence, followed by a foreshock activation in the epicentral area before the occurrence of the mainshock.

  1. Ionospheric Anomaly before Kyushu|Japan Earthquake

    Directory of Open Access Journals (Sweden)

    YANG Li

    2017-05-01

    Full Text Available GIM data released by IGS is used in the article and a new method of combining the Sliding Time Window Method and the Ionospheric TEC correlation analysis method of adjacent grid points is proposed to study the relationship between pre-earthquake ionospheric anomalies and earthquake. By analyzing the abnormal change of TEC in the 5 grid points around the seismic region, the abnormal change of ionospheric TEC is found before the earthquake and the correlation between the TEC sequences of lattice points is significantly affected by earthquake. Based on the analysis of the spatial distribution of TEC anomaly, anomalies of 6 h, 12 h and 6 h were found near the epicenter three days before the earthquake. Finally, ionospheric tomographic technology is used to do tomographic inversion on electron density. And the distribution of the electron density in the ionospheric anomaly is further analyzed.

  2. Seismic resistance of equipment and building service systems: review of earthquake damage design requirements, and research applications in the USA

    International Nuclear Information System (INIS)

    Skjei, R.E.; Chakravartula, B.C.; Yanev, P.I.

    1979-01-01

    The history of earthquake damage and the resulting code design requirements for earthquake hazard mitigation for equipment in the USA is reviewed. Earthquake damage to essential service systems is summarized; observations for the 1964 Alaska and the 1971 San Fernando, California, earthquakes are stressed, and information from other events is included. USA building codes that reflect lessons learned from these earthquakes are discussed; brief summaries of widely used codes are presented. In conclusion there is a discussion of the desirability of adapting advanced technological concepts from the nuclear industry to equipment in conventional structures. (author)

  3. A Kinesthetic Demonstration for Locating Earthquake Epicenters

    Science.gov (United States)

    Keyantash, J.; Sperber, S.

    2005-12-01

    During Spring 2005, an inquiry-based curriculum for plate tectonics was developed for implementation in sixth-grade classrooms within the Los Angeles Unified School District (LAUSD). Two cohorts of LAUSD teachers received training and orientation to the plate tectonics unit during one week workshops in July 2005. However, during the training workshops, it was observed that there was considerable confusion among the teachers as to how the traditional "textbook" explanation of the time lag between P and S waves on a seismogram could possibly be used to determine the epicenter of an earthquake. One of the State of California science content standards for sixth grade students is that they understand how the epicenters of earthquakes are determined, so it was critical that the teachers themselves grasped the concept. In response to the adult learner difficulties, the classroom explanation of earthquake epicenter location was supplemented with an outdoor kinesthetic activity. Based upon the experience of the kinesthetic model, it was found that the hands-on model greatly cemented the teachers' understanding of the underlying theory. This paper details the steps of the kinesthetic demonstration for earthquake epicenter identification, as well as offering extended options for its classroom implementation.

  4. Simultaneous estimation of earthquake source parameters and ...

    Indian Academy of Sciences (India)

    moderate-size aftershocks (Mw 2.1–5.1) of the Mw 7.7 2001 Bhuj earthquake. The horizontal- ... claimed a death toll of 20,000 people. This earth- .... quake occurred west of Kachchh, with an epicenter at 24. ◦. N, 68 ..... for dominance of body waves for R ≤ 100 km ...... Bhuj earthquake sequence; J. Asian Earth Sci. 40.

  5. Investigating the Local Three-dimensional Velocity Structure of the 2008 Taoyuan Earthquake Sequence of Kaohsiung, Taiwan

    Science.gov (United States)

    Shih, M. H.; Huang, B. S.

    2016-12-01

    March 4, 2008, a moderate earthquake (ML 5.2) occurred in Taoyuan district of Kaohsiung County in the southern Taiwan. It was followed by numerous aftershocks in the following 48 hours, including three events with magnitude larger than 4. The Taoyuan earthquake sequence occurred during the TAIGER (Taiwan Integrated Geodynamic Research) project which is to image lithospheric structure of Taiwan orogeny. The high-resolution waveform data of this sequence were well-recorded by a large number of recording stations belong to several different permanent and TAIGER networks all around Taiwan. We had collected the waveform data and archived to a mega database. Then, we had identified 2,340 events from database in the preliminary locating process by using 1-D velocity model. In this study, we applied the double-difference tomography to investigate not only the fault geometry of the main shock but also the detailed 3-D velocity structure in this area. A total of 3,034 events were selected from preliminary locating result and CWBSN catalog in the vicinity. The resulting aftershocks are extended along the NE-SW direction and located on a 45° SE-dipping plane which agrees to one of the nodal planes of Global CMT solution (strike = 45°, dip = 40° and rake = 119°). We can identify a clear low-velocity area which is enclosed by events next to the main shock in the final 3D velocity model. We also recognized a 45°-dipping zone which is extended to the ground surface with low-velocity; meanwhile, velocity structure variation in study area correspond with major geologic units in Taiwan.

  6. Determining on-fault earthquake magnitude distributions from integer programming

    Science.gov (United States)

    Geist, Eric L.; Parsons, Thomas E.

    2018-01-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106  variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions. 

  7. Multiple Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California

    Science.gov (United States)

    Pike, Richard J.; Graymer, Russell W.

    2008-01-01

    With the exception of Los Angeles, perhaps no urban area in the United States is more at risk from landsliding, triggered by either precipitation or earthquake, than the San Francisco Bay region of northern California. By January each year, seasonal winter storms usually bring moisture levels of San Francisco Bay region hillsides to the point of saturation, after which additional heavy rainfall may induce landslides of various types and levels of severity. In addition, movement at any time along one of several active faults in the area may generate an earthquake large enough to trigger landslides. The danger to life and property rises each year as local populations continue to expand and more hillsides are graded for development of residential housing and its supporting infrastructure. The chapters in the text consist of: *Introduction by Russell W. Graymer *Chapter 1 Rainfall Thresholds for Landslide Activity, San Francisco Bay Region, Northern California by Raymond C. Wilson *Chapter 2 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike and Steven Sobieszczyk *Chapter 3 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven Sobieszczyk *Chapter 4 Landslide Hazard Modeled for the Cities of Oakland, Piedmont, and Berkeley, Northern California, from a M=7.1 Scenario Earthquake on the Hayward Fault Zone by Scott B. Miles and David K. Keefer *Chapter 5 Synthesis of Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike The plates consist of: *Plate 1 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike, Russell W. Graymer, Sebastian Roberts, Naomi B. Kalman, and Steven Sobieszczyk *Plate 2 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven

  8. A Test Case for the Source Inversion Validation: The 2014 ML 5.5 Orkney, South Africa Earthquake

    Science.gov (United States)

    Ellsworth, W. L.; Ogasawara, H.; Boettcher, M. S.

    2017-12-01

    The ML5.5 earthquake of August 5, 2014 occurred on a near-vertical strike slip fault below abandoned and active gold mines near Orkney, South Africa. A dense network of surface and in-mine seismometers recorded the earthquake and its aftershock sequence. In-situ stress measurements and rock samples through the damage zone and rupture surface are anticipated to be available from the "Drilling into Seismogenic Zones of M2.0-M5.5 Earthquakes in South African gold mines" project (DSeis) that is currently progressing toward the rupture zone (Science, doi: 10.1126/science.aan6905). As of 24 July, 95% of drilled core has been recovered from a 427m-section of the 1st hole from 2.9 km depth with minimal core discing and borehole breakouts. A 2nd hole is planned to intersect the fault at greater depth. Absolute differential stress will be measured along the holes and frictional characteristics of the recovered core will be determined in the lab. Surface seismic reflection data and exploration drilling from the surface down to the mining horizon at 3km depth is also available to calibrate the velocity structure above the mining horizon and image reflective geological boundaries and major faults below the mining horizon. The remarkable quality and range of geophysical data available for the Orkney earthquake makes this event an ideal test case for the Source Inversion Validation community using actual seismic data to determine the spatial and temporal evolution of earthquake rupture. We invite anyone with an interest in kinematic modeling to develop a rupture model for the Orkney earthquake. Seismic recordings of the earthquake and information on the faulting geometry can be found in Moyer et al. (2017, doi: 10.1785/0220160218). A workshop supported by the Southern California Earthquake Center will be held in the spring of 2018 to compare kinematic models. Those interested in participating in the modeling exercise and the workshop should contact the authors for additional

  9. Satellite Geodetic Constraints On Earthquake Processes: Implications of the 1999 Turkish Earthquakes for Fault Mechanics and Seismic Hazards on the San Andreas Fault

    Science.gov (United States)

    Reilinger, Robert

    2005-01-01

    Our principal activities during the initial phase of this project include: 1) Continued monitoring of postseismic deformation for the 1999 Izmit and Duzce, Turkey earthquakes from repeated GPS survey measurements and expansion of the Marmara Continuous GPS Network (MAGNET), 2) Establishing three North Anatolian fault crossing profiles (10 sitedprofile) at locations that experienced major surface-fault earthquakes at different times in the past to examine strain accumulation as a function of time in the earthquake cycle (2004), 3) Repeat observations of selected sites in the fault-crossing profiles (2005), 4) Repeat surveys of the Marmara GPS network to continue to monitor postseismic deformation, 5) Refining block models for the Marmara Sea seismic gap area to better understand earthquake hazards in the Greater Istanbul area, 6) Continuing development of models for afterslip and distributed viscoelastic deformation for the earthquake cycle. We are keeping close contact with MIT colleagues (Brad Hager, and Eric Hetland) who are developing models for S. California and for the earthquake cycle in general (Hetland, 2006). In addition, our Turkish partners at the Marmara Research Center have undertaken repeat, micro-gravity measurements at the MAGNET sites and have provided us estimates of gravity change during the period 2003 - 2005.

  10. Earthquake Early Warning: Real-time Testing of an On-site Method Using Waveform Data from the Southern California Seismic Network

    Science.gov (United States)

    Solanki, K.; Hauksson, E.; Kanamori, H.; Wu, Y.; Heaton, T.; Boese, M.

    2007-12-01

    We have implemented an on-site early warning algorithm using the infrastructure of the Caltech/USGS Southern California Seismic Network (SCSN). We are evaluating the real-time performance of the software system and the algorithm for rapid assessment of earthquakes. In addition, we are interested in understanding what parts of the SCSN need to be improved to make early warning practical. Our EEW processing system is composed of many independent programs that process waveforms in real-time. The codes were generated by using a software framework. The Pd (maximum displacement amplitude of P wave during the first 3sec) and Tau-c (a period parameter during the first 3 sec) values determined during the EEW processing are being forwarded to the California Integrated Seismic Network (CISN) web page for independent evaluation of the results. The on-site algorithm measures the amplitude of the P-wave (Pd) and the frequency content of the P-wave during the first three seconds (Tau-c). The Pd and the Tau-c values make it possible to discriminate between a variety of events such as large distant events, nearby small events, and potentially damaging nearby events. The Pd can be used to infer the expected maximum ground shaking. The method relies on data from a single station although it will become more reliable if readings from several stations are associated. To eliminate false triggers from stations with high background noise level, we have created per station Pd threshold configuration for the Pd/Tau-c algorithm. To determine appropriate values for the Pd threshold we calculate Pd thresholds for stations based on the information from the EEW logs. We have operated our EEW test system for about a year and recorded numerous earthquakes in the magnitude range from M3 to M5. Two recent examples are a M4.5 earthquake near Chatsworth and a M4.7 earthquake near Elsinore. In both cases, the Pd and Tau-c parameters were determined successfully within 10 to 20 sec of the arrival of the

  11. Crowd-Sourced Global Earthquake Early Warning

    Science.gov (United States)

    Minson, S. E.; Brooks, B. A.; Glennie, C. L.; Murray, J. R.; Langbein, J. O.; Owen, S. E.; Iannucci, B. A.; Hauser, D. L.

    2014-12-01

    Although earthquake early warning (EEW) has shown great promise for reducing loss of life and property, it has only been implemented in a few regions due, in part, to the prohibitive cost of building the required dense seismic and geodetic networks. However, many cars and consumer smartphones, tablets, laptops, and similar devices contain low-cost versions of the same sensors used for earthquake monitoring. If a workable EEW system could be implemented based on either crowd-sourced observations from consumer devices or very inexpensive networks of instruments built from consumer-quality sensors, EEW coverage could potentially be expanded worldwide. Controlled tests of several accelerometers and global navigation satellite system (GNSS) receivers typically found in consumer devices show that, while they are significantly noisier than scientific-grade instruments, they are still accurate enough to capture displacements from moderate and large magnitude earthquakes. The accuracy of these sensors varies greatly depending on the type of data collected. Raw coarse acquisition (C/A) code GPS data are relatively noisy. These observations have a surface displacement detection threshold approaching ~1 m and would thus only be useful in large Mw 8+ earthquakes. However, incorporating either satellite-based differential corrections or using a Kalman filter to combine the raw GNSS data with low-cost acceleration data (such as from a smartphone) decreases the noise dramatically. These approaches allow detection thresholds as low as 5 cm, potentially enabling accurate warnings for earthquakes as small as Mw 6.5. Simulated performance tests show that, with data contributed from only a very small fraction of the population, a crowd-sourced EEW system would be capable of warning San Francisco and San Jose of a Mw 7 rupture on California's Hayward fault and could have accurately issued both earthquake and tsunami warnings for the 2011 Mw 9 Tohoku-oki, Japan earthquake.

  12. Observations of an ionospheric perturbation arising from the Coalinga earthquake of May 2, 1983

    International Nuclear Information System (INIS)

    Wolcott, J.H.; Simons, D.J.; Lee, D.D.; Nelson, R.A.

    1984-01-01

    An ionospheric perturbation that was produced by the Coalinga earthquake of May 2, 1983, was detected by a network of high-frequency radio links in northern California. The ionospheric refraction regions of all five HF propagation paths, at distances between 160 and 285 km (horizontal range) from the epicenter, were affected by a ground-motion-induced acoustic pulse that propagated to ionospheric heights. The acoustic pulse was produced by the earthquake-induced seismic waves rather than the vertical ground motion above the epicenter. These observations appear to be the first ionospheric disturbances to be reported this close to an earthquake epicenter

  13. Earthquake Preparedness and Education: A Collective Impact Approach to Improving Awareness and Resiliency

    Science.gov (United States)

    Benthien, M. L.; Wood, M. M.; Ballmann, J. E.; DeGroot, R. M.

    2017-12-01

    The Southern California Earthquake Center (SCEC), headquartered at the University of Southern California, is a collaboration of more than 1000 scientists and students from 70+ institutions. SCEC's Communication, Education, and Outreach (CEO) program translates earthquake science into products and activities in order to increase scientific literacy, develop a diverse scientific workforce, and reduce earthquake risk to life and property. SCEC CEO staff coordinate these efforts through partnership collaborations it has established to engage subject matter experts, reduce duplication of effort, and achieve greater results. Several of SCEC's collaborative networks began within Southern California and have since grown statewide (Earthquake Country Alliance, a public-private-grassroots partnership), national ("EPIcenter" Network of museums, parks, libraries, etc.), and international (Great ShakeOut Earthquake Drills with millions of participants each year). These networks have benefitted greatly from partnerships with national (FEMA), state, and local emergency managers. Other activities leverage SCEC's networks in new ways and with national earth science organizations, such as the EarthConnections Program (with IRIS, NAGT, and many others), Quake Catcher Network (with IRIS) and the GeoHazards Messaging Collaboratory (with IRIS, UNAVCO, and USGS). Each of these partnerships share a commitment to service, collaborative development, and the application of research (including social science theory for motivating preparedness behaviors). SCEC CEO is developing new evaluative structures and adapting the Collective Impact framework to better understand what has worked well or what can be improved, according to the framework's five key elements: create a common agenda; share common indicators and measurement; engage diverse stakeholders to coordinate mutually reinforcing activities; initiate continuous communication; and provide "backbone" support. This presentation will provide

  14. Determination of Focal Depths of Earthquakes in the Mid-Oceanic Ridges from Amplitude Spectra of Surface Waves

    Science.gov (United States)

    1969-06-01

    Foreshock , mainshock and aftershock of the Parkfield, California earthquake of June 28, 1966. b. The Denver earthquake of August 9, 1967. Let us look...into the results of these tests in more details. (1) Test on the main shock, foreshock and aftershock of the Parkfield earthquake of June 28, 1966...According to McEvilly et. al. (1967), the origin times and locations of.these events were the following: Foreshock June 28, 1966, 04:08:56.2 GMT; 350 57.6

  15. A model of return intervals between earthquake events

    Science.gov (United States)

    Zhou, Yu; Chechkin, Aleksei; Sokolov, Igor M.; Kantz, Holger

    2016-06-01

    Application of the diffusion entropy analysis and the standard deviation analysis to the time sequence of the southern California earthquake events from 1976 to 2002 uncovered scaling behavior typical for anomalous diffusion. However, the origin of such behavior is still under debate. Some studies attribute the scaling behavior to the correlations in the return intervals, or waiting times, between aftershocks or mainshocks. To elucidate a nature of the scaling, we applied specific reshulffling techniques to eliminate correlations between different types of events and then examined how it affects the scaling behavior. We demonstrate that the origin of the scaling behavior observed is the interplay between mainshock waiting time distribution and the structure of clusters of aftershocks, but not correlations in waiting times between the mainshocks and aftershocks themselves. Our findings are corroborated by numerical simulations of a simple model showing a very similar behavior. The mainshocks are modeled by a renewal process with a power-law waiting time distribution between events, and aftershocks follow a nonhomogeneous Poisson process with the rate governed by Omori's law.

  16. Testing for the 'predictability' of dynamically triggered earthquakes in The Geysers geothermal field

    Science.gov (United States)

    Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne

    2018-03-01

    The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is 'predictable' or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily 'predictable' in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock-aftershock sequences. Thus, we may be able to 'predict' what size earthquakes to expect at The Geysers following a large distant earthquake.

  17. Listening to the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake

    Science.gov (United States)

    Peng, Zhigang; Aiken, Chastity; Kilb, Debi; Shelly, David R.; Enescu, Bogdan

    2012-01-01

    The magnitude 9.0 Tohoku-Oki, Japan, earthquake on 11 March 2011 is the largest earthquake to date in Japan’s modern history and is ranked as the fourth largest earthquake in the world since 1900. This earthquake occurred within the northeast Japan subduction zone (Figure 1), where the Pacific plate is subducting beneath the Okhotsk plate at rate of ∼8–9 cm/yr (DeMets et al. 2010). This type of extremely large earthquake within a subduction zone is generally termed a “megathrust” earthquake. Strong shaking from this magnitude 9 earthquake engulfed the entire Japanese Islands, reaching a maximum acceleration ∼3 times that of gravity (3 g). Two days prior to the main event, a foreshock sequence occurred, including one earthquake of magnitude 7.2. Following the main event, numerous aftershocks occurred around the main slip region; the largest of these was magnitude 7.9. The entire foreshocks-mainshock-aftershocks sequence was well recorded by thousands of sensitive seismometers and geodetic instruments across Japan, resulting in the best-recorded megathrust earthquake in history. This devastating earthquake resulted in significant damage and high death tolls caused primarily by the associated large tsunami. This tsunami reached heights of more than 30 m, and inundation propagated inland more than 5 km from the Pacific coast, which also caused a nuclear crisis that is still affecting people’s lives in certain regions of Japan.

  18. Earthquake warning system for Japan Railways’ bullet train; implications for disaster prevention in California

    Science.gov (United States)

    Nakamura, Y.; Tucker, B. E.

    1988-01-01

    In Japan, the level of public awareness of the dangers of earthquakes is high. The 1923 Kanto earthquake killed about 120,000 people out of a total Japanese population of about 50 million; an equivalent disaster in the U.S would involve 600,000 deaths.

  19. IDENTIFICATION OF EARTHQUAKE AFTERSHOCK AND SWARM SEQUENCES IN THE BAIKAL RIFT ZONE

    Directory of Open Access Journals (Sweden)

    N. A. Radziminovich

    2013-01-01

    Full Text Available The catalog of earthquakes (КR³6.6 which occurred in the Baikal rift zone (BRZ was declastered, and the results are presented in the article. Aftershocks of seismic events (КR³12.5 were determined by the software developed by V.B. Smirnov (Lomonosov Moscow State University with application of the algorithm co-authored by G.M. Molchan and O.E. Dmitrieva. To ensure proper control of the software application, aftershocks were also selected manually. The results of declustering show that aftershocks of the earthquakes (КR³12.5 account for about 25 per cent of all seismic events in the regional catalog. Aftershocks accompanied 90 per cent of all the earthquakes considered as main shocks. Besides, earthquake swarms, including events with КR³11, were identified. The results of this study show that, in the BRZ, the swarms and strong events with aftershocks are not spatially separated, and this conclusion differs from the views of the previous studies that reviewed data from a shorter observation period. Moreover, it is noted that the swarms may consist of several main shocks accompanied by aftershocks. The data accumulated over the last fifty years of instrumental observations support the conclusion made earlier that the swarms in BRZ occur mainly in the north-eastward direction from Lake Baikal and also confirm the trend of a small number of aftershocks accompanying earthquakes in the south-western part of the Baikal rift zone.

  20. Hear it, See it, Explore it: Visualizations and Sonifications of Seismic Signals

    Science.gov (United States)

    Fisher, M.; Peng, Z.; Simpson, D. W.; Kilb, D. L.

    2010-12-01

    Sonification of seismic data is an innovative way to represent seismic data in the audible range (Simpson, 2005). Seismic waves with different frequency and temporal characteristics, such as those from teleseismic earthquakes, deep “non-volcanic” tremor and local earthquakes, can be easily discriminated when time-compressed to the audio range. Hence, sonification is particularly useful for presenting complicated seismic signals with multiple sources, such as aftershocks within the coda of large earthquakes, and remote triggering of earthquakes and tremor by large teleseismic earthquakes. Previous studies mostly focused on converting the seismic data into audible files by simple time compression or frequency modulation (Simpson et al., 2009). Here we generate animations of the seismic data together with the sounds. We first read seismic data in the SAC format into Matlab, and generate a sequence of image files and an associated WAV sound file. Next, we use a third party video editor, such as the QuickTime Pro, to combine the image sequences and the sound file into an animation. We have applied this simple procedure to generate animations of remotely triggered earthquakes, tremor and low-frequency earthquakes in California, and mainshock-aftershock sequences in Japan and California. These animations clearly demonstrate the interactions of earthquake sequences and the richness of the seismic data. The tool developed in this study can be easily adapted for use in other research applications and to create sonification/animation of seismic data for education and outreach purpose.

  1. Implication of conjugate faulting in the earthquake brewing and originating process

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L.M. (Massachusetts Inst. of Tech., Cambridge); Deng, Q.; Jiang, P.

    1980-03-01

    The earthquake sequence, precursory and geologo-structural background of the Haicheng, Tangshan, Songpan-Pingwu earthquakes are discussed in this article. All of these earthquakes occurred in a seismic zone controlled by the main boundary faults of an intraplate fault block. However, the fault plane of a main earthquake does not consist of the same faults, but is rather a related secondary fault. They formed altogether a conjugate shearing rupture zone under the action of a regional tectonic stress field. As to the earthquake sequence, the foreshocks and aftershocks might occur on the conjugate fault planes within an epicentral region rather than be limited to the fault plane of a main earthquake, such as the distribution of foreshocks and aftershocks of the Haicheng earthquake. The characteristics of the long-, medium-, and imminent-term earthquake precursory anomalies of the three mentioned earthquakes, especially the character of well-studies anomaly phenomena in electrical resistivity, radon emission, groundwater and animal behavior, have been investigated. The studies of these earthquake precursors show that they were distributed in an area rather more extensive than the epicentral region. Some fault zones in the conjugate fault network usually appeared as distributed belts or concentrated zones of earthquake precursory anomalies, and can be traced in the medium-long term precursory field, but seem more distinct in the short-imminent term precursory anomalous field. These characteristics can be explained by the rupture and sliding originating along the conjugate shear network and the concentration of stress in the regional stress field.

  2. Irregular recurrence of large earthquakes along the san andreas fault: evidence from trees.

    Science.gov (United States)

    Jacoby, G C; Sheppard, P R; Sieh, K E

    1988-07-08

    Old trees growing along the San Andreas fault near Wrightwood, California, record in their annual ring-width patterns the effects of a major earthquake in the fall or winter of 1812 to 1813. Paleoseismic data and historical information indicate that this event was the "San Juan Capistrano" earthquake of 8 December 1812, with a magnitude of 7.5. The discovery that at least 12 kilometers of the Mojave segment of the San Andreas fault ruptured in 1812, only 44 years before the great January 1857 rupture, demonstrates that intervals between large earthquakes on this part of the fault are highly variable. This variability increases the uncertainty of forecasting destructive earthquakes on the basis of past behavior and accentuates the need for a more fundamental knowledge of San Andreas fault dynamics.

  3. Real-Time Earthquake Monitoring with Spatio-Temporal Fields

    Science.gov (United States)

    Whittier, J. C.; Nittel, S.; Subasinghe, I.

    2017-10-01

    With live streaming sensors and sensor networks, increasingly large numbers of individual sensors are deployed in physical space. Sensor data streams are a fundamentally novel mechanism to deliver observations to information systems. They enable us to represent spatio-temporal continuous phenomena such as radiation accidents, toxic plumes, or earthquakes almost as instantaneously as they happen in the real world. Sensor data streams discretely sample an earthquake, while the earthquake is continuous over space and time. Programmers attempting to integrate many streams to analyze earthquake activity and scope need to write code to integrate potentially very large sets of asynchronously sampled, concurrent streams in tedious application code. In previous work, we proposed the field stream data model (Liang et al., 2016) for data stream engines. Abstracting the stream of an individual sensor as a temporal field, the field represents the Earth's movement at the sensor position as continuous. This simplifies analysis across many sensors significantly. In this paper, we undertake a feasibility study of using the field stream model and the open source Data Stream Engine (DSE) Apache Spark(Apache Spark, 2017) to implement a real-time earthquake event detection with a subset of the 250 GPS sensor data streams of the Southern California Integrated GPS Network (SCIGN). The field-based real-time stream queries compute maximum displacement values over the latest query window of each stream, and related spatially neighboring streams to identify earthquake events and their extent. Further, we correlated the detected events with an USGS earthquake event feed. The query results are visualized in real-time.

  4. Memory effect in M ≥ 6 earthquakes of South-North Seismic Belt, Mainland China

    Science.gov (United States)

    Wang, Jeen-Hwa

    2013-07-01

    The M ≥ 6 earthquakes occurred in the South-North Seismic Belt, Mainland China, during 1901-2008 are taken to study the possible existence of memory effect in large earthquakes. The fluctuation analysis technique is applied to analyze the sequences of earthquake magnitude and inter-event time represented in the natural time domain. Calculated results show that the exponents of scaling law of fluctuation versus window length are less than 0.5 for the sequences of earthquake magnitude and inter-event time. The migration of earthquakes in study is taken to discuss the possible correlation between events. The phase portraits of two sequent magnitudes and two sequent inter-event times are also applied to explore if large (or small) earthquakes are followed by large (or small) events. Together with all kinds of given information, we conclude that the earthquakes in study is short-term correlated and thus the short-term memory effect would be operative.

  5. Earthquake correlations and networks: A comparative study

    International Nuclear Information System (INIS)

    Krishna Mohan, T. R.; Revathi, P. G.

    2011-01-01

    We quantify the correlation between earthquakes and use the same to extract causally connected earthquake pairs. Our correlation metric is a variation on the one introduced by Baiesi and Paczuski [M. Baiesi and M. Paczuski, Phys. Rev. E 69, 066106 (2004)]. A network of earthquakes is then constructed from the time-ordered catalog and with links between the more correlated ones. A list of recurrences to each of the earthquakes is identified employing correlation thresholds to demarcate the most meaningful ones in each cluster. Data pertaining to three different seismic regions (viz., California, Japan, and the Himalayas) are comparatively analyzed using such a network model. The distribution of recurrence lengths and recurrence times are two of the key features analyzed to draw conclusions about the universal aspects of such a network model. We find that the unimodal feature of recurrence length distribution, which helps to associate typical rupture lengths with different magnitude earthquakes, is robust across the different seismic regions. The out-degree of the networks shows a hub structure rooted on the large magnitude earthquakes. In-degree distribution is seen to be dependent on the density of events in the neighborhood. Power laws, with two regimes having different exponents, are obtained with recurrence time distribution. The first regime confirms the Omori law for aftershocks while the second regime, with a faster falloff for the larger recurrence times, establishes that pure spatial recurrences also follow a power-law distribution. The crossover to the second power-law regime can be taken to be signaling the end of the aftershock regime in an objective fashion.

  6. Bayesian inference and interpretation of centroid moment tensors of the 2016 Kumamoto earthquake sequence, Kyushu, Japan

    Science.gov (United States)

    Hallo, Miroslav; Asano, Kimiyuki; Gallovič, František

    2017-09-01

    On April 16, 2016, Kumamoto prefecture in Kyushu region, Japan, was devastated by a shallow M JMA7.3 earthquake. The series of foreshocks started by M JMA6.5 foreshock 28 h before the mainshock. They have originated in Hinagu fault zone intersecting the mainshock Futagawa fault zone; hence, the tectonic background for this earthquake sequence is rather complex. Here we infer centroid moment tensors (CMTs) for 11 events with M JMA between 4.8 and 6.5, using strong motion records of the K-NET, KiK-net and F-net networks. We use upgraded Bayesian full-waveform inversion code ISOLA-ObsPy, which takes into account uncertainty of the velocity model. Such an approach allows us to reliably assess uncertainty of the CMT parameters including the centroid position. The solutions show significant systematic spatial and temporal variations throughout the sequence. Foreshocks are right-lateral steeply dipping strike-slip events connected to the NE-SW shear zone. Those located close to the intersection of the Hinagu and Futagawa fault zones are dipping slightly to ESE, while those in the southern area are dipping to WNW. Contrarily, aftershocks are mostly normal dip-slip events, being related to the N-S extensional tectonic regime. Most of the deviatoric moment tensors contain only minor CLVD component, which can be attributed to the velocity model uncertainty. Nevertheless, two of the CMTs involve a significant CLVD component, which may reflect complex rupture process. Decomposition of those moment tensors into two pure shear moment tensors suggests combined right-lateral strike-slip and normal dip-slip mechanisms, consistent with the tectonic settings of the intersection of the Hinagu and Futagawa fault zones.[Figure not available: see fulltext.

  7. Long aftershock sequences in North China and Central US: implications for hazard assessment in mid-continents

    Science.gov (United States)

    Liu, Mian; Luo, Gang; Wang, Hui; Stein, Seth

    2014-02-01

    Because seismic activity within mid-continents is usually much lower than that along plate boundary zones, even small earthquakes can cause widespread concerns, especially when these events occur in the source regions of previous large earthquakes. However, these small earthquakes may be just aftershocks that continue for decades or even longer. The recent seismicity in the Tangshan region in North China is likely aftershocks of the 1976 Great Tangshan earthquake. The current earthquake sequence in the New Madrid seismic zone in central United States, which includes a cluster of M ~ 7.0 events in 1811-1812 and a number of similar events in the past millennium, is believed to result from recent fault reactivation that releases pre-stored strain energy in the crust. If so, this earthquake sequence is similar to aftershocks in that the rates of energy release should decay with time and the sequence of earthquakes will eventually end. We use simple physical analysis and numerical simulations to show that the current sequence of large earthquakes in the New Madrid fault zone is likely ending or has ended. Recognizing that mid-continental earthquakes have long aftershock sequences and complex spatiotemporal occurrences are critical to improve hazard assessments.

  8. Rapid earthquake characterization using MEMS accelerometers and volunteer hosts following the M 7.2 Darfield, New Zealand, Earthquake

    Science.gov (United States)

    Lawrence, J. F.; Cochran, E.S.; Chung, A.; Kaiser, A.; Christensen, C. M.; Allen, R.; Baker, J.W.; Fry, B.; Heaton, T.; Kilb, Debi; Kohler, M.D.; Taufer, M.

    2014-01-01

    We test the feasibility of rapidly detecting and characterizing earthquakes with the Quake‐Catcher Network (QCN) that connects low‐cost microelectromechanical systems accelerometers to a network of volunteer‐owned, Internet‐connected computers. Following the 3 September 2010 M 7.2 Darfield, New Zealand, earthquake we installed over 180 QCN sensors in the Christchurch region to record the aftershock sequence. The sensors are monitored continuously by the host computer and send trigger reports to the central server. The central server correlates incoming triggers to detect when an earthquake has occurred. The location and magnitude are then rapidly estimated from a minimal set of received ground‐motion parameters. Full seismic time series are typically not retrieved for tens of minutes or even hours after an event. We benchmark the QCN real‐time detection performance against the GNS Science GeoNet earthquake catalog. Under normal network operations, QCN detects and characterizes earthquakes within 9.1 s of the earthquake rupture and determines the magnitude within 1 magnitude unit of that reported in the GNS catalog for 90% of the detections.

  9. Clustering and periodic recurrence of microearthquakes on the san andreas fault at parkfield, california.

    Science.gov (United States)

    Nadeau, R M; Foxall, W; McEvilly, T V

    1995-01-27

    The San Andreas fault at Parkfield, California, apparently late in an interval between repeating magnitude 6 earthquakes, is yielding to tectonic loading partly by seismic slip concentrated in a relatively sparse distribution of small clusters (<20-meter radius) of microearthquakes. Within these clusters, which account for 63% of the earthquakes in a 1987-92 study interval, virtually identical small earthquakes occurred with a regularity that can be described by the statistical model used previously in forecasting large characteristic earthquakes. Sympathetic occurrence of microearthquakes in nearby clusters was observed within a range of about 200 meters at communication speeds of 10 to 100 centimeters per second. The rate of earthquake occurrence, particularly at depth, increased significantly during the study period, but the fraction of earthquakes that were cluster members decreased.

  10. Study of temporal sequences of LANSAT images to detect the accumulation of stress prior of strong earthquakes in Chile.

    Science.gov (United States)

    Arellano-Baeza, A. A.

    2016-12-01

    We studied the temporal evolution of the lineaments obtained from the LANSAT-8 associated to the accumulation of stress patterns related to the seismic activity. A lineament is generally defined as a straight or a somewhat curved feature in the landscape visible in a satellite image as an aligned sequence of pixels of a contrasting intensity compared to the background. The system of lineaments extracted from the satellite images is not identical to the geological lineaments; nevertheless, it generally reflects the structure of the faults and fractures in the Earth's crust. The satellite images were processed by the ADALGEO software developed by us. We selected two areas of study with different characteristics. The first area is located near to the Diego de Almagro town in the Copiapo region, Chile. This area did not show any strong seismic activity between 2010 and 2015. However, two strong earthquakes took place later on April 16, 2016 (Mw=5.3) and July 25, 2016 (Mw=6.1). The second area located near the Illapel town in Coquimbo region shows lack of strong earthquakes between 2010 and 2012 and strong seismic activity between 2012 and 2015, culminating by the September 16, 2015 earthquake (Mw=8.3). The distance between two areas is nearly 600 km. In case of the Diego de Almagro area, very few lineaments have been observed between 2010 and 2015, showing a significant increase during the 2016. In case of the Illapel region, the number of lineaments was always much higher, showing an explosive increase at the end of 2015. For both areas the lineaments changed its orientation before strong earthquakes.

  11. Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Strong Ground Motion

    Science.gov (United States)

    Borcherdt, Roger D.

    1994-01-01

    Strong ground motion generated by the Loma Prieta, Calif., earthquake (MS~7.1) of October 17, 1989, resulted in at least 63 deaths, more than 3,757 injuries, and damage estimated to exceed $5.9 billion. Strong ground motion severely damaged critical lifelines (freeway overpasses, bridges, and pipelines), caused severe damage to poorly constructed buildings, and induced a significant number of ground failures associated with liquefaction and landsliding. It also caused a significant proportion of the damage and loss of life at distances as far as 100 km from the epicenter. Consequently, understanding the characteristics of the strong ground motion associated with the earthquake is fundamental to understanding the earthquake's devastating impact on society. The papers assembled in this chapter address this problem. Damage to vulnerable structures from the earthquake varied substantially with the distance from the causative fault and the type of underlying geologic deposits. Most of the damage and loss of life occurred in areas underlain by 'soft soil'. Quantifying these effects is important for understanding the tragic concentrations of damage in such areas as Santa Cruz and the Marina and Embarcadero Districts of San Francisco, and the failures of the San Francisco-Oakland Bay Bridge and the Interstate Highway 880 overpass. Most importantly, understanding these effects is a necessary prerequisite for improving mitigation measures for larger earthquakes likely to occur much closer to densely urbanized areas in the San Francisco Bay region. The earthquake generated an especially important data set for understanding variations in the severity of strong ground motion. Instrumental strong-motion recordings were obtained at 131 sites located from about 6 to 175 km from the rupture zone. This set of recordings, the largest yet collected for an event of this size, was obtained from sites on various geologic deposits, including a unique set on 'soft soil' deposits

  12. Testing for the ‘predictability’ of dynamically triggered earthquakes in Geysers Geothermal Field

    Science.gov (United States)

    Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne L.

    2018-01-01

    The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is ‘predictable’ or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily ‘predictable’ in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock–aftershock sequences. Thus, we may be able to ‘predict’ what size earthquakes to expect at The Geysers following a large distant earthquake.

  13. Measuring the effectiveness of earthquake forecasting in insurance strategies

    Science.gov (United States)

    Mignan, A.; Muir-Wood, R.

    2009-04-01

    Given the difficulty of judging whether the skill of a particular methodology of earthquake forecasts is offset by the inevitable false alarms and missed predictions, it is important to find a means to weigh the successes and failures according to a common currency. Rather than judge subjectively the relative costs and benefits of predictions, we develop a simple method to determine if the use of earthquake forecasts can increase the profitability of active financial risk management strategies employed in standard insurance procedures. Three types of risk management transactions are employed: (1) insurance underwriting, (2) reinsurance purchasing and (3) investment in CAT bonds. For each case premiums are collected based on modelled technical risk costs and losses are modelled for the portfolio in force at the time of the earthquake. A set of predetermined actions follow from the announcement of any change in earthquake hazard, so that, for each earthquake forecaster, the financial performance of an active risk management strategy can be compared with the equivalent passive strategy in which no notice is taken of earthquake forecasts. Overall performance can be tracked through time to determine which strategy gives the best long term financial performance. This will be determined by whether the skill in forecasting the location and timing of a significant earthquake (where loss is avoided) is outweighed by false predictions (when no premium is collected). This methodology is to be tested in California, where catastrophe modeling is reasonably mature and where a number of researchers issue earthquake forecasts.

  14. Locating Very-Low-Frequency Earthquakes in the San Andreas Fault.

    Science.gov (United States)

    Peña-Castro, A. F.; Harrington, R. M.; Cochran, E. S.

    2016-12-01

    The portion of tectonic fault where rheological properties transtition from brittle to ductile hosts a variety of seismic signals suggesting a range of slip velocities. In subduction zones, the two dominantly observed seismic signals include very-low frequency earthquakes ( VLFEs), and low-frequency earthquakes (LFEs) or tectonic tremor. Tremor and LFE are also commonly observed in transform faults, however, VLFEs have been reported dominantly in subduction zone environments. Here we show some of the first known observations of VLFEs occurring on a plate boundary transform fault, the San Andreas Fault (SAF) between the Cholame-Parkfield segment in California. We detect VLFEs using both permanent and temporary stations in 2010-2011 within approximately 70 km of Cholame, California. We search continous waveforms filtered from 0.02-0.05 Hz, and remove time windows containing teleseismic events and local earthquakes, as identified in the global Centroid Moment Tensor (CMT) and the Northern California Seismic Network (NCSN) catalog. We estimate the VLFE locations by converting the signal into envelopes, and cross-correlating them for phase-picking, similar to procedures used for locating tectonic tremor. We first perform epicentral location using a grid search method and estimate a hypocenter location using Hypoinverse and a shear-wave velocity model when the epicenter is located close to the SAF trace. We account for the velocity contrast across the fault using separate 1D velocity models for stations on each side. Estimated hypocentral VLFE depths are similar to tremor catalog depths ( 15-30 km). Only a few VLFEs produced robust hypocentral locations, presumably due to the difficulty in picking accurate phase arrivals with such a low-frequency signal. However, for events for which no location could be obtained, the moveout of phase arrivals across the stations were similar in character, suggesting that other observed VLFEs occurred in close proximity.

  15. Spatial organization of foreshocks as a tool to forecast large earthquakes.

    Science.gov (United States)

    Lippiello, E; Marzocchi, W; de Arcangelis, L; Godano, C

    2012-01-01

    An increase in the number of smaller magnitude events, retrospectively named foreshocks, is often observed before large earthquakes. We show that the linear density probability of earthquakes occurring before and after small or intermediate mainshocks displays a symmetrical behavior, indicating that the size of the area fractured during the mainshock is encoded in the foreshock spatial organization. This observation can be used to discriminate spatial clustering due to foreshocks from the one induced by aftershocks and is implemented in an alarm-based model to forecast m > 6 earthquakes. A retrospective study of the last 19 years Southern California catalog shows that the daily occurrence probability presents isolated peaks closely located in time and space to the epicenters of five of the six m > 6 earthquakes. We find daily probabilities as high as 25% (in cells of size 0.04 × 0.04deg(2)), with significant probability gains with respect to standard models.

  16. Status of Public Earthquake Early Warning in the U.S

    Science.gov (United States)

    Given, D. D.

    2013-12-01

    Earthquake Early Warning (EEW) is a proven use of seismological science that can give people and businesses outside the epicentral area of a large earthquake up to a minute to take protective actions before the most destructive shaking hits them. Since 2006 several organizations have been collaborating to create such a system in the United States. These groups include the US Geological Survey, Caltech, UC Berkeley, the University of Washington, the Southern California Earthquake Center, the Swiss Federal Institute of Technology, Zürich, the California Office of Emergency Services, and the California Geological Survey. A demonstration version of the system, called ShakeAlert, began sending test notifications to selected users in California in January 2012. In August 2012 San Francisco's Bay Area Rapid Transit district began slowing and stopping trains in response to strong ground shaking. The next step in the project is to progress to a production prototype for the west coast. The system is built on top of the considerable technical and organizational earthquake monitoring infrastructure of the Advanced National Seismic System (ANSS). While a fully functional, robust, public EEW system will require significant new investment and development in several major areas, modest progress is being made with current resources. First, high-quality sensors must be installed with sufficient density, particularly near source faults. Where possible, we are upgrading and augmenting the existing ANSS networks on the west coast. Second, data telemetry from those sensors must be engineered for speed and reliability. Next, robust central processing infrastructure is being designed and built. Also, computer algorithms to detect and characterize the evolving earthquake must be further developed and tested. Last year the Gordon and Betty Moore Foundation funded USGS, Caltech, UCB and UW to accelerate R&D efforts. Every available means of distributing alerts must be used to insure the

  17. Remotely Triggered Earthquakes Recorded by EarthScope's Transportable Array and Regional Seismic Networks: A Case Study Of Four Large Earthquakes

    Science.gov (United States)

    Velasco, A. A.; Cerda, I.; Linville, L.; Kilb, D. L.; Pankow, K. L.

    2013-05-01

    Changes in field stress required to trigger earthquakes have been classified in two basic ways: static and dynamic triggering. Static triggering occurs when an earthquake that releases accumulated strain along a fault stress loads a nearby fault. Dynamic triggering occurs when an earthquake is induced by the passing of seismic waves from a large mainshock located at least two or more fault lengths from the epicenter of the main shock. We investigate details of dynamic triggering using data collected from EarthScope's USArray and regional seismic networks located in the United States. Triggered events are identified using an optimized automated detector based on the ratio of short term to long term average (Antelope software). Following the automated processing, the flagged waveforms are individually analyzed, in both the time and frequency domains, to determine if the increased detection rates correspond to local earthquakes (i.e., potentially remotely triggered aftershocks). Here, we show results using this automated schema applied to data from four large, but characteristically different, earthquakes -- Chile (Mw 8.8 2010), Tokoku-Oki (Mw 9.0 2011), Baja California (Mw 7.2 2010) and Wells Nevada (Mw 6.0 2008). For each of our four mainshocks, the number of detections within the 10 hour time windows span a large range (1 to over 200) and statistically >20% of the waveforms show evidence of anomalous signals following the mainshock. The results will help provide for a better understanding of the physical mechanisms involved in dynamic earthquake triggering and will help identify zones in the continental U.S. that may be more susceptible to dynamic earthquake triggering.

  18. The Development of Several Electromagnetic Monitoring Strategies and Algorithms for Validating Pre-Earthquake Electromagnetic Signals

    Science.gov (United States)

    Bleier, T. E.; Dunson, J. C.; Roth, S.; Mueller, S.; Lindholm, C.; Heraud, J. A.

    2012-12-01

    QuakeFinder, a private research group in California, reports on the development of a 100+ station network consisting of 3-axis induction magnetometers, and air conductivity sensors to collect and characterize pre-seismic electromagnetic (EM) signals. These signals are combined with daily Infra Red signals collected from the GOES weather satellite infrared (IR) instrument to compare and correlate with the ground EM signals, both from actual earthquakes and boulder stressing experiments. This presentation describes the efforts QuakeFinder has undertaken to automatically detect these pulse patterns using their historical data as a reference, and to develop other discriminative algorithms that can be used with air conductivity sensors, and IR instruments from the GOES satellites. The overall big picture results of the QuakeFinder experiment are presented. In 2007, QuakeFinder discovered the occurrence of strong uni-polar pulses in their magnetometer coil data that increased in tempo dramatically prior to the M5.1 earthquake at Alum Rock, California. Suggestions that these pulses might have been lightning or power-line arcing did not fit with the data actually recorded as was reported in Bleier [2009]. Then a second earthquake occurred near the same site on January 7, 2010 as was reported in Dunson [2011], and the pattern of pulse count increases before the earthquake occurred similarly to the 2007 event. There were fewer pulses, and the magnitude of them was decreased, both consistent with the fact that the earthquake was smaller (M4.0 vs M5.4) and farther away (7Km vs 2km). At the same time similar effects were observed at the QuakeFinder Tacna, Peru site before the May 5th, 2010 M6.2 earthquake and a cluster of several M4-5 earthquakes.

  19. Chapter D. The Loma Prieta, California, Earthquake of October 17, 1989 - Aftershocks and Postseismic Effects

    Science.gov (United States)

    Reasenberg, Paul A.

    1997-01-01

    While the damaging effects of the earthquake represent a significant social setback and economic loss, the geophysical effects have produced a wealth of data that have provided important insights into the structure and mechanics of the San Andreas Fault system. Generally, the period after a large earthquake is vitally important to monitor. During this part of the seismic cycle, the primary fault and the surrounding faults, rock bodies, and crustal fluids rapidly readjust in response to the earthquake's sudden movement. Geophysical measurements made at this time can provide unique information about fundamental properties of the fault zone, including its state of stress and the geometry and frictional/rheological properties of the faults within it. Because postseismic readjustments are rapid compared with corresponding changes occurring in the preseismic period, the amount and rate of information that is available during the postseismic period is relatively high. From a geophysical viewpoint, the occurrence of the Loma Prieta earthquake in a section of the San Andreas fault zone that is surrounded by multiple and extensive geophysical monitoring networks has produced nothing less than a scientific bonanza. The reports assembled in this chapter collectively examine available geophysical observations made before and after the earthquake and model the earthquake's principal postseismic effects. The chapter covers four broad categories of postseismic effect: (1) aftershocks; (2) postseismic fault movements; (3) postseismic surface deformation; and (4) changes in electrical conductivity and crustal fluids.

  20. Sediment gravity flows triggered by remotely generated earthquake waves

    Science.gov (United States)

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.

    2017-06-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  1. Rapid characterization of the 2015 Mw 7.8 Gorkha, Nepal, earthquake sequence and its seismotectonic context

    Science.gov (United States)

    Hayes, Gavin; Briggs, Richard; Barnhart, William D.; Yeck, William; McNamara, Daniel E.; Wald, David J.; Nealy, Jennifer; Benz, Harley M.; Gold, Ryan D.; Jaiswal, Kishor S.; Marano, Kristin; Earle, Paul S.; Hearne, Mike; Smoczyk, Gregory M.; Wald, Lisa A.; Samsonov, Sergey

    2015-01-01

    Earthquake response and related information products are important for placing recent seismic events into context and particularly for understanding the impact earthquakes can have on the regional community and its infrastructure. These tools are even more useful if they are available quickly, ahead of detailed information from the areas affected by such earthquakes. Here we provide an overview of the response activities and related information products generated and provided by the U.S. Geological Survey National Earthquake Information Center in association with the 2015 M 7.8 Gorkha, Nepal, earthquake. This group monitors global earthquakes 24  hrs/day and 7  days/week to provide rapid information on the location and size of recent events and to characterize the source properties, tectonic setting, and potential fatalities and economic losses associated with significant earthquakes. We present the timeline over which these products became available, discuss what they tell us about the seismotectonics of the Gorkha earthquake and its aftershocks, and examine how their information is used today, and might be used in the future, to help mitigate the impact of such natural disasters.

  2. The role of complex site and basin response in Wellington city, New Zealand, during the 2016 Mw 7.8 Kaikōura earthquake and other recent earthquake sequences.

    Science.gov (United States)

    Kaiser, A. E.; McVerry, G.; Wotherspoon, L.; Bradley, B.; Gerstenberger, M.; Benites, R. A.; Bruce, Z.; Bourguignon, S.; Giallini, S.; Hill, M.

    2017-12-01

    We present analysis of ground motion and complex amplification characteristics in Wellington during recent earthquake sequences and an overview of the 3D basin characterization and ongoing work to update site parameters for seismic design. Significant damage was observed in central Wellington, New Zealand's capital city, following the 2016 Mw7.8 Kaikōura earthquake. Damage was concentrated in mid-rise structures (5 - 15 storeys) and was clearly exacerbated by the particular characteristics of ground motion and the presence of basin effects. Due to the distance of the source (50 - 60km) from the central city, peak ground accelerations were moderate (up to 0.28g) and well within ultimate limit state (ULS) design levels. However, spectral accelerations within the 1 -2 s period range, exceeded 1 in 500 year design level spectra (ULS) in deeper parts of the basin. Amplification with respect to rock at these locations reached factors of up to 7, and was also observed with factors up to at least three across all central city soil recording sites. The ground motions in Wellington were the strongest recorded in the modern era of instrumentation. While similar amplification was observed during the 2013 Mw 6.6 Cook Strait and Grassmere earthquakes, which struck close to the termination of the Kaikōura earthquake rupture, these sources were not sufficiently large to excite significant long-period motions. However, other M7.2+ sources in the region that dominate the seismic hazard, e.g. Wellington Fault, Hikurangi subduction interface and other large proximal crustal faults, are also potentially capable of exciting significant long-period basin response in Wellington. These observations and the expectation of ongoing heightened seismicity have prompted re-evaluation of the current seismic demand levels. Additional field campaigns have also been undertaken to update geotechnical properties and the 3D basin model, in order to inform ongoing research and seismic design practice.

  3. The 1987 Whittier Narrows, California, earthquake: A Metropolitan shock

    OpenAIRE

    Hauksson, Egill; Stein, Ross S.

    1989-01-01

    Just 3 hours after the Whittier Narrows earthquake struck, it became clear that a heretofore unseen geological structure was seismically active beneath metropolitan Los Angeles. Contrary to initial expectations of strike-slip or oblique-slip motion on the Whittier fault, whose north end abuts the aftershock zone, the focal mechanism of the mainshock showed pure thrust faulting on a deep gently inclined surface [Hauksson et al., 1988]. This collection of nine research reports spans the spectru...

  4. Coherency analysis of accelerograms recorded by the UPSAR array during the 2004 Parkfield earthquake

    DEFF Research Database (Denmark)

    Konakli, Katerina; Kiureghian, Armen Der; Dreger, Douglas

    2014-01-01

    Spatial variability of near-fault strong motions recorded by the US Geological Survey Parkfield Seismograph Array (UPSAR) during the 2004 Parkfield (California) earthquake is investigated. Behavior of the lagged coherency for two horizontal and the vertical components is analyzed by separately...

  5. Earthquake correlations and networks: A comparative study

    Science.gov (United States)

    Krishna Mohan, T. R.; Revathi, P. G.

    2011-04-01

    We quantify the correlation between earthquakes and use the same to extract causally connected earthquake pairs. Our correlation metric is a variation on the one introduced by Baiesi and Paczuski [M. Baiesi and M. Paczuski, Phys. Rev. E EULEEJ1539-375510.1103/PhysRevE.69.06610669, 066106 (2004)]. A network of earthquakes is then constructed from the time-ordered catalog and with links between the more correlated ones. A list of recurrences to each of the earthquakes is identified employing correlation thresholds to demarcate the most meaningful ones in each cluster. Data pertaining to three different seismic regions (viz., California, Japan, and the Himalayas) are comparatively analyzed using such a network model. The distribution of recurrence lengths and recurrence times are two of the key features analyzed to draw conclusions about the universal aspects of such a network model. We find that the unimodal feature of recurrence length distribution, which helps to associate typical rupture lengths with different magnitude earthquakes, is robust across the different seismic regions. The out-degree of the networks shows a hub structure rooted on the large magnitude earthquakes. In-degree distribution is seen to be dependent on the density of events in the neighborhood. Power laws, with two regimes having different exponents, are obtained with recurrence time distribution. The first regime confirms the Omori law for aftershocks while the second regime, with a faster falloff for the larger recurrence times, establishes that pure spatial recurrences also follow a power-law distribution. The crossover to the second power-law regime can be taken to be signaling the end of the aftershock regime in an objective fashion.

  6. Assessing Lay Understanding of Common Presentations of Earthquake Hazard Information

    Science.gov (United States)

    Thompson, K. J.; Krantz, D. H.

    2010-12-01

    The Working Group on California Earthquake Probabilities (WGCEP) includes, in its introduction to earthquake rupture forecast maps, the assertion that "In daily living, people are used to making decisions based on probabilities -- from the flip of a coin (50% probability of heads) to weather forecasts (such as a 30% chance of rain) to the annual chance of being killed by lightning (about 0.0003%)." [3] However, psychology research identifies a large gap between lay and expert perception of risk for various hazards [2], and cognitive psychologists have shown in numerous studies [1,4-6] that people neglect, distort, misjudge, or misuse probabilities, even when given strong guidelines about the meaning of numerical or verbally stated probabilities [7]. The gap between lay and expert use of probability needs to be recognized more clearly by scientific organizations such as WGCEP. This study undertakes to determine how the lay public interprets earthquake hazard information, as presented in graphical map form by the Uniform California Earthquake Rupture Forecast (UCERF), compiled by the WGCEP and other bodies including the USGS and CGS. It also explores alternate ways of presenting hazard data, to determine which presentation format most effectively translates information from scientists to public. Participants both from California and from elsewhere in the United States are included, to determine whether familiarity -- either with the experience of an earthquake, or with the geography of the forecast area -- affects people's ability to interpret an earthquake hazards map. We hope that the comparisons between the interpretations by scientific experts and by different groups of laypeople will both enhance theoretical understanding of factors that affect information transmission and assist bodies such as the WGCEP in their laudable attempts to help people prepare themselves and their communities for possible natural hazards. [1] Kahneman, D & Tversky, A (1979). Prospect

  7. Links Between Earthquake Characteristics and Subducting Plate Heterogeneity in the 2016 Pedernales Ecuador Earthquake Rupture Zone

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2016-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  8. Preliminary analysis of strong-motion recordings from the 28 September 2004 Parkfield, California earthquake

    Science.gov (United States)

    Shakal, A.; Graizer, V.; Huang, M.; Borcherdt, R.; Haddadi, H.; Lin, K.-W.; Stephens, C.; Roffers, P.

    2005-01-01

    The Parkfield 2004 earthquake yielded the most extensive set of strong-motion data in the near-source region of a magnitude 6 earthquake yet obtained. The recordings of acceleration and volumetric strain provide an unprecedented document of the near-source seismic radiation for a moderate earthquake. The spatial density of the measurements alon g the fault zone and in the linear arrays perpendicular to the fault is expected to provide an exceptional opportunity to develop improved models of the rupture process. The closely spaced measurements should help infer the temporal and spatial distribution of the rupture process at much higher resolution than previously possible. Preliminary analyses of the peak a cceleration data presented herein shows that the motions vary significantly along the rupture zone, from 0.13 g to more than 2.5 g, with a map of the values showing that the larger values are concentrated in three areas. Particle motions at the near-fault stations are consistent with bilateral rupture. Fault-normal pulses similar to those observed in recent strike-slip earthquakes are apparent at several of the stations. The attenuation of peak ground acceleration with distance is more rapid than that indicated by some standard relationships but adequately fits others. Evidence for directivity in the peak acceleration data is not strong. Several stations very near, or over, the rupturing fault recorded relatively low accelerations. These recordings may provide a quantitative basis to understand observations of low near-fault shaking damage that has been reported in other large strike-slip earthquak.

  9. 2014 mainshock-aftershock activity versus earthquake swarms in West\

    Czech Academy of Sciences Publication Activity Database

    Jakoubková, Hana; Horálek, Josef; Fischer, T.

    2018-01-01

    Roč. 175, č. 1 (2018), s. 109-131 ISSN 0033-4553 R&D Projects: GA ČR GAP210/12/2336; GA MŠk(CZ) LM2015079 Institutional support: RVO:67985530 Keywords : West Bohemia/Vogtland * earthquake swarms * mainshock-aftershock sequence * total seismic moment * statistical characteristics of earthquake activities Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.591, year: 2016

  10. Research on groundwater radon as a fluid phase precursor to earthquakes

    International Nuclear Information System (INIS)

    Teng, T.; Sun, L.

    1986-01-01

    Groundwater radon monitoring work carried out in southern California by the University of Southern California since 1974 is summarized here. This effort began with a sampling network over a locked segment of the San Andreas fault from Tejon to Cajon and was later expanded to cover part of the southern Transverse Mountain ranges. Groundwater samples were brought back weekly to the laboratory for high precision scintillation counting. Needs for more frequent sampling and less labor prompted the development of an economical and field worthy instrument known as the continuous radon monitor. About 10 have been installed in the network since early 1980. The groundwater radon content was found to show anomalous increases (mostly at a single station) before a number of moderate and nearby earthquakes. Our work is hampered by a lack of large earthquakes that may have a regional impact on radon anomalies and by the complexity of the underground hydrological regime. To circumvent this difficulty, we have chosen to monitor only deep artesian wells or hot spring wells

  11. Earthquake cycle deformation and the Moho: Implications for the rheology of continental lithosphere

    OpenAIRE

    Wright, TJ; Elliott, JR; Wang, H; Ryder, I

    2013-01-01

    The last 20. years has seen a dramatic improvement in the quantity and quality of geodetic measurements of the earthquake loading cycle. In this paper we compile and review these observations and test whether crustal thickness exerts any control. We found 78 earthquake source mechanisms for continental earthquakes derived from satellite geodesy, 187 estimates of interseismic "locking depth", and 23 earthquakes (or sequences) for which postseismic deformation has been observed. Globally we est...

  12. Search for Anisotropy Changes Associated with Two Large Earthquakes in Japan and New Zealand

    Science.gov (United States)

    Savage, M. K.; Graham, K.; Aoki, Y.; Arnold, R.

    2017-12-01

    Seismic anisotropy is often considered to be an indicator of stress in the crust, because the closure of cracks due to differential stress leads to waves polarized parallel to the cracks travelling faster than the orthogonal direction. Changes in shear wave splitting have been suggested to result from stress changes at volcanoes and earthquakes. However, the effects of mineral or structural alignment, and the difficulty of distinguishing between changes in anisotropy along an earthquake-station path from distinguishing changes in the path itself, have made such findings controversial. Two large earthquakes in 2016 provide unique datasets to test the use of shear wave splitting for measuring variations in stress because clusters of closely-spaced earthquakes occurred both before and after a mainshock. We use the automatic, objective splitting analysis code MFAST to speed process and minimize unwitting observer bias when determining time variations. The sequence of earthquakes related to the M=7.2 Japanese Kumamoto earthquake of 14 April 2016 includes both foreshocks, mainshocks and aftershocks. The sequence was recorded by the NIED permanent network, which already contributed background seismic anisotropy measurements in a previous study of anisotropy and stress in Kyushu. Preliminary measurements of shear wave splitting from earthquakes that occurred in 2016 show results at some stations that clearly differ from those of the earlier study. They also change between earthquakes recorded before and after the mainshock. Further work is under way to determine whether the changes are more likely due to changes in stress during the observation time, or due to spatial changes in anisotropy combined with changes in earthquake locations. Likewise, background seismicity and also foreshocks and aftershocks in the 2013 Cook Strait earthquake sequence including two M=6.5 earthquakes in 2013 in New Zealand were in the same general region as aftershocks of the M=7.8 Kaikoura

  13. Transient stresses al Parkfield, California, produced by the M 7.4 Landers earthquake of June 28, 1992: implications for the time-dependence of fault friction

    Directory of Open Access Journals (Sweden)

    J. B. Fletcher

    1994-06-01

    Full Text Available he M 7.4 Landers earthquake triggered widespread seismicity in the Western U.S. Because the transient dynamic stresses induced at regional distances by the Landers surface waves are much larger than the expected static stresses, the magnitude and the characteristics of the dynamic stresses may bear upon the earthquake triggering mechanism. The Landers earthquake was recorded on the UPSAR array, a group of 14 triaxial accelerometers located within a 1-square-km region 10 km southwest of the town of Parkfield, California, 412 km northwest of the Landers epicenter. We used a standard geodetic inversion procedure to determine the surface strain and stress tensors as functions of time from the observed dynamic displacements. Peak dynamic strains and stresses at the Earth's surface are about 7 microstrain and 0.035 MPa, respectively, and they have a flat amplitude spectrum between 2 s and 15 s period. These stresses agree well with stresses predicted from a simple rule of thumb based upon the ground velocity spectrum observed at a single station. Peak stresses ranged from about 0.035 MPa at the surface to about 0.12 MPa between 2 and 14 km depth, with the sharp increase of stress away from the surface resulting from the rapid increase of rigidity with depth and from the influence of surface wave mode shapes. Comparison of Landers-induced static and dynamic stresses at the hypocenter of the Big Bear aftershock provides a clear example that faults are stronger on time scales of tens of seconds than on time scales of hours or longer.

  14. ARMA models for earthquake ground motions. Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Chang, Mark K.; Kwiatkowski, Jan W.; Nau, Robert F.; Oliver, Robert M.; Pister, Karl S.

    1981-02-01

    This report contains an analysis of four major California earthquake records using a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It has been possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters and test the residuals generated by these models. It has also been possible to show the connections, similarities and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed in this report is suitable for simulating earthquake ground motions in the time domain and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. (author)

  15. Living With Earthquakes in the Pacific Northwest: A Survivor's Guide, 2nd edition

    Science.gov (United States)

    Hutton, Kate

    In 1995, Robert S.Yeats found himself teaching a core curriculum class at Oregon State University for undergraduate nonscience majors, linking recent discoveries on the earthquake hazard in the Pacific Northwest to societal response to those hazards. The notes for that course evolved into the first edition of this book, published in 1998. In 2001, he published a similar book, Living With Earthquakes in California: A Survivors Guide (Oregon State University Press).Recent earthquakes, such as the 2001 Nisqually Mw6.8, discoveries, and new techniques in paleoseismology plus changes in public policy decisions, quickly outdated the first Pacific Northwest edition. This is especially true with the Cascadia Subduction Zone and crustal faults, where our knowledge expands with every scientific meeting.

  16. The 2008 Wenchuan Earthquake and the Rise and Fall of Earthquake Prediction in China

    Science.gov (United States)

    Chen, Q.; Wang, K.

    2009-12-01

    Regardless of the future potential of earthquake prediction, it is presently impractical to rely on it to mitigate earthquake disasters. The practical approach is to strengthen the resilience of our built environment to earthquakes based on hazard assessment. But this was not common understanding in China when the M 7.9 Wenchuan earthquake struck the Sichuan Province on 12 May 2008, claiming over 80,000 lives. In China, earthquake prediction is a government-sanctioned and law-regulated measure of disaster prevention. A sudden boom of the earthquake prediction program in 1966-1976 coincided with a succession of nine M > 7 damaging earthquakes in the densely populated region of the country and the political chaos of the Cultural Revolution. It climaxed with the prediction of the 1975 Haicheng earthquake, which was due mainly to an unusually pronounced foreshock sequence and the extraordinary readiness of some local officials to issue imminent warning and evacuation order. The Haicheng prediction was a success in practice and yielded useful lessons, but the experience cannot be applied to most other earthquakes and cultural environments. Since the disastrous Tangshan earthquake in 1976 that killed over 240,000 people, there have been two opposite trends in China: decreasing confidence in prediction and increasing emphasis on regulating construction design for earthquake resilience. In 1976, most of the seismic intensity XI areas of Tangshan were literally razed to the ground, but in 2008, many buildings in the intensity XI areas of Wenchuan did not collapse. Prediction did not save life in either of these events; the difference was made by construction standards. For regular buildings, there was no seismic design in Tangshan to resist any earthquake shaking in 1976, but limited seismic design was required for the Wenchuan area in 2008. Although the construction standards were later recognized to be too low, those buildings that met the standards suffered much less

  17. Investigating Earthquake-induced Landslides­a Historical Review

    Science.gov (United States)

    Keefer, D. K.; Geological Survey, Us; Park, Menlo; Usa, Ca

    Although earthquake-induced landslides have been described in documents for more than 3700 years, accounts from earthquakes before the late eighteenth century are incomplete concerning landslide numbers and vague concerning landslide character- istics. They are thus typically misleading concerning the true abundance of landslides and range of landslide characteristics. Beginning with studies of the 1783 Calabria, Italy earthquake, more complete and precise data concerning the occurrence of land- slides in earthquakes have become available. The historical development of knowl- edge concerning landslides triggered by earthquakes can be divided into several peri- ods. The first period, from 1783 until the first application of aerial photography, was characterized by ground-based studies of earthquake effects, typically carried out by formal scientific commissions. These formal studies typically identified a large, but not necessarily comprehensive, sampling of localities where landslides had occurred. In some, but not all cases, landslide characteristics were also described in enough de- tail that the general range of landslide characteristics could begin to be determined. More recently, some nineteenth to mid-twentieth century earthquakes have been stud- ied using retrospective analyses, in which the landslide occurrences associated with the event are inferred years to decades later, using contemporary accounts, mapping from aerial photographs, statistical studies, and (or) geotechnical analyses. The first use of aerial photographs to map earthquake effects immediately after the event prob- ably occurred in 1948. Since that time, the use of aerial photography has greatly facil- itated the compilation of post-earthquake landslide inventories, although because of the limitations of aerial photography, ground-based field studies continue to be cru- cial in preparing accurate and comprehensive landslide maps. Beginning with a small California earthquake in 1957

  18. Aftershocks of the 13 May 1993 Shumagin Alaska earthquake

    Science.gov (United States)

    Lu, Zhong; Wyss, Max; Tytgat, Guy; McNutt, Steve; Stihler, Scott

    1994-01-01

    The 13 May 1993 Ms 6.9 Shumagin earthquake had an aftershock sequence of 247 earthquakes with magnitudes greater than or equal to 1.5 by 1 June 1993. Of these aftershocks, 79 were located by using S-P travel times at the only two stations within 570 km of the mainshock epicenter. The rupture area inferred from the aftershocks is about 600 km2 and we estimate for the mainshock a mean fault displacement of 1.0 m and a 28 bar stress drop. The magnitude-frequency plots give a b-value for the aftershock sequence of about 0.4, which is low compared to the background value of approximately 0.8. The decay of the aftershock sequence followed the modified Omori law with a p-value of 0.79, which is also lower than the typical values of about 1.1 observed in Alaska. Both of these facts can be interpreted as indicating relatively high ambient stress in the Shumagin seismic gap and the possibility that the 13 May earthquake was a foreshock to a larger gap-filling event to occur within the next few years.

  19. Rapid Response Products of The ARIA Project for the M6.0 August 24, 2014 South Napa Earthquake

    Science.gov (United States)

    Yun, S. H.; Owen, S. E.; Hua, H.; Milillo, P.; Fielding, E. J.; Hudnut, K. W.; Dawson, T. E.; Mccrink, T. P.; Jo, M. J.; Barnhart, W. D.; Manipon, G. J. M.; Agram, P. S.; Moore, A. W.; Jung, H. S.; Webb, F.; Milillo, G.; Rosinski, A.

    2014-12-01

    A magnitude 6.0 earthquake struck southern Napa county northeast of San Francisco, California, on Aug. 24, 2014, causing significant damage in the city of Napa and nearby areas. One day after the earthquake, the Advanced Rapid Imaging and Analysis (ARIA) team produced and released observations of coseismic ground displacement measured with continuous GPS stations of the Plate Boundary Observatory (operated by UNAVCO for the National Science Foundation) and the Bay Area Rapid Deformation network (operated by Berkeley Seismological Laboratory). Three days after the earthquake (Aug. 27), the Italian Space Agency's (ASI) COSMO-SkyMed (CSK) satellite acquired their first post-event data. On the same day, the ARIA team, in collaboration with ASI and University of Basilicata, produced and released a coseismic interferogram that revealed ground deformation and surface rupture. The depiction of the surface rupture - discontinuities of color fringes in the CSK interferogram - helped guide field geologists from the US Geological Survey and the California Geological Survey (CGS) to features that may have otherwise gone undetected. Small-scale cracks were found on a runway of the Napa County Airport, as well as bridge damage and damaged roads. ARIA's response to this event highlighted the importance of timeliness for mapping surface deformation features. ARIA's rapid response products were shared through Southern California Earthquake Center's response website and the California Earthquake Clearinghouse. A damage proxy map derived from InSAR coherence of CSK data was produced and distributed on Aug. 27. Field crews from the CGS identified true and false positives, including mobile home damage, newly planted grape vines, and a cripple wall failure of a house. Finite fault slip models constrained from CSK interferograms and continuous GPS observations reveal a north-propagating rupture with well-resolved slip from 0-10.5 km depth. We also measured along-track coseismic

  20. Short-period strain (0.1-105 s): Near-source strain field for an earthquake (M L 3.2) near San Juan Bautista, California

    Science.gov (United States)

    Johnston, M. J. S.; Borcherdt, R. D.; Linde, A. T.

    1986-10-01

    Measurements of dilational earth strain in the frequency band 25-10-5 Hz have been made on a deep borehole strainmeter installed near the San Andreas fault. These data are used to determine seismic radiation fields during nuclear explosions, teleseisms, local earthquakes, and ground noise during seismically quiet times. Strains of less than 10-10 on these instruments can be clearly resolved at short periods (< 10 s) and are recorded with wide dynamic range digital recorders. This permits measurement of the static and dynamic strain variations in the near field of local earthquakes. Noise spectra for earth strain referenced to 1 (strain)2/Hz show that strain resolution decreases at about 10 dB per decade of frequency from -150 dB at 10-4 Hz to -223 dB at 10 Hz. Exact expressions are derived to relate the volumetric strain and displacement field for a homogeneous P wave in a general viscoelastic solid as observed on colocated dilatometers and seismometers. A rare near-field recording of strain and seismic velocity was obtained on May 26, 1984, from an earthquake (ML 3.2) at a hypocentral distance of 3.2 km near the San Andreas fault at San Juan Bautista, California. While the data indicate no precursory strain release at the 5 × 10-11 strain level, a coseismic strain release of 1.86 nanostrain was observed. This change in strain is consistent with that calculated from a simple dislocation model of the event. Ground displacement spectra, determined from the downhole strain data and instrument-corrected surface seismic data, suggest that source parameters estimated from surface recordings may be contaminated by amplification effects in near-surface low-velocity materials.

  1. Varenna workshop report. Operational earthquake forecasting and decision making

    Directory of Open Access Journals (Sweden)

    Warner Marzocchi

    2015-09-01

    Full Text Available A workshop on Operational earthquake forecasting and decision making was convened in Varenna, Italy, on June 8-11, 2014, under the sponsorship of the EU FP 7 REAKT (Strategies and tools for Real-time EArthquake risK reducTion project, the Seismic Hazard Center at the Istituto Nazionale di Geofisica e Vulcanologia (INGV, and the Southern California Earthquake Center (SCEC. The main goal was to survey the interdisciplinary issues of operational earthquake forecasting (OEF, including the problems that OEF raises for decision making and risk communication. The workshop was attended by 64 researchers from universities, research centers, and governmental institutions in 11 countries. Participants and the workshop agenda are listed in the appendix.The workshop comprised six topical sessions structured around three main themes: the science of operational earthquake forecasting, decision making in a low-probability environment, and communicating hazard and risk. Each topic was introduced by a moderator and surveyed by a few invited speakers, who were then empaneled for an open discussion. The presentations were followed by poster sessions. During a wrap-up session on the last day, the reporters for each topical session summarized the main points that they had gleaned from the talks and open discussions. This report attempts to distill this workshop record into a brief overview of the workshop themes and to describe the range of opinions expressed during the discussions.

  2. Rupture directivity and slip distribution of the M 4.3 foreshock to the 1992 Joshua Tree earthquake, Southern California

    Science.gov (United States)

    Mori, J.

    1996-01-01

    Details of the M 4.3 foreshock to the Joshua Tree earthquake were studied using P waves recorded on the Southern California Seismic Network and the Anza network. Deconvolution, using an M 2.4 event as an empirical Green's function, corrected for complicated path and site effects in the seismograms and produced simple far-field displacement pulses that were inverted for a slip distribution. Both possible fault planes, north-south and east-west, for the focal mechanism were tested by a least-squares inversion procedure with a range of rupture velocities. The results showed that the foreshock ruptured the north-south plane, similar to the mainshock. The foreshock initiated a few hundred meters south of the mainshock and ruptured to the north, toward the mainshock hypocenter. The mainshock (M 6.1) initiated near the northern edge of the foreshock rupture 2 hr later. The foreshock had a high stress drop (320 to 800 bars) and broke a small portion of the fault adjacent to the mainshock but was not able to immediately initiate the mainshock rupture.

  3. Ground water level, Water storage, Soil moisture, Precipitation Variability Using Multi Satellite Data during 2003-2016 Associated with California Drought

    Science.gov (United States)

    Li, J. W.; Singh, R. P.

    2017-12-01

    The agricultural market of California is a multi-billion-dollar industry, however in the recent years, the state is facing severe drought. It is important to have a deeper understanding of how the agriculture is affected by the amount of rainfall as well as the ground conditions in California. We have considered 5 regions (each 2 degree by 2 degree) covering whole of California. Multi satellite (MODIS Terra, GRACE, GLDAS) data through NASA Giovanni portal were used to study long period variability 2003 - 2016 of ground water level and storage, soil moisture, root zone moisture level, precipitation and normalized vegetation index (NDVI) in these 5 regions. Our detailed analysis of these parameters show a strong correlation between the NDVI and some of these parameters. NDVI represents greenness showing strong drought conditions during the period 2011-2016 due to poor rainfall and recharge of ground water in the mid and southern parts of California. Effect of ground water level and underground storage will be also discussed on the frequency of earthquakes in five regions of California. The mid and southern parts of California show increasing frequency of small earthquakes during drought periods.

  4. Roaming earthquakes in China highlight midcontinental hazards

    Science.gov (United States)

    Liu, Mian; Wang, Hui

    2012-11-01

    Before dawn on 28 July 1976, a magnitude (M) 7.8 earthquake struck Tangshan, a Chinese industrial city only 150 kilometers from Beijing (Figure 1a). In a brief moment, the earthquake destroyed the entire city and killed more than 242,000 people [Chen et al., 1988]. More than 30 years have passed, and upon the ruins a new Tangshan city has been built. However, the memory of devastation remains fresh. For this reason, a sequence of recent small earthquakes in the Tangshan region, including an M 4.8 event on 28 May and an M 4.0 event on 18 June 2012, has caused widespread concerns and heated debate in China. In the science community, the debate is whether the recent Tangshan earthquakes are the aftershocks of the 1976 earthquake despite the long gap in time since the main shock or harbingers of a new period of active seismicity in Tangshan and the rest of North China, where seismic activity seems to fluctuate between highs and lows over periods of a few decades [Ma, 1989].

  5. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  6. Making the Handoff from Earthquake Hazard Assessments to Effective Mitigation Measures (Invited)

    Science.gov (United States)

    Applegate, D.

    2010-12-01

    of earthquake scientists and engineers. In addition to the national maps, the USGS produces more detailed urban seismic hazard maps that communities have used to prioritize retrofits and design critical infrastructure that can withstand large earthquakes. At a regional scale, the USGS and its partners in California have developed a time-dependent earthquake rupture forecast that is being used by the insurance sector, which can serve to distribute risk and foster mitigation if the right incentives are in place. What the USGS and partners are doing at the urban, regional, and national scales, the Global Earthquake Model project is seeking to do for the world. A significant challenge for engaging the public to prepare for earthquakes is making low-probability, high-consequence events real enough to merit personal action. Scenarios help by starting with the hazard posed by a specific earthquake and then exploring the fragility of the built environment, cascading failures, and the real-life consequences for the public. To generate such a complete picture takes multiple disciplines working together. Earthquake scenarios are being used both for emergency management exercises and much broader public preparedness efforts like the Great California ShakeOut, which engaged nearly 7 million people.

  7. Assessment of earthquake-induced landslides hazard in El Salvador after the 2001 earthquakes using macroseismic analysis

    Science.gov (United States)

    Esposito, Eliana; Violante, Crescenzo; Giunta, Giuseppe; Ángel Hernández, Miguel

    2016-04-01

    Two strong earthquakes and a number of smaller aftershocks struck El Salvador in the year 2001. The January 13 2001 earthquake, Mw 7.7, occurred along the Cocos plate, 40 km off El Salvador southern coast. It resulted in about 1300 deaths and widespread damage, mainly due to massive landsliding. Two of the largest earthquake-induced landslides, Las Barioleras and Las Colinas (about 2x105 m3) produced major damage to buildings and infrastructures and 500 fatalities. A neighborhood in Santa Tecla, west of San Salvador, was destroyed. The February 13 2001 earthquake, Mw 6.5, occurred 40 km east-southeast of San Salvador. This earthquake caused over 300 fatalities and triggered several landslides over an area of 2,500 km2 mostly in poorly consolidated volcaniclastic deposits. The La Leona landslide (5-7x105 m3) caused 12 fatalities and extensive damage to the Panamerican Highway. Two very large landslides of 1.5 km3 and 12 km3 produced hazardous barrier lakes at Rio El Desague and Rio Jiboa, respectively. More than 16.000 landslides occurred throughout the country after both quakes; most of them occurred in pyroclastic deposits, with a volume less than 1x103m3. The present work aims to define the relationship between the above described earthquake intensity, size and areal distribution of induced landslides, as well as to refine the earthquake intensity in sparsely populated zones by using landslide effects. Landslides triggered by the 2001 seismic sequences provided useful indication for a realistic seismic hazard assessment, providing a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides.

  8. A non-accelerating foreshock sequence followed by a short period of quiescence for a large inland earthquake

    Science.gov (United States)

    Doi, I.; Kawakata, H.

    2012-12-01

    Laboratory experiments [e.g. Scholz, 1968; Lockner et al., 1992] and field observations [e.g. Dodge et al., 1996; Helmstetter and Sornette, 2003; Bouchon et al., 2011] have elucidated part of foreshock behavior and mechanism, but we cannot identify foreshocks while they are occurring. Recently, in Japan, a dense seismic network, Hi-net (High Sensitivity Seismograph Network), provides continuous waveform records for regional seismic events. The data from this network enable us to analyze small foreshocks which occur on long period time scales prior to a major event. We have an opportunity to grasp the more detailed pattern of foreshock generation. Using continuous waveforms recorded at a seismic station located in close proximity to the epicenter of the 2008 Iwate-Miyagi inland earthquake, we conducted a detailed investigation of its foreshocks. In addition to the two officially recognized foreshocks, calculation of cross-correlation coefficients between the continuous waveform record and one of the previously recognized foreshocks revealed that 20 micro foreshocks occurred within the same general area. Our analysis also shows that all of these foreshocks occurred within the same general area relative to the main event. Over the two week period leading up to the Iwate-Miyagi earthquake, such foreshocks only occurred during the last 45 minutes, specifically over a 35 minute period followed by a 10 minute period of quiescence just before the mainshock. We found no evidence of acceleration of this foreshock sequence. Rock fracturing experiments using a constant loading rate or creep tests have consistently shown that the occurrence rate of small fracturing events (acoustic emissions; AEs) increases before the main rupture [Scholz, 1968]. This accelerative pattern of preceding events was recognized in case of the 1999 Izmit earthquake [Bouchon et al., 2011]. Large earthquakes however need not be accompanied by acceleration of foreshocks if a given fault's host rock

  9. Preliminary report on aftershock sequence for earthquake of January 31, 1986, near Painesville, Ohio (time period: 2/1/86-2/10/86)

    Science.gov (United States)

    Borcherdt, R.D.

    1986-01-01

    A ten-station array of broad-band digital instrumentation (GEOS) was deployed by the U. S. Geological Survey with partial support provided by Electric Power Research Institute to record the aftershock sequence of the moderate (mb ~ 4.9) earthquake that occurred on January 31, 1986 (16:46:43 UTC) near Painesville, Ohio. The occurrence of the event has raised questions concerning possible contributory factors to the occurrence of the event and questions concerning the character of earthquake-induced high-frequency ground motions in the area. To aid in the timely resolution of the implications of some of these questions, this preliminary report provides copies of the ground motion time-histories and corresponding spectra for the six identified aftershocks and two events, thought to be quarry blasts, recorded as of February 10, 1986. Recording station locations and epicenter locations based on two preliminary estimates of local seismic velocity structure are provided.

  10. Anomalous stress diffusion, Omori's law and Continuous Time Random Walk in the 2010 Efpalion aftershock sequence (Corinth rift, Greece)

    Science.gov (United States)

    Michas, Georgios; Vallianatos, Filippos; Karakostas, Vassilios; Papadimitriou, Eleftheria; Sammonds, Peter

    2014-05-01

    Efpalion aftershock sequence occurred in January 2010, when an M=5.5 earthquake was followed four days later by another strong event (M=5.4) and numerous aftershocks (Karakostas et al., 2012). This activity interrupted a 15 years period of low to moderate earthquake occurrence in Corinth rift, where the last major event was the 1995 Aigion earthquake (M=6.2). Coulomb stress analysis performed in previous studies (Karakostas et al., 2012; Sokos et al., 2012; Ganas et al., 2013) indicated that the second major event and most of the aftershocks were triggered due to stress transfer. The aftershocks production rate decays as a power-law with time according to the modified Omori law (Utsu et al., 1995) with an exponent larger than one for the first four days, while after the occurrence of the second strong event the exponent turns to unity. We consider the earthquake sequence as a point process in time and space and study its spatiotemporal evolution considering a Continuous Time Random Walk (CTRW) model with a joint probability density function of inter-event times and jumps between the successive earthquakes (Metzler and Klafter, 2000). Jump length distribution exhibits finite variance, whereas inter-event times scale as a q-generalized gamma distribution (Michas et al., 2013) with a long power-law tail. These properties are indicative of a subdiffusive process in terms of CTRW. Additionally, the mean square displacement of aftershocks is constant with time after the occurrence of the first event, while it changes to a power-law with exponent close to 0.15 after the second major event, illustrating a slow diffusive process. During the first four days aftershocks cluster around the epicentral area of the second major event, while after that and taking as a reference the second event, the aftershock zone is migrating slowly with time to the west near the epicentral area of the first event. This process is much slower from what would be expected from normal diffusion, a

  11. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  12. RNA shotgun metagenomic sequencing of northern California (USA mosquitoes uncovers viruses, bacteria, and fungi

    Directory of Open Access Journals (Sweden)

    James Angus eChandler

    2015-03-01

    Full Text Available Mosquitoes, most often recognized for the microbial agents of disease they may carry, harbor diverse microbial communities that include viruses, bacteria, and fungi, collectively called the microbiota. The composition of the microbiota can directly and indirectly affect disease transmission through microbial interactions that could be revealed by its characterization in natural populations of mosquitoes. Furthermore, the use of shotgun metagenomic sequencing (SMS approaches could allow the discovery of unknown members of the microbiota. In this study, we use RNA SMS to characterize the microbiota of seven individual mosquitoes (species include Culex pipiens, Culiseta incidens, and Ochlerotatus sierrensis collected from a variety of habitats in California, USA. Sequencing was performed on the Illumina HiSeq platform and the resulting sequences were quality-checked and assembled into contigs using the A5 pipeline. Sequences related to single stranded RNA viruses of the Bunyaviridae and Rhabdoviridae were uncovered, along with an unclassified genus of double-stranded RNA viruses. Phylogenetic analysis finds that in all three cases, the closest relatives of the identified viral sequences are other mosquito-associated viruses, suggesting widespread host-group specificity among disparate viral taxa. Interestingly, we identified a Narnavirus of fungi, also reported elsewhere in mosquitoes, that potentially demonstrates a nested host-parasite association between virus, fungi, and mosquito. Sequences related to 8 bacterial families and 13 fungal families were found across the seven samples. Bacillus and Escherichia/Shigella were identified in all samples and Wolbachia was identified in all Cx. pipiens samples, while no single fungal genus was found in more than two samples. This study exemplifies the utility of RNA SMS in the characterization of the natural microbiota of mosquitoes and, in particular, the value of identifying all microbes associated with

  13. Low Velocity Zones along the San Jacinto Fault, Southern California, inferred from Local Earthquakes

    Science.gov (United States)

    Li, Z.; Yang, H.; Peng, Z.; Ben-Zion, Y.; Vernon, F.

    2013-12-01

    Natural fault zones have regions of brittle damage leading to a low-velocity zone (LVZ) in the immediate vicinity of the main fault interface. The LVZ may amplify ground motion, modify rupture propagation, and impact derivation of earthquke properties. Here we image low-velocity fault zone structures along the San Jacinto Fault (SJF), southern California, using waveforms of local earthquakes that are recorded at several dense arrays across the SJFZ. We use generalized ray theory to compute synthetic travel times to track the direct and FZ-reflected waves bouncing from the FZ boundaries. This method can effectively reduce the trade-off between FZ width and velocity reduction relative to the host rock. Our preliminary results from travel time modeling show the clear signature of LVZs along the SJF, including the segment of the Anza seismic gap. At the southern part near the trifrication area, the LVZ of the Clark Valley branch (array JF) has a width of ~200 m with ~55% reduction in Vp and Vs. This is consistent with what have been suggested from previous studies. In comparison, we find that the velocity reduction relative to the host rock across the Anza seismic gap (array RA) is ~50% for both Vp and Vs, nearly as prominent as that on the southern branches. The width of the LVZ is ~230 m. In addition, the LVZ across the Anza gap appears to locate in the northeast side of the RA array, implying potential preferred propagation direction of past ruptures.

  14. New streams and springs after the 2014 Mw6.0 South Napa earthquake.

    Science.gov (United States)

    Wang, Chi-Yuen; Manga, Michael

    2015-07-09

    Many streams and springs, which were dry or nearly dry before the 2014 Mw6.0 South Napa earthquake, started to flow after the earthquake. A United States Geological Survey stream gauge also registered a coseismic increase in discharge. Public interest was heightened by a state of extreme drought in California. Since the new flows were not contaminated by pre-existing surface water, their composition allowed unambiguous identification of their origin. Following the earthquake we repeatedly surveyed the new flows, collecting data to test hypotheses about their origin. We show that the new flows originated from groundwater in nearby mountains released by the earthquake. The estimated total amount of new water is ∼ 10(6) m(3), about 1/40 of the annual water use in the Napa-Sonoma area. Our model also makes a testable prediction of a post-seismic decrease of seismic velocity in the shallow crust of the affected region.

  15. Roles of Radon-222 and other natural radionuclides in earthquake prediction

    International Nuclear Information System (INIS)

    Smith, A.R.; Wollenberg, H.A.; Mosier, D.F.

    1980-01-01

    The concentration of 222 Rn in subsurface waters is one of the natural parameters being investigated to help develop the capability to predict destructive earthquakes. Since 1966, scientists in several nations have sought to link radon variations with ongoing seismic activity, primarily through the dilatancy model for earthquake occurrences. Within the range of these studies, alpha-, beta-, and gamma-radiation detection techniques have been used in both discrete-sampling and continiuous-monitoring programs. These measured techniques are reviewed in terms of instrumentation adapted to seismic-monitoring purposes. A recent Lawrence Berkeley Laboratory study conducted in central California incorporated discrete sampling of wells in the aftershock area of the 1975 Oroville earthquake and continuous monitoring of water radon in a well on the San Andreas Fault. The results presented show short-term radon variations that may be associated with aftershocks and diurnal changes that may reflect earth tidal forces

  16. California mild CTV strains that break resistance in Trifoliate Orange

    Science.gov (United States)

    This is the final report of a project to characterize California isolates of Citrus tristeza virus (CTV) that replicate in Poncirus trifoliata (trifoliate orange). Next Generation Sequencing (NGS) of viral small interfering RNAs (siRNAs) and assembly of full-length sequences of mild California CTV i...

  17. Potentially induced earthquakes during the early twentieth century in the Los Angeles Basin

    Science.gov (United States)

    Hough, Susan E.; Page, Morgan T.

    2016-01-01

    Recent studies have presented evidence that early to mid‐twentieth‐century earthquakes in Oklahoma and Texas were likely induced by fossil fuel production and/or injection of wastewater (Hough and Page, 2015; Frohlich et al., 2016). Considering seismicity from 1935 onward, Hauksson et al. (2015) concluded that there is no evidence for significant induced activity in the greater Los Angeles region between 1935 and the present. To explore a possible association between earthquakes prior to 1935 and oil and gas production, we first revisit the historical catalog and then review contemporary oil industry activities. Although early industry activities did not induce large numbers of earthquakes, we present evidence for an association between the initial oil boom in the greater Los Angeles area and earthquakes between 1915 and 1932, including the damaging 22 June 1920 Inglewood and 8 July 1929 Whittier earthquakes. We further consider whether the 1933 Mw 6.4 Long Beach earthquake might have been induced, and show some evidence that points to a causative relationship between the earthquake and activities in the Huntington Beach oil field. The hypothesis that the Long Beach earthquake was either induced or triggered by an foreshock cannot be ruled out. Our results suggest that significant earthquakes in southern California during the early twentieth century might have been associated with industry practices that are no longer employed (i.e., production without water reinjection), and do not necessarily imply a high likelihood of induced earthquakes at the present time.

  18. Rupture distribution of the 1977 western Argentina earthquake

    Science.gov (United States)

    Langer, C.J.; Hartzell, S.

    1996-01-01

    Teleseismic P and SH body waves are used in a finite-fault, waveform inversion for the rupture history of the 23 November 1977 western Argentina earthquake. This double event consists of a smaller foreshock (M0 = 5.3 ?? 1026 dyn-cm) followed about 20 s later by a larger main shock (M0 = 1.5 ?? 1027 dyn-cm). Our analysis indicates that these two events occurred on different fault segments: with the foreshock having a strike, dip, and average rake of 345??, 45??E, and 50??, and the main shock 10??, 45??E, and 80??, respectively. The foreshock initiated at a depth of 17 km and propagated updip and to the north. The main shock initiated at the southern end of the foreshock zone at a depth of 25 to 30 km, and propagated updip and unilaterally to the south. The north-south separation of the centroids of the moment release for the foreshock and main shock is about 60 km. The apparent triggering of the main shock by the foreshock is similar to other earthquakes that have involved the failure of multiple fault segments, such as the 1992 Landers, California, earthquake. Such occurrences argue against the use of individual, mapped, surface fault or fault-segment lengths in the determination of the size and frequency of future earthquakes.

  19. SNP discovery and High Resolution Melting Analysis from massive transcriptome sequencing in the California red abalone Haliotis rufescens.

    Science.gov (United States)

    Valenzuela-Muñoz, Valentina; Araya-Garay, José Miguel; Gallardo-Escárate, Cristian

    2013-06-01

    The California red abalone, Haliotis rufescens that belongs to the Haliotidae family, is the largest species of abalone in the world that has sustained the major fishery and aquaculture production in the USA and Mexico. This native mollusk has not been evaluated or assigned a conservation category even though in the last few decades it was heavily exploited until it disappeared in some areas along the California coast. In Chile, the red abalone was introduced in the 1970s from California wild abalone stocks for the purposes of aquaculture. Considering the number of years that the red abalone has been cultivated in Chile crucial genetic information is scarce and critical issues remain unresolved. This study reports and validates novel single nucleotide polymorphisms (SNP) markers for the red abalone H. rufescens using cDNA pyrosequencing. A total of 622 high quality SNPs were identified in 146 sequences with an estimated frequency of 1 SNP each 1000bp. Forty-five SNPs markers with functional information for gene ontology were selected. Of these, 8 were polymorphic among the individuals screened: Heat shock protein 70 (HSP70), vitellogenin (VTG), lysin, alginate lyase enzyme (AL), Glucose-regulated protein 94 (GRP94), fructose-bisphosphate aldolase (FBA), sulfatase 1A precursor (S1AP) and ornithine decarboxylase antizyme (ODC). Two additional sequences were also identified with polymorphisms but no similarities with known proteins were achieved. To validate the putative SNP markers, High Resolution Melting Analysis (HRMA) was conducted in a wild and hatchery-bred population. Additionally, SNP cross-amplifications were tested in two further native abalone species, Haliotis fulgens and Haliotis corrugata. This study provides novel candidate genes that could be used to evaluate loss of genetic diversity due to hatchery selection or inbreeding effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor

    Science.gov (United States)

    Shelly, David R.

    2009-01-01

    Earthquake predictability depends, in part, on the degree to which sudden slip is preceded by slow aseismic slip. Recently, observations of deep tremor have enabled inferences of deep slow slip even when detection by other means is not possible, but these data are limited to certain areas and mostly the last decade. The region near Parkfield, California, provides a unique convergence of several years of high-quality tremor data bracketing a moderate earthquake, the 2004 magnitude 6.0 event. Here, I present detailed observations of tectonic tremor from mid-2001 through 2008 that indicate deep fault slip both before and after the Parkfield earthquake that cannot be detected with surface geodetic instruments. While there is no obvious short-term precursor, I find unidirectional tremor migration accompanied by elevated tremor rates in the 3 months prior to the earthquake, which suggests accelerated creep on the fault ∼16 km beneath the eventual earthquake hypocenter.

  1. A rare moderate‐sized (Mw 4.9) earthquake in Kansas: Rupture process of the Milan, Kansas, earthquake of 12 November 2014 and its relationship to fluid injection

    Science.gov (United States)

    Choy, George; Rubinstein, Justin L.; Yeck, William; McNamara, Daniel E.; Mueller, Charles; Boyd, Oliver

    2016-01-01

    The largest recorded earthquake in Kansas occurred northeast of Milan on 12 November 2014 (Mw 4.9) in a region previously devoid of significant seismic activity. Applying multistation processing to data from local stations, we are able to detail the rupture process and rupture geometry of the mainshock, identify the causative fault plane, and delineate the expansion and extent of the subsequent seismic activity. The earthquake followed rapid increases of fluid injection by multiple wastewater injection wells in the vicinity of the fault. The source parameters and behavior of the Milan earthquake and foreshock–aftershock sequence are similar to characteristics of other earthquakes induced by wastewater injection into permeable formations overlying crystalline basement. This earthquake also provides an opportunity to test the empirical relation that uses felt area to estimate moment magnitude for historical earthquakes for Kansas.

  2. Constraining the magnitude of the largest event in a foreshock-main shock-aftershock sequence

    Science.gov (United States)

    Shcherbakov, Robert; Zhuang, Jiancang; Ogata, Yosihiko

    2018-01-01

    Extreme value statistics and Bayesian methods are used to constrain the magnitudes of the largest expected earthquakes in a sequence governed by the parametric time-dependent occurrence rate and frequency-magnitude statistics. The Bayesian predictive distribution for the magnitude of the largest event in a sequence is derived. Two types of sequences are considered, that is, the classical aftershock sequences generated by large main shocks and the aftershocks generated by large foreshocks preceding a main shock. For the former sequences, the early aftershocks during a training time interval are used to constrain the magnitude of the future extreme event during the forecasting time interval. For the latter sequences, the earthquakes preceding the main shock are used to constrain the magnitudes of the subsequent extreme events including the main shock. The analysis is applied retrospectively to past prominent earthquake sequences.

  3. Seismogeodetic monitoring techniques for tsunami and earthquake early warning and rapid assessment of structural damage

    Science.gov (United States)

    Haase, J. S.; Bock, Y.; Saunders, J. K.; Goldberg, D.; Restrepo, J. I.

    2016-12-01

    As part of an effort to promote the use of NASA-sponsored Earth science information for disaster risk reduction, real-time high-rate seismogeodetic data are being incorporated into early warning and structural monitoring systems. Seismogeodesy combines seismic acceleration and GPS displacement measurements using a tightly-coupled Kalman filter to provide absolute estimates of seismic acceleration, velocity and displacement. Traditionally, the monitoring of earthquakes and tsunamis has been based on seismic networks for estimating earthquake magnitude and slip, and tide gauges and deep-ocean buoys for direct measurement of tsunami waves. Real-time seismogeodetic observations at subduction zones allow for more robust and rapid magnitude and slip estimation that increase warning time in the near-source region. A NASA-funded effort to utilize GPS and seismogeodesy in NOAA's Tsunami Warning Centers in Alaska and Hawaii integrates new modules for picking, locating, and estimating magnitudes and moment tensors for earthquakes into the USGS earthworm environment at the TWCs. In a related project, NASA supports the transition of this research to seismogeodetic tools for disaster preparedness, specifically by implementing GPS and low-cost MEMS accelerometers for structural monitoring in partnership with earthquake engineers. Real-time high-rate seismogeodetic structural monitoring has been implemented on two structures. The first is a parking garage at the Autonomous University of Baja California Faculty of Medicine in Mexicali, not far from the rupture of the 2011 Mw 7.2 El Mayor Cucapah earthquake enabled through a UCMexus collaboration. The second is the 8-story Geisel Library at University of California, San Diego (UCSD). The system has also been installed for several proof-of-concept experiments at the UCSD Network for Earthquake Engineering Simulation (NEES) Large High Performance Outdoor Shake Table. We present MEMS-based seismogeodetic observations from the 10 June

  4. Earthquake activity along the Himalayan orogenic belt

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2017-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  5. Long-Delayed Aftershocks in New Zealand and the 2016 M7.8 Kaikoura Earthquake

    Science.gov (United States)

    Shebalin, P.; Baranov, S.

    2017-10-01

    We study aftershock sequences of six major earthquakes in New Zealand, including the 2016 M7.8 Kaikaoura and 2016 M7.1 North Island earthquakes. For Kaikaoura earthquake, we assess the expected number of long-delayed large aftershocks of M5+ and M5.5+ in two periods, 0.5 and 3 years after the main shocks, using 75 days of available data. We compare results with obtained for other sequences using same 75-days period. We estimate the errors by considering a set of magnitude thresholds and corresponding periods of data completeness and consistency. To avoid overestimation of the expected rates of large aftershocks, we presume a break of slope of the magnitude-frequency relation in the aftershock sequences, and compare two models, with and without the break of slope. Comparing estimations to the actual number of long-delayed large aftershocks, we observe, in general, a significant underestimation of their expected number. We can suppose that the long-delayed aftershocks may reflect larger-scale processes, including interaction of faults, that complement an isolated relaxation process. In the spirit of this hypothesis, we search for symptoms of the capacity of the aftershock zone to generate large events months after the major earthquake. We adapt an algorithm EAST, studying statistics of early aftershocks, to the case of secondary aftershocks within aftershock sequences of major earthquakes. In retrospective application to the considered cases, the algorithm demonstrates an ability to detect in advance long-delayed aftershocks both in time and space domains. Application of the EAST algorithm to the 2016 M7.8 Kaikoura earthquake zone indicates that the most likely area for a delayed aftershock of M5.5+ or M6+ is at the northern end of the zone in Cook Strait.

  6. Performance of Earthquake Early Warning Systems during the Major Events of the 2016-2017 Central Italy Seismic Sequence.

    Science.gov (United States)

    Festa, G.; Picozzi, M.; Alessandro, C.; Colombelli, S.; Cattaneo, M.; Chiaraluce, L.; Elia, L.; Martino, C.; Marzorati, S.; Supino, M.; Zollo, A.

    2017-12-01

    Earthquake early warning systems (EEWS) are systems nowadays contributing to the seismic risk mitigation actions, both in terms of losses and societal resilience, by issuing an alert promptly after the earthquake origin and before the ground shaking impacts the targets to be protected. EEWS systems can be grouped in two main classes: network based and stand-alone systems. Network based EEWS make use of dense seismic networks surrounding the fault (e.g. Near Fault Observatory; NFO) generating the event. The rapid processing of the P-wave early portion allows for the location and magnitude estimation of the event then used to predict the shaking through ground motion prediction equations. Stand-alone systems instead analyze the early P-wave signal to predict the ground shaking carried by the late S or surface waves, through empirically calibrated scaling relationships, at the recording site itself. We compared the network-based (PRESTo, PRobabilistic and Evolutionary early warning SysTem, www.prestoews.org, Satriano et al., 2011) and the stand-alone (SAVE, on-Site-Alert-leVEl, Caruso et al., 2017) systems, by analyzing their performance during the 2016-2017 Central Italy sequence. We analyzed 9 earthquakes having magnitude 5.0 security actions. PRESTo also evaluated the accuracy of location and magnitude. Both systems well predict the ground shaking nearby the event source, with a success rate around 90% within the potential damage zone. The lead-time is significantly larger for the network based system, increasing to more than 10s at 40 km from the event epicentre. The stand-alone system better performs in the near-source region showing a positive albeit small lead-time (operational in Italy, based on the available acceleration networks, by improving the capability of reducing the lead-time related to data telemetry.

  7. Time Separation Between Events in a Sequence: a Regional Property?

    Science.gov (United States)

    Muirwood, R.; Fitzenz, D. D.

    2013-12-01

    Earthquake sequences are loosely defined as events occurring too closely in time and space to appear unrelated. Depending on the declustering method, several, all, or no event(s) after the first large event might be recognized as independent mainshocks. It can therefore be argued that a probabilistic seismic hazard assessment (PSHA, traditionally dealing with mainshocks only) might already include the ground shaking effects of such sequences. Alternatively all but the largest event could be classified as an ';aftershock' and removed from the earthquake catalog. While in PSHA the question is only whether to keep or remove the events from the catalog, for Risk Management purposes, the community response to the earthquakes, as well as insurance risk transfer mechanisms, can be profoundly affected by the actual timing of events in such a sequence. In particular the repetition of damaging earthquakes over a period of weeks to months can lead to businesses closing and families evacuating from the region (as happened in Christchurch, New Zealand in 2011). Buildings that are damaged in the first earthquake may go on to be damaged again, even while they are being repaired. Insurance also functions around a set of critical timeframes - including the definition of a single 'event loss' for reinsurance recoveries within the 192 hour ';hours clause', the 6-18 month pace at which insurance claims are settled, and the annual renewal of insurance and reinsurance contracts. We show how temporal aspects of earthquake sequences need to be taken into account within models for Risk Management, and what time separation between events are most sensitive, both in terms of the modeled disruptions to lifelines and business activity as well as in the losses to different parties (such as insureds, insurers and reinsurers). We also explore the time separation between all events and between loss causing events for a collection of sequences from across the world and we point to the need to

  8. From Multi-Sensors Observations Towards Cross-Disciplinary Study of Pre-Earthquake Signals. What have We Learned from the Tohoku Earthquake?

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hayakawa, M.; Mogi, K.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons we have learned from the Great Tohoku EQ (Japan, 2011) how this knowledge will affect our future observation and analysis is the main focus of this presentation.We present multi-sensors observations and multidisciplinary research in our investigation of phenomena preceding major earthquakes. These observations revealed the existence of atmospheric and ionospheric phenomena occurring prior to theM9.0 Tohoku earthquake of March 11, 2011, which indicates s new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere, as related to underlying tectonic activity. Similar results have been reported before the catastrophic events in Chile (M8.8, 2010), Italy (M6.3, 2009) and Sumatra (M9.3, 2004). For the Tohoku earthquake, our analysis shows a synergy between several independent observations characterizing the state of the lithosphere /atmosphere coupling several days before the onset of the earthquakes, namely: (i) Foreshock sequence change (rate, space and time); (ii) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; and (iii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations. We are presenting a cross-disciplinary analysis of the observed pre-earthquake anomalies and will discuss current research in the detection of these signals in Japan. We expect that our analysis will shed light on the underlying physics of pre-earthquake signals associated with some of the largest earthquake events

  9. Along-strike Variations in the Himalayas Illuminated by the Aftershock Sequence of the 2015 Mw 7.8 Gorkha Earthquake Using the NAMASTE Local Seismic Network

    Science.gov (United States)

    Mendoza, M.; Ghosh, A.; Karplus, M. S.; Nabelek, J.; Sapkota, S. N.; Adhikari, L. B.; Klemperer, S. L.; Velasco, A. A.

    2016-12-01

    As a result of the 2015 Mw 7.8 Gorkha earthquake, more than 8,000 people were killed from a combination of infrastructure failure and triggered landslides. This earthquake produced 4 m of peak co-seismic slip as the fault ruptured 130 km east under densely populated cities, such as Kathmandu. To understand earthquake dynamics in this part of the Himalayas and help mitigate similar future calamities by the next destructive event, it is imperative to study earthquake activities in detail and improve our understanding of the source and structural complexities. In response to the Gorkha event, multiple institutions developed and deployed a 10-month long dense seismic network called NAMASTE. It blanketed a 27,650 km2 area, mainly covering the rupture area of the Gorkha earthquake, in order to capture the dynamic sequence of aftershock behavior. The network consisted of a mix of 45 broadband, short-period, and strong motion sensors, with an average spacing of 20 km. From the first 6 months of data, starting approximately 1.5 after the mainshock, we develop a robust catalog containing over 3,000 precise earthquake locations, and local magnitudes that range between 0.3 and 4.9. The catalog has a magnitude of completeness of 1.5, and an overall low b-value of 0.78. Using the HypoDD algorithm, we relocate earthquake hypocenters with high precision, and thus illustrate the fault geometry down to depths of 25 km where we infer the location of the gently-dipping Main Frontal Thrust (MFT). Above the MFT, the aftershocks illuminate complex structure produced by relatively steeply dipping faults. Interestingly, we observe sharp along-strike change in the seismicity pattern. The eastern part of the aftershock area is significantly more active than the western part. The change in seismicity may reflect structural and/or frictional lateral heterogeneity in this part of the Himalayan fault system. Such along-strike variations play an important role in rupture complexities and

  10. Space-time behavior of continental intraplate earthquakes and implications for hazard assessment in China and the Central U.S.

    Science.gov (United States)

    Stein, Seth; Liu, Mian; Luo, Gang; Wang, Hui

    2014-05-01

    Earthquakes in midcontinents and those at plate boundaries behave quite differently in space and time, owing to the geometry of faults and the rate at which they are loaded. Faults at plate boundaries are loaded at constant rates by steady relative plate motion. Consequently, earthquakes concentrate along the plate boundary faults, and show quasi-periodic occurrences, although the actual temporal patterns are often complicated. However, in midcontinents, the tectonic loading is shared by a complex system of interacting faults spread over a large region, such that a large earthquake on one fault could increase the loading rates on remote faults in the system. Because the low tectonic loading rate is shared by many faults in midcontinents, individual faults may remain dormant for a long time and then become active for a short period. The resulting earthquakes are therefore episodic and spatially migrating. These effects can be seen in many areas, with a prime example being a 2000-year record from North China, which shows migration of large earthquakes between fault systems spread over a large region such that no large earthquakes rupture the same fault segment twice. Because seismic activity within mid-continents is usually much lower than that along plate boundary zones, even small earthquakes can cause widespread concerns, especially when these events occur in the source regions of previous large earthquakes. However, these small earthquakes may be aftershocks that continue for decades or even longer, because aftershock sequences often last much longer in midcontinents where tectonic loading is slow, than at plate boundaries. The recent seismicity in the Tangshan region in North China is likely aftershocks of the 1976 M7.8 Tangshan earthquake. Similarly, current seismicity in the New Madrid seismic zone in central U.S. appears to be aftershocks of a cluster of M ~7.0 events in 1811-1812. These large events and similar events in the past millennium release strain

  11. Ground-rupturing earthquakes on the northern Big Bend of the San Andreas Fault, California, 800 A.D. to Present

    Science.gov (United States)

    Scharer, Katherine M.; Weldon, Ray; Biasi, Glenn; Streig, Ashley; Fumal, Thomas E.

    2017-01-01

    Paleoseismic data on the timing of ground-rupturing earthquakes constrain the recurrence behavior of active faults and can provide insight on the rupture history of a fault if earthquakes dated at neighboring sites overlap in age and are considered correlative. This study presents the evidence and ages for 11 earthquakes that occurred along the Big Bend section of the southern San Andreas Fault at the Frazier Mountain paleoseismic site. The most recent earthquake to rupture the site was the Mw7.7–7.9 Fort Tejon earthquake of 1857. We use over 30 trench excavations to document the structural and sedimentological evolution of a small pull-apart basin that has been repeatedly faulted and folded by ground-rupturing earthquakes. A sedimentation rate of 0.4 cm/yr and abundant organic material for radiocarbon dating contribute to a record that is considered complete since 800 A.D. and includes 10 paleoearthquakes. Earthquakes have ruptured this location on average every ~100 years over the last 1200 years, but individual intervals range from ~22 to 186 years. The coefficient of variation of the length of time between earthquakes (0.7) indicates quasiperiodic behavior, similar to other sites along the southern San Andreas Fault. Comparison with the earthquake chronology at neighboring sites along the fault indicates that only one other 1857-size earthquake could have occurred since 1350 A.D., and since 800 A.D., the Big Bend and Mojave sections have ruptured together at most 50% of the time in Mw ≥ 7.3 earthquakes.

  12. Using focal mechanism solutions to correlate earthquakes with faults in the Lake Tahoe-Truckee area, California and Nevada, and to help design LiDAR surveys for active-fault reconnaissance

    Science.gov (United States)

    Cronin, V. S.; Lindsay, R. D.

    2011-12-01

    Geomorphic analysis of hillshade images produced from aerial LiDAR data has been successful in identifying youthful fault traces. For example, the recently discovered Polaris fault just northwest of Lake Tahoe, California/Nevada, was recognized using LiDAR data that had been acquired by local government to assist land-use planning. Subsequent trenching by consultants under contract to the US Army Corps of Engineers has demonstrated Holocene displacement. The Polaris fault is inferred to be capable of generating a magnitude 6.4-6.9 earthquake, based on its apparent length and offset characteristics (Hunter and others, 2011, BSSA 101[3], 1162-1181). Dingler and others (2009, GSA Bull 121[7/8], 1089-1107) describe paleoseismic or geomorphic evidence for late Neogene displacement along other faults in the area, including the West Tahoe-Dollar Point, Stateline-North Tahoe, and Incline Village faults. We have used the seismo-lineament analysis method (SLAM; Cronin and others, 2008, Env Eng Geol 14[3], 199-219) to establish a tentative spatial correlation between each of the previously mentioned faults, as well as with segments of the Dog Valley fault system, and one or more earthquake(s). The ~18 earthquakes we have tentatively correlated with faults in the Tahoe-Truckee area occurred between 1966 and 2008, with magnitudes between 3 and ~6. Given the focal mechanism solution for a well-located shallow-focus earthquake, the nodal planes can be projected to Earth's surface as represented by a DEM, plus-or-minus the vertical and horizontal uncertainty in the focal location, to yield two seismo-lineament swaths. The trace of the fault that generated the earthquake is likely to be found within one of the two swaths [1] if the fault surface is emergent, and [2] if the fault surface is approximately planar in the vicinity of the focus. Seismo-lineaments from several of the earthquakes studied overlap in a manner that suggests they are associated with the same fault. The surface

  13. Earthquake Tests of Reinforced Concrete Frames

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R.K.; Kirkegaard, Poul Henning

    1997-01-01

    the equilibrium state. Afterwards the test structure is subjected to the three strong ground motion oscillations where the two first sequences are followed by a free decay test. No free decay test was performed after the third earthquake due to collapse of the test structure during the third strong motion...

  14. Earthquake Tests of Reinforced Concrete Frames

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R.K.; Kirkegaard, Poul Henning

    1996-01-01

    the equilibrium state. Afterwards the test structure is subjected to the three strong ground motion oscillations where the two first sequences are followed by a free decay test. No free decay test was performed after the third earthquake due to collapse of the test structure during the third strong motion...

  15. Sensitivity of Earthquake Loss Estimates to Source Modeling Assumptions and Uncertainty

    Science.gov (United States)

    Reasenberg, Paul A.; Shostak, Nan; Terwilliger, Sharon

    2006-01-01

    Introduction: This report explores how uncertainty in an earthquake source model may affect estimates of earthquake economic loss. Specifically, it focuses on the earthquake source model for the San Francisco Bay region (SFBR) created by the Working Group on California Earthquake Probabilities. The loss calculations are made using HAZUS-MH, a publicly available computer program developed by the Federal Emergency Management Agency (FEMA) for calculating future losses from earthquakes, floods and hurricanes within the United States. The database built into HAZUS-MH includes a detailed building inventory, population data, data on transportation corridors, bridges, utility lifelines, etc. Earthquake hazard in the loss calculations is based upon expected (median value) ground motion maps called ShakeMaps calculated for the scenario earthquake sources defined in WGCEP. The study considers the effect of relaxing certain assumptions in the WG02 model, and explores the effect of hypothetical reductions in epistemic uncertainty in parts of the model. For example, it addresses questions such as what would happen to the calculated loss distribution if the uncertainty in slip rate in the WG02 model were reduced (say, by obtaining additional geologic data)? What would happen if the geometry or amount of aseismic slip (creep) on the region's faults were better known? And what would be the effect on the calculated loss distribution if the time-dependent earthquake probability were better constrained, either by eliminating certain probability models or by better constraining the inherent randomness in earthquake recurrence? The study does not consider the effect of reducing uncertainty in the hazard introduced through models of attenuation and local site characteristics, although these may have a comparable or greater effect than does source-related uncertainty. Nor does it consider sources of uncertainty in the building inventory, building fragility curves, and other assumptions

  16. From Data-Sharing to Model-Sharing: SCEC and the Development of Earthquake System Science (Invited)

    Science.gov (United States)

    Jordan, T. H.

    2009-12-01

    Earthquake system science seeks to construct system-level models of earthquake phenomena and use them to predict emergent seismic behavior—an ambitious enterprise that requires high degree of interdisciplinary, multi-institutional collaboration. This presentation will explore model-sharing structures that have been successful in promoting earthquake system science within the Southern California Earthquake Center (SCEC). These include disciplinary working groups to aggregate data into community models; numerical-simulation working groups to investigate system-specific phenomena (process modeling) and further improve the data models (inverse modeling); and interdisciplinary working groups to synthesize predictive system-level models. SCEC has developed a cyberinfrastructure, called the Community Modeling Environment, that can distribute the community models; manage large suites of numerical simulations; vertically integrate the hardware, software, and wetware needed for system-level modeling; and promote the interactions among working groups needed for model validation and refinement. Various socio-scientific structures contribute to successful model-sharing. Two of the most important are “communities of trust” and collaborations between government and academic scientists on mission-oriented objectives. The latter include improvements of earthquake forecasts and seismic hazard models and the use of earthquake scenarios in promoting public awareness and disaster management.

  17. The 1964 Great Alaska Earthquake and tsunamis: a modern perspective and enduring legacies

    Science.gov (United States)

    Brocher, Thomas M.; Filson, John R.; Fuis, Gary S.; Haeussler, Peter J.; Holzer, Thomas L.; Plafker, George; Blair, J. Luke

    2014-01-01

    The magnitude 9.2 Great Alaska Earthquake that struck south-central Alaska at 5:36 p.m. on Friday, March 27, 1964, is the largest recorded earthquake in U.S. history and the second-largest earthquake recorded with modern instruments. The earthquake was felt throughout most of mainland Alaska, as far west as Dutch Harbor in the Aleutian Islands some 480 miles away, and at Seattle, Washington, more than 1,200 miles to the southeast of the fault rupture, where the Space Needle swayed perceptibly. The earthquake caused rivers, lakes, and other waterways to slosh as far away as the coasts of Texas and Louisiana. Water-level recorders in 47 states—the entire Nation except for Connecticut, Delaware, and Rhode Island— registered the earthquake. It was so large that it caused the entire Earth to ring like a bell: vibrations that were among the first of their kind ever recorded by modern instruments. The Great Alaska Earthquake spawned thousands of lesser aftershocks and hundreds of damaging landslides, submarine slumps, and other ground failures. Alaska’s largest city, Anchorage, located west of the fault rupture, sustained heavy property damage. Tsunamis produced by the earthquake resulted in deaths and damage as far away as Oregon and California. Altogether the earthquake and subsequent tsunamis caused 129 fatalities and an estimated $2.3 billion in property losses (in 2013 dollars). Most of the population of Alaska and its major transportation routes, ports, and infrastructure lie near the eastern segment of the Aleutian Trench that ruptured in the 1964 earthquake. Although the Great Alaska Earthquake was tragic because of the loss of life and property, it provided a wealth of data about subductionzone earthquakes and the hazards they pose. The leap in scientific understanding that followed the 1964 earthquake has led to major breakthroughs in earth science research worldwide over the past half century. This fact sheet commemorates Great Alaska Earthquake and

  18. Epistemic uncertainty in California-wide synthetic seismicity simulations

    Science.gov (United States)

    Pollitz, Fred F.

    2011-01-01

    The generation of seismicity catalogs on synthetic fault networks holds the promise of providing key inputs into probabilistic seismic-hazard analysis, for example, the coefficient of variation, mean recurrence time as a function of magnitude, the probability of fault-to-fault ruptures, and conditional probabilities for foreshock–mainshock triggering. I employ a seismicity simulator that includes the following ingredients: static stress transfer, viscoelastic relaxation of the lower crust and mantle, and vertical stratification of elastic and viscoelastic material properties. A cascade mechanism combined with a simple Coulomb failure criterion is used to determine the initiation, propagation, and termination of synthetic ruptures. It is employed on a 3D fault network provided by Steve Ward (unpublished data, 2009) for the Southern California Earthquake Center (SCEC) Earthquake Simulators Group. This all-California fault network, initially consisting of 8000 patches, each of ∼12 square kilometers in size, has been rediscretized into Graphic patches, each of ∼1 square kilometer in size, in order to simulate the evolution of California seismicity and crustal stress at magnitude M∼5–8. Resulting synthetic seismicity catalogs spanning 30,000 yr and about one-half million events are evaluated with magnitude-frequency and magnitude-area statistics. For a priori choices of fault-slip rates and mean stress drops, I explore the sensitivity of various constructs on input parameters, particularly mantle viscosity. Slip maps obtained for the southern San Andreas fault show that the ability of segment boundaries to inhibit slip across the boundaries (e.g., to prevent multisegment ruptures) is systematically affected by mantle viscosity.

  19. Implications of fault constitutive properties for earthquake prediction.

    Science.gov (United States)

    Dieterich, J H; Kilgore, B

    1996-04-30

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance Dc, apparent fracture energy at a rupture front, time-dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of Dc apply to faults in nature. However, scaling of Dc is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks.

  20. Correlation of Foreshock Occurrence with Mainshock Depth, Rake, and Magnitude from the High Precision Catalog for Northern California

    Science.gov (United States)

    Schaff, D. P.; Waldhauser, F.; Lerner-Lam, A.

    2010-12-01

    Foreshocks are perhaps the best-documented and most undisputed precursors to some large earthquakes. The question remains, however, if foreshocks have any more predictive power for future mainshocks than any other earthquake. Several researchers argue for a single unifying triggering law for foreshocks, mainshocks, and aftershocks. An alternate model is that foreshocks are the byproduct of an aseismic pre-slip phase that scales with mainshock magnitude. In this case foreshocks are different than other earthquakes and have predictive value for the mainshock location, origin time, and magnitude. We examine 612 mainshocks with M ≥ 4 from the cross-correlation double-difference catalog for northern California. 235 (44%) of these had foreshock sequences, providing us with a data set more than an order of magnitude larger than those used in previous studies. We are able to confirm with improved accuracy correlations of foreshock occurrence and characteristics with depth. The proportion of mainshocks with associated foreshocks, the number of foreshocks in the sequence, the foreshock duration, and the foreshock radius in map view all decrease with increasing depth, all with statistical significance above 95%. This supports models where increasing normal stress due to lithostatic load inhibits foreshock occurrence. Other M ≥ 4 events that were classified as aftershocks of larger events did not show the depth dependence. However, our analysis does not confirm a previous observation that increased normal stress due to tectonic loading appears to inhibit foreshock occurrence. We observe a negative correlation of foreshock magnitude with foreshock duration which is consistent with a model of mainshocks triggered by increased pore pressure. We observe a statistically significant relationship between foreshock magnitude and mainshock magnitude, lending support to the pre-slip model.

  1. Overview of the critical disaster management challenges faced during Van 2011 earthquakes.

    Science.gov (United States)

    Tolon, Mert; Yazgan, Ufuk; Ural, Derin N; Goss, Kay C

    2014-01-01

    On October 23, 2011, a M7.2 earthquake caused damage in a widespread area in the Van province located in eastern Turkey. This strong earthquake was followed by a M5.7 earthquake on November 9, 2011. This sequence of damaging earthquakes led to 644 fatalities. The management during and after these earthquake disaster imposed many critical challenges. In this article, an overview of these challenges is presented based on the observations by the authors in the aftermath of this disaster. This article presents the characteristics of 2011 Van earthquakes. Afterward, the key information related to the four main phases (ie, preparedness, mitigation, response, and recovery) of the disaster in Van is presented. The potential strategies that can be taken to improve the disaster management practice are identified, and a set of recommendations are proposed to improve the existing situation.

  2. Caltech/USGS Southern California Seismic Network: Recent Developments

    Science.gov (United States)

    Bhadha, R.; Chen, S.; Crummey, J.; Hauksson, E.; Solanki, K.; Thomas, V. I.; Watkins, M.; Yip, R.; Yu, E.; Given, D.; Peats, R.; Schwarz, S.

    2010-12-01

    The SCSN is the modern digital ground motion seismic network in Southern California and performs the following tasks: 1) Operates remote seismic stations and the central data processing systems in Pasadena; 2) Generates and reports real-time products including location, magnitude, ShakeMap, and others; 3) Responds to FEMA, CalEMA, media, and public inquiries about earthquakes; 4) Manages the production, archival, and distribution of waveforms, phase picks, and other data at the SCEDC; 5) Contributes to development and maintenance of the ANSS Quake Monitoring System (AQMS) software to add new features and improve robustness; 6) Supports the deployment of AQMS to other ANSS member regional seismic networks. The public regularly accesses the CISN, SCSN, and SCEDC web pages for up-to-date quake info and more than 230,000 users subscribe to the Electronic Notification System (ENS) which sends rapid notifications via email and cell phones. We distribute our products via Internet (EIDS), email, and paging, to USGS in Reston and Golden, FEMA, CalEMA, local governments, partner members, and other subscribers. We have developed CISN Display and provide ShakeCast for customers who require real-time earthquake information. The SCSN also exchanges waveform, phase pick, and amplitude data in real-time with several other partner networks, including Menlo Park, UCB, UNR, Anza network, the Tsunami Warning Centers, IRIS, and the NEIC. We operate a number of 24/7 on-call rotations to provide quick response to verify seismic events as well as addressing systems and telemetry issues. As part of our goals to improve quality, robustness, and coverage, some of our recent efforts include: 1) Converting the digital stations in the network to Q330 dataloggers; 2) Developing command and control capabilities such as automated mass re-centering; 3) Migration from serial to Ethernet communications; 4) Clustering of data acquisition servers for fail-over to improve data availability; 5) Use of

  3. California's restless giant: the Long Valley Caldera

    Science.gov (United States)

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  4. USGS SAFRR Tsunami Scenario: Potential Impacts to the U.S. West Coast from a Plausible M9 Earthquake near the Alaska Peninsula

    Science.gov (United States)

    Ross, S.; Jones, L. M.; Wilson, R. I.; Bahng, B.; Barberopoulou, A.; Borrero, J. C.; Brosnan, D.; Bwarie, J. T.; Geist, E. L.; Johnson, L. A.; Hansen, R. A.; Kirby, S. H.; Knight, E.; Knight, W. R.; Long, K.; Lynett, P. J.; Miller, K. M.; Mortensen, C. E.; Nicolsky, D.; Oglesby, D. D.; Perry, S. C.; Porter, K. A.; Real, C. R.; Ryan, K. J.; Suleimani, E. N.; Thio, H. K.; Titov, V. V.; Wein, A. M.; Whitmore, P.; Wood, N. J.

    2012-12-01

    The U.S. Geological Survey's Science Application for Risk Reduction (SAFRR) project, in collaboration with the California Geological Survey, the California Emergency Management Agency, the National Oceanic and Atmospheric Administration, and other agencies and institutions are developing a Tsunami Scenario to describe in detail the impacts of a tsunami generated by a hypothetical, but realistic, M9 earthquake near the Alaska Peninsula. The overarching objective of SAFRR and its predecessor, the Multi-Hazards Demonstration Project, is to help communities reduce losses from natural disasters. As requested by emergency managers and other community partners, a primary approach has been comprehensive, scientifically credible scenarios that start with a model of a geologic event and extend through estimates of damage, casualties, and societal consequences. The first product was the ShakeOut scenario, addressing a hypothetical earthquake on the southern San Andreas fault, that spawned the successful Great California ShakeOut, an annual event and the nation's largest emergency preparedness exercise. That was followed by the ARkStorm scenario, which addresses California winter storms that surpass hurricanes in their destructive potential. Some of the Tsunami Scenario's goals include developing advanced models of currents and inundation for the event; spurring research related to Alaskan earthquake sources; engaging the port and harbor decision makers; understanding the economic impacts to local, regional and national economy in both the short and long term; understanding the ecological, environmental, and societal impacts of coastal inundation; and creating enhanced communication products for decision-making before, during, and after a tsunami event. The state of California, through CGS and Cal EMA, is using the Tsunami Scenario as an opportunity to evaluate policies regarding tsunami impact. The scenario will serve as a long-lasting resource to teach preparedness and

  5. Statistical properties of earthquakes clustering

    Directory of Open Access Journals (Sweden)

    A. Vecchio

    2008-04-01

    Full Text Available Often in nature the temporal distribution of inhomogeneous stochastic point processes can be modeled as a realization of renewal Poisson processes with a variable rate. Here we investigate one of the classical examples, namely, the temporal distribution of earthquakes. We show that this process strongly departs from a Poisson statistics for both catalogue and sequence data sets. This indicate the presence of correlations in the system probably related to the stressing perturbation characterizing the seismicity in the area under analysis. As shown by this analysis, the catalogues, at variance with sequences, show common statistical properties.

  6. Global risk of big earthquakes has not recently increased.

    Science.gov (United States)

    Shearer, Peter M; Stark, Philip B

    2012-01-17

    The recent elevated rate of large earthquakes has fueled concern that the underlying global rate of earthquake activity has increased, which would have important implications for assessments of seismic hazard and our understanding of how faults interact. We examine the timing of large (magnitude M≥7) earthquakes from 1900 to the present, after removing local clustering related to aftershocks. The global rate of M≥8 earthquakes has been at a record high roughly since 2004, but rates have been almost as high before, and the rate of smaller earthquakes is close to its historical average. Some features of the global catalog are improbable in retrospect, but so are some features of most random sequences--if the features are selected after looking at the data. For a variety of magnitude cutoffs and three statistical tests, the global catalog, with local clusters removed, is not distinguishable from a homogeneous Poisson process. Moreover, no plausible physical mechanism predicts real changes in the underlying global rate of large events. Together these facts suggest that the global risk of large earthquakes is no higher today than it has been in the past.

  7. The SCEC/USGS dynamic earthquake rupture code verification exercise

    Science.gov (United States)

    Harris, R.A.; Barall, M.; Archuleta, R.; Dunham, E.; Aagaard, Brad T.; Ampuero, J.-P.; Bhat, H.; Cruz-Atienza, Victor M.; Dalguer, L.; Dawson, P.; Day, S.; Duan, B.; Ely, G.; Kaneko, Y.; Kase, Y.; Lapusta, N.; Liu, Yajing; Ma, S.; Oglesby, D.; Olsen, K.; Pitarka, A.; Song, S.; Templeton, E.

    2009-01-01

    Numerical simulations of earthquake rupture dynamics are now common, yet it has been difficult to test the validity of these simulations because there have been few field observations and no analytic solutions with which to compare the results. This paper describes the Southern California Earthquake Center/U.S. Geological Survey (SCEC/USGS) Dynamic Earthquake Rupture Code Verification Exercise, where codes that simulate spontaneous rupture dynamics in three dimensions are evaluated and the results produced by these codes are compared using Web-based tools. This is the first time that a broad and rigorous examination of numerous spontaneous rupture codes has been performed—a significant advance in this science. The automated process developed to attain this achievement provides for a future where testing of codes is easily accomplished.Scientists who use computer simulations to understand earthquakes utilize a range of techniques. Most of these assume that earthquakes are caused by slip at depth on faults in the Earth, but hereafter the strategies vary. Among the methods used in earthquake mechanics studies are kinematic approaches and dynamic approaches.The kinematic approach uses a computer code that prescribes the spatial and temporal evolution of slip on the causative fault (or faults). These types of simulations are very helpful, especially since they can be used in seismic data inversions to relate the ground motions recorded in the field to slip on the fault(s) at depth. However, these kinematic solutions generally provide no insight into the physics driving the fault slip or information about why the involved fault(s) slipped that much (or that little). In other words, these kinematic solutions may lack information about the physical dynamics of earthquake rupture that will be most helpful in forecasting future events.To help address this issue, some researchers use computer codes to numerically simulate earthquakes and construct dynamic, spontaneous

  8. Quantitative prediction of strong motion for a potential earthquake fault

    Directory of Open Access Journals (Sweden)

    Shamita Das

    2010-02-01

    Full Text Available This paper describes a new method for calculating strong motion records for a given seismic region on the basis of the laws of physics using information on the tectonics and physical properties of the earthquake fault. Our method is based on a earthquake model, called a «barrier model», which is characterized by five source parameters: fault length, width, maximum slip, rupture velocity, and barrier interval. The first three parameters may be constrained from plate tectonics, and the fourth parameter is roughly a constant. The most important parameter controlling the earthquake strong motion is the last parameter, «barrier interval». There are three methods to estimate the barrier interval for a given seismic region: 1 surface measurement of slip across fault breaks, 2 model fitting with observed near and far-field seismograms, and 3 scaling law data for small earthquakes in the region. The barrier intervals were estimated for a dozen earthquakes and four seismic regions by the above three methods. Our preliminary results for California suggest that the barrier interval may be determined if the maximum slip is given. The relation between the barrier interval and maximum slip varies from one seismic region to another. For example, the interval appears to be unusually long for Kilauea, Hawaii, which may explain why only scattered evidence of strong ground shaking was observed in the epicentral area of the Island of Hawaii earthquake of November 29, 1975. The stress drop associated with an individual fault segment estimated from the barrier interval and maximum slip lies between 100 and 1000 bars. These values are about one order of magnitude greater than those estimated earlier by the use of crack models without barriers. Thus, the barrier model can resolve, at least partially, the well known discrepancy between the stress-drops measured in the laboratory and those estimated for earthquakes.

  9. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    Science.gov (United States)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  10. Portals for Real-Time Earthquake Data and Forecasting: Challenge and Promise (Invited)

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Feltstykket, R.; Donnellan, A.; Glasscoe, M. T.

    2013-12-01

    Earthquake forecasts have been computed by a variety of countries world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. However, recent events clearly demonstrate that mitigating personal risk is becoming the responsibility of individual members of the public. Open access to a variety of web-based forecasts, tools, utilities and information is therefore required. Portals for data and forecasts present particular challenges, and require the development of both apps and the client/server architecture to deliver the basic information in real time. The basic forecast model we consider is the Natural Time Weibull (NTW) method (JBR et al., Phys. Rev. E, 86, 021106, 2012). This model uses small earthquakes (';seismicity-based models') to forecast the occurrence of large earthquakes, via data-mining algorithms combined with the ANSS earthquake catalog. This method computes large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Localizing these forecasts in space so that global forecasts can be computed in real time presents special algorithmic challenges, which we describe in this talk. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we compute real-time global forecasts at a grid scale of 0.1o. We analyze and monitor the performance of these models using the standard tests, which include the Reliability/Attributes and Receiver Operating Characteristic (ROC) tests. It is clear from much of the analysis that data quality is a major limitation on the accurate computation of earthquake probabilities. We discuss the challenges of serving up these datasets over the web on web-based platforms such as those at www.quakesim.org , www.e-decider.org , and www.openhazards.com.

  11. Lessons learned from the 2016 Kumamoto earthquake: Building damages and behavior of seismically isolated buildings

    Science.gov (United States)

    Morita, Keiko; Takayama, Mineo

    2017-10-01

    Powerful earthquakes stuck Kumamoto and Oita Prefectures in Kyushu, Japan. It began with the Magnitude 6.5 foreshock at 21:26 JST 14 April, followed by the Magnitude 7.3 mainshock at 1:25 JST 16 April, 2016. The sequence earthquakes also involved more than 1700 perceptible earthquakes as of 13 June. The entire sequence was named the 2016 Kumamoto earthquake by the Japan Meteorological Agency. Thousands of buildings and many roads were damaged, and landslides occurred. The Japanese building standard law is revised in 1981. Structural damages were concentrated on buildings constructed prior to 1981. The area of Mashiki and Southern Aso were most badly affected, especially wooden houses extremely damaged. In Japan, Prof. Hideyuki Tada (title at the time) undertook research on laminated rubber bearings in 1978, and put it into practical use in 1981. The single family house at Yachiyodai, Chiba Prefecture is completed in 1983, it's the first seismically isolated building which is installed laminated rubber bearings in Japan. Afterward, this system is gradually adopted to mainly office buildings, like a research laboratory, a hospital, a computer center and other offices. In the 1994 Northridge earthquake, the 1995 Kobe earthquake and 2011 Tohoku earthquake, seismically isolated buildings improve these good performances, and recently number of the buildings have increased, mainly high risk area of earthquakes. Many people believed that Kumamoto was a low risk area. But there were 24 seismically isolated buildings in Kumamoto Prefecture at the time. The seismically isolated buildings indicated excellent performances during the earthquakes. They protected people, buildings and other important facilities from damages caused by the earthquake. The purpose of this paper is to discuss lessons learned from the 2016 Kumamoto earthquake and behavior of seismically isolated buildings in the earthquake.

  12. Borehole P- and S-wave velocity at thirteen stations in Southern California

    Science.gov (United States)

    Gibbs, James F.; Boore, David M.; Tinsley, John C.; Mueller, Charles S.

    2001-01-01

    The U.S. Geological Survey (USGS), as part of a program to acquire seismic velocity data at locations of strong-ground motion in earthquakes (e.g., Gibbs et al., 2000), has investigated thirteen additional sites in the Southern California region. Of the thirteen sites, twelve are in the vicinity of Whittier, California, and one is located in San Bernardino, California. Several deployments of temporary seismographs were made after the Whittier Narrows, California earthquake of 1 October 1987 (Mueller et al., 1988). A deployment, between 2 October and 9 November 1987, was the motivation for selection of six of the drill sites. Temporary portable seismographs at Hoover School (HOO), Lincoln School (LIN), Corps of Engineers Station (NAR), Olive Junior High School (OLV), Santa Anita Golf Course (SAG), and Southwestern Academy (SWA) recorded significant aftershock data. These portable sites, with the exception of Santa Anita Golf Course, were co-sited with strong-motion recorders. Stations at HOO, Lincoln School Whittier (WLB), Saint Paul High School (STP), Alisos Adult School (EXC), Cerritos College Gymnasium (CGM), Cerritos College Physical Science Building (CPS), and Cerritos College Police Building (CPB) were part of an array of digital strong-motion stations deployed from "bedrock" in Whittier to near the deepest part of the Los Angeles basin in Norwalk. Although development and siting of this new array (partially installed at the time of this writing) was generally motivated by the Whittier Narrows earthquake, these new sites (with the exception of HOO) were not part of any Whittier Narrows aftershock deployments. A similar new digital strong-motion site was installed at the San Bernardino Fire Station during the same time frame. Velocity data were obtained to depths of about 90 meters at two sites, 30 meters at seven sites, and 18 to 25 meters at four sites. Lithology data from the analysis of cuttings and samples was obtained from the two 90-meter deep holes and

  13. Earthquake early warning system using real-time signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Leach, R.R. Jr.; Dowla, F.U.

    1996-02-01

    An earthquake warning system has been developed to provide a time series profile from which vital parameters such as the time until strong shaking begins, the intensity of the shaking, and the duration of the shaking, can be derived. Interaction of different types of ground motion and changes in the elastic properties of geological media throughout the propagation path result in a highly nonlinear function. We use neural networks to model these nonlinearities and develop learning techniques for the analysis of temporal precursors occurring in the emerging earthquake seismic signal. The warning system is designed to analyze the first-arrival from the three components of an earthquake signal and instantaneously provide a profile of impending ground motion, in as little as 0.3 sec after first ground motion is felt at the sensors. For each new data sample, at a rate of 25 samples per second, the complete profile of the earthquake is updated. The profile consists of a magnitude-related estimate as well as an estimate of the envelope of the complete earthquake signal. The envelope provides estimates of damage parameters, such as time until peak ground acceleration (PGA) and duration. The neural network based system is trained using seismogram data from more than 400 earthquakes recorded in southern California. The system has been implemented in hardware using silicon accelerometers and a standard microprocessor. The proposed warning units can be used for site-specific applications, distributed networks, or to enhance existing distributed networks. By producing accurate, and informative warnings, the system has the potential to significantly minimize the hazards of catastrophic ground motion. Detailed system design and performance issues, including error measurement in a simple warning scenario are discussed in detail.

  14. Do I Really Sound Like That? Communicating Earthquake Science Following Significant Earthquakes at the NEIC

    Science.gov (United States)

    Hayes, G. P.; Earle, P. S.; Benz, H.; Wald, D. J.; Yeck, W. L.

    2017-12-01

    The U.S. Geological Survey's National Earthquake Information Center (NEIC) responds to about 160 magnitude 6.0 and larger earthquakes every year and is regularly inundated with information requests following earthquakes that cause significant impact. These requests often start within minutes after the shaking occurs and come from a wide user base including the general public, media, emergency managers, and government officials. Over the past several years, the NEIC's earthquake response has evolved its communications strategy to meet the changing needs of users and the evolving media landscape. The NEIC produces a cascade of products starting with basic hypocentral parameters and culminating with estimates of fatalities and economic loss. We speed the delivery of content by prepositioning and automatically generating products such as, aftershock plots, regional tectonic summaries, maps of historical seismicity, and event summary posters. Our goal is to have information immediately available so we can quickly address the response needs of a particular event or sequence. This information is distributed to hundreds of thousands of users through social media, email alerts, programmatic data feeds, and webpages. Many of our products are included in event summary posters that can be downloaded and printed for local display. After significant earthquakes, keeping up with direct inquiries and interview requests from TV, radio, and print reports is always challenging. The NEIC works with the USGS Office of Communications and the USGS Science Information Services to organize and respond to these requests. Written executive summaries reports are produced and distributed to USGS personnel and collaborators throughout the country. These reports are updated during the response to keep our message consistent and information up to date. This presentation will focus on communications during NEIC's rapid earthquake response but will also touch on the broader USGS traditional and

  15. Direct and indirect evidence for earthquakes; an example from the Lake Tahoe Basin, California-Nevada

    Science.gov (United States)

    Maloney, J. M.; Noble, P. J.; Driscoll, N. W.; Kent, G.; Schmauder, G. C.

    2012-12-01

    High-resolution seismic CHIRP data can image direct evidence of earthquakes (i.e., offset strata) beneath lakes and the ocean. Nevertheless, direct evidence often is not imaged due to conditions such as gas in the sediments, or steep basement topography. In these cases, indirect evidence for earthquakes (i.e., debris flows) may provide insight into the paleoseismic record. The four sub-basins of the tectonically active Lake Tahoe Basin provide an ideal opportunity to image direct evidence for earthquake deformation and compare it to indirect earthquake proxies. We present results from high-resolution seismic CHIRP surveys in Emerald Bay, Fallen Leaf Lake, and Cascade Lake to constrain the recurrence interval on the West Tahoe Dollar Point Fault (WTDPF), which was previously identified as potentially the most hazardous fault in the Lake Tahoe Basin. Recently collected CHIRP profiles beneath Fallen Leaf Lake image slide deposits that appear synchronous with slides in other sub-basins. The temporal correlation of slides between multiple basins suggests triggering by events on the WTDPF. If correct, we postulate a recurrence interval for the WTDPF of ~3-4 k.y., indicating that the WTDPF is near its seismic recurrence cycle. In addition, CHIRP data beneath Cascade Lake image strands of the WTDPF that offset the lakefloor as much as ~7 m. The Cascade Lake data combined with onshore LiDAR allowed us to map the geometry of the WTDPF continuously across the southern Lake Tahoe Basin and yielded an improved geohazard assessment.

  16. Reevaluation of the macroseismic effects of the 1887 Sonora, Mexico earthquake and its magnitude estimation

    Science.gov (United States)

    Suárez, Gerardo; Hough, Susan E.

    2008-01-01

    The Sonora, Mexico, earthquake of 3 May 1887 occurred a few years before the start of the instrumental era in seismology. We revisit all available accounts of the earthquake and assign Modified Mercalli Intensities (MMI), interpreting and analyzing macroseismic information using the best available modern methods. We find that earlier intensity assignments for this important earthquake were unjustifiably high in many cases. High intensity values were assigned based on accounts of rock falls, soil failure or changes in the water table, which are now known to be very poor indicators of shaking severity and intensity. Nonetheless, reliable accounts reveal that light damage (intensity VI) occurred at distances of up to ~200 km in both Mexico and the United States. The resulting set of 98 reevaluated intensity values is used to draw an isoseismal map of this event. Using the attenuation relation proposed by Bakun (2006b), we estimate an optimal moment magnitude of Mw7.6. Assuming this magnitude is correct, a fact supported independently by documented rupture parameters assuming standard scaling relations, our results support the conclusion that northern Sonora as well as the Basin and Range province are characterized by lower attenuation of intensities than California. However, this appears to be at odds with recent results that Lg attenuation in the Basin and Range province is comparable to that in California.

  17. Observing earthquakes triggered in the near field by dynamic deformations

    Science.gov (United States)

    Gomberg, J.; Bodin, P.; Reasenberg, P.A.

    2003-01-01

    We examine the hypothesis that dynamic deformations associated with seismic waves trigger earthquakes in many tectonic environments. Our analysis focuses on seismicity at close range (within the aftershock zone), complementing published studies of long-range triggering. Our results suggest that dynamic triggering is not confined to remote distances or to geothermal and volcanic regions. Long unilaterally propagating ruptures may focus radiated dynamic deformations in the propagation direction. Therefore, we expect seismicity triggered dynamically by a directive rupture to occur asymmetrically, with a majority of triggered earthquakes in the direction of rupture propagation. Bilaterally propagating ruptures also may be directive, and we propose simple criteria for assessing their directivity. We compare the inferred rupture direction and observed seismicity rate change following 15 earthquakes (M 5.7 to M 8.1) that occured in California and Idaho in the United States, the Gulf of Aqaba, Syria, Guatemala, China, New Guinea, Turkey, Japan, Mexico, and Antarctica. Nine of these mainshocks had clearly directive, unilateral ruptures. Of these nine, seven apparently induced an asymmetric increase in seismicity rate that correlates with the rupture direction. The two exceptions include an earthquake preceded by a comparable-magnitude event on a conjugate fault and another for which data limitations prohibited conclusive results. Similar (but weaker) correlations were found for the bilaterally rupturing earthquakes we studied. Although the static stress change also may trigger seismicity, it and the seismicity it triggers are expected to be similarly asymmetric only if the final slip is skewed toward the rupture terminus. For several of the directive earthquakes, we suggest that the seismicity rate change correlates better with the dynamic stress field than the static stress change.

  18. The TeraShake Computational Platform for Large-Scale Earthquake Simulations

    Science.gov (United States)

    Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas

    Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

  19. Hazus® estimated annualized earthquake losses for the United States

    Science.gov (United States)

    Jaiswal, Kishor; Bausch, Doug; Rozelle, Jesse; Holub, John; McGowan, Sean

    2017-01-01

    Large earthquakes can cause social and economic disruption that can be unprecedented to any given community, and the full recovery from these impacts may or may not always be achievable. In the United States (U.S.), the 1994 M6.7 Northridge earthquake in California remains the third costliest disaster in U.S. history; and it was one of the most expensive disasters for the federal government. Internationally, earthquakes in the last decade alone have claimed tens of thousands of lives and caused hundreds of billions of dollars of economic impact throughout the globe (~90 billion U.S. dollars (USD) from 2008 M7.9 Wenchuan China, ~20 billion USD from 2010 M8.8 Maule earthquake in Chile, ~220 billion USD from 2011 M9.0 Tohoku Japan earthquake, ~25 billion USD from 2011 M6.3 Christchurch New Zealand, and ~22 billion USD from 2016 M7.0 Kumamoto Japan). Recent earthquakes show a pattern of steadily increasing damages and losses that are primarily due to three key factors: (1) significant growth in earthquake-prone urban areas, (2) vulnerability of the older building stock, including poorly engineered non-ductile concrete buildings, and (3) an increased interdependency in terms of supply and demand for the businesses that operate among different parts of the world. In the United States, earthquake risk continues to grow with increased exposure of population and development even though the earthquake hazard has remained relatively stable except for the regions of induced seismic activity. Understanding the seismic hazard requires studying earthquake characteristics and locales in which they occur, while understanding the risk requires an assessment of the potential damage from earthquake shaking to the built environment and to the welfare of people—especially in high-risk areas. Estimating the varying degree of earthquake risk throughout the United States is critical for informed decision-making on mitigation policies, priorities, strategies, and funding levels in the

  20. Using Earthquake Analysis to Expand the Oklahoma Fault Database

    Science.gov (United States)

    Chang, J. C.; Evans, S. C.; Walter, J. I.

    2017-12-01

    The Oklahoma Geological Survey (OGS) is compiling a comprehensive Oklahoma Fault Database (OFD), which includes faults mapped in OGS publications, university thesis maps, and industry-contributed shapefiles. The OFD includes nearly 20,000 fault segments, but the work is far from complete. The OGS plans on incorporating other sources of data into the OFD, such as new faults from earthquake sequence analyses, geologic field mapping, active-source seismic surveys, and potential fields modeling. A comparison of Oklahoma seismicity and the OFD reveals that earthquakes in the state appear to nucleate on mostly unmapped or unknown faults. Here, we present faults derived from earthquake sequence analyses. From 2015 to present, there has been a five-fold increase in realtime seismic stations in Oklahoma, which has greatly expanded and densified the state's seismic network. The current seismic network not only improves our threshold for locating weaker earthquakes, but also allows us to better constrain focal plane solutions (FPS) from first motion analyses. Using nodal planes from the FPS, HypoDD relocation, and historic seismic data, we can elucidate these previously unmapped seismogenic faults. As the OFD is a primary resource for various scientific investigations, the inclusion of seismogenic faults improves further derivative studies, particularly with respect to seismic hazards. Our primal focus is on four areas of interest, which have had M5+ earthquakes in recent Oklahoma history: Pawnee (M5.8), Prague (M5.7), Fairview (M5.1), and Cushing (M5.0). Subsequent areas of interest will include seismically active data-rich areas, such as the central and northcentral parts of the state.

  1. Correlations between solid tides and worldwide earthquakes MS ≥ 7.0 since 1900

    Directory of Open Access Journals (Sweden)

    Q. H. Xu

    2012-03-01

    Full Text Available Most studies on the correlations between earthquakes and solid tides mainly concluded the syzygies (i.e. new or full moons of each lunar cycle have more earthquakes than other days in the month. We show a correlation between the aftershock sequence of the ML = 6.3 Christchurch, New Zealand, earthquake and the diurnal solid tide. Ms ≥ 7 earthquakes worldwide since 1900 are more likely to occur during the 0°, 90°, 180° or 270° phases (i.e. earthquake-prone phases of the semidiurnal solid earth tidal curve (M2. Thus, the semidiurnal solid tides triggers earthquakes. However, the long-term triggering effect of the lunar periodicity is uncertain. This proposal is helpful in defining possible origin times of aftershocks several days after a mainshock and can be used for warning of subsequent larger shocks.

  2. Observations of static Coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence

    Science.gov (United States)

    Sumy, Danielle F.; Cochran, Elizabeth S.; Keranen, Katie M.; Wei, Maya; Abers, Geoffrey A.

    2014-01-01

    In November 2011, a M5.0 earthquake occurred less than a day before a M5.7 earthquake near Prague, Oklahoma, which may have promoted failure of the mainshock and thousands of aftershocks along the Wilzetta fault, including a M5.0 aftershock. The M5.0 foreshock occurred in close proximity to active fluid injection wells; fluid injection can cause a buildup of pore fluid pressure, decrease the fault strength, and may induce earthquakes. Keranen et al. [2013] links the M5.0 foreshock with fluid injection, but the relationship between the foreshock and successive events has not been investigated. Here we examine the role of coseismic Coulomb stress transfer on earthquakes that follow the M5.0 foreshock, including the M5.7 mainshock. We resolve the static Coulomb stress change onto the focal mechanism nodal plane that is most consistent with the rupture geometry of the three M ≥ 5.0 earthquakes, as well as specified receiver fault planes that reflect the regional stress orientation. We find that Coulomb stress is increased, e.g., fault failure is promoted, on the nodal planes of ~60% of the events that have focal mechanism solutions, and more specifically, that the M5.0 foreshock promoted failure on the rupture plane of the M5.7 mainshock. We test our results over a range of effective coefficient of friction values. Hence, we argue that the M5.0 foreshock, induced by fluid injection, potentially triggered a cascading failure of earthquakes along the complex Wilzetta fault system.

  3. Analysis of source spectra, attenuation, and site effects from central and eastern United States earthquakes

    International Nuclear Information System (INIS)

    Lindley, G.

    1998-02-01

    This report describes the results from three studies of source spectra, attenuation, and site effects of central and eastern United States earthquakes. In the first study source parameter estimates taken from 27 previous studies were combined to test the assumption that the earthquake stress drop is roughly a constant, independent of earthquake size. 200 estimates of stress drop and seismic moment from eastern North American earthquakes were combined. It was found that the estimated stress drop from the 27 studies increases approximately as the square-root of the seismic moment, from about 3 bars at 10 20 dyne-cm to 690 bars at 10 25 dyne-cm. These results do not support the assumption of a constant stress drop when estimating ground motion parameters from eastern North American earthquakes. In the second study, broadband seismograms recorded by the United States National Seismograph Network and cooperating stations have been analysed to determine Q Lg as a function of frequency in five regions: the northeastern US, southeastern US, central US, northern Basin and Range, and California and western Nevada. In the third study, using spectral analysis, estimates have been made for the anelastic attenuation of four regional phases, and estimates have been made for the source parameters of 27 earthquakes, including the M b 5.6, 14 April, 1995, West Texas earthquake

  4. The 2014 Greeley, Colorado Earthquakes: Science, Industry, Regulation, and Media

    Science.gov (United States)

    Yeck, W. L.; Sheehan, A. F.; Weingarten, M.; Nakai, J.; Ge, S.

    2014-12-01

    On June 1, 2014 (UTC) a magnitude 3.2 earthquake occurred east of the town of Greeley, Colorado. The earthquake was widely felt, with reports from Boulder and Golden, over 60 miles away from the epicenter. The location of the earthquake in a region long considered aseismic but now the locus of active oil and gas production prompted the question of whether this was a natural or induced earthquake. Several classic induced seismicity cases hail from Colorado, including the Rocky Mountain Arsenal earthquakes in the 1960s and the Paradox Valley earthquakes in western Colorado. In both cases the earthquakes were linked to wastewater injection. The Greeley earthquake epicenter was close to a Class II well that had been injecting waste fluid into the deepest sedimentary formation of the Denver Basin at rates as high as 350,000 barrels/month for less than a year. The closest seismometers to the June 1 event were more than 100 km away, necessitating deployment of a local seismic network for detailed study. IRIS provided six seismometers to the University of Colorado which were deployed starting within 3 days of the mainshock. Telemetry at one site allowed for real time monitoring of the ongoing seismic sequence. Local media interest was extremely high with speculation that the earthquake was linked to the oil and gas industry. The timetable of media demand for information provided some challenges given the time needed for data collection and analysis. We adopted a policy of open data and open communication with all interested parties, and made proactive attempts to provide information to industry and regulators. After 3 weeks of data collection and analysis, the proximity and timing of the mainshock and aftershocks to the C4A injection well, along with a sharp increase in seismicity culminating in an M 2.6 aftershock, led to a decision by the Colorado Oil and Gas Corporation Commission (COGCC) to recommend a temporary halt to injection at the C4A injection well. This was the

  5. An information infrastructure for earthquake science

    Science.gov (United States)

    Jordan, T. H.; Scec/Itr Collaboration

    2003-04-01

    The Southern California Earthquake Center (SCEC), in collaboration with the San Diego Supercomputer Center, the USC Information Sciences Institute,IRIS, and the USGS, has received a large five-year grant from the NSF's ITR Program and its Geosciences Directorate to build a new information infrastructure for earthquake science. In many respects, the SCEC/ITR Project presents a microcosm of the IT efforts now being organized across the geoscience community, including the EarthScope initiative. The purpose of this presentation is to discuss the experience gained by the project thus far and lay out the challenges that lie ahead; our hope is to encourage cross-discipline collaboration in future IT advancements. Project goals have been formulated in terms of four "computational pathways" related to seismic hazard analysis (SHA). For example, Pathway 1 involves the construction of an open-source, object-oriented, and web-enabled framework for SHA computations that can incorporate a variety of earthquake forecast models, intensity-measure relationships, and site-response models, while Pathway 2 aims to utilize the predictive power of wavefield simulation in modeling time-dependent ground motion for scenario earthquakes and constructing intensity-measure relationships. The overall goal is to create a SCEC "community modeling environment" or collaboratory that will comprise the curated (on-line, documented, maintained) resources needed by researchers to develop and use these four computational pathways. Current activities include (1) the development and verification of the computational modules, (2) the standardization of data structures and interfaces needed for syntactic interoperability, (3) the development of knowledge representation and management tools, (4) the construction SCEC computational and data grid testbeds, and (5) the creation of user interfaces for knowledge-acquisition, code execution, and visualization. I will emphasize the increasing role of standardized

  6. Modernization of the Caltech/USGS Southern California Seismic Network

    Science.gov (United States)

    Bhadha, R.; Devora, A.; Hauksson, E.; Johnson, D.; Thomas, V.; Watkins, M.; Yip, R.; Yu, E.; Given, D.; Cone, G.; Koesterer, C.

    2009-12-01

    The USGS/ANSS/ARRA program is providing Government Furnished Equipment (GFE), and two year funding for upgrading the Caltech/USGS Southern California Seismic Network (SCSN). The SCSN is the modern digital ground motion seismic network in southern California that monitors seismicity and provides real-time earthquake information products such as rapid notifications, moment tensors, and ShakeMap. The SCSN has evolved through the years and now consists of several well-integrated components such as Short-Period analog, TERRAscope, digital stations, and real-time strong motion stations, or about 300 stations. In addition, the SCSN records data from about 100 stations provided by partner networks. To strengthen the ability of SCSN to meet the ANSS performance standards, we will install GFE and carry out the following upgrades and improvements of the various components of the SCSN: 1) Upgrade of dataloggers at seven TERRAscope stations; 2) Upgrade of dataloggers at 131 digital stations and upgrade broadband sensors at 25 stations; 3) Upgrade of SCSN metadata capabilities; 4) Upgrade of telemetry capabilities for both seismic and GPS data; and 5) Upgrade balers at stations with existing Q330 dataloggers. These upgrades will enable the SCSN to meet the ANSS Performance Standards more consistently than before. The new equipment will improve station uptimes and reduce maintenance costs. The new equipment will also provide improved waveform data quality and consequently superior data products. The data gaps due to various outages will be minimized, and ‘late’ data will be readily available through retrieval from on-site storage. Compared to the outdated equipment, the new equipment will speed up data delivery by about 10 sec, which is fast enough for earthquake early warning applications. The new equipment also has about a factor of ten lower consumption of power. We will also upgrade the SCSN data acquisition and data center facilities, which will improve the SCSN

  7. The January 2014 Northern Cuba Earthquake Sequence - Unusual Location and Unexpected Source Mechanism Variability

    Science.gov (United States)

    Braunmiller, J.; Thompson, G.; McNutt, S. R.

    2017-12-01

    On 9 January 2014, a magnitude Mw=5.1 earthquake occurred along the Bahamas-Cuba suture at the northern coast of Cuba revealing a surprising seismic hazard source for both Cuba and southern Florida where it was widely felt. Due to its location, the event and its aftershocks (M>3.5) were recorded only at far distances (300+ km) resulting in high-detection thresholds, low location accuracy, and limited source parameter resolution. We use three-component regional seismic data to study the sequence. High-pass filtered seismograms at the closest site in southern Florida are similar in character suggesting a relatively tight event cluster and revealing additional, smaller aftershocks not included in the ANSS or ISC catalogs. Aligning on the P arrival and low-pass filtering (T>10 s) uncovers a surprise polarity flip of the large amplitude surface waves on vertical seismograms for some aftershocks relative to the main shock. We performed regional moment tensor inversions of the main shock and its largest aftershocks using complete three-component seismograms from stations distributed throughout the region to confirm the mechanism changes. Consistent with the GCMT solution, we find an E-W trending normal faulting mechanism for the main event and for one immediate aftershock. Two aftershocks indicate E-W trending reverse faulting with essentially flipped P- and T-axes relative to the normal faulting events (and the same B-axes). Within uncertainties, depths of the two event families are indistinguishable and indicate shallow faulting (<10 km). One intriguing possible interpretation is that both families ruptured the same fault with reverse mechanisms compensating for overshooting. However, activity could also be spatially separated either vertically (with reverse mechanisms possibly below extension) or laterally. The shallow source depth and the 200-km long uplifted chain of islands indicate that larger, shallow and thus potentially tsunamigenic earthquakes could occur just

  8. A preliminary assessment of earthquake ground shaking hazard at Yucca Mountain, Nevada and implications to the Las Vegas region

    International Nuclear Information System (INIS)

    Wong, I.G.; Green, R.K.; Sun, J.I.; Pezzopane, S.K.; Abrahamson, N.A.; Quittmeyer, R.C.

    1996-01-01

    As part of early design studies for the potential Yucca Mountain nuclear waste repository, the authors have performed a preliminary probabilistic seismic hazard analysis of ground shaking. A total of 88 Quaternary faults within 100 km of the site were considered in the hazard analysis. They were characterized in terms of their probability o being seismogenic, and their geometry, maximum earthquake magnitude, recurrence model, and slip rate. Individual faults were characterized by maximum earthquakes that ranged from moment magnitude (M w ) 5.1 to 7.6. Fault slip rates ranged from a very low 0.00001 mm/yr to as much as 4 mm/yr. An areal source zone representing background earthquakes up to M w 6 1/4 = 1/4 was also included in the analysis. Recurrence for these background events was based on the 1904--1994 historical record, which contains events up to M w 5.6. Based on this analysis, the peak horizontal rock accelerations are 0.16, 0.21, 0.28, and 0.50 g for return periods of 500, 1,000, 2,000, and 10,000 years, respectively. In general, the dominant contributor to the ground shaking hazard at Yucca Mountain are background earthquakes because of the low slip rates of the Basin and Range faults. A significant effect on the probabilistic ground motions is due to the inclusion of a new attenuation relation developed specifically for earthquakes in extensional tectonic regimes. This relation gives significantly lower peak accelerations than five other predominantly California-based relations used in the analysis, possibly due to the lower stress drops of extensional earthquakes compared to California events. Because Las Vegas is located within the same tectonic regime as Yucca Mountain, the seismic sources and path and site factors affecting the seismic hazard at Yucca Mountain also have implications to Las Vegas. These implications are discussed in this paper

  9. Strong-motion observations of the M 7.8 Gorkha, Nepal, earthquake sequence and development of the N-shake strong-motion network

    Science.gov (United States)

    Dixit, Amod; Ringler, Adam; Sumy, Danielle F.; Cochran, Elizabeth S.; Hough, Susan E.; Martin, Stacey; Gibbons, Steven; Luetgert, James H.; Galetzka, John; Shrestha, Surya; Rajaure, Sudhir; McNamara, Daniel E.

    2015-01-01

    We present and describe strong-motion data observations from the 2015 M 7.8 Gorkha, Nepal, earthquake sequence collected using existing and new Quake-Catcher Network (QCN) and U.S. Geological Survey NetQuakes sensors located in the Kathmandu Valley. A comparison of QCN data with waveforms recorded by a conventional strong-motion (NetQuakes) instrument validates the QCN data. We present preliminary analysis of spectral accelerations, and peak ground acceleration and velocity for earthquakes up to M 7.3 from the QCN stations, as well as preliminary analysis of the mainshock recording from the NetQuakes station. We show that mainshock peak accelerations were lower than expected and conclude the Kathmandu Valley experienced a pervasively nonlinear response during the mainshock. Phase picks from the QCN and NetQuakes data are also used to improve aftershock locations. This study confirms the utility of QCN instruments to contribute to ground-motion investigations and aftershock response in regions where conventional instrumentation and open-access seismic data are limited. Initial pilot installations of QCN instruments in 2014 are now being expanded to create the Nepal–Shaking Hazard Assessment for Kathmandu and its Environment (N-SHAKE) network.

  10. Simulation of scenario earthquake influenced field by using GIS

    Science.gov (United States)

    Zuo, Hui-Qiang; Xie, Li-Li; Borcherdt, R. D.

    1999-07-01

    The method for estimating the site effect on ground motion specified by Borcherdt (1994a, 1994b) is briefly introduced in the paper. This method and the detail geological data and site classification data in San Francisco bay area of California, the United States, are applied to simulate the influenced field of scenario earthquake by GIS technology, and the software for simulating has been drawn up. The paper is a partial result of cooperative research project between China Seismological Bureau and US Geological Survey.

  11. Earthquake and nuclear explosion location using the global seismic network

    International Nuclear Information System (INIS)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30 0 distances, the largest deviation being around 10 seconds at 13-18 0 . At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations

  12. Earthquake and nuclear explosion location using the global seismic network

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30/sup 0/ distances, the largest deviation being around 10 seconds at 13-18/sup 0/. At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations.

  13. Predicting the impact of tsunami in California under rising sea level

    Science.gov (United States)

    Dura, T.; Garner, A. J.; Weiss, R.; Kopp, R. E.; Horton, B.

    2017-12-01

    The flood hazard for the California coast depends not only on the magnitude, location, and rupture length of Alaska-Aleutian subduction zone earthquakes and their resultant tsunamis, but also on rising sea levels, which combine with tsunamis to produce overall flood levels. The magnitude of future sea-level rise remains uncertain even on the decadal scale, with future sea-level projections becoming even more uncertain at timeframes of a century or more. Earthquake statistics indicate that timeframes of ten thousand to one hundred thousand years are needed to capture rare, very large earthquakes. Because of the different timescales between reliable sea-level projections and earthquake distributions, simply combining the different probabilities in the context of a tsunami hazard assessment may be flawed. Here, we considered 15 earthquakes between Mw 8 to Mw 9.4 bound by -171oW and -140oW of the Alaska-Aleutian subduction zone. We employed 24 realizations at each magnitude with random epicenter locations and different fault length-to-width ratios, and simulated the tsunami evolution from these 360 earthquakes at each decade from the years 2000 to 2200. These simulations were then carried out for different sea-level-rise projections to analyze the future flood hazard for California. Looking at the flood levels at tide gauges, we found that the flood level simulated at, for example, the year 2100 (including respective sea-level change) is different from the flood level calculated by adding the flood for the year 2000 to the sea-level change prediction for the year 2100. This is consistent for all sea-level rise scenarios, and this difference in flood levels range between 5% and 12% for the larger half of the given magnitude interval. Focusing on flood levels at the tide gauge in the Port of Los Angeles, the most probable flood level (including all earthquake magnitudes) in the year 2000 was 5 cm. Depending on the sea-level predictions, in the year 2050 the most probable

  14. Cloud-based systems for monitoring earthquakes and other environmental quantities

    Science.gov (United States)

    Clayton, R. W.; Olson, M.; Liu, A.; Chandy, M.; Bunn, J.; Guy, R.

    2013-12-01

    There are many advantages to using a cloud-based system to record and analyze environmental quantities such as earthquakes, radiation, various gases, dust and meteorological parameters. These advantages include robustness and dynamic scalability, and also reduced costs. In this paper, we present our experiences over the last three years in developing a cloud-based earthquake monitoring system (the Community Seismic Network). This network consists of over 600 sensors (accelerometers) in the S. California region that send data directly to the Google App Engine where they are analyzed. The system is capable of handing many other types of sensor data and generating a situation-awareness analysis as a product. Other advantages to the cloud-based system are integration with other peer networks, and being able to deploy anywhere in the world without have to build addition computing infrastructure.

  15. A new strategy for earthquake focal mechanisms using waveform-correlation-derived relative polarities and cluster analysis: Application to the 2014 Long Valley Caldera earthquake swarm

    Science.gov (United States)

    Shelly, David R.; Hardebeck, Jeanne L.; Ellsworth, William L.; Hill, David P.

    2016-01-01

    In microseismicity analyses, reliable focal mechanisms can typically be obtained for only a small subset of located events. We address this limitation here, presenting a framework for determining robust focal mechanisms for entire populations of very small events. To achieve this, we resolve relative P and S wave polarities between pairs of waveforms by using their signed correlation coefficients—a by-product of previously performed precise earthquake relocation. We then use cluster analysis to group events with similar patterns of polarities across the network. Finally, we apply a standard mechanism inversion to the grouped data, using either catalog or correlation-derived P wave polarity data sets. This approach has great potential for enhancing analyses of spatially concentrated microseismicity such as earthquake swarms, mainshock-aftershock sequences, and industrial reservoir stimulation or injection-induced seismic sequences. To demonstrate its utility, we apply this technique to the 2014 Long Valley Caldera earthquake swarm. In our analysis, 85% of the events (7212 out of 8494 located by Shelly et al. [2016]) fall within five well-constrained mechanism clusters, more than 12 times the number with network-determined mechanisms. Of the earthquakes we characterize, 3023 (42%) have magnitudes smaller than 0.0. We find that mechanism variations are strongly associated with corresponding hypocentral structure, yet mechanism heterogeneity also occurs where it cannot be resolved by hypocentral patterns, often confined to small-magnitude events. Small (5–20°) rotations between mechanism orientations and earthquake location trends persist when we apply 3-D velocity models and might reflect a geometry of en echelon, interlinked shear, and dilational faulting.

  16. Correlation between Earthquakes and AE Monitoring of Historical Buildings in Seismic Areas

    Directory of Open Access Journals (Sweden)

    Giuseppe Lacidogna

    2015-12-01

    Full Text Available In this contribution a new method for evaluating seismic risk in regional areas based on the acoustic emission (AE technique is proposed. Most earthquakes have precursors, i.e., phenomena of changes in the Earth’s physical-chemical properties that take place prior to an earthquake. Acoustic emissions in materials and earthquakes in the Earth’s crust, despite the fact that they take place on very different scales, are very similar phenomena; both are caused by a release of elastic energy from a source located in a medium. For the AE monitoring, two important constructions of Italian cultural heritage are considered: the chapel of the “Sacred Mountain of Varallo” and the “Asinelli Tower” of Bologna. They were monitored during earthquake sequences in their relative areas. By using the Grassberger-Procaccia algorithm, a statistical method of analysis was developed that detects AEs as earthquake precursors or aftershocks. Under certain conditions it was observed that AEs precede earthquakes. These considerations reinforce the idea that the AE monitoring can be considered an effective tool for earthquake risk evaluation.

  17. Statistical parameters of Bhuj earthquake sequence of January 26th ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2001-01-26

    Jan 26, 2001 ... 6.9) took a heavy toll of human lives, exceeding. 17000 (Anon 2001b). The damage .... Resources & Water Supply Dept., Vadodara, India. (unpublished) ... cisco; California: W.H. Freeman & Co, Inc.) Scholz C H 1968 Micro ...

  18. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    Science.gov (United States)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  19. Seismicity and crustal structure at the Mendocino triple junction, Northern California

    Energy Technology Data Exchange (ETDEWEB)

    Dicke, M.

    1998-12-01

    A high level of seismicity at the Mendocino triple junction in Northern California reflects the complex active tectonics associated with the junction of the Pacific, North America, and Gorda plates. To investigate seismicity patterns and crustal structure, 6193 earthquakes recorded by the Northern California Seismic Network (NCSN) are relocated using a one-dimensional crustal velocity model. A near vertical truncation of the intense seismic activity offshore Cape Mendocino follows the strike of the Mattole Canyon fault and is interpreted to define the Pacific plate boundary. Seismicity along this boundary displays a double seismogenic layer that is attributed to interplate activity with the North America plate and Gorda plate. The interpretation of the shallow seismogenic zone as the North America - Pacific plate boundary implies that the Mendocino triple junction is situated offshore at present. Seismicity patterns and focal mechanisms for events located within the subducting Gorda pl ate are consistent with internal deformation on NE-SW and NW-SE trending rupture planes in response to north-south compression. Seismic sections indicate that the top of the Gorda plate locates at a depth of about 18 Km beneath Cape Mendocino and dips gently east-and southward. Earthquakes that are located in the Wadati-Benioff zone east of 236{sup o}E show a change to an extensional stress regime indicative of a slab pull force. This slab pull force and scattered seismicity within the contractional forearc region of the Cascadia subduction zone suggest that the subducting Gorda plate and the overriding North America plate are strongly coupled. The 1992 Cape Mendocino thrust earthquake is believed to have ruptured a blind thrust fault in the forearc region, suggesting that strain is accumulating that must ultimately be released in a potential M 8+ subduction earthquake.

  20. Filling a gap: Public talks about earthquake preparation and the 'Big One'

    Science.gov (United States)

    Reinen, L. A.

    2013-12-01

    Residents of southern California are aware they live in a seismically active area and earthquake drills have trained us to Duck-Cover-Hold On. While many of my acquaintance are familiar with what to do during an earthquake, few have made preparations for living with the aftermath of a large earthquake. The ShakeOut Scenario (Jones et al., USGS Open File Report 2008-1150) describes the physical, social, and economic consequences of a plausible M7.8 earthquake on the southernmost San Andreas Fault. While not detailing an actual event, the ShakeOut Scenario illustrates how individual and community preparation may improve the potential after-affects of a major earthquake in the region. To address the gap between earthquake drills and preparation in my community, for the past several years I have been giving public talks to promote understanding of: the science behind the earthquake predictions; why individual, as well as community, preparation is important; and, ways in which individuals can prepare their home and work environments. The public presentations occur in an array of venues, including elementary school and college classes, a community forum linked with the annual ShakeOut Drill, and local businesses including the local microbrewery. While based on the same fundamental information, each presentation is modified for audience and setting. Assessment of the impact of these talks is primarily anecdotal and includes an increase in the number of venues requesting these talks, repeat invitations, and comments from audience members (sometimes months or years after a talk). I will present elements of these talks, the background information used, and examples of how they have affected change in the earthquake preparedness of audience members. Discussion and suggestions (particularly about effective means of conducting rigorous long-term assessment) are strongly encouraged.

  1. Statistics and Analysis of the Relations between Rainstorm Floods and Earthquakes

    Directory of Open Access Journals (Sweden)

    Baodeng Hou

    2016-01-01

    Full Text Available The frequent occurrence of geophysical disasters under climate change has drawn Chinese scholars to pay their attention to disaster relations. If the occurrence sequence of disasters could be identified, long-term disaster forecast could be realized. Based on the Earth Degassing Effect (EDE which is valid, this paper took the magnitude, epicenter, and occurrence time of the earthquake, as well as the epicenter and occurrence time of the rainstorm floods as basic factors to establish an integrated model to study the correlation between rainstorm floods and earthquakes. 2461 severe earthquakes occurred in China or within 3000 km from China and the 169 heavy rainstorm floods occurred in China over the past 200+ years as the input data of the model. The computational results showed that although most of the rainstorm floods have nothing to do with the severe earthquakes from a statistical perspective, some floods might relate to earthquakes. This is especially true when the earthquakes happen in the vapor transmission zone where rainstorms lead to abundant water vapors. In this regard, earthquakes are more likely to cause big rainstorm floods. However, many cases of rainstorm floods could be found after severe earthquakes with a large extent of uncertainty.

  2. Triggered surface slips in the Coachella Valley area associated with the 1992 Joshua Tree and Landers, California, Earthquakes

    Science.gov (United States)

    Rymer, M.J.

    2000-01-01

    The Coachella Valley area was strongly shaken by the 1992 Joshua Tree (23 April) and Landers (28 June) earthquakes, and both events caused triggered slip on active faults within the area. Triggered slip associated with the Joshua Tree earthquake was on a newly recognized fault, the East Wide Canyon fault, near the southwestern edge of the Little San Bernardino Mountains. Slip associated with the Landers earthquake formed along the San Andreas fault in the southeastern Coachella Valley. Surface fractures formed along the East Wide Canyon fault in association with the Joshua Tree earthquake. The fractures extended discontinuously over a 1.5-km stretch of the fault, near its southern end. Sense of slip was consistently right-oblique, west side down, similar to the long-term style of faulting. Measured offset values were small, with right-lateral and vertical components of slip ranging from 1 to 6 mm and 1 to 4 mm, respectively. This is the first documented historic slip on the East Wide Canyon fault, which was first mapped only months before the Joshua Tree earthquake. Surface slip associated with the Joshua Tree earthquake most likely developed as triggered slip given its 5 km distance from the Joshua Tree epicenter and aftershocks. As revealed in a trench investigation, slip formed in an area with only a thin (Salton Trough. A paleoseismic trench study in an area of 1992 surface slip revealed evidence of two and possibly three surface faulting events on the East Wide Canyon fault during the late Quaternary, probably latest Pleistocene (first event) and mid- to late Holocene (second two events). About two months after the Joshua Tree earthquake, the Landers earthquake then triggered slip on many faults, including the San Andreas fault in the southeastern Coachella Valley. Surface fractures associated with this event formed discontinuous breaks over a 54-km-long stretch of the fault, from the Indio Hills southeastward to Durmid Hill. Sense of slip was right

  3. Modeling of earthquake ground motion in the frequency domain

    Science.gov (United States)

    Thrainsson, Hjortur

    In recent years, the utilization of time histories of earthquake ground motion has grown considerably in the design and analysis of civil structures. It is very unlikely, however, that recordings of earthquake ground motion will be available for all sites and conditions of interest. Hence, there is a need for efficient methods for the simulation and spatial interpolation of earthquake ground motion. In addition to providing estimates of the ground motion at a site using data from adjacent recording stations, spatially interpolated ground motions can also be used in design and analysis of long-span structures, such as bridges and pipelines, where differential movement is important. The objective of this research is to develop a methodology for rapid generation of horizontal earthquake ground motion at any site for a given region, based on readily available source, path and site characteristics, or (sparse) recordings. The research includes two main topics: (i) the simulation of earthquake ground motion at a given site, and (ii) the spatial interpolation of earthquake ground motion. In topic (i), models are developed to simulate acceleration time histories using the inverse discrete Fourier transform. The Fourier phase differences, defined as the difference in phase angle between adjacent frequency components, are simulated conditional on the Fourier amplitude. Uniformly processed recordings from recent California earthquakes are used to validate the simulation models, as well as to develop prediction formulas for the model parameters. The models developed in this research provide rapid simulation of earthquake ground motion over a wide range of magnitudes and distances, but they are not intended to replace more robust geophysical models. In topic (ii), a model is developed in which Fourier amplitudes and Fourier phase angles are interpolated separately. A simple dispersion relationship is included in the phase angle interpolation. The accuracy of the interpolation

  4. Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile

    Science.gov (United States)

    Dure, Tina; Cisternas, Marco; Horton, Benjamin; Ely, Lisa; Nelson, Alan R.; Wesson, Robert L.; Pilarczyk, Jessica

    2015-01-01

    The ∼500-year historical record of seismicity along the central Chile coast (30–34°S) is characterized by a series of ∼M 8.0–8.5 earthquakes followed by low tsunamis (tsunami (>10 m), but the frequency of such large events is unknown. We extend the seismic history of central Chile through a study of a lowland stratigraphic sequence along the metropolitan coast north of Valparaíso (33°S). At this site, higher relative sea level during the mid Holocene created a tidal marsh and the accommodation space necessary for sediment that preserves earthquake and tsunami evidence. Within this 2600-yr-long sequence, we traced six laterally continuous sand beds probably deposited by high tsunamis. Plant remains that underlie the sand beds were radiocarbon dated to 6200, 5600, 5000, 4400, 3800, and 3700 cal yr BP. Sediment properties and diatom assemblages of the sand beds—for example, anomalous marine planktonic diatoms and upward fining of silt-sized diatom valves—point to a marine sediment source and high-energy deposition. Grain-size analysis shows a strong similarity between inferred tsunami deposits and modern coastal sediment. Upward fining sequences characteristic of suspension deposition are present in five of the six sand beds. Despite the lack of significant lithologic changes between the sedimentary units under- and overlying tsunami deposits, we infer that the increase in freshwater siliceous microfossils in overlying units records coseismic uplift concurrent with the deposition of five of the sand beds. During our mid-Holocene window of evidence preservation, the mean recurrence interval of earthquakes and tsunamis is ∼500 years. Our findings imply that the frequency of historical earthquakes in central Chile is not representative of the greatest earthquakes and tsunamis that the central Chilean subduction zone has produced.

  5. Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile

    Science.gov (United States)

    Dure, Tina; Cisternas, Marco; Horton, Benjamin; Ely, Lisa; Nelson, Alan R.; Wesson, Robert L.; Pilarczyk, Jessica

    2015-01-01

    The ∼500-year historical record of seismicity along the central Chile coast (30–34°S) is characterized by a series of ∼M 8.0–8.5 earthquakes followed by low tsunamis (10 m), but the frequency of such large events is unknown. We extend the seismic history of central Chile through a study of a lowland stratigraphic sequence along the metropolitan coast north of Valparaíso (33°S). At this site, higher relative sea level during the mid Holocene created a tidal marsh and the accommodation space necessary for sediment that preserves earthquake and tsunami evidence. Within this 2600-yr-long sequence, we traced six laterally continuous sand beds probably deposited by high tsunamis. Plant remains that underlie the sand beds were radiocarbon dated to 6200, 5600, 5000, 4400, 3800, and 3700 cal yr BP. Sediment properties and diatom assemblages of the sand beds—for example, anomalous marine planktonic diatoms and upward fining of silt-sized diatom valves—point to a marine sediment source and high-energy deposition. Grain-size analysis shows a strong similarity between inferred tsunami deposits and modern coastal sediment. Upward fining sequences characteristic of suspension deposition are present in five of the six sand beds. Despite the lack of significant lithologic changes between the sedimentary units under- and overlying tsunami deposits, we infer that the increase in freshwater siliceous microfossils in overlying units records coseismic uplift concurrent with the deposition of five of the sand beds. During our mid-Holocene window of evidence preservation, the mean recurrence interval of earthquakes and tsunamis is ∼500 years. Our findings imply that the frequency of historical earthquakes in central Chile is not representative of the greatest earthquakes and tsunamis that the central Chilean subduction zone has produced.

  6. Frictional properties and slip stability of active faults within carbonate-evaporite sequences: The role of dolomite and anhydrite

    NARCIS (Netherlands)

    Scuderi, M.M.; Niemeijer, A.R.; Collettini, C.; Marone, C.

    2013-01-01

    Seismological observations show that many destructive earthquakes nucleate within, or propagate through, thick sequences of carbonates and evaporites. For example, along the Apennines range (Italy) carbonate and evaporite sequences are present at hypocentral depths for recent major earthquakes

  7. Scale-free networks of earthquakes and aftershocks

    International Nuclear Information System (INIS)

    Baiesi, Marco; Paczuski, Maya

    2004-01-01

    We propose a metric to quantify correlations between earthquakes. The metric consists of a product involving the time interval and spatial distance between two events, as well as the magnitude of the first one. According to this metric, events typically are strongly correlated to only one or a few preceding ones. Thus a classification of events as foreshocks, main shocks, or aftershocks emerges automatically without imposing predetermined space-time windows. In the simplest network construction, each earthquake receives an incoming link from its most correlated predecessor. The number of aftershocks for any event, identified by its outgoing links, is found to be scale free with exponent γ=2.0(1). The original Omori law with p=1 emerges as a robust feature of seismicity, holding up to years even for aftershock sequences initiated by intermediate magnitude events. The broad distribution of distances between earthquakes and their linked aftershocks suggests that aftershock collection with fixed space windows is not appropriate

  8. Earthquakes

    Science.gov (United States)

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  9. Economic impacts of the SAFRR tsunami scenario in California: Chapter H in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Wein, Anne; Rose, Adam; Sue Wing, Ian; Wei, Dan

    2013-01-01

    This study evaluates the hypothetical economic impacts of the SAFRR (Science Application for Risk Reduction) tsunami scenario to the California economy. The SAFRR scenario simulates a tsunami generated by a hypothetical magnitude 9.1 earthquake that occurs offshore of the Alaska Peninsula (Kirby and others, 2013). Economic impacts are measured by the estimated reduction in California’s gross domestic product (GDP), the standard economic measure of the total value of goods and services produced. Economic impacts are derived from the physical damages from the tsunami as described by Porter and others (2013). The principal physical damages that result in disruption of the California economy are (1) about $100 million in damages to the twin Ports of Los Angeles (POLA) and Long Beach (POLB), (2) about $700 million in damages to marinas, and (3) about $2.5 billion in damages to buildings and contents (properties) in the tsunami inundation zone on the California coast. The study of economic impacts does not include the impacts from damages to roads, bridges, railroads, and agricultural production or fires in fuel storage facilities because these damages will be minimal with respect to the California economy. The economic impacts of damage to other California ports are not included in this study because detailed evaluation of the physical damage to these ports was not available in time for this report. The analysis of economic impacts is accomplished in several steps. First, estimates are made for the direct economic impacts that result in immediate business interruption losses in individual sectors of the economy due to physical damage to facilities or to disruption of the flow of production units (commodities necessary for production). Second, the total economic impacts (consisting of both direct and indirect effects) are measured by including the general equilibrium (essentially quantity and price multiplier effects) of lost production in other sectors by ripple

  10. Relocation of the 2010-2013 near the north coast of Papua earthquake sequence using Modified Joint Hypocenter Determination (MJHD) method

    International Nuclear Information System (INIS)

    Salomo, Dimas; Daryono,; Subakti, Hendri

    2015-01-01

    The accuracy of earthquake hypocenter position is necessary to analyze the tectonic conditions. This study aims to: (1) relocate the mainshock and aftershocks of the large earthquakes in Papua region i.e. June 16, 2010, April 21, 2012 and April 06, 2013 earthquake (2) determine the true fault plane, (3) estimate the area of the fracture, and (4) analyze the advantages and disadvantages of relocation with MJHD method in benefits for tectonic studies. This study used Modified Joint Hypocenter Determination (MJHD) method. Using P arrival phase data reported by the BMKG and openly available from website repogempa.bmkg.go.id, we relocated the mainshock of this large significant earthquake and its aftershocks. Then we identified the prefered fault planes from the candidate fault planes provided by the global CMT catalogue. The position of earthquakes was successfully relocated. The earthquakes mostly were clustered around the mainshock. Earthquakes that not clustered around mainshock are considered to be different mechanism from the mainshock. Relocation results indicate that the mainshock fault plane of June 16, 2010 earthquake is a field with strike 332o, dip 80o and −172o slip, the mainshock fault plane of April 21, 2012 earthquake is a field with strike 82o, dip 84o and 2o slip, the mainshock fault plane of April 06, 2013 earthquake is a field with strike 339o, dip 56o and −137o slip. Fault plane area estimated by cross section graphical method is an area of 2816.0 km2 (June 16, 2010), 906.2 km2 (April 21, 2012) and 1984.3 km2 (April 06, 2013). MJHD method has the advantage that it can calculate a lot of earthquakes simultaneously and has a station correction to account for lateral heterogeneity of the earth. This method successfully provides significant changes to improve the position of the depth of earthquakes that most of the hypocenter depth manually specified as a fixed depth (± 10 km). But this method cannot be sure that the hypocenters derived from the

  11. Complex rupture process of the Mw 7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence

    Science.gov (United States)

    Cesca, S.; Zhang, Y.; Mouslopoulou, V.; Wang, R.; Saul, J.; Savage, M.; Heimann, S.; Kufner, S.-K.; Oncken, O.; Dahm, T.

    2017-11-01

    The M7.8 Kaikoura Earthquake that struck the northeastern South Island, New Zealand, on November 14, 2016 (local time), is one of the largest ever instrumentally recorded earthquakes in New Zealand. It occurred at the southern termination of the Hikurangi subduction margin, where the subducting Pacific Plate transitions into the dextral Alpine transform fault. The earthquake produced significant distributed uplift along the north-eastern part of the South Island, reaching a peak amplitude of ∼8 m, which was accompanied by large (≥10 m) horizontal coseismic displacements at the ground surface along discrete active faults. The seismic waveforms' expression of the main shock indicate a complex rupture process. Early automated centroid moment tensor solutions indicated a strong non-double-couple term, which supports a complex rupture involving multiple faults. The hypocentral distribution of aftershocks, which appears diffuse over a broad region, clusters spatially along lineaments with different orientations. A key question of global interest is to shed light on the mechanism with which such a complex rupture occurred, and whether the underlying plate-interface was involved in the rupture. The consequences for seismic hazard of such a distributed, shallow faulting is important to be assessed. We perform a broad seismological analysis, combining regional and teleseismic seismograms, GPS and InSAR, to determine the rupture process of the main shock and moment tensors of 118 aftershocks down to Mw 4.2. The joint interpretation of the main rupture and aftershock sequence allow reconstruction of the geometry, and suggests sequential activation and slip distribution on at least three major active fault domains. We find that the rupture nucleated as a weak strike-slip event along the Humps Fault, which progressively propagated northward onto a shallow reverse fault, where most of the seismic moment was released, before it triggered slip on a second set of strike

  12. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    International Nuclear Information System (INIS)

    Saragoni, G. Rodolfo

    2008-01-01

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand

  13. Temporal characteristics of some aftershock sequences in Bulgaria

    Directory of Open Access Journals (Sweden)

    D. Solakov

    1999-06-01

    Full Text Available We apply statistical analysis to study the temporal distribution of aftershocks in aftershock sequences of five earthquakes which occurred in Bulgaria. We use the maximum likelihood method to estimate the parameters of the modified Omori formula for aftershock sequences which is directly based on a time series. We find that: the maximum likelihood estimates of the parameter p show a regional variation, with lower values of the decay rate in North Bulgaria; the modified Omori formula provides an appropriate representation of temporal variation of the aftershock activity in North Bulgaria; the aftershock sequences in South Bulgaria are best modeled by the combination of an ordinary aftershock sequence with secondary aftershock activity. A plot of the cumulative number of events versus the frequency-linearized time t clearly demonstrates a transition from aftershock to foreshock activity prior to the second 1986 Strazhitsa (North Bulgaria earthquake.

  14. Proposal of methodology of tsunami accident sequence analysis induced by earthquake using DQFM methodology

    International Nuclear Information System (INIS)

    Muta, Hitoshi; Muramatsu, Ken

    2017-01-01

    Since the Fukushima-Daiichi nuclear power station accident, the Japanese regulatory body has improved and upgraded the regulation of nuclear power plants, and continuous effort is required to enhance risk management in the mid- to long term. Earthquakes and tsunamis are considered as the most important risks, and the establishment of probabilistic risk assessment (PRA) methodologies for these events is a major issue of current PRA. The Nuclear Regulation Authority (NRA) addressed the PRA methodology for tsunamis induced by earthquakes, which is one of the methodologies that should be enhanced step by step for the improvement and maturity of PRA techniques. The AESJ standard for the procedure of seismic PRA for nuclear power plants in 2015 provides the basic concept of the methodology; however, details of the application to the actual plant PRA model have not been sufficiently provided. This study proposes a detailed PRA methodology for tsunamis induced by earthquakes using the DQFM methodology, which contributes to improving the safety of nuclear power plants. Furthermore, this study also states the issues which need more research. (author)

  15. Quaternary Slip History for the Agua Blanca Fault, northern Baja California, Mexico

    Science.gov (United States)

    Gold, P. O.; Behr, W. M.; Rockwell, T. K.; Fletcher, J. M.

    2017-12-01

    The Agua Blanca Fault (ABF) is the primary structure accommodating San Andreas-related right-lateral slip across the Peninsular Ranges of northern Baja California. Activity on this fault influences offshore faults that parallel the Pacific coast from Ensenada to Los Angeles and is a potential threat to communities in northern Mexico and southern California. We present a detailed Quaternary slip history for the ABF, including new quantitative constraints on geologic slip rates, slip-per-event, the timing of most recent earthquake, and the earthquake recurrence interval. Cosmogenic 10Be exposure dating of clasts from offset fluvial geomorphic surfaces at 2 sites located along the western, and most active, section of the ABF yield preliminary slip rate estimates of 2-4 mm/yr and 3 mm/yr since 20 ka and 2 ka, respectively. Fault zone geomorphology preserved at the younger site provides evidence for right-lateral surface displacements measuring 2.5 m in the past two ruptures. Luminescence dating of an offset alluvial fan at a third site is in progress, but is expected to yield a slip rate relevant to the past 10 kyr. Adjacent to this third site, we excavated 2 paleoseismic trenches across a sag pond formed by a right step in the fault. Preliminary radiocarbon dates indicate that the 4 surface ruptures identified in the trenches occurred in the past 6 kyr, although additional dating should clarify earthquake timing and the mid-Holocene to present earthquake recurrence interval, as well as the likely date of the most recent earthquake. Our new slip rate estimates are somewhat lower than, but comparable within error to, previous geologic estimates based on soil morphology and geodetic estimates from GPS, but the new record of surface ruptures exposed in the trenches is the most complete and comprehensively dated earthquake history yet determined for this fault. Together with new and existing mapping of tectonically generated geomorphology along the ABF, our constraints

  16. Estimating annualized earthquake losses for the conterminous United States

    Science.gov (United States)

    Jaiswal, Kishor S.; Bausch, Douglas; Chen, Rui; Bouabid, Jawhar; Seligson, Hope

    2015-01-01

    We make use of the most recent National Seismic Hazard Maps (the years 2008 and 2014 cycles), updated census data on population, and economic exposure estimates of general building stock to quantify annualized earthquake loss (AEL) for the conterminous United States. The AEL analyses were performed using the Federal Emergency Management Agency's (FEMA) Hazus software, which facilitated a systematic comparison of the influence of the 2014 National Seismic Hazard Maps in terms of annualized loss estimates in different parts of the country. The losses from an individual earthquake could easily exceed many tens of billions of dollars, and the long-term averaged value of losses from all earthquakes within the conterminous U.S. has been estimated to be a few billion dollars per year. This study estimated nationwide losses to be approximately $4.5 billion per year (in 2012$), roughly 80% of which can be attributed to the States of California, Oregon and Washington. We document the change in estimated AELs arising solely from the change in the assumed hazard map. The change from the 2008 map to the 2014 map results in a 10 to 20% reduction in AELs for the highly seismic States of the Western United States, whereas the reduction is even more significant for Central and Eastern United States.

  17. Expanding the Delivery of Rapid Earthquake Information and Warnings for Response and Recovery

    Science.gov (United States)

    Blanpied, M. L.; McBride, S.; Hardebeck, J.; Michael, A. J.; van der Elst, N.

    2017-12-01

    Scientific organizations like the United States Geological Survey (USGS) release information to support effective responses during an earthquake crisis. Information is delivered to the White House, the National Command Center, the Departments of Defense, Homeland Security (including FEMA), Transportation, Energy, and Interior. Other crucial stakeholders include state officials and decision makers, emergency responders, numerous public and private infrastructure management centers (e.g., highways, railroads and pipelines), the media, and the public. To meet the diverse information requirements of these users, rapid earthquake notifications have been developed to be delivered by e-mail and text message, as well as a suite of earthquake information resources such as ShakeMaps, Did You Feel It?, PAGER impact estimates, and data are delivered via the web. The ShakeAlert earthquake early warning system being developed for the U.S. West Coast will identify and characterize an earthquake a few seconds after it begins, estimate the likely intensity of ground shaking, and deliver brief but critically important warnings to people and infrastructure in harm's way. Currently the USGS is also developing a capability to deliver Operational Earthquake Forecasts (OEF). These provide estimates of potential seismic behavior after large earthquakes and during evolving aftershock sequences. Similar work is underway in New Zealand, Japan, and Italy. In the development of OEF forecasts, social science research conducted during these sequences indicates that aftershock forecasts are valued for a variety of reasons, from informing critical response and recovery decisions to psychologically preparing for more earthquakes. New tools will allow users to customize map-based, spatiotemporal forecasts to their specific needs. Hazard curves and other advanced information will also be available. For such authoritative information to be understood and used during the pressures of an earthquake

  18. Earthquake prediction

    International Nuclear Information System (INIS)

    Ward, P.L.

    1978-01-01

    The state of the art of earthquake prediction is summarized, the possible responses to such prediction are examined, and some needs in the present prediction program and in research related to use of this new technology are reviewed. Three basic aspects of earthquake prediction are discussed: location of the areas where large earthquakes are most likely to occur, observation within these areas of measurable changes (earthquake precursors) and determination of the area and time over which the earthquake will occur, and development of models of the earthquake source in order to interpret the precursors reliably. 6 figures

  19. GPS-seismograms reveal amplified shaking in California's San Joaquin Delta region

    Science.gov (United States)

    Johanson, I. A.

    2014-12-01

    The March 10, 2014, the Mw6.8 Ferndale earthquake occurred off the coast of Northern California, near the Mendocino Triple Junction. Aftershocks suggest a northeast striking fault plane for the strike-slip earthquake, oriented such that the California coast is roughly perpendicular to the rupture plane. Consequently, large amplitude Love waves were observed at seismic stations and continuous GPS stations throughout Northern California. While GPS is less sensitive then broadband instruments, in Northern California their station density is much higher, potentially providing valuable detail. A total of 269 GPS stations that have high-rate (1 sps) data available were used to generate GPS-seismograms. These include stations from the Bay Area Regional Deformation (BARD) network, the Plate Boundary Observatory (PBO, operated by UNAVCO), and the USGS, Menlo Park. The Track software package was used to generate relative displacements between pairs of stations, determined using Delaunay triangulation. This network-based approach allows for higher precision than absolute positioning, because common noise sources, in particular atmospheric noise, are cancelled out. A simple least-squares network adjustment with a stable centroid constraint is performed to transform the mesh of relative motions into absolute motions at individual GPS stations. This approach to generating GPS-seismograms is validated by the good agreement between time series records at 16 BARD stations that are co-located with broadband seismometers from the Berkeley Digital Seismic Network (BDSN). While the distribution of peak dynamic displacements is dominated in long periods by the radiation pattern, at shorter periods other patterns become visible. In particular, stations in the San Joaquin Delta (SJD) region show higher peak dynamic displacements than those in surrounding areas, as well as longer duration shaking. SJD stations also have higher dynamic displacements on the radial component than surrounding

  20. Far-field triggering of foreshocks near the nucleation zone of the 5 September 2012 (MW 7.6) Nicoya Peninsula, Costa Rica earthquake

    Science.gov (United States)

    Walter, Jacob I.; Meng, Xiaofeng; Peng, Zhigang; Schwartz, Susan Y.; Newman, Andrew V.; Protti, Marino

    2015-12-01

    On 5 September 2012, a moment magnitude (MW) 7.6 earthquake occurred directly beneath the Nicoya Peninsula, an area with dense seismic and geodetic network coverage. The mainshock ruptured a portion of a previously identified locked patch that was recognized due to a decade-long effort to delineate the megathrust seismic and aseismic processes in this area. Here we conduct a comprehensive study of the seismicity prior to this event utilizing a matched-filter analysis that allows us to decrease the magnitude of catalog completeness by 1 unit. We observe a statistically significant increase in seismicity rate below the Nicoya Peninsula following the 27 August 2012 (MW 7.3) El Salvador earthquake (about 450 km to the northwest and 9 days prior to the Nicoya earthquake). Additionally, we identify a cluster of small-magnitude (earthquakes preceding the mainshock by about 35 min and within 15 km of its hypocenter. The immediate foreshock sequence occurred in the same area as those earthquakes triggered shortly after the El Salvador event; though it is not clear whether the effect of triggering from the El Salvador event persisted until the foreshock sequence given the uncertainties in seismicity rates from a relatively small number of earthquakes. If megathrust earthquakes at such distances can induce significant increases in seismicity during the days before another larger event, this sequence strengthens the need for real-time seismicity monitoring for large earthquake forecasting.

  1. Earthquake Complex Network Analysis Before and After the Mw 8.2 Earthquake in Iquique, Chile

    Science.gov (United States)

    Pasten, D.

    2017-12-01

    The earthquake complex networks have shown that they are abble to find specific features in seismic data set. In space, this networkshave shown a scale-free behavior for the probability distribution of connectivity, in directed networks and theyhave shown a small-world behavior, for the undirected networks.In this work, we present an earthquake complex network analysis for the large earthquake Mw 8.2 in the north ofChile (near to Iquique) in April, 2014. An earthquake complex network is made dividing the three dimensional space intocubic cells, if one of this cells contain an hypocenter, we name this cell like a node. The connections between nodes aregenerated in time. We follow the time sequence of seismic events and we are making the connections betweennodes. Now, we have two different networks: a directed and an undirected network. Thedirected network takes in consideration the time-direction of the connections, that is very important for the connectivityof the network: we are considering the connectivity, ki of the i-th node, like the number of connections going out ofthe node i plus the self-connections (if two seismic events occurred successive in time in the same cubic cell, we havea self-connection). The undirected network is made removing the direction of the connections and the self-connectionsfrom the directed network. For undirected networks, we are considering only if two nodes are or not connected.We have built a directed complex network and an undirected complex network, before and after the large earthquake in Iquique. We have used magnitudes greater than Mw = 1.0 and Mw = 3.0. We found that this method can recognize the influence of thissmall seismic events in the behavior of the network and we found that the size of the cell used to build the network isanother important factor to recognize the influence of the large earthquake in this complex system. This method alsoshows a difference in the values of the critical exponent γ (for the probability

  2. Earthquake clustering in modern seismicity and its relationship with strong historical earthquakes around Beijing, China

    Science.gov (United States)

    Wang, Jian; Main, Ian G.; Musson, Roger M. W.

    2017-11-01

    Beijing, China's capital city, is located in a typical intraplate seismic belt, with relatively high-quality instrumental catalogue data available since 1970. The Chinese historical earthquake catalogue contains six strong historical earthquakes of Ms ≥ 6 around Beijing, the earliest in 294 AD. This poses a significant potential hazard to one of the most densely populated and economically active parts of China. In some intraplate areas, persistent clusters of events associated with historical events can occur over centuries, for example, the ongoing sequence in the New Madrid zone of the eastern US. Here we will examine the evidence for such persistent clusters around Beijing. We introduce a metric known as the `seismic density index' that quantifies the degree of clustering of seismic energy release. For a given map location, this multi-dimensional index depends on the number of events, their magnitudes, and the distances to the locations of the surrounding population of earthquakes. We apply the index to modern instrumental catalogue data between 1970 and 2014, and identify six clear candidate zones. We then compare these locations to earthquake epicentre and seismic intensity data for the six largest historical earthquakes. Each candidate zone contains one of the six historical events, and the location of peak intensity is within 5 km or so of the reported epicentre in five of these cases. In one case—the great Ms 8 earthquake of 1679—the peak is closer to the area of strongest shaking (Intensity XI or more) than the reported epicentre. The present-day event rates are similar to those predicted by the modified Omori law but there is no evidence of ongoing decay in event rates. Accordingly, the index is more likely to be picking out the location of persistent weaknesses in the lithosphere. Our results imply zones of high seismic density index could be used in principle to indicate the location of unrecorded historical of palaeoseismic events, in China and

  3. Earthquake sequence simulations of a fault in a viscoelastic material with a spectral boundary integral equation method: The effect of interseismic stress relaxation on a behavior of a rate-weakening patch

    Science.gov (United States)

    Miyake, Y.; Noda, H.

    2017-12-01

    Earthquake sequences involve many processes in a wide range of time scales, from quasistatic loading to dynamic rupture. At a depth of brittle-plastic transitional and deeper, rock behaves as a viscous fluid in a long timescale, but as an elastic material in a short timescale. Viscoelastic stress relaxation may be important in the interseismic periods at the depth, near the deeper limit of the seismogenic layer or the region of slow slip events (SSEs) [Namiki et al., 2014 and references therein]. In the present study, we implemented the viscoelastic effect (Maxwell material) in fully-dynamic earthquake sequence simulations using a spectral boundary integral equation method (SBIEM) [e.g., Lapusta et al., 2000]. SBIEM is efficient in calculation of convolutional terms for dynamic stress transfer, and the problem size is limited by the amount of memory available. Linear viscoelasticity could be implemented by convolution of slip rate history and Green's function, but this method requires additional memory and thus not suitable for the implementation to the present code. Instead, we integrated the evolution of "effective slip" distribution, which gives static stress distribution when convolved with static elastic Green's function. This method works only for simple viscoelastic property distributions, but such models are suitable for numerical experiments aiming basic understanding of the system behavior because of the virtue of SBIEM, the ability of fine on-fault spatial resolution and efficient computation utilizing the fast Fourier transformation. In the present study, we examined the effect of viscoelasticity on earthquake sequences of a fault with a rate-weakening patch. A series of simulations with various relaxation time tc revealed that as decreasing tc, recurrence intervals of earthquakes increases and seismicity ultimately disappears. As long as studied, this transition to aseismic behavior is NOT associated with SSEs. In a case where the rate-weakening patch

  4. A local earthquake coda magnitude and its relation to duration, moment M sub O, and local Richter magnitude M sub L

    Science.gov (United States)

    Suteau, A. M.; Whitcomb, J. H.

    1977-01-01

    A relationship was found between the seismic moment, M sub O, of shallow local earthquakes and the total duration of the signal, t, in seconds, measured from the earthquakes origin time, assuming that the end of the coda is composed of backscattering surface waves due to lateral heterogenity in the shallow crust following Aki. Using the linear relationship between the logarithm of M sub O and the local Richter magnitude M sub L, a relationship between M sub L and t, was found. This relationship was used to calculate a coda magnitude M sub C which was compared to M sub L for Southern California earthquakes which occurred during the period from 1972 to 1975.

  5. Earthquake likelihood model testing

    Science.gov (United States)

    Schorlemmer, D.; Gerstenberger, M.C.; Wiemer, S.; Jackson, D.D.; Rhoades, D.A.

    2007-01-01

    INTRODUCTIONThe Regional Earthquake Likelihood Models (RELM) project aims to produce and evaluate alternate models of earthquake potential (probability per unit volume, magnitude, and time) for California. Based on differing assumptions, these models are produced to test the validity of their assumptions and to explore which models should be incorporated in seismic hazard and risk evaluation. Tests based on physical and geological criteria are useful but we focus on statistical methods using future earthquake catalog data only. We envision two evaluations: a test of consistency with observed data and a comparison of all pairs of models for relative consistency. Both tests are based on the likelihood method, and both are fully prospective (i.e., the models are not adjusted to fit the test data). To be tested, each model must assign a probability to any possible event within a specified region of space, time, and magnitude. For our tests the models must use a common format: earthquake rates in specified “bins” with location, magnitude, time, and focal mechanism limits.Seismology cannot yet deterministically predict individual earthquakes; however, it should seek the best possible models for forecasting earthquake occurrence. This paper describes the statistical rules of an experiment to examine and test earthquake forecasts. The primary purposes of the tests described below are to evaluate physical models for earthquakes, assure that source models used in seismic hazard and risk studies are consistent with earthquake data, and provide quantitative measures by which models can be assigned weights in a consensus model or be judged as suitable for particular regions.In this paper we develop a statistical method for testing earthquake likelihood models. A companion paper (Schorlemmer and Gerstenberger 2007, this issue) discusses the actual implementation of these tests in the framework of the RELM initiative.Statistical testing of hypotheses is a common task and a

  6. Coulomb stress interactions among M≥5.9 earthquakes in the Gorda deformation zone and on the Mendocino Fracture Zone, Cascadia megathrust, and northern San Andreas fault

    Science.gov (United States)

    Rollins, John C.; Stein, Ross S.

    2010-01-01

    The Gorda deformation zone, a 50,000 km2 area of diffuse shear and rotation offshore northernmost California, has been the site of 20 M ≥ 5.9 earthquakes on four different fault orientations since 1976, including four M ≥ 7 shocks. This is the highest rate of large earthquakes in the contiguous United States. We calculate that the source faults of six recent M ≥ 5.9 earthquakes had experienced ≥0.6 bar Coulomb stress increases imparted by earthquakes that struck less than 9 months beforehand. Control tests indicate that ≥0.6 bar Coulomb stress interactions between M ≥ 5.9 earthquakes separated by Mw = 7.3 Trinidad earthquake are consistent with the locations of M ≥ 5.9 earthquakes in the Gorda zone until at least 1995, as well as earthquakes on the Mendocino Fault Zone in 1994 and 2000. Coulomb stress changes imparted by the 1980 earthquake are also consistent with its distinct elbow-shaped aftershock pattern. From these observations, we derive generalized static stress interactions among right-lateral, left-lateral and thrust faults near triple junctions.

  7. Strategic crisis and risk communication during a prolonged natural hazard event: lessons learned from the Canterbury earthquake sequence

    Science.gov (United States)

    Wein, A. M.; Potter, S.; Becker, J.; Doyle, E. E.; Jones, J. L.

    2015-12-01

    While communication products are developed for monitoring and forecasting hazard events, less thought may have been given to crisis and risk communication plans. During larger (and rarer) events responsible science agencies may find themselves facing new and intensified demands for information and unprepared for effectively resourcing communications. In a study of the communication of aftershock information during the 2010-12 Canterbury Earthquake Sequence (New Zealand), issues are identified and implications for communication strategy noted. Communication issues during the responses included reliability and timeliness of communication channels for immediate and short decision time frames; access to scientists by those who needed information; unfamiliar emergency management frameworks; information needs of multiple audiences, audience readiness to use the information; and how best to convey empathy during traumatic events and refer to other information sources about what to do and how to cope. Other science communication challenges included meeting an increased demand for earthquake education, getting attention on aftershock forecasts; responding to rumor management; supporting uptake of information by critical infrastructure and government and for the application of scientific information in complex societal decisions; dealing with repetitive information requests; addressing diverse needs of multiple audiences for scientific information; and coordinating communications within and outside the science domain. For a science agency, a communication strategy would consider training scientists in communication, establishing relationships with university scientists and other disaster communication roles, coordinating messages, prioritizing audiences, deliberating forecasts with community leaders, identifying user needs and familiarizing them with the products ahead of time, and practicing the delivery and use of information via scenario planning and exercises.

  8. Long-term predictability of regions and dates of strong earthquakes

    Science.gov (United States)

    Kubyshen, Alexander; Doda, Leonid; Shopin, Sergey

    2016-04-01

    Results on the long-term predictability of strong earthquakes are discussed. It is shown that dates of earthquakes with M>5.5 could be determined in advance of several months before the event. The magnitude and the region of approaching earthquake could be specified in the time-frame of a month before the event. Determination of number of M6+ earthquakes, which are expected to occur during the analyzed year, is performed using the special sequence diagram of seismic activity for the century time frame. Date analysis could be performed with advance of 15-20 years. Data is verified by a monthly sequence diagram of seismic activity. The number of strong earthquakes expected to occur in the analyzed month is determined by several methods having a different prediction horizon. Determination of days of potential earthquakes with M5.5+ is performed using astronomical data. Earthquakes occur on days of oppositions of Solar System planets (arranged in a single line). At that, the strongest earthquakes occur under the location of vector "Sun-Solar System barycenter" in the ecliptic plane. Details of this astronomical multivariate indicator still require further research, but it's practical significant is confirmed by practice. Another one empirical indicator of approaching earthquake M6+ is a synchronous variation of meteorological parameters: abrupt decreasing of minimal daily temperature, increasing of relative humidity, abrupt change of atmospheric pressure (RAMES method). Time difference of predicted and actual date is no more than one day. This indicator is registered 104 days before the earthquake, so it was called as Harmonic 104 or H-104. This fact looks paradoxical, but the works of A. Sytinskiy and V. Bokov on the correlation of global atmospheric circulation and seismic events give a physical basis for this empirical fact. Also, 104 days is a quarter of a Chandler period so this fact gives insight on the correlation between the anomalies of Earth orientation

  9. CISN ShakeAlert Earthquake Early Warning System Monitoring Tools

    Science.gov (United States)

    Henson, I. H.; Allen, R. M.; Neuhauser, D. S.

    2015-12-01

    CISN ShakeAlert is a prototype earthquake early warning system being developed and tested by the California Integrated Seismic Network. The system has recently been expanded to support redundant data processing and communications. It now runs on six machines at three locations with ten Apache ActiveMQ message brokers linking together 18 waveform processors, 12 event association processes and 4 Decision Module alert processes. The system ingests waveform data from about 500 stations and generates many thousands of triggers per day, from which a small portion produce earthquake alerts. We have developed interactive web browser system-monitoring tools that display near real time state-of-health and performance information. This includes station availability, trigger statistics, communication and alert latencies. Connections to regional earthquake catalogs provide a rapid assessment of the Decision Module hypocenter accuracy. Historical performance can be evaluated, including statistics for hypocenter and origin time accuracy and alert time latencies for different time periods, magnitude ranges and geographic regions. For the ElarmS event associator, individual earthquake processing histories can be examined, including details of the transmission and processing latencies associated with individual P-wave triggers. Individual station trigger and latency statistics are available. Detailed information about the ElarmS trigger association process for both alerted events and rejected events is also available. The Google Web Toolkit and Map API have been used to develop interactive web pages that link tabular and geographic information. Statistical analysis is provided by the R-Statistics System linked to a PostgreSQL database.

  10. Using Dynamic Fourier Analysis to Discriminate Between Seismic Signals from Natural Earthquakes and Mining Explosions

    Directory of Open Access Journals (Sweden)

    Maria C. Mariani

    2017-08-01

    Full Text Available A sequence of intraplate earthquakes occurred in Arizona at the same location where miningexplosions were carried out in previous years. The explosions and some of the earthquakes generatedvery similar seismic signals. In this study Dynamic Fourier Analysis is used for discriminating signalsoriginating from natural earthquakes and mining explosions. Frequency analysis of seismogramsrecorded at regional distances shows that compared with the mining explosions the earthquake signalshave larger amplitudes in the frequency interval ~ 6 to 8 Hz and significantly smaller amplitudes inthe frequency interval ~ 2 to 4 Hz. This type of analysis permits identifying characteristics in theseismograms frequency yielding to detect potentially risky seismic events.

  11. Strong Motion Instrumentation of Seismically-Strengthened Port Structures in California by CSMIP

    Science.gov (United States)

    Huang, M.J.; Shakal, A.F.

    2009-01-01

    The California Strong Motion Instrumentation Program (CSMIP) has instrumented five port structures. Instrumentation of two more port structures is underway and another one is in planning. Two of the port structures have been seismically strengthened. The primary goals of the strong motion instrumentation are to obtain strong earthquake shaking data for verifying seismic analysis procedures and strengthening schemes, and for post-earthquake evaluations of port structures. The wharves instrumented by CSMIP were recommended by the Strong Motion Instrumentation Advisory Committee, a committee of the California Seismic Safety Commission. Extensive instrumentation of a wharf is difficult and would be impossible without the cooperation of the owners and the involvement of the design engineers. The instrumentation plan for a wharf is developed through study of the retrofit plans of the wharf, and the strong-motion sensors are installed at locations where specific instrumentation objectives can be achieved and access is possible. Some sensor locations have to be planned during design; otherwise they are not possible to install after construction. This paper summarizes the two seismically-strengthened wharves and discusses the instrumentation schemes and objectives. ?? 2009 ASCE.

  12. High resolution measurement of earthquake impacts on rock slope stability and damage using pre- and post-earthquake terrestrial laser scans

    Science.gov (United States)

    Hutchinson, Lauren; Stead, Doug; Rosser, Nick

    2017-04-01

    Understanding the behaviour of rock slopes in response to earthquake shaking is instrumental in response and relief efforts following large earthquakes as well as to ongoing risk management in earthquake affected areas. Assessment of the effects of seismic shaking on rock slope kinematics requires detailed surveys of the pre- and post-earthquake condition of the slope; however, at present, there is a lack of high resolution monitoring data from pre- and post-earthquake to facilitate characterization of seismically induced slope damage and validate models used to back-analyze rock slope behaviour during and following earthquake shaking. Therefore, there is a need for additional research where pre- and post- earthquake monitoring data is available. This paper presents the results of a direct comparison between terrestrial laser scans (TLS) collected in 2014, the year prior to the 2015 earthquake sequence, with that collected 18 months after the earthquakes and two monsoon cycles. The two datasets were collected using Riegl VZ-1000 and VZ-4000 full waveform laser scanners with high resolution (c. 0.1 m point spacing as a minimum). The scans cover the full landslide affected slope from the toe to the crest. The slope is located in Sindhupalchok District, Central Nepal which experienced some of the highest co-seismic and post-seismic landslide intensities across Nepal due to the proximity to the epicenters (<20 km) of both of the main aftershocks on April 26, 2015 (M 6.7) and May 12, 2015 (M7.3). During the 2015 earthquakes and subsequent 2015 and 2016 monsoons, the slope experienced rockfall and debris flows which are evident in satellite imagery and field photographs. Fracturing of the rock mass associated with the seismic shaking is also evident at scales not accessible through satellite and field observations. The results of change detection between the TLS datasets with an emphasis on quantification of seismically-induced slope damage is presented. Patterns in the

  13. Satellite Infrared Radiation Measurements Prior to the Major Earthquakes

    Science.gov (United States)

    Ouzounov, Dimitar; Pulintes, S.; Bryant, N.; Taylor, Patrick; Freund, F.

    2005-01-01

    This work describes our search for a relationship between tectonic stresses and increases in mid-infrared (IR) flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. We present and &scuss observed variations in thermal transients and radiation fields prior to the earthquakes of Jan 22, 2003 Colima (M6.7) Mexico, Sept. 28 .2004 near Parkfield (M6.0) in California and Northern Sumatra (M8.5) Dec. 26,2004. Previous analysis of earthquake events has indicated the presence of an IR anomaly, where temperatures increased or did not return to its usual nighttime value. Our procedures analyze nighttime satellite data that records the general condtion of the ground after sunset. We have found from the MODIS instrument data that five days before the Colima earthquake the IR land surface nighttime temperature rose up to +4 degrees C in a 100 km radius around the epicenter. The IR transient field recorded by MODIS in the vicinity of Parkfield, also with a cloud free environment, was around +1 degree C and is significantly smaller than the IR anomaly around the Colima epicenter. Ground surface temperatures near the Parkfield epicenter four days prior to the earthquake show steady increase. However, on the night preceding the quake, a significant drop in relative humidity was indicated, process similar to those register prior to the Colima event. Recent analyses of continuous ongoing long- wavelength Earth radiation (OLR) indicate significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and/or gas composition prior to the earthquake. The OLR anomaly usually covers large areas surrounding the main epicenter. We have found strong anomalies signal (two sigma) along the epicentral area signals on Dec 21

  14. Twitter Seismology: Earthquake Monitoring and Response in a Social World

    Science.gov (United States)

    Bowden, D. C.; Earle, P. S.; Guy, M.; Smoczyk, G.

    2011-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment USGS earthquake response products and the delivery of hazard information. The potential uses of Twitter for earthquake response include broadcasting earthquake alerts, rapidly detecting widely felt events, qualitatively assessing earthquake damage effects, communicating with the public, and participating in post-event collaboration. Several seismic networks and agencies are currently distributing Twitter earthquake alerts including the European-Mediterranean Seismological Centre (@LastQuake), Natural Resources Canada (@CANADAquakes), and the Indonesian meteorological agency (@infogempabmg); the USGS will soon distribute alerts via the @USGSted and @USGSbigquakes Twitter accounts. Beyond broadcasting alerts, the USGS is investigating how to use tweets that originate near the epicenter to detect and characterize shaking events. This is possible because people begin tweeting immediately after feeling an earthquake, and their short narratives and exclamations are available for analysis within 10's of seconds of the origin time. Using five months of tweets that contain the word "earthquake" and its equivalent in other languages, we generate a tweet-frequency time series. The time series clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a simple Short-Term-Average / Long-Term-Average algorithm similar to that commonly used to detect seismic phases. As with most auto-detection algorithms, the parameters can be tuned to catch more or less events at the cost of more or less false triggers. When tuned to a moderate sensitivity, the detector found 48 globally-distributed, confirmed seismic events with only 2 false triggers. A space-shuttle landing and "The Great California ShakeOut" caused the false triggers. This number of

  15. Finite-Source Inversion for the 2004 Parkfield Earthquake using 3D Velocity Model Green's Functions

    Science.gov (United States)

    Kim, A.; Dreger, D.; Larsen, S.

    2008-12-01

    .25 Hz but that the velocity model is fast at stations located very close to the fault. In this near-fault zone the model also underpredicts the amplitudes. This implies the need to include an additional low velocity zone in the fault zone to fit the data. For the finite fault modeling we use the same stations as in our previous study (Kim and Dreger 2008), and compare the results to investigate the effect of 3D Green's functions on kinematic source inversions. References: Brocher, T. M., (2005), Empirical relations between elastic wavespeeds and density in the Earth's crust, Bull. Seism. Soc. Am., 95, No. 6, 2081-2092. Eberhart-Phillips, D., and A.J. Michael, (1993), Three-dimensional velocity structure and seismicity in the Parkfield region, central California, J. Geophys. Res., 98, 15,737-15,758. Kim A., D. S. Dreger (2008), Rupture process of the 2004 Parkfield earthquake from near-fault seismic waveform and geodetic records, J. Geophys. Res., 113, B07308. Thurber, C., H. Zhang, F. Waldhauser, J. Hardebeck, A. Michaels, and D. Eberhart-Phillips (2006), Three- dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, region, Bull. Seism. Soc. Am., 96, S38-S49. Larsen, S., and C. A. Schultz (1995), ELAS3D: 2D/3D elastic finite-difference wave propagation code, Technical Report No. UCRL-MA-121792, 19pp. Liu, P., and R. J. Archuleta (2004), A new nonlinear finite fault inversion with three-dimensional Green's functions: Application to the 1989 Loma Prieta, California, earthquake, J. Geophys. Res., 109, B02318.

  16. The Temblor mobile seismic risk app, v2: Rapid and seamless earthquake information to inspire individuals to recognize and reduce their risk

    Science.gov (United States)

    Stein, R. S.; Sevilgen, V.; Sevilgen, S.; Kim, A.; Jacobson, D. S.; Lotto, G. C.; Ely, G.; Bhattacharjee, G.; O'Sullivan, J.

    2017-12-01

    Temblor quantifies and personalizes earthquake risk and offers solutions by connecting users with qualified retrofit and insurance providers. Temblor's daily blog on current earthquakes, seismic swarms, eruptions, floods, and landslides makes the science accessible to the public. Temblor is available on iPhone, Android, and mobile web app platforms (http://temblor.net). The app presents both scenario (worst case) and probabilistic (most likely) financial losses for homes and commercial buildings, and estimates the impact of seismic retrofit and insurance on the losses and safety. Temblor's map interface has clickable earthquakes (with source parameters and links) and active faults (name, type, and slip rate) around the world, and layers for liquefaction, landslides, tsunami inundation, and flood zones in the U.S. The app draws from the 2014 USGS National Seismic Hazard Model and the 2014 USGS Building Seismic Safety Council ShakeMap scenari0 database. The Global Earthquake Activity Rate (GEAR) model is used worldwide, with active faults displayed in 75 countries. The Temblor real-time global catalog is merged from global and national catalogs, with aftershocks discriminated from mainshocks. Earthquake notifications are issued to Temblor users within 30 seconds of their occurrence, with approximate locations and magnitudes that are rapidly refined in the ensuing minutes. Launched in 2015, Temblor has 650,000 unique users, including 250,000 in the U.S. and 110,000 in Chile, as well as 52,000 Facebook followers. All data shown in Temblor is gathered from authoritative or published sources and is synthesized to be intuitive and actionable to the public. Principal data sources include USGS, FEMA, EMSC, GEM Foundation, NOAA, GNS Science (New Zealand), INGV (Italy), PHIVOLCS (Philippines), GSJ (Japan), Taiwan Earthquake Model, EOS Singapore (Southeast Asia), MTA (Turkey), PB2003 (plate boundaries), CICESE (Baja California), California Geological Survey, and 20 other state

  17. CyberShake: A Physics-Based Seismic Hazard Model for Southern California

    Science.gov (United States)

    Graves, R.; Jordan, T.H.; Callaghan, S.; Deelman, E.; Field, E.; Juve, G.; Kesselman, C.; Maechling, P.; Mehta, G.; Milner, K.; Okaya, D.; Small, P.; Vahi, K.

    2011-01-01

    CyberShake, as part of the Southern California Earthquake Center's (SCEC) Community Modeling Environment, is developing a methodology that explicitly incorporates deterministic source and wave propagation effects within seismic hazard calculations through the use of physics-based 3D ground motion simulations. To calculate a waveform-based seismic hazard estimate for a site of interest, we begin with Uniform California Earthquake Rupture Forecast, Version 2.0 (UCERF2.0) and identify all ruptures within 200 km of the site of interest. We convert the UCERF2.0 rupture definition into multiple rupture variations with differing hypocenter locations and slip distributions, resulting in about 415,000 rupture variations per site. Strain Green Tensors are calculated for the site of interest using the SCEC Community Velocity Model, Version 4 (CVM4), and then, using reciprocity, we calculate synthetic seismograms for each rupture variation. Peak intensity measures are then extracted from these synthetics and combined with the original rupture probabilities to produce probabilistic seismic hazard curves for the site. Being explicitly site-based, CyberShake directly samples the ground motion variability at that site over many earthquake cycles (i. e., rupture scenarios) and alleviates the need for the ergodic assumption that is implicitly included in traditional empirically based calculations. Thus far, we have simulated ruptures at over 200 sites in the Los Angeles region for ground shaking periods of 2 s and longer, providing the basis for the first generation CyberShake hazard maps. Our results indicate that the combination of rupture directivity and basin response effects can lead to an increase in the hazard level for some sites, relative to that given by a conventional Ground Motion Prediction Equation (GMPE). Additionally, and perhaps more importantly, we find that the physics-based hazard results are much more sensitive to the assumed magnitude-area relations and

  18. JGR special issue on Deep Earthquakes

    Science.gov (United States)

    The editor and associate editors of the Journal of Geophysical Research—Solid Earth and Planets invite the submission of manuscripts for a special issue on the topic “Deep- and Intermediate-Focus Earthquakes, Phase Transitions, and the Mechanics of Deep Subduction.”Manuscripts should be submitted to JGR Editor Gerald Schubert (Department of Earth and Space Sciences, University of California, Los Angeles, Los Angeles, CA 90024) before July 1, 1986, in accordance with the usual rules for manuscript submission. Submitted papers will undergo the normal JGR review procedure. For more information, contact either Schubert or the special guest associate editor, Cliff Frohlich (Institute for Geophysics, University of Texas at Austin, 4920 North IH-35, Austin, TX 78751; telephone: 512-451-6223).

  19. Scaling Relations of Local Magnitude versus Moment Magnitude for Sequences of Similar Earthquakes in Switzerland

    KAUST Repository

    Bethmann, F.

    2011-03-22

    Theoretical considerations and empirical regressions show that, in the magnitude range between 3 and 5, local magnitude, ML, and moment magnitude, Mw, scale 1:1. Previous studies suggest that for smaller magnitudes this 1:1 scaling breaks down. However, the scatter between ML and Mw at small magnitudes is usually large and the resulting scaling relations are therefore uncertain. In an attempt to reduce these uncertainties, we first analyze the ML versus Mw relation based on 195 events, induced by the stimulation of a geothermal reservoir below the city of Basel, Switzerland. Values of ML range from 0.7 to 3.4. From these data we derive a scaling of ML ~ 1:5Mw over the given magnitude range. We then compare peak Wood-Anderson amplitudes to the low-frequency plateau of the displacement spectra for six sequences of similar earthquakes in Switzerland in the range of 0:5 ≤ ML ≤ 4:1. Because effects due to the radiation pattern and to the propagation path between source and receiver are nearly identical at a particular station for all events in a given sequence, the scatter in the data is substantially reduced. Again we obtain a scaling equivalent to ML ~ 1:5Mw. Based on simulations using synthetic source time functions for different magnitudes and Q values estimated from spectral ratios between downhole and surface recordings, we conclude that the observed scaling can be explained by attenuation and scattering along the path. Other effects that could explain the observed magnitude scaling, such as a possible systematic increase of stress drop or rupture velocity with moment magnitude, are masked by attenuation along the path.

  20. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions

    Science.gov (United States)

    Spudich, P.; Hellweg, M.; Lee, W.H.K.

    1996-01-01

    The Northridge earthquake caused 1.78 g acceleration in the east-west direction at a site in Tarzana, California, located about 6 km south of the mainshock epicenter. The accelerograph was located atop a hill about 15-m high, 500-m long, and 130-m wide, striking about N78??E. During the aftershock sequence, a temporary array of 21 three-component geophones was deployed in six radial lines centered on the accelerograph, with an average sensor spacing of 35 m. Station COO was located about 2 m from the accelerograph. We inverted aftershock spectra to obtain average relative site response at each station as a function of direction of ground motion. We identified a 3.2-Hz resonance that is a transverse oscillation of the hill (a directional topographic effect). The top/base amplification ratio at 3.2 Hz is about 4.5 for horizontal ground motions oriented approximately perpendicular to the long axis of the hill and about 2 for motions parallel to the hill. This resonance is seen most strongly within 50 m of COO. Other resonant frequencies were also observed. A strong lateral variation in attenuation, probably associated with a fault, caused substantially lower motion at frequencies above 6 Hz at the east end of the hill. There may be some additional scattered waves associated with the fault zone and seen at both the base and top of the hill, causing particle motions (not spectral ratios) at the top of the hill to be rotated about 20?? away from the direction transverse to the hill. The resonant frequency, but not the amplitude, of our observed topographic resonance agrees well with theory, even for such a low hill. Comparisons of our observations with theoretical results indicate that the 3D shape of the hill and its internal structure are important factors affecting its response. The strong transverse resonance of the hill does not account for the large east-west mainshock motions. Assuming linear soil response, mainshock east-west motions at the Tarzana accelerograph

  1. Blind identification of the Millikan Library from earthquake data considering soil–structure interaction

    Science.gov (United States)

    Ghahari, S. F.; Abazarsa, F.; Avci, O.; Çelebi, Mehmet; Taciroglu, E.

    2016-01-01

    The Robert A. Millikan Library is a reinforced concrete building with a basement level and nine stories above the ground. Located on the campus of California Institute of Technology (Caltech) in Pasadena California, it is among the most densely instrumented buildings in the U.S. From the early dates of its construction, it has been the subject of many investigations, especially regarding soil–structure interaction effects. It is well accepted that the structure is significantly interacting with the surrounding soil, which implies that the true foundation input motions cannot be directly recorded during earthquakes because of inertial effects. Based on this limitation, input–output modal identification methods are not applicable to this soil–structure system. On the other hand, conventional output-only methods are typically based on the unknown input signals to be stationary whitenoise, which is not the case for earthquake excitations. Through the use of recently developed blind identification (i.e. output-only) methods, it has become possible to extract such information from only the response signals because of earthquake excitations. In the present study, we employ such a blind identification method to extract the modal properties of the Millikan Library. We present some modes that have not been identified from force vibration tests in several studies to date. Then, to quantify the contribution of soil–structure interaction effects, we first create a detailed Finite Element (FE) model using available information about the superstructure; and subsequently update the soil–foundation system's dynamic stiffnesses at each mode such that the modal properties of the entire soil–structure system agree well with those obtained via output-only modal identification.

  2. Short-term and long-term earthquake occurrence models for Italy: ETES, ERS and LTST

    Directory of Open Access Journals (Sweden)

    Maura Murru

    2010-11-01

    Full Text Available This study describes three earthquake occurrence models as applied to the whole Italian territory, to assess the occurrence probabilities of future (M ≥5.0 earthquakes: two as short-term (24 hour models, and one as long-term (5 and 10 years. The first model for short-term forecasts is a purely stochastic epidemic type earthquake sequence (ETES model. The second short-term model is an epidemic rate-state (ERS forecast based on a model that is physically constrained by the application to the earthquake clustering of the Dieterich rate-state constitutive law. The third forecast is based on a long-term stress transfer (LTST model that considers the perturbations of earthquake probability for interacting faults by static Coulomb stress changes. These models have been submitted to the Collaboratory for the Study of Earthquake Predictability (CSEP for forecast testing for Italy (ETH-Zurich, and they were locked down to test their validity on real data in a future setting starting from August 1, 2009.

  3. A preliminary assessment of earthquake ground shaking hazard at Yucca Mountain, Nevada and implications to the Las Vegas region

    Energy Technology Data Exchange (ETDEWEB)

    Wong, I.G.; Green, R.K.; Sun, J.I. [Woodward-Clyde Federal Services, Oakland, CA (United States); Pezzopane, S.K. [Geological Survey, Denver, CO (United States); Abrahamson, N.A. [Abrahamson (Norm A.), Piedmont, CA (United States); Quittmeyer, R.C. [Woodward-Clyde Federal Services, Las Vegas, NV (United States)

    1996-12-31

    As part of early design studies for the potential Yucca Mountain nuclear waste repository, the authors have performed a preliminary probabilistic seismic hazard analysis of ground shaking. A total of 88 Quaternary faults within 100 km of the site were considered in the hazard analysis. They were characterized in terms of their probability o being seismogenic, and their geometry, maximum earthquake magnitude, recurrence model, and slip rate. Individual faults were characterized by maximum earthquakes that ranged from moment magnitude (M{sub w}) 5.1 to 7.6. Fault slip rates ranged from a very low 0.00001 mm/yr to as much as 4 mm/yr. An areal source zone representing background earthquakes up to M{sub w} 6 1/4 = 1/4 was also included in the analysis. Recurrence for these background events was based on the 1904--1994 historical record, which contains events up to M{sub w} 5.6. Based on this analysis, the peak horizontal rock accelerations are 0.16, 0.21, 0.28, and 0.50 g for return periods of 500, 1,000, 2,000, and 10,000 years, respectively. In general, the dominant contributor to the ground shaking hazard at Yucca Mountain are background earthquakes because of the low slip rates of the Basin and Range faults. A significant effect on the probabilistic ground motions is due to the inclusion of a new attenuation relation developed specifically for earthquakes in extensional tectonic regimes. This relation gives significantly lower peak accelerations than five other predominantly California-based relations used in the analysis, possibly due to the lower stress drops of extensional earthquakes compared to California events. Because Las Vegas is located within the same tectonic regime as Yucca Mountain, the seismic sources and path and site factors affecting the seismic hazard at Yucca Mountain also have implications to Las Vegas. These implications are discussed in this paper.

  4. GPS Imaging of Time-Variable Earthquake Hazard: The Hilton Creek Fault, Long Valley California

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.

    2016-12-01

    The Hilton Creek Fault, in Long Valley, California is a down-to-the-east normal fault that bounds the eastern edge of the Sierra Nevada/Great Valley microplate, and lies half inside and half outside the magmatically active caldera. Despite the dense coverage with GPS networks, the rapid and time-variable surface deformation attributable to sporadic magmatic inflation beneath the resurgent dome makes it difficult to use traditional geodetic methods to estimate the slip rate of the fault. While geologic studies identify cumulative offset, constrain timing of past earthquakes, and constrain a Quaternary slip rate to within 1-5 mm/yr, it is not currently possible to use geologic data to evaluate how the potential for slip correlates with transient caldera inflation. To estimate time-variable seismic hazard of the fault we estimate its instantaneous slip rate from GPS data using a new set of algorithms for robust estimation of velocity and strain rate fields and fault slip rates. From the GPS time series, we use the robust MIDAS algorithm to obtain time series of velocity that are highly insensitive to the effects of seasonality, outliers and steps in the data. We then use robust imaging of the velocity field to estimate a gridded time variable velocity field. Then we estimate fault slip rate at each time using a new technique that forms ad-hoc block representations that honor fault geometries, network complexity, connectivity, but does not require labor-intensive drawing of block boundaries. The results are compared to other slip rate estimates that have implications for hazard over different time scales. Time invariant long term seismic hazard is proportional to the long term slip rate accessible from geologic data. Contemporary time-invariant hazard, however, may differ from the long term rate, and is estimated from the geodetic velocity field that has been corrected for the effects of magmatic inflation in the caldera using a published model of a dipping ellipsoidal

  5. Genome Sequencing of Museum Specimens Reveals Rapid Changes in the Genetic Composition of Honey Bees in California.

    Science.gov (United States)

    Cridland, Julie M; Ramirez, Santiago R; Dean, Cheryl A; Sciligo, Amber; Tsutsui, Neil D

    2018-02-01

    The western honey bee, Apis mellifera, is an enormously influential pollinator in both natural and managed ecosystems. In North America, this species has been introduced numerous times from a variety of different source populations in Europe and Africa. Since then, feral populations have expanded into many different environments across their broad introduced range. Here, we used whole genome sequencing of historical museum specimens and newly collected modern populations from California (USA) to analyze the impact of demography and selection on introduced populations during the past 105 years. We find that populations from both northern and southern California exhibit pronounced genetic changes, but have changed in different ways. In northern populations, honey bees underwent a substantial shift from western European to eastern European ancestry since the 1960s, whereas southern populations are dominated by the introgression of Africanized genomes during the past two decades. Additionally, we identify an isolated island population that has experienced comparatively little change over a large time span. Fine-scale comparison of different populations and time points also revealed SNPs that differ in frequency, highlighting a number of genes that may be important for recent adaptations in these introduced populations. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. The 2016-2017 Central Italy Seismic Sequence: Source Complexity Inferred from Rupture Models.

    Science.gov (United States)

    Scognamiglio, L.; Tinti, E.; Casarotti, E.; Pucci, S.; Villani, F.; Cocco, M.; Magnoni, F.; Michelini, A.

    2017-12-01

    The Apennines have been struck by several seismic sequences in recent years, showing evidence of the activation of multiple segments of normal fault systems in a variable and, relatively short, time span, as in the case of the 1980 Irpinia earthquake (three shocks in 40 s), the 1997 Umbria-Marche sequence (four main shocks in 18 days) and the 2009 L'Aquila earthquake having three segments activated within a few weeks. The 2016-2017 central Apennines seismic sequence begin on August 24th with a MW 6.0 earthquake, which strike the region between Amatrice and Accumoli causing 299 fatalities. This earthquake ruptures a nearly 20 km long normal fault and shows a quite heterogeneous slip distribution. On October 26th, another main shock (MW 5.9) occurs near Visso extending the activated seismogenic area toward the NW. It is a double event rupturing contiguous patches on the fault segment of the normal fault system. Four days after the second main shock, on October 30th, a third earthquake (MW 6.5) occurs near Norcia, roughly midway between Accumoli and Visso. In this work we have inverted strong motion waveforms and GPS data to retrieve the source model of the MW 6.5 event with the aim of interpreting the rupture process in the framework of this complex sequence of moderate magnitude earthquakes. We noted that some preliminary attempts to model the slip distribution of the October 30th main shock using a single fault plane oriented along the Apennines did not provide convincing fits to the observed waveforms. In addition, the deformation pattern inferred from satellite observations suggested the activation of a multi-fault structure, that is coherent to the complexity and the extension of the geological surface deformation. We investigated the role of multi-fault ruptures and we found that this event revealed an extraordinary complexity of the rupture geometry and evolution: the coseismic rupture propagated almost simultaneously on a normal fault and on a blind fault

  7. Approach to seismic hazard analysis for dam safety in the Sierra Nevada and Modoc Plateau of California

    International Nuclear Information System (INIS)

    Savage, W.U.; McLaren, M.K.; Edwards, W.D.; Page, W.D.

    1991-01-01

    Pacific Gas and Electric Company's hydroelectric generating system involves about 150 dams located in the Sierra Nevada and Modoc Plateau region of central and northern California. The utility's strategy for earthquake hazard assessment is described. The approach includes the following strategies: integrating regional tectonics, seismic geology, historical seismicity, microseismicity, and crustal structure to form a comprehensive regional understanding of the neotectonic setting; performing local studies to acquire data as needed to reduce uncertainties in geologic and seismic parameters of fault characteristics near specific dam sites; applying and extending recently developed geologic, seismologic, and earthquake engineering technologies to the current regional and site-specific information to evaluate fault characteristics, to estimate maximum earthquakes, and to characterize ground motion; and encouraging multiple independent reviews of earthquake hazard studies by conducting peer reviews, making field sites available to regulating agencies, and publishing results, methods and data in open literature. 46 refs., 8 tabs

  8. The Great California ShakeOut: Science-Based Preparedness Advocacy

    Science.gov (United States)

    Benthien, M. L.

    2009-12-01

    The Great Southern California ShakeOut in November 2008 was the largest earthquake drill in U.S. history, involving over 5 million southern Californians through a broad-based outreach program, media partnerships, and public advocacy by hundreds of partners. The basis of the drill was a comprehensive scenario for a magnitude 7.8 earthquake on the southern San Andreas fault, which would cause broad devastation. In early 2009 the decision was made to hold the drill statewide on the third Thursday of October each year (October 15 in 2009). Results of the 2008 and 2009 drills will be shared in this session. In addition, prospects of early warning systems will be described, that will one day provide the needed seconds before strong shaking arrives in which critical systems and be shut down, and people can do what they've been practicing in the ShakeOut drills: drop, cover, and hold on. A key aspect of the ShakeOut is the integration of a comprehensive earthquake scenario (incorporating earth science, engineering, policy, economics, public health, and other disciplines) and the lessons learned from decades of social science research about why people get prepared. The result is a “teachable moment” on par with having an actual earthquake (often followed by increased interest in getting ready for earthquakes). ShakeOut creates the sense of urgency that is needed for people, organizations, and communities to get prepared, to practice what to do to be safe, and to learn what plans need to be improved.

  9. Sensitivity of Induced Seismic Sequences to Rate-and-State Frictional Processes

    Science.gov (United States)

    Kroll, Kayla A.; Richards-Dinger, Keith B.; Dieterich, James H.

    2017-12-01

    It is well established that subsurface injection of fluids increases pore fluid pressures that may lead to shear failure along a preexisting fault surface. Concern among oil and gas, geothermal, and carbon storage operators has risen dramatically over the past decade due to the increase in the number and magnitude of induced earthquakes. Efforts to mitigate the risk associated with injection-induced earthquakes include modeling of the interaction between fluids and earthquake faults. Here we investigate this relationship with simulations that couple a geomechanical reservoir model and RSQSim, a physics-based earthquake simulator. RSQSim employs rate- and state-dependent friction (RSF) that enables the investigation of the time-dependent nature of earthquake sequences. We explore the effect of two RSF parameters and normal stress on the spatiotemporal characteristics of injection-induced seismicity. We perform >200 simulations to systematically investigate the effect of these model components on the evolution of induced seismicity sequences and compare the spatiotemporal characteristics of our synthetic catalogs to observations of induced earthquakes. We find that the RSF parameters control the ability of seismicity to migrate away from the injection well, the total number and maximum magnitude of induced events. Additionally, the RSF parameters control the occurrence/absence of premonitory events. Lastly, we find that earthquake stress drops can be modulated by the normal stress and/or the RSF parameters. Insight gained from this study can aid in further development of models that address best practice protocols for injection operations, site-specific models of injection-induced earthquakes, and probabilistic hazard and risk assessments.

  10. Development of a State-Wide 3-D Seismic Tomography Velocity Model for California

    Science.gov (United States)

    Thurber, C. H.; Lin, G.; Zhang, H.; Hauksson, E.; Shearer, P.; Waldhauser, F.; Hardebeck, J.; Brocher, T.

    2007-12-01

    We report on progress towards the development of a state-wide tomographic model of the P-wave velocity for the crust and uppermost mantle of California. The dataset combines first arrival times from earthquakes and quarry blasts recorded on regional network stations and travel times of first arrivals from explosions and airguns recorded on profile receivers and network stations. The principal active-source datasets are Geysers-San Pablo Bay, Imperial Valley, Livermore, W. Mojave, Gilroy-Coyote Lake, Shasta region, Great Valley, Morro Bay, Mono Craters-Long Valley, PACE, S. Sierras, LARSE 1 and 2, Loma Prieta, BASIX, San Francisco Peninsula and Parkfield. Our beta-version model is coarse (uniform 30 km horizontal and variable vertical gridding) but is able to image the principal features in previous separate regional models for northern and southern California, such as the high-velocity subducting Gorda Plate, upper to middle crustal velocity highs beneath the Sierra Nevada and much of the Coast Ranges, the deep low-velocity basins of the Great Valley, Ventura, and Los Angeles, and a high- velocity body in the lower crust underlying the Great Valley. The new state-wide model has improved areal coverage compared to the previous models, and extends to greater depth due to the data at large epicentral distances. We plan a series of steps to improve the model. We are enlarging and calibrating the active-source dataset as we obtain additional picks from investigators and perform quality control analyses on the existing and new picks. We will also be adding data from more quarry blasts, mainly in northern California, following an identification and calibration procedure similar to Lin et al. (2006). Composite event construction (Lin et al., in press) will be carried out for northern California for use in conventional tomography. A major contribution of the state-wide model is the identification of earthquakes yielding arrival times at both the Northern California Seismic

  11. Modeling of periodic great earthquakes on the San Andreas fault: Effects of nonlinear crustal rheology

    Science.gov (United States)

    Reches, Ze'ev; Schubert, Gerald; Anderson, Charles

    1994-01-01

    We analyze the cycle of great earthquakes along the San Andreas fault with a finite element numerical model of deformation in a crust with a nonlinear viscoelastic rheology. The viscous component of deformation has an effective viscosity that depends exponentially on the inverse absolute temperature and nonlinearity on the shear stress; the elastic deformation is linear. Crustal thickness and temperature are constrained by seismic and heat flow data for California. The models are for anti plane strain in a 25-km-thick crustal layer having a very long, vertical strike-slip fault; the crustal block extends 250 km to either side of the fault. During the earthquake cycle that lasts 160 years, a constant plate velocity v(sub p)/2 = 17.5 mm yr is applied to the base of the crust and to the vertical end of the crustal block 250 km away from the fault. The upper half of the fault is locked during the interseismic period, while its lower half slips at the constant plate velocity. The locked part of the fault is moved abruptly 2.8 m every 160 years to simulate great earthquakes. The results are sensitive to crustal rheology. Models with quartzite-like rheology display profound transient stages in the velocity, displacement, and stress fields. The predicted transient zone extends about 3-4 times the crustal thickness on each side of the fault, significantly wider than the zone of deformation in elastic models. Models with diabase-like rheology behave similarly to elastic models and exhibit no transient stages. The model predictions are compared with geodetic observations of fault-parallel velocities in northern and central California and local rates of shear strain along the San Andreas fault. The observations are best fit by models which are 10-100 times less viscous than a quartzite-like rheology. Since the lower crust in California is composed of intermediate to mafic rocks, the present result suggests that the in situ viscosity of the crustal rock is orders of magnitude

  12. The International Platform on Earthquake Early Warning Systems (IP-EEWS)

    Science.gov (United States)

    Torres, Jair; Fanchiotti, Margherita

    2017-04-01

    The Sendai Framework for Disaster Risk Reduction 2015-2030 recognizes the need to "substantially increase the availability of and access to multi-hazard early warning systems and disaster risk information and assessments to the people by 2030" as one of its global targets (target "g"). While considerable progress has been made in recent decades, early warning systems (EWSs) continue to be less developed for geo-hazards and significant challenges remain in advancing the development of EWSs for specific hazards, particularly for fastest onset hazards such as earthquakes. An earthquake early warning system (EEWS) helps in disseminating timely information about potentially catastrophic earthquake hazards to the public, emergency managers and the private sector to provide enough time to implement automatized emergency measures. At the same time, these systems help to reduce considerably the CO2 emissions produced by the catastrophic impacts and subsequent effects of earthquakes, such as those generated by fires, collapses, and pollution (among others), as well as those produced in the recovery and reconstruction processes. In recent years, EEWSs have been developed independently in few countries: EEWSs have shown operational in Japan and Mexico, while other regions in California (USA), Turkey, Italy, Canada, South Korea and China (including Taiwan) are in the development stages or under restricted applications. Many other countries in the Indian Subcontinent, Southeast Asia, Central Asia, Middle East, Eastern Africa, Southeast Africa, as well as Central America, South America and the Caribbean, are located in some of the most seismically active regions in the world, or present moderate seismicity but high vulnerability, and would strongly benefit from the development of EEWSs. Given that, in many instances, the development of an EEWS still requires further testing, increased density coverage in seismic observation stations, regional coordination, and further scientific

  13. A reevaluation of the Pallett Creek earthquake chronology based on new AMS radiocarbon dates, San Andreas fault, California

    Science.gov (United States)

    Scharer, K.M.; Biasi, G.P.; Weldon, R.J.

    2011-01-01

    The Pallett Creek paleoseismic record occupies a keystone position in most attempts to develop rupture histories for the southern San Andreas fault. Previous estimates of earthquake ages at Pallett Creek were determined by decay counting radiocarbon methods. That method requires large samples which can lead to unaccounted sources of uncertainty in radiocarbon ages because of the heterogeneous composition of organic layers. In contrast, accelerator mass spectrometry (AMS) radiocarbon dates may be obtained from small samples that have known carbon sources and also allow for a more complete sampling of the section. We present 65 new AMS radiocarbon dates that span nine ground-rupturing earthquakes at Pallett Creek. Overall, the AMS dates are similar to and reveal no dramatic bias in the conventional dates. For many layers, however, individual charcoal samples were younger than the conventional dates, leading to earthquake ages that are overall slightly younger than previously reported. New earthquake ages are determined by Bayesian refinement of the layer ages based on stratigraphic ordering and sedimentological constraints. The new chronology is more regular than previously published records in large part due to new samples constraining the age of event R. The closed interval from event C to 1857 has a mean recurrence of 135years (?? = 83.2 years) and a quasiperiodic coefficient of variation (COV) of 0.61. We show that the new dates and resultant earthquake chronology have a stronger effect on COV than the specific membership of this long series and dating precision improvements from sedimentation rates. Copyright 2011 by the American Geophysical Union.

  14. A strong-motion hot spot of the 2016 Meinong, Taiwan, earthquake (Mw = 6.4

    Directory of Open Access Journals (Sweden)

    Hiroo Kanamori

    2017-01-01

    Full Text Available Despite a moderate magnitude, Mw = 6.4, the 5 February 2016 Meinong, Taiwan, earthquake caused significant damage in Tainan City and the surrounding areas. Several seismograms display an impulsive S-wave velocity pulse with an amplitude of about 1 m s-1, which is similar to large S-wave pulses recorded for the past several larger damaging earthquakes, such as the 1995 Kobe, Japan, earthquake (Mw = 6.9 and the 1994 Northridge, California, earthquake (Mw = 6.7. The observed PGV in the Tainan area is about 10 times larger than the median PGV of Mw = 6.4 crustal earthquakes in Taiwan. We investigate the cause of the localized strong ground motions. The peak-to-peak ground-motion displacement at the basin sites near Tainan is about 35 times larger than that at a mountain site with a similar epicentral distance. At some frequency bands (0.9 - 1.1 Hz, the amplitude ratio is as large as 200. Using the focal mechanism of this earthquake, typical “soft” and “hard” crustal structures, and directivity inferred from the observed waveforms and the slip distribution, we show that the combined effect yields an amplitude ratio of 17 to 34. The larger amplitude ratios at higher frequency bands can be probably due to the effects of complex 3-D basin structures. The result indicates that even from a moderate event, if these effects simultaneously work together toward amplifying ground motions, the extremely large ground motions as observed in Tainan can occur. Such occurrences should be taken into consideration in hazard mitigation measures in the place with frequent moderate earthquakes.

  15. The Emilia 2012 sequence: a macroseismic survey

    Directory of Open Access Journals (Sweden)

    Andrea Tertulliani

    2012-10-01

    Full Text Available On May 20, 2012, at 4:03 local time (2:03 UTC, a large part of the Po Valley between the cities of Ferrara, Modena and Mantova was struck by a damaging earthquake (Ml 5.9. The epicenter was located by the Istituto Nazionale di Geo-fisica e Vulcanologia (INGV seismic network [ISIDe 2010] at 44.889 ˚N and 11.228 ˚E, approximately 30 km west of Ferrara (Figure 1. The event was preceded by a foreshock that occurred at 01:13 local time, with a magnitude of Ml 4. The mainshock started an intense seismic sequence that lasted for weeks, counting more than 2,000 events, six of which had Ml >5. The strongest earthquakes of this sequence occurred on May 29, 2012, with Ml 5.8 and Ml 5.3, recorded at 9:00 and 12:55 local time, respectively. The epicenters of the May 29, 2012, events were located at the westernmost part of the rupture zone of the May 20, 2012, earthquake (Figure 2. The May 20 and 29, 2012, earthquakes were felt through the whole of northern and central Italy, and as far as Switzerland, Slovenia, Croatia, Austria, south-eastern France and southern Germany. Historical information reveals that the seismic activity in the Po Valley is moderate […

  16. Audio-based, unsupervised machine learning reveals cyclic changes in earthquake mechanisms in the Geysers geothermal field, California

    Science.gov (United States)

    Holtzman, B. K.; Paté, A.; Paisley, J.; Waldhauser, F.; Repetto, D.; Boschi, L.

    2017-12-01

    The earthquake process reflects complex interactions of stress, fracture and frictional properties. New machine learning methods reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Our methods are based closely on those developed for music information retrieval and voice recognition, using the spectrogram instead of the waveform directly. Unsupervised learning involves identification of patterns based on differences among signals without any additional information provided to the algorithm. Clustering of 46,000 earthquakes of $0.3

  17. Earthquake Culture: A Significant Element in Earthquake Disaster Risk Assessment and Earthquake Disaster Risk Management

    OpenAIRE

    Ibrion, Mihaela

    2018-01-01

    This book chapter brings to attention the dramatic impact of large earthquake disasters on local communities and society and highlights the necessity of building and enhancing the earthquake culture. Iran was considered as a research case study and fifteen large earthquake disasters in Iran were investigated and analyzed over more than a century-time period. It was found that the earthquake culture in Iran was and is still conditioned by many factors or parameters which are not integrated and...

  18. Analysis spectral shapes from California and central United States ground motion

    International Nuclear Information System (INIS)

    1994-01-01

    The objective of this study is to analyze the spectral shapes from earthquake records with magnitudes and distances comparable to those that dominate seismic hazard at Oak Ridge, in order to provide guidance for the selection of site-specific design-spectrum shapes for use in Oak Ridge. The authors rely heavily on California records because the number of relevant records from the central and eastern United States (CEUS) is not large enough for drawing statistically significant conclusions. They focus on the 0.5 to 10-Hz frequency range for two reasons: (1) this is the frequency range of most engineering interest, and (2) they avoid the effect of well-known differences in the high-frequency energy content between California and CEUS ground motions

  19. Heterogeneous rupture in the great Cascadia earthquake of 1700 inferred from coastal subsidence estimates

    Science.gov (United States)

    Wang, Pei-Ling; Engelhart, Simon E.; Wang, Kelin; Hawkes, Andrea D.; Horton, Benjamin P.; Nelson, Alan R.; Witter, Robert C.

    2013-01-01

    Past earthquake rupture models used to explain paleoseismic estimates of coastal subsidence during the great A.D. 1700 Cascadia earthquake have assumed a uniform slip distribution along the megathrust. Here we infer heterogeneous slip for the Cascadia margin in A.D. 1700 that is analogous to slip distributions during instrumentally recorded great subduction earthquakes worldwide. The assumption of uniform distribution in previous rupture models was due partly to the large uncertainties of then available paleoseismic data used to constrain the models. In this work, we use more precise estimates of subsidence in 1700 from detailed tidal microfossil studies. We develop a 3-D elastic dislocation model that allows the slip to vary both along strike and in the dip direction. Despite uncertainties in the updip and downdip slip extensions, the more precise subsidence estimates are best explained by a model with along-strike slip heterogeneity, with multiple patches of high-moment release separated by areas of low-moment release. For example, in A.D. 1700, there was very little slip near Alsea Bay, Oregon (~44.4°N), an area that coincides with a segment boundary previously suggested on the basis of gravity anomalies. A probable subducting seamount in this area may be responsible for impeding rupture during great earthquakes. Our results highlight the need for more precise, high-quality estimates of subsidence or uplift during prehistoric earthquakes from the coasts of southern British Columbia, northern Washington (north of 47°N), southernmost Oregon, and northern California (south of 43°N), where slip distributions of prehistoric earthquakes are poorly constrained.

  20. Electromagnetic Signals and Earthquakes 2.0: Increasing Signals and Reducing Noise

    Science.gov (United States)

    Dunson, J. C.; Bleier, T.; Heraud, J. A.; Muller, S.; Lindholm, C.; Christman, L.; King, R.; Lemon, J.

    2013-12-01

    QuakeFinder has an international network of 150+ Magnetometers and air conductivity instruments located in California, Peru, Chile, Taiwan, and Greece. Since 2000, QuakeFinder has been collecting electromagnetic data and applying simple algorithms to identify and characterize electromagnetic signals that occur in the few weeks prior to earthquakes greater than M4.5. In this presentation, we show refinements to several aspects of our signal identification techniques that enhance detection of pre-earthquake patterns. Our magnetometers have been improved to show longer pulses, and we are now using second generation algorithms that have been refined to detect the proper shape of the earthquake-generated pulses and to allow individual site adjustments. Independent lightning strike data has also now been included to mask out lightning based on amplitude and distance from a given instrument site. Direction of arrival (Azimuth) algorithms have been added to identify patterns of pulse clustering that occur prior to nearby earthquakes. Likewise, positive and negative air ion concentration detection has been improved by building better enclosures, using stainless screens to eliminate insects and some dirt sources, conformal coating PC boards to reduce moisture contamination, and filtering out contaminated data segments based on relative humidity measurements at each site. Infra Red data from the western GOES satellite has been time-filtered, cloud-filtered, and compared to 3 year averages of each pixel's output (by seasonal month) to arrive at a relevant comparison baseline for each night's temperature/cooling slope. All these efforts have helped improve the detection of multiple, nearly simultaneous, electromagnetic signals due to earthquake preparation processes, while reducing false positive indications due to environmental noise sources.